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Abstract 

We define schematic algebras to be algebras which have “enough” Ore-sets. Many graded 
algebras studied nowadays are schematic. We construct a generalised Grothendieck topology 
for the free monoid on all Ore-sets of a schematic algebra R. This allows us to develop a sheaf 
theory which is similar to the scheme theory for commutative algebras. In particular, we obtain 
an equivalence between the category of all coherent sheaves and the category ProjR as it is 
defined in (Artin; 1992). 

1. Introduction 

For a positively graded commutative algebra C, Serre’s theorem (cf. [4]) states that 

the category of coherent sheaves on the scheme ProjC is equivalent to a certain 

category which is completely defined in terms of C-gr. In Cl], Artin observed that this 

last category also makes sense for a noncommutative positively graded algebra R and 

used this observation to define Proj. 

We want to study this Proj by developing a kind of scheme theory similar to the 

commutative theory. It is obvious that this theory will be possible only if the algebra 
R considered contains “enough” Ore-sets in a sense to be made precise. We call such 

an algebra schematic. 
Once there are enough Ore-sets in the algebra, one thinks one is able to prove 

Serre’s theorem by mimicking the commutative case, i.e. over the intersection of 

two open sets S and T, one would like to put the localisation at S v T, the Ore- 

set generated by S and T. This fails, mainly because the composition of two 

*Corresponding author. E-mail: willaert@wins.uia.ac.be. 
‘Research assistant of the NFWO, Belgium. 

0022-4049/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved. 
SSDI 0022-4049(94)00118-9 



110 F.V. Oystaeyen, L. Willaert/Journal of Pure and Applied Algebra 104 (1995) 109-122 

Ore-localisations is not necessarily a localisation. We circumvent this problem by 
considering more open sets than the ones induced from Ore-sets. This is not a topol- 
ogy since the intersection of two open sets is no longer equal to the intersection of the 
same open sets in reverse order. However, in Section 3 we prove that our model, called 
the noncommutative site, satisfies generalisations of the axioms of the categorical 
definition of a topology, the so-called Grothendieck topology. 

The main part of this paper is Section 4: we define sheaves on the noncommutative 
site and show that there is a functor from R-gr to the category of sheaves. A second 
price we have to pay for this generalised topology is that not all sections of the 
structure sheaf, i.e. the sheaf induced by the R-module R, are rings. However, this 
anomaly does not prevent us to establish our main goal: an equivalence between 
Proj R and the category of coherent sheaves, just as in the commutative case. We can 
also give a criterion to decide whether there exists an R-module whose localisations at 
Ore-sets Ti are isomorphic to given Q,<(R)-modules. 

This paper will have a sequel [6] in which we provide some general theorems in 
order to prove that a given algebra is schematic. This allows us to exhibit a lot of 
interesting schematic algebras. 

2. Preliminaries 

We will need a minimum of torsion theory throughout this paper, so we provide 
a short introduction which also settles notation. For more details, we refer to [S]. 

Let _Y be a set of left ideals of an arbitrary ring R. We call .Z a$lter if it satisfies the 
following three axioms: 

T1 If I E 8 and I c J then J E 9. 
Tz IfI,JEP’thenI~JEY. 
T3 IfI~P’anda~Rthen(I:a)!Ef(x~Rlxa~I}~_Y 

The functor K: R + R defined by rc(M) = {m E M 131 E 9: Im = 0} is then a left 
exact preradical, i.e. a left exact subfunctor of the identity functor on R-mod. Modules 
M with K(M) = M are called torsion modules while a module M with K(M) = 0 is 
torsion free. The filter 9 is idempotent when it satisfies: 

TqIflalRand3J~_YsuchthatVu~J,(I:a)~~thenZ~9. 

This implies that $7 is closed under products and that K is a radical, meaning that 
K(M/K(M)) = 0 for all R-modules M. In this case, one defines the module ofquotients 
of M with respect to IC as follows: 

Q&W = ~9Homd&MI~(M)h 

QK(M) turns out to be a module over the ring Q,JR). The following idempotent filters 
play an important role in the sequel: 
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1. If R is a positively graded Noetherian ring and R+ denotes the two-sided ideal 
enzORn then Z(K+) = {I <I~ R (31 E N: (R,)” c I} is an idempotent filter. We de- 
note the corresponding left exact radical by K + . 

