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Investigation of Properties Limiting Efficiency
in Cu2ZnSnSe4-Based Solar Cells

Guy Brammertz, Souhaib Oueslati, Marie Buffière, Jonas Bekaert, Hossam El Anzeery, Khaled Ben Messaoud,
Sylvester Sahayaraj, Thomas Nuytten, Christine Köble, Marc Meuris, and Jozef Poortmans

Abstract—We have investigated different nonidealities in
Cu2 ZnSnSe4 –CdS–ZnO solar cells with 9.7% conversion effi-
ciency, in order to determine what is limiting the efficiency of these
devices. Several nonidealities could be observed. A barrier of about
300 meV is present for electron flow at the absorber–buffer het-
erojunction leading to a strong crossover behavior between dark
and illuminated current–voltage curves. In addition, a barrier of
about 130 meV is present at the Mo–absorber contact, which could
be reduced to 15 meV by inclusion of a TiN interlayer. Admit-
tance spectroscopy results on the devices with the TiN backside
contact show a defect level with an activation energy of 170 meV.
Using all parameters extracted by the different characterization
methods for simulations of the two-diode model including injec-
tion and recombination currents, we come to the conclusion that
our devices are limited by the large recombination current in the
depletion region. Potential fluctuations are present in the devices
as well, but they do not seem to have a special degrading effect
on the devices, besides a probable reduction in minority carrier
lifetime through enhanced recombination through the band tail
defects.
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I. INTRODUCTION

THIN-FILM chalcogenide photovoltaics seem to be a
promising alternative to further reduce the cost of solar en-

ergy in the future. Whereas CdTe- and Cu(In,Ga)(S,Se)2-based
technologies are already well established in the solar module
market, Cu2ZnSn(S,Se)4 (CZTSSe) kesterite-based solar cells
are currently being investigated as an alternative chalcogenide
absorber material with high constituent element abundance [1],
[2]. Recent results have shown a conversion efficiency as high
as 12.6% with a hydrazine solution processed Cu2ZnSn(S,Se)4
absorber in combination with a CdS buffer layer [3]. Despite
the good results achieved, further improvements in the conver-
sion efficiency are necessary in order to be able to compete
with the already much higher efficiencies achieved with CdTe
and Cu(In,Ga)(S,Se)2 technologies [4]. In the present contribu-
tion, we analyze the optoelectrical properties of Cu2ZnSnSe4
(CZTSe)-based solar cells with a total area conversion efficiency
of 9.7% [5]. From the optoelectrical characterization, we will
try to determine which nonideality in the devices is actually lim-
iting the conversion efficiency by comparing the experimental
results to a two-diode model simulation using all the parameters
extracted from the electrooptical characterization.

II. SAMPLE FABRICATION AND PHYSICAL CHARACTERIZATION

Our CZTSe solar cells are fabricated by selenization of se-
quentially sputtered metal precursors [6]. First, Cu10Sn90 , Zn,
and Cu metal layers are sputtered on to a standard Mo on soda
lime glass substrate. The stacked metal layers are then selenized
in a rapid thermal anneal oven in vacuum, where a continuous
flow of 10% H2Se in N2 is supplied. The ramp up speed is 1 °C/s,
the anneal time is fixed at 15 min, and the anneal temperature is
fixed at about 450 °C. The temperature is measured on the back-
side of the susceptor, whereas heating is through lamp heating to
the front side of the sample; therefore, actual temperature on the
sample front side could be higher than the measured 450 °C. A
KCN etch is then performed followed by chemical bath deposi-
tion of 50 nm of CdS and sputtering of 120 nm of intrinsic ZnO,
followed by sputter deposition of 250 nm of Al-doped ZnO.
A Ni/Al top contact grid is then deposited, and cell isolation is
made with needle scribing. Finally, a 110-nm-thick MgF2 antire-
flective coating layer is deposited. A top-view scanning electron
microscopy (SEM) picture of a typical absorber layer is shown
in Fig. 1(a), whereas Fig. 1(b) shows a cross-sectional SEM of a
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Fig. 1. (a) SEM image of a typical absorber layer after selenization. (b) Cross-
sectional SEM image of the highest efficiency solar cell device.

