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Using Firth’s method for model estimation
and market segmentation based on choice

data

Abstract

Using maximum likelihood (ML) estimation for discrete choice modeling of small
datasets causes two problems. The first problem is that the data may exhibit sep-
aration, in which case the ML estimates do not exist. Also, provided they exist, the
ML estimates are biased. In this paper, we show how to adapt Firth’s penalized
likelihood estimation for use in discrete choice modeling. A powerful advantage of
Firth’s estimation is that, unlike ML estimation, it provides useful estimates in the
case of data separation. For aggregates of six or more respondents, Firth estimates
have negligible bias. For preference estimates on an individual level, Firth estimates
show little bias as long as each person evaluates a sufficient number of choice sets.
Additionally, Firth’s individual-level estimation makes it possible to construct an
empirical distribution of the respondents’ preferences without imposing any a priori
population distribution and to effectively predict people’s choices and detect mar-
ket segments. Segment recovery may even be better when individual-level estimates
are obtained using Firth’s method instead of hierarchical Bayes estimation under a
normal prior. We base all findings on data from a stated choice study on various
forms of employee compensation.

Keywords: discrete choice modeling, data separation, Firth’s penalized maximum
likelihood, hierarchical Bayes estimation, individual-level estimates, market seg-
mentation
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1 Introduction

Discrete choice models relate respondents’ choices of one of two or more alternatives
or profiles to the attributes of the respondents and the attributes of the alternatives.
Data for discrete choice models are either collected via stated or discrete choice exper-
iments (DCEs), where respondents state their choices in hypothetical situations, or via
observational studies, where respondents reveal their actual choices made. Stated choice
data have been used to predict preferences for prospective goods in marketing, innovative
health programs in health economics, new transportation systems in transport planning,
and various other applications often involving new developments. Revealed choice data
have been used to study actual choices of, for example, which car to buy, where to go to
college and which mode of transport (car, bus, rail) to use for commuting to work.

Individual-level choice data often exhibit separation. In general, separation occurs in dis-
crete choice data if the responses can be perfectly classified by a linear combination of the
attributes of the alternatives (see, for studies on logistic regression, Albert and Anderson
(1984), Santner and Duffy (1986), Lesaffre and Albert (1989) and Allison (2008)). Com-
plete separation occurs when a combination of the attributes classifies responses without
error according to a strict inequality. Quasi-complete separation occurs when a combin-
ation of the attributes classifies responses without error up to a non-strict inequality.

A commonly used procedure to fit discrete choice models is maximum likelihood (ML)
estimation, which guarantees that the estimator is unbiased in the event of an infinite
sample size. However, for many applications, the sample data collected are small. One
consequence of finite samples is that the probability of separation is always strictly pos-
itive. In the event of separation, the ML estimator does not exist. Therefore, for finite
samples and logistic models such as discrete choice models, the expectation of the ML es-
timator does not exist (Le Cam, 1990). That is, the integral defining their expected value
does not converge. This is because the probability of data separation is never nonzero.

In practical applications, data may or may not exhibit separation. When data separation
occurs, computer implementations of ML estimation often show the likelihood estimates
converging while at least one parameter gets large without bound. The actual parameter
estimate reported is then a function of the convergence criterion for the likelihood rather
than having any practical meaning. When attempting ML estimation for individuals,
data separation occurs so frequently as to make such an approach infeasible. For small
numbers of respondents, a lesser problem with ML estimation is that it tends to over-
estimate the utility of strongly preferred attribute levels. Similarly, undesirable attribute
levels are modeled as being even less desirable than their true utilities would indicate.
This bias is often far from negligible and can have practical implications in the decisions
that practitioners make.

To overcome these two weaknesses of ML estimation, we introduce the penalized ML
method of Firth (1993, 1995) for estimating the multinomial logit (MNL) model in the
literature on the analysis of choice data. As we show in this paper, a major advant-
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age of the method is that it allows fitting a MNL model to individual-level data, and
subsequently, exploring the heterogeneity in the respondents’ preferences and segmenting
the market. Bull et al. (2002) were the first to propose Firth’s method to estimate the
MNL model, but they applied it to small sample clinical trials outside a choice modeling
context, and did not consider individual-level data.

Firth’s method was originally developed as a general bias reducing technique in the con-
text of ML estimation, but it was also shown to provide finite parameter estimates in
the case of separation (see, for binomial and trinomial logistic regression on clinical data,
Bull et al. (2002), Heinze and Schemper (2002) and Heinze (2006)). Separation occurs
more often in small samples and in larger experiments where a design is used in which the
success probability of every observation is near 0 or 1 (Woods and van de Ven, 2011; Goos
and Gilmour, 2012). In a DCE context, Kessels et al. (2011a,b) describe an example of
an orthogonal design involving eight choice sets of two alternatives. Such design is also
called a utility-neutral design because it relies on the assumption that people are ambi-
valent about any of the attribute levels, and thus also about any of the alternatives. The
utility-neutral design of the example is poor since it leads to separation 20% of the time
when there are 100 respondents and 4% of the time when there are 200 respondents. The
authors also show that Bayesian designs for DCEs usually do not lead to data separation.
That is because the Bayesian design methodology incorporates the available information
about people’s preferences for various attributes in the choice design (Sándor and Wedel,
2001; Bliemer and Rose, 2010; Kessels et al., 2011a). A key feature of many DCEs is that
they involve a small set of levels for the attributes, which makes them more vulnerable
to data separation than studies with explanatory variables that take many different levels.

Recently, to overcome the data separation challenge and estimate choice models for each
individual separately, Frischknecht et al. (2014) presented a penalized ML method where
the penalty function corresponds to a Bayesian approach that augments the limited data
with prior beliefs about the behavior of the data (Geweke, 2005). The authors built on
penalty methods proposed by Clogg et al. (1991) and Cardell (1993). Typical of any
penalized ML approach, including Firth’s method, is that it shrinks the estimates toward
zero. Another approach proposed by Dumont et al. (2015) to estimate individual-level
choice models uses a Bayesian framework that draws priors from a sample-level model in
which the data are pooled. The approaches of Frischknecht et al. (2014) and Dumont et
al. (2015) require weaker prior distributional assumptions than hierarchical Bayes (HB)
estimation, thereby attempting to simplify the computations.

Nevertheless, a large body of literature focuses on obtaining individual-level preference
estimates from sample-level models such as mixed logit models (Train, 2009), HB models
(Lenk et al., 1996), latent class models (Andrews et al., 2002) and convex optimization
techniques (Evgeniou et al., 2007). These individual-level estimates are subsequently used
for market segmentation (see, for a case study, Allenby and Ginter (1995)). All these tech-
niques involve making distributional assumptions about the respondents, usually treating
them as coming from a single multivariate distribution. In the common case of segmented
markets, the assumption of a single population is impractical. Moreover, it is impossible
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a priori to rely on guesses about the number or multivariate location and variability of
market segments.

Along the lines of the penalized ML method proposed by Frischknecht et al. (2014),
Firth’s method fits a model to each individual’s choices separately with no prior distri-
butional assumptions imposed on the parameters. We can therefore use it to construct
an empirical distribution of the respondents’ preferences. Firth’s method differs from the
method of Frischknecht et al. (2014) in that it uses a prior that depends on the estim-
ated model itself rather than on artificial data augmentation, making it much simpler to
implement.

