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We discuss some aspects of interactions of high-frequency electromagnetic waves with plasmas, assuming
that the intensity of radiation is sufficiently large, so that the photon-photon interaction is more likely than the
photon-plasma particle interaction. In the stationary limit, solving the kinetic equation of the photon gas, we
derive a distribution function. With this distribution function at hand, we investigate the adiabatic photon
self-capture and obtain the number density of the trapped photons. We employ the distribution function to
calculate the thermodynamic quantities for the photon gas. Having expressions of the entropy and the pressure
of the photon gas, we define the heat capacities and exhibit the existence of the ratio of the specific heats �,
which equals 7 /6 for nonrelativistic temperatures. In addition, we disclose the magnitude of the mean square
fluctuation of the number of photons. Finally, we discuss the uniform expansion of the photon gas.
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I. INTRODUCTION

The recent development of astronomical observations has
revealed that our universe is full of enigmatic explosive phe-
nomena, such as jets, bursts, and flares. It is possible now to
study extremely complex phenomena �supernova explosion,
Gamma-ray bursts, etc.� of astrophysics in laboratories using
intense and ultraintense lasers. Intense lasers have been used
to investigate hydrodynamics, radiation flow, opacities, etc.,
related to supernova explosions, giant planets, and other as-
trophysical systems �1�. Thus the study of the properties of
such radiation �strong and superstrong laser pulse, non-
thermal equilibrium cosmic field radiation, etc.� is of vital
importance. The development of compact, high-power, short
pulse, efficient lasers is a fast moving technology. In the field
of superstrong femtosecond pulses, it is expected that the
character of the nonlinear response of the medium will radi-
cally change. Currently, lasers produce pulses whose inten-
sity approaches 1022 W/cm2 �2�. With a further increase of
intensity �3�, we may encounter novel physical processes,
where the quantum electrodynamic description may be
needed. Recently, the nonlinear collective effects in quantum
electrodynamics has been reviewed in Ref. �4�.

We have shown in Ref. �5�, and later Medvedev in �6�,
where thermodynamic properties of a photon gas in electron-
positron plasmas were studied �results of �6� were recalcu-
lated recently in �7��, that the behavior of photons in a
plasma is radically different from that in a vacuum. Namely,
plasma particles perform oscillatory motion in the field of
electromagnetic �EM� waves affecting the radiation field.
The oscillation of electrons in an isotropic homogeneous

plasma leads to the index of refraction, which depends on the
frequency of the radiation, and is not close to unity for a
dense plasma, i.e.,

R2 =
k2c2

�2 = 1 −
�p

2

�2 , �1�

where �p= � 4�e2n
m0e�

�1/2
for an electron-ion plasma �neglecting

the ion contribution� and �p= �2 4�e2n
m0e�

�1/2
for an electron-

positron plasma �−e, m0e, n, and � are electron charge, the
rest mass, density, and the relativistic gamma factor of the
electrons, respectively�.

Rewriting Eq. �1� in terms of an energy �=�� and mo-
mentum p=�k �where � is the Planck constant divided by
2�� and introducing m�=��p /c2, we obtain the expression
for the energy of a single photon

�� = c�p�
2 + m�

2c2�1/2 = m�c2�1 −
u�

2

c2�−1/2

, �2�

which is expressed through the standard formula for the ve-
locity of energy transport

u� = c�1 −
�p

2

�2�1/2

=
��

�k
. �3�

For the momentum of a photon we can write

p�� = �k� = m���u�� = m��1 −
u�

2

c2�−1/2

u��. �4�

The form of Eq. �2� coincides with the expression for the
total relativistic energy of massive particles, so that a rest
mass m� is associated with the photon in a plasma �5,6,8�.
We note here that two important features of photons follow
from Eq. �2�. Namely, first at p�=0, ��=m�c2 is not zero.
Second, the rest mass of photons depends on the plasma
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density, or the volume as m�= �

c2 � 4�e2

m0e�

Ne

V
�1/2

. In view of this
analogy between a photon in a plasma and a free material
particle, we can treat the photon gas in the plasma just as a
subsystem of particles that have nonzero rest mass.

