
RE S EARCH ART I C L E

Mutation testing optimisations using the Clang front-end

Sten Vercammen1 | Serge Demeyer1,2 | Markus Borg3,4 | Niklas Pettersson5 |

Görel Hedin4

1Department of Informatics, University of
Antwerp, Antwerp, Belgium
2Flanders Make, Antwerp, Belgium
3Digital Systems, RISE Research Institute of
Sweden, Lund, Sweden
4Department of Computer Science, Lund
University, Lund, Sweden
5Saab Aeronautics, Saab AB, Linköping,
Sweden

Correspondence
Serge Demeyer, Department of Informatics,
University of Antwerp, Antwerp, Belgium.
Email: serge.demeyer@uantwerpen.be

Present address
Serge Demeyer, Department of Computer
Science, Universiteit Antwerpen,
Middelheimlaan 1, BE-2020 Antwerp, Belgium.

Funding information
Fonds Wetenschappelijk Onderzoek; Research
Foundation Flanders (FWO), Grant/Award
Number: 1SA1519N; FWO-Vlaanderen and
F.R.S.-FNRS, Grant/Award Number:
30446992 SECO-ASSIST

Abstract
Mutation testing is the state-of-the-art technique for assessing the fault detec-
tion capacity of a test suite. Unfortunately, a full mutation analysis is often
prohibitively expensive. The CppCheck project for instance, demands a build
time of 5.8 min and a test execution time of 17 s on our desktop computer. An
unoptimised mutation analysis, for 55,000 generated mutants took 11.8 days
in total, of which 4.3 days is spent on (re)compiling the project. In this paper,
we present a feasibility study, investigating how a number of optimisation
strategies can be implemented based on the Clang front-end. These optimisa-
tion strategies allow to eliminate the compilation and execution overhead in
order to support efficient mutation testing for the C language family. We pro-
vide a proof-of-concept tool that achieves a speedup of between 2� and 30�.
We make a detailed analysis of the speedup induced by the optimisations, elab-
orate on the lessons learned and point out avenues for further improvements.
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1 | INTRODUCTION

DevOps (Software Development and IT Operations) is defined by Bass et al. as a set of practices intended to reduce the
time between committing a change to a system and the change being placed into normal production, while ensuring high
quality [1]. This allows for frequent releases to rapidly respond to customer needs. Tesla, for example, uploads new soft-
ware in its cars once every month [2]; Amazon pushes new updates to production on average every 11.6 s [3]. The
enabling factor for the DevOps approach is a series of automated tests that serve as quality gates, safeguarding against
regression faults.

The growing reliance on automated software tests raises a fundamental question: How trustworthy are these auto-
mated tests? Today, mutation testing is acknowledged within academic circles as the most promising technique for
assessing the fault-detection capability of a test suite [4, 5]. The technique deliberately injects faults (called mutants) into
the production code and counts how many of them are caught by the test suite. The more mutants the test suite can
detect, the higher its fault-detection capability is—referred to as the mutation coverage or mutation score.

Case studies with safety-critical systems demonstrate that mutation testing could be effective where traditional struc-
tural coverage analysis and code inspections have failed [6, 7]. Google on the other hand reports that mutation testing
provides insight into poorly tested parts of the system, but—more importantly—also reveals design problems with com-
ponents that are difficult to test, hence must be refactored [8]. In a similar vein, a blog post from a software engineer at
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NFluent, comments on integrating Stryker (a mutation tool for .Net programs) in their development pipeline [9]. There
as well, mutation testing revealed weaknesses in the test suite, but also illustrated that refactoring allowed for simpler
test cases, which subsequently increased the mutation score.

Despite the apparent potential, mutation testing is difficult to adopt in industrial settings. One of the reasons is
because the technique—in its basic form—requires a tremendous amount of computing power. Without optimisations,
the entire code base must be compiled and tested separately for each injected mutant [4]. During one of our experiments
with an industrial code base, we witnessed 48 h of mutation testing time on a test suite comprising 272 unit tests and
5256 lines of test code for a system under test comprising 48,873 lines of production code [10]. Hence for medium to
large test suites, mutation testing without optimisations becomes prohibitively expensive.

As a consequence, the last decades has devoted a lot of research to optimise the mutation testing process [5, 11].
One stream of work focuses on parallelisation, either on dedicated hardware [12] or in the cloud [10]. Another stream of
work focuses on incremental approaches, limiting the mutation analysis to what has been changed since the previous
run [13]. A third stream of work (and the inspiration for what is presented in this paper) focuses on techniques based on
program analysis, for example mutant schemata [14] and split-stream mutation testing [15]. The former injects all
mutants simultaneously, analysing the abstract syntax tree to ensure that the mutated version actually compiles. The
latter forks the test execution from the mutation point via a combination of static and dynamic program analysis.

Mutation testing shines in systems with high statement coverage because uncaught mutants reveal weaknesses in
code, which is supposedly covered by tests. Safety-critical systems—where safety standards dictate high statement
coverage—are therefore a prime candidate for validating optimisation strategies. In a safety-critical software, C and C
++ dominate the technology stack [16]. Yet this is not represented in the mutation testing community: a systematic lit-
erature review on mutation testing from 2019 reports that less than 25% of the primary studies target source code from
the C language family [5]. (In this paper, we use the term C language family to describe the C, Objective C, C++,
Objective C++ and their variants.) This opens up opportunities as the C language family is a mature technology with
considerable tool support available. In particular, the compiler front-end Clang that operates in tandem with the
LLVM compiler back-end [17].

This paper presents a feasibility study, investigating to which extent the Clang front-end and its state-of-the-art pro-
gram analysis facilities allow to implement existing strategies for mutation optimisation within the C language family.
Mutation testing and mutation optimisations for statically typed languages like the C family are challenging to imple-
ment as they have many interacting features and unforgiving compilers. Utilising the Clang front-end might alleviate
some problems, as many mutation optimisations require syntactically correct mutants, which might be difficult to
achieve without relying on the compiler.

We present a proof-of-concept optimisation tool, featuring a series of representative optimisation strategies. These
optimisation strategies are

1. exclude invalid mutants: avoid compilation overhead from mutants that would cause downstream compilation
errors.

2. exclude unreachable mutants: avoid execution overhead from mutants that are not reached by the test suite.
3. mutant schemata: where all mutants get injected simultaneously and the project is only compiled once [14]. At test

execution time, the appropriate mutant is selected via a boolean flag.
4. reachable mutant schemata: an extension of mutant schemata that reduces the test suite to only those test cases that

reach the mutant.
5. split-stream mutation testing: where tests are executed from the mutation point itself, by forking the process, essen-

tially avoiding redundant executions [15].

We validate the proof-of-concept tool on four open-source C++ libraries and one industrial component. These
cases cover a wide diversity in size, C++ language features used, compilation times and test execution times. Hence,
they may serve as a representative benchmark to validate mutation optimisation strategies. To illustrate the potential of
Clang-based implementation of mutation optimisation strategies, we report the overhead induced and the speedup
achieved, both in absolute as well as relative terms. Furthermore, we derive a series of lessons learned on the benefits
and impediments of implementing mutation testing optimisations using the Clang compiler front-end.

As such, we make the following contributions to the state of the art in mutation testing optimisation.

• Whole is more than the sum of the parts: We are the first to study the combined effect of different optimisation strate-
gies. We estimate the potential savings on both the compilation time and test execution time, while estimating the
additional overhead induced by the Clang front-end analysis.
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• Empirical Validation: We empirically validate these estimates against four projects not considered in the previous
optimisation studies. We report maximum and minimum speedups achieved and explain the properties of the projects
under test that explain the large variation we observed.

• Demonstrate Feasibility of Clang: By means of a proof-of-concept tool, we demonstrated how the Clang compiler front-
end can be used to implement a variety of optimisation strategies. We also list the limitations of the Clang compiler
front-end for implementing advanced mutation testing strategies. In particular, we learned that split-stream mutation
testing demands a test suite without any external dependencies as the Clang compiler front-end does not provide facili-
ties to identify (and consequently revert) state-changes in dependent components and libraries. We list a series of lessons
learned that allows the mutation testing community to build upon our observations and optimise even more.

The rest of the paper is structured as follows. In Section 2, we elaborate on the concept of mutation testing and list
related work. In Section 3, we describe the design of our proof-of-concept tool, including the estimates for the combined
effect of different optimisation strategies. In Section 4, we explain how we obtained the speedups induced by the differ-
ent optimisation strategies. This naturally leads to Section 5 where we discuss the results and Section 6 where we derive
the lessons learned. As with any empirical research validating proof-of-concept tools, our study is subject to various
threats to validity, which are listed in Section 7. Finally, we draw conclusions in Section 8.

2 | BACKGROUND AND RELATED WORK

In this section, we elaborate on the concept of mutation testing, the different optimisation strategies as available in the
related work and discuss existing work mutation optimisation based on the Clang front-end.

2.1 | Mutation testing terminology

For effective testing, software teams need strong tests that maximise the likelihood of exposing faults [18]. Tradition-
ally, the strength of a test suite is assessed using code coverage, revealing which statements are poorly tested. However,
code coverage has been shown to be a poor indicator of test effectiveness [19, 20]. Stronger coverage criteria, like full
MC/DC coverage (Modified Condition/Decision Coverage, a coverage criterion often mandated by functional safety
standards that target critical software systems, e.g., ISO 26262 and DO-178C) still do not guarantee the absence of
faults [21, 22]. Today, mutation testing (sometimes also named mutation analysis, the terms are used interchangeably) is
the state-of-the-art technique for assessing the fault-detection capacity of a test suite [4, 5].

Killed / survived mutants. Mutation testing deliberately injects faults (called mutants) into the production code and
counts how many of them are caught by the test suite. A mutant caught by the test suite, that is, at least one test case
fails on the mutant, is said to be killed. When all tests pass, the mutant is said to survive.

Mutation Coverage. A strong test suite should have as few surviving mutants as possible. This is expressed in a score
known as the mutation coverage: the number of mutants killed divided by the total number of mutants injected. A high
mutation coverage implies that most mutants get killed; 100% is a perfect score as the tests can reveal all small devia-
tions. Mutation coverage is sometimes referred to as mutation score.

Mutation Operators. Mutation testing mutates the program under test by artificially injecting a fault based on
a mutation operator. A mutation operator is a source code transformation that introduces a change into the pro-
gram under test. Typical examples are replacing a conditional operator (e.g., ≤ into <) or an arithmetic operator
(e.g., + into �). The first set of mutation operators was reported in King et al. [15]. Later, special purpose mutation
operators have been proposed to exercise errors related to specific language constructs, such as Java null-type errors [23]
or C++11/14 lambda expressions and move semantics [24]. There are more than 100 mutation operators reported in
the academic literature and there is no consensus of which ones are best for a specific language and code base. There-
fore, mutation testing tools feature a diverse set of mutation operators that can be configured when performing the
mutation analysis. Table 1 lists commonly used mutation operators for C and C++, which we will refer to later in this
paper.

Invalid Mutants. Mutation operators introduce syntactic changes, hence may cause compilation errors in the process.
If we apply the arithmetic mutation operator (AOR) to, for example, ‘a * b’, then we get four mutants as shown in Listing
1. However, the modulo operator (‘%’) will give an ‘invalid operands to binary expression’ error, as the mod-
ulo operator is not defined for floating point data types. The mutant can thus not be compiled and is considered invalid.

Another frequently occurring invalid mutant occurs when changing the ‘+’ into a ‘�’ that works for numbers but
does not make sense when applied to the C++ string concatenation operator. If the compiler cannot compile the
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mutant for any reason, the mutant is considered invalid and is not incorporated into the mutation coverage. Preventing
the generation of invalid mutants is one way to optimise the mutation testing process.

Unreachable mutants. The Reach–Infect–Propagate–Reveal criterion (a.k.a. the RIPR model) provides a fine-
grained framework to assess weaknesses in a test suite that are conveniently revealed by mutation testing [25]. It states
that an effective test should first of all Reach the fault, then Infect the program state, after which it should Propagate as
an observable difference, and eventually Reveal the presence of a fault. When a mutant is injected in a statement that is
never executed by the test suite, it can never be killed. Therefore, one can optimise the mutation testing process by
explicitly excluding unreachable mutants. To increase its effectiveness, this should be done on the test case level instead
of on the entire test suite.

