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ABSTRACT Ultra-wideband (UWB) localization has emerged in GPS-denied environments as a crucial
facilitator for diverse industries, including logistics, healthcare applications, and societal domains. Despite
notable progress, UWB algorithms from the scientific literature are often evaluated in isolation in
very specific conditions and hence difficult to compare. This paper introduces a novel benchmark
platform designed to assess the performance of 11 prominent UWB accuracy-enhancing algorithms, both
independently and in combination. A key feature of the platform is its incorporation of multiple diverse
evaluation metrics, including mean average error, latency, and spatial error. We showcase the significance
of adopting alternative metrics such as spatial error, which often, depending on the use case, offers greater
relevance than the prevalently used mean average error. Furthermore, we show that ‘‘more is better’’ does not
hold true when combining multiple accuracy-improving algorithms for UWB systems: combining multiple
accuracy-improving algorithms reveals instances of diminishing returns and can even result in overall
performance decline. Additionally, we caution against blind reliance on accuracy outcomes reported in the
scientific literature when designing UWB systems for use cases that are different in terms of requirements
or environment. Finally, we also provide algorithmic recommendations for distinct surroundings, exemplary
applications, and usage contexts, assisting in driving efficient design in future UWB research and adoption.

INDEX TERMS Benchmark, filters, guidelines, localization, LOS/NLOS, software, UWB, ultra-wideband.

I. INTRODUCTION
Many industry 4.0 and consumer applications require spatial
awareness of persons and internet of things (IoT) devices.
To facilitate this spatial awareness, an application designer
can choose different localization technologies depending
on the requirements. With the absence of GPS signals
indoors, different other technologies can be considered for
indoor localization including Bluetooth Low Energy (BLE)

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Kheir .

[1], inertial measurement unit (IMU) [2], 5G [3], motion
capturing (MOCAP) [4], and light detection and ranging
(lidar) [5]. However, these technologies suffer from less
accurate localization, provide no absolute positioning, require
line-of-sight (LOS), and/or are not power efficient. Ultra-
wideband (UWB) is a popular choice for high-accuracy
indoor localization as the radio frequency (RF) technology
has excellent indoor localization properties. Firstly, the
high bandwidth enables a high time resolution and low
transmission power [6]. Incoming UWB pulses can be
timestamped with sub-nanosecond resolution, which enables
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the estimation of the position of mobile tags with accuracies
that range from several centimeters (in optimal conditions)
to around 30 cm accuracy in more realistic conditions [7].
In addition, this resolution causes good resilience against
RF channel imperfections, such as multipath effects and
fading. Thirdly, UWB does not cause interference with
existing technologies in the same frequency bands, due
to its low transmission power. The UWB technology
is currently rapidly maturing with increased availability
in consumer electronics, chip manufacturers, and custom
system providers, while standardization and interoperability
efforts are in progress [8]. University testbeds are deployed to
investigate the compatibility and interoperability of different
UWB transceiver platforms [9]. In literature, many scientific
contributions are proposed to evaluate UWB systems in a
plethora of use cases. For example, the FiRa consortium,
a consortium of more than 100 members focusing on the
development of UWB, defines 4 main use case categories
with in total 37 unique applications for UWB technology [8].
In industrial environments, UWB can be used to track
assets for which a software architecture is proposed in [10].
By using an indoor location system for asset tracking, supply
chains can be optimized and labor costs can be reduced. Other
use cases include athlete tracking in sports [11], [12], [13],
radar [14], unmanned aerial vehicles (UAVs) [15], [16] and
many more. Recent scientific research papers have proposed
techniques to improve UWB indoor localization accuracy
further, using techniques such as bias correction, machine
learning based error correction, outlier removal, adaptive
physical layer (PHY) settings, path filtering, etc. Many of
these papers report promising performance gains, especially
in non-line-of-sight (NLOS) conditions. The evaluation is
done by comparing the approximated points with a ground
truth. The ground truth points are the true locations of the
device and need to be known with much higher precision than
the estimated points. However, the results of these studies
are difficult to interpret and compare: (i) the algorithms
are evaluated in different setups (different environments,
different mobility patterns, different hardware platforms,
different ground truth methodologies, etc.), (ii) the systems
use different localization techniques (e.g. two-way-ranging
(TWR) versus time-difference-of-arrival (TDoA)), (iii) or
uses different post-processing techniques (real-time position
updates versus post-processing using filtering methods), (iv)
using different evaluation metrics, etc. As such, based on
current research papers, it is practically impossible to
separate the evaluation methodology’s impact from the
optimization techniques’ actual gains. Moreover, many
proposed state-of-the-art improvement techniques focus on
different levels of processing steps (e.g. ranging bias
correction versus positioning error correction). However,
improving the ranging error might not always lead to similar
improvements in terms of positioning error. As such, it is
not clear if combining optimizations at different phases
would still improve the accuracy to the same degree as both

individual techniques or to a lesser degree. At the moment,
there is no systematic investigation into the question of
how individual optimization techniques perform when
combined within the same localization system.
The main contributions and innovations of this paper are:

1) Description of the design of a software platform to
evaluate different off-the-shelf algorithms and post-
processing pipelines for UWB positioning systems.

2) Different state-of-the-art software post-processing
algorithms are objectively evaluated and clear guide-
lines on when to use them are formulated.

3) A multi-metric analysis from the perspective of sec-
ondary objectives (e.g. power consumption) rather than
only accuracy metrics (e.g. mean absolute error).

4) The presented results are associated with five specific
practical use cases, and recommendations have been
developed for these use cases.

5) We provide dynamic open-source datasets with both
TWR and TDoA collected data in a controlled
environment with full LOS scenarios and scenarios
including NLOS with mm-level accurate ground-
truth. This enables performance analysis of future
localization methods and a thorough comparison of
their performance.

The remainder of this paper is structured as follows:
Section II gives an overview of the basic UWB principles.
Section III discusses the state-of-the-art related work for
benchmarks of localization systems and UWB benchmark
initiatives. This related work Section is followed by
Section IV which provides an overview of the measurement
setup. In Section V the used algorithms are discussed and in
Section VI all the module combinations in the platform are
evaluated. These results are put in perspective for different
use cases in Section VII. Sections VIII and IX are discussing
future work and are concluding this work, respectively.

II. BASIC PRINCIPLES
Different ways exist to estimate the mobile node’s location
in an indoor localization system: (i) received signal strength
indicator (RSSI) values and/or the channel impulse response
(CIR) information can be used to model or to allow
fingerprintingwithin the environment usingmachine learning
(ML) models [17], [18], [19], [20] (Fig. 1a), (ii) the angle
which is estimated based on the phase information at an
antenna array can be used in triangulation [21] (Fig. 1b),
(iii) time information can be used in multilateration [22]
(Fig. 1c-f) or (iv) hybrid approaches combining multiple
localization techniques (e.g. Djosic et al.) [23] combines
multilateration with fingerprinting.

Currently, in UWB localization time-based approaches
are the most widespread due to their high accuracy, gen-
eralization to new environments (one of the drawbacks of
ML fingerprinting), and rather simple hardware (compared
to the more complex antenna arrays for AoA). For the
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FIGURE 1. Different techniques exist to estimate positions based on UWB
signals: based on (a) received signal strength indicator values,
(b) angle-of-arrival, (c) single sided two-way-ranging, (d) double sided
two-way-ranging, (e) uplink time-difference-of-arrival and (f) downlink
time-difference-of-arrival.

time-based approach, two popular time-based techniques can
be distinguished.

• In two-way-ranging (TWR) a sender and receiver are
exchanging 2 or 3 UWB packets to measure the
propagation time of the packet. Combining this with
the propagation speed of the UWB signals results in a
distance between the nodes. The simpler 2-packet ver-
sion, single sided two-way-ranging (SS-TWR) (Fig. 1c)
reduces the influence of clock offset between the nodes,
but the clock drift error should still be compensated. This
clock drift error compensation is inherently incorporated
in the 3 packet schemes (double sided two-way-ranging
(DS-TWR), Fig. 1d).

