

This item is the archived peer-reviewed author-version of:

Three novel patients with epileptic encephalopathy due to biallelic mutations in the PLCB1 gene

Reference:

Desprairies Camille, Valence Stephanie, Maurey Helene, Helal Suzette I., Weckhuysen Sarah, Soliman Hala, Mefford Heather C., Spentchian Myrtille, Heron Delphine, Leguern Eric,- Three novel patients with epileptic encephalopathy due to biallelic mutations in the PLCB1 gene Clinical genetics - ISSN 0009-9163 - Hoboken, Wiley, 2020, 6 p. Full text (Publisher's DOI): https://doi.org/10.1111/CGE.13696 To cite this reference: https://hdl.handle.net/10067/1656690151162165141

uantwerpen.be

Institutional repository IRUA

Title

Three novel patients with epileptic encephalopathy due to biallelic mutations in the *PLCB1* gene

Running title

PLCB1-related encephalopathy

Authors

Camille Desprairies¹, Stéphanie Valence², Hélène Maurey³, Suzette Ibrahim Helal⁴, Sarah Weckhuysen⁵, Hala Soliman⁶, Heather C. Mefford⁷, Myrtille Spentchian¹, Delphine Héron^{1,8,9}, Eric Leguern^{1,10}, Caroline Nava^{1,10}, Viviane Bouilleret¹¹, Raffaella Moretti¹², Cyril Mignot^{1,8,10}

1 APHP, Département de Génétique, GH Pitié-Salpêtrière, Paris, France 2 APHP, Service de Neuropédiatrie, Hôpital Trousseau, Paris, France

3 APHP, Service de Neuropédiatrie, CHU de Bicêtre

4 Department of Researchs of Children with Special Needs, Medical Division, National Research Centre, Cairo, Egypt

5 Department of Neurology, University Hospital Antwerp, Antwerp, Belgium

6 Molecular genetics Department, Human Genetics & Genome Research Division, National Research Centre, Cairo, Egypt

7 Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA

8 Centre de Référence Déficiences Intellectuelles de Causes Rares, GH Pitié-Salpêtrière, Paris, France

9 GRC Sorbonne Université "Déficiences Intellectuelles et Autisme"

10 Inserm U 1127 and ICM, F-75013 Paris, France

11 APHP, Unité de neurophysiologie clinique et d'épileptologie, CHU de Bicêtre, Paris sud

12 APHP, Service de Neurophysiologie Clinique, Hôpital Trousseau, Paris, France

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/cge.13696

Correspondence

Cyril Mignot Département de Génétique Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau 47-83 boulevard de l'hôpital 75013 Paris, France cyril.mignot@aphp.fr

Acknowledgments

This work was supported by the French Foundation for Rare Diseases (C.N., C.M.).

Conflict of interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abstract

Biallelic mutations in the *PLCB1* gene, encoding for a phospholipase C beta isoform strongly expressed in the brain, have been reported to cause infantile epileptic encephalopathy in only four children to date. We report here three additional patients to delineate the phenotypic and genotypic characteristics of the disease.

Our three patients were one sporadic case with an intragenic homozygous deletion and two cousins with the homozygous p.(Arg222*) nonsense variant in *PLCB1*. These patients had severe to profound intellectual disability, epileptic spasms at age 3-5 months concomitant with developmental arrest or regression, other seizure types and drug-resistant epilepsy.

With this report, we expand the clinical, radiologic and electroencephalographic knowledge about the extremely rare *PLCB1*-related encephalopathy. Since the first report in 2010, the overall number of reported patients with our additional patients is currently limited to seven. All seven patients had epileptic encephalopathy, mainly infantile spasms and 6/7 had profound intellectual disability, with one only being able to walk. Truncal hypotonia was the most frequent neurological sign, sometimes associated with pyramidal and/or extrapyramidal hypertonia of limbs. Microcephaly was inconstant. In conclusion, the phenotypical spectrum of *PLCB1*-related encephalopathy is relatively narrow, comprises infantile spasms and severe to profound intellectual disability, and does not seem to define a recognizable clinical entity.

Keywords

PLCB1 mutations, epileptic encephalopathy, infantile spasms, intractable seizures, early onset epilepsy.