Weak versus strong mutation coverage. Based on the Reach–Infect–Propagate–Reveal criterion, the literature also
distinguishes between weak and strong mutation coverage. For weak mutation coverage, it is sufficient that the mutant
only infects the program state but that it should not necessarily pass to the propagate and reveal states. For strong
mutation coverage, the mutant should pass through all states. This can be used as another optimisation criterion: if a
test reaches a mutant but does not infect the program state one can also exclude the test from the execution [26]. Just as
for unreachable mutants, this should be done on a test case level.

Equivalent mutants. Injected mutants can be syntactically different from the original software system, but semantically
identical. These mutants do not modify the meaning of the original program and can therefore not be detected by the test
suite. Such mutants are called equivalent mutants. They yield false negatives and decrease the effectiveness of the muta-
tion analysis. Additionally, they waste developer time, as they need to be manually labelled as equivalent because they
show up as survived mutants, which can never be killed. Consequently, a big challenge of mutation is handling (and/or
eliminating) these equivalent mutants. An overview of techniques to overcome the equivalent mutant problem has been
provided by Madeyski et al. [27]. One of the frequently used techniques is called trivial compiler equivalence (TCE): if the
compiler emits the same low-level code (machine code) then the mutant is guaranteed to be equivalent.

Timed out mutants. Some injected mutants cause the test to go into an infinite loop. To prevent such infinite loops,
mutants with an excessively long execution time need to be detected and stopped. This is often done using a time out,
which terminates the test after a predefined period of time. A mutant that causes such a time-out is considered killed.

TABLE 1 Overview of commonly used mutation operators for C and C++.

Code Short Description

ROR Relational Operator Replacement Replace a single operator with another operator. The relational operators are
< , < ¼ , > , > ¼ , ¼¼ , !¼

AOR Arithmetic Operator Replacement Replace a single arithmetic operator with another operator. The operators are: +, � , ∗ ,/, %

LCR Logical Connector Replacement Replace a logical connector with the inverse. The logical connectors are: jj, &&, j, &
UOI Unary Operator Insertion Insert a single unary operator in expressions. Example unary operators are: increment (++),

decrement (��), address (&), indirection (∗), positive (+), negative (�), …

SDL Statement Deletion Selective deletion of code, including removing a specific function call, or replacing a method
body by void

AMC Access Modifier Change Changes the access level for instance variables and methods to other access levels. Access levels
are private, protected, public

ISI Super Keyword Insertion (or Base
keyword insertion)

Inserts the scope resolution operator: so that a reference to the variable or the method
goes to the overridden instance variable or method

ICR Integer Constant Replacement Replaces every constant c with a value from the set f�1,0,1,�c,c�1,cþ1g ∖ fcg
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2.2 | Mutation testing optimisations

To explain the time-consuming nature of the mutation testing process, Algorithm 1 shows the essential steps of a muta-
tion analysis without any optimisations. The software system needs to build without errors and all software tests should
succeed before mutation testing can even begin; this is called the pre-phase. Then, the two main phases are executed:
(A) the generate mutants phase and (B) the execute mutants phase. In phase A, mutants are generated for all source
files. In phase B, for each mutant, all tests are executed and the result—whether or not it was killed—is saved. Finally,
all the results are gathered and the final report is created in the post-phase.

A lot of research is devoted to optimising the mutation testing process, summarised under the principle—do fewer,
do smarter and do faster [28].

• Do fewer approaches minimise the execution time by reducing the total number of mutants to execute. Such an optimisa-
tion can be implemented by generating fewer mutants on line 10 in Algorithm 1 or by selecting a subset of all mutants on
line 15. Incremental approaches [13], limiting the mutation analysis to code changed in a commit are a particularly rele-
vant example of a ‘do fewer’ approach. A reduced set of mutants normally incurs an information loss compared to the full
set of mutants; however, the effectiveness is often acceptable [4]. Nevertheless, when the mutation testing tool provides suf-
ficient guarantees to identify invalid mutants or unreachable mutants, excluding these is always an effective optimisation.

• Do smarter approaches attempt to minimise the execution time by exploiting the computer hardware
(e.g., distributed architectures, vector processors, fast memory access). The for loops in lines 9 and 15 in Algorithm 1
have few data dependencies, hence can be executed in parallel. Parallel execution of mutants, either on dedicated
hardware [12] or in the cloud [10] is known to speed up the process by orders of magnitude. Split-stream mutation
testing is the de facto representative for ‘do smarter’ optimisations [15]. By retaining state information between test
runs, split-stream mutation testing avoids the redundant execution of statements up until the mutation point.

• Do faster approaches attempt to minimise the execution time by reducing the execution cost for each mutant (cf., line
17 in Algorithm 1). By design, a mutated program is almost identical to the original program that can be exploited
during the compilation step. Mutant schemata [14] is the best know example. All mutants get injected simultaneously
(guarded by a global switch variable), hence the project is compiled only once in line 16. During the mutant execution
phase (in line 17) the global switch is used to select the actual mutant to execute. The execution time of a mutant can
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also be reduced with test prioritisation techniques. By rearranging the test suite, the tests with the highest likelihood
of failure will be executed first, reducing the test suite run time using early-failure [29].

• Hybrid approaches. Different approaches are often synergistic, where a combination of techniques becomes more
than the sum of the parts. Note that some approaches are orthogonal to one another hence are easy to combine.
Excluding unreachable mutants, for example, can be combined with any other optimisation. Other approaches, how-
ever, may depend on each other. Mutant schemata, for instance, requires that all invalid mutants are excluded
because even a single invalid mutant will immediately invalidate the whole mutated program. Measuring the speedup
of a given optimisation strategy should take these synergies into account.

2.3 | LLVM & Clang compiler infrastructure

LLVM is a collection of compilation tools designed around a low-level language-independent intermediate representa-
tion, the LLVM IR. The project includes front-ends that translate source code to LLVM IR, optimisers that rewrite the
LLVM IR to become faster, and backends that generate machine code from the LLVM IR for different architectures.
We visualised this in Figure 1. Clang is the most well-known front-end for LLVM and supports languages in the C fam-
ily, like C, C++ and Objective-C, among others. Internally, it represents programs as abstract syntax trees (ASTs).
Clang includes a semantic analyser that does type-checking and other compile-time checks, before generating the
LLVM IR. Furthermore, Clang contains a number of libraries based on the visitor pattern, allowing more analyses or
transformations to be added to the front-end.

LLVM and Clang serve as the de facto standard for building static analysis tools for the C language family. It
should therefore come as no surprise that several C and C++ mutation tools exist that build upon these frameworks.
These tools mutate the program either at the AST level or at the LLVM IR level. Both approaches have advantages
and disadvantages. Doing the mutations at the LLVM IR level has the advantage that they will work for any front-
end, but the disadvantage that mutants injected in the LLVM IR are difficult or even impossible to trace back to a
source representation in the original code under test, which allows for the generation of many invalid mutants.

The AST, on the other hand, is close to the source code. Mutating at this level provides good traceability, which is
critically important for reporting back results to the developer in the post-phase (lines 18 and 22 in Algorithm 1).
Another advantage of mutating at the AST level is that the front-end semantic analyser can be used to ensure that the
mutated code is compile-time correct, effectively eliminating invalid mutants.

2.4 | Mutating on the LLVM IR and AST level

As the AST is close to the source code, the source code from Listing 1 can be transformed into an AST without losing
any information. This can be seen in Listing 2 where even the original line and column information of the statements
are retained. The AST includes all the semantic details in an easily accessible manner. This, together with the front-end

F I GURE 1 LLVM compilation.
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semantic analyser allows for more informed mutations, allowing the detection of invalid mutations such as the modulo
operator of mutant 4. Mutating the multiplication, that is, the binary operator ’*’ on line 6, is achieved by changing
the ’*’ to ’+,-,/’. As the location information is preserved, the mutants are easily represented in the original source
code. Tools mutating the AST will do so by either iterating through the entire AST or by using AST matchers that pro-
vide a list of all candidate nodes based on a set configuration, for example, BinaryOperator.

In Listing 3, we show our mutation example in the LLVM IR format. Lines 2 to 9 represent ‘return a *b;’As this is closer
to the machine code, less information from the original source code is preserved, for example, the variable names a and b are
converted to numbers%0 and%1, and low-level instructions such as the allocation (alloca) of variables are introduced.

Mutating the multiplication in the LLVM IR code means mutating the fmul statement to fadd, fsub and fdiv. An LLVM
IR mutation testing tool usually works in two steps. It first creates a list of mutation points (specific LLVM instruction and
its operands). Next it creates a new LLVM IR version for each mutant by applying the mutant to the mutation point.

As there are many more instructions at the LLVM IR-level, they present more opportunities for mutations. However,
mutations can exist in the LLVM IR code that cannot be achieved by changing the original source code [30]. As no con-
version to the original code is possible, there is no traceability and no easy feedback for the developers. Additionally, not
all mutation opportunities from the source code are available at the LLVM IR-level due to optimisation in the conversion
to LLVM IR. In short, LLVM IR mutations provide a different set of mutants than mutating at the AST-level.

2.5 | Existing LLVM and Clang mutation testing tools

Below we discuss the most prominent mutation testing tools that are based on Clang and/or the LLVM IR. Table 2 lists
them in alphabetical order with their features and optimisations. For each of them, we briefly explain which optimisa-
tions are incorporated and refer to quantitive evidence if present.

AccMut (IR-based): AccMut [31] is an LLVM IR mutation testing tool that reduces redundant execution state-
ments anywhere in the program by analysing the original and mutated program. It identifies the redundant state-
ments by inspecting the (local) state of both programs. When they are identical, all following statement executions
are identical and redundant until the next different statement. They have demonstrated an average speedup of
8.95� over a mutant schemata approach [31].
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CCmutator (IR-based): CCmutator [32] is an LLVM IR mutation testing tool specifically designed to mutate con-
currency constructs.

Dextool mutate (AST-based): Dextool is an open-source framework created for testing and static analysis of (often
safety-critical) code. The Dextool framework is used within industry, for example within Saab Aeronautics. One of the
plugins in the framework is Dextool mutate. It was developed with a heavy emphasis on the reporting part of mutation
testing in order to better understand the output of mutation testing and to gain more insight into the project under test.

Dextool mutate works by (textually) inserting mutants into the source code one at a time after analysing the abstract
syntax tree (conveniently available via Clang) for points to mutate.

Dextool mutate allows users to provide scripts and special flags in order to compile and test projects with the
explicit intention to scale for more and bigger (industrial) projects. Dextool mutate supports a distributed setup as the
mutants are stored in a central database. Multiple nodes can then access the database and execute a subset of all
mutants. During this study, we created a proof-of-concept schemata plugin for Dextool mutate to enable mutant sche-
mata. This plugin was requirement for our experiment in order to execute the mutant schemata approach on the Saab
Case as they where already utilising Dextool.

The steps in the Dextool mutate schemata plugin are identical to our standalone tool as described in this paper. The
results and timings from the Saab Case were gathered using the Dextool mutate schemata plugin. As a result, the crea-
tors of Dextool created a proper implementation for mutant schemata into the tool.1,2

Mart (IR-based): Mart [33] is an LLVM IR mutation testing tool that currently supports 18 different operator groups
(with 68 fragments and 816 operators). These operator groups match against the LLVM IR syntax to create the
mutants. Additional operator groups can be implemented by the user to further extend its capabilities. Mart has an
in-memory implementation of trivial compiler equivalence to eliminate equivalent and duplicate mutants [34].

MuCPP (AST-based): MuCPP is a Clang-based mutation testing program that generates mutants by traversing
the Clang AST and storing the mutants in different branches using a version control system [35]. MuCPP imple-
ments mutations at the class level. These include mutations related to inheritance, polymorphism and dynamic
binding, method overloading, exception handling, object and member replacement, and more. The study is aimed
at reducing the total number of mutants that need to be executed by eliminating so-called unproductive mutants.
These include equivalent mutants, invalid mutants, easy-to-kill mutants and mutants in dead code. MuCPP demon-
strates that Clang can be used for implementing mutant analysis and generation at the AST level. The study lists
the speedup gained from the reduced mutation set but does not list the overhead impact of the generation and anal-
ysis of the mutants using the Clang framework. It does not implement other optimisation techniques, so there are
no detailed measurements of the potential reduction in compilation and execution overhead using the Clang frame-
work, nor the overhead the implementation of such techniques using the Clang framework might cause.

Mull (IR-based): Mull is an open-source mutation testing tool3 that modifies fragments of the LLVM intermediate
representation (LLVM IR). It only needs to recompile the modified fragments in order to execute the mutants,

TABLE 2 Clang and LLVM IR mutation testing tools.