• A second time-based approach is time-difference-of-
arrival (TDoA). Two variants of this technique exist,
an uplink version (Fig. 1e) with lower power consump-
tion for the tag and the downlink version (Fig. 1f) with
high scalability to the number of tags and privacy for
the tag’s location. In TDoA, the difference in arrival
time between the arriving packets from (downlink)
or at (uplink) the anchors leads to a hyperbola in
2D-positioning or a hyperboloid in 3D-positioning of
possible tag locations. The TDoA and distances are
the base measurements that the localization engine will
combine to a single position.

When the timing information from the anchors is collected,
the localization server combines them into a position esti-
mate. Many different methods exist to estimate the position
and a use case-specific trade-off has to be made. A first
example of applications that exploit UWB is the precise
localization of robots [24]. These industrial robotic appli-
cations need highly accurate localization with low latency
that is robust for changes in the environment which makes
UWB an excellent choice. Another example is presented
in [25], where the authors utilized a periodic extended
Kalman filter (PEKF) to combine the range information from

two anchors and one tag concerning the position of a rowing
machine. UWB based localization systems are also used in
other sports. A review study on the improvements of UWB
indoor localization systems of the last 5 years discusses
many possible use cases and corresponding localization
algorithms [7]. Some of the localization algorithms exploit
information from other sensors to enhance their performance.
The technology is commercialized and a wide overview of
different systems is used. Most of the current discussed
systems use least-squares multilateration, Kalman filtering,
or a particle filtering approach to estimate the position.
These traditional approaches are still optimal for standard
multilateration use cases, but different ML models are
proposed to cover specific environments or to increase
robustness [26], [27], [28].

There is a consensus among published UWB research
regarding the performance degradation of UWB localization
systems in NLOS conditions. However, it is worth noting
that the presence of visual NLOS does not always impact
performance to the same degree. Depending on the type of
material, some visually opaque materials still allow signal
penetration through obstacles, and as such there may still be a
direct path available for the received signal. The study made
in [29] extensively discusses the interpretation of NLOS,
methods for simulating NLOS environments, and the objec-
tive determination of NLOS characteristics for comparing
different environments. Their findings demonstrate that in
the absence of multipath reflections, it is challenging to
distinguish between line-of-sight (LOS) and visual NLOS.

III. RELATED WORK ON STANDARDIZED UWB
BENCHMARKING
A plethora of literature works are reporting on localization
systems but it is currently difficult to compare different
optimizations as they are tested on different datasets in
different environments. Surveys also tend to report the results
of the developers which makes it difficult to select the best
option. Therefore, there is a need for objective evaluation
methods for localization systems. This is currently done
by standards, localization competitions, and open-source
datasets. In addition to these efforts, researchers already
presented small benchmarks. The ISO/IEC 18305:2016
International Standard is one of the first initiatives to
provide a standardized methodology for evaluating indoor
localization systems and defines a complete framework for
performing tests and evaluation of localization and tracking
systems. The authors of [35] formulatedmany remarks on this
standard. Themost informative aspect for the user’s questions
lies in the quantiles of the errors, they specify how often
the system gives wrong results. The authors suggest using
the quantiles 0.5,0.75,0.9 and 0.95 to report the performance
of a system. The standard specifies only metrics related
to errors between positions and ground truth points but
no other metrics related to the trajectory. The selection of
the evaluation metric was also one of the incentives for
the EVARILOS project [30]. This benchmark project was
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TABLE 1. Overview of prior benchmarking systems and approaches. Despite the presence of multiple datasets, no comparisons have been made of UWB
optimizations and combinations from scientific literature in the same conditions.

one of the first major RF localization projects focusing on
benchmarking different RF localization systems. Based on
different metrics such as accuracy, energy efficiency, latency,
etc. a global score is calculated which is used for scoring
different solutions. Secondary metrics such as mobility,
repeatability, scalability, and interference profiles are also
taken into account when evaluating a solution. Although
EVARILOS is a relevant benchmark example, it does not
include UWB. To overcome the difficulties in comparing
localization solutions, different localization competitions are
organized where the competitors work on the same data.
The conference on Indoor Positioning and Indoor Navigation
(IPIN) has a lot of experience in organizing localization
competitions [31]. Over the years, different tracks have been
organized, both held offline and online. The conference
uses the evaluation platform EvAAL whose main goal is
the evaluation of indoor localization systems in diverse
scenarios and contexts but with a common metric. The
solutions are evaluated with the 75th percentile of the mean
absolute error, where the ground truth has been determined
by using a mm-accurate MOCAP system. The conference
had a specific UWB based track in an industrial environment.
A second conference that organized localization competition
is the Information Processing in Sensor Networks (IPSN)
conference. This conference organized an indoor localiza-
tion competition in collaboration with Microsoft for four
consecutive years between 2014 and 2017. The lessons
learned from this competition are bundled in [32]. UWB
localization systems built on the DW1000 were scoring very
well in the competition but required dedicated hardware
installation with long deployment times. A second conclusion
was that the different systems had lower accuracies during
the competition than when tested in the lab of the researchers
which expresses the need to have a unified evaluation
environment for indoor localization systems. A last remark is
that the localization error metric is influenced by the chosen
points: if more easy points (without obstacles) are evaluated
the error metrics will also be better.

The need for a unified dataset for evaluating different
algorithms is also indicated in [15]. The authors have made
a subset of drone-collected datasets available for UWB
designers to test their algorithms on and to be able to
validate the algorithms in detail. Environments available in

this dataset are: indoor, field, building, bridge, and tunnel but
the tag was differently mounted on the drone for the indoor
scenarios than for outdoor scenarios making it more difficult
to compare different environments. A range calibration is
already performed before the publication of the dataset.
With multilateration approaches, the mean absolute error is
between 0.17 m (Field) and 2.02 m (Building). To collect
the datasets four PulseON 440 UWB anchors are used and
the ground truth is collected with the Leica Nova MS60
Multistation.

Currently, it is rather unknown how the ranging perfor-
mance will be with different interoperable UWB transceivers.
The results reported in [9] are one of the first who delved
into interoperability, conducting experiments in a testbed
environment where hardware from various UWB providers
was installed and benchmarked their performance under
interference from WiFi 6E communication. In their testbed,
Decawaves DW1000 and DW3000 are interoperated with
NXP transceivers, and all nodes are connected to a network
of Raspberry Pis. The authors conclude that the coexistence
between WiFi 6E and UWB is not trivial.

A different new UWB testbed to evaluate ranging infor-
mation was presented at the IPIN conference 2018 [34]. The
testbed has 20 fixed DW1000-based nodes and two mobile
nodes placed at motorized rails for effective tests. The goal of
the testbed is to investigate various physical properties such
as propagation conditions, clock skew, signal reflections,
etc. Two datasets are publicly available that are recorded in
the testbed. The first dataset contains timestamp information
from symmetric double sided two-way-ranging (SDS-TWR)
and the authors compare SS-TWR, with and without clock
skew compensation to DS-TWR. With compensation of the
clock skew, similar accuracy can be reached while at the
same time, one UWB packet can be saved per range. The
second dataset focuses on a node moving from a hard NLOS
environment to a LOS situation with the anchor. Mitigation
techniques for NLOS errors can be further investigated
here. To increase the reproducibility of the results, datasets
are also published with their corresponding paper. For
example, the authors of [33] published an open source dataset
collected with a UAV, where the system has 3-6 anchors.
A second extensive dataset with UWB ranging information
for ML error mitigation is also available [27]. The number
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of available datasets is increasing, but as environmental
influences are very important and no common data format
is available, it is difficult to compare them objectively.

An overview of the discussed benchmarking initiatives is
given in Table 1. None of these show the same algorithms in
different environments and the influence of a combination of
different algorithms.

IV. MEASUREMENT SETUP
This section describes the setup that was used for a repeatable
benchmark. During the design of the used setup, careful
considerations are given to repeatability, reproducibility, and
transparency in the results. While the data are collected in
a realistic scenario, all the state-of-the-art algorithms are
evaluated offline both in isolation and in combination with
each other. The ground truth is collected with mm-level
precision.

