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A semi-analytical model for simulating transient conductive-convective heat flow in a three-dimensional
shallow geothermal system consisting of multiple borehole heat exchangers (BHE) embedded in a multi-
layer soil mass is introduced. Themodel is formulated in three steps, starting from an axial symmetric sys-
tem and ending in a 3Dmultilayer, multiple BHE system. In step 1, the model is formulated as a single BHE
embedded in an axial symmetric homogeneous soil layer, and the governing heat equations are solved ana-
lytically using the fast Fourier transform, the eigenfunction expansion and themodified Bessel function. In
step 2, themodel is extended to incorporatemultiple layers using the spectral elementmethod. And in step
3, themodel is extended to incorporatemultiple borehole heat exchangers using a superposition technique
suitable for Dirichlet boundary conditions. The ensuing computational model solves detailed three-
dimensional heat flowusingminimal CPU time and capacity. The number of the required spectral elements
is equal to the number of soil layers embedded inwhich any number of borehole heat exchangers with any
layout configuration. A verification example illustrating themodel accuracy and numerical examples illus-
trating its computational capabilities are given. Despite the apparent rigor of the proposed model, its high
accuracy and computational efficiency make it suitable for engineering practice.
� 2018 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Extracting thermal energy from relatively shallow depths has
become an established technology, and shallow geothermal sys-
tems known as geothermal heat pumps (GHP), ground source heat
pumps (GSHP) or borehole heat exchangers (BHE) are in use all
over the world. A BHE works by circulating a fluid, mostly water
with antifreeze, through a closed loop of polyethylene pipe that
is inserted in a borehole embedded in a soil mass. The borehole
is filled with grout to fix the polyethylene pipe and to ensure a
good thermal interaction with the soil. Several types of BHE are
available in practice. In this work, the BHE is assumed to consist
of a vertical single U-tube filled with circulating water and embed-
ded in grout.

The borehole heat exchanger is a slender heat pipe with dimen-
sions of the order of 30 mm in diameter for the U-tube, and 150
mm in diameter and 100 m in length for the borehole. The U-
tube carries a circulating fluid that collects heat (or ejects heat)
from (or to) the surrounding soil via convection-conduction heat
transfer mechanisms.

In practice, shallow geothermal systems consist of multiple
borehole heat exchangers embedded in a multilayer soil mass.
Computational modelling of such a system, in spite of the bulk of
existing models, is yet state of the art due to the combination of
the extreme slenderness of the boreholes heat exchangers, the
presence of multiple components with different thermal properties
and the involved heat convection. Consequently, several theoreti-
cal and computational assumptions and approximations have been
introduced in order to circumvent this computationally challeng-
ing combination and obtain feasible solutions. All known solution
techniques, such as analytical, semi-analytical and numerical, have
been utilized for this purpose. Nevertheless, in spite of the versatil-
ity of the numerical methods, analytical and semi-analytical solu-
tions are yet preferable because of their comparatively little
demands on computational power and ease of use in engineering
practice. In Al-Khoury [2] a thorough review of models utilized in
this field is given. In this paper, focus is placed on models based
on the semi-analytical solution technique.

Eskilson and Claesson [9] introduced a semi-analytical model
for heat flow in a borehole heat exchanger constituting two fluid
channels and a borehole wall, embedded in an axial symmetric soil
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Fig. 1. A schematic representation of a single U-tube BHE and its surrounding soil
mass.
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mass. The governing heat equations of the two fluid channels are
solved using the Laplace transform and that for the soil mass using
the finite difference method. They extended the model to 3D by
use of the principle of superposition to account for multiple heat
sources. Their solution is effective for relatively long term analyses
and for a symmetric heat sources configuration.

Pasquier and Marcotte [11] introduced a semi-analytical model
for heat flow in a solid mass subjected to multiple infinite line heat
sources with time-varying heat fluxes and temperatures. They
applied the fast Fourier transform for the temporal domain and
the superposition principle for the spatial domain. The thermal
interaction between the involved heat sources is solved using an
iterative algorithm.

Erol et al. [8] introduced a modified Green’s function for heat
flow in a porous domain subjected to a constant line heat source
with a finite length. The convolution theory is utilized to solve
the initial and boundary value problem for a single heat source.
For multiple heat sources, they utilized the superposition principle
by summing up the temporal convolved functions of the heat
sources.

Raymond and Lamarche [12] analyzed the effect of multiple lay-
ers in determining the thermal parameters from the thermal
response test (TRT) results. They adopted an analytical computer
code (MLU), which was originally developed for transient water
flow in layered aquifers, to describe conductive heat transfer in
shallow geothermal systems constituting multiple layers and sub-
jected to a variable heat injection rate. The Laplace transform is uti-
lized to solve the system of partial differential equations describing
heat flow in the layered system.

Abdelaziz et al. [1] extended the finite line heat source solution
to a multiple segment finite line heat source resembling a layered
soil profile. The temperature of the heterogeneous domain is
obtained by summing up the temperature in a typical homoge-
neous domain with that obtained due to the presence of other lay-
ers. The latter is calculated by assuming a composite system
constituting smeared thermal parameters, described as a function
of the relative distances of the layers from the point of interest.

Apparently, semi-analytical solutions for heat flow in multiple
heat sources embedded in a homogeneous soil mass exist. Also,
semi-analytical solutions for a single heat source embedded in a
multilayer system exist. However, semi-analytical solutions for
multiple heat sources embedded in a multilayer soil mass do not
exist. This constitutes the objective of this work.

In a previous work, BniLam and Al-Khoury [3] introduced an
analytical model for transient heat flow in an infinite soil mass
subjected to multiple cylindrical heat sources. In a later work, Bni-
Lam and Al-Khoury [4] introduced an axial-symmetric spectral ele-
ment model for heat flow in a borehole heat exchanger embedded
in a multilayer system. In this paper, these two models are elabo-
rated and put together to formulate a detailed three-dimensional
shallow geothermal system with any arbitrary layout configura-
tion. The multiple infinite cylindrical heat sources of the first
model are replaced by multiple finite borehole heat exchangers,
and are incorporated in the multilayer system of the second model.
This entails establishing a tailored thermal interaction between the
borehole and the surrounding soil mass, and between the bore-
holes themselves. The superposition principle for Dirichlet bound-
ary conditions, introduced in BniLam and Al-Khoury [3], is tailored
to the multiple BHE case. By this, the soil temperature amplitudes
at the borehole locations are coupled to the temperatures in the
BHE components, followed by coupling all involved boreholes via
a matrix technique. Additionally, in this paper, we modified the
formulation of the 2-noded spectral element. In BniLam and Al-
Khoury [4], the spectral element was formulated based on the first
kind Bessel function J0, which is suitable for a line source case
where the borehole and the soil mass share and coincide on the
axis of symmetry. In the current paper, the solution is modified
to lead to the use of the modified Bessel function K0, which is suit-
able for a cylindrical source case where the borehole and the soil
mass share the axis of symmetry, but the soil mass starts at the
radius of the borehole. The latter function is more physical in rep-
resenting the cylindrical nature of the BHE-soil interaction, and it
has no roots to be determined and summed over. Details of the
modelling approach are given hereafter.
2. Modeling approach

A shallow geothermal system, particularly a geothermal heat
pump, consists basically of two thermally interacting domains:
the borehole heat exchanger and the soil mass. In practice, the sys-
tem consists of several borehole heat exchangers embedded in a
multilayer layer soil mass. Solving heat flow in such a three-
dimensional, nonhomogeneous geometry typically requires the
use of a numerical method, such as the finite element, the finite
volume or the finite difference method. However, these methods,
and due to the disproportionate geometry of the system and the
presence of the convective heat transfer mechanism, might require
significant CPU time and capacity. To avoid this, here, a semi-
analytical solution is proposed. The heat flow in this system is
modelled in three steps, starting from an axial symmetric system
and ending in a 3D multilayer, multiple BHE system, as outlined
hereafter.

