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Abstract

Nonlinear effects between explanatory and response variables are increasingly present in new

surveys. In this paper, we propose a flexible four-parameter cure rate survival model called the sinh

Cauchy cure rate distribution. The proposed model is based on the generalized additive models for

location, scale and shape, for which any or all parameters of the distribution are parametric linear

and/or nonparametric smooth functions of explanatory variables. Bias caused by non incorporating

of such non-linear effects in the model are investigated using Monte Carlo simulations. We discuss

diagnostic measures and methods to select additive terms and computational implementation. The

flexibility of the proposed model is illustrated by predicting lifetime and cure rate proportion as

well as identifying factors associated to women diagnosed with breast cancer.

Keywords: Cure rate models; GAMLSS; P-spline; residual analysis; semi-parametric models.

1 Introduction

Recently, many semi-parametric models have been applied in a variety of areas, such as biology,

medicine, agronomy and engineering (reliability analysis), among others. The objective of this study

is to analyze censored data with the presence of long-duration individuals in which explanatory va-

riables have nonparametric behavior in relation to the failure time. Regression models with cure

fraction are characterized by a significant fraction of individuals that do not experience the event of

interest, even after a long follow-up period. In many cases, some explanatory variables can present
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nonlinear behavior, i.e., behavior that does not have defined or known form. Nonlinear effects between

explanatory and response variables are increasingly present in literature. A natural question that arises

is how to deal with nonlinearity in the relationship between the outcome variable and a continuous

predictor. The incorrect assumption of linearity can lead to a misspecified final model in which a

relevant/irelevant variable may not be included/excluded due to the fact that the test hypothesis of

the parameters related to such variables are based on the slope of the estimated line. Therefore, with

the objective of obtaining a more flexible fit to the data, we use nonparametric functions to study the

relationship between the response variable and the explanatory variables, allowing greater flexibility

by not imposing a rigid dependence form in modeling the variables in question.

One possible solution would be use categorization, in which such predictors are entered into step-

wise selection procedures as linear terms or as dummy variables obtained after grouping. To exemplify,

we present in Figure 1(a) the empirical survival curves for the recurrence free survival times as func-

tions of the explanatory variable age, categorized in three levels, age < 35, 35 ≤ age ≤ 55 and

age > 55. The description of this data set is presented in Section 5, in which a thorough study is

conducted. Note that the the proportion of cured individuals increases and then decreases, as age

increases, indicating a nonlinear effect of age in the cure rate proportion. These effects of age in the

cure rate proportion can be noted in Figure 1(b), where we display the fitted cure rate proportions

for each category of age using nonparametric techniques.
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Figure 1: (a) The empirical survival curves as functions of the categorized explanatory variable age

and (b) the estimated cure rate proportion obtained for each of its category.

The problem in the categorization method is that it introduces problems of defining cutpoints

(Altman et al., 1994), over-parametrization and loss of efficiency (Morgan and Elashoff, 1986; Lagakos,

1988). In any case, a cutpoint model is an unrealistic way to describe a smooth relationship between

a predictor and an outcome variable and it will depend on the priori given by the researcher, which

is not always possible. Nonparametric regression methods are alternative to parametric modelling of

curved relationships. Some methods that have been emphasized in the statistical area are: regression

splines, smoothing splines and kernel methods (Hastie and Tibshirani, 1990; Green and Silverman,

1993). Although these methods are relatively advanced, usually such techniques are only adopted

on the location and scale models, thus requiring the expansion of such techniques to other kinds of
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models like long-term survival.

In regression analysis, one or more explanatory variables can have significant effects on the location

parameter, but also on other parameters such as scale and skewness parameters. The erroneous

consideration of the regression structure can have adverse consequences for the efficiency of estimators,

so it is important to consider the regression structure for all model parameters whenever possible.

In this paper, we propose a general class of regression models with cure fraction, where the mean,

dispersion, skewness (bi-modality) and cure fraction parameters vary across observations through

regression structures. This model framework is called in literature as the generalized additive model for

location, scale and shape (GAMLSS) (Rigby and Stasinopouls, 2005). We also consider, for each model

parameter, smoothing techniques to capture nonlinear effects existent in the continuous explanatory

variables.

We consider that the failure times follow the log-sinh Cauchy (LSC) distribution (Ramires et al.,

2016) and propose a new model called the log-sinh Cauchy cure rate (LSCcr) model. The paper is

organized as follows. In Section 2, we define the LSCcr model by means of the density and survival

functions. Further, we propose the log-sinh Cauchy cure rate generalized additive model for location,

scale and shape (LSCcr GAMLSS) and discuss about smooth functions. Inferential issues, model se-

lection strategies, goodness-of-fit, selection of the additive terms and residual analysis are investigated

in Section 3. In Section 4, we discuss methods for generating random values and Monte Carlo sim-

ulations on the finite sample behavior of the maximum likelihood estimates (MLEs). An application

to breast cancer data presented in Section 5 illustrates the flexibility of the proposed semi-parametric

regression model. Computational implementation and instructions for fitting the proposed model are

given in the Appendix. Finally, we offer some conclusions in Section 6.

