This item is the archived peer-reviewed author-version of:

Perfluoroalkyl acids (PFAAs) concentrations and oxidative status in two generations of great tits inhabiting a contamination hotspot

Reference:

Lopez Antia Ana, Groffen Thimo, Lasters Robin, Abd Egaw ad Hamada, Sun Jiachen, Asard Han, Bervoets Lieven, Eens Marcel.- Perfluoroalkyl acids (PFAAs) concentrations and oxidative status in tw o generations of great tits inhabiting a contamination hotspot
Environmental science and technology / American Chemical Society - ISSN 0013-936X - 53:3(2019), p. 1617-1626
Full text (Publisher's DOI): https://doi.org/10.1021/ACS.EST.8B05235
To cite this reference: https://hdl.handle.net/10067/1570940151162165141

Perfluoroalkyl acids (PFAAs)

concentrations and oxidative status in two generations of great tits inhabiting a contamination hotspot

Ana Lopez-Antia ${ }^{a^{*} \dagger}$, Thimo Groffen ${ }^{b \dagger}$, Robin Lasters ${ }^{\text {b }}$, Hamada AbdElgawad ${ }^{\text {c,d, }}$, Jiachen Sun ${ }^{\text {a }}$, Han Asard ${ }^{c}$, Lieven Bervoets ${ }^{\text {b }}$, Marcel Eens ${ }^{\text {a }}$
${ }^{\text {a Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of }}$ Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
${ }^{\text {b }}$ Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
${ }^{\text {cIIntegrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University }}$ of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
${ }^{\text {dBotany }}$ and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
*Corresponding author
Ana.lopezantia@uantwerpen.be
\dagger Joint first authors

Abstract

The ubiquity of perfluoroalkyl acids (PFAAs) contrasts with the limited information about their effects. We report here PFAA plasma concentrations in wild populations of great tits (Parus major) settled at and in the vicinity of a fluorochemical plant in Antwerp (Belgium). Using two generations we obtained novel results on some poorly known issues such as differences between sexes, maternal transfer of the compounds and potential associations with the oxidative status. For five out of the 13 detected PFAAs, the concentrations were the highest ever reported in birds' plasma, which confirms that Antwerp is one of the main hotspots for PFAAs pollution. Contrary to other studies conducted in birds, we found that females presented higher mean concentrations

and detection frequencies for two compounds (perfluorooctane sulfonic acid (PFOS) and perfluoroundecanoic acid (PFUnDA)) than males. Maternal transfer and the dietary intake appear to be the main route of exposure for nestlings to PFOS but not to other compounds. Finally, PFAA concentrations tended to correlate positively with protein damage in adult birds while in nestlings they positively correlated with higher activity of antioxidant enzymes (glutathione peroxidase and catalase). Experimental work is needed to confirm oxidative stress as a pathway for the pernicious effects of PFAAs.

Keywords: Perfluorinated compounds, sex differences, maternal transfer, oxidative stress, Antwerp.

Introduction

Perfluoroalkyl acids (PFAAs) are highly persistent substances produced and extensively used for more than six decades. Historically, long chain (LC) perfluoroalkyl carboxylic acids (PFCAs; with ≥ 7 perfluorinated carbons) and perfluoroalkyl sulfonic acids (PFSAs; with ≥ 6 perfluorinated carbons) have been the most used ones, concretely perfluorooctanoic acid ($\mathrm{PFOA}, \mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{COOH}$) and perfluorooctane sulfonic acid ($\mathrm{PFOS}, \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{H}$). The widespread use of these PFAAs, together with their persistence and bioaccumulation potential, has resulted in a global contamination of the environment, wildlife and humans ${ }^{1-4}$.

Since 2000, the widespread distribution and potential health effects of LC-PFAAs (reviewed by $\left.\mathrm{OECD}^{5}\right)$, led the industry and regulators to take action by reducing the use and the release of these compounds. In 2002, the 3M company voluntarily phased out the production of PFOS and in 2009 PFOS and related substances were listed under Annex B (restriction of production and use) of the Stockholm Convention on Persistent Organic Pollutants. Other LC-PFCAs and PFSAs have been recently included in the Candidate List of Substances of Very High Concern for Authorization under the European Chemicals Regulation $\left(\mathrm{REACH}^{6}\right)$. Due to these actions, a transition is taking place in the industry to replace LC-PFAAs with short chain (SC) PFAAs and polyfluorinated substitute compounds ${ }^{7,8}$. However, but for many of these alternatives, information on actual releases and exposures is missing. Moreover, their risks and potential toxicity to various biota remains largely unexplored ${ }^{7-10}$.

Previous studies on the bioaccumulation and effects in birds ${ }^{11-16}$ have been conducted near the 3 M fluorochemical plant in Antwerp using great tits and blue tits (Cyanistes caeruleus), lapwing (Vanellus vanellus) and the Mediterranean gull (Larus melanocephalus). These studies have revealed the highest PFOS concentrations ever found in wildlife (e.g. mean concentration of 48056
ng / g found in the eggs of great tits breeding at the fluorochemical plant ${ }^{15}$). Furthermore, concentrations of other PFSA such as perfluorodecane sulfonic acid (PFDS) and perflurohexane sulfonic acid (PFHxS) and concentrations of PFOA were also the highest reported in bird eggs ${ }^{13,15}$.

Previous studies performed in birds described negative effects of PFAAs on reproduction ${ }^{15,17}$, chick survival ${ }^{17}$ and the immune system ${ }^{18,19}$. The oxidative status of individuals could be used as an indicator of the pernicious effects of PFAAs ${ }^{20}$. Immune system cells or sperm cells are vulnerable targets to the oxidative damage produced by many pollutants ${ }^{21}$. Furthermore, organisms might need to use dietary antioxidants to deal with oxidative stress (OS), which causes an imbalance of the trade-off in the allocation of these substances among physiological functions (e.g. reproduction, sexual signalling ${ }^{21,22}$). Therefore, studying the oxidative status is a key element in toxicological studies. Nevertheless, not much is known about PFAAs effects on birds' antioxidant system. The study of the transcriptional response of chicken hepatocytes exposed to PFOS pointed to OS as a cause of gene alteration ${ }^{23}$. Similarly, wild common cormorants (Phalacrocorax carbo) livers, naturally exposed to PFAAs, presented an altered transcriptional response of genes involved in the antioxidant system ${ }^{24}$. Despite this, a study performed in white-tailed eagle (Haliaeetus albicilla) nestlings, did not find any relationship between PFAA concentrations and the activity of the antioxidant enzyme superoxide dismutase (SOD) in plasma ${ }^{25}$.

In the present study we examined plasma concentrations and the composition profile of fifteen PFAAs (11 PFCAs and 4 PFSAs) in wild populations of great tits (Parus major) settled along a distance gradient of 11 km from an active fluorochemical plant in Antwerp (Belgium). We studied differences in PFAA concentrations and composition profile along the gradient. We also examined the association between the measured PFAAs concentrations and the body condition and the OS status of the birds. Moreover, we sampled adult birds, their eggs and their nestlings, which enabled
us to explore the maternal transfer of PFAAs to the offspring ${ }^{17,26}$. The outcome of this study will reveal the current exposure status of wildlife to PFAAs in one of the main hotspots in the world. It will also improve our understanding of OS as a potential underlying mechanism for pernicious effects of PFAAs and predicting the exposure consequences for wild bird populations.