TEXT Introduction

The *PLCB1* gene is located on chromosome 20p12 and encodes for a phospholipase C beta isoform strongly expressed in the brain of mammals. Its coding region is organized into 32 exons and spans more than 250 kb¹. It produces two isoforms (PLCB1a and PLCB1b) co-expressed in the human fetal and adult brain, mainly in the amygdala, caudate nuclei and hippocampi¹. The PLCB1 enzyme cleaves membrane phosphatidylinositol 4,5-biphosphate into cytosol-soluble inositol 1,4,5-triphosphate and membrane-bound diacylglycerol², two key intracellular transducers of extracellular signals. This metabolism involved in neurotransmission, hormonal signals and other processes related to G-proteins signaling, is essential for the central nervous system³. This is particularly illustrated by Plcb1 knock-out mice that die after early-onset recurrent seizures or status epilepticus⁴.

In humans, biallelic *PLCB1* mutations have been reported to cause infantile epileptic encephalopathy (EE, MIM 613722) in only four patients to date^{5–8} (Table 1). We report here three additional patients to delineate the phenotypic and genotypic characteristics of the *PLCB1*-related EE (PREE).

Patients and Methods

All patients were assessed clinically by at least one of the authors. Patient #3 was recruited through the EuroEPINOMICS RES consortium.

Details about the used molecular methods are available in Supporting information.

Description of patients

Patient #1 is a 5-year-old boy born full term after normal pregnancy and delivery with normal parameters (birth weight 3,495 g, length 49 cm, head circumference [HC] 37 cm, Apgar score 10/10). His parents were healthy, consanguineous individuals from Mauritania. They had a daughter who died of dehydration in Africa at 2 years old. This girl had severe epilepsy and psychomotor delay like Patient #1 (Fig. S1). Patient #1 had a normal development during his first months of life according to his parents. At 5

months, they noticed a loss of acquisitions and paroxysmal events proven to be epileptic spasms. When examined, the child had poor eye contact, did not smile and could not hold his head. His EEG displayed hypsarrhythmia (Fig. 1A), which confirmed the diagnosis of West syndrome. Spasms presented in cluster of 30 symmetric flexor spasms involving axial muscles and limbs. They were resistant to several antiepileptic drugs (Table S1). During the first year, other types of seizures appeared, including focal tonic seizures and myoclonic jerks. At 3 years old, Patient #1 had severe hypotonia, was unable to hold his head or sit, had no eye contact, very limited vocalization and poorly responded to stimuli. He underwent gastrostomy because of choking episodes. At 4 years old, the epilepsy was stable under valproate acid, clonazepam and topiramate (2-3 short seizures per week). At 5 years old, clinical examination was unchanged, except for mild dystonia of hands, HC was 51.5 cm (+0.2 SD), weight 24.5 kg (+3 SD). He had occasional seizures only triggered by fever. Brain MRIs at 6, 10 and 26 months were normal (Fig. S2). Blood cell count revealed a chronic thrombocytosis of unknown origin. Laboratory investigations for inborn metabolic diseases and lymphocytic karyotype were normal. SNP microarray analysis (Illumina) showed no copy number variant.

Patient #2 is the female cousin of Patient #1 (Fig. S1) aged 14 months. She was born full term after normal pregnancy and delivery with normal birth weight. Her parents were healthy and consanguineous. Patient #2 had a normal development during her first months of life. She could smile, hold her head and tried to grab objects at 3 months but did not vocalize. She had unilateral postaxial polydactyly but no other congenital anomaly. At 3 months, she started to lose acquired skills and had spasms and other seizures characterized by activity arrest, apnea and movements of four limbs. At 5 months epilepsy was diagnosed. At examination, she had no eye contact and marked axial hypotonia. EEG showed a slow background activity with multifocal spikes, without physiological features, but no hypsarrhythmia (Fig. 1B). Her epilepsy was resistant to multiple treatments (Table S1). Corticosteroids and ketogenic diet showed partial efficiency. Epileptic spasms and partial seizure gradually disappeared and EEG

progressively improved with time (Table S1). Clinical examination at 20 months showed a girl with transient eye contact, severe truncal hypotonia, unable to sit or grab objects, with intermittent dystonia of left upper limb. Her weight, height and HC were normal. Brain MRI performed at 5.5 months was normal (Fig. S2).