2. Let S be a left Ore-set in an arbitrary ring R, then 9(S) = {I al R 1 InS # S} is 
an idempotent filter. If ~~ denotes the corresponding radical and Q,(M) the module of 
quotients of M then it is easy to see that Q&f) is isomorphic to S-‘M, the usual 
Ore-localisation of M at S. 

3. The noncommutative site 

We assume the reader is acquainted with the theory of schemes as it can be found in 
[2]. Let C=k@C1@ ... be a positively graded commutative Noetherian ring 
generated in degree one. Put Y = Proj C and Y(f) = {p E Y 1 f#p}, the Zariski open 
set corresponding to a homogeneous element f E C. Then there is a (finite) subset 
{fi 1 fi E Cl} such that Y = Ui Y(J), in other words: for every choice of di E IV there 
exists an n E N with (C+ )” G 1 i Cft’. It follows that for any finitely generated graded 
C-module M 

r,(M) kf @ T(Y, M%)) = QK+(M) kf 9 Hom(CP,, M/K+(M)) 
nsz P 

= liq Qri(Mh 

where M%) denotes the sheaf of modules associated to the shifted module M(n) and 

Qfi(M) is the localization of M at {l,fi,fi2, . . . }. Similarly, 

Q@) = lim Q~~,W), 
i 

where the inverse systems are defined as follows: g I h o Y(g) E Y(h). This result is 
the key to prove Serre’s theorem which says that the category of coherent &-modules 
is equivalent with a certain quotientcategory. 

Now look at a noncommutative positively graded Noetherian k-algebra 
R=k@R1@ . . . . such that R = k[R,]. In [l], Artin observed that the quotient- 
category mentioned in Serre’s theorem also makes sense for the noncommutative 
algebra R and called it Proj R. Let us explain this definition in some detail. Since the 
filter T(K+) is idempotent, we can form the quotientcategory (R, K+)-gr, i.e. the full 
subcategory of QK+ (R)-gr consisting of modules of the form QK+ (M) for some graded 
R-module M. Call a graded R-module M rc+-closed whenever the canonical maps 
M + Hom,(R;, M) are isomorphisms for all n E N. It is then well-known that 
(R, K+)-gr is equivalent to the full subcategory of R-gr consisting of the Ic+-closed 
modules. There are now three equivalent ways to define Proj R: 

1. The Noetherian objects in (R, K+)-gr, i.e. those objects of (R, K+)-gr which satisfy 
the ascending chain condition on subobjects. 
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2. The full subcategory of QK+ (R)-gr consisting of all modules of the form QK+ (M) 
for some finitely generated R-module M. 

3. The full subcategory of R-gr consisting of all rc+-closed modules which are 
torsion over a finitely generated R-submodule. 

Our goal is a description of the objects of ProjR by means of objects of usual 
module categories in the same way as above for commutative algebras, i.e. we want 
modules to be determined by (Ore-)localisations. It is obvious that for this reason 
there should be “enough” Ore-sets in R. This prompts the definition of schematic 
algebras: 

Definition 1. We say that R as above is schematic if there is a finite set I of 
homogeneous left Ore-sets of R such that for every S E I, Sn R+ # 8 and such that 
one of the following equivalent properties is satisfied: 

1. 
2. 
3. 
4. 

for each (+JsEI E &IS,3m E N such that (R,)” E CsEIRxs, 

r),&(S) = UP, 
ns~~s(M) = K+(M) VME R-mod, 

A sEIrcS = K+ where A denotes the infimum of torsion theories. 

In the sequel [6] to this paper, we will prove that several fancy algebras are 
schematic, a.o. Rees rings of enveloping algebras of Lie algebras and three-dimen- 
sional Sklyanin algebras. 