2. Material and methods

2.1. Sample collection

Nestboxes were placed during autumn of 2015 at five sampling sites, representing a distance gradient from a fluorochemical plant in Antwerp (Figure S1). These sites were the fluorochemical plant (25 nestboxes), Vlietbos (22 nestboxes; 1 km SE from the plant), Rot-Middenvijver (shortly Rot; 18 nestboxes; 2.3 km ESE from the plant), Burchtse Weel (19 nestboxes; 3 km SE from the plant) and Fort 4 in Mortsel (31 nestboxes; 11 km SE from the plant).

The first blood sampling period was performed before the start of the breeding season between the $8^{\text {th }}$ of February and the $9^{\text {th }}$ of March of 2016. During this period, all nestboxes were visited after sunset and roosting birds were captured. Captured birds were ringed (if not already ringed), tarsus length and body mass were measured and age (yearlings versus older) and sex were determined following Svensson ${ }^{27}$. Body condition was calculated according to the scaled mass index ${ }^{28}$. We also took a blood sample (maximum $150 \mu \mathrm{~L}$) from the brachial vein using microhaematocrit heparinized capillary tubes (Microvette ${ }^{\circledR}$). These samples were kept refrigerated and centrifuged at $10,000 \times g$ for 10 min at $4^{\circ} \mathrm{C}$ to separate plasma from the red blood cells (RBC), which were stored separately at $-80^{\circ} \mathrm{C}$ for later analysis. The number of sampled birds was 79 (between 13 and 18 per location).

From just before egg laying until incubation, nestboxes were checked every other day or daily to determine the start of the egg-laying period. From each nest, the third egg was collected before the incubation started. Later, in the nestling period, the second blood sampling was performed, in May and June 2016. When nestlings were 10 days old, parents (mostly the female) were captured inside the nestbox, using a trap door in the entrance hole, and we proceeded as was explained above. In this way we sampled 60 birds (45 females and 15 males). Finally, when nestlings were 14 days old, all nestlings in each nest were ringed, measured (tarsus length and body mass) and a blood sample was taken. A total of 441 nestlings from 79 nests were sampled, from which 179 samples were selected for PFAAs and OS parameters analyses: 1) we selected 2 nestlings per nest (the lightest and the heaviest); 2) we selected one complete brood per site. A small portion of nestlings' $\operatorname{RBC}(\approx 1 \mu \mathrm{~L})$ was used to determine the sex genetically following the method described by Griffiths et al. ${ }^{29}$ with minor modifications ${ }^{30}$.

Due to great tits being highly resident with birds staying close to or in their breeding area during the winter, we have repeated measurements from 18 individuals (birds sampled both in winter and in the nestling period).

2.2. PFAAs analysis in plasma

The used abbreviations for PFAA compounds are according to Buck et al. ${ }^{31}$ (Table S1). Eleven PFCAs (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFDTrDA and PFTeDA) and 4 PFSAs (PFBS, PFHxS, PFOS and PFDS) were selected as target analytes. A mixture of isotopically mass-labelled internal standards (ISTDs) were used (supplementary material).

Sample extraction

Samples were extracted by using a solid-phase extraction technique, which is based on the chemical principle of weak-anion exchange described by Groffen et al. ${ }^{15}$ (supplementary material). Briefly, $80 \mu \mathrm{~L}$ of isotopically mass-labelled internal standard mixture and $10 \mu \mathrm{~L}$ of acetonitrile was added to each sample ($10 \mu \mathrm{~L}$ of plasma / $\sim 0.4 \mathrm{~g}$ of homogenized egg). After sonication, samples were left overnight on a shaking plate. After centrifugation the supernatant was transferred into a 14 mL tube and loaded on HR-XAW columns.

UPLC-TQD analysis

UPLC coupled tandem ES(-) mass spectrometry (ACQUITY, TQD, Waters, Milford, MA, USA) was used to analyse PFAAs.

Individual LOQs of the detected compounds are shown in Table S2 (Table S3 those compounds with detection frequency $<20 \%$). Based on the ratio of the mean ISTD area of the sample over the area of a blank ISTD solution, recoveries were determined. PFBS and PFHxS recoveries were too low and therefore they were excluded from further analysis. Further details about the analysis conditions, the calibration method and the quality assurance can be found in the supplementary material and in Groffen et al. ${ }^{15}$.

2.3. Antioxidant and oxidative stress parameters measurement in red blood cells

Total antioxidant capacity (TAC) was estimated by ferric ion reducing antioxidant power (FRAP) assay ${ }^{32}$. Reduced and total glutathione (GSH) was detected using a reversed-phase HPLC of Shimadzu (Shimadzu, 's Hertogenbosch, The Netherlands ${ }^{33}$). The ratio between GSH and the oxidized form (GSSG) was used as an index of redox state ${ }^{34}$. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) were determined by homogenizing haemolysates of red blood cells of 0.01 M PBS buffer (pH 7.4) contained $1.15 \% \mathrm{KCl}$ and 0.02 M

EDTA ${ }^{35}$. SOD, CAT and GPX activities were determined by measuring the decrease in nitroblue tetrazolium (NBT) reduction ${ }^{36}, \mathrm{H}_{2} \mathrm{O}_{2}{ }^{37}$ and NADPH contents ${ }^{38}$, respectively. Protein carbonyls as oxidative damage markers was measured using Protein Carbonyl Colorimetric Assay Kit by Cayman Chemical's (Ann Arbor, MI, USA; see also Levine et al. ${ }^{39}$). All above-mentioned parameters have previously been successfully quantified in the great tit ${ }^{40}$. Detailed protocols can be found in the supplementary material.

2.4. Statistical analysis

To perform statistical analyses we used JMP Pro 14. In each location, we only considered those compounds with detection frequency $\geq 50 \%$, values below LOQ were replaced by LOQ $/ 2^{17,41}$. All PFAA concentrations were \log transformed to obtain a normal distribution. Temporal data from adult birds were pooled together (adults from both the late winter and the spring) and analysed separately from nestlings' data. To study the maternal transfer we used a database that included data from mothers captured in the nestling period (spring) and data from their eggs and their offspring.

We performed linear mixed models to compare the concentrations of the different PFAAs and levels of different oxidative stress parameters among locations. For adult birds, we included the location, sex and age of the bird, the sampling period and the interactions between them as factors and we followed a backward elimination. We included bird identity (determined by ring number) as a random effect. To calculate the mean, median, range and detection frequency values of PFAA compounds in adults in each sampling site (Table S2), each bird was only considered once (the winter measurement in case the bird was captured both in winter and in spring). For nestlings, we included nest identity (determined by nestbox number) as a random effect and we included clutch size as a factor in the models. To compare the detection frequency of the different PFAAs among
locations we performed a Generalized Linear Model (GLMz) with binomial distribution and we proceeded as for the concentrations but only including each bird once. When significant results were found ($\mathrm{p} \leq 0.05$) post-hoc analyses (Tuckey test) were conducted for pairwise comparison. To compare the distribution of single PFAA compounds in the mothers, their eggs and the offspring, data were treated using methods of survival analyses for left-censored data, i.e. reverse KaplanMeier method ${ }^{42,43}$. To compare \sum PFAA and \sum PFCA concentrations and to test for effects of the body condition on PFAA concentrations we used an ANOVA analysis including the type of sample as a factor and the body condition as covariate. Relationship between compound concentrations in each location and relationships between mothers', eggs' and nestlings' concentrations were investigated using Spearman's correlation test.