Tool name Mutation optimisation Mutation level Mutation operators

AccMut Mutant schemata, modulo states LLVM IR AOR, ROR, LCR, SDL, …

CCmutator LLVM IR Concurrency mutation operator

Dextool mutate Distribution, Mutant schemata AST AOR, ROR, LCR, SDL, UOI

Exclude unreached mutants via code coverage

Mart Trivial compiler equivalence LLVM IR Operator groups

MuCPP Reduced mutants Set AST Class level mutants

Mull Limit total mutants based on call-depth LLVM IR LLVM fragments

SRCIROR Trivial compiler equivalence AST AOR, LCR, ROR, ICR

Exclude unreached mutants via code coverage LLVM IR

1https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate/contributors.md.
2https://github.com/joakim-brannstrom/dextool/blob/master/plugin/mutate/doc/design/notes/schemata.md.
3https://github.com/mull-project/mull.
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keeping the compilation overhead low [30]. As Mull modifies LLVM code, it is compatible with all programming
languages that support compilation to LLVM IR, such as C, C++, Rust and Swift. Mull includes a do-fewer opti-
misation where you can limit which mutants are executed to only those mutants that are within a certain call-depth
starting from the test case. The study reports on the total runtime for the optimised mutation tool but does not pro-
vide details for the runtime of the individual steps nor is the tool contrasted to a traditional, unoptimised approach.
While the tool certainly provides a speedup for mutation testing, the lack of detailed measurements makes it diffi-
cult to estimate where the advantages lie and where overhead might occur.

SRCIROR (AST or IR-based): SRCIROR [36] is a toolset for performing mutation testing at the AST level or at
the LLVM IR level. Both variants implement the AOR, LCR, ROR, ICR mutation operators. When mutating the
AST, SRCIROR uses the AST matchers from the Clang LibTooling library to search for candidate mutation loca-
tions in the AST. It then generates a different source file for each of the generated mutants. When mutating the
LLVM IR, SRCIROR creates a list of mutation opportunities (specific LLVM instruction and one of its operands)
within the generated LLVM IR code of the project. SRCIROR then creates a mutated version for each of these
mutation opportunities. SRCIROR allows to filter out unreachable mutants based on code coverage metrics. It
also allows to filter out some equivalent mutants using trivial compiler equivalence [34].

Summary. There is a lot of evidence that optimisation techniques for mutation testing can make orders of mag-
nitude improvements for languages outside of the C language family. Moreover, the current state-of-the-art
demonstrates that mutant analysis for the C language family is possible on top of the LLVM and Clang com-
piler framework. However, the extent to which the various optimisation strategies allow reduced compilation
and execution overheads is unknown. In particular, there exist no detailed estimates nor measurements on two
of the most advanced techniques (mutant schemata and split-stream mutation testing) for the C language family.

3 | PROOF-OF-CONCEPT TOOL

In this paper, we investigate to which extent the Clang front-end and its state-of-the-art program analysis facilities allow
to implement existing strategies for mutation optimisation within the C language family. For this, we built a proof-
of-concept incorporating five strategies: exclude invalid mutants, exclude unreachable mutants, mutant schemata,
reachable schemata and split-stream. The proof-of-concept is available under an open source license on Code Ocean
together with a description on how to use it.4 We refer the interested reader to a separate artefact paper describing the
implementation details and how other researchers can build upon our work [37]. Below we provide a high-level over-
view of the five strategies implemented.

The goal of these five optimisation strategies is twofold: eliminate compilation overhead and reduce execution over-
head. The different strategies build on each other and successively introduce more optimisations.

1. The first compilation overhead comes from the invalid mutants, which cause compilation errors hence introduce
wasted compilation cycles.

2. The second compilation overhead comes from individually compiling each mutant, which is computationally expen-
sive. A mutant schemata strategy eliminates this overhead by compiling all mutants at once, drastically reducing the
compilation time.

3. The first execution overhead comes from the unreachable mutants. These mutants are never reached by the test
suite, hence will always survive. We explicitly label these mutant as ‘unreachable’ and ‘survived’ to indicate that
none of the existing test cases are executing them.

4. The second execution overhead stems from the observation that not all test cases reach each mutant. In order for a
test case to potentially kill a mutant, that test case needs to first reach and execute the target mutant. If the test case
does not reach the mutant, we know that it will never be able to kill it, hence we know its result before we execute
it. We implemented a detection algorithm that avoids this redundant execution by detecting which test case reaches
which mutant and thus only executes a subset of test cases for each mutant.

4https://codeocean.com/capsule/3514968/tree/v1.
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5. The final optimisation strategy we looked into is the split-stream mutation. This strategy exploits the state-space infor-
mation so that the execution of each mutant can start from the mutation point itself instead of always starting the exe-
cution at the beginning of the test suite. This essentially cuts the amount of statements that need to be executed in half.

We discuss each strategy, their differences and similarities, the potential impact on compilation and execution time and
provided detailed measurements of the steps in the optimisation strategies. The general steps of the optimisation strategies
are visualised in Figure 2. We explain each of the optimisations by its steps, starting at the bottom of the image to the top.

Generate mutants. (Bottom boxes in Figure 2.) The generation of the mutants is done independently of the optimi-
sation strategies. This allows us to use the same mutants, ensuring a fair comparison of the strategies. This is repre-
sented by its inclusion in every pillar in Figure 2.

Currently, for our proof-of-concept tool, we have implemented the relational operator replacement (ROR), arith-
metic operator replacement (AOR) and logical connector replacement (LCR) (see Table 1). This is a representative
selection of all possible mutation operators, sufficient to demonstrate the feasibility of Clang based optimisation strate-
gies. We discuss this limitation under Section 7.

Our proof-of-concept tool relies on the LibTooling library of Clang and its ability to iterate through all declarations,
statements and expressions from the abstract syntax tree (AST). For each of these declarations, statements and expres-
sions, the implemented mutation operators create the corresponding mutants. As an example, the AOR mutation oper-
ator when encountering the multiplication ‘∗’ operator residing in the binary expression ‘a∗b’ creates mutants where
the multiplication is replaced by the ‘+’, ‘�’, ‘/’ and ‘%’ operators, respectively. To ensure that we know where to
replace the original operator with the mutated one, we store the filename in which the mutant occurs, the offset to the
beginning and the end of the original operator, and the mutant itself. For each executed mutant, we store whether or

F I GURE 2 Implementation strategies with algorithm steps (first step at the bottom). Each strategy improves on the previous one by reducing
compilation and/or execution overhead.
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not the mutant was reached, how long it took to execute, and whether or not the mutant was killed. As it is possible that
some mutants will cause an infinite loop, the user can set a maximum execution time for each mutant. If the test suite is
not able to finish executing within this time, we stop the test execution and say that the mutant timed out. Mutants that
are timed out can be considered as killed, as they would also time out in a continuous integration test. This information
can then be extracted to form a report to inform developers where and which mutants survived the test suite.

3.1 | Unoptimised mutation testing

In a traditional, unoptimised mutation testing setting each mutant is inserted, compiled and executed separately. Some
mutants, however, can be located in uncovered code. Such mutants are unreachable and are unable to infect the pro-
gram state; thus, they can never be killed. In a realistic scenario, one would first run a code coverage technique to deter-
mine which mutants are located in uncovered code and instantly label them as survived. As the purpose of this paper is
to gain more insight into the potential speedups of our optimisation techniques, we do generate and execute them in
order to gain more insight into the kind of overheads these unreachable mutants introduce.

For detailed measurements, we timed the generation of the mutants, the compilation of the mutants, and the execu-
tion of the mutants. For the mutants themselves, we make a distinction between the invalid mutants (i.e., mutants that
cause compilation errors) and the valid mutants. We further divide these valid mutants into the unreachable mutants
(i.e., mutants that no test case reaches), and the reachable mutants.

We implemented the unoptimised mutation testing approach to obtain a baseline for the mutation analysis and to
verify the correctness of our optimisation strategies.

Detect unreachable mutants. In order to determine which mutants are completely unreachable by the test suite, we
instrument the code base with a wrapper on the mutatable locations. Running the test suite with the instrumented
code base then provides us with a list of mutants that are reachable by the test suite. From this, we can deduce the
completely unreachable mutants. While existing code coverage tools can be modified to achieve the same results,
we utilised our own built-in instrumentation tool as it does not require additional setup and maintenance and does
not create additional requirements for to the build environment. By utilising our own specialised tool, we can tailor
it to our needs, choose a fitting output format and avoid any overhead from features of a general code coverage
tool that we do not need.

Compile mutants. After the generate mutants phase, each mutant needs to be individually inserted into the original
code base and compiled before it can be executed. We measured the compilation time for each mutant and divided
them into three categories: reachable, unreachable and invalid mutants. This allows us to quantify the overhead
caused by the unreachable and invalid mutants.

All three can be seen in the first pillar, that is, unoptimised, in Figure 2. It is important to note that we do not clean
the build environment between the different mutants. We use consecutive builds to speed up the compilation, as the
compiler then only needs to re-compile the files that are impacted by the mutant.

Execute mutants. After generation and compilation, the valid mutants need to be executed. For each mutant, the
entire test suite needs to be run. The test cases of the test suite are represented by T1 to T5 in Figure 2. When a test
case fails, represented by the red colour, this means that the mutant is killed. When none of the test cases fail, the
mutant survives, represented by the green colour. To optimise the mutation testing execution, we rely on the early-
stop principle, for which the test suite execution stops when the first test case kills the mutant. In the unoptimised
approach, the entire test suite is run for each unreachable mutant. We represented this with mutants X–Z in
Figure 2.

3.1.1 | Expected performance

For the unoptimised approach, we estimate the performance via Formula 1. The formula consists of three phases: the
generate mutants, compile mutants and execute mutants phase. We included the generation of the mutants in the for-
mula as this step is necessary and identical for all approaches but its impact should be negligible. We do not include the
detection of unreachable mutants as it is not part of an unoptimised approach. We only need it to distinguish between
the unreachable and reachable mutants. The total compilation time is subject to the amount of reachable, unreachable
and invalid mutants. From our measurements, we have seen that invalid mutants can take up to 10% of the total
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execution time. The total test suite execution time is only subject to the amount of reachable and unreachable mutants
as invalid mutants cannot be executed. Note that the compilation time of consecutive builds is lower than a clean build
and that the test suite execution time varies depending on where, if at all, the mutant is killed due to the early-stop
mechanism.

tmutant_generation

þ tcompilation ∗ ðreachable_mutantsþunreachable_mutantsþ invalid_mutantsÞ
þ ttest_suite_execution ∗ ðreachable_mutantsþunreachable_mutantsÞ

ð1Þ

3.2 | Mutant schemata

The mutant schemata strategy compiles all mutants at once, essentially eliminating the compilation overhead [38]. Pre-
vious studies with mutant schemata have shown that this optimisation approach can provide an order of magnitude
improvement on a full mutation analysis. Untch et al. reported a preliminary speedup of 4.1 [38]. In a later study, Wang
et al. confirmed these findings and reported a speedup between 6.46 and 14.00 on systems written in Java [31]. How-
ever, we found no specific studies investigating the speedups of mutant schemata for the C language family, hence, in
this study, we provide detailed measurements. We timed the generation of the mutants, the compilation of all the
mutants at once, and the execution of the mutants. We can then compare this to the unoptimised approach to gain
insights into its speedups and potential overheads. For a fair and complete comparison, we again make the distinction
between the unreachable and reachable mutants.

Exclude invalid mutants. As all mutants are inserted into a single compilation unit, all generated mutants need to
compile. If even a single mutant causes a compilation error, the complete mutation analysis fails. This is especially
challenging for statically typed languages with many interacting features and unforgiving compilers (C, C++, …).
This is where the Clang compiler front-end can be used for ensuring that all injected mutants will compile. As
Clang has access to all the type information from the project, our program can verify, during the generate mutants
phase, that a newly created mutant is compile-time correct. For this, we rely on the semantic analyser of Clang.
When traversing the AST, we modify a node and ask the semantic analyser of the compiler if the modified node is
syntactically correct in its given context. We are essentially going though the different steps of a compiler (but stop
before the compiler performs optimisations, and before it exports to binary code). Listing 4 shows the relevant
Clang code for building a modified binary operation with its verification. Line 6 calls the semantic analyser and line
7 verifies whether it would cause compilation errors. If not it is considered invalid and labeled as such. This allows
us to avoid a full compilation of the program for every mutant. To ensure that we exclude only the invalid mutants,
we verified that the mutants we labelled as invalid are the same mutants that actually caused compilation failures
in the unoptimised baseline. As this step is tightly integrated with the generation of the mutants, we measured this
together with the generation of the mutants.