A. LAB INFRASTRUCTURE
The datasets collected to evaluate the benchmark platform
were captured in a controlled and industrial lab environment
of the IDLab research group at Ghent University (Fig. 2). The
Industrial Internet of Things (IIoT) lab [36] contains a 240m2

warehouse environment, representative of many Industry
4.0 use cases. To meet the benchmarking requirements, the
lab’s open space subsection was used to achieve repeatable
and mm-accurate ground truth in the raw (not preprocessed
and unfiltered) dataset. This open space of 7 × 11 × 2.5 m
(L×W×H) is equipped with 8 Qualisys Miqus M3 MOCAP
cameras [37], capable of tracking hundreds of passive
infrared reflective motion capturing (MOCAP) markers with
a quantified uncertainty in the millimeter range at speeds up
to 340Hz.

To achieve a controllable NLOS influence in the environ-
ment without compromising the MOCAP setup, RF absorb-
ing panels (−18 dB reflection loss at 6 GHz [38]) are added
in the middle of the open space in the lab. The panels are
placed in such a way that some of the links are attenuated,
while also guaranteeing coverage from theMOCAP system to
maintain an accurate ground truth (see Fig. 3). The placement
of the absorbing panels results in both weak and strong
NLOS. Weak NLOS is defined as links that are visually
NLOS and RF absorbed but still permit the first path to be
detected correctly [27]. In strong NLOS links, the first path
is completely attenuated and the transceiver timestamps a
reflected path. This controllable environment facilitates an
objective comparison in various propagation scenarios. The
introduction of absorbing panels allows for precise control
over alterations to the environment and characterization of the
differences between LOS and NLOS scenarios. The number
of reflections is limited in the measurement area but metal
surfaces are available close to the measurement area and still
influence the signal propagation from tag to anchors. In the
NLOS scenarios, the number of NLOS links to the anchors
varies up to 8 blocked anchors, but for most points at least

FIGURE 2. The measurements were performed in the open space area of
the iiot-lab at Ghent University which simulates an industrial
environment. (a) The UWB hardware platform for the data collection [6],
(b) the iiot-lab environment, and (c) the ground plan of the environment.

FIGURE 3. By adding RF absorbers, weak and strong NLOS links are
created to evaluate the robustness of the different algorithms.

one link is LOS to permit the algorithms to detect unreliable
links and mitigate these effects.

B. UWB
The data is collected with the Wi-Pos UWB system [6],
a platform developed for research data collection with
a wireless long-range Sub-GHz backbone combined with
UWB ranging based on the DW1000 shown in Fig. 2.
The UWB devices are configured with a center frequency
of 6489.6 MHz, a bandwidth of 499.2 MHz (channel 5),
and a preamble length of 1024 symbols at the suggested
TX power (7.5 dB) from the DW1000 user manual [39].
The bitrate for the measurements is 850 kbps and a pulse
repetition frequency (PRF) of 64 MHz is used. Eight UWB

VOLUME 12, 2024 16885



B. Van Herbruggen et al.: Selecting and Combining UWB Localization Algorithms

anchors are placed in a cuboid setup of 8.0 × 10.8 ×

2.2 m3 in the previously mentioned lab infrastructure. Both
uplink TDoA [22] and asymmetric double-sided TWR [40]
are supported. While the first has good scalability to the
number of anchors and low power consumption at the
tag device, the latter does not require any form of clock
synchronization between the anchor nodes. We collected
TDoA and TWR data using two firmware versions. In the
version without CIR, output for TWR includes timestamp,
range, and anchors’ addresses. For TDoA, the output includes
a timestamp, tag address, anchors’ addresses, superframe
counter, and clock drift information. The system achieves a
high update rate with limited UART communication. When
CIR is collected, the same values are captured, along with
additional values from registers: received power, first path
power, first path amplitudes, peak path index and amplitude,
preamble accumulation count, LDE threshold, CIR noise,
and complex CIR samples between indexes 650 and 950.
Transmitting this expanded information over UART slows
down the system, resulting in a lower update rate. The
reduced update rate, combined with the need for a higher
throughput link between anchors and the localization engine,
may not be justified compared to potential benefits in a
system with a lower update rate and improved filtering.

C. ROBOTIC PLATFORM
All experiments were performed using a TurtleBot 3 Burger
[41] robot base platform, with a height extension beam
to place the UWB tag at a fixed height of 1 m. This
places the tag at a more representative height for most use
cases involving person and object localization, while also
guaranteeing line-of-sight concerning the MOCAP cameras.
This allows the robot platform to navigate based on the
input from the MOCAP system, providing a mm-accurate
ground truth at all times, even if the robot deviates more
from the planned trajectory. Both the robot platform and the
UWB tag are fitted with passive infrared reflective MOCAP
markers, giving two Six Degrees of Freedom (6DoF) bodies
that fully describe both the robot and UWB hardware in
both position and rotation in 3D space at 100 Hz. These
external measurements are timestamped and synchronized
by the same system that records the robot platform metrics
(from CPU usage to wheel encoders and position on the
experiment trajectory) and are finally combined with the
measurements of the actual system under test (SUT): the
UWB tag and anchors. This approach satisfies the proposed
repeatability, reproducibility, and transparency requirements
by collecting all metrics with a unified time source. The
same trajectory can be executed for different physical settings
and changes in the environment which makes the experiment
repeatable.

D. DATASETS
The robotic platform is set to capture different datasets
on the same trajectory to compare the actual results.

FIGURE 4. Both static (a) and dynamic (b) trajectories are collected in the
iiot-lab. The dynamic scenario covers realistic sharp corners and areas
with high numbers of NLOS links are created with the absorbing panels.

An overview of all captured and considered datasets is given
in Table 2. The different datasets are selected carefully in a
controlled environment to see the influence of the different
algorithms for the following operational conditions: TWR vs
TDoA, LOS vs NLOS, static vs dynamic, and lastly if the
CIR information was collected or not. Due to the limited
throughput from the nodes, the collection of the CIR will
lower the update rate of the dataset. To evaluate the influence
of static vs dynamic, two different movement patterns are
executed in the lab. For static use cases, a 25-position grid
was measured with a surface area of 16m2 (Fig. 4a). For the
dynamic use cases the turtlebot drives from the origin along
the y-axis to the point with x= −2. From this point, the robot
rides a perfect square of 4 × 4 m, before returning to the
origin (Fig. 4b). This dynamic pattern has been executed at
low speed (0.1 m/s) and high speed (0.2 m/s). In total three
different mobility patterns (static, low speed dynamic, and
high speed dynamic) are evaluated. An overview of all the
datasets and their settings is given in Table 2. All datasets
have a mean absolute error (MAE) between 12.7 cm and
22.3 cm.
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TABLE 2. A representative collection of datasets is used for software evaluation in the platform. Both LOS and NLOS environments are evaluated in
different patterns with both TWR and TDoA techniques.

E. EVALUATION METRICS
As previously mentioned, the user will assess the perfor-
mance of the indoor localization system based on different
metrics. In most practical applications, this will be the
distance between the predicted location and the real location.
We propose to build a scoring mechanism like presented
in the EVARILOS benchmarking handbook [30], based
on the user’s desiderata. The metrics that we will use in
the evaluation of the different datasets and post-processing
scenarios are based on the requirements of the different
use cases presented before. As a first metric, we will use
the absolute error (AE): the Euclidean distance between
the ground-truth (MOCAP) position and the approximation
position. While the MAE provides an average performance
of the software combinations, we also include percentiles
that provide additional information on the robustness of the
chosen software combination by showing the distribution of
the outliers. As a secondmetric, we use the spatial error (SE)
which evaluates the path of the localization. Similar metrics
have been proposed earlier [42]. Some software algorithms
such as smoothing filters consider previously estimated
points into account for improving the accuracy and thereby
inherently introduce latency in the system. To calculate
the time-compensated spatial error (SE), we determine the
Euclidean distance from the calculated location to the
closest point on the traveled trajectory. A third considered
metric during the evaluation is the power consumption and
corresponding battery lifetime of the devices. The fourth and
last metric is the cost of the system for both deployment
and execution. This mostly depends on the number of
anchors, the need for wired synchronization between the
anchors, and data throughput from anchors to the localization
engine.

