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A Biomimetic Radar System for
Autonomous Navigation

Girmi Schouten, Graduate Student Member, IEEE, Jan Steckel, Member, IEEE

Abstract—This paper presents a novel biomimetic radar sensor
for autonomous navigation. To accomplish this, we have drawn
inspiration from the sensory mechanisms present in an echolocat-
ing mammal, the common big-eared bat (Micronycteris microtis).
We demonstrate the correspondence in both the hardware, system
model and signal processing. To validate the performance of
the sensor we have developed a complementary control system
based on subsumption architecture, which allows the system to
autonomously navigate unknown environments. This architecture
consists of separate behaviors with different levels of complexity,
which are combined to produce the overall functionality of
the system. We describe each behavior separately and examine
their performance in real-world navigation experiments. For this
purpose, the system is placed in two distinct office environments
with the goal of achieving smooth and stable trajectories. Here
we can observe noticeable improvements when employing high-
level behaviors. Furthermore, we utilize the data collected during
the navigation experiments to perform simultaneous localization
and mapping, using an algorithm developed in our earlier work.
These results show a substantial improvement over the odometry.
We attribute this to the fact that the system traverses stable and
repetitive paths, which facilitates place recognition.

Index Terms—Radar Sensing, Biologically-Inspired Robots,
Behavior-Based Systems, Autonomous Agents, SLAM

I. INTRODUCTION

AS automated control of vehicles is moving towards full
autonomy, improvements in both hardware and software

are needed to allow these systems to operate more robustly in
a wide variety of environments and weather conditions [1]. For
this purpose autonomous vehicles can employ a broad range
of sensors such as lidar, radar, and cameras. Each of these
sensing modalities has its own merits and shortcomings, and
none offers reliable performance under all possible conditions.
Therefore, a combination of multiple types of sensors is
needed to safely and robustly sense the environment [2].
Furthermore, each system requires its sensors to adhere to
specific constraints, such as size, range, or price. This further
increases the need for a diverse assortment of sensors from
which a subset can be selected to suit the requirements at
hand.

In this paper we present the first iteration of a biologically-
inspired radar sensor for autonomous navigation. This sensor
aims to deliver a compact, low-cost solution for remote sensing
under challenging environmental conditions. To achieve the
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Fig. 1: Comparison between biological sonar and biomimetic radar sensing.
(a) A common big-eared bat (Micronycteris microtis) with its ears (orange) and
mouth (green) marked. Image courtesy of Inga Geipel, Smithsonian Tropical
Research Institute, Panama. (b) The radar sensor used in this work. Analogous
to the bat, the receiver and emitter antennas are marked using the same color
coding.

aforementioned objectives, the sensor uses radar technology
and is constructed using a minimal amount of components
to reduce its overall form-factor as well as inherent man-
ufacturing cost. The inspiration for this approach is taken
from nature, where bats show that comprehensive perception
of the environment is possible, using only their ears and
mouth as interface to the external world. Not only can bats
reliably find their way back and forth between roosting and
feeding grounds, they can also catch insect prey on the
wing, and even discern between multiple types of flowering
plants [3], [4]. In the past our research group has already
proven the capabilities of a biomimetic sonar system both
for navigation [5] as well as simultaneous localization and
mapping (SLAM) [6]. Now we apply our knowledge on
the acoustic domain to the electromagnetic domain. Both
the hardware and software of the system are based on the
main principles of biomimetic sonar; the design of the sensor
resembles the morphology of an echolocating bat, while the
signal processing focuses on echo features such as time-of-
arrival and spectral content. An illustration of the physical
similarity between both sensing methods is given in Figure 1.
The reason for the shift from sonar to radar is because the latter
offers some important benefits over the former; radar performs
better in the presence of environmental hazards such as rain,
fog, and smoke [7]. It also suffers less from atmospheric
attenuation as well as other influences such as air temperature
and humidity [8]. Additionally, radar signals travel at the speed
of light (2.99× 108 m/s), while sonar signals travel at the
speed of sound (3.43× 102 m/s). This means echoes return
faster, which in turn allows the system to be more responsive.

Complementary to the biomimetic radar sensor, we have
also developed a control architecture to demonstrate the
system’s capabilities. This takes the form of a subsumption
architecture [9], which uses the radar sensor as the sole input
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device to achieve Sense-and-Avoid (SAA) functionality. It is
a type of reactive control architecture which can be situated
in the field of behavior-based robotics [10]. In this case,
inspiration is taken from insect intelligence, which proves to
be successful in real-world navigation despite its seemingly
low complexity.

Lastly, the sensory data gathered during autonomous nav-
igation is used as input for a graph-based SLAM solution
which we developed in previous work [11]. This solution is
based on the navigational processes present in the mammalian
hippocampus, and uses as input a spectrogram representation
of the radar signals, similar to the information presumed to
be available to bats. Using a separate sensor setup to gather
ground truth information, consisting of a lidar sensor and
existing SLAM algorithm, we generate a metric map of the
environment and determine the exact path of the robot within
the map. This information is then employed to assess the
results of our experiments.