Detect unreachable mutants. The detection of the unreachable mutants is identical to the one for the unoptimised
approach.

Compile mutants. Instead of compiling each mutant separately, the mutant schemata strategy compiles all mutants
at once. This means that all mutants are inserted into the code, each mutant being guarded by a conditional state-
ment allowing the activation of individual mutants at run-time. The result is a single code base and only one compi-
lation is needed, drastically reducing the compilation time. We visualised this in Figure 2 by using a smaller
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‘compile all mutants at once’ block. A specific mutant is activated by using an external environment variable.
For this, additional code, that is, the external variable, needs to be added to each file of the project (see line 1 in
Listing 5). Listing 5 shows the mutant schemata version of the original ‘a∗b’ example. We use the ternary opera-
tor, the short-handed version of an if statement, to allow nesting the mutants inside the condition of if statements.

In the example, the ‘%’ operator gives an ‘invalid operands to binary expression’ error; therefore, we
cannot compile our program unless we remove this mutant. As we exclude invalid mutants during generation, these do
not show up in the mutated code base.

Execute mutants. As a final step, all the mutants need to be executed. This can be done by running the executable
for each valid mutant and only changing the environment variable. We again make the distinction between the
reachable mutants, represented by mutants 1 to N, and the unreachable mutants represented by mutants X-Z in
Figure 2.

3.2.1 | Expected performance

For the mutant schemata approach, we estimate the performance via Formula 2. The formula consists of three phases:
the generate mutants, the compile mutants and execute mutants phase. We included the generation of the mutants in
the formula as this step is necessary and identical for all approaches, but its impact should be negligible. We do not
include the detection of unreachable mutants as it is not part of the schemata approach. We only need it to distinguish
between the unreachable and reachable mutants. As the strategy removes the compilation overhead by only compiling
the project once, instead of for each mutant, a drastic speedup is to be expected. Therefore, we no longer need to multi-
ply the compilation time by the number of mutants. Note that the compilation time will be slightly longer, as there is
more code that needs to be compiled. The execution part of the formula stays the same, as we still need to execute the
test suite for each mutant. The test suite execution time for each mutant will, however, also be slightly longer as there is
more code that needs to be executed due to the if statements of the ternary operator in order to activate the correct
mutant.

tmutant_generation

þ tschemata
compilation

þ tschemata
test_suite_execution ∗ ðunreachable_mutantsþ reachable_mutantsÞ

ð2Þ

3.2.2 | Schemata implementation

We implemented the mutant schemata technique using the ternary operator, the short-handed version of an if state-
ment. We do note that the most common case for this implementation is the worst-case scenario. Most of the times no
mutant in the statement will be activated, causing an evaluation of all the if statements before the original statement
can be executed. This creates a fixed overhead per mutant, though we expect this overhead to be limited. The advan-
tages of this approach is that it simplifies and streamlines the implementation of the schemata technique. It allows nest-
ing the mutants inside the condition of an if statement. This can be seen in Listing 6. The body of the if statement can
also directly be mutated inside the expression. Another advantage of the ternary implementation is that it causes no
local scope and can thus mutate assign statements without additional analysis.
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An alternative implementation is possible by using a switch case approach. We can nest the switch inside the condi-
tion of the if statement using statement expressions,5 as seen in Listing 7. While statement expressions are supported
by default in gcc and Clang, they are not supported by the C standard. We are thus strongly discouraged to use
them if we want to enable mutation testing in an industrial setting where it is not always guaranteed that the used
compiler will support the GNU extension. The easiest workaround is putting the statements in a function and calling
said function in the condition of the if statement. For each mutated statement, a new function will then have to be
created.

We can also implement the schemata technique using a global switch, which has its own set of challenges. Firstly,
switch cases have a local scope. This means that when mutating an assign statement using the switch case approach, the
variable will first need to be defined outside the scope of the switch case. Secondly, code explosion will occur as the
body of the if statement needs to be repeated for each case, see Listing 7. The code explosion can be reduced by creating
functions for the body.

We can then either mutate the body inside the default case using additional switch cases, or append the cases of
the mutated body to the existing switch. The latter reduces the amount of switch cases, but would cause a code
explosion.

3.3 | Reachable schemata

The previous strategy essentially eliminated the compilation overhead. This causes the test suite execution to become
the most time-consuming part of the mutation analysis. While eliminating the completely unreachable mutants does

5https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html.
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speed up the mutation testing analysis, the reachable schemata strategy aims to use a more fine-grained approach to
reduce most of the execution overhead. The reachable schemata strategy reduces the test suite scope to only those test
cases which reach the mutant, effectively reducing the execution overhead. We time the generation of the mutants, the
compilation of all the mutants at once and the execution of a reduced test suite for each of the mutants. We can then
compare this to the unoptimised and mutant schemata strategies to gain insights into its speedups and potential
overheads.

Exclude invalid mutants. As the reachable schemata strategy is an optimisation based on the regular mutant sche-
mata approach, we need to exclude the invalid mutants as well. This is done in the same way as with the mutant
schemata approach.

Detect reachable mutants/test. In order to determine which mutants are reached by which test cases, we instrument
the code with a wrapper on the mutatable locations we implemented ourselves. Since the Clang AST level has
facilities available to enumerate the mutable locations, we relied on those to just enable traceability between a test
and the operators actually executed. We store each mutatable location a test run reaches. Running the instrumen-
ted code base for each test case provides us with lists of mutants that are reachable by each test case. This results
in a reduced set of test cases that need to be executed for each mutant, resulting in a speedup without information
loss.

The best results are obtained by using fine-grained test selection and running each test case individually. The
speedups of this technique depends on the test driver used for each project. Some test drivers might only be able to run
individual modules instead of individual test cases. Speedups from module-grained test selection will be lower than from
fine-grained test selection. Our projects were all compatible with fine-grained test selection on a test-by-test case basis.

Compile mutants. The compilation of the mutants is identical to the one for mutant schemata. We do note that an
extra optimisation can be done by only inserting and compiling the reachable mutants in this phase. We did not yet
implement this optimisation in our proof-of-concept.

Execute mutants. As a final step, all the mutants need to be executed. Instead of running the entire test suite for
each mutant, we now only need to run those test cases that reach the mutated locations. In Figure 2, we see that
mutant 1 is not reachable by the entire test suite; therefore, no tests are executed for the mutant. For mutant 2, the
second test case is not executed as that test case does not cover mutant 2.

3.3.1 | Expected performance

For the reachable schemata approach, we estimate the performance via Formula 3. The formula consists of four phases:
the generated mutants, the detect reachable mutants, the compile mutants and the execute mutants phase. We included
the generation of the mutants in the formula as this step is necessary and identical for all approaches but its impact
should be negligible. We included the detection of the reachable mutants/test as it is a part of the reachable schemata
approach in order to gather the reachable mutants to the test case relationship. We estimate its time impact at a single
compilation and execution of the test suite. This is immediately compensated when there is more than one unreachable
mutant. The compilation part again consists of a single compilation as it is an extension of the mutant schemata
approach. For the execution part, only the reachable mutants are considered, together with a decoupling factor. This
factor is a percentage based on the reduction in average mutants reachable by each test case. The more coupled a pro-
ject is, the less effective this strategy will be. The less coupling there is (especially in combination with mocking), the
more effective this strategy will be.

From our measurements, we have seen that the average number of mutants reached per test is between 10 and 20%
of all valid mutants. This implies that our technique can reduce the number of tests needed to execute per mutant
between 5� and 10�. We therefore also expect a speedup between 5� and 10�.

tmutant_generation

þ tschemata
compilationþ tschemata

test_suite_execution

� �

þ tschemata
compilation

þ tschemata
test_suite_execution ∗ reachable_mutants∗decoupling_factor

ð3Þ
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3.4 | Split-stream mutation testing

The split-stream mutation testing strategy reduces the execution overhead of mutation testing even further. Instead of
letting each mutant initiate execution from the start of the program, each mutant is started from the mutation point
itself. This can be achieved by exploiting the state-space information. Previous research has shown an average speedup
of 3.49� of split-stream mutation testing over mutant schemata by mutating the LLVM IR [31].

We explain the overhead and general idea of the split-stream mutation testing approach using Figure 3. Here, we
visualised the execution trace of the original, unchanged program, as a long vertical trace of states, each representing
the execution of a single instruction. The trace of each mutant looks identical to the original mutant up until the
mutated expression. In Figure 3, we show mutant 4 with a mutation in the 4th expression, mutant 3 with a mutation in
the 3rd expression. The trace only deviates from the original trace after the mutated expression. All of the states up until
the mutated state are in fact redundant, as we already know them from the execution of the original program. We
highlighted these redundant states and expressions in red in Figure 3.

Exclude invalid mutants. As this strategy is an optimisation from the regular mutant schemata approach, we need
to exclude the invalid mutants as well. This is done identically as with the mutant schemata approach.

Compile mutants. The compilation of the mutants is identical to the one for mutant schemata. However, additional
code needs to be instrumented in the code base in order to exploit the state space and start the mutants from their
mutation point instead of from the start of the program.

Execute mutants. In order to exploit the state space, we start the split-stream mutation analysis only once instead of
for each mutant as with mutant schemata. We explain the split-stream mutation testing process using Figure 4.

When we start the split-stream mutation analysis, no mutant is active. The first mutant the program encounters is
not yet activated, so the program forks the entire program and pauses the original one. The forked program is then in
the exact same state as the original program, essentially this is a duplicate of the state-space. In the forked program, we
activate the encountered mutant. We let the forked program execute, only taking into account the active mutant and
store its results at the end of its execution. We then continue our first program, until it encounters another mutant that

F I GURE 3 Trace of original and mutated programs.
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is not yet activated. Here, the process is repeated, a fork is created, the mutant is executed, and its results are stored.
This goes on until the original program reaches its end state.

Like with the mutant schemata strategy, our proof-of-concept tool needs to decide what needs to happen at each
mutation position. Instead of only deciding whether or not a mutant needs to be active or not, it now also needs to
decide when it needs to fork the process. For this, we instrumented additional code at each mutation point. We explain
the general concept using the C++ example in Listing 8.

When we start our program with all the mutants in it, no mutant is ever be activated. The original program is only
responsible for forking newly encountered mutants and storing their results.

When a mutant is encountered in the main program, for example, on line 16, then it continues to line 7, where it ver-
ifies whether or not it already encountered that mutant. If it did, it will continue the program, otherwise, it will fork the
program and wait for the forked program to finish, on lines 8 and 9. The forked program will only take into account
the active mutant and run till its end. When the forked program encounters a mutant, it verifies if it is the mutant that
the process was forked for, if so it will execute it, otherwise it will execute the original code. The forked process will not
create additional forks. The main program will then store the result (exit code) of the forked program, add the mutant
to the already executed list and continue until it encounters a new mutant, on lines 9 and 10.

F I GURE 4 Split-stream mutation process.
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The split-stream mutation testing approach naturally ensures that unreachable mutants are not executed. The
approach will never create forks for mutants that it will not reach. By executing each of the tests separately, only those
mutants reachable by the test case will be executed for that test. This is similar to the reachable schemata approach,
with the added benefit that there is no separate compilation and/or test suite execution run necessary in order to extract
the reachable mutants.

External dependencies. As we start the mutants from their mutation points, we now also need to ensure that all of
the project dependencies, for example, files and databases, are in their correct state. If a test changes the state of an
external dependency (a file, a database, …), the mutation point needs to copy the existing state at the mutation
point, continue the forked process and when it returns to the mutation point restore the original state. The protocol
of such external dependencies complicates matters to a large degree. For example, a file needs to be opened and
closed, a database transaction needs to commit or abort. If this protocol is not followed the test will fail because
the system under test in in a corrupted state. This will change the mutation score, which is something that must be
avoided at all cost

We therefore built in hook functions to copy and restore the state, which can be specialised for each project. We
instantiated these hook functions to automatically reset local files to the state they were in for each of the mutation
points via a local git repository and the system(‘git reset –hard HEAD 1’) command.