F. EVALUATION PROCEDURE
The benchmark platform is built uponNode-RED [43], a low-
code programming tool for event-driven applications. The
platform utilizes a standardized format to relay data between
different algorithms. The specific algorithm’s settings are
centrally orchestrated to be able to run different versions
of the same algorithm to evaluate the influence of certain
settings.Wewill keep this benchmarking processmanageable
by only evaluating different combinations of algorithms and
not differentiating between the settings of each specific
algorithm.

V. EVALUATED ALGORITHMS
Many different optimizations can be added and combined to
create a multi-dimensional analysis. In this section, all the
evaluated state-of-the-art algorithms are introduced, together
with their configuration parameters. Although the used
parameters are mentioned for completeness, the parameters
are defined based on previous work and are not optimized
for these datasets in particular. This allows for validating
the generalization of the results in different environments.
Table 3 provides the available information on the results,
including a reference to a more detailed description, the
reported improvement, and how the evaluation was executed.

All state-of-the-art algorithms are listed in Table 4 with
their specific input data, output data, and targeted UWB
technique. As discussed, the algorithms will be evaluated
both individually as well as when combined with each other.
The implementations of the different evaluated modules were
made compatible with each other. The possible combinations
of algorithms are shown in Fig. 5. The bias correction and
the machine learning can both be used on the TWR dataset
after each other but only one positioning module can be
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TABLE 3. State-of-the-art algorithms used for evaluation.

FIGURE 5. Overview of all the tested modules in the postprocessing
chain. Different datasets are collected under different environmental
parameters and are evaluated with different metrics.

combined to convert the timestamps into positions. In every
combination of algorithms, one of the two filtering modules
is used or the filtering is omitted. This means that algorithm
combinations with 1 up to 4 modules are tested with in
total 396 combinations of algorithms for the 16 considered
datasets. The TWR datasets, three without CIR collection
and five with CIR collection, have 18 and 42 combinations
respectively. Similarly, the TDoA datasets, amounting to
three with CIR collection and five with CIR collection,
generate 9 and 21 combinations each.

A. BIAS CORRECTION (BC) (TWR)
The distance between the tag and anchor nodes is mea-
sured with asymmetric double sided two-way-ranging
(ADS-TWR). Using a three-packet scheme not only cancels
out the influence of clock offset but the influence of
clock drift is minimized. In [44] (application note 11) the
transceiver manufacturer mentions an offset on the ranging
depending on the received power at the devices. This
received power can be retrieved in two different ways. Firstly,
an approximation is reported by the DW1000 but is only
representative lower than −85 dBm. A second approach,
also followed by the authors of [27], is to use the measured
distance and Friis path loss formula to estimate the received
signal strength. Once the received power is determined,
a correction factor can be applied to the measured distance.
During the first analysis of the datasets’ received powers,
almost 50% percent of the received powers was higher than
−85 dBm and therefore we chose the second approach to

estimate this received power for further analysis. For this
benchmark, the relationship between received power level
and bias as explained in the manufacturer’s application note
is used to correct the error based on the deducted received
power. The same correction is done for LOS, weak NLOS,
and strong NLOS links. The received power will be lower for
NLOS links due to the attenuation on the direct path which
will result in a different bias correction.

Parameters of this module: correction curve from
the application note and Friis formula
Required input: distances

B. MACHINE LEARNING (ML)
Multipath propagation can cause the first paths to be wrongly
detected, resulting in ranging errors. A popular approach
in scientific literature is to use machine learning based
approaches to correct the ranges. We evaluate one machine
learning based approach for TWR and one for TDoA.

1) TWR
The authors of [28] proposed a machine learning based
approach for mitigating the errors in a UWB system. In this
paper, we implemented the same machine learning model,
which was trained on data collected in the same environment
as the conducted experiments. However, to pursue general-
ization the data was measured on random static points with
random NLOS introduced and the evaluated experiments are
not part of the training data. The points in the evaluated
datasets are mostly unseen for the model, but the environment
is the same.

2) TDoA
A similar approach can be applied for TDoA. The used model
has been proposed in [22]. In this case, the convolutional
neural network (CNN) requires 2 CIRs as input: one from
each anchor that contributes to the TDoA. The CIRs from
the links between the tag and anchors are provided to the
machine learning model and allow the model to correct
the TDoA when the obstruction is between the tag and
one of the anchors. However, this approach cannot detect
synchronization errors caused by NLOS effects between the
anchor nodes.

Parameters of this module: the ML model architec-
ture and the data trained on
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Required input: distance (TWR)/ distance differ-
ence (TDOA), normalized CIR

3) LEAST-SQUARES (LS) MULTILATERATION
The timestamps collected at the anchors will resemble
distances for TWR and distance differences for TDoA. This
information is part of an optimization problem that can be
solved with a least-squares solver.

a: TWR
Every anchor will report its distance sequentially to the
localization engine (this can be the tag device or an edge
node as well). Based on the measured distance, all possible
points will lie on a circle (2D) or sphere (3D) with the
anchor in a center. The localization engine will combine
the last 4 received ranges into one position by solving
the multilateration problem. This problem is defined as a
minimization problem with the following cost function to
minimize:

LEtwr =

4∑
k=0

√
(x − xk )2 + (y− yk )2 + (z− zk )2 − dk , (1)

with xk , yk , zk the coordinates of anchor k and dk the distance
measured with two-way-ranging (TWR). This localization
error (LE) is minimized by executing an off-the-shelf least
squares optimization solver based on [47].

b: TDOA
For time-difference-of-arrival (TDoA), the problem is analog
to the problem in TWR except that the difference in
timestamps will not result in spheres around the anchors
but in hyperboloids. With one transmitted pulse, for every
receiving anchor a timestamp is obtained. Equation 1 will be
transformed to 2:

LEtdoa =

n∑
k=0

n∑
l=0

√
(x − xk )2 + (y− yk )2 + (z− zk )2

−

√
(x − xl)2+(y− yl)2 + (z− zl)2−tdoak,l ∗ c,

(2)

with n the number of anchors in the system with correct
reception, xk , yk , zk the coordinates of anchor k , xl , yl , zl
the coordinates of anchor l and tdoak,l the time difference
measured after reception of the single UWB pulse at anchors
k and l. This localization optimization problem is minimized
by executing the same least squares optimization solver [47].

Parameters of this module: stop condition of the
algorithms and initial guess for the optimization
problem, coordinates anchors
Required input: distance (TWR)/ distance differ-
ence (TDOA)

4) PARTICLE FILTER (PF) POSITIONING
The localization engine can incorporate historical informa-
tion (previous positions) in the estimation of the current

position. A particle filter is a common method to do this.
In this benchmark, a bootstrap particle filter similar to the
one presented in [45] is used. The implementation consists of
four main steps where the two techniques (TWR and TDoA)
differ in the update step. Firstly, a set of particles has to be
initialized a single time.We use a standard deviation of 75 cm
for the normal distribution so that the initial estimate lies
within a conservative and safe error margin compared to the
expected NLOS error (between 20 and 60 cm). Subsequently,
M particles are initialized, and a location ρ for each of them
is randomly drawn from the distribution. Furthermore, each
particle is assigned a speed ν, direction θ , and weight ω. The
motion model for the particles is chosen according to the
robots’ movement constraints. In this stage, all particles will
have the same weight of 1

M . In the second step, the new state
of each particle is predicted. The new speed of each particle is
randomly chosen from a normal distributionwith the previous
speed as the mean value and a standard deviation of 0.5 m/s
within the initial bounds of 0m/s and 1.5m/s. Similarly, a new
direction is determined. As a third step, the weights of all
particles are updated and normalized. Finally, the particles are
resampled based on their updated weights. particles with high
weights will populate a new set ofM particlesmore often than
particles with lowerweights. Additionally, a location estimate
is computed in this step by taking the mean location of all
particles in the new set.

