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Abstract 

the STS-merged ET 

provides an improved

 ET product for 

global land surface models. 

Keywords: 
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1. Introduction 
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2. Data 

2.1 Landsat-based ET products 

 spatial resolution
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with 1/2×2/3 degree 

spatial resolution. All coarse resolution MERRA data were spatially interpolated into 

30m using the method described by Zhao et al. (2005). Theoretically, this spatial 

interpolation method improves the accuracy of meteorological data for each 30m 

pixel because it uses a cosine function and the four MERRA cells surrounding a 

given pixel to remove sharp changes from one side of a MERRA boundary to the 

other ( ). 

 

 

2.1.1 RS-PM ET product 

 from MERRA data 

2.1.2 SW ET product 
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MERRA data 

2.1.3 PT-JPL ET product 

2.1.4 MS-PT ET product 
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2.1.5 SIM ET product 

available

2.2 Eddy covariance data 
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3. Methods 

3.1 Simple Taylor skill fusion method 
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4. Results and discussion 

4.1 Validation of Landsat-based ET products 
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4.2 Merging of the Landsat-based ET products 

4.2.1 Calibration against tower measurements 
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4.2.2 Validation against EC measurements 
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4.2.3 Implementation of merging the ET products 
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4.3 A case study of mapping regional ET 

To map the regional ET from the  products, we selected an 

example from the Landsat of a 1.4 by 1.2 km region (33.77°N-33.88°N and 

117.94°E-118.09°E) that mainly included cropland to map daily ET (Figure 13). 

Figure 13 also shows the corresponding spatial patterns in NDVI for August 12, 2005, 

along with the associated frequency histogram. High vegetation cover fraction 

occurred on August 12 owing to rapid crop growth. 

In Figure 14, the spatial pattern of ET from each product is illustrated along with a 

histogram showing the frequency distribution of values within the simulation domain. 

The maps of ET are strongly positively correlated with the NDVI (R
2 

of more than 

0.91), which may be explained by the fact that higher vegetation transpiration where 

there is a higher vegetation fractional cover. In terms of overall magnitude and spatial 

pattern, there are obvious differences among the multiple  products. 

In general, the merged ET has an intermediate ET value with a histogram of spanning 
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a full range from 60 to 82 W/m
2
, which is slightly smaller than the RS-PM, PT-JPL 

and SW ET products whereas slightly larger than both MS-PT and SIM  products. 

The difference in spatial pattern of these ET products was mainly caused by the 

different physical structures of ET algorithms, such as the physical parameterizations 

of the SW algorithm, affecting its coupling with land surface and atmosphere 

(Dirmeyer et al. 2013). 

4.4. Discussion 

4.4.1 Uncertainties of the merged ET estimates 

4.4.1.1 Input errors 

The varied accuracies of the merged ET product were affected by the input errors 

of the STS fusion method, which refers to the errors from the individual 

 products and EC ground-measurements. The individual 

 products are estimated using the meteorological variables from 

MERRA data and vegetation parameters derived from 

no single reanalysis dataset is superior to others in terms of 

meteorological variables (Ta, RH, e and WS) to estimate land surface energy budgets 

(Shi and Liang, 2014; Wang and Zeng, 2012; Zhu et al. 2012). Recent studies 

revealed large bias for MERRA data when compared to ground-measurements 

(Rienecker et al. 2011; Zhao et al. 2006). Yao et al. (2015) found that daily Rn from 

MERRA tended to underestimate at high values compared to ground-measurements. In 

addition, there also exist large biases in the vegetation parameters (e.g. LAI) retrieved 
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from Landsat data (Ganguly et al. 2012). Eklundh et al. (2003) reported that Landsat 

data can only explain 50-80% of the variation in LAI for coniferous forests. Thus, the 

uncertainty from the individual and merged ET products could be inherited through 

errors from both MERRA and Landsat data inputs. 

