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INTRODUCTION

Microlocalization at graded prime ideals of the associated graded ring of
a Zariski filtered (noncommutative) ring appear in the analytic theory of
rings of differential operators. Algebraic approaches to this theory have
appeared in recent publications, e.g., [1, 6, 18, 17], and in this paper we
view them as the completions of the stalks of a microstructure sheaf defined
on a Zariski filtered ring. For some general results we consider an
unrestricted noncommutative situation but as far as applications of the
general techniques are concerned we will restrict attention to the so-called
almost commutative filtered rings; that is, the class of Zariski filtered rings
having a commutative associated graded ring and usually we assume the
latter to be positively graded (although this is nowhere essential if one
defines the projective scheme Proj suitably). Taking sections of a coherent
sheaf of graded modules over Zariski open sets of Proj(G(R)) yields graded
localizations of the graded ring G(R) associated to the Zariski filtered R.
However, taking sections on the level of the microstructure sheaf we obtain
microlocalizations at Gabriel filters not necessarily stemming from multi-
plicatively closed sets. Using the relations between the category of filtered
left R-modules, denoted by R-filt, and the categories of graded left G(R)-
modaules, denoted by G(R)-gr, over the associated graded ring G(R) as well
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as graded left R-modules, denoted by R-gr, over the Rees ring R of the
filtration FR on R, we can treat microlocalization at Gabriel filters rather
elegantly, at least when the localizations considered are perfect. The latter
restriction does not harm generality in treating the microstructure sheaf
theory because the scheme Proj(G(R)) may be covered by affine open
subschemes corresponding to perfect localizations in a natural way. In
Section 2 we expound the general theory of localization of filtered rings and
their associated graded rings and in Section 3 we study microlocalization at
perfect localizations. Both these sections have been treated in the generality
of Zariski filtered rings, that is, allowing noncommutative associated
graded rings. This generality is not needed in Section 4 but it is essential in
the construction of so-called gauge algebras (cf. [21]), providing many
interesting examples (cf. loc. cit.). The main result in Section2 is
Proposition 2.6 and in Section 3 the main conclusions are summed up in
Theorem 3.6, Theorem 3.8, and Theorem 3.12 but Proposition 3.14 is also
very useful in the sheaf theory.

The consideration of microlocalizations at Gabriel functors is necessary
because the microstructure sheaf has to be constructed by describing the
sections over Zariski open subsets of Proj(G(R)); for the sheaf theory we
may restrict to a basis of affine open subsets and correspondingly work
with perfect localizations exclusively. In the almost commutative situation
considered in Section 4 the microlocalization at a perfect localization may
be viewed as a deformation of a graded localization of the commutative
associated graded ring. In this way the sheaf defined on the microlevel
corresponding to the structure-sheaf of Proj(G(R)) may be thought of as
being a deformation of the latter, so following the philosophy of [6] we
call it the sheaf of quantum sections over the structure sheaf O, of
X = Proj(G(R)). We provide some properties regarding the coherence
(Corollary 4.5) of the sheaf of quantum sections of a good filtered
R-module as well as the strictness of the sheaf map of quantum sections
associated to a strict morphism in R-filt. Finaly we introduce the quantum
sections over the characteristic variety and we hope this will be useful for
pure (or even holonomic) modules over certain rings of differential
operators.

1. PRELIMINARIES

All rings considered are associative and have a unit element, modules are
left modules but ideal means two-sided ideal. For the reader’s convenience
we recall some basic notions from the general theory of localization at
kernel functors or torsion theories. First let us point out that we really do
need only minimal knowledge about this theory because the applications
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we have in mind allow us to restrict to localizations of G(R) given by
homogeneous multiplicative sets {1, f, /2, ..} for some homogeneous
fe G(R). Nevertheless the localization of R defined by this set (% in the ter-
minology of Lemma 2.1) is not of this type so the consideration of more
general Gabriel filters cannot be completely avoided. A Gabriel filter (or
topology) is a filter & of left ideals of the ring considered, say A, satisfying
the following conditions:

(i) If/leZ anaeAdthen (I:a)={xeA, xael}isin &.

(iiy If e ¥ and J< I is such that for every xel, (J:x)e & then
Je & (the four conditions of [8] are equivalent to these two).

To a Gabriel filter ¥ we may associate a functor x: A-mod — 4-mod,
which is a subfunctor of the identity functor satisfying:

(i) x is a left exact functor.
(1) k(M/xM)=0 for every M e A-mod.

The functor k =k(%¥) is called an idempotent kernel functor (cf. [8])
and it may be defined by putting kM = {me M, Im=0 for some /e ¥}.
Conversely to any idempotent kernel functor ¥ we may associate a Gabriel
filter (k)= {I left ideal of R, x(R/I)= R/I}, and k and ¥ (k) determine
each other uniquely. Furthermore the x-torsion class in A4-mod is
T.={MeA-mod, kM=M}, the k-torsionfree class in A-mod is
F.={Me A-mod, kM =0}, and the pair (T,, F,) determines an hereditary
torsion theory in A-mod (cf. [7]). We stick to the viewpoint of [8]. To
one associates the localization functor Q,.(-): A-mod — A-mod defined by
Q. (M)=1lim,, ., (I, M/kM). This localization is in general left exact but
not necessarily exact.

Many conditions equivalent to the exactness of ¢, have been given in
[8, 7, ..]; just recall that x is called perfect when Q, is exact and commutes
with direct sums, equivalently when for every A-module M :Q, (M)=
Q.(R)® M, or equivalently when the canonical ring morphism j,: R —
Q. (R) is an epimorphism in the category of rings such that Q,(R) is a
right flat R-module via j, (note that ker j,. = k(R)), or equivalently if for
every left ideal Te #(x) we have Q. (R) I=Q,(R).

Note that for an Ore set S of A the filter ¥ (k) generated by the left
ideals L of 4 such that L nS# (¥ is a Gabriel filter and the localization
0.,(-) is just the usual localization functor associated to §; moreover kg
is perfect as is well known.

When A4 is a Z-graded ring and #(x) has a filterbasis .#(x)* consisting
of graded left ideals then we may define the graded localization functor
Q%(-): A-gr - A-gr, by putting Qf(M) = Lim,_ ., HOM(/, M/xM),
where HOM(—,-)=@® ,., HOM (-, ~) and HOM, (-, -) denoting the
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A-linear morphisms of degree p (between graded objects). Detail on graded
localization may be found in [19, 13]. Let us just point out that for £(x)
having a cofinal system of graded left ideals of finite type (e.g., in case A4
is Noetherian) then QXM)=0Q,.(M) for every Me A-gr because
HOM(I, M/kM)=Hom(/, M/kxM) when [ is finitely generated (cf. [13]).
The latter of course applies when x corresponds to a homogeneous Ore set
S of A; therefore in the applications we have in mind (Sect. 4) the usual
localizations of graded modules coincide with the graded localizations. All
kernel functors considered in this paper have finite type in the sense that
Z(x) will always have a cofinal subset consisting of finitely generated left
ideals.

A filtered ring is a ring R with a filtration FR given as an ascending
chain {F,R,neZ} of additive subgroups of R satisfying 1e F R,
F,RF,RcF,,  Rfor any n,meZ. A filtered module is an R-module M
with a filtration FM given as an ascending chain of additive subgroups of
M, {F,M,neZ} such that F,RF, McF,, .M for every n,me 7.