Inspired by Louviere et al. (2008), we classify Firth’s method to obtain individual-level
parameters for the empirical distribution of sample preferences as a “bottom-up” ap-
proach. We call an approach that makes use of prior distributional assumptions a “top-
down” approach. Also, Louviere et al. (2008) state that, in theory, if one specifies correct
preference distributions, and the number of choices per person is sufficiently large, top-
down and bottom-up approaches should give the same results. In contrast, if assumptions
about preference distributions are incorrect, the inferences from top-down models will be
biased.

The remainder of this paper is organized as follows. Section 2 reviews the MNL model
and explains the ML and Firth’s estimation techniques for this model. In Section 3, we
illustrate Firth’s method for individual-level preference estimation using an application in
employee compensation and compare its performance to HB estimation of the panel mixed
logit model. To provide an overview of the situations in which Firth’s method proves most
effective for aggregate and individual-level estimation, we describe the results of a simula-
tion study in Section 4. In another simulation study presented in Section 5, we compare
the performance of Firth individual-level estimates for market segmentation to that of HB
individual-level estimates. Finally, in Section 6, we summarize and discuss the results.

2 Model estimation

In this section, we define the MNL model for analysing choice data, and discuss the ML
estimation approach. Next, we explain how to adapt the penalized ML method of Firth
(1993, 1995) for estimating the MNL model and conclude with some inferential issues.

2.1 Multinomial logit model

The multinomial logit (MNL) model (McFadden, 1974) employs random utility theory
which describes the utility that a respondent attaches to profile j (j = 1, . . . , J) in choice
set s (s = 1, . . . , S) as the sum of a systematic and a stochastic component:

Ujs = x′jsβ + εjs. (1)
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In the systematic component x′jsβ, xjs is a k × 1 vector describing the levels of the at-
tributes of profile j in choice set s. The vector β is a k × 1 vector of parameter values
representing the effects of the attribute levels on the utility. The stochastic component εjs
is the error term, which is assumed to be independently and identically standard Gumbel
distributed. Depending on the situation, the attributes may be continuous or categorical
variables. For the sake of simplicity, we assume in this paper that the utility model in-
volves main effects only, which are then also called part-worths. When using aggregate
data, the part-worth vector β is the same for every respondent.

Under the standard Gumbel distributional assumption, the MNL probability that a re-
spondent chooses profile j in choice set s is

pjs(Xs,β) =
exp

(
x′jsβ

)∑J
t=1 exp (x′tsβ)

, (2)

where Xs = [x1s, . . . ,xJs]
′ is the design matrix for choice set s. The stacked Xs matrices

provide the design matrix X for the choice study.

The panel mixed logit (PML) model is a flexible version of the MNL model (2) that
allows the parameter value associated with each attribute level to vary randomly across
respondents according to an a priori continuous distribution. Typically, the distribution
for β is a single multivariate distribution f(β|µ,Σ) with mean µ and variance-covariance
matrix Σ. The PML probability for respondent n is then the integral

pnjs(Xs,µ,Σ) =

∫
β

exp
(
x′jsβ

)∑J
t=1 exp (x′tsβ)

f(β|µ,Σ)dβ. (3)

The PML model captures the unobserved heterogeneity in the respondent preferences by
taking into account the correlation of the probabilities for a single respondent in all S
choice sets. The model combines the individual logit models for the respondents into
a population-level model. Following common practice, we assume a normal distribution
N (β|µ,Σ) for the parameters with no correlation between the attributes. We estimated
the PML model using HB following Train’s (2009) approach and a normal diffuse prior
with mean values of zero and high variances of 1000. This approach has been implemented
in the Choice Modeling platform of the statistical software package JMP Pro 13 (SAS
Institute, Cary, NC, USA). For the problems discussed in this paper, we performed 10,000
iterations, where the first half were removed for convergence and the other half were used
for estimation.

2.2 Maximum likelihood estimation

A standard estimation technique for the MNL model is maximum likelihood (ML) estim-
ation. If we denote the choices from R respondents by a binary response variable, yjsr,
which takes the value one if respondent r, r = 1, . . . , R, chooses profile j in choice set
s and zero otherwise, then we obtain the ML estimator for the parameter vector β by

6



maximizing the likelihood function

L(β) =
R∏
r=1

S∏
s=1

J∏
j=1

(pjs)
yjsr , (4)

or, alternatively, by maximizing the log-likelihood function

LL(β) =
R∑
r=1

S∑
s=1

J∑
j=1

yjsr ln(pjs) (5)

with respect to β. We denote the resulting estimator by the parameter vector β̂ML. The
ML estimates are usually found by equating the score function or the gradient of the
log-likelihood function to zero and solving the resulting system of nonlinear equations:

∂LL(β)

∂βi
=

R∑
r=1

S∑
s=1

(xmsri − p′sx
∗
si) , i = 1, . . . , k, (6)

where xmsri is the ith entry of vector xmsr denoting the profile that respondent r chooses
from choice set s and x∗si is the ith column vector of choice set matrix Xs.

For finite data samples, the ML estimator, if it exists, is known to be biased away from
the zero vector. The asymptotic bias of the ML estimator β̂ML for the parameter vector
β can then be expressed as

Bias
(
β̂ML

)
=
b1(β)

N
+
b2(β)

N2
+
b3(β)

N3
+ . . . , (7)

where b1, b2, b3, . . . are O(1) functions of β, which can be obtained explicitly once the
model has been specified, and N = RS(J − 1) is the degrees of freedom (DF) for all R
respondents. The first-order bias due to the term b1(β)/N is negligible for large samples,
but can be severe with small or sparse datasets. Therefore, several techniques have been
proposed in the literature to correct the first-order bias after obtaining the ML estimates
(see, for instance, Quenouille (1949, 1956)). However, this type of after-the-fact bias
reduction is possible only if the ML estimates exist. Hence, it fails in the presence of data
separation.

2.3 Firth’s method

The weakness of after-the-fact bias reduction techniques inspired Firth (1993, 1995) to
propose a general method for removing the first-order term, b1(β)/N , from the expression
for the bias in Equation (7) in a way that does not rely on the existence of the ML estimator
β̂ML. This is achieved by modifying the score function, or, equivalently, by penalizing the
likelihood function using the Jeffreys prior that applies for exponential family nonlinear
models. The Jeffreys prior is a non-informative prior distribution (Jeffreys, 1946) which
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is proportional to the square root of the determinant of the Fisher information matrix of
the model under study. For the MNL model, the Fisher information matrix is

M (β) = R

S∑
s=1

X′s (Ps − psp
′
s) Xs, (8)

where ps = [p1s, . . . , pJs]
′ and Ps = diag[p1s, . . . , pJs].

Firth’s penalized likelihood function is therefore

LFIRTH(β) = L(β)
√
|M(β)|, (9)

where the likelihood function L(β) is given by Equation (4). Subsequently, Firth’s pen-
alized log-likelihood function becomes

LLFIRTH(β) = LL(β) +
1

2
ln |M(β)| , (10)

where the log-likelihood function LL(β) is given by Equation (5).