In the approximation of geometric optics we may work in
terms of rays �photons� instead of waves. In a homogeneous
isotropic medium the direction of the ray coincides with that
of the normal of the wave surface. In practice, however, we
often have to deal with pulses formed by a group of waves.
For the wave packet, i.e., a quasimonochromatic group of
waves, the Fourier component of wave energy is by defini-
tion very “sharp” and appreciably different from zero only in
a narrow range of frequencies and wave vectors near the
carrier � and k of the pulse. In plasmas, as follows from Eq.
�1�, the group velocity u= ��

�k �c. Thus the wave packets of
light are propagated with a group velocity which is less than
the speed of light, in accordance with the theory of relativity
�9�. It is also well-known that the introduction of group ve-
locity is valid in the case of weak field �for the linear waves�.
However, for strong nonlinear waves in plasmas a concept of
group velocity is meaningless. In this case we should define
the mean velocity of the group of photons taking into ac-
count their interaction with plasma particles. We note that the
wide range of applicability of the approximation of geo-
metrical optics is due to the fact that the properties of plasma
usually vary slowly in space and time, i.e., the properties of
the medium change very little over distances of the order of
the wavelength �or of some characteristic length�.

Let us recall some purely quantum mechanical features of
a macroscopic system. It is well-known that there is an ex-
tremely high density of levels in the energy eigenvalue spec-
trum of a macroscopic system. We know also that the num-
ber of levels in a given finite range of the energy spectrum of
a macroscopic system increases exponentially with the num-
ber of particles N in the system, and separations between
levels are given by numbers of the 10−N. Therefore we can
conclude that in such a case the spectrum is almost continu-
ous and a quasiclassical approximation is applicable. To sup-
port this statement, we will discuss some conditions which
will allow us to use a quasiclassical approximation. We start
from the uncertainty principle in the relativistic case �10� for
photons. In the relativistic theory a coordinate uncertainty in
a frame of reference in which the particle is moving with
energy � is

	q �
c�

�
=

c

�
. �5�

Estimating this quantity for the isotropic plasma, we obtain
for the underdense plasma, �q�
 �
 is the wavelength�,
and for the overdense plasma �q�c /�p. This means that
the coordinates of the photon are meaningful only in those
cases where the characteristic dimensions of the problem are
large in comparison with the wavelength or the anomalous
skin depth.

We now consider the quantization of an EM field. In the
quantum field theory, the Hamiltonian has the same form as
in classical field theory, the only difference is that now E and
B are operators, i.e.,

H� f =
1

8�
� �E2 + B2�dr� �6�

and the eigenvalues of this Hamiltonian are

H = 	
k,�

�nk,� +
1

2
����k� , �7�

where the occupation numbers nk,� are integers, and � stands
for the polarization.

The eigenvalues of the momentum operator are

p� = 	
k,�

�nk,� +
1

2
��k� . �8�

The expressions �7� and �8� enable one to introduce the
concept of photons, i.e., the EM field as an ensemble of
particles each with energy �� and momentum �k�. The occu-
pation numbers nk,� now represent the numbers of photons
with given k� and polarization �.

The properties of a photon gas are known to be similar to
the classical properties when the photon numbers nk,� are
large. This statement allows us to define the condition for a
value of an amplitude of the electric field, which indicates
the validity of the classical approach of the photon gas. To
this end, we shall estimate the total field energy per unit
volume, which is proportional to 
E
2. In the quasiclassical
limit, the total number of proper oscillations with the mag-
nitude of the wave vector in the interval dk is

Vk2dk

�2 =
V�2

�2c3R2 d

d�
��R�d� . �9�

Noting Eq. �1� for an isotropic plasma expression �9� reduces
to

V�2

�2c3Rd� . �10�

For the energy density of the field we have


E
2 =� ��n���
�2Rd�

�2c3 �
R�

�2c3�4n��� . �11�

As we have mentioned above there is a similarity between
the quantum and the classical system, provided n��1, i.e.,
when