Assume from now on that R is schematic. The straightforward generalisation of the 
commutative scheme does not work: the canonical map 

i 

Q&f) 

\ 
QSVTW) 

/ 
QTUW 

is an isomorphism for all M E R-gr if and only if S and T are compatible, i.e. the 
functors Qs and Qr commute. As the Ore-sets of a schematic algebra are rarely 
two-by-two compatible, it is clear that we will have to change the inverse system, but 
we want it to originate from (a kind of) Grothendieck topology. Classically, 
a Grothendieck topology consists of a category g such that for each object U in g, 
there is a set Cou(U) consisting of subsets of morphisms with common target U, 
satisfying three axioms: 

G1 
6 

G3 

{U + u> E Cou(U), 

{ Ui + U ( i E I} E COU(U) and Vie I: { Uij + Ui 1 j E Ii} 
E Coo(Ui) then { Uij + Ui + UliEI,jEli}ECOU(U), 
if (Ui + U 1 i E I} E Coo(U) and U’ + U then the pull-back 
U’ x ” Vi exists and {U’ x “Ui 4 U’ ( i E Z} E COU(U’). 
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Every topology is a Grothendieck topology by taking as objects the open sets. The 
morphisms are just the inclusions and a set of morphisms {Vi + U} is in &u(U) if 
and only if u iel Ui = U. For more details on Grothendieck topologies, we refer to [3]. 

We will now define the Grothendieck topology which induces the right inverse 
system. Let 0 be the set {S homogeneous left Ore-set of R ( 1 E &O&S, Sn R, # @>. 

Denote the free monoid on 0 by YY. If W = S1 . . . S, E w then by w E W we mean an 
element of R of the form w = s1 . . . S, with si E St. We define a category “/lr as follows: 
the objects are the elements of %‘” and for two words W = S1 . . . S, and 
W’ = T, .,. T,,, in lly- we put 

i 

{W’--* W} if 3a: {l)...) n} + {l)...) m} 

Hom(W’, W) = such that i <j =s a(i) < a(j) and Si = Tacij, 

8 otherwise. 

Although there may be many possible increasing injections from the letters of W to 
the letters of W’ we only consider one morphism between W’ and W in our category, 
i.e. Hom( W ‘, W ) is always empty or a singleton. 

Because we have to deal with arbitrary compositions of Ore-localisations, we 
introduce the following important notation: if W = S1 . . . S, E %‘“, then we denote 

QwbW =(Qs,o ..- oQs,N'W = Qs,(R)O, ... ORQS~(R)ORM 
each Qsi(R) being the localisation of R at the Ore-set Si. 

We stress that all modules in this paper will be (graded) left R-modules and 
consequently, all localisations will be on the left. 

We also associate a set of left ideals to W, namely 2’(W) = {I al R 13~ E W such 
that w E Z}. U(W) is a filter in the sense of the preliminaries. The verification of the 
three axioms is easy (an induction on the second Ore-condition) but it is useful for the 
sequel to restate T2 and T3: T2 means that for two elements of the same word, say 
w, w’ E W there is a common multiple in W, i.e. 3w” E W such that w” = aw and 
w” = bw’ for some a, b E R. T3 tells us that 2’(W) satisfies a kind of generalised second 
Ore-condition: if w E W, a E R, then 3w’ E W, b E R with w’a = bw. The corresponding 
left exact preradical ICY maps an R-module M to its submodule K,(M) = 

(x E M 13~ E W such that wm = 0} = Ker(M + Q,(M)) and induces a left exact 
preradical on R-gr. In general, 2’(W) is not an idempotent filter, e.g. _!Y(ST) is 
idempotent if and only if S and T are compatible. Note that, if W’ + W in f then 
L?(W) E _9(W’) and for any V E YY, W’V + WV and VW’ + VW are in @‘-. 

By a global cover, we understand a finite subset {Wi 1 i E Z> of V such that 
fiicI2’( Wi) = LG?(lc+). The existence of at least one global cover is guaranteed by the 
schematic condition. Now for W E ?Y we define Cou(W) to be the set of all sets of 
l(lr-morphisms of the form { Wi W + WliEZ} where {WiliEZ} is a global cover. 
Topologically, this means that every cover of an open set is induced by a global cover, 
but note that this is also the case in the commutative theory. Since it is obvious 
that the pull-back of two morphisms in e may not exist, we will have to modify the 
axiom G3. 
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Proposition 1. The category y together with the sets Cou(W) for W E $” satisJies 

G1, G2 and 

G; if{UiW -+ W/~EI}ECOV(W), W’-+ W~q,say 
w = SlSZ . . . S,, W’ = VS1V1S2V2 . . . S,V, and ifwe dejine 

UiW XWW’ = UiW’ = L’iVS1V,S21/2 . . . S,V, then 

{UiWXWW’+ W’liEI}ECoU(W’). 