All filtrations considered will be exhaustive in the sense that
U, F.M = M. We write R-filt for the category of filtered left R-modules and
filtration-degree preserving R-linear maps. The filtration FR determines an
associated graded ring G(R)=@,., F;R/F; _|R and FM determines a
graded left G(R)-module G(M)=P,_, FM/F,_ M IfxeFM—F, M
then we call n the filtration-degree of x and the principal symbol
o(x)e G(M) is defined to be the class of x in F,M/F, M=G(M),.

Detail on graded rings and modules may be found in [13,14]. To a
filtered ring R we may associate the Rees ring R= @, _, F, R that may be
viewed as the subring 3, F,R-X" in R[X, X '] where X is a central
variable, homogeneous of degree one. To M e R-filt we correspond a
graded R-module M =@, _, F,M that may be viewed as 3, _, F, M - X"
in M[X, X"']. We write R-gr for the category of graded R-modules and
gradation-preserving R-linear maps. A graded R-module is said to be
X-torsionfree if none of its nonzero elements is annihilated by X. We let #,
be the full subcategory of R-gr consisting of the X-torsionfree objects.
Clearly, for each M e R-filt we have that Me %,. Recall from [1] the
following lemma.

1.1. LEMMA. With conventions and notation as above:

(a) R/RX=G(R), M/MX =G(M), as graded objects.
(b) R/RN—X)=R, M/M(1 - X)=M.

(c) Ry=R[X, X']), My=M[X,X '], where (-}, denotes the
localization at the multiplicative central set {1, X, X*, ..}
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(d) The functor ~: R-filt — R-gr defines an equivalence of categories
between R-filt and F,.

For further properties relating the Rees ring and the Rees modules to the
corresponding filtered objects we refer to [1]. In the latter paper an
algebraic approach to microlocalization of filtered rings is given. Starting
from a multiplicatively closed set S in a filtered ring R with separated (i.e.,
N, F,R=0) filtration FR, such that ¢(S) is multiplicatively closed and a
left Ore set in G(R), we define a multiplicatively closed S and R consisting
of homogeneous elements sX” with s€ S, se F,R— F,,_, R. It is easily seen
that § maps to a homogeneous left Ore set in R/RX” for every peN.
Therefore we may define a graded ring Q%(R)=lim* Q§(R/X"R) where
lim# denotes the inverse limit in the graded category, and we have written
S again for each image of § in R/X"R. In a similar way we may define
a graded R-module (and in fact a graded Q4(R)-module) Q4(M)=
llm,, Q4§(M/X"M). The microlocalization as filtered | objects are then given

L Q4(R)= Q4(R)/(X —1) Q4(R): QM) =Q%(F)/(X —1) Q4(M). We

summanze some results of [1] in a theorem.

1.2. THEOREM. With notation as introduced above:

(a) Q%(M)is in #.

(b) The filtration FQ/(M) is separated.

(c) For Me R-Ailt, FQ% (M) is complete.

(d) G(QM))=a(S) ' G(M).

(e) The functor Q% is exact.

(f) Q%(R) is a flat right R-module.

(g) Define the saturation of S, S, ={reR, a(r)ea(S)} and let F,,,
be the localized filtration defined on S_' M (note that this makes sense
because S.,, is a left Ore set of R!). Then Q%(M)=Q% (M)=(S;'M)" "=
or in other words every microlocalization at a multiplicative set S as before
(note that S need not be a left Ore set) is obtained as a completion of a
localization at a left Ore set.

In this paper, it is one of our aims to obtain similar results for micro-
localization at perfect xk not necessarily associated to Ore sets because these
will appear as quantum sections of the microstructure sheaf.

Finally, let us recall that FR is said to be faithful if all good filtrations
FM are separated (see [9, 10] or [11] for full detail on good filtrations on
finitely generated modules and the general theory of Zariskain filtrations)
and this is equivalent to F_, R being included in the Jacobson radical of
Jo R. We say that FR is Zariskian whenever FR is faithful and R is (left and
right) Noetherian. When FR is Zariskian R, R, and G(R) are Noetherian
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rings but if FR is faithful and both R and G(R) are Noetherian then FR
need not be Zariskian of course; when FR is complete it will be Zariskian
exactly then when G(R) is Noetherian.

2. LOCALIZATION OF FILTERED RINGS AND THE ASSOCIATED GRADED RINGS

Throughout FR is a faithful filtration and all kernel functors considered
have finite type; these conditions hold trivially when FR is Zariskian and
for the examples we have in mind we will restrict attention to the Zariskian
filtrations.

We start from a kernel functor x on R-mod with Gabriel filter #(x) and
we define £ (k)= {J left ideal of R, J> L for some Le L(x)}.

2.1. LEMMA. Z(R) is a Gabriel filter; hence K is an idempotent kernel
Sfunctor.

Proof. (a) If Je (K} and H>J then He (k) is obvious.

(by If I,JeZL(R) then InJ>H, nH,>(H,nH,)~ for some
H,, H.e £(x) and then H, n H, € Z(x).

(¢) If Le #(%) and 7€ R then we have to find Ke £(&k) such that
Kj < L and it is clear that if it suffices to do this for homogeneous 7, say
F=yX™ for some ye R, m(y)eZ. Since Le £ (kK), L>T for some
Je #(x) and there exists an He #(x) such that Hy< I Now, if he A

is homogeneous, say h=hX"" where heF,, H—F,, H then
hp=hyX™ ™+ 7 But hy € Fog R— Fop - R With m(hy) <m(h) + m(y)
and thus hj = hyX™h+m-mih) where the exponent of X is at least zero.

Therefore A7 < Hy < T< L with He £(&) as desired.

(d) Let Hco L with Le #(K) be such that L/H is a R-torsion
R-module. We have to show that He #(k); clearly we may assume that
L=1T Ie £ (k). Since H is X-torsionfree H = K for some left ideal K of R.
For each i€/ there is a J,e £ () such that J,ic K and it is not restrictive
to assume that J,= E, for some E,e £(x). Since #L(x) is a Gabriel filter,
EicK for every iele £(R) yields Ke £(x) and so we arrive at
R=He# ). 1

The definition of #(X) entails that #(K) has a cofinal system of graded
left ideals, so we may consider the graded filter #%(%)= {L, Le ¥(x)} and
we write & again for the graded kernel functor on R-gr associated to
L *(R). Full detail on graded localizations (rigid torsion theories) may be

found in [14, 19]. If 7: R > G(R) is the canonical ring epimorphism then
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we define Gk on G(R)-mod by ¥ (Gk)={L, L a left ideal of G(R) such
that L >n(H) for some He £(x))}.

22. LEMMA. L(Gk) is a Gabriel filter.
Proof. Easy. |

The definition of #(Gk) entails that it has a cofinal system of graded left
ideals of G(R); so we consider the graded filter ##(Gxk) and write Gk again
for the graded kernel functor on G(R)-gr associated to Z*(Gk). We use
Q%f, resp. QF,., to denote the graded localization functor at &, resp. Gx, in
R-gr, resp. G(R)-gr.

At first sight it may not seem to be the natural thing to do to start from
a k in R-mod and construct a & on R-gr and a Gx on G(R)-gr. Indeed,
when looking at microlocalization it would be most plausible to start
from some ¥ on G(R)-gr and then lift it to a ¥ on R-gr. However, if we
start from an Ore set ¢(S) in G(R) then S need not be an Ore set but S,
is. On the level of more abstract localization we may define ¥ by taking
pr= {ZCR n(Z)e,?(R')} as a filter basis. If this set is indeed a filter
basis then we may define a x on R-mod by letting £(&) be generated by
those left ideals L of R such that L[X, X ']=L, for some Lep® In
general it seems that 8% need not be a filter basis for an idempotent filter
in R-mod. We say that i is saturated if f* is a filter basis for an idempo-
tent (graded) filter, # (k) say. In the sequel we shall only consider
saturated ¥ and so we will write & for ¥ and we have & = Gk in this case.
Following notation of [1] we write G for the functor R-gr — G(R)-gr
given by M — M/XM.