Maximizing the penalized log-likelihood function requires equating the following modified
score function to zero:

∂LLFIRTH(β)

∂βi
=
∂LL(β)

∂βi
+

1

2

∂ln |M(β)|
∂βi

, i = 1, . . . , k. (11)

This equation consists of the ordinary ML score function of Equation (6) and the first-
order derivative of the logarithm of the penalty function with respect to βi. In Appendix A,
we show that

1

2

∂ln |M(β)|
∂βi

= R
S∑
s=1

[
1

2
tr

((
XsM

−1X′s
) ∂Ps

∂βi

)
− p′s

(
XsM

−1X′s
) ∂ps
∂βi

]
. (12)

We denote Firth’s penalized ML estimator resulting from the modified score function
by β̂FIRTH. Firth’s estimation procedure has been incorporated in the Choice Modeling
platform of JMP, as well as the following inferential issues.

2.4 Inferential issues

Once a model has been estimated, it is usually desirable to make inferences about its
parameters. We estimate the standard errors of the Firth estimates by the square roots
of the diagonal elements of the asymptotic variance-covariance matrix given by

VarFIRTH

(
β̂FIRTH

)
= M−1

FIRTH

(
β̂FIRTH

)
, (13)

=

−∂2LLFIRTH

(
β̂FIRTH

)
∂β̂∂β̂

′

−1 . (14)
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To determine which effects are statistically significant, it is standard to perform likelihood
ratio (LR) tests. In such tests, we evaluate the difference in goodness of fit between nes-
ted models with Firth estimates. More specifically, we compare an unrestricted model,

with estimate β̂
U

FIRTH, to a restricted model, with estimate β̂
R

FIRTH. To perform a LR test,
one option would be to compare the penalized log-likelihood function values of the two
models computed using Equation (10). However, this option is not feasible because the
information matrices of the two models have different dimensions so that their determin-
ants cannot be compared. We therefore suggest using the ordinary log-likelihood function
values of the two models computed using Equation (5) to perform a LR test. In other
words, we suggest computing the test statistic

−2
[
LL
(
β̂
R

FIRTH

)
− LL

(
β̂
U

FIRTH

)]
, (15)

and comparing it to the χ2
ν reference distribution, where ν denotes the number of re-

strictions imposed on the parameters in the restricted model. We can motivate this

approach by the following theorem. If the ML estimates β̂
R

ML and β̂
U

ML exist, Equation
(15) is asymptotically equivalent to the LR test statistic using the ordinary log-likelihood
function values of the restricted and unrestricted models with ML estimates,

−2
[
LL
(
β̂
R

ML

)
− LL

(
β̂
U

ML

)]
. (16)

We provide a proof of this theorem in Appendix B.

3 An application in employee compensation

This section presents an application using stated choice data related to employee com-
pensation to illustrate Firth’s penalized ML method for estimating the MNL model, in
particular for estimating individual-level MNL models. We first describe the design of the
study with the attributes and attribute levels of interest. We proceed with the estimation
of different MNL models using the traditional ML method and Firth’s method, which we
compare to HB estimation of the PML model. In this regard, we score the models on
their in-sample and out-of-sample prediction performance.

3.1 Design, attributes and levels

We commissioned a choice experiment to investigate preferences for various forms of
compensation of employees. A compensation scheme or profile combined levels of four
attributes: salary increase, bonus, extra vacation and flexible working time. Each of
these attributes had three levels, which appear in Table 1. We assumed all attributes
are categorical and used effects-type coding for the attribute levels. This means that we
coded the three levels of each attribute as [1 0], [0 1] and [−1 − 1], respectively. In this
way, the part-worths associated with each of the attributes sum to zero.

<Insert Table 1 about here>
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We generated a Bayesian D-optimal design of 24 choice sets of three profiles using Kessels
et al.’s (2009) algorithm implemented in JMP’s Choice Design platform. We divided the
design into two surveys of 12 choice sets, where every respondent evaluated one survey.
We distributed the surveys equally over a total of 448 respondents who participated in
the experiment.

3.2 MNL and PML model estimation

We analysed the data from the compensation study first by aggregating the data from all
448 respondents and estimating the 8 part-worths of the MNL model. The ML method
and Firth’s method led to part-worth estimates that are the same up to the third or fourth
decimal place. This is due to the large number of respondents, choice sets and profiles,
providing a total of 10,752 DF, which makes the bias of the ML estimates negligible. The
second and third columns of Table 2 contain the part-worth estimates from the aggregate
data analysis, where the implied estimates for the last level of each attribute corresponding
to effects-type coding are also shown. Bonus and salary increase are the most preferred
forms of compensation, followed by extra vacation and flexible working time.

<Insert Table 2 about here>

Second, we estimated a MNL model for each of the 448 respondents separately. Each indi-
vidual dataset provides a total of 24 DF for the estimation of 8 part-worths. In doing so,
the ML method resulted in separation for 386 respondents, i.e. in 86% of the cases, which
makes it infeasible for individual-level estimation. On the other hand, Firth’s method
yielded individual-level part-worth estimates for every respondent, which we compared to
the individual-level estimates obtained from HB estimation of the PML model.

The last six columns of Table 2 contain summary statistics of the Firth and HB individual-
level estimates. Figure 1 plots the estimates from analysing the aggregate data together
with the 95% confidence or credible intervals of the mean individual-level estimates. For
the Firth estimates, the mean individual-level estimates lie close to the estimates from
analysing the aggregate data, within approximately two standard errors, and the confid-
ence intervals are fairly narrow. This illustrates that the Firth individual-level estimates
make sense overall. Note that, in general, there is no reason to expect that the mean
individual-level estimates converge to the estimates from the aggregate data analysis.
This is because of Jensen’s inequality. That is, a nonlinear function of the expectation of
a random variable is generally not equal to the expectation of the nonlinear function of
the random variable.

<Insert Figure 1 about here>

Compared to the Firth mean individual-level estimates, the HB estimates are larger in
absolute magnitude, especially for effect sizes that matter. This is because the Firth
estimates are shrunk toward zero. The credible intervals of the HB means are of the same
size or slightly narrower than the confidence intervals of the Firth means.
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3.3 MNL and PML model prediction

To examine which of the estimated models performs better for predicting the individual
choices, we computed hit rates or fractions of correct predictions for each model. We
did so based on the full sample used for estimation as well as on four randomly selected
holdout samples each consisting of 4, 3, 2 or 1 choice set(s) of the 12 choice sets presented
to each respondent. We thus used 8, 9, 10 or 11 choice sets per respondent for estimation
or training in case of the out-of-sample prediction.

The in-sample hit rates equal 61% using the estimates from the aggregate analysis, 82%
using the HB individual-level estimates and 93% using the Firth individual-level estim-
ates. On the other hand, the four holdout hit rates all equal 61% using the estimates
from the aggregate analyses, 67%, 68%, 68% and 70% using the HB individual-level es-
timates, and 61%, 63%, 64% and 67% using the Firth individual-level estimates. We
observe that the individual-level estimates generally lead to better predictions than the
estimates from the aggregate analyses, so that respondents seem to be heterogeneous in
their preferences. For the individual-level estimates, the in-sample hit rates are much
larger than the holdout hit rates, especially using Firth’s method. Hence, some overfit-
ting of the data takes place. Furthermore, based on the training samples of this example
involving 8, 10, 12 and 14 residual DF from each respondent (given by 2S − 8, with S
the number of choice sets in the training sample), the HB estimates outperform the Firth
estimates for prediction, but the difference in performance decreases with the residual DF.

The relatively good performance of HB individual-level estimates for small residual DF
is due to the fact that these estimates borrow information from other individuals in
the population. This is inherent to the top-down nature of the HB approach. The
Firth individual-level estimates are obtained independently for every respondent, and
their quality increases substantially with the residual DF.