E
 � ��cR�1/2��

c
�2

. �12�

From this it is clear that for the static field, i.e., �=0, 
E
 is
always classical. The same situation occurs for the overdense
plasma, as R→0. In general, a high-frequency EM field, if
sufficiently weak, can never be quasiclassical. Thus the in-
equality �12� is the required condition, which allows the EM
field to be treated as quasiclassical.

II. FIRST LAW OF RELATIVISTIC THERMODYNAMICS

We now consider a system which is a dilute gas composed
of electrons, ions, and photons �e− i−��, or electrons, posi-
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trons, and photons �e− p−��, and describe this compressible
and continuous medium in terms of its macroscopic proper-
ties such as entropy, pressure, density, temperature, etc.

First, we calculate the thermodynamical quantities devel-
oping the statistical mechanics in the presence of a strong
EM field. It was shown in Ref. �11� that in the case of the
relativistically intense �circularly polarized� EM waves

propagation into a plasma, the momentum eA� � /c �A� � is the
perpendicular component of the vector potential of the EM
waves,  stands for the particle species� can be much larger
than the perpendicular components of the thermal momen-
tum of the particles. Hence the perpendicular momentum of

particles is just p��=−
eA� �

c , whereas the momentum of par-
ticles along the propagation of EM waves remains thermal.
In the following, we study a closed system for a period of
time that is long compared with its relaxation time. This
implies that the system is in complete statistical equilibrium.

Introducing E as the internal energy in a volume V of the
three component gas, the first law of thermodynamics reads
�index t stands for total�

dEt = dQt − PtdV , �13�

where Pt is the total pressure, or

Pt = Pe + Pi�p� + P�. �14�

In the case when a plasma is in a superstrong EM field, the
pressure becomes anisotropic. For instance, in the case of a
relativistically intense circularly polarized EM field the total
pressure is written as

Pt = 	


�P� + P�� + P�, �15�

where

P� =
2

3

nm0c2a
2

�1 + a
2

K0��
�1 + a

2�

K1��
�1 + a

2�
, �16�

P� =
1

3
nT. �17�

Here n=
n0

�1+a
2

K1��� K1��
�1+a

2� is the density of particles,

a=
eA� �

m0c2 , �=
m0c2

T
, and K��X� is the McDonald function of

� order.
Deriving expressions �16� and �17� use was made of the

distribution function

f = B��p�� +
e

c
A� ��exp−

c�m0
2 c2 + p�

2 + p�
2

T
� ,

�18�

where B is the normalization constant and ��x� is Dirac’s
function. If we integrate expression �18� over p��, we obtain
the distribution function, which was derived in �11�, i.e.,

f�p�,a
2� =� dp��f�p�,p��,a

2�

=
n0

m0c

1

K1���
exp�− �

�1 + a
2 + p�

2 /�m0
2 c2�� .

�19�

We note here that distribution functions �18� and �19� give a
complete description of the microscopic properties of the gas
in the presence of superstrong radiation.

In Eq. �13� the dQt is the amount of heat that is gained or
lost by the system, which has the form

dQt = TedSe + Ti�p�dSi�p� + T�dS�, �20�

where

S = − V� dp� � dp��f ln f �21�

is the entropy of the particles.
Introducing the entropy per particle and using expression

�19�, we obtain

S

N
= −

1

n
� dp�f�p�,a

2�ln f�p�,a
2� . �22�

After substitution of f�p� ,a
2� into Eq. �22�, a simple inte-

gration over p� gives

S

N
= − �ln

n

m0cK1���
+ 1 − �

�1 + a
2 K2��

�1 + a
2�

K1��
�1 + a

2�
� .