Patient #3 was an Egyptian boy of 7.5 years old. He was the third child from healthy consanguineous parents and born full term after a normal pregnancy with normal birth weight (Fig. S3). At the age of 3 months, he presented clusters of epileptic spasms with extension of the limbs and axial contraction which persisted few minutes. At that time, he was not able to hold his head. He first attended the neurology clinic in Cairo at the age of 19 months. At examination, he showed hypertonia of limbs, hyperreflexia more prominent on the left side and a squint of his left eye. His height was -2.7 SD and HC -2.3 SD below the mean. EEG performed at 21 months showed left temporal spikewaves. Metabolic screening was normal and brain CT showed global atrophy. During the following years, Patient #3 had nocturnal tonic clonic seizures with loss of consciousness for few minutes occurring 3-4 times per night. He also had several status epilepticus usually triggered by fever and controlled with intravenous phenytoin. EEG done at 4 years old showed a background of 4-5 Hz theta activity, sleep spindles and a focus of right occipital slow spikes-waves. At 7.5 years old, Patient #3 displayed profound intellectual disability (ID), absent head support and absent speech. HC was 47 cm (-3.7 SD), height 94 cm (-5 SD), weight 9 kg (-5 SD). He still had daily seizures, consisting of flexion spasms despite trials of several antiepileptic treatments. EEG showed focal right parietal and temporal epileptogenic activity. Patient #3 died of pneumonia at 8 years 7 months.

Molecular results

We identified the homozygous nonsense variant Chr20(GRCh37):g.8637900C>T, NM_015192.3:c.664C>T, p.(Arg222*) in *PLCB1* in Patients #1 and #2. This variant was absent in gnomAD database, confirmed by Sanger sequencing, as was the heterozygous status of the patients' parents.

Array-CGH performed in Patient #3 revealed a homozygous 373-kb deletion encompassing exons 3 to 11 of the *PLCB1* gene (hg19 coordinates chr20:8,314,301-8,688,028).

Discussion

In all seven patients with PREE reported to date, seizures began during the first year of life (mean 4.8 months, range 2.5-10 months) and were resistant to multiple antiepileptic drugs (Table 1). All four previously reported patients with PREE had severe epilepsy of infancy: one had malignant migrating partial seizures in infancy⁷, two had epileptic spasms or West syndrome^{5,8} and one had an non-syndromic EE⁶ (Table 1 and supporting information Table S1). Our three patients had epileptic spasms or West syndrome as the main and first epileptic presentation. Overall, spasms seem to be the most frequent seizure type observed in PREE. Other seizure types were noticed in 6/7 patients in the disease course, such as clonic and tonic focal seizures, generalized tonic-clonic seizures, myoclonic jerks. Seizures occurred several times per day in all patients (when known). EEGs showed severe alterations of the background activity associated with multifocal spikes in all seven patients, which is a hallmark of hypsarrhythmia. Three patients had seizures arising from temporal lobes.

Fever was a trigger of seizures in two patients only. Prolonged seizures and status epilepticus were also reported (Patients #1 and #3).

Developmental regression was noticed in 5/7 patients after epilepsy onset. Patients #1 and #2 were said to have normal development before the start of seizures, like those reported by Kurian et al.⁵ and Schoonjans et al.⁸ All patients had severe to profound ID and one patient only was able to walk, but he had severe autism. Our three patients were 20 months to 7.5 years old at last examination. Patient #2 had acquired head control, began to vocalize but was unable to sit ; Patients #1 and #3 were also unable to sit, to use their hands and had no language and poor or absent eye contact. All had axial hypotonia. Hand dystonia was noticed in two of them. This description is in line with that of 3/4 patients of the literature, except that limb hypertonia was mostly

attributed to spastic paresis rather than extrapyramidal involvement^{5–7}. Two previously reported patients had microcephaly^{5,8}, like Patient #3, but not Patients #1 and #2 reported here. Thus, microcephaly is a possible and inconstant feature of PREE (3/6 patients). It may be associated with brain atrophy (2/3 microcephalic patients). Overall, the phenotype of PREE is not conspicuously distinctive when compared with other early-onset EE.

Mutations responsible for EE are mostly de novo heterozygous variants involving about one hundred genes to date⁹. Recessive mutations, although less frequent, have also been reported in specific genes, including ALDH7A1, AP3B2, BRAT1, CAD, FRRS1L, PIGG, PNPO, SLC12A5, SLC25A22, ST3GAL3, ST3GAL5, SZT2, UBA5, WWOX. WOREE, the phenotype due to biallelic mutations in $WWOX^{10}$ is the most frequent of these recessive disorders in our diagnosic laboratory (Groupe Hospitalier Pitié-Salpêtrière). Mutations in PLCB1 seems to be extremely rare, since four patients have been described to date⁵⁻⁸, which makes only seven patients including ours over a period of eight years. Pathogenic PLCB1 variants reported to date are five intragenic deletions (homozygous in four cases), one splice-altering variant and one homozygous nonsense variant (Patients #1 and #2), thus the residual enzyme activity related to this combination of alleles is likely null. Notably, there is currently no phenotype ascribed to biallelic hypomorphic variants in PLCB1. Heterozygous individuals with one null PLCB1 allele (the patient's parents) are apparently healthy and fertile. This suggests that the small number of patients with PREE is not related to a detrimental effect of the heterozygous status. The small number of patients with PREE in comparison to WWOX is rather due to intrinsic characteristics of these genes, since the o/e (observed/expected) ratios of missense and loss-of-function variants reported in gnomAD is 0.57 (374/658, Z=4.02) and 0.19 (13/68.5, pLI=0.97), respectively, for PLCB1 and 1.8 (434/241, Z=-4.5) and 1.11 (22/19.8, pLI=0), respectively, for WWOX. These data suggest that the *PLCB1* gene sequence is less prone to base substitution than WWOX, which likely explains the scarcity of patients with PREE.