2 The Log sinh Cauchy GAMLSS with long-term survivors

Models to accommodate a cured fraction have been widely developed. The literature on the subject

is by now rich and growing rapidly. The books by Maller and Zhou (1996) and Ibrahim et al. (2001)

as well as the review paper by Chen et al. (1999), Tsodikov et al. (2003) and the article by Cooner et

al. (2007) could be mentioned as key references. Recently, other works dealt with cure rate models.

For example, Balakrishnan and Pal (2012) pioneered an EM algorithm-based likelihood estimation

for some cure rate models, Cancho et al. (2015) studied a unified multivariate survival model with a

surviving fraction, Hashimoto et al. (2015) proposed a new long-term survival model with interval-

censored data, Cordeiro et al. (2016) proposed the negative binomial Birnbaum-Saunders model with

long-term survivors, and Ortega et al. (2015) defined a power series beta Weibull regression model for

predicting breast carcinoma.

Perhaps the most popular type of cure rate models are the mixture models (MMs) defined by

Boag (1949), Berkson and Gage (1952) and further studied by Farewell (1982). This approach allows

simultaneously estimating whether the event of interest will occur, which is called incidence, and

when it will occur, given that it can occur, which is called latency. Let Ni (for i = 1, . . . , n) be the

indicator denoting that the ith individual is susceptible (Ni = 1) or non-susceptible (Ni = 0), i.e., the

population is classified in two sub-populations so that an individual either is cured with probability
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0 < τ < 1, or has a proper survival function S(t) with probability (1− τ). The MM can be expressed

as

Spop(ti) = τ +
(
1− τ

)
S(ti|Ni = 1), (1)

where Spop(ti) is the unconditional survival function of ti for the entire population, S(ti|Ni = 1) is

the survival function for susceptible individuals and τ = P (Ni = 0) is the probability of cure of an

individual. The probability density function (pdf) corresponding to (1) is given by

fpop(ti) = −dSpop(ti)

dt
= (1− τ) f(ti|Ni = 1), (2)

where f(ti|Ni = 1) is the baseline pdf for the susceptible individuals. Equations (1) and (2) are

improper functions, since Spop(t) is not a proper survival function. We can omit sometimes the

dependence on the indicator Ni and write simply S(ti|Ni = 1) = S(t), f(ti|Ni = 1) = f(t), etc.

Recently, for modeling a lifetime T > 0, Ramires et al. (2016) introduced the LSC distribution,

which accommodates various shapes of the skewness, kurtosis and bi-modality. Its density function is

given by

f(t;µ, σ, ν) =
ν

t σ π

cosh
(
log(t)−µ

σ

)
[
ν2 sinh2

(
log(t)−µ

σ

)
+ 1

] , (3)

where µ ∈ R and σ > 0 are the location and scale parameters, respectively, and ν > 0 is the symmetry

parameter that characterizes the bi-modality of the distribution. The main advantage of the LSC

distribution is that it accommodates various forms for the skewness, kurtosis and bi-modality and

then it can be used as an alternative to mixture distributions in modeling bimodal data. The survival

function corresponding to (3) is given by

S(t;µ, σ, ν) = 1−
{
1

2
+

1

π
arctan

[
ν sinh

(
log(t)− µ

σ

)]}
. (4)

2.1 The LSCcr distribution

For censored survival times, the presence of an immune proportion of individuals who are not subject

to death, failure or relapse may be indicated by a relatively high number of individuals with large

censored survival times. We define the LSCcr model for the possible presence of long-term survivors

in the data. To formulate the model, we consider that the population under study is a mixture

of susceptible (uncured) individuals, who may experience the event of interest, and non-susceptible

(cured) individuals, who will not experience it (Maller and Zhou, 1996).