�23�

In order to calculate the pressure and the entropy of the pho-
ton gas, we use the Bose distribution function �5�. The result
is

P� =
T�

4��
2

�2��c�3 	
�=1

�
e���

�2 K2����� �24�

and

S� =
VT�

3��
2

�2��c�3 	
�=1

�
e���

�2 �����1 −
���

4
�K3�����

+
�2��

2

4
K1������ , �25�

where ��=
m�c2

T�
= �

T�
� 4�e2

m0e�

Ne

V
�1/2

.
We now suppose that in each subsystem the entropy is

conserved, i.e., Se, Si�p�, and S� are constant. We note here
that the relaxation in a photon-plasma system is a two-stage
process. First, the statistical equilibrium is established in
each subsystem independently, at first in a plasma, since pho-
tons usually have much longer mean free paths than charged
particles, and then in a photon gas. Slower processes of the
equalization of the photon and the plasma temperatures will
take place afterwards. Since for an adiabatic process dS�0,
we obtain the adiabatic equation for material particles from
Eq. �23�,
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n

K1���
exp�− �

�1 + a
2G� = const, �26�

where

G =
K2��

�1 + a
2�

K1��
�1 + a

2�
.

For clarity, we consider three cases. First, for the relativistic
temperatures �

�1+a
2 �1, we get

n

T
�1 +

e
2A�

2

T
2 � = const. �27�

This expression shows that the thermal kinetic energy due to
the thermal motion of particles along the propagation of EM
waves, T=T�, dominates the energy of the waves, and the
second term in the bracket in Eq. �27� is less than unity.
Hence we can neglect the second term in the bracket to ob-
tain

VT = V�−1T = const,

from which follows the expression for the ratio of the
specific heats

� =
CP

CV
= 2.

In the opposite limit, that is for the nonrelativistic tempera-
tures �

�1+a
2 �1, we obtain

n

T
1/2 exp���1 − �1 + a

2�� = const. �28�

Finally, in the case when the temperature is ultrarelativistic,
T�m0c2, and also the radiation, i.e., a

2 �1, then
�

�1+a
2 �

e
A�

T

and can be of the order of unity. The adia-
batic equation now reads

n

T
1/2 exp−

e
A�

T

� = const. �29�

For the subsystem of photons, the asymptotic behavior of
Eq. �25� for ���1 leads to

S� = S0��1 + 0.83��� , �30�

where the second term is due to the mass of the photon, and
S0�= 4�2

45
� T�

�c
�3

V is the entropy of the photon gas in vacuum.
For the case ���1 Eq. �25� becomes

S� = S0�0.48��
3/2. �31�

In this case the entropy depends on the temperature and the
volume as follows:

S� � T�
3/2V1/4. �32�

Thus, for the adiabatic process, we obtain

T�V1/6 = T�V�−1 = const. �33�

We specifically emphasize that in contrast to the vacuum
case, we can here define the ratio of the specific heats for the

photon gas, and in the case of nonrelativistic temperatures
the ratio of the specific heats for the photon gas is �= 7

6 .
As we have indicated in the Introduction, the nature of

photons in plasmas is quit different from the one in vacuum.
In plasma the photon has a rest mass that depends on the
volume, and hence we can write for the mean square fluc-
tuation of the number of photons

��	N��2� = −
T�N�

3

V2 � �V

�P�
�

T�

. �34�

The derivation of this equation is well-known �12�. The limi-
tations on its validity were pointed out, and a discussion on
the mean square relative fluctuation in number of particles
for an ideal relativistic Bose gas was reported by Dunning-
Davies �13�.