3.4 MNL and PML model evaluation

By performing a LR test using Equation (15), we can establish whether an individual-
level model specification provides a better fit to the compensation data than the aggregate
MNL model. More specifically, we compare the restricted or aggregate MNL model to the
unrestricted MNL model, allowing for 448 individual-level vectors of part-worth estim-
ates, and to the PML model. The ordinary log-likelihood value for the restricted MNL
model is -4,747.7, whereas for the unrestricted MNL model, it is -2,069.9, and for the
PML model, it is -3,181.3 on average. The value for the LR test statistic is then 5,355.6
for the unrestricted MNL model and 3,132.8 for the PML model.

For the comparison between the aggregate and individual-level MNL models, under the
null hypothesis of equal part-worths across respondents, the LR test statistic is χ2

ν dis-
tributed with ν = 3,576 (8 × 448 − 8). For the comparison between the aggregate MNL
and PML model, the LR test statistic is χ2

ν distributed with ν = 12 (20 − 8, where 20
is the sum of 8 posterior means, 8 posterior variances and 4 posterior within-attribute
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covariances). In both cases, the p-value for the LR test statistic is essentially zero, so that
we decisively reject the null hypothesis of equal part-worths. Therefore, there is signific-
ant respondent heterogeneity, which begs the question of segmentation. Uncovering the
source of the respondent heterogeneity is the topic of Section 5.

4 Simulation study

In this section, we present a simulation study to identify the situations in which Firth’s
penalized ML method proves most useful. We first discuss the setup of the simulation
study revealing the various experimental conditions. We then compare the empirical
performance of Firth estimates to that of standard ML estimates obtained from aggregate
data as well as individual-level data in each of the conditions.

4.1 Setup of the simulation study

We study the empirical performance of Firth’s method for estimating the MNL model by
simulating choices from different numbers of respondents in various experimental condi-
tions. Similar to the compensation study discussed in Section 3, the experimental condi-
tions all involve four three-level attributes. Also, we assumed the 8 part-worth estimates
from the aggregate analysis of the compensation data to be the true part-worths, that is,
βT = [−0.920, 0.186,−1.005, 0.200,−0.460, 0.114,−0.264, 0.096]′, and used them to sim-
ulate a series of 1,000 datasets with choices from 1, 6, 12, 24, 48 and 96 respondents.

We originally designed the simulation experiment as a 23 factorial experiment with the
following factors: type of design, number of choice sets, S, and number of profiles per
choice set, J . The design type is either Bayesian D-optimal or utility-neutral D-optimal
(see Kessels et al. (2011a) for a definition of D-optimality in these cases), S is either 12
or 18, and J is either 2 or 3. This setup resulted in eight different designs. However, we
learned that the interaction of S and J , corresponding to the residual DF, provides a more
natural explanation of our results than studying the effects of S and J separately. The
residual DF are defined by S(J−1)−k, with k the number of part-worths. This factor has
four levels equal to 4, 10, 16 and 28. Table 3 provides an overview of the characteristics
of the eight designs. The designs themselves are available from the authors upon request.

<Insert Table 3 about here>

For each of the simulated datasets in the experimental conditions, we used the traditional
ML method and Firth’s method to estimate the part-worths. We identified the cases
involving data separation and quantified the bias and variance of all estimates obtained.
To measure the overall quality of the estimates, we also computed their mean squared
error (MSE) as the average of the squared differences between each estimate and the
true value of the corresponding part-worth. The MSE then sums the squared bias and
variance. We used all part-worth estimates in the computations, including the implied
part-worth estimates resulting from effects-type coding.
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4.2 Performance of the estimates from aggregate data

We simulated series of 1,000 datasets with choices from 6, 12, 24, 48 and 96 respondents
generated with the eight designs in Table 3. Some of the cases resulted in data separation,
though for every case, Firth’s method was able to provide part-worth estimates. Table 4a
shows the cases in which data separation occurred, as well as the frequency with which
it happened. The problematic cases mainly involve choice data from a small number
of respondents (equal to 6, 12 and 24) generated using the utility-neutral designs with
few residual DF (equal to 4 and 10). The worst case resulted in separation in 42.4% of
the datasets and involved choices from 6 respondents generated using the utility-neutral
design with 4 residual DF. For the smallest number of respondents and residual DF, the
Bayesian design also resulted in separation, but only in 1.7% of the datasets. Because of
the frequent occurrence of data separation, the use of traditional ML estimation for small
datasets is not an option.

<Insert Table 4 about here>

The simulation study that evaluated the likelihood of observing separation used a com-
pletely random creation of 1,000 datasets. For each of the cases involving data separation
in Table 4a, we also generated 1,000 datasets where the ML estimates existed by creating
random datasets and then discarding those exhibiting separation. So, these 1,000 datasets
are random conditional on the existence of the ML estimates. For each of these 1,000
datasets, we obtained estimates using the traditional ML method and Firth’s method.
This allows for direct paired comparison of both the variance and the MSE of the ML
and Firth estimates. For the bias comparison, however, we did not use the 1,000 data-
sets generated conditional on the existence of the ML estimates to calculate the bias of
the Firth estimates. We used the completely random sample of 1,000 datasets instead.
That is because making the sampling of datasets conditional on the existence of the ML
estimates causes the Firth estimates to appear biased due to the restriction in the ran-
domization. Using the completely random sampling of datasets demonstrates both that
the Firth estimates always exist (even in the cases where ML estimation fails) and that the
Firth estimates are unbiased even for small numbers of respondents and studies involving
few residual DF (see Section 4.2.1 for further details).

4.2.1 Bias of the ML and Firth estimates

To compare the bias of the ML estimates to that of the Firth estimates, we plotted
the bias against the true part-worth values, since it turns out that the bias of the ML
estimates increases with their absolute size. Figure 2 shows the bias of the estimates from
analysing choices from all five numbers of respondents generated using the Bayesian and
utility-neutral designs. The plots reveal that Firth’s method removes the bias completely
in all situations. The advantage of Firth’s method is most pronounced when the true
part-worth values are large in absolute magnitude, the number of respondents equals 6,
12 or 24, and the residual DF equal 4 or 10. The bias of the ML estimates is large in
all these situations. It is generally even larger for the utility-neutral designs than for the
Bayesian designs. On the other hand, the bias of the ML estimates is zero for zero true

13



part-worth values in all situations and negligible for true part-worth values that are small
in absolute magnitude. Also, the bias of the ML estimates disappears gradually as the
number of respondents and residual DF increase.

<Insert Figure 2 about here>

These results are similar to those obtained by Heinze and Schemper (2002) and Bull et al.
(2002) from simulation studies comparing the standard ML method to their implement-
ation of Firth’s method for estimating logistic regression models. They also noted that
the bias reduction causes the Firth estimates to be slightly smaller in absolute value than
the ML estimates. This is the shrinkage effect typical of any penalized ML approach.

4.2.2 Variance and MSE of the ML and Firth estimates

To compare the variance and MSE of the ML estimates to those of the Firth estimates,
we computed the paired differences in the variance and MSE. Figures 3a and 3b plot
these differences for the Bayesian and utility-neutral designs against the squared true
part-worth values. As shown in Figure 3a, the differences in the variance are all positive,
meaning that Firth’s method reduces the variance in all situations. This reduction is,
however, only substantial for the smaller studies involving 6 or 12 respondents and 4, 10
or 16 residual DF, and for the true part-worth values that are large in absolute magnitude,
which are the ones that matter. This result is in line with the results of Firth (1993),
Heinze and Schemper (2002) and Bull et al. (2002), who observed for logistic regression
models that the bias reduction of the estimates in small to moderate sample settings has
a beneficial impact on the variance too.