The survival function for the LSCcr model is defined by assuming that the survival function for

susceptible individuals in (1) is given by (4), which gives

Spop(t;µ, σ, ν, τ) = 1 + (τ − 1)

{
1

2
+

1

π
arctan

[
ν sinh (w)

]}
, (5)

where w = log(t)−µ
σ . We can omit sometimes the dependence on the parameters as, for example,

Spop(t) = Spop(t;µ, σ, ν, τ). The pdf corresponding to (5) is given by

fpop(t) =
(1− τ) ν

σπ t

cosh (w)

[ν2 sinh2(w) + 1]
. (6)
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The hazard rate function (hrf) of the LSCcr model is given by hpop(t) = fpop(t)/Spop(t). A

random variable having density (6) is denoted by T ∼ LSCcr(µ, σ, ν, τ). Clearly, the functions fpop(t)

and hpop(t) are improper functions, since Spop(t) is not a proper survival function. Plots of the

LSCcr survival and hazard functions for selected parameter values are displayed in Figures 2 and 3,

respectively.
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Figure 2: The LSCcr survival function when µ = 3 and: (a) For τ = 0 and different values of σ and

ν; (b) For τ = 0.3 and different values of σ and ν.
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Figure 3: The LSCcr hrf when µ = 3 and: (a) For τ = 0 and different values of σ and ν; (b) For

τ = 0.3 and different values of σ and ν.

Figures 2(a)-(b) reveal clearly the symmetric and bi-modality effects due to the parameters σ and

τ , respectively, and different effects of the cured probability τ . Further, Figures 3(a)-(b) indicate that

the hrf of T can have decreasing, unimodal and bimodal shapes. We can note in Figure 3(b) that the

values of the hrf are smaller in the presence of the proportion of cured individuals but still assuming

the same characteristics.

2.2 The LSCcr GAMLSS

In many practical applications, the response variables are affected by explanatory variables. In the

presence of explanatory variables with nonlinear effects, semi-parametric models are widely used. If
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these models provide good fits, they tend to give more precise estimates of the quantities of interest.

Recently, several regression models have been proposed in literature by considering the class of location

models. For example, Ortega et al. (2014) introduced a log-linear regression model for the odd Weibull

distribution, da Cruz et al. (2016) proposed the log-odd log-logistic Weibull regression model with

censored data, Lanjoni et al. (2016) studied the extended Burr XII regression models and Hashimoto

et al. (2016) defined a new flexible regression model generated by gamma random variables with

censored data. A disadvantage of the class of location models is that the variance and skewness and

other parameters are not modelled explicitly in terms of explanatory variables but only implicitly

through their dependence on the location parameter. As an alternative, the GAMLSS (Rigby and

Stasinopouls, 2005) allows all parameters of the conditional distribution of t be modelled as parametric

functions of the explanatory variables.

On the other hand, in most studies considering regression models, the structure of continuous

covariates is added in the models such that it is linear in the parameters regarding the proportion

of cured individuals, although this relationship is not always true. The misuse of the structures of

the regression models makes it impossible to capture the variability of such covariates in the model,

degrading the estimates of all other parameters to be estimated, and in the worst cases, leading to

the wrong conclusion that these variables do not have significant effects on cure rates. To capture the

nonlinear effects of these covariates, it is necessary to adopt nonlinear functions.

Let T ∼ LSCcr(y;θ), where θ = (µ, σ, ν, τ)T denotes the vector of parameters of the pdf (6).

Consider independent observations ti conditional on the parameter vector θi (for i = 1, . . . , n) having

pdf f(ti;θi), where θT = (µT ,σT ,νT , τT ) is a vector of parameters related to the response variable.

The GAMLSS allows the user to model all parameters in θ as linear, nonlinear parametric, nonpara-

metric (smooth) function of the explanatory variables and/or random effects terms. We can define

semi-parametric structures for the elements of the vector θ using appropriate link functions as

θ =


µ

σ

ν

τ

 =


g1

(
X1β1 +

∑J1

j=1 hj1(xj1)
)

g2

(
X2β2 +

∑J2

j=1 hj2(xj2)
)

g3

(
X3β3 +

∑J3

j=1 hj3(xj3)
)

g4

(
X4β4 +

∑J4

j=1 hj4(xj4)
)

 , (7)

where gk(·) for k = 1, 2, 3, 4 denote the injective and twice continuously differentiable monotonic

link functions, βk = (β0k, β1k, . . . , βmkk)
T is a parameter vector of length (mk + 1), mk denotes the

number of explanatory variables related to the kth parameter and Xk is a known model matrix of order

n× (mk + 1). Here, hjk(xjk) are smooth functions of the explanatory variables xjk for j = 1, . . . , Jk.

The explanatory variables can be similar or different for each of the distribution parameters, which

can be considered as linear functions, smooth functions or both. In the following sections, we shall

consider the identity link function for g1(·), the logarithmic link function for gk(·) (k = 2, 3) and the

logit link function for g4(·).
In this paper, we only use the P-splines as smooth functions hjk(·). The P-splines are piecewise

polynomials defined by B-spline basis functions in the explanatory variables, where the coefficients of

the basis functions are penalized to guarantee sufficient smoothness. Rigby and Stasinopouls (2005)

proved that each smoothing function hjk(·) can be expressed as a random effects model, i.e., hjk(.) =
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Zjkγjk, where Zjk is an n × qjk matrix representing the B-spline basis design matrix and γjk is a

qjk-dimensional vector of the B-spline parameters (random-effects). Some details of the number of

knots and the degrees of freedom can be found in Eilers and Marx (1996).