To study the relationship between PFAAs and OS parameters or body condition, firstly, in order to reduce the number of covariates and to account for collinearity among them, we conducted Principal Component Analysis (PCA). In this analysis we included all those compounds with a detection frequency $\geq 20 \%$ (7 compounds for adults and 4 compounds for nestlings; Table S4), for these compounds values below LOQ were replaced by LOQ/2. The number of significant principal components was selected according to the Kaiser criterion (i.e. eigenvalue higher than 1^{44}). Two Principal Components (PCs) were selected for adults (hereafter adults-PC1 and adults-PC2) and one for nestlings (hereafter nestlings-PC1). Each compound loading and variance explained by each PC are shown in Table S4. Adults-PC1 explained 62% of the variance and adults-PC2 explained a further 19%. Nestlings-PC1 explained 73% of the variance.

We performed linear mixed models for each OS parameter and for the body condition of the birds. OS parameters were log transformed to obtain a normal distribution when necessary. For adults, the age and sex of the bird, the season, the PCs and the interactions between them were included
as explanatory variables and followed a backward elimination, while including the ring number as a random effect. For nestlings we proceeded as for adults but including the nestbox number as random effect.

3. Results

3.1. PFAA concentrations, detection frequencies, correlations and profiles in adult birds

PFOS concentration in the plasma of adult birds decreased significantly with the distance from the plant (all $\mathrm{p}<0.001$;Figure 1, Table S2). PFDoDA concentration at the plant site was significantly higher than at the other sites ($\mathrm{p}<0.001$). For PFOA there is a season-dependent site effect (site*season interaction $\mathrm{p}=0.05$), with significantly higher concentrations at the plant ($\mathrm{p}<0.0001$) but only in winter. There was not significant difference between sites for PFUnDA ($\mathrm{p}>0.13$; Figure 1).

For PFOS ($\mathrm{p}=0.01$) and PFUnDA ($\mathrm{p}=0.02$), females had significantly higher concentrations than males (Figure S2). This sex effect was independent of the sampling site (site*sex interactions $\mathrm{p}>0.09$) but it was more apparent at 3 M where mean concentrations ($\pm \mathrm{SE}$) were (females / males): PFOS $94153 \pm 33531 / 46337 \pm 17596 \mathrm{pg} / \mathrm{uL}$, PFUnDA $21.3 \pm 6.2 / 12.3 \pm 4.1 \mathrm{pg} / \mathrm{uL}$. The age of the birds did not affect the concentrations of PFAAs.

Differences between periods were found for PFOA and PFDoDA (all $\mathrm{p}<0.01$). Concentrations (mean $\pm \mathrm{SE}$) were higher in winter for PFOA (winter $=60.2 \pm 4.2 \mathrm{pg} / \mathrm{uL}$, spring $=42.2 \pm 5.2 \mathrm{pg} / \mathrm{uL}$; these differences were significant in Vlietbos and Fort 4 (both $\mathrm{p} \leq 0.003$)) whereas for PFDoDA higher concentrations were found in spring (winter=6.1 $\pm 1.2 \mathrm{pg} / \mathrm{uL}$, spring $=9.6 \pm 2.9 \mathrm{pg} / \mathrm{uL}$) regardless of the sampling site (site*season interactions $\mathrm{p}=0.54$).

Regarding the detection frequencies of the different PFAA compounds (Table S2), PFOA was found above it LOQ at 99% of the samples. PFOS was detected above its LOQ at 72% of the
samples. Significant differences existed in the detection frequency of PFOS among locations ($\mathrm{p}<0.0001$) appearing less frequently at Burchtse Weel (60\%) than at the plant and Vlietbos (100%), and at Fort $4(25 \%)$ than at all the other locations. PFOS detection frequency was higher in females (80.0%) than in males $(62.3 \% ; \mathrm{p}=0.03)$ at all sampling sites (site*sex interaction $\mathrm{p}=0.85$). PFUnDA overall detection frequency was 48% and significant differences existed among locations ($\mathrm{p} \leq 0.01$) with lower detection frequency at Burchtse Weel (32\%) and Fort 4 (26\%) than at Vlietbos (62\%) and Rot (70\%) and similar than at the plant (50\%). PFUnDA appeared more often in female (61%) than in male (32%) birds ($\mathrm{p}=0.001$) regardless of the sampling site (site*sex interaction $\mathrm{p}=0.38$). PFDoDA overall detection frequency was 63% with no significant differences among locations. PFDoDA was detectable more often ($\mathrm{p}=0.001$) in spring (80%) than in winter (52\%). Detection frequencies of PFNA (overall 27\%), PFDA (overall 24\%) and PFDTrDA (overall 33%) were only at the plant site $\geq 50 \%$ (70,50 and 55% respectively).

An overview of the correlations found among compounds (with a detection frequency of $\geq 50 \%$) at the different locations is given in Table S 5 . When a compound was $<$ LOQ it was substituted by LOQ/2. Almost all the compounds were correlated with each other at the plant site except for the following pairs: PFOA/PFUdA, PFOA/PFDTrDA, PFNA/PFDTrDA and PFDA/PFTrA. By contrast, no correlations were found for Vlietbos. At Rot PFDoDA was significantly correlated with PFUnDA and PFOS and at Burchtse Weel PFOA and PFOS were significantly correlated. The PFAAs profile was clearly dominated by PFOS at the plant (93% of the PFAAs) but this percentage decreased with the distance from the plant to only 30% at Fort 4 . On the other hand, the contribution of PFOA to the total of PFAAs increased from 1% at the plant to 41% at Fort 4 . The PFCAs profile was dominated by PFOA at all the locations (from 46 to 58%) followed by PFDA at the plant site and by PFUnDA at the other locations (Table S2).

For PFHpA and PFDS, concentrations in all samples were below the LOQ (7.4 and $5.1 \mathrm{pg} / \mu \mathrm{L}$ respectively). Moreover, values above the LOQ were only detected in four samples for PFHxA (range $8.5-9.7 \mathrm{pg} / \mu \mathrm{L}$), five samples for $\operatorname{PFBA}(9.4-133.2 \mathrm{pg} / \mu \mathrm{L})$, seven samples for PFTeDA $(1.4-2.4 \mathrm{pg} / \mu \mathrm{L})$ and 15 samples for PFPeA $(52-202 \mathrm{pg} / \mu \mathrm{L})$. LOQ and detection frequencies of these compounds in each sampling site are shown in Table S3.

3.2. Spatial PFAAs contamination in nestlings

Mean concentrations of PFAAs found in nestlings are shown in Figure 1 (median concentrations, LOQs, ranges and detection frequencies shown in Table S6).