23. LemMa 1. For Me R, R(M)=w(M), M/R(M)=(M/k(M))~.
2. For Me Rilt, G(h(M))—k(G(M) G(M/kM)=G(M)/RG(M).
3. For Me Rgr, G(R(M))=rR(G(M)), G(M/RM)=G(M)/RG(I).

Proof. 1. Since K(M)cM it is X-torsionfree and thus &(M)=N
Clearly N is x-torsion and thus Nc hm). On the other hand, if # is

homogeneous in nm) then i1 =mX for some deN, me F;M—F, M
where me k(M). Thus Lm =0 for some L e #(x) and then it follows from

LM > D (see proof of Lemma 2.1) that me k(M \/); hence h(M)——h(M)
Next we check that M/R(M) is X-torsionfree; if # is homogeneous in A7
such that Xj < &(#M) then TXj =0 for some Te #(k) and therefore Ij =0
or i€ #(M). So we may write M/R(M)= M/x(M)= N for some N e R-mod
and one easily checks that N= M/k(M) (e.g, localize at X: N[X, X ']J=
My /R(M) = MIX, X' IR(MOLX, X' = (M/kM)LX, X' ]).
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2. Note that G(K(M))zn(km))=n(k(1l7!)). Hence G(x(M)) is
K(M)) is R-torsion or G(k(M))c K(G(M)). Conversely if Ze K(G(M)) is
homogeneous then there is an He (&) such that n(H)zZ=0. Take a
homogeneous z e M representing z. Then Az is in Ker n and since Az is
X-torsionfree we have that Hz= N for some filtered submodule N of M
(not necessarily having the induced filtration though). Since & is finitely
generated by the Zariski hypothesis, it follows that N has finite type and
hence FN is a good fiitration. Again by the Zariski hypothesis FN is then
separated and n(N)=G(N)=0 yields N=0 or zek(H) and ze (R(M))=
k(M) )=G(k(M)). The second statement follows from the strict
exactness of the sequence in R-filt: 0 » k(M) > M — M(k(M) — 0, and the
fact that G is exact on strict sequences.

3. Easy, using the saturatedness assumption on K in the description
of (k) and ¥ (r). |

24. LemMA. With assumptions as before, Q%(M) is X-torsionfree.

Proof. As observed before M/R(M) is X-torsionfree. Now take a
homogeneous z e Q§(M) such that X -z=0. There is a Je £(&) such that
Jz < M/R(M) and XJz=JXz =0. Hence Jz =0 but that contradicts the fact
that Q%(M) is R-torsionfree. ||

2.5. ProrosITION.  With assumptions as before, consider M e R-filt with
good filtration FM. Then Q. (M) has a natural filtration FQ (M) making
the localization morphism j.. M — Q (M) into a strict filtered morphism.

1. If Q.(M)~ is constructed with respect to the filtration FQ, (M)
then we have Q8 (M)=Q, .(M)".

2. Letting Kk, R, and K be as before (in particular K is assumed to be
saturated) then we have

G(Q,(M))=G(Q:(M)) < Q5(G(M))
Q.(M)=Q8(M)/(1-X)QL(M).

Proof. If FM is good then the quotient filtration on M/k(M) is good
and in view of Lemma 2.3(1) we may reduce the problem to the case where
K(M)=#R(M)=r(G(M))=0 and j,.: M - Q,(M) is injective. For a non-
zero x€ Q,(M) there is an e £ (k) such that Ix M. Since the filtration
induced by FR on I, FI say, is good we have, for all neZ, F,I=
3. F, 4R-&; for certain £, e/ of degree d;e Z. For some y,€ Z we have
&xeF,, M for each i and we may take y =max y,. Hence there exists a
y€Z such that Ixc M and for all ne Z, F,Ixc F,, M (»).
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Let us first check that this y depends on x but not on I provided we
assume 7y is taken to be minimal such that (*) holds (note that a y exists
because otherwise Ix =, F, M =0 contradicts k(M )=0 unless x =0 but
the latter is excluded by the choice of x). This assumption on y entails that
there is an ne Z such that F,I cF,, M—F,, . ,M. Now assume that
for some Je #(x) we have Jxc M and for all neZ, F,JxcF,,, M.
Pick e F,I such that ¢xe F,, M—F,,, M and look at (J:¢)e Z(k).

We now have for all me Z:
Fm(‘]: é) ixC(Fm«rnJ) .\'CF,"+,,+.',,]M-

For o({x)e G(M), ., this means that G(J: £) a({x) =0 but since a(M) is
K-torsionfree it then follows that ¢(£x)=0; hence éx =0, a contradiction
because Cx¢ F, ., ;M. So we may define a filtration on Q, (M) by the
filtration degree function v given by v(x)=7y, where y is as above, ie.,
minimal with respect to the property (x), putting F,Q (M)={xe Q. .(M),
v(x)<y}. It is clear that F,Q, (M), yeZ, define an ascending chain of
abelian subgroups of Q, (M). Now look at x, ye Q,(R) such that I, x c R,
I, y = R satisfying property (*) and put J= (I, : x),. Then, for all ne Z we
have forall neZ . F (JnI))xcF,, ( Rn,=F,, L, F(UnI)xyc
(F, vol) vEF, o)+ «nR Hence it follows that FQ,(R) makes Q,(R)
into a filtered ring. That F,R< F,Q,(R) is obvious. On the other hand
F,0.(R)n R is the x-closure of F,R in R but since G(R) is K-torsionfree
it follows directly that F,Q.(R)nR=F,R. Similarly for xeQ, (R),
yeQ, (M) and I,x< R, I,y < M satisfying (x) we may put J=(I,: x),
and argue as before in the ring case. This proves the first statement.

1. Since Qf(M)/M is k-torsion it follows that Q, (M )/M is k-torsion
and Q,(M)~/M is k-torsion; hence Q, (M)~ CQ§_(A~4). For the converse
note that Q§(A71) is X-torsionfree {Lemma 2.4); hence Q,§=]V for some
N> M in R-filt. Since N/N is #-torsion it follows that N/M is x-torsion and
so Nc Q. (M), but then N= Q, (M)~ and this leads to Q5(M)c Q,.(M)~
and the equality Q5(M)=Q, (M)".

2. That G(Q.(M))=G(Q%(M)) follows from 1. In view of
Lemma 2.3(2) and (3) it follows that we may assume that x(M)=&(M)=
K(G(M))=0. By the first part j.: Mg Q,.(M) is a strict filtered morphism.
Exactness of G on strict exact sequences yields that G(Q,(M))/G(M) is
k-torsion (again using Lemma 2.3(2)) and thus G(Q.(M))<= Q4(G(M)).
The second statement in 2 follows from Q, (M)~ =Q%(M) and
Q. M)=0,.(M)"/(1-X)Q,(M)~. |

2.6. PROPOSITION. With notations as before, if K is perfect then we have:
G(QX(R)) = QX(G(R)), G(Q(M))= QX(G(M)) for M e RAilt.
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Proof. We have: Q(M)/XQ(M)=Q8(M/XM)=Q%(G(M)) by the
exactness of Q4(-). It is clear that Q5(G(M))=Q4G(M)). 1

2.7. PROPOSITION. If Kk is saturated and R is perfect then K is perfecl.

Proof. Follows from G(Q&(M))= Q#(G(M)) and the exactness proper-
ties of G and Q¥ or else by applying this formula to M =7 #(K) to obtain
G(QL(R)) = Q%(n(I)) for all n(T)e £*(R) (note that perfectness of a
graded kernel functor may be checked on graded modules). |

_ 2.8. COROLLARY. Let us write k(n) for the kernel functor induced by R on
R/X"R-mod. Then QF,,(M/X"M)= Q2(M/X"M) for all neN, and if & is
petfect then all the K(n) are perfect too.