3 Model selection

In this section, we present the numerical maximization methods to fit the LSCcr GAMLSS and some

procedures to select the best model and additive terms as well as some diagnostic techniques.

3.1 Inference

The numerical maximization of the log-likelihood can be performed in the GAMLSS and gamlss.cens

packages of the R software using the computational codes implemented by the first author. The

maximization algorithms used are the RS and CG procedures described by Rigby and Stasinopouls

(2005) and Stasinopoulos and Rigby (2007) and available in the documentation of the GAMLSS

package.

Consider a sample of n-independent observations t1, . . . , tn, noninformative censoring and that the

observed lifetimes and censoring times are independent. Let F and C be the sets of individuals for

which ti is the lifetime or censoring, respectively. For the semi-parametric model (7), we consider fixed

the smoothing parameters λjk, and the fixed and random effects β and γ, respectively, are estimated

by maximizing the penalized log-likelihood function

lp = l(θ)− 1

2

4∑
k=1

Jk∑
j=1

λjkγ
T
jk Pjk γjk, (8)

where Pjk is a symmetric matrix that may depend on a vector of smoothing parameters (Rigby and

Stasinopouls, 2005). The non-penalized log-likelihood function l(θ) =
∑

i∈F log f(ti;θi)+
∑

i∈C logS(ti;θi)

is given by

l(θ) =
∑
i∈F

{
log(1− τi) + log(νi)− log(σiπ)− log(ti) + log cosh(wi)− log

[
1 + ν2i sinh2(wi)

] }
+
∑
i∈C

log

(
1 + (pi − 1)

{
1

2
+

1

π
arctan

[
νi sinh (wi)

]})
, (9)

where wi = [log(ti)−µi]/σi. The parameter vector θ = (βT
1 , . . . ,β

T
4 )

T is used to define the regression

structures in (7) by specifying appropriate link functions for gk(·), e.g., using the logit link function for

g4(τ ), the parameter τ is related to the covariates by τi = exp(X4[i, ]β4)/[1 + exp(X4[i, ]β4)], where

Xk[i, ] denotes the i-th row of the model matrix Xk. The fit of the LSCcr model gives the vector of

estimated cured proportion

τ̂ =
exp[X4β̂4 +

∑J4
j=1 ĥj4(xj4)]

1 + exp[X4β̂4 +
∑J4

j=1 ĥj4(xj4)]
, (10)

where ĥj4(xj4) = Zj4γ̂j4.
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For each smoothing term selected, and any of the parameters of the LSCcr distribution, there is

one smoothing parameter λ associated with it. The smoothing parameters can be fixed or estimated

from the data. We adopt the PQL method, described by Lee et al. (2006), to estimate the smoothing

parameters and the degrees of freedom of the P-spline smooth functions. This method is implemented

in the R software in the pb(.) function (Rigby and Stasinopouls, 2014). One important thing to

remember when fitting a smooth nonparametric term is the fact that the resulting coefficients of the

smoothing terms and their standard errors should not be interpreted.

Let dfµ, dfσ, dfν and dfτ be the effective degrees of freedom used for modelling µ, σ, ν and τ ,

respectively. The df combines the effective degrees of freedom used in the smooth functions hjk(·) and
parametric functions defined by df = dfµ + dfσ + dfν + dfτ . For example, let the location parameter

be modelled by the explanatory variable X1 using a nonparametric smoothing function with five

additional degrees of freedom. Then, the effective degrees of freedom related to the location parameter

is given by dfµ = 5 + 2, where the additional two degrees of freedom account for the linear term.

The effective degrees of freedom related to the smoothing function are defined by the trace of the

corresponding smoothing matrix in the fitting algorithm, which is in turn directly related to the

corresponding smoothing parameter (Eilers and Marx, 1996). The df can be evaluated using the

edfAll(.) function in the R software.

3.2 Goodness-of-fit

The selection of the appropriate distribution is performed in two stages, the fitting stage and the

diagnostic stage. In the first stage, we use the global deviance (GD), Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC). The GD is given by GD = −2 l(θ̂), where lp(θ̂) is

the total log-likelihood function and the AIC and BIC criterion are obtained by AIC = GD + 2 df

and AIC = GD+log(n) df , where df is the total effective degrees of freedom of the fitted model. The

model with the smallest values of these criteria is then selected.