finished solar cell device. Typical grain sizes of about 1 μm di-
ameter are visible, as well as some amount of secondary phases
with typically much smaller grain size. The average composition
of the absorber layer, as measured from energy dispersive X-ray
spectroscopy, was determined as Cu/(Zn + Sn) = 0.7, Zn/Sn
= 1, and Se/(Cu + Zn + Sn) = 1.08. The sample is, therefore,
very Cu-poor, stoichiometric with respect to Zn and Sn, and
quite Se-rich. A Raman spectrum of our highest efficiency solar
cell is shown in Fig. 2. Raman measurements were performed
using a Horiba Jobin-Yvon LabRAM HR confocal spectrometer
with 50 × 0.55 NA objective and 8 μW of laser excitation light
at 633 nm. Multiple spectra on different locations across the
sample were averaged to obtain a representative Raman charac-
terization of the layer. The variations from spot to spot were very
limited such that the presented graph is very representative of
the overall Raman behavior. Besides the main peaks generally
attributed to CZTSe at 173, 196, 234, and 243 nm−1 [7], a peak
at 251 nm−1 can be clearly identified, suggesting the presence
of a considerable amount of ZnSe in the absorber [8]. Secondary
ion mass spectroscopy analysis on a similar solar cell sample is
shown in Fig. 3. Whereas the Cu and Sn concentrations are rel-
atively homogeneous throughout the thickness of the absorber
layer, the Zn seems to be present in higher concentrations at the

Fig. 2. Raman spectrum of the highest efficiency CZTSe absorber layer.

Fig. 3. Secondary ion mass spectroscopy measurement on a CZTSe-CdS-
ZnO solar cell sample. The shaded regions represent the approximate interfaces
between the different materials.

front and back interfaces. Large diffusion of Na and Ca from
the soda lime glass substrate into the absorber layer is visible, as
well as the presence of a nonnegligible amount of oxygen. From
the mass spectroscopy profile, it seems that the front interface is
better defined than the back interface, which is also confirmed
by the cross-sectional SEM images, which are showing large
holes at the backside of the sample. Diffusion of Cu and Zn into
the top ZnO layer is very limited.

III. ELECTROOPTICAL CHARACTERIZATION

Dark and illuminated current–voltage measurements of the
best 1-cm2 solar cell device are shown in Fig. 4. The total area
conversion efficiency using a standard AM1.5G spectrum with
an illumination intensity of 1000 W/m2 is 9.7%. A very strong
crossover point between the dark and the illuminated curves can
be identified in the figure. This crossover is possibly due to a
light-dependent barrier of about 300 meV between the CZTSe
absorber layer and the CdS buffer layer, which can be very
strongly reduced using light illumination with an energy above
the CdS bandgap [9]. Under AM1.5G illumination, this barrier,
therefore, does not seem to affect the operation of the device,
whereas in the dark, it adds an additional series resistance.

CZTSe solar cells present an increasing series resistance as
the temperature is reduced to cryogenic temperatures [10]. It
was shown through variation of the backside contact metal that
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Fig. 4. Dark and illuminated current–voltage measurement of the highest
efficiency 1-cm2 solar cell together with the performance metrics.

Fig. 5. Series resistance as a function of temperature for two similar devices:
one with a standard Mo backside contact and the other one with a 100-nm-thick
TiN layer introduced between the Mo and the absorber.

this behavior was related to a backside contact barrier [11]. The
barrier height derived for a Mo backside contact is of the order
of 130 meV [10], [5]. Even though such a barrier only adds
a few tenths of Ω · cm2 at room temperatures, it was shown
that, through the deposition of a 100-nm-thick sputtered TiN
layer on top of the Mo, the barrier could be reduced to 15 meV,
reducing the contact resistance due to this effect basically to
zero. In addition, the strong increase in the series resistance at
lower temperatures could be avoided, as becomes visible from
Fig. 5. Fig. 5 shows a plot of the series resistance as a function of
temperature for a device with Mo backside contact and the same
device including a 100-nm-thick TiN layer between the Mo and
the absorber layer. As the large series resistance also gives a trace
in admittance spectroscopy measurements [12], it has, to date,
been difficult to reliably study the defect density in the absorber
with this type of measurements. For the devices with the TiN
barrier layer, this problem is no more present, and admittance
measurements can be acquired without the complication of the
rising series resistance. Fig. 6(a) shows the admittance response
of a CZTSe–CdS–ZnO solar cell device with similar processing
as compared with our highest efficiency devices, but with an
additional TiN layer between the Mo and the absorber. The
efficiency of this device is 8.5%, with no antireflective coating
deposited and, therefore, very similar efficiency, as compared
with the best device presented here [11]. A clear peak can be