Proof. Similar to the one above but replacing G by the functor
{—)/X"(—) that enjoys similar exactness properties. |[I

It would be nice to obtain the perfectness of & from the perfectness of &
but as far as we could see the extra assumption GQ%(R)= Q%(G(R)) has
to be added in order to obtain results. This property does hold in situations
where for n(7) in a filter basis of £(£) any G(R)-linear map n(T) - G(R)
may be lifted to an R-linear 7 — R; this happens in case & is a localization
at a (left) Ore set ¢(S) and & is then the localization at S, as described
carlier.

2.9. PROPOSITION. Let K be saturated and perfect and assume that
G(QEHR))=QE(G(R)). If either XeJXQHR)Y) or QHR) is (left)
Noetherian then R is perfect.

Proof. In case XeJ*(Q%(R)) then for Te £(R) we have that
1€ Q8(G(R))-n(]) and this leads to the existence of a homogeneous unit
in Q¢(R)T or Q%(R)-T=Q%(R) for every Te #(&). So let us consider the
case where Q{g(fl) is Noetherian. Recall that for a normalizing element x
of a left Noetherian ring 4 and a finitely generated 4-module M we have
that either N, x"M =0 or (), x"M is an x-torsionfree A-submodule of M.
Now first consider a finitely gencrated graded Q#(R)-module M. Then
M/XM is a G(Q&(R))= Q%(G(R))-module and by the perfectness of K we
know that K(M/XM)=0 or R(M)=rR(XM) is contained in XM. Replacing
M by XM we obtain #(M)c X?M and so on; hence R(M)c (), X"M.
When the latter intersection is zero then #(M)=0. So let us look at the
case where (), X"M is an X-torsionfree Q%(R)-module and note that it is
again a finitely generated and graded Q#(R)-module, so we write M again
for ), X"M. Since now M is X-torsionfree we may write M = N for some
Ne R-Ailt with good filtration FN. By the standing assumption (FR is
faithful) we know that the filtration FN is separated and therefore N is
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separated in the X-adic topology, ie., (), X"N=0. Since &(M)<= ), X"N
follows again from the fact that each X"N/X"*'N is k-torsionfree because
they are Q£(G(R))-modules, we arrive at £(M)=0. Now consider a graded
QZ(R)-module not necessarily of finite type, M again say. If ze h(R(M))
then Q§,(R)z=L is a finitely generated graded Qf(R)-module and so
®K(L)=0 by the first part of the proof. However, z € R(L) then yields - =
and since & is a graded kernel functor and M being graded we may
conclude from A(#(M))=0 that R(M)=0. |

2.10. Question. 1. U FR is Zariskian and £ is saturated and perfect
does it follow that Q%(R) is Noetherian?

2. Can one characterize a nice class of £ not necessarily associated to
multiplicatively closed sets such that G(Q¢(R)) = Q%(G(R)) holds without
further restrictions? In Section 3 we can approach this problem from a
different angle by using microlocalizations. For our use the condition “K is
perfect” seems to be the most practical one, but the philosophy of the use
of the Rees ring would be better served if we could give nice sufficient
conditions on x only.

3. In the situation of Question 1, even allowing QZ%(R) to be
Noetherian, is the filtration FQ,(R) then Zariskian; in other words, does
it follow from these assumptions that Xe J“(Qﬁ(ﬁ)). The problem may be
extended to: for which ¥ is FQ,(R) again a Zariskian filtration if we
assume that FR is Zariskian?

3. MICROLOCALIZATION AT PERFECT K

Throughout this section we assume that FR is a Zariskian filtration and
Kk is saturated such that & is perfect. As in the foregoing section we write
%(n) for the kernel functor induced by & on R/X"R and by the saturated-
ness condition £(&(n)) has a filter basis consisting of I/X"T with Te Z(k);
let us write QF for the graded localization functor associated to %(n) and
recall that all #(n) are perfect (see Corollary 2.8). We now define the
microlocalization on the Rees ring level as follows:

Q4(M) =1lim* Q5 (M/X"H).

n

Up to checking the following lemma we may then define the micro-
localization of Me R-filt at k by the expected formula: Q4(M)=
Q.(M)/(1 = X)Q%(M), meaning in particular that FQ*(M) is determined
by the gradation of Q#(#) in the usual way (cf. [1] before Lemma 2.1.).
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3.1. LEMMA. QX(M) is X-torsionfree.

Proof. Suppose that Xa=0 for some aeQ%(M) and let us write
a,, € Q5(M/X"M) representing a at a level n in the inverse limit. For some
neN we have Xa,,=0 with a4, #0. For some Te £ (%) we have then
Ia,,#0 in jy,(M/X"M) and XIa,,=0. For iel let b, (i)e M/X"M
represent ia,,,. Since Xb,,(/) maps to zero inj,;(,,)(M/X”M) (where j, is the
canonical morphism A7/X"M — Q#(M/XM)), then Xb,(i)e R(n)(M/X"M)
and thus there is a Je #(x) such that JXb,(i)=0 in M/X"M.
Consequently Jb,,(i)e X" 'M/XM or ia,,eQfe QX" 'M/X"M)
for all iel Hence Ta,,cQfX" 'M/X"M) and thus also
a,, € QX" 'M/X"M). This means that a,_,,=0. Since we may start
the argument at any m larger than » it follows that a,,=0 for all n and
thus ¢ =0 as desired. |

3.2. LemMa. With notation as before: FQY(R) and FQ"(M) are
separated (FM is assumed to be separated ).

Proof. An obvious modification of Lemma 3.7 of [1]. |

3.3. LeMMa. FQY(M) is complete for M e R-filt.

Proof. One checks that Q*(M) is X-adically complete just as in the
proof of Proposition 3.9 of [1] using the exactness of the functor QFf,

where necessary, instead of the exactness deriving from the Ore conditions
used in the proposition, loc. cit. ||

For microlocalizations Q*(R) we may derive a universal property
generalizing the situation of localization at Ore sets.

3.4. PROPOSITION. Let us write j%: R — Q*(R) for the canonical micro-
localization morphism. Given a complete filtered ring B and a filtered ring
homomorphism h: R — B such that Bh(l)= 8 and G(B) G(I)=G(B) for
every le ¥ (k) then there exists a unique filtered ring homomorphism
g: Q%(R)— B such that h=g-j".