3.4.1 | Expected performance

For the split-stream mutation approach, we estimate the performance via Formula 4. The formula consists of three
phases: the generate mutants, the compile mutants and the execute mutants phase. We included the generation of the
mutants in the formula as this step is necessary and identical for all approaches but its impact should be negligible.
We no longer need to detect the reachable mutants/test as it is inherent to the split-stream approach. The compilation
part again consists of a single compilation, which should be slightly longer than the compilation of the schemata
approach. The execution time is impacted negatively as the forking of the process will take some time. As the forking
process works on a copy-on-change principle, only the memory that is changed will be copied. This ensures that the
impact of the forking is kept at a minimum. The benefit of this strategy is that we no longer need to execute the
redundant code. A mutant that is located at the very end of the execution will now only take very little time to exe-
cute. This is in contrast to the original mutation testing where it would have needed to start its execution from the
very beginning. Mutants located in the front will only have a small improvement in their execution time. In general,
one could thus assume that this strategy would contribute to an additional 2� speedup. Similar to the reachable sche-
mata approach, executing the test suite on a test-by-test case should yield the best results. Hence, we have the same
decoupling factor.
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tmutant_generation

þ tsplit_streamcompilation

þ tsplit_streamtest_suite_execution ∗ reachable_mutants∗decoupling_factor=2

ð4Þ

4 | EXPERIMENTAL SET UP

This paper presents a feasibility study, investigating to which extent the Clang front-end and its state-of-the-art pro-
gram analysis facilities allow to implement existing strategies for mutation optimisation within the C language family.
We measure the speedup from two perspectives (compilation time and execution time) assessing four optimisation strat-
egies. This gives rise to the following research questions:

• RQ1: How much speedup can we gain from mutant schemata?
• RQ2: How much speedup can we gain from split-stream mutation testing?
• RQ3: How much speedup can we gain from eliminating invalid mutants?
• RQ4: How much speedup can we gain from eliminating unreachable mutants?

To answer these research questions, we measure the impact of the optimisation techniques, which delays we intro-
duce and how much of the overhead we eliminate. We also collect qualitative evidence on difficulties we encounter
when applying each of the strategies.

4.1 | Cases

To investigate the strengths and weaknesses of the Clang-based optimisation strategies, we validate our proof-
of-concept tool on four open-source C++ libraries and one industrial component. These cases cover a wide diversity in
size, C++ language features used, compilation times, and test execution times as shown in Table 3. To allow other
researchers to reproduce our results, we refer to the latest commit id of the version of the project we used for our
analysis.

In the first block of the table, we list general details about the project, number of commits, contributors, Lines Of
Project Code (LOPC), Lines Of Test Code (LOTC), and the number of test cases the project has.

The second block list the compilation time of the project and the test suite execution time. Projects with a longer
compilation time might benefit more from a mutant schemata strategy than projects with a longer test suite
execution time.

In the third block, we list how many mutants we generated for each project. As our implementation of the mutant
schemata optimisation cannot yet work with mutants in so-called const-expression and/or templates, we excluded these
mutants for a fair comparison. We also list the number of mutants per line of production code (LOPC), which indicates
how densely or sparsely packed the mutants are. A project with a high density of mutants might introduce delays spe-
cific to the optimisation strategy.

In the fourth block, we list the number of valid mutants and the number of invalid mutants, that is, mutants that
are killed by the compiler. We also list the number of mutants that are not reachable by the current test suite. Finally,
we list the average amount of test cases that actually reach a valid mutant, both in absolute number as well a relative
percentage. The reachable mutant schemata strategy uses this information to its advantage to reduce the mutant
execution time.

In the last block, we list the number of survived mutants and the number of killed mutants.

4.1.1 | TinyXML2

TinyXML2 (https://github.com/leethomason/tinyxml2 commit id: ff61650517cc32d524689366f977716e73d4f924) is a
simple, small, efficient, C++ XML parser that can be easily integrated into other programs. It represents a small-sized
project with 3542 lines of production code and 1885 lines of test code (without empty lines and comments). Even
though the project is small, we generate 1038 mutants for it. We choose this project deliberately because of its short
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compilation and execution time (1.12 s and 0.11 s, respectively), as it represents a worst-case scenario for all overhead
introduced by the optimisation strategies.

4.1.2 | JSON

JSON (https://github.com/nlohmann/json commit id: 7c55510f76b8943941764e9fc7a3320eab0397a5) is a special case as
the entire source code consists of a single header file. This means that any changes to that file will cause a complete
rebuild of the entire project, including virtually all test files. Furthermore, all valid mutants are reachable by the test
suite. This means that there we cannot expect any speedup from detecting the unreachable mutants.

The JSON project consist of many const, constexpr and templates. As our implementation of the mutant schemata
optimisation cannot yet work with mutants in so-called const-expression and/or templates, we need to exclude many
mutants from the JSON project.

The test suite of JSON consists of 88 tests with a runtime of 14 min. Two of the tests however cause the majority of
this time, that is, test 12 with 1 min and test 80 with 11 min execution time. By limiting the number of mutants to only
those mutants that are reached by these tests, the total runtime can be reduced drastically.

4.1.3 | Google test

Google test (https://github.com/google/googletest commit id: f2fb48c3b3d79a75a88a99fba6576b25d42ec528) represents
a medium size project with 32,630 lines of production code and 28,064 lines of test code. It is a widely used framework
for testing C++ code, so one could expect it to be fairly reliable. This is confirmed by the mutation coverage, from the
2498 valid mutants, only 144 (5.8%) are unreachable by the test suite.

TABLE 3 Results: Project details.

TinyXML2 JSON Google test Cpp Check Saab case
Commits 1052 4312 3840 25,309 Confidential

Contributors 78 213 100 340

GitHub stars 3.9k 28.4k 24.9k 3.9k

LOPC 3542 10,955 32,630 98,171

LOTC 1885 26,586 28,064 159,780

Test cases 1 88 61 3745

Compilation time 1.12 s 3 min 52.88 s 6 min 31.34 s 5 min 49.68 s 3 min 08.52 s

Test suite run time 0.11 s 14 min 10.76 s 15.01 s 17.04 s 2.63 s

Generated mutants 1038 3764 4488 61,007 Confidential

Excluded mutants (const, constexpr
or templated mutants)

185 3254 1755 5591

Considered mutants 853 510 2733 55,416

Mutants/LOPC 0.241 0.047 0.084 0.564 0.233

Valid mutants 716 333 2498 54,643 Confidential

Invalid mutants (killed by compiler) 137 177 235 773

Completely unreachable mutants 36 0 144 5712

AVG tests/reachable mutant 0.95 8.46 11.91 402.96

94.97% 9.61% 19.53% 10.76%

Survived mutants 331 33 1028 21,291 Confidential

Killed mutants (excl. timed out) 211 300 1419 24,639

Timed out 138 0 51 8713

LOPC, lines of production code; LOTC, lines of test code. LOPC (incl. include files) calculated using cloc (excl. newlines and comments; https://cloc.sourceforge.net).
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4.1.4 | CppCheck

CppCheck (https://cppcheck.sourceforge.io commit id: 8636dd85597acdc1560f7e0bd364c94851bec3b9) is a static analy-
sis tool for C/C++ programs. It aims to detect bugs, undefined behaviour and dangerous coding constructs. It has the
most mutants per line of production code and will thus also have the largest negative impact on the duration of its test
suite execution. It is the biggest of the projects we analysed with the highest number of mutants. We would like to note
that this project has many configurable macros. We ran the project without changing the defaults. Running the project
with different macro configurations can lead to different results. This can even increase or decrease the number of
unreachable mutants.

4.1.5 | Saab case

The Saab case (https://saabgroup.com/about-company/organization/business-areas/) represents the project from our
industrial collaboration. The company develops safety-critical systems and must adhere to 100% MC/DC testing
(Modified Condition/Decision Coverage, the coverage criterion adopted for the highest Design Assurance Level (DAL)
in accordance to the RTCA-DO178B/C standard). This means that their project is well tested. Due to the project being
classified as confidential, some information has been left out and marked Confidential in the coming sections. However,
the information related to the speedup caused by the use of mutant schemata can be disclosed.

4.2 | Hardware and software set-up

We used the same infrastructure for the analysis of the selected open-source projects. An Intel(R) Core(TM)2 Quad
Q9650 CPU, with two 4GB (Samsung M378B5273DH0-CH9) DDR3 RAM modules (for a total of 8GB) and a
250GB Western Digital (WDC WD2500AAKX-7) hard drive. The PC was running Ubuntu 18.04.1 LTS (GNU/Linux
4.15.0-29-generic x86_64). Using an SSD should drastically influence the compilation times and negatively impact the
total speedups. Using more RAM and/or a faster CPU might influence the compilation time and/or execution time, this
however is presumed to be marginal.

The industrial project of Saab Aeronautics ran on their build server. Some of their results could be slightly impacted
by background services.

5 | RESULTS AND DISCUSSION

Before we measure the speedup induced by the different optimisation strategies implemented using the Clang front-end,
we first analyse the time spent in each of the optimisation phases. The individual timing results can be found in Table 4.
In essence, this timing information allows us to assess the significant terms in the performance estimation formulas for
the unoptimised configuration (Formula 1; p. 12); the mutant schemata (Formula 2; p. 14 and Formula 3; p. 16) and
the split-stream mutation testing (Formula 4; p. 19).

5.1 | Individual timings

Time measurement. We split the mutation analysis up in the afore mentioned phases (i.e., mutant generation, inser-
tion, compilation and execution). We time each of these phases using the unix time command. We utilised the std:
chrono function to get the system clock and measure internal execution times of the generation and validation of
the mutants. Executing a complete run easily takes several days, hence we only collect one measurement per run.

Generate mutants. The first block of Table 4 confirms that the generate mutants phase is negligible. This phase is
necessary and identical for all our investigated optimisation techniques and corresponds to tmutant_generation in For-
mula 1 to 4. The four open-source cases illustrate that this phase is orders of magnitude faster than any of the fol-
lowing steps and less than the original compilation time of the projects as listed in Table 3.

Detect (un)reachable mutants. In the second block of Table 4, we list the detection times of the (un)reachable
mutants. For the unoptimised and schemata technique, we detect which mutants are reached by the test suite. The
reachable schemata approach is more fine-grained and detects which mutants are reached on a test-by-test case.
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We estimated this phase at tschemata
compilationþ tschemata

test_suite_execution

� �
, a single compilation and test suite execution in Formula 3.

The four open-source cases and the industrial case illustrate that this phase is also orders of magnitude faster than
any of the following steps.

As the split-stream approach inherently only executes reachable mutants, it does not have a detection delay.

Compile mutants. The third block of Table 4 confirms that the compilation phase takes up a significant amount of
time. Additionally, the compilation of the invalid and unreachable mutants is considerable.

We estimated this phase for the unoptimised approach at tcompilation ∗ ðreachable_mutantsþunreachable_mutantsþ
invalid_mutantsÞ in Formula 1.

By moving from the unoptimised approach to the schemata approach, we only need to compile once instead of for
all mutants, reducing the compilation time to tschemata

compilation from Formula 2 where the multiplication is removed. This
essentially removes the compilation overhead as is confirmed by the four open source cases in Table 4. We can also see
that the compilation is only slightly longer than the original compilation, as seen in Table 3. This is due to the fact that

TABLE 4 Results: Individual Timings.

Strategy Mutants TinyXML2 JSON Google test CppCheck Saab case

Generate mutants & validation:

All 0.09 s 0.64 s 3.79 s 2 min 47.15 s Confidential

Detect (un)reachable mutants:

Unoptimised Reachable 0.11 s 14 min 12.09 s 7 min 11.39 s 7 min 51.60 s 2.63 s

Schemata /test suite

Reachable Reachable

Schemata /test case

Split-stream 0 s 0 s 0 s 0 s 0 s

Compile mutants:

Unoptimised Reachable 7 min 17.49 s 21 h 45 min 46.62 s 40 h 21 min 45.49 s 3 days 18 h 52 min 39.52 s Confidential

Unreachable 22.79 s 0 s 2 h 19 min 35.25 s 10 h 36 min 20.31 s

Invalid 50.83 s 3 h 05 min 23.74 s 3 h 05 min 24.35 s 1 h 01 min 41.15 s

Schemata Valid 1.23 s 3 min 54.68 s 6 min 36.04 s 7 min 07.39 s 3 min 02.63 s

Reachable

Schemata

Split-stream 1.28 s 3 min 57.27 s 6 min 41.85 s 7 min 13.91 s N.A.