a: TWR
The update of the weights of the TWR particle filter variant
is done by comparing the list of distances. We look at the
location of each particle and calculate the distances to the
receiving anchors. Hence, a theoretical time of flight between
the particle and each of the anchors can be calculated and
subsequently, a similar list of time distances is acquired.
With this information, we can determine the probability of a
particle’s predicted measurements matching the actual time
measurements. The probability is calculated as a normal
distribution with mean1τ and standard deviation of 500mm.
The distribution to calculate the probability of the particles is
N ((1d-1dp),500) with 1d the measured distances and 1dp
the distance calculated based on the particles’ position. The
resulting value xTWR is multiplied by the current weight of the
particle [45].

b: TDOA
The weights of the TDoA particle filter variant are updated
similarly. A theoretical time of flight between the particle’s
location and each of the anchors can be calculated and
subsequently, a list of time differences 1τp is acquired.
With this information, we can determine the probability
of a particle’s predicted measurements matching the actual
time measurements. The probability is again calculated by
comparing with a normal distribution with mean 1τ and
standard deviation of 750 mm. The distribution to calculate
the probability of the particles is N ((1ddoa-1ddoap),750)
with 1ddoa the measured distance difference of arrival
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TABLE 4. Overview of the evaluated modules: their complexity and requirements.

(ddoa) and 1ddoap the ddoa calculated based on the
particles’ position. The resulting value xTDoA is multiplied by
the current weight of the particle [45].

Parameters of this module: weights, motion model,
number of particles, noise parameters, coordinates
of anchors
Required input: distance (TWR)/ distance differ-
ence (TDOA), ML predictions (optional)

5) EXTENDED KALMAN FILTER (EKF) (TWR)
An alternative to the particle filter that is computationally
less demanding but still includes historical information and
corresponding smoothing is the Kalman filter. The Kalman
filter consists of two separate steps: the prediction step and
the update step and tracks both the speed and position of the
UWB tag therefore there are 4 parameters to predict. Each
iteration of the Kalman filter starts with the prediction of
position based on the current state parameters. Afterward,
the extended Kalman filter (EKF) [46] updates this position
based on the distance to the anchor node. The filter is
an extension of the standard Kalman Filter that linearizes
the model at each chosen discrete time point to apply the
linear Kalman Filter equations. An EKF is often used in
sensor fusion, combining multiple observation functions of
different sensors to efficiently solve a non-linear state. This
EKF only concerns UWB ranges so we get the following
simplified implementation based on a distance measurement
between tag and anchor at every observed time point. With
the measurement matrix H :

H =

[
x − x1
d

y− y1
d

z− z1
d

]
(3)

where [x1, y1, z1] are the coordinates of the anchor involved
in the TWR measurement, and d is the calculated distance.
This leads to a new state vector x at every observed point in
time, giving the three-dimensional position estimate [x, y, z]
of the tag. The extended Kalman filter is initialized at [0,0,0]
where the dynamic trajectories start.

Parameters of this module: noise parameters,
coordinates of anchors
Required input: distances

6) ANCHOR SELECTION (LSAS) (TDOA)
Another approach towards improving accuracy in TDoA
is to assume multiple anchor nodes are within range and
to select only the subset of anchor nodes that are most
reliable for calculating the position of a mobile tag. As the
UWB time information is not flawless, in particular in
harsh environments where many NLOS links are present,
it might be better to use only the timestamps with the highest
quality for approximating the position. NLOS links cause
some signals to propagate longer on the reflected paths
and the receiving timestamp will be too high. Based on
the work of [22] an anchor pair selection procedure was
implemented. As a first step, the position is calculated based
on all available timestamp differences in the system. Based
on this approximation, the positioning will be done again on
the k-closest hyperboloids to this position thus limiting the
influence of the shifted hyperboloids due to NLOS effects.
Prior work from [22] showed a clear improvement in cases
where clock drift might be an issue in the anchor nodes. In this
benchmark campaign, utmost importance has been given to
clock synchronization to make sure that errors originating
from this source are as low as possible. For this reason, paths
between the synchronizing anchor and all other anchors are
kept LOS throughout the experiment.

Parameters of this module: number of anchors,
coordinates of anchors
Required input: distance differences

7) POSITION SMOOTHENING FILTERING
The outcomes of the positioning engine often contain outlier
positions due to NLOS effects. In case a moving trajectory
is followed with frequent position updates, different types
of filters can remove outliers by smoothening the trajectory,
Applying these filters introduces processing latency in real-
time positioning systems, as the filter needs to wait until
future data points are available in order to retroactively
correct prior positions. However, for many localization
systems, it is sufficient to give an accurate localization after
a few seconds to the end user for analysis. The latency for
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correcting the positions is determined by the window size of
the filter.

a: AVERAGING
To remove Gaussian noise that is still present in the system,
a rolling averaging can be calculated before the output is
going to the application. This filter is commonly used but
is less suited for trajectories with sharp turns or abrupt
deviations since these turns tend to be corrected into more
gradual ones.

Parameters of this module: window size
Required input: positions

b: SAVITZKY-GOLAY (SG)
A Savitzky-Golay filter is a digital finite impulse response
smoothing filter. The Savitzky-Golay filter will fit the
trajectory to a polynomial of order N inside a window with
a fixed length. The final trajectory will then be determined
based on this polynomial for all data points. The size of
the window will impact the performance of the filter: a
larger window size will result in a smoother signal, while a
smaller window size will be more responsive to sharp edges
in the trajectory. The data points in the window include both
historical and future points.

Parameters of this module: window and degree of
the polynomial function
Required input: positions

VI. RESULTS
For every dataset, we first determine the so-called base accu-
racy. This base accuracy is the positioning error calculated
by least squares multilateration without any extra modules
added compared to the mm-accurate MOCAP system used
as ground truth. Based on this base accuracy per dataset
we will assess the performance and improvement of the
different sets and combinations of modules. Without any
improvement algorithms, the base scenarios have an MAE
of 18.0 cm (± 10.2 cm) over all datasets. The spatial mean
error for all datasets combined is 12.5 cm (± 9.7 cm). In the
next part of this paper, we will discuss the influences of
both environmental aspects and algorithm choices. To start
with, the environmental influences (NLOS links, speed of
the robot, . . . ) are discussed. Subsequently, the consequences
of the localization technique and localization method are
studied. Finally, the influence of enabling different modules
in the processing chain is addressed in detail. The different
influences are shown in Fig. 6. Fig. 7 highlights the influences
of different conditions which will be discussed in detail in
the next parts of this section. For each of the cdf-curves,
all relevant data is used: both TWR and TDoA data if the
modules work for both technologies. For the influence of the
ML, only the datasets with CIR information are used. For
the bias correction (BC) graph, only TWR data is included
as this module is only suited for distance correction. Both

FIGURE 6. Selection of influences discussed in more detail in the results
section are divided in three main categories: environment influences,
influences of localization technique and positioning method and thirdly
the extra software optimizations on top. The combination of modules and
the number of used modules is also discussed in detail.

TABLE 5. Positioning results with NLOS links present.

error metrics, the absolute error and spatial error which were
introduced in Section IV-E are shown in the figure. The
modules behave differently based on each evaluation metric
for certain modules.

A. ALGORITHM RECOMMENDATIONS BASED ON
ENVIRONMENTAL ASPECTS
1) INFLUENCE OF NLOS
The scenarios include NLOS by shielding several links
between the tag on the robotic platform and the anchors.
The NLOS shielding was designed to attenuate the direct
path in such a way that a strongly attenuated signal might
still arrive with an SNR in the noise floor, but may not be
correctly detected. On average the ranging error increase
is limited but the number of failed ranging attempts has
increased. The average receive power for the NLOS scenarios
is significantly lower. For all considered datasets we see an
average accuracy drop of 0.9 cm in positioning accuracy. The
particle filter and extended Kalman filter cope well with input
highly varying input. Ideally, these positioning methods both
need an estimation of the measurement error. In Table 5, both
error metrics are given for LOS/NLOS situations for both
TWR and TDoA.