<Insert Figure 3 about here>

Regarding the differences in MSE, Figure 3b shows a similar picture as Figure 3a, con-
firming that the Firth estimates are uniformly better than the ML estimates. The ML
estimates are therefore inadmissible since the Firth estimates outperform the ML estim-
ates in terms of MSE for every situation.

4.3 Performance of the individual-level estimates

We now study the interesting case where we simulated choices from a single respondent
for each of the eight designs in Table 3. Using traditional ML, we observed many instances
where the estimation failed due to data separation in each of the design situations. By
contrast, Firth’s method always provided individual-level part-worth estimates. Table 4b
shows the frequency with which data separation occurred. The worst scenario involves
the designs with 4 residual DF. In that scenario, almost all datasets exhibit separation.
On the other hand, for the designs with 28 residual DF, the frequency of data separation
is smaller, but still substantial. It equals 15% for the Bayesian design and 30.7% for the
utility-neutral design. For all four values of the residual DF, the Bayesian designs resulted
in data separation less often than the utility-neutral designs.
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Using the separation data in Table 4b, we modeled the probability of separation as a
function of the design type, either Bayesian or utility-neutral, and the residual DF. We
obtained the best regression fit using the probit model which predicts the probability of
separation as

π̂ = Φ (1.849 + 0.222 Design[Utility-Neutral]− 0.095 Residual DF) , (17)

where Φ denotes the standard normal cumulative distribution function and the factor
design type is coded using a +1 for a utility-neutral design and a −1 for a Bayesian
design. Figure 4 visualizes the model showing that the probability of separation decreases
with the residual DF and is smaller for the Bayesian designs than for the utility-neutral
designs.

<Insert Figure 4 about here>

To conclude, Firth’s method overcomes the separation problem as it permits the estim-
ation of individual-level parth-worths in all design situations under study. We therefore
limit our investigation of the bias, variance and MSE of individual-level part-worth es-
timates to the Firth estimates.

4.3.1 Bias of the Firth estimates

Figure 5 shows the bias of the Firth individual-level estimates obtained using the Bayesian
and utility-neutral designs. Also here, we plotted the bias against the true part-worth
values as the bias increases with their absolute size. In contrast with the Firth estimates
from aggregate data, which are unbiased (see Figure 2), the Firth individual-level estim-
ates are still somewhat biased. The bias generally decreases with the residual DF and is
smaller for the Bayesian designs than for the utility-neutral designs. However, the bias
of the individual-level estimates from the Bayesian and utility-neutral designs with 28 re-
sidual DF is close to zero, such as that from the Bayesian designs with 10 and 16 residual
DF. Also, the bias of the individual-level estimates is zero for zero true part-worth values
in all situations.

<Insert Figure 5 about here>

The nonzero bias of the individual-level estimates from the Bayesian and utility-neutral
designs with 4 residual DF and from the utility-neutral designs with 10 and 16 residual
DF is most likely due to the higher-order bias terms in Equation (7). Firth’s method does
not tackle this higher-order bias, as explained in Section 2.3.

4.3.2 Variance of the Firth estimates

Figure 6 shows the variance of the Firth individual-level estimates obtained using the
Bayesian and utility-neutral designs. The plots present the variance against the resid-
ual DF because the variance is independent of the squared true part-worth values here.
Surprisingly, we obtained the counterintuitive result that the variance increases with the
residual DF. Also, the variance is larger for the Bayesian designs than for the utility-
neutral designs.

<Insert Figure 6 about here>
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4.3.3 MSE of the Firth estimates

By evaluating the overall quality of the Firth individual-level estimates using the MSE,
we obtained more intuitive results. Figure 7 shows the MSE of the Firth individual-level
estimates obtained using the Bayesian and utility-neutral designs. We plotted the MSE
against the squared true part-worth values as the MSE increases with those values. In
contrast with the variance of the estimates, the MSE decreases with the residual DF. Also,
the MSE for the utility-neutral designs is generally larger than for the Bayesian designs,
especially for cases with few residual DF and for true part-worth values that are large in
absolute magnitude. As a result, Firth individual-level estimates have the highest quality
overall when generated from Bayesian designs.

<Insert Figure 7 about here>

5 Market segmentation

As a last study item, we demonstrate the usefulness of Firth individual-level estimates
in a “bottom-up” approach to detect market segments in a population. For comparison,
we also gauge the performance of HB individual-level estimates for the PML model in a
“top-down” approach.

5.1 Setup of the segmentation study

Using a full factorial simulation experiment involving four factors, we explore various seg-
mentation scenarios to determine whether the segments can be recovered using Firth and
HB individual-level estimates. These scenarios differ in the distance between the segment
mean part-worth vectors, the within-segment heterogeneity, the segment size and the de-
sign used for the data simulation. We simulated respondent data assuming the setting of
the compensation study (see Section 3).

In a first step, we quantified the respondent heterogeneity in the data from the compensa-
tion study using an established segmentation method. As shown by Crabbe et al. (2013),
a useful segmentation method, especially in terms of segment recovery, is the use of the
forces as a basis for hierarchical clustering. The forces are individual-level gradient values
of the likelihood function of the MNL model expressing the respondents’ individual ef-
fects on the aggregate MNL model estimates. They can be obtained using JMP’s Choice
Modeling platform. We applied Ward’s hierarchical clustering procedure to the forces
from the aggregate MNL model analysis of the compensation data and identified two dis-
tinct segments. Segment S1 contains 79% of the respondents who prefer a good balance
between work and personal life. Besides the financial remuneration in terms of salary
increase and bonus, they also value the non-financial compensation of extra vacation and
flexible working time. Segment S2 contains 21% of the respondents who are attracted
by a financial reward only. They do not care much for extra vacation or flexible working
time. Table 5 shows the mean part-worth estimates of the two segments, obtained by

16



estimating a MNL model using Firth’s method for each segment separately. The mean
of segment S2 is quite extreme compared to the mean of segment S1, in the sense that
the former is much further away from the zero vector than the latter (4.13 versus 1.20 in
terms of Euclidean distance).

<Insert Table 5 about here>

The means of segments S1 and S2 served as input for constructing the levels of the first
factor of our factorial simulation experiment, which is the distance between the segment
means or the mean distance. This factor has four levels: a distance of 3.11 between the
means of segments S1 and S2 and smaller distances of 2.01, 1.00 and 0.50 between the
mean of segment S1 and three less extreme mean vectors that we defined for segment S2.
These segment means appear in Table 5 and are referred to as S2', S2'' and S2'''. The
second factor in our simulation experiment is the within-segment heterogeneity. To ac-
count for it, we added individual-specific values to the mean part-worths of the segments
which we randomly drew from a normal distribution with mean 08, the 8-dimensional
zero vector, and variance σ2I8, where I8 is the identity matrix. Like Crabbe et al. (2013)
and references therein, we set the levels for σ2 equal to 0, 0.05 and 0.10, where the zero
represents the case of homogeneous segments. The third factor in our simulation experi-
ment is the number of respondents in each segment or the segment size, which we assume
to be equal for the two segments and set to either 100 or 300.