Significantly different concentrations were found among locations for all compounds (all $\mathrm{p}<0.000$; Figure 1) and post hoc analysis revealed that differences occurred between the plant and all the other locations. No significant differences in concentrations of PFAAs between sexes were found (all $\mathrm{p}>0.185$). Clutch size did not have a significant effect on nestling concentrations (all $\mathrm{p}>0.08$). For PFOS, among nests, concentrations varied up to 58 -fold at the plant, 143-fold at Vlietbos, 9fold at Rot, 11 -fold at Burchtse Weel and 6 fold at Fort 4. For \sum PFCAs, concentrations varied up to 15 fold at the plant and around 3-fold at the other locations. The maximum variation of PFOS concentrations within nests was similar at the plant, Vlietbos and Burchtse Weel (around 4-fold) and slightly higher at Rot (7-fold) and at Fort 4 (6 fold). For \sum PFCAs, the maximum variation within nest was around 3-fold at the plant site and Vlietbos and around 2-fold at the other locations. PFOA (LOQ: $2.9 \mathrm{pg} / \mathrm{ml}$) was detected in all samples whereas PFOS (LOQ: $46.6 \mathrm{pg} / \mathrm{ml}$), PFDoDA (LOQ: $1.8 \mathrm{pg} / \mathrm{ml}$) and PFBA (LOQ: $6.5 \mathrm{pg} / \mathrm{ml}$) were detected in $61 \%, 34 \%$ and 20% of the samples, respectively. Differences exist in the detection frequencies of these compounds among locations (all $\mathrm{p}<0.001 ;$ Table S6). The detection frequency of PFOS decreased with the distance
from the plant because many samples fell below the LOQ. Like in adults, PFOS appeared more often in females than in males ($\mathrm{p}=0.014$), mainly due to the differences found at $\operatorname{Rot}(\mathrm{p}=0.005)$. All the studied compounds in nestlings from the plant were correlated with each other (Table S7). PFOA was correlated with PFOS at Vlietbos but not at Rot. PFOS dominated the PFAAs profile at the plant (98\%) and at Vlietbos (70\%) but at Rot it represented only 47% of the \sum PFAAs, exactly the same as PFOA. PFOS ratio decreased in farther locations where PFOA was the dominant compound. Regarding the PFCAs profile, PFOA was the dominant compound at all the locations (ratio range from 81 to 91%).

PFPeA, PFHxA, PFHpA, and PFDS concentrations were below their respective LOQ in all the samples. For PFNA we found 16 samples with concentrations above the LOQ (range 4.70-18.4 $\mathrm{pg} / \mu \mathrm{L}$), with 15 of these samples belonging to nestlings sampled at the plant. Moreover, these nestlings belonged only to 8 nestboxes (out of 14 with nestlings at the plant). Similarly, for PFDTrDA we found 11 samples above the LOQ $(2.92-12.1 \mathrm{pg} / \mu \mathrm{L})$, most of them at the plant site. We found 10 samples above the LOQ for PFDA (6.9-14.7 pg/ $\mu \mathrm{L}$) and PFUnDA (8.6-24.7 $\mathrm{pg} / \mu \mathrm{L}$). Finally, we found three samples with concentrations above the LOQ of PFTeDA (1.7-6.7 $\mathrm{pg} / \mu \mathrm{L})$: LOQ and detection frequencies of these compounds in each sampling site are shown in Table S8.

3.3. Relationship between mothers, eggs and offsprings concentrations

Concentrations in females plasma in spring (mothers), and in the plasma of offspring (the heaviest and the lightest nestlings in the nest) were compared (Table S9, Figure S3). We only compared those compounds with a detection frequency $\geq 50 \%$ in at least one of the sampling sites (i.e. PFOA, PFDoDA and PFOS). PFOA concentrations were significantly higher in the nestlings than in the
mothers ($\mathrm{p}<0.001$). PFOS concentrations were higher in the mothers than in the nestlings ($\mathrm{p} \leq 0.04$). No differences between sample types were found for PFDoDA. \sum PFAA and \sum PFCA concentrations were higher in the mothers than in the nestlings ($\mathrm{p}<0.01$ and $\mathrm{p}<0.0001$ respectively). No significant differences were found in the concentration of any compound between siblings. Body condition did not explain the differences between mothers and offspring for any of the compounds (all $\mathrm{p}>0.14$).

Correlations were studied between mother, the third egg and offspring concentrations. We found significant correlations in \sum PFAA concentrations between mothers and eggs ($\mathrm{p}<0.001 ; \mathrm{r}=0.52$), mothers and offspring (all $\mathrm{p}<0.0001 ; \mathrm{r} \geq 0.70$) and between siblings (the heaviest and the lightest; $\mathrm{p}<0.0001 ; \mathrm{r}=0.71$), but not between eggs and nestlings (all $\mathrm{p}>0.11 ; \mathrm{r}<0.26$). Very similar correlations were found in PFOS concentrations with slightly higher correlations between eggs and nestlings (both $\mathrm{p}=0.06, \mathrm{r}=0.31$; Figure 2). PFOA concentrations in mothers were correlated with the concentration in the eggs $(\mathrm{p}<0.01 ; \mathrm{r}=0.41)$ but no correlations were found between mothers/eggs and offspring, nor between siblings. For PFDoDA and \sum PFCAs no correlations were found.

3.4. Correlation of PFAA concentrations with body condition and the oxidative status

Body condition and OS parameters' results at the five sampling sites for adults and nestlings are shown in Table S10 and S11 respectively (differences between sites on these parameters are also indicated).

Adults-PC1 was mainly influenced by PFOS, PFDA, PFNA, PFOA, PFUnDA and PFDoDA; high concentrations of these compounds corresponded with high values of adults-PC1. Adults-PC2 was
mainly influenced by PFDTrDA, with high values of aduts-PC2 mainly indicating high concentrations of PFDTrDA (Table S4).

A trend existed in adult birds to present higher levels of protein carbonyls with higher values of Adults-PC1 ($\mathrm{p}=0.08$) and Adults-PC2 ($\mathrm{p}=0.07$; Figure S 4). This means that birds with higher concentrations of PFAAs tended to have also higher oxidative protein damage. There was also a significant effect of the sampling season in protein carbonyls' concentrations ($\mathrm{p}<0.0001$) with higher concentrations in winter, although the interaction between Adults-PCs and the season was not significant ($\mathrm{p} \geq 0.26$). We did not find significant correlations (all $\mathrm{p}>0.14$) between Adults-PCs and the body condition or between Adults-PCs and the other measured stress parameters (GSH and GSSG concentrations or the ratio between them, SOD, CAT and GPX activity or the measurement of the TAC) in adult birds.

Nestlings-PC1 was influenced by PFOS, PFOA, PFDoDA and PFBA: therefore high concentrations of these compounds corresponded with high values of nestlings-PC1.
 body condition of the chick $(\mathrm{p}=0.007)$. There was also a marginally significant result in the interaction between Nestlings-PC1 and the sex $(\mathrm{p}=0.06)$. When we performed a separate analysis for males and females, the relationship between Nestlings-PC1 and GPX activity was only significant in females ($\mathrm{p}=0.002$; Figure 3) with increased enzyme activity detected in higher exposed females.

Nestlings' CAT activity was positively correlated with Nestlings-PC1 ($\mathrm{p}=0.05$; Figure 3), body condition ($\mathrm{p}=0.012$) and marginally affected by the sex of the chick ($\mathrm{p}=0.06$), with higher activity in females. We did not find significant correlations between PFAA concentrations and the other stress parameters or the body condition in nestlings (all $\mathrm{p}>0.23$).

4. Discussion

4.1. PFAA concentrations in adults and nestlings

Concentrations found in this study are, like in previous studies performed in the area ${ }^{11-15,45}$, among the highest ever reported in wildlife. According to previous studies ${ }^{11-15}$, a pollution gradient was detected for PFOS but this decrease was not so evident for other PFAA compounds ${ }^{13,15}$. Considering the literature on plasmatic PFAAs concentrations in birds (Table S12) it is evident that the entire study area is influenced by the presence of the fluorochemical plant ${ }^{11,13,15}$.