The errors of the EC ground-measurements determine the accuracy of the merged 

ET product because ground-measured ET is considered as the “true” value for 

calibrating the individual products. Although EC measurements are relatively accurate 

for ET acquisition, approximately 5-20% still exist (Foken, 2008). Moreover, there 

could be inaccuracies in interpreting their values owing to the energy imbalance in the 

EC method (Mahrt, 2010). Foken (2008) pointed out that the EC method can only 

capture small eddies and ignore large eddies in the lower boundary layer, which 

influence the energy imbalance. Although we used the method proposed by Twine et 

al. (2000) to correct the ET, currently no agreements or protocols have been reached 

for the causes and corrections of energy imbalance from eddy covariance 

measurement (Leuning et al. 2012; Wohlfahrt et al. 2009). These corrections still 

cause large errors of EC measurements (Finnigan et al. 2003; Twine et al. 2000). Thus, 

input errors of the EC measurements and error propagation through calculations, 

including EC data correction, gridded interpolation and different data fusion, all 

contribute to the uncertainties of the merged ET product. 

4.4.1.2 Scaling effects 

The error of the merged ET product introduced by the spatial mismatch between the 

flux tower site footprints and the individual Landsat-based ET pixel footprints is an 



  

 22 

important issue. The footprint of the flux tower site is approximately several hundred 

meters while the spatial resolution of the individual Landsat-based ET products is 

only 30m (Baldocchi et al. 2008; McCabe and Wood, 2006). Directly using EC 

ground-measured ET as “true” value to merge the individual Landsat-based ET 

products would lead to large uncertainties in the merged ET estimates.  

To investigate the impact of the resample scale of the individual Landsat-based ET 

products to 

Landsat-based ET products by use of a 30-570m window. Compared with the original 

ET estimates at 30m, a 

4.4.1.3 Fusion method 

constrains

Landsat-based ET products. To
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illustrated that the 

. Further, the produced 

comparable accuracy but reduced the complexity of the fusion algorithm to improve 

 when compared with other advanced fusion methods, 

indicating that 

Although  might have the statistical significance to a certain 

degree, it obviously lacks of physical mechanism. T

he performance of  is highly dependent on 

 which was calibrated using the data from a lot of flux tower 

sites

4.4.2 Implications for agricultural water consumption and 
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global models assessment 

Quantifying ET using Landsat data is critical for mapping regional-scale ET at 

relatively high spatial resolution, acknowledging agricultural and watershed water 

management (Anderson et al. 2008). The merged ET product in this study was 

estimated using Landsat NDVI without LST. NDVI 

(Anderson et al. 2008)
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spatial mismatch between the flux tower site footprints 

and the  footprints

ke TIR-derived ET products, the

5. Conclusions 
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map the regional ET

the STS-merged ET provides valuable insights for agricultural ET 

estimation. Uncertainties of the STS-merged ET are also discussed. The

However, the STS 

method obviously lacks of physical mechanism. 
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Appendix A. Algorithms for Landsat-based ET products 

Appendix A.1.RS-PM algorithm 
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the PT coefficient (1.26). fwet is the 

wet surface fraction (RH4). fsm is the soil moisture constraint (RHVPD). fg is t

 plant temperature constraint (mT) an

 is the absorbed photosynthetically active 

radiation (PAR) and  is the intercepted PAR. 

Appendix A.4.MS-PT algorithm 
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is the maximum diurnal air temperature range (40 °C) and fc is 

vegetation cover fraction. 

Appendix A.5.SIM algorithm 

)( 3210 DTaTaNDVIaaRET an   

a0=0.1440, a1=0.6495, a2=0.0090 and a3=0.0163. These coefficients were 

calibrated using the ground measurements at the Southern Great Plains (SGP) sites in 

the United States from January 2002 to May 2005. Considering the SGP sites cover 

the variety of land cover that includes grass, rangeland, pastures, crop fields, forests, 
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and mixed cover-including vegetation and bare soil-and that their locations also differ 

considerably from each other, it can be used to estimate global terrestrial ET (Wang et 

al. 2008).  
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Table 1 Summary of the Landsat ET products generated in this study for 2000-2009. 