Therefore, we call y a noncommutative Grothendieck topology. The proof of this 
proposition follows immediately from the next lemma: 

Lemma 1. If{ Wi 1 i E Z} is a global cover, i.e. fi ier5?( Wi) = Y(Ic+), thenfor all V E -ly-: 

niE16P(Wiv) = T(v). 

Proof. One inclusion is obvious, SO take L E n L?( WiV), say WiUi E L ViE I with 
Vi E V, wi E Wi Vie I. Since I is finite and because of property T2 for P’(V), we can find 
a common multiple of the vi in V, say v = aivi E V. Using property T3 for 2’( Wi) yields 
that jwt E Wi such that wfai E Rwi. Because { Wi ( i E I> is a global cover, we can find 
a natural number n with (R,)” E CiRWi* Consequently,(R+)“v E L. If T denotes the 
first letter of V then there is a t E T n(R+)“. Now tv E L and tv E V, yielding that 
LE_Y(V). 0 

The category @‘- with this noncommutative Grothendieck topology defined by the 
Cov(W), W E %‘” is called the noncommutative site and we denote this again by @‘“. 

4. Sheaves on the noncommutative site 

In this section, sheaves on the category @” are defined. We will show that each 
R-module induces a sheaf in a natural way. Conversely, to each sheaf we will associate 
its global sections. The notion of a coherent sheaf naturally extends to this noncom- 
mutative setting and the main theorem states that the category of coherent sheaves on 
@‘- is equivalent to the quotient category Proj R just as in the commutative theory. An 
important corollary is that a module over a schematic algebra is still determined by its 
localisations at the Ore-sets of a global cover. The hypothesis on R are the same as in 
Section 3. 

Definition 2. A presheaf .F on y is a contravariant functor from “/lr to the category 
R-gr such that for all W E YY the sections F(W) of B on W is a graded Q,(R)-module 
where S denotes the last letter of W. 

If R is a commutative algebra, then this just means that 9 is a presheaf of graded 
O,-modules, Ox being the graded structure sheaf on X = Proj R. Of course one could 
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take parts of degree zero in order to establish complete similarity with the (ungraded) 
Ox-modules one usually works with in the commutative theory. Note that if W = 1 we 
require that the global sections %(l), which we denote by r*(%), is a Q,+(R)-module. 
We will denote the restriction map %(V + W) by pv”:%(W) + %(V). If W = 1, 
then we will simplify this notation further to pV : r,(F) dZf F( 1) + %( I’). Recall that 
a finite subset { Wi 1 i E I} of ?V is a global cover if n i9’( Wi) = Z(JC+). 

Definition 3. A presheaf % on v is a sheafif and only if it satisfies the following two 
properties: 

1. Separatedness: VW E YP”, Vglobal covers ( Wi 1 i E I}: m E %(W) such that V’~E I: 
pFiw(m) = 0 in %(WiW) * m = 0. 

2. Gluing: VWE tlf, Vglobal covers { Wi 1 i E I}: given (mi) E ni%(WiW) such that: 

P 2Fjdmi) = PF$gjWtmj) 

then there exists an element m 

pFiw(m) = mi ViE I. 

Of course the element m whose 
separatedness condition. 

V(i, j) E I x I 

in %(W) such that 

existence is guaranteed in 2. is unique by the 

If we let a presheaf % act on the full subcategory of “U’” consisting of all WiW and 
Wi Wj W for a fixed word W and a fixed global cover { Wi 1 i E Z}, we get an inverse 
system represented by the picture 

%(WiW)- %(WiWjW) 

%(WjW)- %(WjWiW) 

We denote the inverse limit of this system by 

lim %(WiW). 
‘i,j 

This should not cause any confusion since an element of the inverse limit is already 
determined by its components in %(WiW). We have that 9 is a sheaf if and only if, 
whenever { Wi I i E Z> is a global cover, then the inverse limit of the above inverse 
system is isomorphic with %(W) for every W E v. 