In the diagnostic stage, the model assumptions and the presence of outlying observations are

checked. We can use the diagnostic tools in the GAMLSS package. The first technique consists in the

normalized randomized quantile residuals (Dunn and Smyth, 1996), which are given by r̂i = Φ−1(ûi),

where Φ−1(·) is the quantile function (qf) of the standard normal distribution, ûi = 1− S(ti|θ̂i) and

S(ti|θ̂i) is the survival function (5). For censored observations, considering a right censored continuous

response, û is defined as a random value from a uniform distribution on the interval [1− S(ti|θ̂i) , 1].

The second technique involves the use of Worm Plots (WP). These plots of the residuals were

pioneered by Buuren and Fredriks (2001) in order to identify regions (intervals) of an explanatory

variable within which the model does not fit adequately the data. This is a diagnostic tool for

checking the residuals for different ranges of one or two explanatory variables. Buuren and Fredriks

(2001) proposed fitting cubic models to each of the detrended QQ plots with the resulting constant,

linear, quadratic and cubic coefficients, thus indicating differences between the empirical and model

residual mean, variance, skewness and kurtosis, respectively, within the range in the QQ plot. The

interpretations of the shapes of the WP are: a vertical shift, a slope, a parabola or a S shape, thus

indicating a misfit in the mean, variance, skewness and excess kurtosis of the residuals, respectively.
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3.3 Additive terms selection

For the LSCcr GAMLSS, the selection of the terms for all the parameters is performed using the

stepwise GAIC procedure. There are many different strategies that could be applied for the selection

of the terms used to model the four parameters µ, σ, ν and τ . Here, we consider a modification of

the strategy described by Voudouris et al. (2012). Let χ be the selection of all terms available for

consideration, where χ could contain both linear and smoothing terms. Then, for all terms in χ and

for fixed distribution, the strategy is given as follows (we suggest to use of the AIC criterion for the

next steps):

• Use the forward produce to select the additive terms for the τ parameter considering µ, σ and

ν fixed (without covariates);

• Considering the model selected for τ , use the forward produce to select the additive terms for µ

after σ and then for ν, always using as fixed the model obtained in the previous step.

By the end of the steps described above, the final model may contain different subsets from χ for

µ, σ, ν and τ .

4 Simulation study

Consider the random variable T having pdf (3). By inverting F (t) = 1 − S(t) = u in (4), we obtain

the qf of the LSC distribution as

t = Q(u) = exp

(
µ+ σ arcsinh

{
1

ν
tan [π (u− 0.5)]

})
. (11)

Equation (11) can be used for simulating T ∼ LSC(µ, σ, ν) by fixing the parameters µ, σ and ν and

setting u as a uniform random variable in the interval (0, 1). The cured proportion can be generated

using the qf of another distribution with real support, fixing τ and setting the sample size for the

cured individuals as nc = τ × n, where n denotes the total sample size. We can also simulate the

regression models setting the parameters using the semi-parametric (7) structure.

We conduct a Monte Carlo simulation study to assess the finite sample behavior of the MLEs

of the model parameters. We consider model (7), where the cure rate parameter τ has a nonlinear

relationship with the explanatory variable X1. The total sample sizes are taken as n = 200 and

parameters values are fixed at µ = 2.5, σ = 0.5 and ν = 0.5. The values of the parameter τ are defined

such that X1 has an effect in the parabola form in τ . For each level of X1, it was generated a sample

size of length 20. The fixed values of τ , for each value of X1, are given in Table 1.

Table 1: Fixed values of the τ parameter of each level of the X1 explanatory variable.

ν 0.2 0.35 0.4 0.55 0.6 0.6 0.55 0.4 0.35 0.2

X1 1 2 3 4 5 6 7 8 9 10

The failure times T , denoted by t1, . . . , tn, are generated from the LSC distribution using the

qf (11) and the censoring times C are randomly generated from the uniform distribution C ∼
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[max(T ), 2 sd(T )], where sd(T ) denotes the standard deviation for the failure time sample. The life-

times considered in each fit are evaluated as min(ti; ci), where all results are obtained from 1,000 Monte

Carlo replications. For each replication, we evaluate the MLEs of the parameters and then, after all

replications, we compute the average estimates (AEs), biases and means squared errors (MSEs).

Next, we present and compare the results by fitting the parametric and semi-parametric LSCcr

models, namely

• Parametric LSCcr(µ, σ, ν, logit[β04 + β14X1]),

• Semi-parametric LSCcr(µ, σ, ν, logit[pb(X1, df)]),

where pb(X1, df) denotes a smooth P-spline function with corresponding degrees of freedom df to model

X1. The purpose of this study is to compare the loss of efficiency caused by a misspecified model.

The AEs, biases and MSEs are evaluated and the results are reported in Table 2. As the coefficients

of the smoothing terms pb(X1, df) are meaningless, we only present average of the estimated degrees

of freedom in this table.