Proof. Since h is a filtered homomorphism it yields a graded
morphism (of degree zero) h: R~ B. From h(1z)=15 it follows that
MX)=X, and % is a graded ring morphism. From A(X"R)= X3h(R) it
follows that / gives rise to the composition of graded morphisms,
h,: R/X"R - h(R)/X",h# (R) — B/X",B. Since Bh(I)= B for Ie #(x) it is
clear that B=Q,(B). Localizing #, at R(n) we obtain a graded ring
homomorphism

Q) Q5 (RIXR) - Q% (R(RY/ X3 H(R)) ~ B/ X, B,

INE Rim)
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where B/X3B= 0%, (B/X}B) by the exactness of 0, and the assump-
tions on B. Note that the condition G(B)n(l)= G(B) is necessary here
(even in case one inverts an Ore set S it is necessary to specify in the
universal property that A(s) '€ B has the correct order in the sense that if
deg o(s)=n then dego(h(s) '= —n!). It is in fact this condition that
allows one to conclude that BT = B for Te #(x). Now taking inverse limits
in the graded sense yields a graded morphism g: Q*(R) — B=lim¢ B/X", B
(the latter equality holds because B is complete and thus B is X g-adically
complete). From R — Q*(R)— B we derive the desired morphism
g: Q*(R) — B factorizing # as claimed. |}

3.5. Note. From Bh(I)= B it follows that N=§/§hﬁ) is X g-torsion

while G(B) n(h(I)) = G(B) yields that N'XyN=0; hence N=X;N= --. =
X4N for any ¢ but that contradicts the fact that N is X z-torsion unless
N=0.

All properties of microlocalization at Ore sets only depending on the
exactness of the functor Q¥ (hence also QF is exact) carry over to the case
we are considering without real changes.

3.6. THEOREM. With assumptions and notation as before:

I. QR) is a flat right R-module.
2. If FM is a good filtration on M € R-filt then we have Q"(M)=
QLHR)@z M.
Proof. Along the lines of Theorem 3.19in [1]. ]

3.7. CorROLLARY. 1. The functor QL(R)®g preserves strict filtered
maps and it is exact on R-modules.

2. If M is finitely generated (i.e., FM is good) then Q*(R)®x M =
Q! (M) as filtered R-modules.

Proof. Modify the proof of Corollary 3.20in [1]. |
3.8. THEOREM. With assumptions and notation as before: G(Q*(M))=
QXG(M)) for M e Rilt.

Proof. We have:

QUMY XQU(M) =1im* QF,, (M/X"M)/lim O, (X#/X"M).
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The maps in the inverse system {Q%, (XM/X"M), n} are all surjective

(exactness of Q%) and so we may calculate the latter quotient term by
term and then take lim¥#; hence

Kin) K{n)

QU(M/XQU(AM)) =1im* [QF,, (M/X"M)/QF, (XM/X"M)]
=lim® Qf,, (M/X#)

= Qﬁ(ni(G(M))
= QHG(M)),

where the latter equality follows because #(n) induces & on G(R)-gr for
every ne N,

3.9. Remark. Since Q-E,(,,)(M/X”/VI) is a graded Q,’é(,,,(ﬁ/X"ﬁ)-module
for every n, it follows that Q%(M) is a Q%(R)-module and so Q#(-) is a
functor R-filt - Q*(R)-filt. Along the lines of Corollary 3.16(2) of [1]
it also follows that equivalent filtrations FM and F'M yield equivalent
filtrations FQ!(M) and F'QY(M).

3.10. LemMma.  With notation and assumptions as before we have:
XeJ((QLR)" )T )=J((QLR))"Y), where A y Stands for the completion
in the X-adic topology.

Proof. From Proposition 2.5(1) we know that Qﬁ(ﬁ)z(QN(R))” and
by the translation from FR to the X-adic topology on R we know that
QUR)""=(Q(R)")~. So we arrive at the equality (Q(R)")” =
Q%(R)"* and therefore the respective graded Jacobson radicals coincide.
Put B= Q%(R)"" and take he B ,. Since B is complete in the X-topology
there exists an element 1 +bX +5°X° + --- in B and therefore 1 — X has
an inverse 1 +bX +h°X*+ --- for every he B |, or XeJ*(B). |}

3.11. PROPOSITION. Let K be saturated such that K is perfect as before.
Then for every Te #(r) we have (Qﬁ(l?)) AT = Q‘f{,(k) v T= 8.

Proof. Since & has finite type we may assume that 7 is finitely generated.
We have B/XB=G(Q4R) *)=G(Q4R))= Q%G(R)) and since K is per-
fect too we have Qf,(G(R))n(T)fo(G(R)). Consequently B-T+BX=8B
and the foregoing lemma allows one to use the graded Nakayama lemma
in order to derive BI=B. |}

3.12. THrOREM.  With assumptions as before: Q*(M)Y=(Q, (M) ", for
M e R-ilt.
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Proof. 1t will be sufficient to_ establish that (Q“ N =(Q. (M)
or QL:{M)~ lim, Q4(M)/X"Q&(M)=1lim, Q%(M/X"M), where the latter
equality follows from the exactness of Q%. By the saturatedness condition
the T/X"T with Te £(%) form a filter basis for £ (#(n)) (note that T/X"T
maps to n(f)e £ (k) under the canonical R/X"R — R/XR = G(R)); hence
Q% and QF,,, coincide on R/X"R-modules and we arrive at:

QU(H)=lim Q,,(¥1/X" i)
= lim QX(¥/X" )
= lim Q(F1)/(X" Q1))

=(Q&M)) "

3.13. Remark. 1. Theorem 3.12 also follows from Proposition 3.11
because B-T= B and clearly G(B)n(])=G(B) allows one to apply the
universal property and derive the isomorphism from the triangle:

QR

N\

Q4(R)

2. Theorem 3.12 extends the result that Q%(R)= (S, R)" where S is
a multiplicative set of R such that 4(S) is an Ore set in G(R).

3. From Lemma 3.10 it is clear that FQ*(R) is Zariskian when FR is;
indeed, the facts that Q#(R) is complete and G(Q%(R))=QZ:(G(R)) is
Noetherian yield that FQ#(R) is Zariskian.

For use in the next section we include some results concerning the
comparison of microlocalizations at different Gabriel filters. Recall that we
write t>g if Z(1)> %(0) and let us suppose that 7>4 are saturated
kernel functors on G(R)-gr; then (by definition) one sees that 7> 6 and
7> 0. Again we only consider saturated kernel functions 1, a, ..., such that
%, @, ... are perfect. The exact sequence of strict filtered morphisms, for a
given M e R-filt

0 — 1(M)/o(M)—> M/o(M)—> M/1(M) -0 (*)
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yields an exact sequence:

0— Qht(M)) - Q4(M) — Q(M/tM) - 0.

Since for every Te #(6) we have that Te £ () and thus

QUR)T=Q4R).,  QHG(R)) n(I)=QXG(R)),
we have a unique filtered ring morphism Q%(R) — Q%(R) and we obtain

0 - Q4(t(M)) = Qo(M) > QL(M/t(M)) =0

lu',’ j;"{ ()"

QHM) = QY (M/t(M)).

From 7> & we obtain the graded exact sequence in %y:

—

0 — 7(M)/G(M) - M/6(M)— M/3(M) - 0. (%)
For M/X" M we will write M. Since M/i(#) is X-torsionfree we may derive
from (+) a graded exact sequence of R-modules:

0 — F(n)(M)/G(n) (M) — KI/G(n)\ M) — M/E(n)(M) - (3),

The exactness of QF ,, then yields a graded exact:

a(n)

0 — Q% (F(M)NM)) = Q% (#) = Q% (M/E(n)(M)) >0

lpvinl j;‘-';ln] (**)
n

|(M) - Qr(u) M

tln

Now we may calculate Lim,,(;:),, and do this term-wise in the exact
sequence because all morphisms in the inverse systems are surjective (again
by exactness of Q% ) so the Mittag-Lefler conditions hold; we obtain

&)

0 — QUE(M)) — QM) — QU M/T(M)) -0
7y Y (x%)*

Q1M

QH(M/3(M)).
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Finally, by the exactness of Qf acting on (:') we also have:

0~ QL(F(M)) - QM) ——— QE(M)/F(M) -0

lﬁf Jf" (%)%

QM) ——— QX M/3(M)).