References

- 1. Caricasole A, Y CSY, Roncarati R, Terstappen GC, Formenti E. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLC L 1). *Biochim. Biophys. Acta* 2000;1517:63-72.
- 2. Rapoport SI, Primiani CT, Chen CT, Ahn K, Ryan VH, Agoulnik IU. Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. *PLoS One* 2015;10(7):1-16. doi:10.1371/journal.pone.0132675.
- 3. Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B. Phosphoinositides: lipid regulators of membrane proteins. *J Physiol* 2010;588(Pt 17):3179-3185. doi:10.1113/jphysiol.2010.192153.
- Kim D, Jun KS, Lee SB, et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. *Nature 1. Kim D, Jun KS, Lee SB, Kang NG, Min DS, Kim YH, al. Phospholipase C isozymes Sel. couple to Specif. neurotransmitter Recept. Nat. [Internet].* 1997;389(6648)290–3. *Available from http://bs.kaist.ac.kr/~brain/Publications/paper/Ph* 1997;389(6648):290-3. doi:10.1038/38508.
- 5. Kurian MA, Meyer E, Vassallo G, et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. *Brain* 2010;133(10):2964-2970. doi:10.1093/brain/awq238.
- 6. Ngoh A, Mctague A, Wentzensen IM, et al. Severe infantile epileptic encephalopathy due to mutations in PLCB1: Expansion of the genotypic and phenotypic disease spectrum. *Dev. Med. Child Neurol.* 2014;56(11):1124-1128. doi:10.1111/dmcn.12450.
- 7. Poduri A, Chopra SS, Neilan EG, et al. Homozygous PLCB1 Deletion Associated with Malignant Migrating Partial Seizures in Infancy. *Epilepsia* 2012;53(8). doi:10.1111/j.1528-1167.2012.03538.x.Homozygous.
- 8. Schoonjans A-S, Meuwissen M, Reyniers E, Kooy F, Ceulemans B. PLCB1 epileptic encephalopathies; Review and expansion of the phenotypic spectrum. *Eur. J. Paediatr. Neurol.* 2016:1-6. doi:10.1016/j.ejpn.2016.01.002.
- 9. Hamdan FF, Myers CT, Cossette P, et al. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. *Am. J. Hum. Genet.* 2017;101:664-685. doi:10.1016/j.ajhg.2017.09.008.
- Mignot C, Lambert L, Pasquier L, et al. WWOX-related encephalopathies: Delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. *J. Med. Genet.* 2015;52(1):61-70. doi:10.1136/jmedgenet-2014-102748.

Figures legends

Figure 1. Electroencephalographic findings in Patient #1 and #2. Polygraphic recordings of Patient #1 at 5 months (A) showed hypsarrhythmia at the onset of regression (left) and clusters of spasms (two out of twenty spasms are shown; right). EEG recordings of Patient #2 (B) at 5 months showed a permanent slow activity (left); recording of a seizure (right) beginning with fast rhythms, clinically Patient #2 outstretched arms, followed by a slow rhythmic activity with spikes, clinically: repetitive abductions of the legs.

 Table 1. Description of the seven patients with PLCB1-related encephalopathy.