Just as in the commutative case, we want a graded module M to determine a sheaf 
fi. It is obvious that we have to define ti in the following way: a(l) = QK+(M), 
A?(W) = Qw(M)VW~dY-\l and if V + W then the restriction morphism 
~7: Q&M) + Q,(M) is the obvious morphism which makes the following diagram 
commute: 

Q&W ” -Q&f) 
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Unlike the commutative case, the sections of the sheaf associated to RR are not 
necessarily rings, e.g. QTQs(R) is a ring o Q*Qs(R) z Q&R) o S and T are com- 
patible. However. VTE 0 we have that the sections QT(R) are strongly graded rings 
since R is supposed to be generated in degree 1. In particular, Q,(R)-gr is equivalent to 

(QdR)kood. 

Notation. If W = S1 . . . S, and w E W, say w = s1 . . . s,, then the element 
l/S”0 s-0 @ l/s1 0 m of Q,(M) will be denoted by m/w. In particular, m/l stands for 
10 m in Q,(M), for 1 @ 10 m in QT(Qs(M)) etc.; which element is meant depends on 
the module it belongs to, and that should always be clear from the context. 

We need some lemmas in order to prove that ii? is a sheaf in the above sense. 

Lemma 2. Given m/w E Q,(R) and a E R, then 3w’ E W, b E R such that w’a = bw and 

a(m/w) = (bm)/w’ E Q,(R). 

Proof. Suppose W = S1 . . . S, and w = s1 . . . s, (si E Si). We put a,, = a and we define 
inductively the ai (i = n, . . . ,O) by using repeatedly the second Ore-condition as 
follows: siai = ai-lsi, S: E Si. Then a(m/w) = a(l/s,) @ ... @ l/s1 @I m = l/s: @ anPI 
(l/s,_r) @ ... @ l/s1 @m = .-- = l/s: @ ... @ l/s; @ aom. It is then easy to see that 
b=aoandw’=s; . . . sk satisfy both statements above. 0 

Proposition 2. The presheaf A? is separated. 

Proof. Fix a global cover { Wi 1 i E I}. The case W = 1 being trivial, it suffices to show 
p&&m) = 0 =E- m = 0 for words W E %‘\{ 11. We arrange this by induction on the 
length of W: 

(a) If W is a letter S and we have an element m/s E Qs(M) such that l/s @ 1 @ m = 0 
in Qs(Q,(M)) Vie I then 3s’ E S such that s’m E niKer(M + Qw,(M)) but the latter 
module is rc+ (34) because R is schematic. This yields in particular that s’m is S-torsion, 
so m is S-torsion and consequently m/s = 0 in Q,(M). 

(b) Assume that pLiv(m) = 0 + m = 0 for all words V of length smaller than or 
equal to n and let W be a word of length n + 1, say W = S1 . . . S,S. Let l/s 0 l/s,, 
@ .f. @ l/s1 0 m be an element of Q,(M) such that l/s @ l/sn 0 ... @ l/s1 0 1 
0 m = 0 in Qw(Qw,(M)) for all i E I then there exists a s’ in S such that s’ l/s,, @ ... 0 

l/s1 0 1 Om = 0 in Qw(Qwi(M)) f or all i E I. The previous lemma yields 
s; . . . S:,E V = s1 . . . S, and a E R such that 

0 = s’(l/s,) 0 ~~~~l/sl~l~m=l/s~~~~-~l/s~~l~am 

in QV(Qwi(M)). By induction, we find that l/s: 0 . . . l/s; @ am = 0 in Q”(M), but this 
element equals s’( l/sn) 0 ... @ l/s1 am. This implies that l/s@ l/s,@ ... 0 l/s1 

0 m = 0 in Qs(Q~W) = QFvW). Cl 
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Lemma 3. Zf m/w = 10 +.. 0 1 @ n in Qw(M)for some n E M then there exists 6 E W 
and an x E R such that 6 = xw and Gn = xm. 

Proof. The proof proceeds by induction on the length n of the word w = s1 . . . s,, the 
case n = 1 being well-known. Suppose the statement is true for words of length 
smaller than n. Write w’ = s1 . . . s,_ 1 then l/s, 0 m/w’ = 1 $3 n/l. This is an equality 
in the Ore-localisation of Q,,(M), W’ being S1 . . . S,_ 1, at the Ore-set S,, so 3a, b E R 

such that a(m/w’) = bn/l E Qw,(M), as,, = b ES,. Using the previous lemma yields 
3w” E W’, c E R with w”a = cw’ and bn/l = a(m/w’) = (cm)/w”. Induction yields that 
there exists w”’ E W’ and d E R with wnr = dw” and w”‘bn = dcm. Putting + = w”‘b and 
x = dc finishes the proof. 0 

Proposition 3. The separated presheaf @ is a sheaf, i.e. it satisfies the gluing condition. 