We now examine fluctuations in the distribution of pho-
tons over the various “quantum” states. Let nK be their oc-
cupation numbers in the Kth quantum state. The mean values
�nK�=n� of these numbers are

n� =
1

exp ��K� − ��

T�

� − 1

. �35�

Recalling Eq. �34�, we get

��	nK�2� = T�

�n�

��
�36�

or

��	nK�2� = n��1 + n�� . �37�

It is important to emphasize that in Eq. �37� the first term
reflects the corpuscular behavior of the photons, whereas the
second term is of wave origin. More precisely, it is the result
of the irregular interference of EM waves. One can see from
Eq. �37� that in the case when 
��K�−��
�T�, the first term
is larger than the second one. This implies that photons are
neutral particles. In the opposite case 
��K�−��
�T�, i.e.,
for the classical approach of fluctuation of EM waves, Eq.
�37� exhibits that the relative fluctuations of the number of
photons does not decrease, when the mean number of pho-
tons increases, so that

��	nK�2�
n�

2 � 1.

Thus we may conclude that in the range 
��K�−��
�T�, i.e.,
n��1, the radiation resembles the ideal gas of the particles-
photons, and in the range 
��K�−��
�T�, i.e., n��1, the
radiation represents the system of classical electromagnetic
waves.

III. BOLTZMANN H-THEOREM FOR PHOTON GAS

Recently in Ref. �14� a new version of the Pauli equation
for the photon gas was derived from a general kinetic equa-
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tion �which is of the type of the Wigner-Moyal equation
�15�� for the EM spectral intensity �16–18�. In the limit of
the spatial homogeneity for the distribution function the
Pauli equation reads

�N�k�,t�
�t

= 	
±
� d3k�

�2��3W±�k��,k��

�� ��k��

��k���
N�k��,t� − N�k�,t�� . �38�

Here W±�k�� ,k�� is the scattering rate

W±�k��,k�� =
�

4

�p
4
���q�
2

��k� ± q�/2���k��
��� − q�u�±� , �39�

where k��=k� +q� , u�±=
�k�±q�/2�c2

��k�±q�/2� , ��k��, k� and �, q� are the fre-

quencies, wave vectors of the transverse and longitudinal
photons �photonikos�, respectively, and N�k� , t� is the distri-
bution function of photons.

We now discuss some implications of Eq. �38�. Namely,
this equation exhibits the irreversible processes, and is the
mathematical basis for a H-theorem. The relaxation process
is accompanied by an increase in the entropy of the photon
gas. Note that the equation type of Eq. �38� has been ob-
tained for the first time by Pauli for a quantum system and
applied to study of irreversible processes �19�. Later Van
Hove �20�, Prigogine �21�, and Chester �22� developed a
general theory of irreversible processes. Namely, it was
shown by them that the statistical equilibrium of the system
is triggered by a small perturbation in potential energy, and
the probability of the transition �k� ,k��� can be calculated by
the first order approximation of the nonstationary theory of
perturbation.

Equation �38�, derived for a dense photon gas, is pure
classical and describes the three wave interaction. Namely,
the photon passing through the photon bunch absorbs and
emits photonikos, with frequencies �= � ��−�� � and wave
vectors q� = � �k� −k���. The integral in Eq. �38� is the elastic
collision integral and describes the photon scattering process
on the variation of shape of the photon bunch. This equation
indicates that the equilibrium of the photon gas is triggered
by the perturbation ��=��n/no��.

In the limit of spatial homogeneity and quasiclassical ap-
proximation we can define the entropy of a photon gas as

S = − KBV� d3k

4�3 �N�k�,t�ln N�k�,t� − �N�k�,t� + 1�ln�1 + N�� ,

�40�

where KB is Boltzmann’s constant.
Differentiating this expression with respect to time, we

obtain

dS

dt
= VKB� d3k

4�3 ln�1 + N�k�,t�

N�k�,t�
� �N�k�,t�

�t
. �41�

From Eq. �38�, where we take
��k��

��k���
�1 since we consider

the case, when the wave number q of the photoniko is much
less than the wave number k of the photons, we substitute
�N�k,t�

�t into Eq. �41� to obtain

dS

dt
= VKB	

±
� d3k

�2��3 � d3k�

�2��3 ln�1 + N�k�,t�

N�k�,t�
�W±�k��,k��

��N�k��,t� − N�k�,t�� . �42�

Bearing in mind that the expression under the integrals in
Eq. �42� is invariant under the transformations k�→k�� and k�

←k��, we can rewrite this equation in the form

dS

dt
=

VKB

2 	
±
� d3k

�2��3 � d3k�

�2��3W±�k��,k��

�ln� �1 + N�k�,t��N�k��,t�

�1 + N�k��,t��N�k�,t�
��N�k��,t� − N�k�,t�� .