Step 1: The model is first formulated as a single BHE embedded
in a semi-infinite homogeneous soil mass. The borehole heat
exchanger is modelled as 1D with its axis coinciding on the vertical
z-axis. The 1D assumption is reasonably valid because of the
extreme slenderness of the borehole that makes the temperature
gradient in the radial direction of the BHE components negligible.
A single U-tube consisting of pipe-in, pipe-out and grout is consid-
ered in this study, but extension to other BHE types is straightfor-
ward. The BHE components coincide geometrically on each other,
but thermally interacting with each other.

The soil mass, on the other hand, is modelled as a semi-infinite,
axial symmetric domain with its axis of symmetry coinciding with
the centerline of the borehole heat exchanger (z-axis). In principle,
the heat equation for this domain must be formulated in the r; z -
coordinate system. Solving this equation analytically would
require an extra separation of variables and the determination of
an additional Fourier coefficient. To circumvent this, we introduced



Fig. 3. Two-node spectral element.
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a soil film connecting the BHE to the soil mass, as shown in Fig. 1.
The soil film has the soil mass properties, and its heat equation
describes the temperature distribution in the soil mass along the
z direction, which acts as the amplitude to the radial direction (r
-coordinate). By this, the soil mass heat equation can be formulated
in the radial direction only, making it relatively easy to solve. How-
ever, adding a soil film entails assigning a thickness, which is
apparently hypothetical (see Fig. 2). As the soil film temperature
acts as the amplitude to the soil mass temperature, the choice of
its thickness can affect the temperature distributions in the soil
mass and the BHE components. To tackle this issue, a thorough
study has been conducted and it was found that with the use of
a proper thermal interaction coefficient at the BHE-soil interface,
the temperature distributions in the BHE components and the soil
mass become effectively independent of the soil film thickness. In
Appendix A, a numerical example highlighting this independency
is given.

The spectral analysis is utilized to solve the governing equations
on the basis of the fast Fourier transform (FFT). The BHE heat equa-
tions are solved using the eigenfunction expansion, and the soil
mass heat equation is solved using the modified Bessel function.
See Sections 4 and 5.

Step 2: The model in Step 1 is extended to incorporate multiple
layers exhibiting different thermal properties using the spectral
element method. The spectral element method is an elegant tech-
nique combining analytical solutions of a homogeneous domain to
the finite element solution of nonhomogeneous domains. Here, the
spectral analysis of the BHE-soil domain of Step 1 is discretized
into a 2-node spectral element (see Fig. 3). Each soil layer is
described by a single spectral element, and a soil mass constituting
several layers is described by spectral elements equal in number to
the soil layers. The assembly of the spectral element matrices is
done similar to the finite element method. See Section 6.

Step 3: The model in Step 2 is extended to incorporate multiple
borehole heat exchangers using a superposition technique. The
superposition principle is typically applicable to heat sources with
Neumann boundary conditions. For Dirichlet boundary conditions,
as for the case in this paper, the superposition can only be applied
by modifying the temperature amplitude at each heat source by
considering the thermal interaction with other heat sources. Using
the superposition technique makes the model three-dimensional.
See Section 7.

3. Governing equations

Heat equations of a shallow geothermal system consisting of a
single U-tube borehole heat exchanger, made of pipe-in, pipe-
out, grout, and a soil film, embedded in a soil mass can be
described as

Pipe-in

qc
@Ti

@t
dVi � k

@2Ti

@z2
dVi þ qcu

@Ti

@z
dVi þ bigðTi � TgÞdSig ¼ 0 ð1Þ
Fig. 2. The boundary between the BHE and the soil film, and the hypothetical
boundary between the soil film and the soil mass.
Pipe-out

qc
@To

@t
dVo � k

@2To

@z2
dVo � qcu

@To

@z
dVo þ bogðTo � TgÞdSog ¼ 0 ð2Þ

Grout

qgcg
@Tg

@t
dVg � kg

@2Tg

@z2
dVg þ bigðTg � TiÞdSig

þ bogðTg � ToÞdSog þ bgsðTg � TsÞdSgs ¼ 0ð3Þ
Soil film

qscs
@Ts

@t
dVs�ks

@2Ts

@z2
dVsþbgsðTs�TgÞdSgsþbssðTs�Tsoiljr¼rf

ÞdSs ¼0

ð4Þ
Soil mass

1
a
@Tsoil

@t
� @2Tsoil

@r2
� 1

r
@Tsoil

@r
¼ 0 ð5Þ

where the subscripts i; o; g and s represent pipe-in, pipe-out, grout
and soil film, respectively; and Ti ¼ TiðzÞ; To ¼ ToðzÞ; Tg ¼ TgðzÞ;
Ts ¼ TsðzÞ and Tsoil ¼ TsoilðrÞ are the temperatures in pipe-in,
pipe-out, grout, soil film and soil mass, respectively. k, kg and
ks (W/m K) are the thermal conductivity of the circulating fluid,
grout and soil film, respectively; u (m/s) is the circulating fluid veloc-
ity; big, bog, bgs, bss (W/m2 K) are the reciprocal of the thermal resis-
tance between pipe-in-grout, pipe-out-grout, grout-soil film, and
soil film-soil mass, respectively (see Appendix B for their determina-
tion); qc (J/m3 K) is the volume heat capacity, with c (J/kg K) the
specific heat capacity and q (kg/m3) the mass density; dVi, dVo,
dVg, dVs (m3) are the control volumes of pipe-in, pipe-out, grout
and soil film, respectively; dSig, dSog, dSgs, dSs (m2) are the surface
areas of the control volumes of pipe-in, pipe-out, grout and soil film,
respectively; rf is the soil film radius, describing the location of a
hypothetical boundary between the soil film and the soil mass (see
Fig. 2); and a (m2/s) is the thermal diffusivity of the soil, described as

a ¼ ks
qscs

ð6Þ

Eq. (4) is a nonhomogeneous partial differential equation due to
the presence of Tsoiljr¼rf

. As it will be shown later, this equation will
be converted to a homogeneous equation by relating Tsoil to Ts.

The initial condition is

Tiðz;0Þ ¼ Toðz;0Þ ¼ Tgðz;0Þ ¼ Tsðz;0Þ ¼ Tsoilðr;0Þ ð7Þ
where initially the temperature distribution in the BHE components
is equal to that of the steady state condition of the soil mass before
the heating/cooling operation starts.
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The boundary conditions in the BHE are

Tið0; tÞ ¼ T inðtÞ ð8Þ

TiðL; tÞ ¼ ToðL; tÞ ð9Þ
where T in is the fluid temperature at z ¼ 0, coming from the heat
pump. It can have any arbitrary shape in time. Eq. (9) implies that
at the bottom of the BHE, z ¼ L, the temperature of the fluid in
pipe-in is equal to the temperature of the fluid in pipe-out.

The boundary conditions in the soil mass are

Tsoiljr¼rb
¼ Ts ð10Þ

Tsoilðr ¼ 1; tÞ ¼ 0 ð11Þ
where Eq. (10) indicates that the soil mass physically includes the
soil film and its temperature is equal to the soil film temperature
at the boundary with the borehole (r ¼ rb). However, as the soil film
has a thickness, the soil mass is hypothetically in contact with the
soil film at r ¼ rf , as shown in Fig. 2, and mathematically indicated
in Eq. (4). In what follows it will be shown how these two bound-
aries will be utilized for the determination of the integration con-
stants. Eq. (11) implies that the temperature variation in the soil
mass at an infinitely far distance is zero.

4. Solution of soil heat equation

Fourier transform of Eq. (5) gives

k2s T̂soil � @2T̂soil

@r2
� 1

r
@T̂soil

@r
¼ 0 ð12Þ

in which T̂ represents the temperature in the frequency domain,
and

ks ¼
ffiffiffiffiffiffi
ix
a

r
ð13Þ

is the eigenvalue of the soil mass.
Assume S ¼ ksr, from which the following identities can be

derived:

@S
@r

¼ ks;
@S
@r

� �2

¼ k2s

@T
dS

¼ @T
@r

@r
@S

¼ 1
ks

@T
@r

@2T

@S2
¼ @2T

@r2
@r2

@S2
¼ 1

k2s

@2T
@r2

ð14Þ

Substituting these identities into Eq. (12) gives

T̂soil � @2T̂soil

@S2
� 1

S
@T̂soil

@S
¼ 0 ð15Þ

This equation is a standard modified Bessel function with a gen-
eral solution expressed as

T̂soilðrÞ ¼ AIoðksrÞ þ BKoðksrÞ ð16Þ
where Io and Ko are the modified Bessel functions of the first and
second kind.