For five of the detected compounds (PFBA, PFOA, PFDA, PFDoDA and PFOS) concentrations found in the present study (in adults and in most cases also in nestlings) were the highest ever reported in birds' plasma. Concentrations of other four compounds (PFNA, PFUnDA, PFDTrDA and PFTeDA) were only surpassed by concentrations found in bald eagle (Haliaeetus leucocephalus) nestlings sampled in the upper mid-west of the USA ${ }^{46}$, a region with several sources of PFAAs, including a 3 M fluorochemical plant. PFDA concentrations in nestlings of the present study were also surpassed by those found in bald eagle nestlings ${ }^{46}$. PFAA compounds are highly bio-accumulative (especially LC ones) and, at similar exposure condition, higher concentrations would be expected in a top predator (bald eagle) compared to a small passerine (great tit).

We only found two studies that measured PFAA concentrations in blood of passerine species. In a study by Custer et al. ${ }^{26}$ tree swallow (Tachycineta bicolor) nestlings that hatched very close to a US 3M fluorochemical plant were analysed. Compared to that study, concentrations in the nestlings hatched at the Antwerp 3M plant were higher for all the compounds measured in both studies (PFOA, PFNA, PFDA, PFUnDA, PFDoDA and PFOS). Moreover, even when comparing concentrations in tree swallows with the ones we found in the nestlings from Fort 4 (10 km away
from the plant), they were higher for all the compounds but PFOS in the present study. Remarkable is the difference in PFOA concentrations, which were around 50 times higher in our study.

The second study that measured PFAAs in blood of passerine birds was by Dauwe et al. ${ }^{12}$ who measured PFOS concentrations in adult great tits in 2005. The study area was the same as in the current study but birds were only sampled in Vlietbos, Rot and Burchtse Weel (concentrations ranges were $173-1625,154-234$ and $24.3-123 \mathrm{pg} / \mu \mathrm{L}$ respectively). Whole blood was used as the matrix. When comparing both studies we found that the mean concentrations of PFOS were higher in the present study: 3-, 1.2- and 1.7-fold higher at Vlietbos, Rot and Burchtse Weel respectively. These differences are very probably due to the different matrix used, whole blood vs plasma. It has been calculated that concentrations measured in whole blood are 2 to 5 -fold lower than in plasma ${ }^{47}$. Taking this into account, the concentrations we found are very similar to the ones found by Dauwe et al. ${ }^{12}$. This, or even a decrease in the concentrations, was expected as 3 M plant has phased out PFOS production since 2002. Other studies performed in the same area have detected a decrease in PFOS concentrations measured in great tit eggs ${ }^{13}$ from 2006 to 2011 and also in wood mice liver from 2002 to 2006^{45}. In other places in Europe and USA the same decrease has been detected since 2000 in several bird species ${ }^{46,48-50}$.

PFAA concentrations and profiles found in the present study appear to correspond with both a high historical contamination, with high concentration of PFOS and LC-PFCA, and a recent contamination, with the presence of SC-PFCAs such as PFBA and PFHxA, all related to current fluorinated compounds production (as final compounds, degradation products or impurities ${ }^{7}$). In the future, the analytical method should be improved to increase the recoveries, and thus the detection possibilities, of SC-PFSAs in blood, including PFBS and PFHxS. Also other currently used per- and polyfluoroalkyl substances such as 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic
acid], ammonium salt (ADONA) or dodecafluoro-2-methylpentan-3-one ($3 \mathrm{M}^{\mathrm{TM}} \mathrm{Novec}^{\mathrm{TM}} 1230$) should be included in future analyses.

A remarkable result is the higher concentrations and detection frequencies of PFUnDA and PFOS found in adult females compared with males (Figure S2), although most pronounced at the plant site, these differences were consistent at all sites and in both sampling periods. Most of the studies on PFAA concentrations in birds did not observe differences between sexes (reviewed in Sturm and Ahrens ${ }^{51}$), and the ones that did always have reported higher concentrations in males ${ }^{52-55}$. Moreover, in two studies performed previously in great tits' blood ${ }^{12}$ and liver ${ }^{11}$ in the same area, no differences in PFOS concentrations between sexes were found. In general for PFAA compounds, as for other contaminants, females could present lower concentrations due to the excretion of these compounds through the eggs ${ }^{56}$. We know that female great tits actually excreted PFOS through the eggs, as very high concentrations of PFOS were detected in the eggs analysed in this study. On the other hand, no PFUnDA concentrations were found in those eggs which can sometimes be due to low exposure and modest detection limits

In mammals, sex differences in the elimination half-life of some PFAA compounds have been observed, and the elimination is not always faster in females ${ }^{57}$. The reason for the differences in elimination is not well understood but some studies pointed to a hormonal regulation of the elimination ${ }^{57}$. These sex differences could also be explained by behavioural reasons such as differences in foraging strategies ${ }^{58}$, or ecological reasons such a greater longevity and thus higher accumulation in females. Further research is therefore necessary to better understand the sex differences and their consequences.

4.2. Relationship between mothers, eggs and offspring concentrations

The distribution of PFOS in mothers, their eggs and nestlings, and the fact that concentrations in mothers and nestlings (and to a lesser extent in eggs and nestlings) correlated with each other, are suggesting that the main exposure of nestlings to this compound is through maternal transfer and/or the diet (provided by the parents). The transfer of PFOS from females to the eggs was previously described in birds ${ }^{16,17,54,59}$ but as far as we know this is the first study that correlates plasmatic concentrations in the mother with plasmatic concentrations in the offspring. On the other hand, for \sum PFCAs, the lack of correlation between mothers, eggs and nestlings, and even between siblings, could be indicating that maternal transfer or the diet is not the main route of exposure for these compounds. Moreover, higher concentrations of PFOA (~ 1.6 times) and PFBA were found in the offspring while \sum PFCAs were higher in the mothers (Table S9, Figure S3). These differences in PFCAs profile could be explained in two non-exclusive ways: 1) Mothers and offspring were exposed differently during the nestling period. 2) Birds were exposed to precursor substances (e.g. fluorotelomer alcohols) and these compounds follow different biotransformation pathways in adults and nestlings ${ }^{60}$. This second hypothesis is supported by correlations found between PFNA concentrations in the mothers and PFOA concentrations in the offspring and between LC-PFCAs (PFOA, PFDA and PFDTrDA) in the mothers and PFBA in the offspring. Future studies to be performed in this hot-spot should include the study of "precursors" together with the study of PFAAs.

4.3. Associations between PFAA concentrations and the oxidative status

In adult great tits, a trend existed for more exposed birds to have higher levels of protein damage (measured as protein carbonyls). This could mean that the antioxidant defences failed in neutralizing the extra reactive oxygen species (ROS) generated because of the pollutants, and thus
oxidative damage occurred. Similarly, a recent study performed in Artic black-legged kittiwakes (Rissa tridactyla) ${ }^{61}$ found that high blood levels of protein damage were associated with high plasma concentrations of certain LC-PFAA compounds (i.e. PFDoDA, PFTriA and PFTeDA). Additionally, they found negative associations between the non-enzymatic antioxidant capacity (i.e. vitamins, carotenoids, glutathione) of these birds and high plasma concentrations of other LCPFAAs such as PFUnA, PFTeDA or PFOS. .