�43�

By the definition W± and N�k� , t� in the integrand are posi-
tive, and the function

F = ln� 1 + N�k�,t�

1 + N�k��,t�

N�k��,t�

N�k�,t�
��N�k��,t� − N�k�,t�� �44�

is non-negative in any case, i.e., N�k�� , t��N�k� , t� or reverse.
We thus obtain the required result

dS

dt
� 0, �45�

expressing the law of increase of the entropy of the photon
gas. Note that equality occurs at equilibrium.

IV. ADIABATIC PHOTON SELF-CAPTURE

In this section, we discuss the phenomenon of photon
capture by some potential well. To this end, we consider the
distribution of photons in a slowly applied field, which is a
function of the density and the relativistic factor of particles,
U=g�n�r� , t� ,��r� , t��.

Let l and � be the characteristic length and time of varia-
tion of the potential. We suppose that

� �
l

u
. �46�

With this condition in mind, we employ the equation derived
in Ref. �25�,

k� · �� rN�r�,t,k�� −
�p

2

2c2�� r
ne

�e
· �� kN�r�,t,k�� = 0. �47�

In the following, we consider the case when the density and
the relativistic factor are functions only of the distance r
from a fixed point. Then the solution of Eq. �47� is
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N�r,k� = n0�f����k�,r��� = n0�

1

�2��0
2�3/2 exp−

k2 + kp
2��

2�0
2 � ,

�48�

where �0 is the spectral width, and

�� =
�n

n0�
+ � 1

�
−

1

�0
�, kp =

�p

c
. �49�

We specifically note here that �� can be positive as well as
negative. Namely, in the case when the density of particles
has a cavity, i.e., n

n0
=1− 
�n


n0
, and �=�0, �� is negative

���=− 1
�0


�n
/n0�. Next, in the case when the density does not
change, i.e., n=n0, but ���0, i.e., there is a focusing of EM
waves, then �� is again negative. Whereas, in the case when
both n and � change, then �� can be positive as well as
negative.

If ���0 in some region, and in the rest of the space ��
�0, then we have two sorts of photons. First, photons with
���0 have a Gaussian-Boltzmann distribution throughout
the space, and the density of photons is given as

n��r� =� dk�N�r,k� = n0� exp−
kp

2��

2�0
2 �; �50�

but in the case, when there are some photons in the cavity,
then the motion of the photons takes place in a finite region
of space, i.e., they are trapped in the potential well
U=−kp

2 
��
. In other words, for the trapped photons we have
k0

2+kp
2��=0, N�r ,k�=N�0�, and for them the wave number

varies between 0�k�kp
��
1/2, whereas for the untrapped
photons, k�kp
��
1/2. Therefore we can now represent n� as

n��r� = n�
trap�r� + n�

untr�r� , �51�

where

n�
trap

n0�

=
4

3��
� kp

�2�0


��
1/2�3

�52�

and for the untrapped photons we have

n�
untr

n0�

=
4

��
ekp

2
��
/2�0
2�

�0

�

d��2e−�2

= �1 −
4

��
�

0

�0

d��2e−�2�e�0
2
, �53�

where �= k
�2�0

and �0=
kp
��
1/2

�2�0
. Equations �52� and �53� ex-

hibit that, when kp
��
1/2��2�0, then n�
untr→0, whereas n�

trap

increases as a third power, i.e., almost all photons are
trapped. In the opposite limit, �0�1, for the density of pho-
tons, we obtain

n� = n0�1 + �0
2 −

8

15��
�0

5/2� .