Applying the boundary condition in Eq. (11) to Eq. (16) leads to

T̂soil

���
r¼1

¼ AIoð1Þ þ BKoð1Þ ¼ 0 ð17Þ

but since Ioð1Þ ¼ 1, A in Eq. (17) must be 0, giving:

T̂soilðrÞ ¼ BKoðksrÞ ð18Þ
At r ¼ rb, Eq. (18) becomes
T̂soil

���
r¼rb

¼ BKoðksrbÞ ð19Þ

Applying the boundary condition in Eq. (10) to Eq. (19) yields

B ¼ T̂s

KoðksrbÞ ð20Þ

Substituting Eq. (20) into Eq. (18), the soil temperature at any
radial point can be calculated as

T̂soilðrÞ ¼ T̂s

KoðksrbÞKoðksrÞ ð21Þ

At the hypothetical boundary between the soil film and the soil
mass, r ¼ rf , Eq. (21) gives

T̂soil

���
r¼rf

¼ KoðksrfÞ
KoðksrbÞ T̂s ð22Þ

or, equivalently

T̂soil

���
r¼rf

¼ Af T̂s ð23Þ

with

Af ¼ Koðksrf Þ
KoðksrbÞ ð24Þ

which can be substituted into the transformed form of Eq. (4).

5. Solution of BHE heat equations

Applying Fourier transform to Eqs. (1)–(4), and substituting Eq.
(23) into the transformed form of Eq. (4), gives

�k
@2T̂ i

@z2
dVi þ qcu

@T̂ i

@z
dVi þ ðixqcdVi þ bigdSigÞT̂ i � bigT̂gdSig ¼ 0

ð25Þ

�k
@2T̂o

@z2
dVi � qcu

@T̂ i

@z
dVo þ ðixqcdVo þ bogdSogÞT̂o � bogT̂gdSog ¼ 0

ð26Þ

�kg
@2T̂g

@z2
dVg þ ðixqgcgdVg þ bigdSig þ bogdSog þ bgsdSgsÞT̂g

� bigdSigT̂i � bogdSogT̂o � bgsdSgsT̂s ¼ 0 ð27Þ

�ks
@2T̂s

@z2
dVs þ ðixqscsdVs þ bgsdSgs þ bssdSsð1� Af ÞÞT̂s

� bgsdSgsT̂g ¼ 0 ð28Þ
which forms a set of homogeneous equations that can be solved
using the eigenfunction expansion. This set of homogeneous equa-
tions was obtained by converting Eq. (4) from a nonhomogeneous
differential equation, due to the presence of the Tsoiljr¼rf

to a homo-
geneous equation by incorporating Eq. (23) into Eq. (28).

The solutions to Eqs. (25)–(28) can be expressed as [6]

T̂ i ¼ Aie�ikz; T̂o ¼ Aoe�ikz; T̂g ¼ Age�ikz; T̂s ¼ Ase�ikz ð29Þ
in which Ai;Ao;Ag and As are the integral constants, and k denotes
the system eigenvalues, which need to be determined.

Substituting the solutions in Eq. (29) into Eqs. (25)–(28), follow-
ing some lengthy but straightforward mathematical derivations
(see Appendix C), an eight degree polynomial is obtained of the
form:

a0 þ a1kþ a2k
2 þ a3k

3 þ a4k
4 þ a5k

5 þ a6k
6 þ a7k

7 þ a8k
8 ¼ 0

ð30Þ



Fig. 4. Multiple borehole heat exchangers configuration.

N. BniLam et al. / International Journal of Heat and Mass Transfer 123 (2018) 911–927 915
This polynomial represents the eigenfunction of a single U-tube
BHE, with k denoting its set of eigenvalues determined by solving
for the roots of Eq. (30). Only for this set of eigenvalues do the
eigenfunction exist and satisfy the boundary conditions of the
problem. Eight eigenvalues in two groups of four conjugates are
obtained from Eq. (30). The first group is related to the positive
heat flow, and the second to the negative heat flow. The exact form
of the coefficients of Eq. (30) are given by BniLam and Al-Khoury
[4], noting that the term

P �Am should be exchanged by Af . Though,
the exact form of the coefficients can be obtained easily using
MAPLE software [10].

6. Modelling multilayer system: The spectral element
formulation

The spectral element method is utilized to extend the model
from a single borehole heat exchanger embedded in a homogenous
soil layer to a multilayer system constituting layers with different
physical parameters.

The spectral element method is utilized to formulate an axial
symmetric spectral element for heat flow in a coupled borehole
heat exchanger and a soil mass. The element consists of two nodes
located at its boundaries, and denoting two parallel circular planes
within which the heat is constrained to flow, Fig. 3. In the vertical
direction, the element extends to cover the whole layer depth, h,
and in the radial direction, the element is assumed to extend to
infinity.

Consider a one-dimensional heat flow in an element of length h
bounded by two nodes: node 1 and node 2. At each node, there are
four degrees of freedom, representing the temperatures in pipe-in,
pipe-out, grout and soil film. Using Eq. (29) and the eight eigenval-
ues obtained from solving Eq. (30), the temperatures at any point
along the element can be calculated by the superposition of an
incident flux from node 1 and a reflective flux from node 2, as

T̂ i ¼ Ai1e�ik1z þ Bi1e�ik2z þ Ci1e�ik3z þ Di1e�ik4z þ Ai2e�ik5ðh�zÞ

þ Bi2e�ik6ðh�zÞ þ Ci2e�ik7ðh�zÞ þ Di2e�ik8ðh�zÞ ð31Þ

T̂o ¼ Ao1e�ik1z þ Bo1e�ik2z þ Co1e�ik3z þ Do1e�ik4z þ Ao2e�ik5ðh�zÞ

þ Bo2e�ik6ðh�zÞ þ Co2e�ik7ðh�zÞ þ Do2e�ik8ðh�zÞ ð32Þ

T̂g ¼ Ag1e�ik1z þ Bg1e�ik2z þ Cg1e�ik3z þ Dg1e�ik4z þ Ag2e�ik5ðh�zÞ

þ Bg2e�ik6ðh�zÞ þ Cg2e�ik7ðh�zÞ þ Dg2e�ik8ðh�zÞ ð33Þ

T̂s ¼ As1e�ik1z þ Bs1e�ik2z þ Cs1e�ik3z þ Ds1e�ik4z þ As2e�ik5ðh�zÞ

þ Bs2e�ik6ðh�zÞ þ Cs2e�ik7ðh�zÞ þ Ds2e�ik8ðh�zÞ ð34Þ
As for the finite element method, the governing equations are

solved in terms of the nodal values. In Appendix D, a complete
derivation for the spectral element is given. The derivation leads
to a spectral element equation of the form

Kðk;xnÞT̂node ¼ q̂node ð35Þ
in which Kðk;xnÞ represents the spectral element matrix, in resem-
blance to that of the finite element stiffness matrix. However, the
spectral element matrix is exact and frequency-dependent. For mul-
tiple layers, spectral elements equal in number to the number of
layers are assembled in a way similar to that in the finite element
method, see Section D.1 in Appendix D.

Upon solving the nodal values, the temperature anywhere
within the element can be determined by the inverse fast Fourier
transform, as
Tðz;tÞ¼
X
n

A1e�ik1zþB1e�ik2zþC1e�ik3zþD1e�ik4z

þA2e�ik5ðh�zÞ þB2e�ik6ðh�zÞ þC2e�ik7ðh�zÞ þD2e�ik8ðh�zÞ

 !
eixnt

ð36Þ

where Tðz; tÞ represents Tiðz; tÞ, Toðz; tÞ, Tgðz; tÞ or Tsðz; tÞ in the time
domain. The integration constants in Eq. (36) are determined from
Eq. (D9) in Appendix D.