Since T(n) > 6(n) it is clear that §7(n) is injective for each n. By the Mittag-
Lefler conditions for all inverse systems involved it follows that (y7)* is
injective too. Note that 7> ¢ also implies that $7 is injective.

3.14. ProPoOSITION. With notation and assumptions as before:

l. QXM)/(M/R(M)) is X-torsionfree. If > then also Q%(M)/
PI(QE(M)) is X-torsionfree.

2. QUM)/(MIR(M)) is X-torsionfree. If T> & then we also have that
QUM)/(p?)*(Q*(M)) is X-torsionfree.

3. The map p7: QH(M) - Q¥(M) is a strict filtered morphism and it is
the unique strict filtered extension of the canonical strict filtered morphism
Mia(M)— M/t(M).

Proof. 1. Suppose ae Q%(M) is such that Xae M/k(M). For some
Te #(r) we have Jac M/R(M). If Ta ¢ X(M/R(M)) then 0=7(IXa)=
n(T) #(Xa) with #(Xa)#0 in G(M/K(M))=G(M/R(M)), where n: R —
R/XR, #: M/R(M)— G(M/K(M)) are the canonical maps. Since n(l)e
ZL(R) and G(M/x(M))=G(M)/RG(M) (Lemma 2.3(3)) is K-torsionfree,
it follows that #(Xa)=0 or Xae X(M/R(M)). Since QX(M) is itself
X-torsionfree ae M/%(M) follows. For the second statement, consider
bng(JVI) such_that Xbeﬁ;’(Qf;(M)). Pick Je #(6) such that JXbc

M/U(M))—M/r . Since Jh< Q#(M) the first statement yields that
Jhc Mfr( ). The perfectness of 0% and the injectivity of j7 yields that
QXR)-Jb=QiR) b= 77 Q5(M/T(M)); hence be pI(QE(M)).

2. Suppose that ae Q“(}Vl) is such that Xae M/k(M). We represent
a by a,eQ%f, (M/X"M). Then Xa— Xa,eM/R(n)-(M)=(M/R(M))
X"(M/I\(M) ) (note that M/I\M is indeed X—lorsnonfree) For some Te (%)
we have I-a, CM/n(n)(M) and XT-a,c X(M/x(n)(M)). Calculating
module X yxelds n(1) #,(Xa,) =0, where n,: M/X"M — M/XM and the
induced =,,: M/h(n)M—»G(M)/nG M) are the canonical maps. Since
n(lye #(k) it follows that 7,(Xa,)=0 or Xa,c X(M/k(n) M); therefore
either a, e M/ik(n) M or Xa,=0 and then a,c X"~ '(M/&k(n) M). In the
latter case a, ,=0. If for some n we have a, ¢ M/R(n) M then this is true
for all larger n too and so the chain representing a, (..., @, ...} has a tail of
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zeros on the left or else all a,e M/R(n) M= (M/x (M))/X"(M/R(M})) or
ae (M/R(M))"". Since M/ik(M) is X-closed in (M/K(M))"* it follows that
ae M/R(M).

For the second statement take beQ“(M) such that Xbe (p?)* ( Q“
Represent b by &, in Q% ( M/X"M) such that Xb, € 37(n)( Gl”,(M, X”M))
For some Te & (G) we obtain: X7 b,, < p?(n)(M/é(n) M)= M/i(n) M

Then either T-b,c M/i(n) M or else I-b,c X" '(M/i(n) M), ie.,
7 b, l_0 in (M/X""‘M)/f(n— 1)(1\71/X"’ 'M) or b, ,=0. In case all

n)(Qﬁ(,,)(M) we obtain be (p?)" (Qg(M))“ but the latter is
(P )“ Q“(M in view of Theorem 3.12. In case some b, ¢ p (n)QF,( M))
then this is also true for all bigger # so b, =0 for all m = n for some given
n; hence b,=0 for all n and »=0 in this case.

3. Obvious from 2. |

3.15. Remark. Using Q%(M)**= Q% M) from the beginning of the
proof of Proposition 3.14(2) one may reduce the proof to 1 plus the obser-
vation that the morphism 7 is an .Z,-morphism such that X"Q¢(M)n
PIQE(M)) = X"p°(QE(M)); hence p7 is strict filtered in the X-adic
topologies of "the modules. The composition Q"’(M)-* QM) —
(QE(M))~¥ is strict for the X-adic topologles involved; hence it factorizes
through a strict (Q§(M)) ¥ —— (Q¢ (M),

(pTW

4. A MICROSTRUCTURE SHEAF

In this section we assume that R is a Zariski filtered ring such that G(R)
is a commuztative Noetherian domain and we will also assume that G(R) is
a positively graded ring. For some of the results one may consider a much
more general setting, but for the applications we know it is enough to
consider this classical situation. Note that the assumptions on G(R) alone
already imply that FR is Zariskian. If one drops the assumption that G(R)
is positively graded the results remain true but at the price of replacing
Proj(G(R)) by the graded spectrum Spec?(G(R)) which is a less commonly
used geometric space. Proj(G(R)) with its Zariski topology has two struc-
ture sheaves defined on it, the graded one and the ungraded one obtained
by taking parts of degree zero in the graded one. It is the latter one that
is regarded as the structure sheaf of Proj. We write X = Proj(G(R)), and
X(I)= Proj{(G(R)) = {Pe Spec*(G(R)), P #» G(R), =@ ,.0G(R),} is a
Zariski open set associated to a graded ideal of 7 of G(R) given by X(I)=
{PeProj(G(R)), P » I}. The graded structure sheaf O% is obtained by
taking for the sections over X(/) the graded ring Q§(G(R)). The structure
sheaf O, is then obtained by associating (Q§(G(R))), to the Zariski open
set X(/) and this is indeed the classical projective structure sheaf (but we
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used the description of all sections by localizations in the philosophy of
D. Murdoch and F. Van Opystaeyen, cf. [12], that also reappeared in the
graded context, cf. [20]). If J>=17 are graded ideals of G(R) then
X()c X(J)and kK, 2K, or (k)= L(K,). Restricting to ideals of the form
I=G(R)r where 7 is homogeneous in G(R), we see that Proj(G(R)) has a
topology basis such that the associated i, are saturated; indeed &, will then
be associated to the Ore set = '({1,7 #% ..}) in R. For properties of
sheaves we may almost always restrict to a basis of the topology so we may
fix from now on a basis # for the Zariski topology of X consisting of sets
X(1) for which &, is saturated and R, is perfect (i.e., it is enough that # con-
tains the X (/) for graded principal ideals of G(R)) and we also write # for
the set of graded kernel functors corresponding to the X(7)e 4. that is, we
will write K€ 4 if K = &, for some X(I)e B. To a ¥ € # we associate Q*(R)
and Q*(R) as defined in the foregoing section. From Proposition 3.14(3) it
follows that we have defined presheaves Q% and O%, respectively, on X.
The stalk of O% at PeProj(G(R)) is Q%(G(R)) and for O, we obtain
(Q%(G(R)))o. The stalk of O% may easily be calculated.

4.1. THEOREM. For Pe X the stalk O% is a Zariski ring and moreover
(O%)" = Q%(R) is just the microlocalization at P e Spec®(G(R)), where A
denotes the completion with respect 10 the Zariskian filtration of O%.