 

ET 

products 

Spatial 

resolution 

Temporal 

resolution 

Time 

Period 

Algorithms Forcing Inputs of the ET 

products 

MERRA Landsat 

RS-PM 30m 16-day 1998-2010 Remote 

sensing-based 

Penman-Monteith 

algorithm 

Rn, RH, Ta, 

e 

NDVI 

SW 30m 16-day 1995-2009 Shuttleworth-Wallace 

dual-source model 

Rn, RH, Ta, 

e, WS 

NDVI 

PT-JPL 30m 16-day 1998-2010 Priestley-Taylor 

algorithm of Jet 

Propulsion 

Laboratory, Caltech 

Rn, RH, Ta, 

e 

NDVI 

MS-PT 30m 16-day 1997-2009 Modified 

satellite-based 

Priestley-Taylor 

algorithm 

Rn, Ta, DT NDVI 

SIM 30m 16-day 1998-2009 Simple hybrid 

algorithm 

Rn, Ta, DT NDVI 
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Table 2 Comparison of the cross validation results of daily ET from multiple 

Landsat-based ET products and fused products. S represents the Taylor skill scores. 

 

ET Products RMSE R
2
 S 

STS  25.4 0.60 0.61 

MLR 26.2 0.59 0.60 

SMA 26.9 0.58 0.59 

BMA 24.9 0.61 0.62 

SVM 24.2 0.63 0.63 

MARS 24.4 0.62 0.62 

BFR 24.1 0.64 0.64 

RS-PM 27.9 0.56 0.58 

SW 29.6 0.55 0.57 

PT-JPL 29.8 0.52 0.55 

MS-PT 27.1 0.57 0.59 

SIM 27.6 0.57 0.59 
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Figure captions 

Figure 1. Locations of the flux tower sites used to merge ET algorithm calibration 

(103 sites) and validation (103 sites). 

 

Figure 2. Bar graphs of the statistics (RMSE, Bias, R
2
 and S) of the comparison 

between daily ET from multiple Landsat-based ET products (including merged ET 

product) and ground-measurements at all 206 flux tower sites for different land cover 

types. DBF: deciduous broadleaf forest, DNF: deciduous needleleaf forest, EBF: 

evergreen broadleaf forest, ENF: evergreen needleleaf forest, MIF: mixed forest, CRO: 

cropland, GRA: grassland, SAW: woody savanna and savanna, SHR: open and closed 

shrubland, and WET: wetland. 

 

Figure 3. Scatterplots of the daily ET from multiple Landsat-based ET products and 

ground-measurements at all 206 flux tower sites. 

 

Figure 4. Weights for five Landsat-based ET products at the 103 calibration tower 

sites. 

 

Figure 5. Same as Figure 2 but for the 103 calibration tower sites. The merged ET was 

calculated using the weights for five Landsat-based ET products at the 103 calibration 

tower sites. 

 

Figure 6. Scatterplots of the daily ET from multiple Landsat-based ET products 

(including merged ET product) and ground-measurements at the 103 calibration tower 

sites. 
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Figure 7. Same as Figure 2 but for the 103 validation tower sites for different land 

cover types. The merged ET was calculated using the weights for five Landsat-based 

ET products at the 103 calibration tower sites. 

 

Figure 8. Example of a time series for daily ET as ground-measured and estimated 

using different Landsat-based ET products (including merged ET product) at ten 

validation sites. The merged ET was calculated using the weights for five 

Landsat-based ET products at the 103 calibration tower sites. 

 

Figure 9. Same as Figure 6 but for the 103 validation tower sites. The merged ET 

was calculated using the weights for five Landsat-based ET products at the 103 

calibration tower sites. 

 

Figure 10. Weights for five Landsat-based ET products at all 206 flux tower sites. 