Upon solving the temperatures in the BHE, the temperature in
the time domain in the soil mass can be determined using Eq.
(21), as

Tsoilðr; z; tÞ ¼
X
n

T̂sðz;xÞ KoðksrÞ
KoðksrbÞ e

ixnt ð37Þ
7. Modelling multiple borehole heat exchangers: A
superposition technique

A superposition technique for Dirichlet boundary conditions is
developed to extend the model from a single BHE embedded in
an axial symmetric, multilayer domain to multiple borehole heat
exchangers embedded in a three-dimensional domain.

Eq. (21) is the solution of the soil heat equation due to a single
BHE. Here, we extend this solution to multiple borehole heat
exchangers.

Fig. 4 shows a network of n�m borehole heat exchangers. The
radial distance between BHEi at (xi, yi) and BHEj at (xj, yj) is calcu-
lated as

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ij þ y2ij

q
ð38Þ

in which xij ¼ jxi � xjj and yij ¼ jyi � yjj.
As Eq. (21) imposes Dirichlet boundary condition at the bound-

ary between the soil mass and the BHE, the superposition principle
is not directly applicable. The superposition principle works
directly for Neumann boundary conditions, and the temperature
anywhere in the domain is calculated simply by the algebraic
sum of temperatures aroused by heat fluxes from all heat sources.
At steady state, the temperature will reach equilibrium and the
heat fluxes cease. For Dirichlet boundary conditions, however,
the superposition works on condition that the prescribed temper-
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ature at a borehole must be made equal to the sum of temperatures
aroused at its boundary by all boreholes, including itself. This
entails modifying the temperature amplitudes at the boreholes
and coupling them via a matrix technique, as described hereafter.

The temperature of a soil point at distance r from a BHE can be
calculated using Eq. (21), which can be written in a general form as

T̂soilðrÞ ¼ BKoðksrÞ ð39Þ
For multiple borehole heat exchangers, and following the super-

position principle, the temperature of a soil point at distances
r1 . . . rN from N borehole heat exchangers can be described as
Fig. 5. 4 borehole heat exchangers embedded in a two-layers soil mass.

Table 1
Material and geometrical parameters of the verification example.

Parameter Value

Borehole:
Borehole length 10 m
Borehole diameter 0.10 m
U-tube external diameter 0.03 m
U-tube thermal conductivity, kp 0.42 W/(m K)

Fluid:
Density, q 1000 kg/m3

Specific thermal capacity, c 4186 J/(kg K)
Thermal conductivity, k 0.56 W/(m K)
Dynamic viscosity, l 0.001 Pa s
Velocity, u 0.1 m/s

Grout:
Density, qg 1420 kg/m3

Specific thermal capacity, cg 1197 J/(kg K)
Thermal conductivity, kg 0.65 W/(m K)

Soil:
Film thickness 2 cm
density, qs 1680 kg/m3

Specific thermal capacity, cs 400 J/(kg K)
Thermal conductivity, ks at z P �5 m 1W/(m K)
Thermal conductivity, ks at z 6 �5 m 2W/(m K)

Fig. 6. The finite e
T̂soilðrÞ ¼ B1Koðksr1Þ þ B2Koðksr2Þ þ � � � þ BNKoðksrNÞ ð40Þ
As mentioned above, the temperature amplitudes (B1 . . .BN) at

the borehole heat exchangers need to be modified to take into con-
sideration the effect of all involved boreholes. Solving Eq. (40) at
the BHE locations, and upon imposing the boundary condition in
Eq. (10), it yields
T̂s1 ¼ B1 þ B2Koðksd12Þ þ � � � þ BN�1Koðksd1ðN�1ÞÞ þ BNKoðksd1NÞ
T̂s2 ¼ B1Koðksd21Þ þ B2 þ � � � þ BðN�1ÞKoðksd2ðN�1ÞÞÞ þ BNKoðksd2NÞ
..
. ..

. ..
.

T̂sN�1 ¼ B1KoðksdðN�1Þ1Þ þ B2KoðksdðN�1Þ2Þ þ � � � þ BðN�1Þ þ BNKoðksdðN�1ÞNÞ
T̂sN ¼ B1KoðksdN1Þ þ B2KoðksdN2Þþ � � � þ BðN�1ÞKoðksdNðN�1ÞÞ þ BN

ð41Þ
in which d12 is the distance between BHE1 and BHE2, etc., as shown
in Fig. 4.

In a matrix format, Eq. (41) becomes
T̂s1

T̂s2

..

.

T̂sN�1

T̂sN

0
BBBBBBB@

1
CCCCCCCA

¼

1 Koðksd12Þ � � � Koðksd1ðN�1ÞÞ Koðksd1NÞ
Koðksd21Þ 1 � � � Koðksd2ðN�1ÞÞÞ Koðksd2NÞ

..

. ..
. ..

. ..
. ..

.

KoðksdðN�1Þ1Þ KoðksdðN�1Þ2Þ � � � 1 KoðksdðN�1ÞNÞ
KoðksdN1Þ KoðksdN2Þ � � � KoðksdNðN�1ÞÞ 1

0
BBBBBBB@

1
CCCCCCCA

�

B1

B2

..

.

BN�1

BN

0
BBBBBBB@

1
CCCCCCCA

ð42Þ

This equation states that the prescribed temperature at the

borehole, T̂s1 for instant, is equal to its temperature plus tempera-
tures generated by all other boreholes at its boundary. Its temper-
ature, B1 in this case, is not its prescribed value, but has to be
determined by solving Eq. (42).

Eq. (42) can be expressed as
T̂s ¼ GB ð43Þ
Solving for B, gives
B ¼ G�1T̂s ð44Þ
Upon substituting Eq. (44) into Eq. (40), the temperature at any

radial point in the soil mass can be calculated.
lement mesh.



Fig. 7. Temperature profile for pipe-in, pipe-out and grout for one of the 4 BHE’s at different times.

Fig. 8. Radial temperature profile along Observation line1 for the top soil layer.
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Fig. 9. Radial temperature profile along Observation line 1 for the bottom soil layer.

Fig. 10. Radial temperature profile along Observation line 2 for the top soil layer.
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8. Model verification

Analytical solution describing heat flow in multiple borehole
heat exchangers embedded in a multilayer soil mass has not been
introduced before. Accordingly, verification of the proposed model
is done by comparing its computational results with those
obtained from a detailed finite element model. The finite element
package COMSOL Multiphysics (COMSOL 5.2 [5]) is utilized. To
reduce the CPU time of the finite element analysis, a relatively
small geometry has been designed for this purpose.

A shallow geothermal system constituting four borehole heat
exchangers embedded in a soil mass consisting of two soil layers



Fig. 11. Radial temperature profile along Observation line 2 for the bottom soil layer.

Fig. 12. Borehole heat exchangers configuration.
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with different thermal conductivity is modelled. The borehole heat
exchangers are assumed 10 m long, constituting a single U-tube
and grout. The soil mass is 10 m in depth and consisting of two lay-
ers, each 5 m in depth. It radially extends to infinity.

The borehole heat exchangers are configured as shown in Fig. 5.
Details of the material and geometrical parameters are given in
Table 1. The initial temperature in all components is assumed
0 �C, and the temperature at the inlets of pipe-in ðT inÞ of the four
borehole heat exchangers is prescribed to 20 �C.

The spectral element mesh consists of two, 2-node spectral
elements. The use of two spectral elements is necessary because
the geometry involves two soil layers with different physical
parameters. The number of the borehole heat exchangers does
not influence the required number of spectral elements, as they
are simulated by the superposition technique introduced in
Section 7.
The finite element mesh, on the other hand, is made 60 m � 60
m � 10 m, and it consists of 494012, 3D tetrahedral elements,
where along the BHE and in the surrounding soil mass, the mesh
is made relatively fine. Fig. 6 shows the finite element mesh and
the top view at the boreholes region.