In nestlings, we detected a positive correlation between PFAAs load and antioxidant defences. More exposed nestlings presented higher activity of GPX and CAT enzymes, both part of the first line of defence against ROS. Their increased activity seemed to efficiently neutralized ROS, as no changes in other endogenous antioxidants (glutathione) or oxidative damage were detected.

Due to the presumable long duration of the physiological stress ${ }^{62}$ and the susceptibility of early stages of life to oxidative damage ${ }^{63}$, detrimental effects could occur in these birds. We also must consider that, due to limitations in sample volume, we were not able to measure exogenous antioxidant concentrations (i.e. vitamins and carotenoids) or other oxidative damage parameters. Therefore, consequences for the birds are difficult to predict.

Finally, it is also important to note that the tissue we used (RBC) is not the main target of PFAAs ${ }^{57}$, and therefore, we hypothesize that the effects of oxidative damage produced by PFAAs would be more evident in other tissues (e.g. liver or adipose tissue) but this remains to be tested. A previous study performed in tree shallows nestlings from the Great Lakes did not find any association between oxidative stress parameters measured in the liver and PFAAs concentrations in the plasma ${ }^{20}$.On the other hand, a previous study performed in wood mice living in the vicinity of the fluorochemical plant in Antwerp, found positive associations between PFOS concentrations and the level of lipid peroxidation in the liver of these mice ${ }^{64}$

Our study provides evidence that OS is a possible pathway for the pernicious effects of PFAAs, however the causal relationship has to be proven. In humans, PFOA has been recently classified by the Agency for Research on Cancer as "possibly carcinogenic"; DNA damage secondary to oxidative stress has been pointed out as the cause of this carcinogenic effect ${ }^{65}$.

The obtained data represent an important step towards the understanding of the consequences of exposure to these compounds for wild birds at the individual and the population level. Continuous monitoring of exposure and effects in these populations will give us longitudinal and multigenerational data, which are essential for PFAAs risk assessment.

ASSOCIATED CONTENT

Supporting Information: Detailed description of the methods (including PFAAs analysis in plasma and antioxidant and oxidative stress parameters measurement in red blood cells). Map of the study area (Figure S1). Tables showing target PFAA compounds and their acronyms (based in Buck et al. 2011; Table S1), limits of quantification, mean and median concentrations, range and detection frequencies of PFAAs in plasma of adult great tits (Table S2), limits of quantification and detection frequencies of PFAA compounds with detection frequency $<20 \%$ in plasma of adult great tits (Table S3), results of the Principal Component Analysis conducted on the PFAA compounds measured in adults and nestlings (Table S4), coefficient and probability of the correlations found between different PFAAs at the five sampling sites in the plasma samples of the adults (Table S5), limits of quantification, mean and median concentrations, range and detection frequencies of PFAAs in plasma of great tits' nestlings (Table S6), coefficient and probability of the correlations found between different PFAAs at the five sampling sites in the plasma samples of the nestlings (Table S7), limits of quantification and detection frequencies of PFAA compounds with detection
frequency $<20 \%$ in plasma of great tits nestlings (Table S 8), \sum PFAAs, \sum PFCAs, PFOA, PFDoDA and PFOS mean concentrations in mothers, eggs and both nestlings (the lightest and the heaviest in the nest) at the five sampling sites (Table S9), mean values of body condition and oxidative stress biomarkers in red blood cells of adult great tits at the five sampling sites (Table S10), mean values of body condition and oxidative stress biomarkers in red blood cells of nestlings at the five sampling sites (Table S11), PFAA concentration (range) measured in plasma of different bird species around the world (Table S12). Additional graphic representation of the concentrations of PFUnDA and PFOS found in adult birds' plasma, at the five sampling sites, separated by sex (Figure S2), mean concentrations of PFOA, PFOS and \sum PFCAs found in the mother, egg and offspring (the lightest and the heaviest nestlings in the nest; Figure S3), relationship between Adults-PC1, Adults-PC2 and protein carbonyl content in blood of adult birds sampled in winter and spring (Figure S4).

Acknowledgements

We would like to thank Peter Scheys and Geert Eens for their help during the fieldwork and Tim Willems for the UPLC analysis. We would also like to thank 3M for allowing us to perform part of the sampling inside their plant. Ana Lopez Antia is a postdoctoral researcher of the Research Foundation - Flanders (FWO; 12T4118N). Hamada AbdElgawad is supported by a postdoctoral fellowship from the FWO (12U8918N). This study was supported by FWO project number 42/FA070400/20/6811. We also thank University of Antwerp for financial support.

Figure 1.Mean concentrations (\pm SE) of different PFAAs found in adult birds'(black) and nestlings'(grey) plasma at the five sampling sites in 2015: a fluorochemical plant in Antwerp and four sites with an increasing distance from the plant site (i.e. 1 km Vlietbos, 2.3 km Rot, 3 Km Burchtse Weel and 11 km Fort 4). Different upper case letters and lower case letters indicate different concentrations among sampling sites in adults birds and nestlings respectively. Additionally, mean concentrations (\pm SE) could be calculated (detection frequency $\geq 50 \%$) at the plant site in adults for PFNA (21.8 ± 5.3) and PFDTrDA (8.5 ± 2.3) and in nestlings for PFBA (24.1 ± 4.6) and PFDoDA (12.2 ± 1.9).
Temporal data from adult birds were pooled together (adults from both the late winter and the spring).
*For PFOA, concentration at the plant site was only significantly higher in winter (no differences in spring).
$<$ LOQ; detection frequency was below 50% and mean values were not calculated (the value given is the LOQ).

Figure 2. Correlations between mother, offspring ($\mathrm{pg} / \mu \mathrm{L}$;mean values were calculated for the lightest and the heaviest nestlings in the nest) and egg (ng / g) PFOS concentrations. Spearman correlation values, ps and the regression equations are given. Regression lines are shown with 95% confidence bands shaded.

Figure 3. Relationship between nestlings- $\mathrm{PC1}$ and the glutathione peroxidase (separated by sex) and catalase activity (marginal means as obtained in the mix models when considering body condition as a covariate and nestbox as random effect). in 2015 at 5 sites in the vicinity of Antwerp, Belgium. NestlingsPC1 was influenced by PFOS, PFOA, PFDoDA and PFBA: therefore high concentrations of these compounds corresponded with high values of nestlings-PC1. Regression lines are shown with 95% confidence bands shaded.