Proof. Put S, = 0% = lim, gk » Q/(R), [ homogeneous. If
xeF |§,, aeF,S, then for some homogeneous feG(R)— p we have
xXeF ,Q“ (R), ae FyQF(R). Since Q%( R) is a Zariski ring we have that
(1 —ax) 'e FoQF(R); hence (1 — ax) eFOS and this leads to F S,
J(FOS ). It remains to check whether S is Noetherian. Take a left ldeal
LcS (for proving the left Zariskian condmon a similar argument will
hold for right ideals). For a fixed homogeneous fe G{R)— P we have that
Q% (R) is a Zariski ring and (Q,(R))" = Q}(R) where the completlon 1s ﬂat
because Q,(R)~ is Noetherian (cf. [10]). We have L(f)= LnQ"(R
finitely generated. For another homogeneous ge G(R)— P it is clear that

Lf2)n QR =Q (R (L(f)n Q, (RN

because if zeL(fg)n Q,(R)~ then [ :zc Lf)n OR)~ for some
Ie #(%,) and Q. (R)~ I~ =Q,(R)™ by perfectness of K ,. The flatness of
0, (R)" as a right Q.(R)-module, or rather the corresponding property
on the Rees level, yields that

Lifg) = (Qu(R) )" (L(fe) " Q,(R))
=(Q, (R )V AL YN QAR)™
=(Q¥(R))~ L(f)

481058 (18
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(Q,g(R is also flat as a Q,(R)-module). Hence the finite set of generators,
ALy 4p» 53Y, for L(f) over QF(R)™ isstill generatmg L(fg) over OL(R)™.
Since L = ;e necir) » L(f) it follows that L is generated by {4,, ..., /,,}
over S Hence O is a Zariski ring. (Note that an easy extension of the
idea of the proof of Proposition 3.11 together with Proposition 3.14(3) or
Remark 3.15 allows one to see that a graded left ideal of QF(R)™ i
generated as a QF(R)~-module by its intersection with Q“(R)‘ ) Now
since L(K,)=U{ZL(K), Ke# and P¢ ¥(K)} and K, as well as all the &
involved here are saturated and such that £, as well as the & are perfect it
follows that for every Te £ (¥) we obtain (QH(R)™)I™ =Q%(R)™ and also
oz (G(R)) (7)—Q”(G(R)) hence in view of Proposmon34 it follows
that S,,CQ“(R)” Since Q,,(R)‘CS follows from S =lim;{QXR)",
P¢ £(R)} > lim (Q(R), P ¢ £(R)} =0 R)" and 04(R) =
(Q,(R)™)"", we arrive at (S )" Y=QHR)~ or S,=Q4(R)

Note. Since we have assumed that G(R) is a domain, all the maps in
the directed system were injective, so in fact lim, is just the union of the
Q% viewed as subrings of the total microlocalization QI.(R)~ obtained by
microlocalizing at AG(R)*; the latter microlocalization is not a gr-skewfield
(all homogeneous elements are invertible) because X is not inverted in

Eir(R)™. In fact 4= Q% r(R) is a skewfield and its filtration is the
filtration of a discrete valuation (given by v(x)=deg a(x) for xe d) (see
also [11]) so its Rees ring is a gr-valuation ring.

4.2. THEOREM. With notation as before: O%, Q% are sheaves.

Proof. Consider a covering X(/)=J, X(/,). We use the notation of
Proposition 3.14 and the remarks preceding it, so let (pjj)“ =p% and
p;,=p, be the restriction morphisms from X(/) to X(/,) in 0%, resp. O4.
If for some ge Q% (R R) we have that p“(g)=0 for every « then we have to
establish that g =0. In our situation here the (p, )* and (p} ,) are injective
so 0%, and similarly O%, is indeed a separated presheaf. Now consider a
covering X{(I)=UJ, X(I,) and given elements g,e Q‘;‘.,(R) such that
(P (8,)= (pl‘,)“ (gy) for all o and fi, then we have to construct
ge (R) such that for cvery a, (p?)" (g)=g,.

Fl[‘Sl observe that it suffices to prove the claim for finite coverings (since
G(R) is Noetherian every X(/) is compact so there is a finite subcovering
of X(I'=J, X(I,) and by the classical trick one verifies that it is indeed
sufficient to establish the claim for this finite subcovering), so we assume
from here on that X(/)=UJ, X(/,) is a finite covering. Write K=&,,
K, =K, . Since the localizations at & and &(n) as well as each &, and &,(»)
coincide on R/X”R-modules for each n we write &, K, for £(n), K,(n) resp.
when we are concerned with localization of R/X"R-modules. We write &,
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for the &, , which is associated to X(/,)n X(/g). For every ne N we have
the following commutative diagram:

Qf,,(R)/X"“QR (R)—— Q2 (R)X"Q% (R)

Raff Rt

[)’”(IH

,>:“m+|| g R)/X"*IQ "'(R ) X" A’(R

‘1 (n+l| At ',,'
‘I

QLRYX"* 'Q“(R)ﬁ** QURYX"Q

Now g, e Q% (R) determines g, (n)e QF(R R)/X"Q¢ (ﬁ) for every n, such that
pisn) g, (n)= zﬁ(n) gp(n) for all a, f and for all n. Fix n for a moment.
Then there exists a g(n)eQ R)’X"Q ‘(R) such that pr(n)gn)) = g.(n)
for every o because the Q£(R/X"R) do determine a sheaf over X. Indeed if
g.: H,— R/X"R represents an element of Q¢ (R/X"R) for i=1, 2, such that
g, and g, coincide on some Le ¥ (K, v ;\2) Lc A, ~ H, then g and g,
coincide on A, A, (because A, H,/L is K, v #,-torsion and R/X"R is
Ky v Ky -torsion free) and we may deﬁne geQf ., il (R/X"R), g: A,+ H,-
R/X"R by g|H,=g,, g|H,=g,, such that g restricts to g, and g, as
desired (then extend the argument to finite coverings in the obvious way).
Now ¥4 +'(g(n+1))— g(n) is mapped to zero in each Q% (R)/X"Q%(R);
hence Y+ '(g(n+ 1)) = g(n) follows from the separatedness of the sheaf at
level n. Consequently (g(n), neN) determines ge Q*(R) such that
(py,)" (g)=g,, because for every n we have g.(n)=p; (n), as desired. The
statement about Q% follows immediately from the foregoing. |

4.3. Remark. 1f M e R-filt is such that G(M) is (absolutely) torsion free
(ie., r’m =0 for Fe G(R), me G(M) yields m —0) then the foregoing proof
carries over to 0%, and O, given by Q%(M) and Q*(M) resp. over the
Zariski open set corresponding to € 8. We do not restrict to the torsion
free case usually so we write OM, resp. O4,, for the sheaf associated to the
presheaf determined by Q*(M), resp. Q¥(M), over the Zariski open set
corresponding to K e #. The proof of Lemma 4.1 carries over to this situa-
tion and therefore we have (0f{,),,=Q‘$F(A7I), (0%,),=Q% (M) for PeX.
The sheaf O, is a sheaf of filtered rings and we can say that O/ is a sheaf
of Zariski rings since on a basis of the topology # the sections Q%(R) are
Zaniski rings.