Fig. 7 shows the temperature distributions in pipe-in, pipe-out
and grout of one of the boreholes as obtained from the spectral ele-
ment model and the finite element model, for short and long terms
of operation. The figure shows a good match between the two
results, though a deviation of less than 0.5 �C exists around the out-
let of pipe-out. This deviation can be explained as a combination
between the inaccuracy of the spectral element model due to the
negligence of the radial dimension of the grout, and the typical
inaccuracy of the finite element model due to the mesh size effect.
Nevertheless, this deviation is relatively small and diminishes as
time evolves.



Table 2
Material and geometrical parameters of the numerical example.

Parameter Value Parameter Value

Borehole: Soil:
Borehole length 100 m Film thickness 0.02 m
Borehole diameter 0.1 m Density, qs 1680 kg/m3

Pipe external diameter 0.03 m Specific thermal capacity, cs 400 J/(kg K)
Pipe thermal conductivity 0.42 W/(m K)

Fluid: 0 P z P �20 m
Density, q 1000 kg/m3 Thermal conductivity, ks 2.5 W/(m K)
Specific thermal capacity, c 4186 J/(kg K) �20 P z P �40 m
Thermal conductivity, k 0.56 W/(m K) Thermal conductivity, ks 1 W/(m K)
Dynamic viscosity, l 0.001 Pa s �40 P z P �60 m
Velocity, u 0.5 m/s Thermal conductivity, ks 4 W/(m K)

Grout: �60 P z P �80 m
Density, qg 1420 kg/m3 Thermal conductivity, ks 0.5 W/(m K)
Specific thermal capacity, cg 0.62 W/(m K) �80 P z P �100 m
Thermal conductivity, kg 1197 J/(kg K) Thermal conductivity, ks 3 W/(m K)

Fig. 13. A schematic representation of the geometry of the numerical example.
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Physically, the figure shows a jump at the boundary between
the upper and the lower soil layers due to the difference in their
thermal conductivities. This demonstrates the capabilities of both
computational techniques for simulating such a phenomenon.

Figs. 8 and 9 show the radial soil temperature profile along
Observation line 1 (see Fig. 5), for the upper and lower soil layers,
respectively. Similarly, Figs. 10 and 11 show the radial soil temper-
ature profile along Observation line 2. The figures show a good
match between the two computational results. The small deviation
between the results can be attributed to the finite element mesh
size, which is relatively coarse in the radial direction. Nevertheless,
this deviation is relatively small and diminishes as time evolves.

Physically, the figures show that the temperature profile along
Observation line 1 exhibits a clear jump at BHE1 and BHE2 loca-
tions. This is not apparent along Observation line 2 because it is
relatively far from the boreholes. Both models capture this behav-
ior properly.
9. Numerical examples

To demonstrate the model computational capabilities in simu-
lating complicated geometries, a numerical example illustrating
heat flow in a 3D shallow geothermal system is studied. The
geothermal system is assumed to consist of 9, 100 m in length,
borehole heat exchangers embedded in 5 soil layers with highly
contrasted thermal properties. The soil thickness is 20 m for each.

A 3 � 3 BHE configuration as shown in Fig. 12 is assumed. The
material and geometrical parameters of the geothermal system
are given in Table 2 and Fig. 13. The initial temperature in all com-
ponents is assumed 10 �C, and the temperature at the inlets of
pipe-in of the 9 borehole heat exchangers is prescribed to 30 �C.
The geometry is simulated using 5, 2-node spectral elements.

The proposed model allows the calculation of temperature dis-
tributions in all borehole heat exchangers without differentiation
between inner, side and corner boreholes. Here, we present the
computational results at the central BHE (BHE5) and two soil
points, indicated as observation points in Fig. 12.

Fig. 14 shows the temperature distributions in pipe-in, pipe-out
and grout of BHE5 on short and long terms of operation. The first
figure shows that after 100 s, the fluid has travelled 50 m in
pipe-in, giving rise to thermal interaction with the soil via the
grout. As a result, the fluid in pipe-in cools down while the grout
temperature rises up. Additionally, this figure shows an interesting
increase in temperature in pipe-out despite the fact that the fluid
hasn’t reached it yet. This increase in temperature is due to heat
conduction occurring as a result of its direct contact with the grout.
At latter times, Fig. 14 shows the effect of the layers thermal con-
ductivities on the temperature distribution in the grout and its
influence on pipe-in and pipe-out.

Fig. 15 shows the vertical temperature profile in the soil mass at
Observation Points 1 and 2, for short and long terms. The figure
shows clearly the jumps in temperatures at the boundaries
between layers. The figure also shows an interesting flip in the
direction of the temperature jumps at longer terms. In the short
term, layers with relatively higher thermal conductivities exhibit
faster heat flow, as manifested by the advancing temperature
fronts in layers 1, 3 and 5 (see 100 h and 50 days profiles). In the
long term, layers with lower thermal conductivities exhibit
advancing temperature fronts (see 50 months and 10 years profiles
for layers 2 and 4). The reason for this flip is that layers with rela-
tively high thermal conductivities exhibit, at the beginning, faster
heat flow, but, later on, faster thermal dissipation. In the contrary,
layers with relatively low thermal conductivities exhibit slower
heat flow at the beginning and slower thermal dissipation later
on. This phenomenon has also been captured and discussed by [1].

Capturing these physical phenomena exhibits clearly the capa-
bility of the model to describe the complex nature of heat flow in
multiple borehole heat exchangers embedded in multilayer
systems.



Fig. 14. Temperature in pipe-in, pipe-out and grout for BHE5 at different times.

Fig. 15. Vertical soil temperature profiles at different times at observation points 1 and 2.
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10. Conclusions

In this paper, a spectral element model for the simulation of
transient conduction-convection heat flow in a three-dimensional
shallow geothermal system consisting of multiple borehole heat
exchangers embedded in a multilayer soil mass is introduced.
The model shares the exactness and computational efficiency of
the analytical models, and a great extent of generality in describing
the geometry and initial and boundary conditions of the numerical
techniques. It can describe heat flow is any number of borehole
heat exchangers with any layout configuration, embedded in any
number of soil layers using minimal CPU time and capacity.



Fig. A1. Pipe-in, pipe-out, grout and soil film temperature distributions using different soil film thicknesses at different times.
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The key for obtaining such an exact, computationally efficient
and practically general model is the innovative mix between the
conceptual model, the mathematical model and the solution tech-
nique. The link between 1D domain (for the borehole), axial sym-
metric 2D domain (for a homogeneous soil layer) and 3D domain
(for multiple layers), together with the use of the soil film, makes
the conceptual model mathematically feasible. Changing the
BHE-soil non-homogeneous differential equations to homogenous
differential equations (see Eqs. (4) and (23)) together with the
matrix formulation for coupling the boreholes (see Eq. (40)), makes
the mathematical model solvable. The use of the spectral element
method for modelling multilayer systems together with the super-
position technique for modelling multiple borehole heat exchang-
ers makes the solution technique fit to the physics of the problem
and computationally efficient.
Appendix A. Soil-film thickness

In this appendix, we highlight the independence of the temper-
ature distributions in the BHE components and the soil mass on the
soil film thickness.

To minimize the effect of the soil film thickness on the temper-
ature distributions, the thermal interaction coefficients must be
appropriately formulated. In pursuit of this, the thermal interac-
tion coefficients given in Appendix B are proved to be the most
appropriate. Using these coefficients, we here demonstrate the
model-independency on the soil film via a numerical example.
The geometry and material properties, together with the initial
and boundary conditions, are as for the numerical example given
in Section 9.

Fig. A1 shows the temperature distributions in pipe-in, pipe-
out, grout and soil film for a single BHE at 0.5 h, 5 h, 5 days and
5 months, using 1 mm, 10 mm, 20 mm and 30 mm soil film thick-
nesses. The figure clearly shows that the soil film thickness has
practically no effect on the temperature distributions except at
0.5 h where there is a deviation of around 1–2 �C between 1 mm
and 30 mm, mainly in the lower thermal conductivity layers.

Fig. A2 shows the corresponding temperature distributions in
the soil mass in the third layer. Obviously, the temperature distri-
bution in the soil mass has not been affected by the soil film thick-
ness, except at 0.5 h where there is little deviation between 1 mm
and 30 mm soil film thicknesses.