Combining the levels of these three factors in our full factorial experiment, there are
4×3×2 = 24 scenarios involving two segments. We simulated the segments using each of
the four Bayesian designs, 1, 3, 5 and 7 in Table 3 providing 4, 10, 16 and 28 residual DF,
respectively. The residual DF is therefore the fourth factor in our experiment resulting in
24× 4 = 96 scenarios. We made use of Firth and HB individual-level analysis to recover
the segments, and performed 100 simulations for each scenario and analysis method and
averaged our results over the simulations.

5.2 Segmentation results using Firth and HB individual-level
estimates

Tables C1 to C4 in Appendix C contain the simulation results for Bayesian designs 1,
3, 5 and 7, respectively. We studied three responses for all scenarios. The first response
is the segment recovery, as measured by the percentage of subjects classified in segment
S1. We classified respondents into segments based on the smallest distance between each
subject’s estimates and either one of the segment means. The second response is the mean
distance between the recovered or simulated segments corresponding to S1 and S2, which,
ideally, equals the true mean distance (i.e., 3.11, 2.01, 1.00 or 0.50 depending on the
scenario). This response is denoted by “Sim d(S1, S2)” in the tables. The third response
is the mean distance between the simulated and true segment, which, ideally, equals zero.
This response is denoted by “d(Sim S1, True S1)” for S1 and by “d(Sim S2, True S2)”
for S2 in the tables. The numbers in Tables C1 to C4 are the mean values over all 100
simulations with standard errors of the means in parentheses for the segment recovery,
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as these standard errors are substantial. Figures 8 to 10 visualize the main results from
all mean response values. To provide more detail, we also regressed the mean response
values on the four factors in our experiment. We discuss the results only briefly.

<Insert Figures 8 to 10 about here>

For the first response, the percentage of subjects classified in segment S1, aimed at 50%,
Tables C1 to C4 and the boxplots in Figure 8 show that the mean percentages vary much
more over the simulations for the HB analysis than for the Firth analysis. All Firth mean
percentages are larger than 50%, whereas the HB mean percentages take all possible val-
ues. Also, for 21 of the 96 cases (22%) using HB analysis assigns all the respondents to
segment S1 whereas the Firth analysis never assigns all the respondents to one segment.
For all 21 cases, it is therefore impossible to determine an estimated distance between
segments or to provide data on S2, so this becomes missing data in our experiment.

The boxplots in Figure 8 reveal that the Firth mean percentages come closest to 50% for
large residual DF and small true mean distances between S1 and S2. Also, a regression
analysis showed that a small within-segment variance matters to a minor extent, and
that the effect of the mean distance on the Firth mean percentages is smaller for large
residual DF. We can explain this result as follows. A design that provides many residual
DF (around 10 or larger) results in Firth individual-level estimates with small bias and
variance (see Section 4.3), which enhances segment recovery. Also, the segments that lie
close to each other in our simulation study have small segment mean sizes (see the mean
sizes of segments S1, and S2'' and S2''' in Table 5). They therefore do not suffer from the
shrinkage effect of the Firth estimates, which again makes segment recovery easier.

The boxplots in Figure 8 and the contour plots in Figure 9 indicate that the HB mean
percentages come closest to 50% for small true mean distances, a large within-segment
variance, a small segment size and large residual DF, where these variables are ranked in
decreasing order of effect following from a regression analysis. Also, the regression results
revealed that the effect of the mean distance on the HB mean percentages is smaller for a
large within-segment variance and large residual DF. The contour plots in Figure 9 shed
some light on the situations where the HB method outperforms the Firth method for
market segmentation and vice versa, based on the analysis that comes closest to the 50%
segment recovery. The HB method turns out to be the better method for small residual
DF and a small segment size. For large residual DF and segment sizes, the Firth method
proves better. The within-segment variance is not decisive in this matter, although the
Firth method seems to perform slightly better for recovering homogeneous segments and
the HB method for recovering heterogeneous segments.

The underlying reason for our observations is as follows. HB estimation of the PML model
pools the choice data from all respondents so that the residual DF from the individual
designs hardly matters. As a result, the HB method outperforms the Firth method for
small residual DF, all other things being equal. Also, HB individual-level estimates show
shrinkage toward the overall mean, especially when the number of respondents gets large
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(Kruschke and Vanpaemel, 2015). They flatten out with large segment sizes so that the
Firth method performs better in that case.

Figure 10 shows to what extent the estimated mean distance between S1 and S2, i.e.
“Sim d(S1, S2)”, deviates from the true mean distance. The estimated mean distance is
generally closer to the true one for the Firth analysis than for the HB analysis, except for
the smallest true mean distance of 0.5. For larger true mean distances, the deviations for
the HB analysis increase substantially. Similarly, a regression analysis revealed that the
true mean distance largely explains the mean distance between the simulated and true
segment for both S1 and S2. This result is more pronounced for the HB analysis than
for the Firth analysis. Also here, the HB method outperforms the Firth method for the
smallest true mean distance of 0.5.

The reason why the true mean distance has a large impact on the overall segmentation
performance of the HB analysis is most likely due to the single normal prior parameter
distribution we assumed instead of, for example, a mixture of normal priors to better
mimic the true segments. However, the true segmentation structure is rarely known in
advance so that the HB analysis has to rely on distributional assumptions about the
respondents, which may lead to biased results in case these assumptions are incorrect.
Further research is needed to expand the segmentation study to different prior parameter
distributions as input for the HB analysis.

To summarize the study, the use of Firth individual-level estimates proves to be effective
for market segmentation, especially in the case of large residual DF (around 10 or larger)
and small segment mean sizes (segments S2'' and S2''' in Table 5). Compared to using
HB individual-level estimates for market segmentation, segment recovery based on Firth
estimates is more precise overall. The Firth method outperforms the HB method for large
residual DF, a large segment size (around 300 respondents per segment), large segment
mean sizes (segments S2, S2' and S2'' in Table 5) and to a very minor extent, homogen-
eous segments. Perhaps if we were to further increase the within-segment variance, the
effect of this variable might have been more pronounced.

6 Summary and discussion

We adapted the penalized ML method of Firth (1993, 1995) for estimating the MNL
model using choice data. Through a real-life application in employee compensation and
subsequent simulation studies, we have shown that the method proves useful for three
reasons. First, Firth’s method yields parameter estimates for the MNL model that are
reasonable in the case of data separation, whereas the traditional ML method fails to
do so. Second, if the ML estimates exist, Firth’s method removes their bias for studies
with small to moderate numbers of choice sets evaluated by few respondents. This bias
removal goes along with a reduction of the variance. Third, by applying Firth’s procedure
to the MNL model, it is possible to estimate individual-level parameters with relatively
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little bias. These individual-level estimates can effectively be used for predicting people’s
choices and market segmentation as long as the number of choices per person is sufficiently
large. For the problems described in this paper, this comes down to having more than 10
residual DF resulting in individual-level estimates of good overall quality.