V. UNIFORM EXPANSION OF PHOTON GAS

We next consider the uniform expansion of the photon
gas. To this end, we employ the equation of continuity of the

photon gas derived in Ref. �14�. In the past Kompaneets �23�
has shown that the establishment of equilibrium between the
photons and the electrons is possible through the Compton
effect. In his consideration, since the free electron does not
absorb and emit, but only scatters the photon, the total num-
ber of photons is conserved. Using the kinetic equation of
Kompaneets, Zel’dovich and Levich �24� have shown that in
the absence of absorption the photons undergo Bose-Einstein
condensation. Recently it was shown that another mecha-
nism exists �“Compton” scattering type� of the creation of
equilibrium state and Bose-Einstein condensation in a non-
ideal dense photon gas �25,14�. Hereafter, we assume that the
total number of photons is conserved.

In the following the dynamics of the photon gas is deter-
mined by the constancy of the entropy. Equations �30� and
�32� yield the following expressions, first for the ultrarelativ-
istic photon gas, i.e., ���cp�,

T�t� = T0� V0

V�t�
�1/3 1

1 + ��V�t�
V0

�1/3 , �54�

and second for the nonrelativistic photon gas, i.e., ��

�m�c2+
p�

2

2m�
,

T�t� = T0� V0

V�t�
�1/6

, �55�

where �=0.29
m��V0�c2

T0
, T0 and V0 are initial temperature and

volume.
In order to determine the explicit dependence T�t� and

V�t�, we study the spherically symmetric case. In this case
the equation of continuity takes the form

�n�

�t
+

1

r2

�

�r
r2n�ur = 0. �56�

The solution of which we represent as

n��t� = n0�� R0

R�t�
�3

, ur = u0
r

R�t�
, �57�

where the suffix 0 denotes the constant initial value.
Substituting Eq. �57� into Eq. �56�, we obtain

dR�t�
dt

= u0 or R�t� = R0 + u0t . �58�

Substituting Eq. �58� into Eqs. �54� and �55�, we can now
explicitly express also the time dependence of the tempera-
ture. The result is for the ultrarelativistic photon gas

T�t� = T0
R0

R�t�
1

1 + �
R�t�
R0

�59�

and for the nonrelativistic photon gas
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T�t� = T0� R0

R�t�
�1/2

. �60�

Thus we may conclude that the cooling of the photon gas is
slower in the nonrelativistic case than in the ultrarelativistic
case, as is evident from Eqs. �59� and �60�.

VI. SUMMARY

We have investigated the interaction of spectrally broad
and relativistically intense EM radiation with a plasma. We
have obtained the condition which allows the EM field to be
treated as quasiclassical. We have studied the system of a
dilute gas composed of electrons, ions, and photons �or elec-
trons, positrons, and photons�, and described it in terms of
macroscopic properties. We have calculated all thermody-
namic quantities developing the statistical mechanics in the
presence of a strong EM field. We have demonstrated the
existence of the ratio of the specific heats, �, which equals
7 /6. We have also disclosed the magnitude of the mean
square fluctuation of the number of photons, and shown that
the relative fluctuation of the number of photons does not

decrease, when the mean number of photons increases. We
have discussed the Boltzmann H-theorem in a photon gas. In
addition, we have studied the adiabatic photon self-capture
and defined the number of trapped photons. Finally, we have
considered the uniform expansion of the photon gas and ex-
plicitly expressed the time dependence of temperature and
volume. EM radiation has played a crucial role in opening up
new frontiers in physics. The distribution law discovered by
Planck accurately describes the equilibrium properties of an
assembly of photons over a vast range of temperatures and
scales, from terrestrial cavity radiation to hot stellar atmo-
spheres, and, of course, including the cosmic background
radiation. However, there are changes in Planck’s law and
photon thermodynamics, as discussed in this and previous
�5,6� papers, which may play a role in an as yet undiscovered
phenomenon.
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