Appendix B. Thermal interaction coefficients

The thermal interaction coefficient for pipe-in - grout is
described as

big ¼ 1
Ri

ðB1Þ

where

Ri ¼ Rconvection þ Rpipe material ¼ 1
ro=ri�h

þ ro lnðro=riÞ
kp

ðB2Þ



Fig. A2. Soil radial temperature distribution in the third layer using different soil film thickness at different times.
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in which ri and ro are the inner and outer radius of pipe-in, respec-
tively; kp is the thermal conductivity of pipe-in material; and
�h ¼ Nuk=D is the convective heat transfer coefficient, where D is
the inner diameter of the pipe, Nu and k are the Nusselt Number
and the thermal conductivity of the circulating fluid. A similar for-
mulation is valid for pipe-out-grout, bog .

The thermal interaction coefficient for grout –soil film can be
expressed as

bgs ¼ 1
Rg

ðB3Þ

where

Rg ¼ rb lnðrb=reqÞ
kg

ðB4Þ

in which rb is the radius of the grout (borehole), and

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2in þ r2out

q
with rin the pipe-in inner radius and rout the pipe-

out inner radius.
The thermal interaction coefficient for the soil film-soil mass

can be expressed as

bss ¼ 1
Rs

ðB5Þ

where

Rs ¼ rf lnðrf=rbÞ
ks

ðB6Þ

in which rf is the radius of the soil film.

Appendix C. Eigenvalue determination

Substituting Eq. (29) into Eqs. (25)–(28), gives

k2kdViAie�ikz � ikqcudViAie�ikz þ ðixqcdVi þ bigdSigÞAie�ikz

� bigdSigAge�ikz ¼ 0 ðC1Þ
k2kdViAoe�ikz þ ikqcudVoAie�ikz þ ðixqcdVo þ bogdSogÞAoe�ikz

� bogdSogAge�ikz ¼ 0 ðC2Þ

k2kgdVgAge�ikz þ ðixqgcgdVg þ bigdSig þ bogdSog þ bgsdSgsÞAge�ikz

� bigdSigAie�ikz � bogdSogAoe�ikz � bgsdSgsAse�ikz ¼ 0 ðC3Þ

k2ksdVsAse�ikz þ ðixqscsdVs þ bgsdSgs þ bssdSsð1� Af ÞÞAse�ikz

� bgsdSgsAge�ikz ¼ 0 ðC4Þ
Dividing Eqs. (C1)–(C4) by e�ikz, rearranging and putting it in a

matrix form, gives

a11 0 a13 0
0 a22 a23 0
a31 a32 a33 a34
0 0 a43 a44

0
BBB@

1
CCCA

Ai

Ao

Ag

As

2
6664

3
7775 ¼ 0 ðC5Þ

where

a11 ¼ k2kdVi � ikqcudVi þ ixqcdVi þ bigdSig
a13 ¼ �bigdSig

a22 ¼ k2kdVo þ ikqcudVo þ ixqcdVo þ bogdSog
a23 ¼ �bogdSog
a31 ¼ �bigdSig
a32 ¼ �bogdSog

a33 ¼ k2kgdVg þ ixqgcgdVg þ bigdSig þ bogdSog þ bgsdSgs
a34 ¼ �bgsdSgs
a43 ¼ �bgsdSgs

a44 ¼ k2ksdVs þ ixqscsdVs þ bgsdSgs þ bssdSsð1� Af Þ
Since T̂ i, T̂g , T̂o and T̂s are coupled, the constants, Ai;Ao;Ag and As

are related to each other. Using Eqs. (C1)–(C5), the following rela-
tionships exist:
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Pipe-in-grout

Ai ¼ YigAg

Yig ¼ bigdSig
k2kdVi � ikqcudVi þ ixqcdVi þ bigdSig

ðC6Þ

Pipe-out-grout

Ao ¼ YogAg

Yog ¼ bogdSog
k2kdVo � ikqcudVo þ ixqcdVo þ bogdSog

ðC7Þ

Soil film-grout

As ¼ YsgAg

Ysg ¼ bgsdSgs
k2ksdVs þ ixqscsdVs þ bgsdSgs þ bssdSsð1� Af Þ

ðC8Þ

For each k there is a corresponding Yig , Yog and Ysg , i.e. there are

Yig
1 , Y

og
1 , Ysg

1 for k1, etc. [7].
The � signs in Eqs. (C6) and (C7) refer to the fluid velocity

direction at the nod. The fluid velocity in pipe-in at nod 1 is (�),
while it is (+) at nod 2 (see Fig. 2). For pipe-out, the signs are
opposite.

Non-trivial solution of Eq. (C5) can only be obtained by letting
the determinate equal to zero, giving a complex eight degree poly-
nomial of the form:

a8k
8 þ a7k

7 þa6k
6 þa5k

5 þa4k
4 þ a3k

3 þa2k
2 þa1kþa0 ¼ 0 ðC9Þ
Appendix D. Spectral element formulation, assembly and
solution

Consider a one-dimensional heat flow in an element of length h
bounded by two nodes: node 1 and node 2, Fig. 2. At each node,
there are four degrees of freedom, representing the temperatures
in pipe-in, pipe-out, grout and soil film. Using Eq. (29), the temper-
T̂ i1

T̂o1

T̂g1

T̂s1

T̂ i2

T̂g2

T̂o2

T̂s2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

Yig
1 Yig

2 Yig
3 Yig

4 Yig
5 e

�ik5h Yig
6 e

�ik6h Yig
7 e

�ik7h Yig
8 e

�ik8h

Yog
1 Yog

2 Yog
3 Yog

4 Yog
5 e�ik5h Yog

6 e�ik6h Yog
7 e�ik7h Yog

8 e�ik8h

1 1 1 1 e�ik5h e�ik6h e�ik7h e�ik8h

Ysg
1 Ysg

2 Ysg
3 Ysg

4 Ysg
5 e

�ik5h Ysg
6 e

�ik6h Ysg
7 e

�ik7h Ysg
8 e

�ik8h

Yig
1 e

�ik1h Yig
2 e

�ik2h Yig
3 e

�ik3h Yig
4 e

�ik4h Yig
5 Yig

6 Yig
7 Yig

8

Yog
1 e�ik1h Yog

2 e�ik2h Yog
3 e�ik3h Yog

4 e�ik4h Yog
5 Yog

6 Yog
7 Yog

8

e�ik1h e�ik2h e�ik3h e�ik4h 1 1 1 1
Ysg

1 e
�ik1h Ysg

2 2e�ik2h Ysg
3 e

�ik3h Ysg
4 e

�ik4h Ysg
5 Ysg

6 Ysg
7 Ysg

8

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Ag1

Bg1

Cg1

Dg1

Ag2

Bg2

Cg2

Dg2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ðD7Þ
atures at any point along the element are calculated by the super-
position of an incident flux, from node 1, and a reflective flux, from
node 2, as

T̂ i ¼ Ai1e�ik1z þ Bi1e�ik2z þ Ci1e�ik3z þ Di1e�ik4z þ Ai2e�ik5ðh�zÞ

þ Bi2e�ik6ðh�zÞ þ Ci2e�ik7ðh�zÞ þ Di2e�ik8ðh�zÞ ðD1Þ

T̂o ¼ Ao1e�ik1z þ Bo1e�ik2z þ Co1e�ik3z þ Do1e�ik4z þ Ao2e�ik5ðh�zÞ

þ Bo2e�ik6ðh�zÞ þ Co2e�ik7ðh�zÞ þ Do2e�ik8ðh�zÞ ðD2Þ
T̂g ¼ Ag1e�ik1z þ Bg1e�ik2z þ Cg1e�ik3z þ Dg1e�ik4z þ Ag2e�ik5ðh�zÞ