References

1. Houde, M.; Martin, J. W.; Letcher, R. J.; Solomon, K. R.; Muir, D. C. G.; Biological monitoring of polyfluoroalkyl substances: A review. Env. Sci. Technol. 2006, 40, 3463-3473.
2. Kissa, E. Fluorinated surfactants and repellents. 2001, CRC Press.
3. Giesy, J. P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Env. Sci. Technol. 2001, 35, 1339—1342.
4. D'Hollander, W.; de Voogt, P.; De Coen, W.; Bervoets, L. Perfluorinated Substances in Human Food and Other Sources of Human Exposure. In Reviews of Environmental Contamination and Toxicology, Vol 208: Perfluorinated Alkylated Substances; Whitacre, D. M.; DeVoogt, P. Eds.; Springer International Publishing AG: Switzerland 2010 ; pp. 179-215
5. OECD/UNEP Global PFC Group. Joint authorship: OECD. Synthesis Paper on Per- and Polyfluorinated Chemicals (PFCs). Environment, Health and Safety, Environment Directorate, OECD: Paris, 2013.
6. ECHA. Candidate list of substances of very high concern for authorization. European Chemical Agency: Helsinki, 2017. http://echa.europa.eu/web/guest/candidate-list-table
7. Wang, Z.; Cousins, I. T.; Scheringer, M.; Hungerbühler, K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int. 2013, 60(Supplement C), 242-248.
8. Scheringer, M.; Trier, X.; Cousins, I. T.; de Voogt, P.; Fletcher, T.; Wang, Z.; Webster, T. F. (2014). Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere. 2014, 114, 337-339.
9. Wang, Z. Y.; Cousins, I. T.; Scheringer, M.; Hungerbuehler, K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ. Int. 2015, 75, 172—179.
10. OECD/UNEP Global PFC Group. Joint authorship: OECD. Synthesis Paper on Per- and Polyfluorinated Chemicals (PFCs). Health and Safety, Environment Directorate, OECD: Paris, 2013.
11. Hoff, P. T.; Van de Vijver, K.; Dauwe, T.; Covaci, A.; Maervoet, J.; Eens, M.; Blust, R.; De Coen, W. Evaluation of biochemical effects related to perfluorooctane sulfonic acid exposure in organohalogen-contaminated great tit (Parus major) and blue tit (Parus caeruleus) nestlings. Chemosphere. 2005, 61, 1558-1569.
12. Dauwe, T.; Van de Vijver, K.; De Coen, W.; Eens, M. PFOS levels in the blood and liver of a small insectivorous songbird near a fluorochemical plant. Environ. Int. 2007, 33, 357-361.
13. Groffen, T.; Lopez-Antia, A.; D'Hollander, W.; Prinsen, E.; Eens, M.; Bervoets, L. Perfluoroalkylated acids in the eggs of great tits (Parus major) near a fluorochemical plant in Flanders, Belgium. Environ. Pollut. 2017, 228, 140-148.
14. Lopez-Antia, A.; Dauwe, T.; Meyer, J.; Maes, K.; Bervoets, L.; Eens, M. High levels of PFOS in eggs of three bird species in the neighbourhood of a fluoro-chemical plant. Ecotox. Environ. Safe. 2017, 139, 165-171.
15. Groffen, T.; Lasters, R.; Lopez-Antia, A.; Prinsen, E.; Bervoets, L.; Eens, M. Limited reproductive impairment in a passerine bird species exposed along a perfluoroalkyl acid (PFAA) pollution gradient. Sci. Total Environ, 2019, 652, 718—728. doi:https://doi.org/10.1016/j.scitotenv.2018.10.
16. Lasters, R.; Groffen, T.; Lopez-Antia, A.; Bervoets, L.; \& Eens, M. Variation in PFAA concentrations and egg parameters throughout the egg-laying sequence in a free-living songbird (the great tit, Parus major): Implications for biomonitoring studies. Environ. Pollution. 2019, 246, 237-248.
17. Custer, C. M.; Custer, T. W.; Dummer, P. M.; Etterson, M. A.; Thogmartin, W. E.; Wu, Q.; Kannan, K.; Trowbridge, A.; McKann, P. C. Exposure and effects of perfluoroalkyl substances in tree swallows nesting in Minnesota and Wisconsin, USA. Arch Environ Contam. Toxicol. 2014, 66, 120-138.
18. Peden-Adams, M. M.; Stuckey, J. E.; Gaworecki, K. M.; Berger-Ritchie, J.; Bryant, K.; Jodice, P. G.; Scott, Thomas. R.; Ferrario, J. B.; Guan, B.; Vigo, C.; Boone, J. S.; McGuinn, W. D.; DeWitt, J. C.; Keil, D. E. Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS). Reprod. Toxicol. 2009, 27, 307-318.
19. Smits, J. E. G.; Nain, S. (2013). Immunomodulation and hormonal disruption without compromised disease resistance in perfluorooctanoic acid (PFOA) exposed Japanese quail. Environ. Pollut. 2013, 179, 13-18.
20. Custer, T. W.; Custer, C. M.; Dummer, P. M.; Bigorgne, E.; Oziolor, E. M.; Karouna-Renier, N.; Schultz, S.; Erickson, R. A.; Aagaard, K.; Matson, C. W. EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern. Ecotoxicology, 2017, 26, 1392—1407. doi:10.1007/s10646-017-1863-7
21. Monaghan, P.; Metcalfe, N. B.; \& Torres, R.. Oxidative stress as a mediator of life history tradeoffs: mechanisms, measurements and interpretation. Ecol. Lett. 2009, 12, 75-92.
22. Lopez-Antia, A.; Ortiz-Santaliestra, M. E.; Camarero, P. R.; Mougeot, F.; Mateo, R. Assessing the risk of fipronil treated seed ingestion and associated adverse effects in the red-legged partridge. Environ. Sci. Technol. 2015, 49, 13649—13657.
23. O'Brien, J. M.; Austin, A. J.; Williams, A.; Yauk, C. L.; Crump, D.; Kennedy, S. W. Technicalgrade perfluorooctane sulfonate alters the expression of more transcripts in cultured chicken embryonic hepatocytes than linear perfluorooctane sulfonate. Environ. Toxicol. Chem. 2011, 30, 2846-2859.
24. Nakayama, K.; Iwata, H.; Tao, L.; Kannan, K.; Imoto, M.; Kim, E. Y.; Tashiro, K.; Tanabe, S. Potential effects of perfluorinated compounds in common cormorants from Lake Biwa, Japan: An implication from the hepatic gene expression profiles by microarray. Environ. Toxicol. Chem. 2008, 27, 2378-2386
25. Sletten, S.; Bourgeon, S.; Badrdsen, B. J.; Herzke, D.; Criscuolo, F.; Massemin, S.; Zahn, S.; Johnsen, T. V.; Bustnes, J. O. Organohalogenated contaminants in white-tailed eagle (Haliaeetus albicilla) nestlings: An assessment of relationships to immunoglobulin levels, telomeres and oxidative stress. Sci. Total Environ. 2016, 539, 337-349.
26. Custer, C. M.; Custer, T. W.; Schoenfuss, H. L.; Poganski, B. H.; \& Solem, L. Exposure and effects of perfluoroalkyl compounds on tree swallows nesting at Lake Johanna in east central Minnesota, USA. Reprod. Toxicol. 2012, 33, 556-562.
27. Svensson, L. Identification guide to European Passerines. British Trust for Ornithology: Stockholm., 1992.
28. Peig, J.; Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos. 2009, 118, 1883-1891.
29. Griffiths, R.; Double, M. C.; Orr, K.; \& Dawson, R. J. G.. A DNA test to sex most birds. Mol. Ecol. 1998, 7, 1071-1075.
30. Vermeulen, A.; Müller, W.; Eens, M. Vitally important - does early innate immunity predict recruitment and adult innate immunity? Ecol. Evol. 2016, 6, 1799-1808.
31. Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; de Voogt, P.; Jensen, A.; Kannan, K.; Mabury, S.; Van Leeuwen, S. P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integ. Environ. Assess. 2011, 7, 513-541.