Proof. Fix a global cover { Wi ( i E I}. It is easy to see that it suffices to prove that the 
canonical map from A(W) = Q&M) to the inverse limit r,(a) of the inverse system 

Qw(Qw,OW) - QdQwj(Qwn(M))) 

Qw(Qwj(M)) - Qw(Qwi(QivjW))) 

is an isomorphism. In the particular case that W = 1, we will denote the inverse limit 
by r,(a) rather than by r,(A). Because a finite inverse limit and an exact functor 
commute, we find that r,(a) z Q#.Ja)), so we are done if we can prove that 
r,(A) r QK+ (M). There is a unique R-linear map cp : M --f r,(a) by the universal 
property of the inverse limit. It is easily seen that the kernel of this map is exactly 
K+(M) due to the fact that R is schematic. If we are able to show that Cokercp is 
rc+-torsion, then it will follow from general torsion theory that Q,+(M) z r,(a). 

Consider an element < = (mi/wi)i of r,(a), i.e. wi E Wi and l/wi @ 10 mi = 
1 @ l/wj @ mj Vij. We claim that there exists a natural number n such that ‘dj 
(R,)” mj/wj is contained in the image of the canonical map M + Qwj(M). Fix j, then 
the previous lemma entails for each i the existence of wi = aiwi E Wi such that 
wi(mj/wj) = aimi/ E Qwj(M). By definition of a covering, we can find a natural 
number n such that (R,)” mj/wj is contained in the image of M + Qw,(M). This 
n depends on j but since we assume the (Wi)i to be a finite cover, we can take n big 
enough to work for all j. 

Given a in (R+)“, then a< = (ni/l)i for some ni in M such that 10 10 ni = 
1 @ 1 @ nj in Qwi(Qw,(M)) for all i, j. Fix i, then for all j there exists wj E Wi such that 
wj(ni/l) = Wj(nj/l) in Q,(M) by the previous lemma. Since we are working with 
a finite cover, we can find w E Wi such that w(ni/l) = w(nj/l) for all j, i.e. 
wat = q(wni). This being true for all i yields that there exists a natural number n(a) 
(depending on a) such that (R+)“@)a< G q(M). Finally, the ideal (R,)” is finitely 
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generated, say by al, . . . , a,. Put m = max{n(aJ 1 k = 1, . . . , r> then (R+)“+“< is con- 
tained in the image of cp : M --) r, (fi). 0 

Definition 4. An afine cover is a finite subset (7’i 1 i E Z} of 0 such that 

ni,~~(Ti) = T(K+). 

Definition 5. A sheaf % is quasi-coherent if and only if there exists an affine cover 
{ Ti 1 i E Z} and for each i in Z there exists a graded QTi(R)-module Mi such that for all 
morphisms I/ + W in r we have a commutative diagram: 

T,W 
%(TiW) p”‘%(TiV) 

1 I 1 I 
QdMJ - QV(Md 

in which the vertical maps are isomorphisms in R - gr. % is called coherent if 
moreover all Mi are finitely generated Q,(R)-modules. 

Example 1. The sheaf A is quasi-coherent (resp. coherent) for each graded (resp. 
finitely generated graded) R-module M. 

In fact, we will prove that every quasi-coherent sheaf has to be of the form ti for 
some graded R-module M. 

Remark 1. One may ask why we only require isomorphisms between sections on 
words beginning with a letter of the affine cover. It seems reasonable to ask for 
isomorphisms Qw(Mi) z %(W) on all words which admit a morphism to some Ti, i.e. 
for all words which contain some letter of the affine cover. The reason is that one can 
then not expect that each finitely generated module induces a coherent sheaf: in fact 
we can prove that if each fi were coherent in this way then all Ti and Tj have to be 
compatible. 