Lesson learned 1: The presence of NLOS obstructions
degrades the ranging measurements but has a signifi-
cantly larger impact on TDoA than on TWR algorithms.
In NLOS conditions, it is recommended to use either
TWR, or to extend the TDoA with filtering methods to
remove outliers.
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FIGURE 7. The influence of different software modules on multiple evaluation metrics: absolute error (AE) and spatial error (SE). The absolute error is the
error between the estimated point and ground truth while the spatial error measures the distance between the estimated point and the traveled path. All
relevant data (both TDoA and TWR) is used to make these graphs unless mentioned otherwise. (a) The presence of NLOS links results in higher errors.
(b) TWR is significantly more accurate. (c) Adding a Savitzky-Golay-filter positively influences the absolute error but is similar in the performance of the
spatial error. (d) The spatial error is lowered by applying the averaging filter. Still, the absolute error is higher due to the introduced latency. (e) Machine
learning decreases the spatial error while the absolute error is both improving and diminishing on the data where CIR is collected. (f) Applying bias
correction based on the receive level only has a limited influence on the TWR accuracy.

2) INFLUENCE OF MOBILITY PATTERN
Three different mobility patterns are investigated. Firstly,
a static grid was determined to mimic low dynamic appli-
cations such as asset tracking (Fig. 4a). Hereby, the robot
moves to a position and stays stationary. The second and
third options include a square trajectory with slightly rounded
corners run at low speed (0.1 m/s) and higher speed (0.2 m/s)
respectively (Fig. 4b). The MAE for the static scenarios
is lowest with 8.1 cm (± 5.3 cm) when TWR is used
and 10.9 cm (± 7.3 cm) when using TDoA. The spatial
error is practically the same as the absolute error for both
techniques, which is expected in a static scenario. When the
speed is low, the TWR accuracy is lower with average errors
up to 12.2 cm (± 7.1 cm). When the robot is moving at
high speed, the MAE is the highest (15.6 cm ± 9.2 cm).
For the SE, in TWR the mean values are within a 0.5 cm
interval, independent of the movement speed of the robot,
with the highest error for the static scenario. TDoA, the high
and low-speed scenarios show similar accuracy as the static
scenario. The detailed characteristics of the mobility pattern

when using both localization techniques can be found in
Table 6.
Lessons learned 2: The AE increases with the increas-

ing speed of the tag, with stationary tags having the
smallest absolute errors. However, the SE of the devices
remains stable, indicating that many algorithms do in
fact calculate the position correctly but with additional
latency. As such, the SE together with the latencymight be
a more meaningful metric combination for evaluating the
accuracy of localization systems for mobile devices rather
than using only the AE.

B. ALGORITHM RECOMMENDATION BASED ON
LOCALIZATION TECHNIQUE
1) INFLUENCE OF LOCALIZATION TECHNIQUE
By executing the exact same trajectory and keeping the
speed for different experiment runs fixed, but using different
localization techniques, we can compare the behavior of
the two-way-ranging and time-difference-of-arrival tech-
niques. Two-way-ranging is more accurate, with a lower
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TABLE 6. Positioning results for mobility patterns.

standard deviation than the time-difference-of-arrival variant.
However, faster positioning update rates are achieved in
time-difference-of-arrival schemes, as the number of packets
required for localization is independent of the number of
anchors used in the system. Instead, it is solely dependent
on the number of transmissions by one or more tags. Every
transmitted tag packet will result in a position in TDoA.
The benchmark shows that TWR is much more robust in
both absolute (13.5 ± 8.6 cm) and spatial (7.2 ± 6.2 cm)
metrics compared to the higher absolute (18.6 ± 11.5 cm)
and spatial (12.5 ± 10.8 cm) TDoA errors. In Table 7
both localization techniques are compared based on the four
different metrics. During TWR schemes the tag clock keeps
running, while in TDoA the tag enters sleep mode which
reduces its power consumption. Some modules require only
timing information, while others need to collect CIRs (e.g.
for bias correction). The cost for the latter type is higher,
as it requires a high throughput link between anchors and the
central node or a sufficient amount of computing power at
the anchor nodes. TDoA needs the synchronization of the
anchors which also introduces an extra cost and increased
complexity. In this benchmark, synchronization has been
performedwirelessly, but similar conclusions can be achieved
with wired synchronization. Wired synchronization increases
deployment costs and is not possible for every deployment
(e.g. due to safety restrictions).

Lessons learned 3: In our experiments, TWR is more
accurate than TDoA due to lower constraints on clock
synchronization between the anchor nodes. In contrast,
the scalability and power consumption of TDoA are its
biggest strengths. The choice between both techniques is
dependent on the targeted application.

2) INFLUENCE OF POSITIONING METHOD
For both localization techniques, different methods are
implemented that estimate the position. For both TWR
and TDoA, a basic least-squares implementation without
information on previous points is available. In addition, there
is a particle filter and a second version of this particle filter
which utilizes machine learning output as an indication of
the noise in the system. An EKF is added for TWR and
an anchor selection approach is available for TDoA. Firstly,
the TWR results are discussed, and secondly the TDoA
results.

a: TWR
For two-way-ranging the EKF is outperforming the other
positioning methods (MAE: 11.1 ± 6.9 cm). The particle
filter (MAE: 13.7 ± 8.0 cm) is still an improvement of the
base least squares algorithm (MAE: 15.4 ± 9.3 cm). As the
particle filter adds much more complexity to the system in
comparison to EKF, the latter is the better choice in TWR
indoor positioning systems. When using the output of the
machine learning model as input for the particle filter to
estimate the noise levels, the particle filter performance is
reduced (15.1 ± 8.8 cm). For the spatial error, the particle
filter with machine learning is the best choice with an error
of 7.2 ± 5.4 cm. 0.3 cm better than its standard equivalent.
The least-square approach is the worst positioning method in
following the trajectory with an error of 8.3 cm.

b: TDOA
For time-difference-of-arrival, the particle filter withmachine
learning input is the best choice to use (MAE: 15.8 ±

10.7 cm), an improvement of 2 cm compared to the basic LS
multilateration (MAE 17.7 ± 10.1 cm). The anchor selection
method can be considered as it boosts the accuracy (MAE:
16.3 cm ± 10.4 cm). For the spatial error, the positioning
methods show the same behavior. The detailed characteristics
of the different positioning methods for both localization
techniques can be found in Table 8.

Lessons learned 4: The basic multilateration methods
are outperformed by EKF for TWR and PF for TDoA.
These positioning methods require a sufficient update
rate of the UWB system as they rely on previous positions
to approximate the current position.

C. RECOMMENDATIONS PER SOFTWARE OPTIMIZATION.
1) INFLUENCE OF SMOOTHING FILTER
In this benchmark, we evaluated two different smoothing
filters. An averaging filter (AF) has a positive impact on
the spatial error (7.6 ± 5.9 cm compared to 10.4 ± 9.1 cm
when no filter is applied), but the MAE of the system has
increased from 15.2 to 16.5 cm. The main reason is that
the average filter lags behind in position updates as it needs
older positions to approximate the current position. As such,
the faster the update rate of the tag, the lower the overall
introduced latency will be, making the filter best suited
for systems with high update rates and/or slow movements.
However, the latency disadvantage is negated when the
visual trajectory is only needed for non-real-time post-event
analysis. The second considered filter is the Savitzky-Golay
filter. This filter also introduces processing latency as it waits
for future points to correct the position of the current point,
but the estimated positions are closer to their true value.
For real-time processing, the window can be kept rather
low to limit the processing latency and take sharper corners
into account. The SG filter increases the performance with
1.5 cm and 1.3 cm for the AE and SE respectively. Finally,
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TABLE 7. Two-way-ranging is the most accurate technique but requires higher energy consumption. Depending on the data that was collected and the
used technique, different combinations of modules are best.