To summarize, the novelty of this work with respect to
previous realizations lies in the design of a single channel
radar system with biomimetic properties in both hardware and
software, and its application to autonomous navigation using
a newly-developed control architecture. The rest of the paper
is structured as follows; Section II details the workings of
the sensor and the processing of the radar signals, Section III
describes the design and implementation of the control archi-
tecture, Section IV discusses the results of the autonomous
navigation and SLAM experiments, and Section V draws
a conclusion on the system as a whole and its real-world
performance.

II. RADAR SENSING

For the basis of our work, we use Flat Earth’s Ancho Radar
Development Kit [12]. It combines Novelda’s XeThru X2
radar SoC, a BeagleBone Black, and sinuous antennas [13]–
[15]. The sensor is capable of emitting signals using one
of 10 configurable pulse generators with center frequencies
between 4.4 and 10.3 GHz and respective bandwidths from
1.7 to 3.1 GHz. These large bandwidths allow for the emission
of very short pulses of around 1.5 ns, which corresponds to
a theoretical range accuracy of approximately 4 mm. Further-
more, the sensor has a sampling rate of 39 GS/s, which allows
it to capture the full waveform of incoming electromagnetic
signals. Finally, a Cilantro switching cape demultiplexes the
single receiver and transmitter channels of the Ancho kit to
two receivers and transmitter channels each, resulting in a total
of four selectable transceiver pairs [16].

The hardware arrangement of our sensor is inspired by the
morphology of an echolocating bat, as shown in Figure 1; bats
use their mouth or nose as an emitter and their two ears as
receivers for ultrasonic signals. In our system, a single trans-
mitter antenna and two receiver antennas are used. For each
measurement, the system sends out an electromagnetic pulse
through the center antenna and records echoes through one of
the antennas on the side. The Cilantro cape is then switched to
the receiving antenna on the opposite side and the process is
repeated. The receiving antennas are pointed slightly sideways
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Fig. 2: Recorded echo signals (top, blue), signal envelopes (top, orange) and
corresponding spectrograms (bottom). (a) Call made by a common big-eared
bat (M. microtis). (b) Pulse generated by the radar sensor.

(30◦), similarly to the pinnae of a bat. Because of this layout,
it is possible to derive positional information of reflectors in
the horizontal plane, using interaural time difference (ITD) and
interaural intensity difference (IID), which are key features in
biological sound localization [17].

A. Radar system model

The radar emits a signal se(t), which is reflected by objects
in the environment and picked up by the receivers. For the
Ancho radar with the X2 SoC, se(t) is a Gaussian-modulated
sinusoid:

se(t) = sg(t) · sin(2π · fc · t)

in which fc is the central frequency of the pulse generator
(6 GHz), and sg(t) a Gaussian window function:

sg(t) = exp(− (t−∆t)2

2σ2
)

with ∆t the time shift of the window function, equal to
0.75 ns, and σ the width of the window, equal to 0.25 ns.

Fitting the biomimetic approach, this type of signal cor-
responds to that of the Egyptian fruit bat (Rousettus aegyp-
tiacus) [18]. However, to maintain consistency throughout
the paper, we compare it to the call of the Micronycteris
microtis in Figure 2. Although this call is in actuality a very
short frequency-modulated sinusoid, the signals still have a
strong resemblance; both occupy a wide bandwidth and have
a narrow peak in their autocorrelation function. This similarity
extends to the spectrograms, where both signals cover a large
frequency range and short timespan.

The radiation patterns of the emitting and receiving antennas
also play an important role in localization, because they alter
the outgoing and incoming signal depending on the frequency
and angle of incidence. Because we are dealing with an active
sensing mechanism, the effects of both the emission and
reception channel are present in each echo. Therefore, we will
be looking at them as a single phenomenon, which is described
by the echo-related transfer function (ERTF) [19]. It is based
on the head-related transfer function (HRTF), which describes
the linear time-invariant filtering a signal undergoes when it



IEEE TRANSACTIONS ON ROBOTICS 3

4.8 GHz 4.8 GHz

6.0 GHz 6.0 GHz

7.2 GHz

dBi
-40 -30 -20 -10 0

7.2 GHz

80 kHz  80 kHz

100 kHz 100 kHz

120 kHz 120 kHz

dBi
-40 -30 -20 -10 0

(a) (b)

Fig. 3: Comparison between the echo-related transfer function (ERTF) of a
bat and the radar sensor. A Lambert azimuthal equal-area projection is used
with gridlines spaced at 30◦. Plots are normalized to 0 dB and countour lines
are spaced 3 dB apart. (a) ERTF of a common big-eared bat (M. microtis) at
selected frequencies. Columns correspond to the left and right ear respectively.
(b) ERTF of the radar sensor at selected frequencies. Columns correspond to
the left and right receiver antenna respectively.