Define a filtered Ring to be a sheaf of rings R endowed with a family of
subsheaves of groups, R,,, neZ, such that R, <R, , . R,-R,, cR,  , for
n,me Z, the unit section 1 is in R, and R={J, R, where the term on the
right stands for the sheaf associated to the presheaf X(/) — (J, R, (X(/)). Tt
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is clear how to define a filtered Module over a filtered Ring and one can
continue to introduce “good filtrations” on Modules and obtain sheaf
versions of many of the ring theoretical properties that have been obtained,
e.g., in [2,9] ... It is not difficult to prove that a Zariski ring R (ie., a
sheaf of Zariski rings) such that G(R) is coherent, is itself coherent;
moreover if .4 is an #-module which is locaily of finite type then .# is
coherent if and only if G(.#) is coherent. Also, if .# is coherent and F.#
1s good then every coherent submodule .4” of .# has an induced filtration
F A= A~ F.# and this filtration is again a good filtration of the sheaf .4
We do not go deeper into the theory of coherent filtered sheaves here.
The sheaf OF% is a filtered sheaf in the sense introduced above: let us
write # = O%. Then & = 0% is a graded sheaf and G(#) = /X is also
a graded sheaf (where X stands for the global section of "ﬁ determined by
Xowa) for each ke #) More explicitly: %, R(X(I))= ®(R) where

n

K,€ # and G(4#) is the sheaf associated to the presheaf O,,gi /,,, Z, . In
this case # =0’ we see that G(#) is nothing but the graded structure
sheaf Q% of Proj(G(R)). Similarly, to a filtered R-module M with good
filtration FM there corresponds the microstructure sheaf O, that is a
filtered module over O such that G(O%,) i1s the graded structure sheaf of

G(M) over Proj(G(R)).

So %4 is a Ring with FZR(X(1))=F,Q% (R) if K,€ % and this defines
a subring of & isomorphic to the part of degree zero (R), of the graded
sheaf & and the image of (#), in the graded structure sheaf O% is the
classical structure sheaf O, of Proj(G(R)).

4.4. THEOREM. The presheaf defined by associating F Q% (R) to X(I),
where K,€#, is a Noetherian and coherent sheaf, the stalk ar Pe X is
FoQ%,(R). The ideal F_,\ R is coherent and FyR|/F | A =0y, the structure
sheaf of X = Proj(G(R)).

Proof. All claims follow from the foregoing observations, up to the
following argument. Viewing %, with the filtration # given by .# , A,
F_RX(I)=F ,0%(R) for n20, we obtain G, (£#)=(0F) =
P, <o(0%), which is Noetherian and coherent. Since each graded ring
Q%,(G(R)) ,is Noetherian and # is Zariskian on the ring % 4 it follows
that each # 4 is locally of finite type as an %, #-module (this is just the
phrasing in terms of sheaves of corresponding results in [2, 11]). Therefore
the coherent and the Noetherian property of G ; (%) lift to # 4 and in
a similar way one establishes that # | i1s a Noetherian coherent ideal.
For Noetherian sheaves see also [15].

We call # A the sheaf of quantum-sections of O (inspired by termi-
nology mentioned in [6]).
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4.5. COROLLARY. Let M e R-filt have good filtration FM. Then we have
a filtered sheaf .#= O, of A-modules, with G(.#) equal to the graded struc-
ture sheaf OF ,,,. Since the latter is coherent and # is locally finite it follows
that .# is coherent. We obtain a coherent Fy.# with an FyR-submodule
F_ M such that Fy MF_ | M= Oy, the usual structure sheaf of G(M)
over Proj(G(R)). Again, we call Fy# the sheaf of quantum-sections of
O

4.6. PROPOSITION.  If M —> N is a strict morphism in R-filt then f induces
a strict morphism on the sheaves of quantum-sections F, M —> Fo N If FM
is good then ¥ is good on %, .

Proof. Iff_.is strigt thj:n M—» N—L-0, with L =Coker f, is strict
exact and so M — N — L — 0 is exact with L being X-torsionfree. Take a
K € . By the exactness of Q%(-) we obtain the following exact sequence of
graded Q‘;(ﬁ)—modules:

QM) - QUN)— QL) —0.

Now since L/R(L)=(L/x(L))~ (Lemma 2.3(1)) it is clear that L/R(L) is
X-torsionfree. From Proposition 3.14(1) we retain that Q*(L)/(L/R(L)) is
X-torsionfree and hence it follows from both observations combined that
Q“L) is X-torsionfree. Therefore X"Q%(N) mQ“(f) Q“(M)—X"Q" f)
(Q(M)) and thus the graded morphism Q“(f is strict in the respective
X-adic topologies of the modules considered. Therefore we have a strict
exact sequence:

QUM) — QUN) = (L) = 0.
The restriction of Q*(f)=¢, to the quantum-sections over X(x) is
again strict ¢,: FoQ“(M)— F,Q*(N) and so we define a sheaf map
Q. Fo. M — Fy. NV, @o(X(K))=¢,, which is strict in the # -filtration of
the sheaves. For the second condition we consider M which is a
finitely generated graded R-module. By the perfectness of ¥ we obtain
then that Qﬁ:(/Vl) is a finitely generated Q*(R)-module, say Q% M)=
Q“R)e, + +Q“(ﬁ)e with ¢, homogeneous in Q¥ M). Then
(M) = Q“(R)<,,I e+ - + Q“(R)>d where dege; = —d,, i=1,

If d,sO then Q%(R), e, is f“mtely _generated as a QYR) . -module since
Q*(R), is finitely generated in Q%R) .1fd;>0 then Q% R) ., > QR)
but again Qf;(f?)sd’ is finitely generated as a Q%(R) module (see also the
reference in the proof of Theorem 4.4 where it is stated that each .# is
locally finite as an #22-module). So it follows that F,Q*(M), having
QM) for (Fo@Q¥(M))~ with respect to its # -filtration, is a good
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filtered module. Since the latter statement holds for all < in the basis 4 for
the topology on X, it follows that .#,.# is a good filtration.

If we look at an arbitrary M e R-filt with good filtration FM then some
microlocalizations trivialize because G(M) may be k-torsion; in order to
avoid these trivializations one may restrict attention to the characteristic
variety, of M (compare [5]) in Proj(G(R)). Let 4 = Anng ,, G(M) be the
annihilator of G(M) in G(R) and let V(A4)c< Proj(G(R)) be the closed set
determined by the (graded) ideal A. Any K appearing as A{K,, some
PeV(A)} does not contain 4 in ¥ (k).

47. LEMMA. If K= A{K,} and some Pe V(A), ie., L(K)={L(Kp)}
and some Pe V(A) then kKG(M)# G(M), or Q5(G(M)) #0.

Proof. U KG(M)= G(M) then since G(M) is a finitely generated G(R)-
module and since G(R) is commutative, we have JG(M)=0 for some
Je #(k). Thus Jc= A but then Ae ¥ (k) meaning A ¢ P for some
Pe V(A), a contradiction.

For an M e R-filt with good filtration FM we define the quantum-sections
over the characteristic variety by the restricted sheaf: #,.#|V(A),
associating Fo Q) (M) to X(I)n V(A). When X(/)n V(A) is not empty then

# (M) is not zero in view of the lemma. When the graded ideal 7 of G(R)
is not generated by elements in G(R), (and usually G(R), is a field in most
applications) then the perfectness of i, e 4 entails that 1 =3 ¢,/, for some
homogeneous i, e/, q,€ Qf (G(R)); hence there is a nontrivial negative
part in Q% (G(R)) = G(Q% (R)), consequently F,Q% (M) # 0. Consequently
the sheafl .%#,.#| V(A) has nonvanishing sections everywhere. The sheaf of
quantum-sections over the characteristic variety should prove to be useful
in the study of holonomic or pure modules over certain rings of differential
operators; this is the topic of work in progress. Quantum sections provided
the tool for the introduction of generalised gauge algebras in [21].
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