Fig. 6. (a) –fdC/df as a function of measurement frequency for different tem-
peratures. (b) Arrhenius plot of the peak maximum frequency.

identified in the derivative of the capacitance response at the
different measurement temperatures and the peak shifts to lower
frequencies as the temperature is reduced. An Arrhenius plot of
the frequency of the maximum of the peak [13] is shown in
Fig. 6(b), from which a main defect with an activation energy
of 170 meV can be derived. No other peak can be seen in the
admittance response, which is the reason why we believe that
no deeper defect is present. Nevertheless, the peaks in –fdC/df
do not return to zero, but rather seem to stabilize at a value of
0.5 nF/cm2. Therefore, it could be that in addition to the main
defect level at 170 meV, a certain continuous background of
defect states is present in the material.

Fig. 7(a) shows the internal quantum efficiency (IQE) of the
device with the highest efficiency as a function of applied bias
voltage. Good carrier collection can be seen with large IQE in
excess of 90% in the range 500–900 nm. Increasing the reverse
bias voltage only increases carrier collection by a small amount,
but when the device is forward biased, the carrier collection de-
grades considerably already for small bias voltages. By fitting
a simple model for the IQE to the experimental bias-dependent
data, it has been shown that for every wavelength, the absorption
coefficient and the diffusion length can be derived [14], [15].
The necessary relationship between bias voltage and depletion
layer width is derived from capacitance versus voltage measure-
ments. We have applied this method here, and the results for the
absorption coefficient as a function of wavelength are shown in
Fig. 7(b). The diffusion length derived from the fitting is equal
to 2 ± 0.5 μm.
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Fig. 7. (a) IQE of the CZTSe–CdS–ZnO solar cell as a function of applied
bias voltage. (b) Absorption coefficient as a function of illumination wave-
length derived from fitting the bias dependent IQE. The value of the derived
wavelength independent minority carrier diffusion length Ld is shown as well.

IV. TWO-DIODE SIMULATION

The current density under illumination through a n+ -p diode
can be written as [16] follows:

J = Jsc − J0,1

[
exp

(
qV

kT

)
− 1

]
− J0,2

[
exp

(
qV

2kT

)
− 1

]

(1)
where

J0,1 =
qLdn

2
i

τNA
and J0,2 =

qWni

2τ
. (2)

Here, J0,1 and J0,2 are the reverse saturation currents, Jsc is
the short-circuit current density, Ld is the minority carrier diffu-
sion length, τ is the minority carrier lifetime, ni is the intrinsic
carrier density, and W is the depletion layer width. The first term
in (1) accounts for the currents originating from the neutral re-
gions of the junction, whereas the second term accounts for
currents generated through carrier generation–recombination in
the depletion region of the junction.

In (2), the intrinsic carrier density ni is given by

ni =
√

NC NV exp
(
−Eg

2kT

)
(3)

with

Nx = 2
(

2πmxkT

h2

)3/2

. (4)

TABLE I
PARAMETERS FOR TWO-DIODE MODEL SIMULATIONS

Symbol Name Unit Values

Js c Short-circuit current density mA/cm2 38.9
Eg Bandgap eV 0.97
mC Effective mass of electrons / 0.1
mV Effective mass of holes / 0.4
NA Acceptor density cm−3 2 × 1015

τ Minority carrier lifetime ns 7
Ld Diffusion length μm 2
εr Relative permittivity / 8
ψb i Built-in potential eV 0.9
Rs Series resistance Ω · cm2 1.05
R s h u n t Shunt resistance Ω · cm2 680

Here, x = C or V ; NC and NV are the effective density of
states in the conduction and valence band, respectively; Eg is
the bandgap; mC and mV are the average effective masses of
electrons and holes, respectively; and k and h are the Boltzmann
and Planck constants, respectively. The depletion layer width W
is given by

W =

√
2εrε0 (ψbi − V )

qNA
(5)

where εr is the relative permittivity, and ψbi is the built-in field
in the junction.

We know or can estimate quite well all of the parameters that
are necessary for calculating (1). Table I summarizes the values
that we used. The bandgap was derived from the absorption edge
of the IQE curve, the average effective masses of electrons and
holes were taken from [17], the acceptor density and minority
carrier lifetime in the absorber were measured [5], the minority
carrier diffusion length was derived from the bias dependence of
the IQE, the relative permittivity was taken from [18], the built-
in potential was estimated as being slightly below the bandgap
value, and the series and shunt resistance values were derived
directly from the J–V curves of Fig. 4. Using all these parameters
for calculating the J–V curve in (1), including the effect of
the series and shunt resistance, we obtain a good fit to the
experimental device results, as can be seen in Fig. 8(a).