32. Benzie, I. F.; Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 1996, 239, 70-76.
33. Sinha, A. K.; AbdElgawad, H.; Giblen, T.; Zinta, G.; De Rop, M.; Asard, H.; Blust, R.; De Boeck, G. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress. PLoS One. 2014, 9, e95319..
34. Jones D. P. Redefining oxidative stress. Antioxid Redox Signal. 2006, 8, 1865—1879.
35. Sebastiano, M.; Eens, M.; Elgawad, H. A.; de Thoisy, B.; Lacoste, V.; Pineau, K.; Asard, H.; Chastel O.; Costantini, D. (2017). Oxidative stress biomarkers are associated with visible clinical signs of a disease in frigatebird nestlings. Sci. Rep. 2017, 7, 1599.
36. Dhindsa R.S.; Plumbdhindsa P.; Thorpe T.A. Leaf senescence - correlated with increased levels of membrane-permeability and lipid-peroxidation, and decreased levels of superoxide-dismutase and catalase. J. Exp. Bot. 1981, 32, 93-101.
37. Aebi, H. Catalase in vitro. In Methods in Enzymology. Lester, P., Eds.; Academic Press: 1984; pp. $121-126$
38. Drotar, A.; Phelps, P.; Fall, R. Evidence for glutathione-peroxidase activities in cultured plant-cells. Plant Sci. 1985, 42, 35-40.
39. Levine, R. L.; Garland, D.; Oliver, C. N.; Amici, A.; Climent, I.; Lenz, A. G.; Ahn, B. W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. In Methods in Enzymology. Lester, P., Eds.; Academic Press: 1990; pp. 464-478.
40. Casasole, G.; Raap, T.; Costantini, D.; AbdElgawad, H.; Asard, H.; Pinxten, R..; Eens, M. (2017). Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp. Biochem. Physiol. A. 2017, 210, 14-21.
41. Bervoets, L.; Voets, J.; Chu, S. G.; Covaci, A.; Schepens, P.; Blust, R. (2004). Comparison of Accumulation of micropollutants between indigenous and transplanted zebra mussels (Dreissena polymorpha). Environ. Toxicol. Chem. 2004, 23, 1973-1983.
42. Gillespie, B. W.; Chen, Q.; Reichert, H.; Franzblau, A.; Hedgeman, E.; Lepkowski, J.; Adriaens, P.; Demond, A.; Luksemburg, W.; Garabrant, D. H. Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator. Epidemiology. 2010, 21, S64-S70.
43. Jaspers, V. L. B.; Herzke, D.; Eulaers, I.; Gillespie, B.W.; Eens. M. Perfluoroalkyl substances in soft tissues and tail feathers of Belgian barn owls (Tyto alba) using statistical methods for leftcensored data to handle non-detects. Environ. Int. 2013, 52, 9-16.
44. Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. meas. 1960, 20, 141-151.
45. D'Hollander, W.; De Bruyn, L.; Hagenaars, A.; de Voogt, P.; \& Bervoets, L. Characterisation of perfluorooctane sulfonate (PFOS) in a terrestrial ecosystem near a fluorochemical plant in Flanders, Belgium. Environ. Sci. Pollut. R. 2014, 21, 11856-11866.
46. Route, W. T.; Key, R. L.; Russell, R. E.; Lindstrom, A. B.; Strynar, M. J. Spatial and temporal patterns in concentrations of perfluorinated compounds in bald eagle nestlings in the upper Midwestern United States. Environ. Sci. Technol. 2014, 48, 6653-6660.
47. Kannan, K.; Franson, J. C.; Bowerman, W. W.; Hansen, K. J.; Jones, J. D.; Giesy, J. P. Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. Environ. Sci. Technol. 2001, 35, 3065-3070.
48. Ahrens, L.; Herzke, D.; Huber, S.; Bustnes, J. O.; Bangjord, G.; \& Ebinghaus, R. Temporal trends and pattern of polyfluoroalkyl compounds in tawny owl (Strix aluco) eggs from Norway, 19862009. Environ. Sci. Technol. 2011, 45, 8090-8097.
49. Holmstrom, K. E.; Johansson, A.-K.; Bignert, A.; Lindberg, P.; \& Berger, U. Temporal trends of perfluorinated surfactants in Swedish peregrine falcon eggs (Falco peregrinus), 1974-2007. Environ. Sci. Technol. 2010, 44, 4083-4088.
50. Sedlak, M. D.; Benskin, J. P.; Wong, A.; Grace, R.; \& Greig, D. J. Per- and polyfluoroalkyl substances (PFASs) in San Francisco Bay wildlife: Temporal trends, exposure pathways, and notable presence of precursor compounds. Chemosphere. 2017, 185, 1217-1226.
51. Sturm, R.; Ahrens, L. Trends of polyfluoroalkyl compounds in marine biota and in humans. Environ. Chem. 2010, 7, 457-484.
52. Sinclair, E.; Mayack, D. T.; Roblee, K.; Yamashita, N.; \& Kannan, K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Arch. Environ. Cont. Tox. 2006, 50, 398-410.
53. Bustnes, J. O.; Erikstad, K. E.; Lorentsen, S.-H.; \& Herzke, D. Perfluorinated and chlorinated pollutants as predictors of demographic parameters in an endangered seabird. Environ. Pollut.. 2008, 156, 417-424.
54. Bertolero, A.; Vicente, J.; Meyer, J.; \& Lacorte, S. (2015). Accumulation and maternal transfer of perfluorooctane sulphonic acid in yellow-legged (Larus michahellis) and Audouin's gull (Larus audouinii) from the Ebro Delta Natural Park. Environ. Res. 2015, 137, 208-214.
55. Blevin, P.; Angelier, F.; Tartu, S.; Bustamante, P.; Herzke, D.; Moe, B.; Bech, C.; Gabrielsen, G. W.; Bustnes, J.O.; Chastel, O. Perfluorinated substances and telomeres in an Arctic seabird: Crosssectional and longitudinal approaches. Environ Pollut. 2017, 230, 360-367.
56. Newsted, J. L.; Coady, K. K.; Beach, S. A.; Butenhoff, J. L.; Gallagher, S.; \& Giesy, J. P. (2007). Effects of perfluorooctane sulfonate on mallard and northern bobwhite quail exposed chronically via the diet. Environ. Toxicol. Phar. 2007, 23, 1-9.
57. Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; \& Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366-394.
58. Milligan, N. D.; Radersma, R.; Cole, E. F.; \& Sheldon, B. C. To graze or gorge: consistency and flexibility of individual foraging tactics in tits. J. Anim. Ecol. 2017, 86, 826-836.
59. Gebbink, W. A.; Letcher, R. J. Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls. Environ. Pollut. 2012, 162, 40-47. doi:https://doi.org/10.1016/j.envpol.2011.10.011
60. Butt, C. M.; Muir, D. C. G.; \& Mabury, S. A. Biomtransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ. Toxicol. Chem. 2014, 33, 243-267.
61. Costantini, D.; Blévin, P.; Herzke, D.; Moe, B.; Gabrielsen, G. W.; Bustnes, J. O.; Chastel, O. Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids. Environ. Res., 2019, 168, 278—285. doi:https://doi.org/10.1016/j.envres.2018.10.003
62. Costantini, D.; Marasco, V.; \& Møller, A. P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B. 2011, 181, 447-456.
63. Metcalfe, N. B.; Alonso-Alvarez, C. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 2010, 24, 984-996.
64. Hoff PT, Scheirs J, Van de Vijver K, Van Dongen W, Esmans EL, Blust R \& De Coen W. Biochemical effect evaluation of perfluorooctane sulfonic acid polluted wood mice (Apodemus sylvaticus). Environ. Health Persp. 2004, 112, 681-686.
65. Tsuda, S. Differential toxicity between perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). J. Toxicol. Sci. 2016, 41, SP27—SP3