Execute mutants (excluding timed out):

Unoptimised Reachable 1 min 05.60 s 17 h 41 min 49.05 s 9 h 49 m 36.26 s 2 days 05 h 41 min 30.47 s Confidential

Unreachable 4.10 s 0 s 36 min 01.25 s 1 day 03 h 02 min 43.46 s

Schemata Reachable 1 min 21.84 s 17 h 43 min 28.57 s 9 h 50 min 30.45 s 4 days 22 h 16 min 45.61 s

Unreachable 4.81 s 0 s 36 min 04.84 s 2 days 11 h 32 min 05.66 s

Reachable Reachable 1 m 13.54 s 1 h 01 m 29.01 s 1 h 46 min 36.16 s 9 h 27 min 30.01 s

Schemata /test case

Split-stream DNF

Technique execution overhead:

Schemata versus Reachable 17.44% 0.16% 0.15% 120.29% 0.11%

Unoptimised Unreachable 19.95% N.A. 0.17% 120.13%

Timed out mutants:

Unoptimised 27.60 s 0 s 26 min 00 s 2 days 12 h 30 min 25 s Confidential

Schemata 5 days 01 h 00 min 50 s

Reachable

Schemata

Split-stream DNF
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the injected mutants increase the code base, but this is limited to each function scope, therefore leaving the linking part
of the compilation untouched. However, when we introduce more advanced mutation operators and mutate the afore-
mentioned const expressions, we likely need to introduce different functions, causing the compilation time to increase
further. Still, we can expect the compilation time to remain drastically decreased from an unoptimised traditional
approach. This is also the case for the split-stream mutation testing approach, which in its turn is slightly longer com-
pared to the mutant schemata one, as it has internal functions to regulate the activation and forking of the mutants.

Execute mutants. The fourth block of Table 4 contains the execute mutant phase excluding the timed out mutants.
Here, we can see that the execute mutant phase also takes up a significant amount of time. This was expected as we
estimated its duration at ttest_suite_execution ∗ ðreachable_mutantsþunreachable_mutantsÞ for the unoptimised and sche-
mata approach in Formula 1 and 2. The first observation we can make is that the unreachable mutants can have a
minimal to large impact on the mutant test execution. The stronger a test suite is, the fewer mutants will be
completely unreachable. We see no impact in the JSON project as it has no unreachable mutants. We see the most
impact in the CppCheck project. Here, the test execution time of the unreachable mutants for the unoptimised and
mutant schemata approach is half of the reachable ones. It is possible that running the project with a different con-
figuration leads to a different number of unreachable mutants.

Our second observation is that the execution time of the reachable schemata approach is drastically shorter
than that of the schemata and unoptimised approach, even when compared to only the reachable mutants. Instead
of executing the entire test suite for each mutant, the reachable schemata approach only executes those test cases
that reach the specified mutant. A mutant that survives will have fewer test cases executed compared to the
mutant schemata and unoptimised approach. It also stands to reason that mutants that are detected are detected
faster as the test cases that do not reach the mutant are not executed. We estimated its duration at
tschemata
test_suite_execution ∗ reachable_mutants∗decoupling_factor in Formula 3. In Table 4, we can see that the decoupling factor
varies from project to project. This factor can roughly be represented by the average amount of tests that will be exe-
cuted per mutant, which we listed in Table 3. TinyXML2 has only 1 test, so there is no additional speedup to be gained
from the reachable schemata approach. The JSON project has the most speedup from this approach as it only needs to
execute 9.61% of the test cases per mutant, this is followed by the CppCheck project at 10.76% and the Google test pro-
ject at 19.53%.

Our last observation is that we were unable to collect measurements regarding the test suite execution of split-stream
mutation testing on the projects under analysis. Essentially because all projects relied on external components with spe-
cial state. See Section 5.2.2 for an in-depth explanation. We, therefore, labeled its result as DNF (did not function).

Technique execution overhead. In block four, we can see that the execution time for both the unreachable and the
reachable mutants is increased by using the schemata technique compared to the unoptimised technique. This is
due to the additional run-time instructions that ensure the correct activation of the mutants. We listed the execution
overhead introduced by the optimisation techniques in the execute mutant phase in percentages in the fifth block of
Table 4. We can see that the percentual overhead between the unreachable and reachable mutants is, as expected,
very close. As there are no unreachable mutants for the JSON project, no overhead can be calculated for it. We can
also see that there is a limited overhead for the reachable mutants in the JSON and Google test projects of 0.16 and
0.15%. The TinyXML2 project is impacted more by 17.44%. This increase in overhead can be attributed to the
increase in the number of mutants per LOPC. Where this was only 0.047 and 0.084 for JSON and Google test, it is
0.241 for TinyXML2. The more mutants there are per LOPC, the more if statements there are to verify which
mutant needs to be executed. Mathematically dense programs will suffer more from the schemata implementation
using the ternary operator. Switching to a switch-case implementation would reduce the impact. The CppCheck
case has, with 0.565 mutants per LOPC, the highest number of mutants per LOPC. We thus also expected a higher
impact on the execution time of the project. We measured an overhead of 120.29%. This overhead can be attributed
to the many if statements that are introduced per statement. Changing the activation of the mutants from if state-
ments to switch-case-based should reduce this overhead.

Timed out mutants. For many of the projects, the test time caused by timed-out mutants is fairly limited. This can
be seen in the last block of Table 4. However, for the bigger, and longer running projects, this does become a signif-
icant amount of the mutation analysis time. This is especially true for the CppCheck project as the timed-out
mutants take up 93% of the reachable schemata mutation analysis. We manually set a fixed timeout time for each
of the projects. The time out is identical for each of the optimisation approaches except for the CppCheck project.
The introduced overhead caused an additional delay for the schemata-based approaches. Here, we double the time-
out time. The time-out time can be reduced specifically for the reachable mutant schemata strategy. We execute
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each test case individually instead of the entire test suite: We should thus set an individual time out for each of the
test cases. These time-outs should thus be much shorter, resulting in a reduced detection time when a mutant times
out due to, for example, an infinite loop.

5.2 | Complete mutation analysis

In this section, we look at the impact of the optimisation strategies in relation to the complete mutation analysis while
answering the research questions. Their timings and speedups can be found in Table 5.

5.2.1 | RQ1: How much speedup can we gain from mutant schemata?

The schemata approach, which virtually eliminates the compilation overhead, drastically speeds up the mutation analy-
sis in most cases. As we have seen in Section 5.1, mutant schemata can reduce the compilation time down to almost the
original, single, compilation time of the project. Here, we see speedups of up to 5.03� for the valid mutants, and up to
4.95� for the reachable mutants compared to the unoptimised approach, as listed in Table 5. JSON has a speedup of
2.22� due to a high proportion of test suite execution time versus its compilation time. The CppCheck project obtained
a speedup 0.81� due to the increase in mutant execution time, attributed to the techniques implementation in combina-
tion with the high number of mutants per line of production code. In the previous section, we saw that there was a lim-
ited impact on the execution times of the mutants in projects with a low number of mutants per line of production code
(less than 0.1: JSON and Google test). Projects with a high number of mutants per line of production code (0.24 and
0.56: TinyXML2 and CppCheck) suffered from increased execution overheads which limits its speedup potential. One
may reduce such excessive overhead by adopting switch statements instead of if statements for mutant selection. We dis-
cuss this as one of the lessons learned (see ‘6. Ternary Operator and the Occasional Excessive Overhead’; p. 61).

We measured a speedup of 5.16� for the industrial Saab project for the mutant schemata approach compared to a
traditional approach when excluding the completely unreachable mutants. For the other projects, we see that the
speedups for this optimisation are slightly smaller than with the unreachable mutants. This is as expected as more time
(compilation and execution time) is saved excluding the unreachable mutants in an unoptimised approach then in a
schemata approach (execution time).

TABLE 5 Results: Speedups.

Mutants TinyXML2 JSON Google test CppCheck Saab case

Unoptimised:

Considered 10 min 12.42 s 1 day 18 h 33 min 00.05 s 2 day 09 h 14 min 27.64 s 11 days 06 h 50 min 50.51 s Confidential

Valid 9 min 17.58 s 1 day 15 h 27 min 36.31 s 2 days 05 h 33 min 02.04 s 10 days 02 h 46 min 25.90 s

(vs. considered) 1.10� 1.08� 1.07� 1.12�
Reachable 8 m 52.25 s 1 day 15 h 45 min 50.43 s 2 days 02 h 44 min 36.93 s 8 days 13 h 15 min 13.74 s

(vs. valid) 1.05� 0.99� 1.06� 1.18�
Schemata:

Valid 1 min 50.77 s 17 h 47 min 23.89 s 10 h 59 min 15.12 s 12 days 10 h 59 min 35.81 s Confidential

(vs. unopt. valid) 5.03� 2.22� 4.87� 0.81�
Reachable 1 min 47.43 s 18 h 05 min 38.01 s 10 h 30 min 21.67 s 9 days 23 h 59 min 35.81 s

(vs. unopt. reachable) 4.95� 2.20� 4.83� 0.86� 5.16�
(vs. schemata valid) 1.03� 0.98� 1.0� 1.25� Confidential

Reachable chemata:

Reachable/test 1 min 43.92 s 1 h 23 min 38.45 s 2 h 26 min 27.38 s 5 days 10 h 46 min 06.16 s Confidential

(vs. unopt. considered) 5.89� 30.52� 23.45� 2.07�
(vs. unopt. reachable) 5.12� 28.52� 20.79� 1.57�
(vs. schemata reachable) 1.03� 12.98� 4.30� 1.83�
(vs. valid schemata) 1.07� 12.76� 4.50� 2.29�
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With the TinyXML2, Google test and the industrial Saab project, the mutant schemata technique obtains a
speedup between 4.87� and 5.16�. For the other cases, the speedup was less eminent. JSON has a speedup of
2.22� due to a high proportion of test suite execution time versus its compilation time. CppCheck obtained as
speedup of 0.81� due to due to the increase in mutant execution time, attributed to the techniques implementa-
tion in combination with a high number of mutants per line of production code.

The obtained speedup from a mutant schemata technique depends on two factors: (a) the proportion of the
project compilation time versus its execution time; (b) the number of mutants per line of production code. The
latter is implementation specific and its impact may be reduced by changing the activation of the mutants from
if statements to switch-cases.

5.2.2 | RQ2: How much speedup can we gain from split-stream mutation testing?

For split-stream mutation testing, we expected an additional speedup of approximately 2� over mutant schemata.
Unfortunately, this is only feasible for test suites consisting of true unit tests without any external dependencies. This
property does not hold for the projects under investigation.

• TinyXML2 uses iostream to read from an input stream. At each mutation point we must copy the read pointer of
the file and restore it to the position where it was. To complicate matters even further, the stream is opened and
closed deep inside the library; thus, one needs intimate knowledge of the internal design.

• JSON suffered from the same issue as Tinyxml: it imports iostream to read from an input stream hence restoring
the read pointer causes problems.

• Google test utilises its own forks to optimise its tests execution, which interferes with the forks we introduce. On top
of that Google test does not report test failures via return values but uses the internal facilities for test reporting.
Here, as well, one needs intimate knowledge of the internal design to ensure that the internal state is consistent when
restoring.

• CppCheck is designed for a unix style pipes and filter architecture, and imports iostream to read from an input
stream and write to the output and errorstream. Just as with TinyXML and JSON the mutation score for split stream
mutation testing differed, hence we assume also for similar corrupted file pointers.

To deal with such external dependencies, we built in support to reset local files to a specific state using a local git
repository. Also, we provided specific hook functions to reset more advanced dependencies (e.g., accessing a database).
However, instantiating these hook functions requires domain specific knowledge of the program under test. Indeed, for
split-stream mutation testing to work, one must for each injected mutant save the current state of the file-IO and revert
it back later. This implies that one not only must interfere with the standard file IO, but sometimes must do so via other
external libraries or intervene with the exception handling. Thus, it requires intimate knowledge of the system under
test, its test architecture and the libraries it depends upon. During our analysis, the mutation score for the split stream
mutation version always differed from the mutation score of the other optimisations. Somehow the internal state of the
dependent component gets corrupted when resetting to a previous version. We lacked the domain specific knowledge
about the system under test to identify and remedy the root cause for these corrupt states. As a result, the test fails when
it shouldn’t.

We conclude that split-stream mutation testing only pays of for test suites consisting solely on true unit tests
without any external dependencies. This property does not hold for the projects under investigation. In theory,
this strategy could yield a speedup of a factor 2, but we were unable to confirm this on our dataset.

VERCAMMEN ET AL. 25 of 34

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1865 by U

niversiteit A
ntw

erpen, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5.2.3 | RQ3: How much speedup can we gain from eliminating invalid mutants?

In Table 5, we see that for the unoptimised approach a speedup between 1.07� to 1.12� is achieved by excluding the
invalid mutants. This speedup is attained by a reduction in the compilation time as invalid mutants are mutants that
cause compilation issues and can thus not be executed.