TABLE 8. Positioning methods for both localization techniques.

it is possible to conclude that if no filter is used, the SE
(10.4 ± 9.1 cm for all datasets) is higher than when filters
are used while for the AE it depends on the chosen filter
and introduced latency. The results with the two filters and
without any positioning smoothing filter is summarized in
Table 9. It is noteworthy that the traveled trajectory will
also influence the performance of the filtering methods. For
example, a circle will be smoothed by the AF to its center
point. To limit the influence of this behavior, a realistic path
was chosen with sharp corners and straight lines in between.
Furthermore, the window of the filter is also kept small in this
benchmark, to limit the influence in dynamic situations. The
detailed characteristics for the positioning filters can be found
in Section V-B7.

Lessons learned 5: Adding a smoothening filter
increases positioning accuracy at the cost of additional
latency. Smaller window sizes (such as the one in
the evaluated SG module) mainly improve the MAE,
whereas longer window sizes mainly improve the SE
at the cost of higher latency. Ideally, the window size
of a smoothening filter should be adapted dynamically,
depending on the positioning update rate, the mobile
tag speed, the sharpness of the trajectory, the maximum
latency, and the preferred metric to optimize (AE
versus SE).

2) INFLUENCE OF CIR-BASED MACHINE LEARNING
Many recent scientific papers [18], [27], and [28] employ
ML-based error mitigation techniques that are based on
the collected CIR values. 300 samples are gathered for
each Channel Impulse Response (CIR), and within each
sample, there are 2 bytes allocated for the real part and
2 bytes for the imaginary part. To this end, for each
packet CIR 300*2*2 bytes of data need to be collected,

TABLE 9. Accuracy of the system with and without smoothening filters.
The evaluated AF filter has a larger window size than the evaluated SG
filter, thereby mainly improving the SE rather than the MAE.

which negatively impacts the maximum update rate of the
positioning system. In addition, the post-processing chain
needs more computational power for the inference of the
pre-trained network. It is important to note that UWB error
mitigation models are environment-specific and need to be
retrained for optimal results [48]. For our evaluation, the
neural network is trained on data that was captured in the
same lab but doesn’t originate from the evaluated datasets.
For the evaluation of the machine learning error mitigation,
only the datasets including CIRs are compared. Both AE
and SE show a very clear improvement in performance
in the TDoA datasets, with improvements of 2.6 cm
and 2.4 cm respectively. When using TWR, the machine
learning models could not improve the results and even
degraded the localization accuracy. The added complexity is
therefore often not worth implementation in TWR systems.
The mean, standard deviation, and 75th percentile of the
absolute en spatial error for the same scenarios with and
without ML for both localization techniques is given in
Table 10.
Lessons learned 6: Adding machine learning models

can boost the performance of the localization, but most
scientific papers neglect to report on the large negative
impact of CIR-based error mitigation on the update rate
and required energy consumption. Caution should be
taken to activate CIR-based error mitigation only when
sufficient NLOS effects are present in the system, and
even then the reduced positioning update rate might
negate some of the error mitigation benefits. Machine
learning models should be retrained with data from the
same environment for optimal performance.

3) INFLUENCE OF THE BIAS CORRECTION (TWR)
The Decawave application note suggests to use a received
signal strength-based bias correction approach, as outlined
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TABLE 10. Influence of machine learning on the results.

TABLE 11. Influence of received signal strength-based bias correction.

in Section V-A. We notice a marginally higher MAE when
the bias correction is applied (0.3 cm). For the spatial error,
a marginally lower error of 0.4 cm could be observed.
Although there is no significant influence on the positioning
accuracy, we still saw an increase in the accuracy of the
distance measurements of 2 cm. The error statistics of all
combinations with and without bias correction are given in
Table 11.

Lessons learned 7: The influence of received signal
strength-based bias correction is minor. Despite its
simplicity, such an approach needs specific calibration on
the used hardware and antennas to result in an optimal
performance improvement.

D. EFFECTS OF COMBINING MULTIPLE SOFTWARE
ALGORITHMS
Although individual modules can positively or negatively
impact evaluation metrics, it is unclear from the scientific
literature to what extent these benefits are additive when
combining multiple software modules. The influence of
using only one basic positioning module compared to adding
different modules can be seen in Fig. 8 for four different
scenarios. For both TWR and TDoA, scenarios with and
without NLOS are shown and all possible post-processing
flows are considered and grouped based on the number of
activated modules. When TWR is used to determine the
position, at least one module is required to calculate the
position from the distances. A maximum of four modules
can approximate the final position. In TDoA, there is no bias
correction variant and a maximum of three modules can be
used sequentially. While in TDoA a lower error is observed
when more modules are combined, the influence is rather
limited in TWR cases, sometimes even degrading the MAE
positioning accuracy. As such, the potential for improvements
by combining multiple modules is larger for TDoA than for
TWR. Moreover, the performance gains when combining
multiple modules for TWR are higher in NLOS conditions

FIGURE 8. a) The mean absolute errors on the final positions for all
scenarios where 1 up to 4 modules were applied on the UWB
measurements. For TDoA it is beneficial to add more modules to the
system as it will be more accurate on average. For TWR the system is
already accurate and adding more modules will have a negligible or
sometimes negative impact. b) Considering the spatial error, using more
modules is improving the localization accuracy for both localization
techniques.

(due to the lower base accuracy). In contrast, for TDoA even
LOS conditions stand to benefit from combining multiple
modules.

The relative improvement of all tested module combina-
tions compared to the base post-processing pipeline (only
theLS module to convert timestamps into positions) is shown
in Fig. 9. The darkness of the bars shows the number of
datasets that agree on the relative improvement, averaged
out over the different mobility scenarios and both LOS
and NLOS scenarios, thus representing diverse unknown
conditions. For such diverse conditions, for TWR (Fig. 9a)
several combinations result in worse performance for both
metrics. It is noteworthy, that all combinations with the
averaging filter increase the absolute error but decrease
the spatial error. For TDoA (Fig. 9b), almost all modules
and module combinations decrease the spatial error, but
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several combinations increase the MAE. Notably, the anchor
selection variant for TDoA seems to improve the performance
sometimes but has a negative impact in multiple other
scenarios.

Lessons learned 8: The relative benefits of mul-
tiple combined algorithmic modules can not easily
be predicted based on the performance of individual
modules, indicating hidden interactions between algo-
rithmic improvements. For TWR, combining multiple
modules can even degrade the performance, whereas due
to its lower initial base accuracy, combining multiple
modules more often positively benefits the accuracy of
TDoA systems. Additionally, it is important to evaluate
the combination with the suitable metric.

E. BENCHMARKS INSIGHTS DISCUSSION
From the previous results, we can derive some high-level
conclusions on the benchmark process. Firstly, the results of
the benchmark campaign are highly dependent on the used
metric. Where some of the filters wouldn’t be considered
when using the MAE, for example, the averaging filter,
it gives excellent results in the spatial domain and visually
appealing curves. In addition, the targeted application will
determine the requirements, a small low-power tag can have a
low update rate and thus difficulty in using historical informa-
tion. For high-update rate applications, historical information
can be taken into account. The amount of historical data that
can be taken into account (the last 100 ms, or the last second)
depends on themaximal speed of the robot and the update rate
of the UWB system. Taking more samples makes it easier
to limit noise in the system, but introduces inaccuracies in
itself.

Lessons learned 9: The reported accuracy from existing
state-of-the-art scientific papers can not directly be relied
upon for making UWB system design decisions for
scenarios that are different in terms of environment,
setup, or requirements. The need for benchmarking and
unified testing datasets is high. There is a clear need for
environment and experiment descriptions driven by the
application domain.

VII. USE CASES BEST PRACTICES
Although every use case will differ in terms of requirements,
in this section wewill discuss requirements and guidelines for
five typical generic use cases: asset tracking, crowd monitor-
ing, geofencing, autonomous ground robots, and autonomous
aerial robots. First, these use cases are introduced, and then
we provide findings from the benchmark experiments that are
specifically relevant to these datasets. The complete overview
of five considered use cases is given in Fig. 10 and Table 12
which also summarizes the best module combinations
to use.