In our simulation study to compare the empirical performance of Firth estimates to that
of standard ML estimates obtained from aggregate data, we obtained the following results.
The advantages of Firth’s method are most pronounced for studies with a small number
of respondents (around 24 or smaller) and few residual DF (around 10 or fewer), and for
parameters that are large in absolute magnitude, which are the ones that matter. Using
utility-neutral designs rather than Bayesian designs for small studies results in more data
separation and more biased ML estimates. Firth’s method is therefore especially useful
for poor experimental designs. For large numbers of respondents and residual DF, and for
parameters that are small in absolute magnitude, the Firth estimates converge to the ML
estimates. As a result, there are no reasons to avoid the use of Firth’s method compared
to standard ML: either it outperforms ML estimation or it performs equally well. We
provided strong evidence for this statement using a paired comparison of MSE values for
Firth and ML estimates. For every situation under study, the MSE values of the ML
estimates are larger than the MSE values of the Firth estimates. The ML estimates are
therefore essentially inadmissible.

A more important advantage of Firth’s method is that it provides individual-level estim-
ates in a computationally simple manner. Using the compensation data, we compared the
prediction performance of the Firth individual-level estimates to that of the HB individual-
level estimates from the PML model. All individual-level estimates overfit the data, and
this is especially so for the Firth estimates. The Firth individual-level estimates have a
much better model fit than the HB individual-level estimates, but this does not translate
into better prediction performance. However, the prediction performance of the Firth
individual-level estimates increases substantially with the residual DF. The larger the
number of choices per person available for estimation, the greater the ability of Firth’s
method to predict individual choices in the holdout sample.

In our simulation study to compare the performance of Firth and HB individual-level
estimates for market segmentation, we observed once more that the number of choices
per person matters a great deal. In case of large residual DF (around 10 or larger),
the Firth method outperforms the HB method for segment recovery. This is also the
case when the segments are large in size (around 300 respondents per segment), because
the HB individual-level estimates are then shrunk toward the overall mean. Another
important factor is the distance between the segment means. Assuming a single normal
prior distribution, the HB individual-level estimates lose ground to the Firth estimates
when the mean distance gets larger. This is because Firth’s method does not require
imposing an a priori preference distribution. This is important since it is not at all
clear what an appropriate a priori preference distribution would be when markets are
segmented.
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Lastly, on a broader scale, it is still an empirical question as to how well market segment-
ation based on individual-level estimates describes the situation for a particular product
or service to provide input to managerial decisions. We therefore propose a comparison of
different types of individual-level estimates for predicting external validity or real world
segmentation performance as an avenue for future research.
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Tables

Table 1: Attributes and attribute levels used in the compensation study.

Attribute Level 1 Level 2 Level 3
Salary Increase No Raise Small Raise (3%) Large Raise (6%)
Bonus No Bonus Small Bonus (5%) Large Bonus (10%)
Extra Vacation No Extra Week 1 Extra Week 2 Extra Weeks
Flexible Time No Flexibility 2 Days / Week 4 Days / Week

Table 2: Estimates obtained from the aggregate choice data of the compensation study
using traditional ML and Firth’s method, and summary statistics of the Firth and HB
individual-level estimates.

Aggregate Individual-Level
Attribute Level Mean Std Dev Std Err∗

ML Firth Firth HB Firth HB Firth HB
No Raise -0.921 -0.920 -0.841 -1.345 0.691 0.613 0.033 0.029
Small Raise 0.186 0.186 0.181 0.307 0.489 0.133 0.023 0.006
Large Raise 0.735 0.734 0.660 1.038 0.672 0.652 0.032 0.031
No Bonus -1.006 -1.005 -0.951 -1.457 0.710 0.574 0.034 0.027
Small Bonus 0.200 0.200 0.219 0.313 0.448 0.098 0.021 0.005
Large Bonus 0.806 0.805 0.732 1.144 0.636 0.589 0.030 0.028
No Extra Vacation -0.461 -0.460 -0.471 -0.663 0.621 0.375 0.029 0.018
1 Extra Week 0.114 0.114 0.148 0.197 0.416 0.066 0.020 0.003
2 Extra Weeks 0.347 0.346 0.323 0.466 0.567 0.398 0.027 0.019
No Flex -0.264 -0.264 -0.269 -0.378 0.656 0.233 0.031 0.011
2 Days Flex 0.096 0.096 0.090 0.171 0.495 0.111 0.023 0.005
4 Days Flex 0.168 0.168 0.179 0.207 0.514 0.276 0.024 0.013
∗called posterior std dev in the case of HB
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Table 3: Eight designs used in the simulation study.

Number of Number of Profiles Residual Degrees
Design Type

Choice Sets per Choice Set of Freedom (DF)
1 Bayesian 12 2 4
2 Utility-Neutral 12 2 4
3 Bayesian 18 2 10
4 Utility-Neutral 18 2 10
5 Bayesian 12 3 16
6 Utility-Neutral 12 3 16
7 Bayesian 18 3 28
8 Utility-Neutral 18 3 28

Table 4: Occurrence of separation when analysing (a) aggregate and (b) individual-level
choice data.

Residual Degrees Number of Cases of
Design Type

of Freedom (DF) Respondents Separation (%)
(a) Aggregate Analysis

1 Bayesian 4 6 1.7
2 Utility-Neutral 4 6 42.4
2 Utility-Neutral 4 12 6.4
2 Utility-Neutral 4 24 0.2
4 Utility-Neutral 10 6 0.3

(b) Individual-Level Analysis
1 Bayesian 4 1 95.6
2 Utility-Neutral 4 1 99.7
3 Bayesian 10 1 64.0
4 Utility-Neutral 10 1 79.6
5 Bayesian 16 1 58.2
6 Utility-Neutral 16 1 70.2
7 Bayesian 28 1 15.0
8 Utility-Neutral 28 1 30.7
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Table 5: Means of the two segments S1 and S2('/''/''') in the compensation segmenta-
tion study (with S2 getting closer to S1), the Euclidean distance between them and the
Euclidean distance from the zero vector.

Attribute Level S1 S2 S2' S2'' S2'''
No Raise -0.683 -2.677 -1.862 -1.162 -0.869
Small Raise 0.060 0.711 0.611 0.371 0.171
No Bonus -0.769 -2.904 -2.089 -1.389 -1.096
Small Bonus 0.067 0.890 0.790 0.550 0.350
No Extra Vacation -0.519 -0.334 -0.334 -0.334 -0.414
1 Extra Week 0.149 0.004 0.004 0.004 0.084
No Flex -0.280 -0.194 -0.194 -0.194 -0.274
2 Days Flex 0.108 0.086 0.086 0.086 0.086
Distance from Mean S1 3.11 2.01 1.00 0.50
Distance from Zero 1.20 4.13 3.00 1.97 1.54
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Figures

Figure 1: Estimates obtained from the aggregate choice data of the compensation study
using Firth’s method, and 95% confidence and credible intervals of the means of the Firth
and HB individual-level estimates, respectively.
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Figure 2: Bias of the traditional maximum likelihood (ML) and Firth estimates obtained
from the Bayesian and utility-neutral designs in Table 3 and aggregate choice data from
6, 12, 24, 48 and 96 respondents.

(a) Difference in variance (b) Difference in MSE

Figure 3: Difference in (a) variance and (b) mean squared error (MSE) between the
traditional maximum likelihood (ML) and Firth estimates obtained from the Bayesian
and utility-neutral designs in Table 3 and aggregate choice data from 6, 12, 24, 48 and 96
respondents.
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Figure 4: Predicted probability of separation when analysing individual-level choice data
as a function of the design type, Bayesian or utility-neutral, and the residual degrees of
freedom (DF).