Table 2: The AEs, biases and MSEs for the parametric and semi-parametric LSCcr regression models

based on 1,000 simulations.
Parametric Semi-parametric

Parameter AE Bias MSE Parameter Bias Bias MSE

µ 2.657 0.157 0.038 µ 2.632 0.132 0.028

σ 0.578 0.078 0.013 σ 0.571 0.071 0.012

ν 0.542 0.042 0.023 ν 0.544 0.044 0.023

β04 -0.563 - - df 3.156 - -

β14 0.000 - -

The figures in Table 2 reveal that the MSEs of the MLEs of the parameters for the parametric and

semi-parametric models are very close. Note that the average of the effective degree of freedom df for

the semi-parametric model is not close to two, thus indicating that we have a nonlinear effect of X1 in

the cure rate parameter. Finally, taking into account the parameter estimates relative to the cure rate

parameter for the parametric model, we note that β14 is approximately zero, erroneously indicating

that the explanatory variable X1 has no effect in the cure rate proportions. The main conclusion

of this simulation study is that, when the regression model is unspecified correctly, i.e., not allowing

that nonlinear effects can be estimated, erroneous conclusions can be drawn about the explanatory

variables.

Figure 4 displays the generated and fitted effects for the parametric and semi-parametric models.

We also present in this figure the box-plots of the GD, AIC and BIC statistics obtained in 1,000

simulations for both models. We can note that the estimates of the cure rate parameter τ̂ are more

suitable for the semi-parametric model. Further, we can conclude that the semi-parametric model

presents the lowest values of the GD, AIC and BIC statistics, thus indicating to be the most appropriate

model to the current data.
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Figure 4: For the fitted LSCcr parametric and semi-parametric models: (a) the fitted and generated

effect of X1 in the τ parameter; (b) the goodness-of-fit statistics.

5 Predicting the cure rate of breast cancer

A prognosis is the doctor’s best estimate of how cancer will affect a person. A predictive factor

influences how a cancer will respond to a certain treatment. Prognostic and predictive factors are

often discussed together and they both play a significant part in deciding on a treatment plan and a

prognosis. The following are prognostic and predictive factors for breast cancer.

The initial prognostic model considers that the explanatory variables tumor size, histology grade,

and lymph node status as basic factors to be taken into account (Fitzgibbons et al., 2000). A woman’s

age at the time of her breast cancer diagnosis can affect the prognosis. Younger women (under 35

years of age) usually have a greater risk of recurrence. The size of a breast tumor is the second most

important prognostic factor for breast cancer, in which the size of the tumor increases the risk of

recurrence. The grade of the breast cancer also affects prognosis, low-grade rumors often grow slower

and are less likely to spread than high-grade tumors (Gospodarowicz et al., 2006; Ko , 2009; Lønning,

2007).

In this section, we predict disease-free survival time (death, second malignancy or cancer recurrence

considered as event) by means of a data set corresponding to women diagnosed with breast cancer in

German (Schumacher et al., 1994). The data comprises 686 node positive women who had complete

data for these predictors. These women experienced 299 (43.6%) events during a median follow-up

time of 53.9 months, leaving all other patients with a right censored failure time.

The explanatory variables measures in the study are described below:

• ti: recurrence free survival time (in days);

• δi: failure indicator (0: censored, 1: observed);

• age: age (in years);

• htreat: hormonal treatment with tamoxifen (0: no, 1: yes);

• menostat: menopausal status (1: premenopausal, 2: postmenopausal);
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• tumsize: tumor size (in mm);

• tumgrad: tumor grade, a ordered factor at levels (1 < 2 < 3);

• posnodal: number of positive lymph nodes;

• prm: progesterone receptor (in fmol);

• esm: estrogen receptor (in fmol).

We start the analysis describing the explanatory variables. Figure 5 displays the empirical survival

functions and the corresponding p-values of log-rank test for the categorical variables. We may observe

in these plots that only menopausal status did not present significative difference between the survival

curves. We also present the frequency histogram of three explanatory variables, progesterone receptor,

tumor size and age, in Figure 6. These plots reveal that the highest concentration of progesterone

receptor is in the range [0,600], the average of tumor size is 29.3 and the average of age is 53.
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Figure 5: Empirical survival functions and log-rank test for (a) htreat (b) menostat and (c) tumgrad.
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Figure 6: Frequency histogram of explanatory variables (a) progesterone receptor, (b) tumor size and

(c) age.