The calculated values for the reverse saturation currents J0,1
and J0,2 were 10−10 and 10−5 A · cm−2, respectively. Our best
device, therefore, seems to be strongly limited by J0,2 , i.e., the
recombination current in the depletion region, due to a combi-
nation of low bandgap, large width of the depletion region, and a
relatively low minority carrier lifetime, in agreement with other
studies on kesterite solar cells [3], [10], [14], [18], [19]. This
conclusion can also be confirmed by a plot of the open-circuit
voltage as a function of cell efficiency for a larger range of fabri-
cated CZTSe solar cells. All cells were fabricated with a process
flow similar to the one described above but with variations in
the different metal layer thickness and anneal times and temper-
atures. The solid line represents the open-circuit voltage calcu-
lated using (1) and the parameters from Table I, varying only the
value of the minority carrier lifetime. The experimental results
are all lying near to the trend predicted by the two-diode model.
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Fig. 8. (a) Illuminated J–V for the highest efficiency cell along with the
calculations of the two diode model using the parameters in Table I. (b) Open-
circuit voltage Vo c as a function of minority carrier lifetime for a series of
different CZTSe-based solar cells along with a calculation extracted from the
two-diode model using the parameters of Table I and varying the minority carrier
lifetime.

It, therefore, seems that despite the presence of a large amount
of potential fluctuations and band tail states in the absorber [19],
[20], the current–voltage behavior of the solar cell is dominated
by processes that can be well described with the standard two-
diode model. In order to improve the Voc , and thereby the device
efficiency, the value of J0,2 needs to be decreased. Taking into
account (2), three possible pathways can be proposed to achieve
this goal. The minority carrier lifetime could be strongly in-
creased above the present value of 7 ns. This, of course, involves
further passivation of defects in the absorber or at the different
interfaces. At present, the minority carrier lifetime seems to be
mainly limited by band tail states and a defect level with an
activation energy of about 170 meV, as these are the defects
that can be clearly measured with the different characterization
methods. Unless a better fabrication procedure or a passivating
material or element is found, the approach to increase the mi-
nority carrier lifetime seems difficult. A second approach would
be to increase the acceptor density in the absorber in order to
reduce the depletion region width. Nevertheless, carrier collec-
tion seems to be strongly relying on the internal electric field
in the depletion region, as we usually see best carrier collection
and highest short-circuit currents for the devices with the lowest
doping in the absorber. This, therefore, might not be the best ap-
proach to obtain higher efficiencies. Finally, one could increase
the bandgap. Through the exponential dependence of the intrin-
sic carrier density on the bandgap, the amount of recombination
will also be strongly reduced. A small increase in the bandgap
to about 1.2 eV already leads to a two order of magnitude lower

recombination current with J0.2 = 10−7 A/cm2. As this can be
achieved through introduction of a small percentage of sulfur in
the absorber, this will probably be the preferred way to reduce
the recombination currents in our devices.

V. CONCLUSION

We have characterized CZTSe–CdS–ZnO solar cells and in-
vestigated a series of nonidealities that are present in the devices.
A barrier of about 300 meV at the absorber–buffer interface was
derived, which is strongly reduced upon absorption of light in
the CdS buffer layer; therefore, it does not represent a limita-
tion for cell efficiency under standard AM1.5G illumination. A
barrier at the backside contact of about 130 meV is also present,
which could be reduced to 15 meV through the introduction of
a thin TiN backside metal. Both barriers do only add a frac-
tion of an Ω · cm2 to the device series resistance; therefore, they
do not limit the efficiency. Through comparison of the experi-
mental current–voltage behavior with a two-diode model, using
parameters extracted from electrooptical characterization, we
can conclude that the efficiency of our devices is limited by
strong recombination in the depletion region. The minority car-
rier lifetime is, therefore, limiting the open-circuit voltage of the
device. Factors contributing to a low minority carrier lifetime
of the order of 7 ns are likely band tail states caused by strong
potential fluctuations and a defect measured from admittance
spectroscopy with an activation energy of 170 meV. Further im-
provements to the CZTSe cells, as presented in this study, can be
achieved by increasing the bandgap of the material and, thereby,
reducing the amount of recombination in the depletion region;
of course, this is only under the condition that all other device
properties can be kept constant.
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