þ Bg2e�ik6ðh�zÞ þ Cg2e�ik7ðh�zÞ þ Dg2e�ik8ðh�zÞ ðD3Þ

T̂s ¼ As1e�ik1z þ Bs1e�ik2z þ Cs1e�ik3z þ Ds1e�ik4z þ As2e�ik5ðh�zÞ

þ Bs2e�ik6ðh�zÞ þ Cs2e�ik7ðh�zÞ þ Ds2e�ik8ðh�zÞ ðD4Þ
As for the finite element method, the governing equations are

solved in terms of the nodal values.
At node 1, z = 0, substituting Eqs. (C6)–(C8) into Eqs. (D1), (D2)

and (D4), the nodal temperatures become

T̂ i1 ¼ Ag1Y
ig
1 þ Bg1Y

ig
2 þ Cg1Y

ig
3 þ Dg1Y

ig
4 þ Ag2Y

ig
5 e

�ik5h þ Bg2Y
ig
6 e

�ik6h

þ Cg2Y
ig
7 e

�ik7h þ Dg2Y
ig
8 e

�ik8h

T̂o1 ¼ Ag1Y
og
1 þ Bg1Y

og
2 þ Cg1Y

og
3 þ Dg1Y

og
4 þ Ag2Y

og
5 e�ik5h

þ Bg2Y
og
6 e�ik6h þ Cg2Y

og
7 e�ik7h þ Dg2Y

og
8 e�ik8h

T̂g1 ¼ Ag1 þ Bg1 þ Cg1 þ Dg1 þ Ag2e�ik5h þ Bg2e�ik6h

þ Cg2e�ik7h þ Dg2e�ik8h

T̂s1 ¼ Ag1Y
sg
1 þ Bg1Y

sg
2 þ Cg1Y

sg
3 þ Dg1Y

sg
4 þ Ag2Y

sg
5 e

�ik5h

þ Bg2Y
sg
6 e

�ik6h þ Cg2Y
sg
7 e

�ik7h þ Dg2Y
sg
8 e

�ik8h

ðD5Þ

At node 2, z = h, and similarly, upon substituting Eqs. (C6)–(C8)
into Eqs. (D1), (D2) and (D4), the nodal temperatures become

T̂ i2 ¼ Ag1Y
ig
1 e

�ik1h þ Bg1Y
ig
2 e

�ik2h þ Cg1Y
ig
3 e

�ik3h þ Dg1Y
ig
4 e

�ik4h

þ Ag2Y
ig
5 þ Bg2Y

ig
6 þ Cg2Y

ig
7 þ Dg2Y

ig
8

T̂o2 ¼ Ag1Y
og
1 e�ik1h þ Bg1Y

og
2 e�ik2h þ Cg1Y

og
3 e�ik3h þ Dg1Y

og
4 e�ik4h

þ Ag2Y
og
5 þ Bg2Y

og
6 þ Cg2Y

og
7 þ Dg2Y

og
8

T̂g2 ¼ Ag1e�ik1h þ Bg1e�ik2h þ Cg1e�ik3h þ Dg1e�ik4h

þ Ag2 þ Bg2 þ Cg2 þ Dg2

T̂s2 ¼ Ag1Y
sg
1 e

�ik1h þ Bg1Y
sg
2 e

�ik2h þ Cg1Y
sg
3 e

�ik3h

þ Dg1Y
sg
4 e

�ik4h þ Ag2Y
sg
5 þ Bg2Y

sg
6 þ Cg2Y

sg
7 þ Dg2Y

sg
8

ðD6Þ
In a matrix form, Eqs. (D5) and (D6) can be presented as
which indicates that the temperatures of pipe-in, pipe-out and soil
film are represented in terms of the grout coefficients. This equa-
tion can be written as

T̂node ¼ Hðk;xnÞA ðD8Þ
Solving for A, gives

A ¼ Hðk;xnÞ�1T̂node ðD9Þ
The next step is to relate the heat flux to the temperature at the

nodes. The heat fluxes for the BHE components are
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qi ¼ �k
@Ti

@z
dAi

qo ¼ �k
@To

@z
dAo

qg ¼ �kg
@Tg

@z
dAg

qs ¼ �ks
@Ts

@z
dAs

ðD10Þ

where dAi;dAo;dAg and dAs are the cross-sectional areas of pipe-in,
pip-out, grout and soil film respectively. The � sign refers to the
direction of the heat flux: the heat flux at node 1 is (�) while at
node 2, it is (+).

Substituting Eqs. (C6)–(C8) into Eqs. (D1), (D2) and (D4), gives

qi ¼ �kdAi

�ik1Ag1Y
ig
1 e

�ik1z � ik2Bg1Y
ig
2 e

�ik2z

�ik3Cg1Y
ig
3 e

�ik3z � ik4Dg1Y
ig
4 e

�ik4z

þik5Ag2Y
ig
5 e

�ik5ðh�zÞ þ ik6Bg2Y
ig
6 e

�ik6ðh�zÞ

þik7Cg2Y
ig
7 e

�ik7ðh�zÞ þ ik8Dg2Y
ig
8 e

�ik8ðh�zÞ

0
BBBB@

1
CCCCA ðD11Þ

qo ¼ �kdAo

�ik1Ag1Y
og
1 e�ik1z � ik2Bg1Y

og
2 e�ik2z

�ik3Cg1Y
og
3 e�ik3z � ik4Dg1Y

og
4 e�ik4z

þik5Ag2Y
og
5 e�ik5ðh�zÞ þ ik6Bg2Y

og
6 e�ik6ðh�zÞ

þik7Cg2Y
og
7 e�ik7ðh�zÞ þ ik8Dg2Y

og
8 e�ik8ðh�zÞ

0
BBB@

1
CCCA ðD12Þ

qg ¼ �kgdAg

�ik1Age�ik1z � ik2Bge�ik2z

�ik3Cge�ik3z � ik4Dge�ik4z

þik5Ag2e�ik5ðh�zÞ þ ik6Bg2e�ik6ðh�zÞ

þik7Cg2e�ik7ðh�zÞ þ ik8Dg2e�ik8ðh�zÞ

0
BBB@

1
CCCA ðD13Þ

qs ¼ �ksdAs

�ik1Ag1Y
sg
1 e

�ik1z � ik2Bg1Y
sg
2 e

�ik2z

�ik3Cg1Y
sg
3 e

�ik3z � ik4Dg1Y
sg
4 e

�ik4z

þik5Ag2Y
sg
5 e

�ik5ðh�zÞ þ ik6Bg2Y
sg
6 e

�ik6ðh�zÞ

þik7Cg2Y
sg
7 e

�ik7ðh�zÞ þ ik8Dg2Y
sg
8 e

�ik8ðh�zÞ

0
BBB@

1
CCCA ðD14Þ

At the element nodes, Eqs. (D11)–(D14) become:
At node 1, z = 0:
Fig. D1. Two-layer system and its s
qi1 ¼ �kdAi

�ik1Ag1Y
ig
1 � ik2Bg1Y

ig
2 � ik3Cg1Y

ig
3 � ik4Dg1Y

ig
4

þik5Ag2Y
ig
5 e

�ik5h þ ik6Bg2Y
ig
6 e

�ik6h þ ik7Cg2Y
ig
7 e

�ik7h

þik8Dg2Y
ig
8 e

�ik8h

0
BBB@

1
CCCA

qo1 ¼ �kdAo

�ik1Ag1Y
og
1 � ik2Bg1Y

og
2 � ik3Cg1Y

og
3 � ik4Dg1Y

og
4

þik5Ag2Y
og
5 e�ik5h þ ik6Bg2Y

og
6 e�ik6h þ ik7Cg2Y

og
7 e�ik7h

þik8Dg2Y
og
8 e�ik8h

0
BB@

1
CCA

qg1 ¼ �kgdAg

�ik1Ag � ik2Bg � ik3Cg � ik4Dg

þik5Ag2e�ik5h þ ik6Bg2e�ik6h þ ik7Cg2e�ik7h

þik8Dg2e�ik8h

0
BB@

1
CCA

qs1 ¼ �ksdAs

�ik1Ag1Y
sg
1 � ik2Bg1Y

sg
2 � ik3Cg1Y

sg
3 � ik4Dg1Y

sg
4

þik5Ag2Y
sg
5 e

�ik5h þ ik6Bg2Y
sg
6 e

�ik6h

þik7Cg2Y
sg
7 e

�ik7h þ ik8Dg2Y
sg
8 e

�ik8h

0
BB@

1
CCA
ðD15Þ

At node 2, z = h:

qi2 ¼ kdAi

�ik1Ag1Y
ig
1 e

�ik1h � ik2Bg1Y
ig
2 e

�ik2h � ik3Cg1Y
ig
3 e

�ik3h

�ik4Dg1Y
ig
4 e

�ik4h

þik5Ag2Y
ig
5 þ ik6Bg2Y

ig
6 þ ik7Cg2Y

ig
7 þ ik8Dg2Y

ig
8

0
BBB@

1
CCCA

qo2 ¼ kdAo

�ik1Ag1Y
og
1 e�ik1h � ik2Bg1Y

og
2 e�ik2h � ik3Cg1Y

og
3 e�ik3h

�ik4Dg1Y
og
4 e�ik4h

þik5Ag2Y
og
5 þ ik6Bg2Y

og
6 þ ik7Cg2Y

og
7 þ ik8Dg2Y

og
8

0
BB@

1
CCA

qg2 ¼ kgdAg

�ik1Age�ik1h � ik2Bge�ik2h � ik3Cge�ik3h � ik4Dge�ik4h

þik5Ag2 þ ik6Bg2 þ ik7Cg2 þ ik8Dg2

 !

qs2 ¼ ksdAs

�ik1Ag1Y
sg
1 e

�ik1h � ik2Bg1Y
sg
2 e

�ik2h � ik3Cg1Y
sg
3 e

�ik3h

�ik4Dg1Y
sg
4 e

�ik4h

þik5Ag2Y
sg
5 þ ik6Bg2Y

sg
6 þ ik7Cg2Y

sg
7 þ ik8Dg2Y

sg
8

0
BB@

1
CCA

ðD16Þ
pectral element discretization.
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In a matrix form:

qi1

qo1

qg1

qs1

qi2

qo2

qg2

qs2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b88 b82 b83 b84 b85 b86 b87 b88

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Ag1

Bg1

Cg1

Dg1

Ag2

Bg2

Cg2

Dg2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
ðD17Þ

where
b11 ¼ ik1Y
ig
1 kdAi b21 ¼ ik1Y

og
1 kdAo b31 ¼ ik1kgdAg b41 ¼ ik1Y

sg
1 ksdAs

b12 ¼ ik2Y
ig
2 kdAi b22 ¼ ik2Y

og
2 kdAo b32 ¼ ik2kgdAg b42 ¼ ik2Y

sg
2 ksdAs

b13 ¼ ik3Y
ig
3 kdAi b23 ¼ ik3Y

og
3 kdAo b33 ¼ ik3kgdAg b43 ¼ ik3Y

sg
3 ksdAs

b14 ¼ ik4Y
ig
4 kdAi b24 ¼ ik4Y

og
4 kdAo b34 ¼ ik4kgdAg b44 ¼ ik4Y

sg
4 ksdAs

b15 ¼ �ik5Y
ig
5 kdAie�ik5h b25 ¼ �ik5Y

og
5 kdAoe�ik5h b35 ¼ �ik5kgdAge�ik5h b45 ¼ �ik5Y

sg
5 ksdAse�ik5h

b16 ¼ �ik6Y
ig
6 kdAie�ik6h b26 ¼ �ik6Y

og
6 kdAoe�ik6h b36 ¼ �ik6kgdAge�ik6h b46 ¼ �ik6Y

sg
6 ksdAse�ik6h

b17 ¼ �ik7Y
ig
7 kdAie�ik7h b27 ¼ �ik7Y

og
7 kdAoe�ik7h b37 ¼ �ik7kgdAge�ik7h b47 ¼ �ik7Y

sg
7 ksdAse�ik7h

b18 ¼ �ik8Y
ig
8 kdAie�ik8h b28 ¼ �ik8Y

og
8 kdAoe�ik8h b38 ¼ �ik8kgdAge�ik8h b48 ¼ �ik8Y

sg
8 ksdAse�ik8h

b51 ¼ �ik1Y
ig
1 kdAie�ik1h b61 ¼ �ik1Y

og
1 kdAoe�ik1h b71 ¼ �ik1kgdAge�ik1h b81 ¼ �ik1Y

sg
1 ksdAse�ik1h

b52 ¼ �ik2Y
ig
2 kdAie�ik2h b62 ¼ �ik2Y

og
2 kdAoe�ik2h b72 ¼ �ik2kgdAge�ik2h b82 ¼ �ik2Y

sg
2 ksdAse�ik2h

b53 ¼ �ik3Y
ig
3 kdAie�ik3h b63 ¼ �ik3Y

og
3 kdAoe�ik3h b73 ¼ �ik3kgdAge�ik3h b83 ¼ �ik3Y

sg
3 ksdAse�ik3h

b54 ¼ �ik4Y
ig
4 kdAie�ik4h b64 ¼ �ik4Y

og
4 kdAoe�ik4h b74 ¼ �ik4kgdAge�ik4h b84 ¼ �ik4Y

sg
4 ksdAse�ik4h

b55 ¼ ik5Y
ig
5 kdAi b65 ¼ ik5Y

og
5 kdAo b75 ¼ ik5kgdAg b85 ¼ ik5Y

sg
5 ksdAs

b56 ¼ ik6Y
ig
6 kdAi b66 ¼ ik6Y

og
6 kdAo b76 ¼ ik6kgdAg b86 ¼ ik6Y

sg
6 ksdAs

b57 ¼ ik7Y
ig
7 kdAi b67 ¼ ik7Y

og
7 kdAo b77 ¼ ik7kgdAg b87 ¼ ik7Y

sg
7 ksdAs

b58 ¼ ik8Y
ig
8 kdAi b68 ¼ ik8Y

og
8 kdAo b78 ¼ ik8kgdAg b88 ¼ ik8Y

sg
8 ksdAs
This equation can be described as

q̂node ¼ Mðk;xnÞA ðD18Þ
Substituting Eq. (D9) into Eq. (D18), yields

q̂node ¼ Kðk;xnÞT̂node ðD19Þ

in which Kðk;xnÞ ¼ Mðk;xnÞHðk;xnÞ�1, representing the spectral
element stiffness matrix, in resemblance to that of the finite ele-
ment method. However, the spectral element matrix is exact and
frequency-dependent.
D.1. Global matrix assembly and solution

For a multilayer system, each layer is described by a spectral
element. The assembly of the global matrix is done following the
finite element method, in which matrices assembly is dictated by
the elements and nodes numbers. In this assembly process, the
way the nodes are numbered determines the locations of the coef-
ficients in the global stiffness matrix.

Consider a borehole heat exchanger embedded in a two layer
system shown schematically in Fig. D1. The system is described
by two spectral elements and three nodes, numbered as shown
in the figure. Each node has four degrees of freedom, describing
the temperatures in pipe-in, T̂ i, pipe-out, T̂o, grout, T̂g, and soil film,

T̂s. The stiffness matrix for each element is described by Eq. (D19).
Using the finite element method, the global spectral element equa-
tion can then be described as

K1
11 K1

12

K1
21 K1

22 þ K2
11 K2

12

K2
21 K2

22

2
64

3
75 T̂1

T̂2

T̂3

8><
>:

9>=
>; ¼

q̂1

q̂2

q̂3

8><
>:

9>=
>; ðD20Þ

in which the matrix on the left-hand side of the equation is the glo-
bal stiffness matrix, with the superscript indices indicating the layer
(element) number. The vector on the left-hand side is the degrees of
freedom vector, indicating the nodal temperatures that need to be
determined; and the vector on the right-hand side is the force vec-
tor, indicating the corresponding nodal heat fluxes.

The solution of the global system of equations is conducted
using the IMSL mathematical library subroutine, lin_sol_gen, which
solves a general system of linear equations Ax ¼ b, (IMSL [13]). Eq.
(C9) is solved using the IMSL subroutine, DZPOCC, which solves for
the roots of a polynomial with complex coefficients. The recon-
struction of the time domain is carried out using the inverse FFT
algorithm.
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