 \mathbf{O}

	Present report		Previous reports				
Patient ID / renerence	Patient #1	Patient #2	Patient #3	Kurian et al.	Poduri et al.	Ngoh et al.	Schoojans et al.
nder	male	female	male	male	male	female	male
Current age/age at description	5 y 2m	1 y 2 m	deceased at 8y 7 m	deceased at 2.9 years	9 m	3 у	4 y
clecular characteristics							
PI CB1 gene anomaly	hmz nonse	ense mutation	hmz 373-kb intragenic deletion	hmz 546-kb intragenic deletion	hmz 486-kb intragenic deletion	intragenic 476-kb deletion + splice site mutation	hmz 32-kb intragenic deletion
Variants (Jenomic) / coordinates dr etions (hg19)	chr20:g.8	3637900C>T	chr20:8,314,301- 8,688,028	chr20 :8,034,44 1-8,520,723	chr20: 8,094,049- 8,580,284	c.99+1G>A / del chr20:8,094,442- 8,575,333	del chr20:8,645,677 -8,683,411
CDNA level (NM 015192.3)	c.6	64C>T	?	?	?	?	?
Protein level	p.(Arg222*)		?	?	?	?	?
Epilepsy							
Ace of first	5	3	3	2.5	6	10	4
Type of the first eizures	spasms	spasms	spasms	"focal sz followed by tonic stiffening and flexion of arms and legs"	"perioral cyanosis, limpness, mouth automatism, eyelid fluttering"	"bilateral upper limb jerking, eye deviation, staring"	febrile status epilepticus
\bigtriangledown							

fvr	ers seizure es	focal sz, myoclonic jerks	focal tonic and clonic sz	nocturnal tonic clonic sz	spasms, tonic sz, partial sz	tonic sz	tonic and clonic sz	spasms, focal sz, generalized topic-clopic sz
Mis	kimum number eizures	multiple/day	multiple/day	3 to 4/day	multiple/day	up to 27/day	multiple/day	NA
Cus	tus epilepti- ?	none	none	several	none	none	some prolonged seizures	yes
Epil svn	lepsy drome	infantile spasms	infantile spasms	infantile spasms	infantile spasms	MMPSI	NSEE	infantile spasms
Initi e/	al elopment							
Initi met met	al psycho- tor develop- nt †	normal	normal except absence of vocalization	delayed – unable to hold his head at 3 months	normal but mild axial hypotonia	delayed but progressing	delayed	normal
Sta g	ression or gnation of Is? (age)	yes (5 m)	yes (5 m)	yes (3 m)	yes (8 m)	yes (6 m)	yes (NA)	yes (4 m)
CI	nical mination							
mer	tor develop- nt (age)	no head support, unable to sit (5 y)	head support acquired, unable to sit (20 m)	no head support, unable to sit, unable to walk (7 y 6 m)	no head control, unable to sit (2.5 y)	unable to roll (6 m)	no head support, unable to sit (3 y)	able to walk at 3 (4 y)
E) e	contact	transient	transient	NA	transient	NA	able to track object	limited
Use	e of hands	none (some uncontrolled movements)	none with dystonic posturing	none	NA	limited voluntary movements	able to hold small objects	palmary grasping
L	guage	babbling	babbling	absent	none	none	none	none

Ciner	swallowing difficulties	NA	feeding difficulties since the neonatal period,	NA	NA	swallowing difficulties	autistic features, self-mutilating behavior
weurological	severe truncal hypotonia, dystonia of hands	mild axial hypotonia, poor gesticulation, dystonia of left upper limb	generalized weakness, hypertonia of limbs, hyperreflexia	axial hypotonia, spastic quadriparesis	no eye contact, severe hypotonia, poor gesticulation	right esotropia, rotatory nystagmus, axial and peripheral hypotonia	mild axial hypotonia
Height/weight/HC kg/cm/cm (SD)	at 6 y: 23.5 kg (+1.5 SD) / 117 cm (+1 SD) / 52 cm (0 SD)	at 5 m: 5.950 kg (-1 SD) / 62.5 cm (0 SD)/ 42.5 cm (+0.3 SD)	at 7 y 6 m: 9 kg (- 5 SD) / 94 cm (-5 SD) / 47 cm (-3.7 SD)	2 nd centile / NA / 0,4 centile	NA	HC 75e p	-1,9 DS / -1.5 DS / -3 DS
Other	thrombocytosis	postaxial polydactyly	NA	NA	NA	NA	NA
Diain MRI (arje)	normal (10 and 26 m)	normal (5 m)	brain CT scan: mild atrophy (19 m)	normal (6 m)	midly prominent cerebrospinal fluid spaces (6,7,8, 9 m)	supratentorial atrophy and a mildly hypoplastic corpus callosum (11 m)	mild generalized atrophy (3 y)

y: year(s), m: month(s), hmz: homozygous, sz: seizure(s), MMPSI: malignant migrating partial seizures in infancy, NSEE: nonsyndromic encephalopathic epilepsy, HC: head circumference

+ according to the patient's parents

ACC

Article Accepted

•		
В		