Compiler-integrated techniques like mutant schemata and split-stream for the C language family come with an
important drawback: the tight integration with the compiler. Since all mutants are injected simultaneously, the resulting
program must compile without any errors. Invalid mutants are not acceptable, since they prevent the compilation (and
the execution) of the mutated program. This is especially challenging for statically typed languages with many interact-
ing features and unforgiving compilers (C, C++, …). Since Clang has access to all of the project’s type-information, we
can programmatically ensure that any of the created mutants are statically correct. We can therefore not calculate a
speedup for the invalid mutants as their exclusion is a requirement for the schemata techniques.

Compared to an unoptimised approach the reduction in the compilation overhead leads to a speedup by a factor
between 1.07� and 1.12�. This is not all that much, but excluding invalid mutants is a necessary prerequisite
for the mutant schemata strategy discussed under RQ1.

5.2.4 | RQ4: How much speedup can we gain from eliminating unreachable mutants?

In Table 5, we see that for the unoptimised approach a speedup between 1.05� to 1.18� is achieved by excluding the
completely unreachable mutants. This speedup stays approximately the same with the mutant schemata approach where
the speedup is between 1.03� to 1.25� by excluding the completely unreachable mutants. (The JSON project is the
exception that proves the rule—this project has no unreachable mutants.) This speedup, however, will depend on the
coverage of the test suite. A test suite with low coverage and thus reaching fewer mutants will yield a higher speedup by
excluding them.

However, the reachable schemata technique goes a step further by not only excluding completely unreachable
mutants but by also excluding the test cases that do not reach the mutant on a mutant by mutant case. This gives an
additional speedup between 1.83� and 12.98� over the schemata technique that excludes completely unreachable
mutants. This provides a speedup between 2.29� and 12.76� over the normal schemata technique. (Here, the
TinyXML2 project is the exception, as it only has a single test case.) Further speedups are possible by optimising the
time-out function that, for example, detects mutants stuck in infinite loops. This can be achieved by specifying a time-
out for each test case instead of a time-out for the global test suite. It would be interesting to investigate whether exclud-
ing tests that do not infect the program states (i.e., that do not even pass the weak mutation criterion) would further
induce speedups.

Compared to an unoptimised approach, excluding the completely unreachable mutants provides a speedup
between 1.05� to 1.18�. If we go one step further (also excluding the test cases that do not reach the mutant
on a mutant by mutant base) we achieve an additional speedup between 1.83� and 12.98�.

6 | CHALLENGES, LIMITATIONS AND LESSONS LEARNED

This paper presents a feasibility study, investigating to which extent the Clang front-end and its state-of-the-art pro-
gram analysis facilities allow to implement existing strategies for mutation optimisation within the C language family.

26 of 34 VERCAMMEN ET AL.

 10991689, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1865 by U

niversiteit A
ntw

erpen, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Mutation testing and mutation optimisations for statically typed languages like the C family are challenging to imple-
ment as they have many interacting features and unforgiving compilers. We demonstrated via a proof-of-concept that
the Clang front-end allows to alleviate some problems. Doing our feasibility study, we made ten interesting observa-
tions, which we share below as challenges, limitations and lessons learned.

1. Tests with external dependencies hinders split-stream mutation testing.
In Section 5.2.2, we concluded that split-stream mutation testing only pays of for test suites consisting solely on true
unit tests without any external dependencies. In the projects we used in our analysis, this property did not hold and
such external dependencies are a common phenomenon in continuous integration settings. After the test suite has
run, the external dependencies, like input/output files and databases, need to be reset for the next run of the Continu-
ous Integration. The support for this is usually baked into the used build systems of the projects (e.g., make clean).
Of the four optimisations we investigated, split-stream mutation testing suffers when the test demands that the exter-
nal dependencies must be reset to a specific state. Unfortunately, the Clang compiler framework does not provide
sufficient features for a precise analysis of where such external dependencies occur, hence cannot identify and revert
state changes in dependent components and libraries. We provided built-in support to reset local files to a specific
state using a local git repository. Yet, more advanced dependencies like running an (in-memory) database need spe-
cific commands and intimate knowledge of the program under test and its test architecture. The implementation for
this will be different for each project. These problems are not insurmountable, they are similar in nature to the prob-
lems that occur with distributed mutation testing. They are however out of scope for what a Clang compiler front-
end can support.

2. Multi-threading prohibits split-stream mutation testing.
Traditional, unoptimised mutation testing and mutant schemata inherently support applications that utilise multiple
threads as they run from start to finish. Split-stream mutation testing (as all other optimisation techniques that
manipulate the test execution) suffers when dealing with multi-threaded programs, as was the case with Google test.
If we ‘start’ the first mutant after a secondary thread is spawned, our mutant likely runs to the end of the program
and wait for the secondary thread to finish. A second mutant ‘started’ from the same location expects the secondary
thread to be there, but as it is already closed, the second mutant does not run correctly. Supporting multi-threaded
programs for the split-stream approach require additional development to ensure that not only the main thread will
be forked, but also the existing threads. Here, as well, this is out of scope for what the Clang compiler front-end can
support.

3. Equivalent mutants.
Equivalent mutants have been heavily studied in the literature as they may induce heavy overhead on test engineers
aiming for 100% mutation coverage [27]. Eliminating equivalent mutants before executing the test suite is thus a
promising optimisation, much like eliminating unreachable mutants. A paper by Offutt et al. illustrates how pro-
gram analysis can help to identify equivalent mutants by demonstrating that they belong to an infeasible path [39].
The authors argue that a mutant is equivalent if the injected mutant lies on an infeasible path; thus (according to the
RIPR model), the injected mutant can never propagate to the assert statements that reveals it. Whether the Clang
AST level provides sufficient facilities to detect infeasible paths remains to be seen. Indeed, the infeasible path analy-
sis will induce a much larger overhead than the other optimisation technique we considered here. However, even if
the computational cost is high, it will greatly reduce the cost of subsequent manual analysis. Automatically detecting
even a small fraction of equivalent mutants saves valuable developer time and that alone is reason enough to con-
sider this in future work.

4. Trivial compiler equivalence.
The most pragmatic approach for detecting equivalent mutants to date is called trivial compiler equivalence (TCE).
The technique compares the generated (byte) code of the mutated program against the original [34]. Due to compiler
optimisations the syntactic differences between the original and mutated program may disappear and then they are
considered trivially equivalent. This allows to identify the easy cases, however, for the difficult ones, further
analysis—like infeasible paths—is required.
Implementing a scheme for trivial compiler equivalence on top of the Clang front-end in combination with the
LLVM IR looks a very promising avenue for further investigation. For the moment, we did not yet implement it in
our proof-of-concept since it goes well beyond the Clang front-end analysis we set out as as a goal. Nevertheless,
based on our experience, we believe that we can integrate trivial compiler equivalence by relying on the different
compilation phases as we did when generating and validating the mutants. We only need to execute the first steps of
the compilation, including the generation of the abstract syntax tree, once. The abstract syntax tree then resides in
memory, after verifying the mutant with the semantic analyser, we can then ask the compiler to generate the accom-
panying LLVM IR and optimise it. This approach then generates multiple binaries that we can utilise to detect triv-
ial compiler equivalency, but with a reduced compilation cost. Combining this approach with our mutant schemata
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approach however re-introduces some of the overhead we saved with the schemata approach as we need to generate
the binaries for both the trivial compile equivalency detection and the single binary for the mutant schemata execu-
tion. Depending on the amount of equivalent mutants, it might also be better to perform this detection technique
post mutation analysis by only incorporating the survived mutants. Additional research is needed to investigate the
best approach to integrate trivial compiler equivalence as an optimisation strategy.

5. Ensuring type safety.
A first challenge occur when we implement mutant schemata for a statically typed programming language. By
design, the mutated program must be syntactically correct—no type errors should occur; thus, every mutated state-
ment should be valid for the compiler. We cannot generate mutants like ‘string � string’ or ‘float % int’. Classes
can overload or omit operators like ‘+’ and ‘�’ further complicating the matter. Clang allows us to access all the
statically available information of the project and to verify if a mutated statement is syntactically correct without
the need to compile the complete project. In that sense, the Clang AST level provides all what is needed to imple-
ment mutant schemata and the extra analysis time is more than catered for with a reduced compilation time.
While we have demonstrated that this works for binary expressions, we have not investigated how this needs to be
done for less straightforward mutations such as access modifiers change (AMC), where the public access label is
changed to private. With our experience, we believe other mutation operators can be incorporated in mutant sche-
mata using Clang, but the analysis time for such a change will be longer compared to the analysis of a binary
expressions.

6. Ternary operator and the occasional excessive overhead.
In Section 3.2.2 (Listing 6), we used the ternary operator to select the active mutant. The ternary operator simplifies
and streamlines the implementation of the schemata technique and it allows nesting the mutants inside the condition
of an if statement. However, the ternary operator limits the mutations we can inject, as all mutants in the expression
need to be of the same type. We cannot have a char pointer on the iftrue side and an unsigned int on the iffalse side.
In most projects, the ternary operator induces a fixed and limited overhead cost for the technique per mutant. How-
ever, in some cases—where the number of mutants per line of production code is high (such as math-heavy pro-
jects)—the ternary implementation causes too many additional evaluations of the if statements to reach the correct
mutant. The most common case where no mutant in the statement is activated is the worst-case scenario, as all the if
statements need to be evaluated before the original statement can be executed. In the simplistic example in Listing
9, we can see that an ‘a∗b∗ c’ statement has six mutations. This means that for every mutant outside of that expres-
sion, six if statements need to be evaluated. By switching to a switch-case implementation like in Listing 9, only the
switch needs to be evaluated and the offset for which case to jump to needs to be calculated. This would save many
instructions especially when there are several instructions on a single line of code, as was the case for the CPPCheck
project. Alternatively, we could add an additional check to verify if the active mutant is located on the line. If it is
not, then we could immediately execute the original statement. This should alleviate a large part of the overhead.
To reduce the overhead of the schemata strategy, we recommend using the switch-case implementation in larger pro-
jects, despite the implementation challenges that need to be overcome. We described some of these challenges and
tradeoffs in Section 3.2.2, including code explosion and the scoped nature of the switch case causing the need to initi-
alise variables outside the switch. Because of these challenges, additional research is needed to understand where
and how switch cases should be used, and how to deal with its tradeoffs. It is even possible that if statements and
switch-cases should be used together to achieve an optimal speedup.

7. Const, constexpr and templates.
The driver for mutant schemata relies on information from outside the program to control the activation of the
mutants by setting the MUTANT_NR variable. The MUTANT_NR variable is initialised at runtime and will thus
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never be const. This implies that we cannot use the variable inside const and constexpr functions, as these functions
are evaluated at compile time and the MUTANT_NR value cannot be known at compile time. An example of this
can be seen in Listing 10. As a consequence, we cannot mutate const and constexpr in the same way as non-const
functions. This includes type definitions (e.g., using …), template arguments, static_asserts and so on.

For now, we choose not to implement support for mutations in constant expressions, type definitions, template argu-
ments and static_asserts. We do however generate and verify these for a standalone mutation, but using them in a single
compilation for mutation testing using mutant schemata and/or split stream requires additional logic. This can be
implemented by creating separate values and/or functions for each mutated operation and selecting the correct one
everywhere in the project where they are used (e.g., const val becomes const val_0, const val_1, const val_2, …). This
will drastically increase the size of the mutated code and the compiled binary.

8. Mutation operator support.
Currently, our proof-of-concept tool supports a few representative mutation operators: relational operator replace-
ment (ROR), arithmetic operator replacement (AOR) and logical connector replacement (LCR). This is only a frac-
tion of the commonly used mutation operators for C and C++ (listed in Table 1) and an even smaller fraction of
the more than 100 mutation operators reported in the academic literature. Extending the analysis to other mutation
operators remains an area for further research.
Our proof-of-concept tool is designed to be extended for supporting other binary mutation operators and unary
operators. However, other mutation operators will need more work because ensuring that these are valid mutations
involves a deeper semantic analysis beyond the AST node currently mutated. Access modifier change, for instance,
demands that a method or instance variable raised from private to public does not overwrite other public instances.
Also, the way we exclude unreachable mutants (an initial test run counting all mutated AST nodes) will not hold
anymore with mutation operators like statement deletion.