A. ASSET TRACKING
Description A high number of tags with limited battery
power is tracked. The number of UWB packets sent and

FIGURE 9. Relative increase of the performance compared to the base
accuracy of the LS algorithm for different module combinations over all
datasets of the MAE and SE for a) TWR and b) TDoA datasets.

received from the mobile nodes is limited and their energy
consumption requires scheduling optimizations while going
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FIGURE 10. Different use cases have specific requirements and different
localization techniques.

maximally in sleep or deep sleep mode. Assets are mostly
static, but should also be tracked when moving around the
localization zone.

Datasets The datasets that are representative of this use
case use TDoA in LOS and NLOS environments. The static
measurements are in particular relevant as asset tracking
update rates are low.

Findings The asset tracking use case is typically power-
constrained with lots of battery-powered tags to track.
A position update will only be required once every hour/day.
For this use case we suggest using (uplink) TDoA where the
power consumption of the tag is limited to the transmission
of a single UWB packet and therefore negligible to the
power consumed during sleep mode. Machine learning can
be added at the fixed anchor nodes to improve localization
with the LS multilateration approach. Using a particle
filter is not suggested as historical information will be
of low value. To improve static localization, building on
the results of the averaging filter, it could be possible
to locate the nodes multiple times during a small time
interval and take the average position. After this average
position is calculated, the node can go back to sleep for
hours.

B. CROWD MONITORING
Description Large crowds can be tracked when the required
transmission time per position is low and many tags can
transmit their packets each second.

Datasets The crowd monitoring use cases use TDoA for a
high scalability. All used datasets are dynamic in nature with
both NLOS and LOS at high and low speeds.

Findings Previously, it has been shown that TDoA is more
scalable towards multiple users because it requires fewer
UWB packets for a location update [49]. The movement of

people demands faster update rates than the asset tracking
and therefore positioning with historical information (particle
filter) and filtering the positions (averaging filter or Savitzky-
Golay filter with larger window sizes) are a good choice.
Traditionally, a latency of a few seconds in processing delay
for the SG is not a problem and the filter can be considered
beneficial to use in this use case.

C. GEOFENCING
Description In geofencing applications a trigger event will
be thrown based on the location of the tag and a predefined
zone. This can be used to boost the efficiency of industrial
processes or to make the environment safer. Precise location
information is required for the tag to minimize both false
positives and false negatives. The system should provide
a natural responsiveness but the application is not time-
sensitive.

Datasets Two datasets are selected for this use case, the
static TWR and NLOS low-speed scenario. Both scenarios
cover the use case requirements of high accuracy and low
update rate to limit power consumption.

Findings High accuracy is required to determine if an
object is inside the borders of the search area. For this purpose
TWR is used. To reduce the number of false positives and
false negatives filtering can be applied to remove noise from
the positions, but the latency introduced is unfavorable for the
response time.

D. AUTONOMOUS GROUND ROBOT
Description For an autonomous ground robot, accurate
localization is needed so the robot can find its path throughout
the localization zone.

Datasets The autonomous ground robot needs the high
accuracy and stability of TWR. In all considered datasets CIR
information is collected to improve positioning, and both low
and high-speed scenarios are considered in LOS and NLOS
environments.

Findings An autonomous ground robot needs its position
accurately to operate safely in different scenarios and track
its estimated path. The highly accurate TWR calculated with
an EKF or PF and averaging filter with a small window size
is recommended.

E. AUTONOMOUS AERIAL ROBOT
Description To support fast-moving autonomous aerial
robots, a higher update rate is needed next to accurate
localization. The collection of CIRs will not be feasible to
maintain a high update rate. The ML based error mitigation
can not be added in this use case and other positioning
methods and filters need to be considered.

Datasets Two datasets are selected for the autonomous
aerial robot use case: high speed TWRwithout CIR collection
in both LOS and NLOS environments.
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TABLE 12. The use cases that were highlighted in the paper and the proposed software optimizations based on the benchmark campaign.

Findings The drone variant is more demanding. The
update rate needs to be high with as little latency as
possible. To limit the latency, we suggest an EKF executed
at the drone itself without filtering and without machine
learning.

VIII. FUTURE WORK
This work has taken the first steps to compare different
software post-processing steps into design knowledge for the
indoor localization system designer, thus opening up new
possibilities for innovative research and expansions. While
utmost consideration is taken for designing the benchmark
procedure, the methodology still possesses certain limita-
tions. The main limitations are 1) the used trajectories, 2) the
benchmark environment, 3) the firmware design choice, and
4) the set of algorithms tested. Although these limitations still
exist, the outcomes found in this paper are still relevant. For
the first limitation, the selection of the trajectories influences
the results as different algorithms show different resilience
against sharp corners in the trajectory. In this paper, only a
single trajectory is used, albeit at two different robot speeds.
In future experimentation, the influence could be inves-
tigated. The second limitation considers the environment.
In this benchmark, the environment is changed by placing
absorbers in the room to objectively compare LOS and NLOS
inside the same room. The benchmark could be repeated
in new, more complex environments. The third identified
limitation is the firmware design choices which contain the
choices made by the embedded developer inside the MAC
and physical layer. For example, reply times between UWB
messages influence the update rate and performance of the
system. To generalize the results of this benchmark, different
hardware systems and firmware implementations should be
tested. Finally, in this paper, the algorithms were selected
based on availability and relevance for general use cases.
With the proposed benchmark approach and the availability
of the dataset, new algorithmic combinations could be tested
objectively for both TWR and TDoA.

In addition to these mentioned limitations, extensions
of the current work are identified: the analysis can be
extended toward existing open-source datasets (e.g. the IPIN
competition dataset). This will increase the generalization of
the results toward a self-adaptive dynamic localization system
and seamless localization. To obtain this goal, the system
will not only have to compare different post-processing

strategies, but in addition, dynamically adapt itself for
better performance. To do so the system can base its
decision on the known environmental conditions (materials
and attenuation in the indoor localization area), application
requirements (update rate, latency, and scalability), and
available infrastructure (computational power, power supply,
etc.). A final open question remains how to design a
confident single quality metric for indoor localization to
make the modules able to weigh the most important
information.

IX. CONCLUSION
When comparing UWB software components, it is often
difficult to interpret the results correctly as the data and
environment are different. In this paper, over 16 different
datasets were gathered in the same industrial environment
and each was evaluated with up to 42 different combinations
of software post-processing components. The platform’s
uniqueness lies in its ability to simulate diverse conditions,
encompassing various mobility scenarios and line-of-sight
conditions. This work contributes to the advancement of
UWB localization research by offering a standardized frame-
work for testing and comparing algorithms. By exposing the
algorithms to a wide array of scenarios, the platform better
reflects real-world challenges, fostering robust algorithmic
development.

The evaluation shows that TWR achieves higher per-
formance than TDoA, while TDoA is beneficial in the
scalability and power consumption of the tag node. Taking
harsh environments into account, half of the datasets were
collected with introduced NLOS links which decreases the
accuracy of the localization systems for both TWR and
TDoA. The use of an extended Kalman filter or a particle
filter can increase robustness in these situations. Based on our
analysis, we can draw the conclusion that making a carefully
considered selection of software optimizations to implement
in the system is frequently more advantageous than deploying
all available optimizations. This decision should be tailored
to the specific use case and localization technique. In our
examination of five distinct UWB-targeted use cases, each
with its unique set of requirements, we have presented the
optimal combinations of software modules.

We evaluated the performance of different post-processing
algorithms based on the absolute error (AE) and spatial
error (SE). The AE is more oriented towards real-time
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low latency systems where decisions are taken immediately
and a trailing bias is also punished by the error metric.
The SE checks an estimated position with the followed
ground truth trajectory to have an error metric independent
of latency and bias. This SE is in some use cases more
helpful than the AE, e.g. for long-term analysis of movement
patterns. Applications that don’t require real-time updates
for decision-making and allow a higher latency (>0.5 s)
should prefer this metric over MAE. Finally, in this paper,
we focused on the practical steps for performing an UWB
benchmark and present our conclusions based on different
metrics. The insights derived from our experiments offer
valuable guidelines for algorithm selection in various real-
world scenarios, fostering the broader adoption of UWB
localization across industries and applications. We hope this
work can help people rethink indoor localization optimization
and foster an increased deployment of indoor localization
systems in the real world.
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