Next, using the steps described in Section 3.3 to select the additive terms for the different pa-

rameters, we present results for the LSCcr GAMLSS parameters. We also compare the results by

fitting the Weibull cure rate (Weibullcr) model with scale µ > 0, shape σ > 0 and cure rate ν ∈ [0, 1]
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parameters. The model parameters are defined by

LSCcr model

µi = β01 + β11age+ β21prm+ β31htreat1,

σi = exp(β02 + β12tumgrad2 + β22tumgrad3), (12)

νi = exp(β03)

τi = logistic[β04 + β14prm+ β24tumsize+ β34htreat1 + β44tumgrad2 + β54tumgrad3 + pb(age)],

Weibullcr model

µi = exp[β01 + β11tumgrad2 + β21tumgrad3 + pb(esm) + pb(age)]

σi = exp(β02 + β12tumgrad2 + β22tumgrad3) + β32tumsize),

νi = logistic[β04 + β14prm+ β24tumsize+ β34htreat1 + β44tumgrad2 + β54tumgrad3 + pb(age)],

where logistic(x) = exp(x)/(1 + exp(x)) and htreat1, tumgrad2 and tumgrad3 are the indicator

variables of htreat = 1, tumgrad = 2 and tumgrad = 3, respectively. Table 3 lists the values of the

GD, AIC and BIC statistics for the fitted models. We can conclude from the figures in this table that

the LSCcr model provides a better fit than the Weibullcr model.

Table 3: The GD, AIC and BIC statistics and corresponding degrees of freedom for the fitted LSCcr

and Weibullcr models.
Model df GD AIC BIC

LSCcr 18.18 5116.00 5152.37 5234.75

Weibullcr 27.81 5125.57 5181.20 5307.23

Table 4 provides the MLEs, SEs and p-values obtained from the fitted LSCcr GAMLSS. The

coefficients of the smoothing terms have been omitted to avoid erroneous interpretations. We may

note in this table that all parameters are significant at 5%, indicating the efficiency of the selection

method. We conclude that the explanatory variables age, prm and htreat are significative to fit the

location parameter, only tumgrad is significative to explain the variability on ti and prm, tumsize,

htreat, tumgrad and age are significative to fit the cure rate parameter being that age has a nonlinear

effect in it.

The partial effects of the explanatory variables in the location parameter µ are presented in Fig-

ure 7. From the model for µ, we may note that the recurrence free survival time ti increases according

the age (Panel (a)) and the progesterone receptor (Panel (b))increase and is greater for patients treated

with hormonal treatment with tamoxifen (Panel (c)). Regarding the scale parameter σ, as we can

see in Figure 8(a), the variability of ti increases as the gradient tumor grade increases. For the cure

rate parameter τ , we may conclude from Figure 8(b)-(f) that the probability of cure increases as

progesterone receptor increases, decreases as tumor size increases, is greater for patients who received

hormonal treatment with tamoxifen, is higher for patients diagnosed with tumor grade 1 and is higher

for patients age around 45 years.

Based on equation (10), the estimated cured proportions can be determined using the results

obtained in (4) as τ̂i = logistic[3.224+0.002prmi−0.046tumsizei+0.519htreat1i−1.319tumgrad2i−
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Table 4: MLEs of the parameters, approximate SEs and p-values from the fitted LSCcr GAMLSS.

Parameter Estimate SE p-value Parameter Estimate SE p-value

β01 6.223 0.126 <0.001 β04 3.224 0.688 <0.001

β11 0.0101 0.002 <0.001 β14 0.002 0.001 <0.001

β21 0.0007 0.001 <0.001 β24 -0.046 0.010 <0.001

β31 0.194 0.053 <0.001 β34 0.519 0.208 0.012

β02 -1.408 0.039 <0.001 β44 -1.319 0.212 <0.001

β12 0.306 0.046 <0.001 β54 -1.678 0.351 <0.001

β22 0.614 0.061 <0.001 pb(age) df = 5.183

β03 -0.961 0.053 <0.001
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Figure 7: Fitted terms for the location µ parameter: (a) age, (b) progesterone receptor and (c)

hormonal treatment.

1.678tumgrad3i+pb(age, 5.183)]. In Figure 9, we present the estimated cured proportions for different

levels of the explanatory variables as function of age. We may note in this plot that the tumor grading 2

and 3 are very aggressive, influencing dramatically the cured probability. The same aggressive influence

can be observed in the patients that not received hormonal treatment with tamoxifen. Finally, the

probability of cure increases as age increases in the range [20,45], decreases in the age range [45,60]

and then stabilizes as age is greater than 60.

Figure 10 shows the estimated hazard functions. They reveal that the hazard of recurrence has a

bimodal shape with high chance of failure in approximately 500 and 1500 days. We can also note in

these plots the nonlinear effects of age (see Figure 8(d)) in the hrf.