Theorem 1. Zf % is a quasi-coherent sheaf on YY and ZI, (%) denotes its global sections 

%(l) then % is isomorphic to r*@), the sheaf associated to r,(%). 

Proof. We have to prove that %(W) s Qw(T*(%)) for all W in YY. Let { Ti 1 i E Z} be 
an affine cover as in the definition of a quasi-coherent sheaf and fix a word W in y. 
Now 

Qw(T*(%)) E l? Qw(%(7’i)) (finite inverse limit), 

%(W) z lim %(Ti W) (% is a sheaf). 
i 
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From the coherence of 9, we know that we have isomorphisms pi: Qw 
(5(7’i)) + F(TiW) and +ij:Qw(F(TiTj)) + S(TiTjW). We will need the explicit 
form of these canonical maps, that is why we introduce the next convenient notation. 
If W is S1 . . . S, then we define Wi to be S1 . . . Si. In particular, W, = W and 

WI = S1. Then 

and 

tiij ( 1 1 
-0 ..+ Q-_Om 
s, s1 > 

= s, -‘P~~~-‘(s,=‘,p~~~I:( . . . s;‘p~~~(s;‘p~&&l)) . . . )). 

We want to show that these isomorphisms induce an isomorphism between the 
inverse limits of the inverse systems $(TiW) and Qw(9(7’<)). Thus we must check 
that the following diagram commutes: 

QW($T(Ti)) Qw(P’TJ) - Q,(s(Ti 7’j)) 

$i I I *ii T,W 

F(TiW)* B(TTjW) 

Take 5 = l/s, 0 ... @ l/s, @ m in Q,(F(Ti)). On one hand, 

tii_kQ~(PZTj)(l)) 

=*ij(+Q 

” 

... Q;P;Tj(m) 
> 

= s, -‘p~~~“-‘(s.=‘,p~~~I:( . . . sz’P~~~(s;‘P~~w~(P~Tj(m))) ‘.. N. 

On the other hand, 

P~&&i(S)) 

= p~$w(s,‘p~~-‘(s,=‘,p~~I:( . . . s;‘~~;~(s;‘p&&l)) . . . ))). 

Since both F(7’iW) and S(7’iTjW) are Qs,(R)-modules, we find that pz& is 
Qs,(R)-linear. Using this and the fact that 

p;$opzy = p;zy”p;z;:_,) 

we find that the above element is equal to: 

snlp~~~“-l(p~~~~_l(sn=llp~~I:( . . . s;‘p~~(s;‘p~w,(m)) . . . ))). 
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Using this argument repeatedly, we end with: 

s, PTiTjW, -1 “‘i”-l(s,=‘,P~~~;:( ... s;‘P~~~~(s;‘p~$‘w,(P~w,(m))) . . . )) 

and of course this is the same as the result of the first calculation. Strictly speaking, we 
should also prove that the following diagram is commutative: 

Q,(cF(Ti)) -Qw(F(TjTi)) 

+i I I 

*ji 

T,W 

F(TiW)*c!F(TjTiW) 

but we omit its proof since it is completely similar. Thanks to these commutative 
diagrams, we conclude that the two inverse limits 

lim Qw(F(Ti)) and lim 9(TiW) 
‘i ‘i,i 

are isomorphic. Consequently, we get an isomorphism Q&T*(P)) 2 F(W). We 
to claim that it maps an element 5 = l/s” 0 ... 0 l/s1 Ox E Qw(T*(F)) 

s,‘&‘(s.--‘,p~I:( . . . S;‘p&-‘pw,(x)) . . . )). It is easy to see that 5 is mapped to 
the element 

(Snlp~~“-l(Sn=lllp~~I:( . . . S;lp;Fi(S;‘pj-iw,(X)) . . . )))iElim9(TiW). 
‘i 

Then it suffices to prove that 

P~w(s,‘P~:c’(s~-l~llp~I:( ... s;‘P~(s;‘Pw,(x)) ... ))) 

= s, -‘p;2n-‘(s,=‘lp;$I:( . . . s;‘P~~~(s;1PTiw1(4) ... )) 

for all i in I. This is done using essentially the same argument as before, i.e. a repeated 
combination of the Qs,(R)-linearity of the restriction morphism between two words 
ending on Sk and the fact that p t$o pyw = p Fs”, 0 p &. There remains one thing to 
be proved, namely that these maps patch together to a sheaf isomorphism, that is we 
have to prove that for each morphism V + W in f the following diagram com- 
mutes: 

We omit the proof since this is again done in the same way, up to a minor modification 
taking into account the imbedding of W into V. 17 

Now we are ready for: 
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Theorem 2. The category of quasi-coherent sheaves is equivalent to (R, rc+)-gr. 