Figure 5: Bias of the Firth individual-level estimates obtained from the Bayesian and
utility-neutral designs in Table 3 with 4, 10, 16 and 28 residual degrees of freedom.
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Figure 6: Variance of the Firth individual-level estimates obtained from the Bayesian and
utility-neutral designs in Table 3 with 4, 10, 16 and 28 residual degrees of freedom (DF).

Figure 7: Mean squared error (MSE) of the Firth individual-level estimates obtained from
the Bayesian and utility-neutral designs in Table 3 with 4, 10, 16 and 28 residual degrees
of freedom.
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Figure 8: Boxplots of the percentage of subjects classified in segment S1, aimed at 50%,
using the Firth and HB method as a function of the true mean distance between S1 and
S2 and the residual degrees of freedom (DF).

Figure 9: Contour plots of the percentage of subjects classified in segment S1, aimed at
50%, using the HB method as a function of the residual degrees of freedom (DF), the
number of respondents in each segment and the within-segment variance. Regions are
colored by the better method for segmentation (Firth or HB) that comes closest to the
true 50%–50% segmentation for S1 and S2.
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Figure 10: Deviation of the mean distance between the simulated segments for S1 and S2
from the true mean distance between S1 and S2 as a function of the true mean distance,
with segments simulated using the Firth and HB method.
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Appendix A. Firth’s modification to the score function

for the MNL model

In this appendix, we derive the first-order derivative of the logarithm of Firth’s penalty
function for the MNL model with respect to βi, i = 1, . . . , k. We first provide the deriv-
ations for S = 1 choice set and R = 1 respondent and then generalize to the situation
where R respondents evaluate a design involving S choice sets.

The first-order derivative of the logarithm of the penalty function with respect to βi for
S = 1 choice set and R = 1 respondent is

1

2

∂ln |M|
∂βi

=
1

2 |M|
∂ |M|
∂βi

, (A1)

=
1

2
tr

(
M−1 ∂M

∂βi

)
, (A2)

=
1

2
tr

(
M−1 ∂ (X′s (Ps − psp

′
s) Xs)

∂βi

)
, (A3)

=
1

2
tr

(
M−1X′s

∂ (Ps − psp
′
s)

∂βi
Xs

)
, (A4)

=
1

2
tr

((
XsM

−1X′s
) ∂ (Ps − psp

′
s)

∂βi

)
, (A5)

=
1

2
tr

((
XsM

−1X′s
) ∂Ps

∂βi

)
− 1

2
tr

((
XsM

−1X′s
) ∂ (psp

′
s)

∂βi

)
. (A6)

Here, we obtain Equation (A2) using Jacobi’s formula for the invertible matrix M

∂ |M|
∂βi

= |M| tr
(

M−1∂M

∂βi

)
.

Also, Equation (A5) is made possible due to the cyclic property of the trace

M−1X′s
∂ (Ps − psp

′
s)

∂βi
Xs = XsM

−1X′s
∂ (Ps − psp

′
s)

∂βi
,

which holds because the matrix product on the left-hand side of the identity yields a
square matrix and the matrix product on the right-hand side exists.

The result in Equation (A6) consists of two terms, the second of which can be rewritten
using the fact that the trace of the product of the two J × J matrices, XsM

−1X′s and
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∂(psp′s)
∂βi

, equals the sum of the entry-wise products of their elements:

1

2
tr

((
XsM

−1X′s
) ∂ (psp

′
s)

∂βi

)
=

1

2

J∑
u=1

J∑
v=1

(
XsM

−1X′s
)
uv

∂ (puspvs)

∂βi
, (A7)

=
1

2

J∑
u=1

J∑
v=1

(
XsM

−1X′s
)
uv

2
∂pus
∂βi

pvs, (A8)

= tr

((
XsM

−1X′s
) ∂ps
∂βi

p′s

)
, (A9)

= tr

(
p′s
(
XsM

−1X′s
) ∂ps
∂βi

)
, (A10)

= p′s
(
XsM

−1X′s
) ∂ps
∂βi

. (A11)

Equations (A8) and (A9) are made possible because the terms

∂ (puspvs)

∂βi
=
∂pus
∂βi

pvs + pus
∂pvs
∂βi

can be grouped in a matrix such that 2pvs
∂pus
∂βi

is on the uth row and 2pus
∂pvs
∂βi

is on the
vth row.

To obtain Equation (A10), we have used once more the cyclic property of the trace. This
results in the trace of a scalar, which is a scalar itself, as shown in Equation (A11).

Combining Equations (A6) and (A11) yields the following expression for the first-order
derivative of the logarithm of the penalty function with respect to βi for S = 1 choice set
and R = 1 respondent:

1

2

∂ln |M|
∂βi

=
1

2
tr
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XsM

−1X′s
) ∂Ps

∂βi

)
− p′s

(
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−1X′s
) ∂ps
∂βi

. (A12)

For the situation where R respondents evaluate S choice sets, Equation (A12) becomes

1

2

∂ln |M|
∂βi

= R

S∑
s=1

[
1

2
tr

((
XsM

−1X′s
) ∂Ps

∂βi

)
− p′s

(
XsM

−1X′s
) ∂ps
∂βi

]
. (A13)

Appendix B. Motivation of the LR test with Firth

estimates

We show that the LR test statistic using the traditional log-likelihood function of the
Firth estimates

−2
[
LL
(
β̂
R

FIRTH

)
− LL

(
β̂
U

FIRTH

)]
,
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is asymptotically equivalent to the LR test statistic using the traditional log-likelihood
function of the ML estimates

−2
[
LL
(
β̂
R

ML

)
− LL

(
β̂
U

ML

)]
,

if the ML estimates β̂
R

ML and β̂
U

ML exist.

We begin by writing the traditional log-likelihood function of the Firth estimates in terms
of the first three terms of its Taylor series expansion around the ML estimates:

LL
(
β̂FIRTH

)
≈ LL

(
β̂ML

)
+
(
β̂FIRTH − β̂ML

) ∂LL(β̂ML

)
∂β̂ML

+
1

2

(
β̂FIRTH − β̂ML

)′ ∂2LL(β̂ML

)
∂β̂ML∂β̂

′
ML

(
β̂FIRTH − β̂ML

)
.

(B1)

We can simplify Equation (B1) as follows. First, Firth’s penalized ML method removes
the first-order bias of the ML estimates so that we have

β̂FIRTH − β̂ML ≈ O
(
N−1

)
. (B2)

Second, given the ML estimates, it holds that

∂LL
(
β̂ML

)
∂β̂ML

= 0k, (B3)

and that
∂2LL

(
β̂ML

)
∂β̂ML∂β̂

′
ML

≈ O (N) . (B4)

As a result, Equation (B1) becomes

LL
(
β̂FIRTH

)
≈ LL

(
β̂ML

)
+O

(
N−1

)
. (B5)

Using Equation (B5), we can write the LR test statistic using the traditional log-likelihood
function of the Firth estimates as

−2
[
LL
(
β̂
R

FIRTH

)
− LL

(
β̂
U

FIRTH

)]
≈ −2

[
LL
(
β̂
R

ML

)
− LL

(
β̂
U

ML

)]
+O

(
N−1

)
. (B6)

This equation shows that the LR test statistic using the traditional log-likelihood func-
tion of the Firth estimates is asymptotically equivalent to the LR test statistic using the

traditional log-likelihood function of the ML estimates if β̂
R

ML and β̂
U

ML exist.
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Appendix C. Detailed results of the compensation seg-

mentation study

<Insert Tables C1 to C4 about here>
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