9. Test per test case versus per module.
Our program extracts the reachable mutants per test case or per module in the program under test. The best results
are obtained by using fine-grained test selection and running each test case individually instead of module-grained.
All our projects are compatible with the fine-grained test selection. Testing per test instead of per module reduces
the average number of tests per mutant. We verified this for the CPPCheck project. Here, the average tests per
mutant for the fine-grained test selection is 403, while it is 812 for the module-based one. The additional 409 tests
selected by the module-based approach do not cover the mutant and will never be able to kill the mutant. Given a
random distribution of these tests, we can assume that twice the amount of test cases will be executed per mutant for
the CPPCheck project. If all test cases take approximately the same amount of time, the reachable schemata tech-
nique per test is twice as fast as the per module. Naturally, the average tests per mutant for the fine-grained test
selection or the module based one, and hence the speed difference, will depend on the project itself.
The CPPCheck program implemented its own testrunner to enable running the tests per test instead of per module.
If one use ctest, then traditionally, tests are added using the add_test command to a specific test module. Each test
module can be run separately, but one cannot run a specific test within a test module without running the other tests
from that module. By switching from the add_test command to gtest_add_tests and/or gtest_discover_tests, one can
run each test individually. This means that each test will run slightly slower, as a new test environment will be cre-
ated for each test instead of for each module. This will however be greatly offset by the reduction in the number of
mutants that will be selected to run for each test.

10. Timed out mutants overhead.
For the bigger projects like CppCheck, we have seen that the execution time of the optimised mutation analysis
consists mostly of timed-out mutants. Here, the timed-out mutants take up 93% of the reachable schemata
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mutation analysis. In our current approach, we detected the timeout once the total time for that mutant reached a
threshold. For the CppCheck project, this means that a test that is stuck in an infinite loop would only be timed
out after 45 s. As the CppCheck project has 3745 test cases, the average test time is below 0.01 s. The impact of the
timed-out mutants will be drastically reduced if we stop mutants not after a global threshold but after localised
thresholds based on the individual tests.

7 | THREATS TO VALIDITY

As with all empirical research, we identify those factors that may jeopardise the validity of our results and the actions
we took to reduce or alleviate the risk. Consistent with guidelines for empirical research (see previous studies [40, 41]),
we organise them into four categories.

Construct validity: do we measure what was intended?

In essence, we want to know which parts of the mutation testing process are affected by building a mutant schemata
and split-stream mutation optimisation on top of the Clang front-end, as we believed these strategies would eliminate
the compilation and execution overhead of mutation testing. The mutant schemata strategy and extended reachable
schemata strategy cause additional delays in some parts of the mutation testing process, but in return eliminate the need
to compile every mutant individually. The real question is whether the time benefit from a single compilation outweighs
the added delays. For this, we measured each part of an unoptimised mutation testing process and compared it to the
optimisation strategies. Below are three threats to validity concerning the way we collected the timing measurements.

We implemented all of our mutants using the ternary (conditional) operator. This causes many additions to the code
base, which impact the compilation time and test suite execution time. The execution time for the CheckCpp project
was affected heavily as many ternary operators are written on frequently executed lines. In such cases, a different struc-
ture using switch-cases could have prevented such large delays (cf. Listing 9), perhaps even a hybrid approach.

While we chose a representative (but limited) set of mutant operators (i.e., ROR, AOR and LCR) and omitted
mutants in const and templated expressions, we are confident that our results represent the performance benefits one
can achieve using the optimisation strategies. Indeed, the compilation times for the currently supported mutants are
only impacted slightly, adding less than 25% to the compilation time for our biggest project. The test suite execution
times were not impacted significantly except for the CheckCpp case where it caused an additional delay of 120%, which
could be improved by using switch statements instead of if statements to select the mutants.

To ensure that the results are reliable and comparable, we used the same generate mutants method for all optimisa-
tion techniques. Additionally, we verified that the mutants we label as invalid mutants using the Clang front-end are
the same mutants that actually caused compilation failures in the unoptimised baseline. This ensures that the same
mutants are used across the various steps of the optimisation techniques.

Internal validity: are there unknown factors that might affect the outcome of the analyses?

We expected that the more mutants there are per line of code, the more the test suite execution time would be
impacted as there is simply more code to execute. However, most of our projects did not show such results, they showed
no difference in execution time with or without mutants. This might be due to the architecture of modern CPUs where
out-of-order execution and pipeline depths/stalls can influence the effective performance. We did not investigate this
sufficiently to draw firm conclusions.

We did however, observe symptoms of this phenomenon in the case of CppCheck, for which the test execution times
were heavily impacted. This was due to the number of mutants that can occur on a single line, drastically changing the
execution time of that specific line. When that line is executed frequently, the performance of the entire system is
affected considerably. On the other hand, the performance impact is minor if that single line is only executed once. Fur-
ther investigate (using a profiler) will be needed to understand the root cause.

To minimise environment factors, we locked the frequency of the CPU to the base frequency of the CPU and
kept the computer in a well-ventilated space to prevent CPU throttling. While we used an older computer (Intel
(R) Core(TM)2 Quad Q9650 CPU) architecture to run our experiments, we don’t think this does affects the analysis.
The use of a hard drive instead of an SSD however will reduce the compilation times and likely lower the total
speedups. Here, as well, the impact should be minimal, and that the benefits of the optimisation techniques would still
be valid even when using an SSD.

We used the same infrastructure for the analysis of the five selected open-source projects. We used an Intel(R)
Core(TM)2 Quad Q9650 CPU, with two 4GB (Samsung M378B5273DH0-CH9) DDR3 RAM modules (for a total of
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8GB) and a 250GB Western Digital (WDC WD2500AAKX-7) hard drive. The PC was running Ubuntu 18.04.1 LTS
(GNU/Linux 4.15.0-29-generic x86_64). Using an SSD would drastically influence the compilation times and negatively
impact the total speedups. Using more RAM and/or a faster CPU might influence the compilation time and/or execu-
tion time, this, however, is presumed to be marginal.

External validity: to what extent is it possible to generalise the findings?

We evaluated our proof-of-concept tool on four open-source projects with different characteristics and one indus-
trial component. These projects vary in size and in computational needs, varying from a low number of mutants per line
of production code to high numbers. As such, our results from these different projects represent the performance bene-
fits one can achieve by using the different optimisation strategies. But as always, replications with other projects are
needed to confirm our findings. Our tool is also available for replication purposes on Code Ocean together with a
description on how to use it.6

Reliability: is the result dependent on the tools?

We took great care to ensure that external tools did not impact our timing results. The internal toolchain builds
on very established components from the LLVM and Clang projects. We only measured the time it took to compile
the project, generate the mutants and execute them. We excluded any timings related to external tools or implementa-
tions like database access times to store the mutants. Our results thus represent the performance benefits of the opti-
misation strategies as implemented. On the other hand, we do see areas that can affect the performance. In some
cases, where many mutants are listed on a single line, it might be faster to execute them using a switch statement than
to use our if statement. In this case, the compiler can create a jump table (using consecutive indexes), that is, an array
of pointers, to directly jump to the correct label. Adding more mutation operators might also impact the
performance.

8 | CONCLUSION

In this paper, we investigate to which extent the Clang front-end and its state-of-the-art program analysis facilities allow
to implement existing strategies for mutation optimisation within the C language family. We present a proof-of-concept
tool that allows us to collect detailed measurements for each of the mutation phases, that is, generate mutants, compile
mutants and execute mutants. We validate the proof-of-concept tool on four open-source C++ libraries and one
industrial component, covering a wide diversity in size, C++ language features used, compilation times and test
execution time.

As such, we analyse the speedup from two perspectives (compilation time and execution time) assessing four optimi-
sation strategies (exclude invalid mutants, mutant schemata, reachable mutant schemata and split-stream mutation test-
ing). We created a performance model to estimate the impact of these optimisation strategies: unoptimised (Formula 1;
p. 12); mutant schemata (Formula 2; p. 14; Formula 3; p. 16) and split-stream (Formula 4; p. 19). The validation
against the five cases allows us to assess the significant terms in the performance estimation formulas. The ‘Generate
Mutants’ and ‘Detect (Un)Reachable Mutants’ are for all practical purposes negligible. The ‘Compile Mutants’ step
however takes a significant amount of time and—quite importantly– the compilation of the invalid and unreachable
mutants is considerable. The ‘Execute Mutants’ step is the other dominant factor, although here project specific fea-
tures ((a) the average amount of tests that will be executed per mutant and (b) the number of timed out mutants) cause
a lot of variation.

The rest of our analysis was driven by four research questions, addressed below.

RQ1: How much speedup can we gain from mutant schemata? We could virtually eliminate the compilation overhead to
the point that the compilation for all mutants was only slightly longer compared to the original compilation
time, that is, the time it takes to compile the project without any mutants. With the TinyXML2, Google test and
the industrial Saab project, the mutant schemata technique obtains a speedup between 4.87� and 5.16�. Yet the
obtained speedup depends on two factors: (a) the proportion of the project compilation time versus its execution
time; (b) the number of mutants per line of production code. The latter is implementation specific and its impact
can be reduced by changing the activation of the mutants from if statements to switch-cases. As a consequence
of our implementation, for the other cases, the speedup was less eminent: JSON has a speedup of 2.22� due to a

6https://codeocean.com/capsule/3514968/tree/v1.
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high proportion of test suite execution time versus its compilation time. CppCheck obtained as speedup of 0.81�
due to the increase in mutant execution time, attributed to the techniques implementation in combination with a
high number of mutants/LOPC.

RQ2: How much speedup can we gain from split-stream mutation testing? For split-stream mutation testing, we expected
an additional speedup of approximately 2� over mutant schemata. Unfortunately, this is only feasible for test
suites consisting of true unit tests without any external dependencies. The projects under investigation all had
tests with external dependencies. We made an attempt to provide support to reset local files to a specific state
using a local git repository and built in hook functions to reset more advanced dependencies like running, or
even off-site, databases. Implementing these correctly requires in-depth knowledge of the system under test that
we did not have. Thus, for the cases we investigated, we could not eliminate the execution overhead with the
split-stream mutation testing strategy.

RQ3: How much speedup can we gain from eliminating invalid mutants? Compared to an unoptimised approach the
reduction in the compilation overhead leads to a speedup by a factor between 1.07� and 1.12�. This is not all
that much but it is a necessary prerequisite for the mutant schemata strategy. Since all mutants are injected
simultaneously, the resulting program must compile without any errors. Invalid mutants are not acceptable,
since they prevent the compilation (and the execution) of the mutated program. This is especially challenging for
statically typed languages with many interacting features and unforgiving compilers (C, C++, …). Since Clang
has access to all of the project’s type-information, we can programmatically ensure that any of the created
mutants are statically correct.

RQ4: How much speedup can we gain from eliminating unreachable mutants? Compared to an unoptimised approach,
excluding the completely unreachable mutants provides a speedup between 1.05� to 1.18�. One notable
exception is the JSON project that had no unreachable mutants. This speedup stays approximately the same with
the mutant schemata approach where the speedup is between 1.03� to 1.25�. This speedup, however, depends
on the actual coverage of the test suite: a test suite with low coverage (thus reaching fewer mutants) yields a
higher speedup. The reachable schemata technique goes one step further by not only excluding completely
unreachable mutants but also excluding the test cases that do not reach the mutant on a mutant by mutant base.
This gives an additional speedup between 1.83� and 12.98� over the schemata technique that excludes
completely unreachable mutants. Providing a speedup between 2.29� and 12.76� over the normal schemata
technique. Further speedups are possible by optimising the time-out function that detects mutants stuck in infi-
nite loops. This can be achieved by specifying a time-out for each test case instead of a time-out for the global
test suite.

Overall. In summary, we successfully demonstrated the feasibility of using the Clang compiler front-end for different
optimisation strategies. With the reachable schemata strategy, we virtually eliminated the compilation overhead to the
point that the compilation for all mutants was only slightly longer compared to the original compilation time and we
reduced the execution overhead by only executing the test cases for individual mutants that actually reach said mutants.
Compared to an unoptimised approach we achieve a maximum speedup of 23.45� and 30.52� on the JSON and Goo-
gle test projects with the reachable schemata strategy. Even for less ideal scenarios from the CPPCheck and TinyXML2
projects we achieve a speedup of 2.07� and 5.89�. These can be speedup further by two optimisations: Firstly, use
switch statements for the mutant selection to reduce the technique overhead. Secondly, tailoring the time-out function,
that detects mutants stuck in infinite loops, on a test by test basis instead of on the global test suite.

Finally, we report some lessons learned for deploying a mutant schemata tool using the Clang compiler framework.
Most important is that we need a different, specialised approach for generating mutants in const, constexpr, templates
and define macro’s. These statements are evaluated at compile-time, thus obstructing the runtime selection of the
mutant required by the mutant schemata technique. Secondly, the elimination of equivalent mutants (via a technique
called trivial compiler equivalence) is a promising avenue for further research. This, however, extends the scope of the
analysis: Besides the Clang AST level, one also needs code as generated at the LLVM IR level.
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