Proof. As in the commutative case, the functors establishing the equivalence will 
be “and r.. We still have to prove that the global sections functor takes its values 
in (R, rc+)-gr, i.e. that r,(F), the global sections of a quasi-coherent sheaf 9, 
is a K + -closed R-module. Choose a natural number rr and consider the canonical map 
cp:r,(F) + Hom,((R+)“,T,(F)). 50 is injective because Kerry E rc+(r*(fl)) = 
nifIrcTi(&.(F)) = 0, the latter equality holds because F is separated. To prove the 
surjectivity of cp, we take an elementfin Hom,((R+)“, r,(F)). Composing this map 
with the restriction morphisms yields elements pTiof in Hom,((R+)“, 
F( Ti)) E F( Ti). Thus for each i E I, there is a Xi E F (Ti) such that p&f(a)) = axi for 
all a E (R,)“. The calculation ap:Tj(xi) = p&,(prJf(a))) = pzTj(pTj(f(a))) = 

apzrj(xj) for all a E (R,)” yields that pzT,(xJ = pzTj(xj). The gluing condition on 
9 implies that 3x E r,(Y) such that pTi(x) = xi and of course this x is mapped tof by 
cp. We conclude that r.(F) is a x+-closed module. At this moment, we know that 
there is a functor from the category of quasi-coherent sheaves to (R, K+)-gr and one in 
the reverse direction. The fact that these functors are equivalences follows readily from 
Proposition 3 and Theorem 1. 0 

Theorem 3. The category of coherent sheaves is equivalent to ProjR. 

Proof. The coherence of 9 yields the existence of a finite number of global sections 

Xl, ... , x, E r,(F) such that ViE I: pTi(xl), . . . ,pTi(x,) generate JF(Ti) as a Qr,(R)- 

module. It is now easy to show that T,(F) is torsion over the R-submodule generated 

by ~1, . . . ,xt. q 

In practice, one is interested in the following question: given some modules over 
some localisations of the ring R, do they come from an R-module? The next theorem 
provides a criterion in case R is schematic: 

Theorem 4. Let (Ti 1 i E Z} be an afine cover and suppose we are given a graded 

Qr,(R)-module Mi for each i and homomorphisms $ij: Mi + Qri(Mj) in R-gr such that 
for each triple (i, j, k) the next diagram commutes: 

Mi “j * Qri(Mj) 

Gik 

I I 

Qn(Gjk) 

QT, @f/c) - QdQqWd) 

then there exists a graded R-module M such that for each i in I we have that 

QT~(W z Mi* 
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Proof. Put M equal to the inverse limit of the inverse system 

Mj - Q Tk (Mj) 

$jk X +kj 

Mh- QT~(MJ 

Since this is a finite inverse limit, we get that QT,(M) is isomorphic with the inverse 
limit of 

QTi(Mj) -QT~(QT~(M~)) 

Q,(+j,) x QT,(*kj) 

QTWJ - QT<(QTj(Mh)) 

and we use this module, denoted by N, to construct an isomorphism to Mie We have 
a well-defined map Mi + N because of the gluing condition above and we have a map 

rc/ from QTi(M) to Mi defined by $((mj)j/S) = s-'mi where mjE Mj such that 
$jh(mj) = w&/l e QTj(Mh) Vj,k E I and s E Tj. It is now an easy exercise to prove that 
these two maps are each others inverse. 0 

The gluing condition above looks the same as in the commutative case, but then it 
implies that QTj(Mi) E QT<(Mj) as QTivTj(R)-UIOdUkS. 

One of the reasons why we did not want to assume the existence of compatible 
covers is that this property does not lift from the associated graded of a filtered ring to 
its Rees-ring. At the cost of introducing completions (the so-called micro-localisa- 
tions), this property does lift and consequently, for a wide variety of algebras is the 
usual (commutative) Grothendieck-topology sufficient again. 
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