 

Figure 11. Scatterplots of the daily ET from the merged ET products and 

ground-measurements at all 206 flux tower sites. The merged ET was calculated using 

the weights for five Landsat-based ET products at all 206 flux tower sites. 

 

Figure 12. Error histograms for daily ET derived from five Landsat-based ET products, 

and the merged ET product for all 206 flux tower sites. 

 

Figure 13. a) An example of a partial region of Landsat imagery with a false-color 

composite on August 12,2005; b) NDVI maps for August 12,2005, and c) frequency 

histograms for NDVI on August 12,2005. 

 

Figure 14. Daily ET maps of a partial region shown in Figure 13 with frequency 

histograms from five Landsat-based ET products, and the merged ET product for 

August 12, 2005. 

 

Figure 14. Continued. 

 

Figure 15. Change of RMSE of estimating daily ET from five Landsat-based ET 
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products, and the merged ET product with spatial resolutions at the 103 validation 

tower sites. The merged ET was calculated using the weights for five Landsat-based 

ET products at the 103 calibration tower sites. 

 

 

 

 

 

 
Figure 1. Locations of the flux tower sites used to merge ET algorithm calibration (103 sites) and 

validation (103 sites). 
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Figure 2. Bar graphs of the statistics (RMSE, Bias, R
2
 and S) of the comparison between daily ET 

from multiple Landsat-based ET products (including merged ET product) and 

ground-measurements at all 206 flux tower sites for different land cover types.
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Figure 3. Scatterplots of the daily ET from multiple Landsat-based ET products and 

ground-measurements at all 206 flux tower sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Weights for five Landsat-based ET products at the 103 calibration tower sites. 

 

 

 

 

 

 

 

 

 



  

 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 51 

 

 
Figure 5.  the 103 calibration tower sites. The merged ET was calculated 

using the weights for five Landsat-based ET products at the 103 calibration tower sites. 
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Figure 6. Scatterplots of the daily ET from multiple Landsat-based ET products (including merged 

ET product) and ground-measurements at the 103 calibration tower sites. 
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Figure 7.  the 103 validation tower sites for different land cover types. 

The merged ET was calculated using the weights for five Landsat-based ET products at the 103 

calibration tower sites.  
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Figure 8. Example of a time series for daily ET as ground-measured and estimated using different 

Landsat-based ET products (including merged ET product) at ten validation sites. The merged ET 

was calculated using the weights for five Landsat-based ET products at the 103 calibration tower 

sites. 
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Figure 9.  the 103 validation tower sites. The merged ET was calculated 

using the weights for five Landsat-based ET products at the 103 calibration tower sites. 
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Figure 10. Weights for five Landsat-based ET products at all 206 flux tower sites. 
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Figure 11. Scatterplots of the daily ET from the merged ET products and ground-measurements at 

all 206 flux tower sites. The merged ET was calculated using the weights for five Landsat-based 

ET products at all 206 flux tower sites. 
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Figure 12. Error histograms for daily ET derived from five Landsat-based ET products, and the 

merged ET product for all 206 flux tower sites. 
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a)                         b) 

 

                  c) 

Figure 13. a) An example of a partial region of Landsat imagery with a false-color composite on 

August 12,2005; b) NDVI maps for August 12,2005, and c) frequency histograms for NDVI on 

August 12,2005. 
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Figure 14. Daily ET maps of a partial region shown in Figure 13 with frequency histograms from 

five Landsat-based ET products, and the merged ET product for August 12, 2005. 
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Figure 14. Continued. 
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Figure 15. Change of RMSE of estimating daily ET from five Landsat-based ET products, and the 

merged ET product with spatial resolutions at the 103 validation tower sites. The merged ET was 

calculated using the weights for five Landsat-based ET products at the 103 calibration tower sites. 
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Highlights 
1. None of the individual Landsat-based ET dataset provides the most 

accurate ET. 

2. A simple Taylor skill fusion method was developed to merge 

different ET products. 

3. This model produced higher accuracy when compared with the 

individual products. 

 

 