Figure 11 displays some residual plots that will help to verify the adequacy and the assumptions of

the chosen fitted model given in (12). We also present in this figure the residual plots for the Weibullcr

model. Panel (a) and (d) indicate that the normalized quantile residuals have an approximately normal

distribution. Panel (e) shows that there a few points off the line in low end of the range. Finally,

the WP presented in Panel (c) indicates that there are no evidences of inadequacies on it, since all

the residuals fall in “acceptance” region inside the two elliptic curves. On the other hand, the WP

presented in Panel (f) indicates failure for modelling the kurtosis. In general, the LSCcr model based

on the GAMLSS framework provides a reasonable fit to these data.
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Figure 8: Fitted terms for (a) tumor grade covariate in the scale parameter σ, and for cure rate

parameter τ , the fitted terms for (b) progesterone receptor, (c) tumor size, (d) age, (e) hormonal

treatment and (f) tumor grade covariates.
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Figure 9: The estimated cured proportions for each level of tumgrad and htreat as function of age by

taking: (a) min(prm) = 0 and tumsize = 60 and (b) prm = 200 and tumsize = 10.

6 Conclusions

The semi-parametric log-sinh Cauchy cure rate (LSCcr) regression model provides a flexible regression

model for a dependent real outcome. The parameters of the model can be interpreted as relating to

location, scale, bimodality and cure rate proportion and each of them can be modelled as parametric or

smooth nonparametric functions of explanatory variables. Procedures for fitting the semi-parametric

LSCcr generalized additive model for location, scale and shape (GAMLSS) and for model diagnostics
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Figure 10: For the fitted LSCcr GAMLSS, the estimated hazard functions for tumgrad = 2, htreat = 1,

age = 21, 36, 60 and considering: (a) min(prm) = 0 and tumsize = 60 and (b) prm = 200 and

tumsize = 10.
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Figure 11: For the fitted LSCcr GAMLSS, (a) density of the quantile residuals, (b) Q-Q plot and (c)

WP, and for the fitted Weibullcr GAMLSS, (d) density of the quantile residuals, (e) Q-Q plot and (f)

WP.

are included in the GAMLSS package and they are can be obtained from the authors under request.

A real data set is used to illustrate the usefulness of the semi-parametric LSCcr regression model,

showing that it provides better performance than the usual methods in the presence of nonlinear

effects in the cure rate proportion.
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Appendix: Computational codes

Here, we present the codes implemented in the GAMLSS package in the software R. The pdf, cdf, qf and

the samples generator functions are

library(gamlss.cens); library(gamlss) #required packages

source("https://goo.gl/AppEbO") #implemented codes

dLSCc(x,mu,sigma ,nu,tau) #pdf

pLSCc(x,mu,sigma ,nu,tau) #cdf

qLSCc(u,mu,sigma ,nu,tau) #qf

rLSCc(n,mu,sigma ,nu,tau) #samples generator

Next, we present the codes used in the data analysis.

library(shrink) ;data(GBSG) ;attach(GBSG) #loading data set

#Selecting the regression model

#null model

m1=gamlss(Surv(rfst ,cens) ∼1, family=cens("LSCc"),c.crit =0.1, n.cyc =40)#null model

#Selecting the model for tau

m2=stepGAICAll.A(m1, scope=list(lower=∼1, upper=∼as.factor(htreat)+ +as.factor(tumgrad)+

pb(age)+pb(tumsize)+ pb(prm)+ pb(esm)), mu.try = F,sigma.try = F,nu.try = F)

#Note that the effects of prm and tumsize covariates are linear.

#Now , selecting the model for mu , sigma and nu.

m3 =gamlss(Surv(rfst ,cens) ∼1, family=cens("LSCc"),nu.start =0.4,

c.crit =0.01, n.cyc=40,tau.formula=∼prm + tumsize+ pb(age)+ as.factor(htreat)+as.factor(

tumgrad))

m4 =stepGAICAll.A(m3 , scope=list(lower=∼1,
upper=∼htreat+ as.factor(tumgrad)+ pb(age)+pb(tumsize)+ pb(prm)+ pb(esm)),

tau.try = F,tau.start=m3$tau.fv,nu.start =0.4,n.cyc =20)

edfAll(m4);

#Note that the effects of age and prm covariates are linear.

#Then , the final model is

model =gamlss(Surv(rfst ,cens) ∼age+prm+as.factor(htreat), sigma.fo=∼as.factor(tumgrad),

nu.fo=∼1,tau.fo=∼prm + tumsize+ pb(age)+ as.factor(htreat)+as.factor(tumgrad),

family=cens("LSCc"),nu.start = 0.4,c.crit =0.001 , n.cyc =100)

#Diagnostic

plot( density(model$residuals),xlab="Quantile residuals",main = "",lwd=4)

qqnorm(model$residuals ,pch =16); qqline (model$residuals ,col ="royalblue1",lwd=3)

wp(model)
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