is picked up by a receiver. The ERTF extends this notion by
taking into account the combined filtering of both the receiver
and emitter in a monostatic system. This process is defined
as follows; first, the emitted pulse is filtered by the frequency
dependent radiation pattern of the emitter antenna for every
direction ψ, modeled using a time-domain impulse response
he(t, ψ). Next, the emitted signal is reflected by objects in
the environment, adding an unknown reflector filtering hr(t).
Upon reception the signal is filtered by the left and right
radiation patterns, again modeled using impulse responses
hL(t, ψ) and hR(t, ψ). The final received signals by the left
and right radar channels can be modeled as a superposition
of the individual signals due to the linearity of the signal
propagation model:

sL(t) =

N∑
n=1

hL(t, ψn) ∗ hr(t) ∗ he(t, ψn) ∗ se(t−∆t(n))

sR(t) =

N∑
n=1

hR(t, ψn) ∗ hr(t) ∗ he(t, ψn) ∗ se(t−∆t(n))

with ∗ denoting the time-domain convolution and ∆t(n) the
time-delay caused by the two-way travel time of the emitted
signals for the nth reflector:

∆t(n) =
2 · dn
c

with c the speed of light and dn the distance between the
radar sensor and the nth reflector. Using a frequency domain
model of this process, the multiplicative effect of the individual

directivity patterns on the received signals becomes more
clear:

HE
L {jω, ψn} = He{jω, ψn} ·HL{jω, ψn}

HE
R {jω, ψn} = He{jω, ψn} ·HR{jω, ψn}

where HE
L and HE

R are the echo-related transfer functions of
the left and right reception channels. Note that uppercase let-
ters indicate the Fourier-transformed counterparts to their time-
domain form. Next, these are multiplied with the spectrum of
the emitted pulse and the transfer function of the reflector
to arrive at the received signal spectrum at the left and right
antenna, represented by SL and SR:

SL{jω, ψn} = HE
L {jω, ψn} · Se{jω} ·Hr{jω}

SR{jω, ψn} = HE
R {jω, ψn} · Se{jω} ·Hr{jω}

This means that it is possible to correlate the spectrum of
the received signal S to the direction ψ of the originating
reflector, if the spectrum of the emitted signal Se, the ERTF
of the system HE and the received signal S are known. This
holds under the assumption that a reflector does not apply
a significant amount of spectral distortion. The specific set of
changes induced by the ERTF in a received signal are referred
to as spectral cues. The ERTF of our radar system, seen in
Figure 3b, was gathered by mounting the sensor on a pan-tilt
unit opposed to a radar retroreflector in an electromagnetic
anechoic chamber. By analyzing the spectral content of the
reflected signals for different orientations of the sensor, the
ERTF is determined. Figure 3a shows the ERTF of a bat,
which was computed using the Boundary Element Method
(BEM) and the data presented in [20]. When comparing these
ERTFs, we can observe the following; the direction of the
main beam shifts slightly with respect to frequency in both
cases. The radar also exhibits a similar beam width, but with
a much steeper drop-off compared to the bat. Additionally,
due to the antennas being frequency independent, their ERTF
is significantly more stable over a large range of frequencies.
This lack of variability is actually a disadvantage because less
information can be extracted from the spectral content of the
signal. Because our system currently only navigates in 2D, this
is not crucial to its functionality. However, when performing
SLAM this information can be valuable as the specific filtering
by distinct reflectors enables the system to recognize particular
objects and structures, which facilitates localization.

B. Signal processing

Two main signal processing techniques are applied to the
radar signals to produce the information used by the control
architecture. The first is an envelope function, senv [n]. More
specifically, it is the amplitude of the analytic signal generated
using the discrete Hilbert transform H [21]:

senvL [n] =

√
sL[n]

2
+ H(sL[n])

2

senvR [n] =

√
sR[n]

2
+ H(sR[n])

2

with sL[n] and sR[n] being the signals sampled at the left and
right receiver respectively, at time step n. Peaks in this signal
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correspond to received echoes of objects in the environment.
By taking into account the position of these peaks, the sam-
pling rate of the sensor and the speed of light, it is possible to
determine the distance of a reflector to the sensor. Additionally,
by looking at the difference in time and amplitude between
peaks in the signals at the left and right receiver, the direction
of a reflector can also be inferred. These properties encode
information on obstacles in the environment and therefore
serve as viable inputs for sense-and-avoid functionality which
enables a robot to autonomously navigate an unknown area. In
our system they are used by several behaviors in calculating
the behavior’s activation conditions and velocity outputs.

The second processing technique used is the short-time
Fourier transform (STFT) [22]. It estimates the time-frequency
distribution of the signal, similar to the filter bank functionality
of the mammalian cochlea [23].

XL[m, k] =

∞∑
n=−∞

sL[n] · w[n−m] · e−j2πkn/N

XR[m, k] =

∞∑
n=−∞

sR[n] · w[n−m] · e−j2πkn/N

Here X [m, k] is the STFT at time step m and discrete
frequency k. In our case, w[n] is a Hamming window with
a length N of 128 samples. The overlap between consecu-
tive windows is 127 samples or ∆m equal to 1 sample. A
requirement to perform (short-time) Fourier analysis is that
the signal under consideration is sampled above its Nyquist
frequency. Because the radar sensor has a sampling rate of
39 GS/s, while the signal contains maximum frequencies of
10 GHz, the electromagnetic waveform can be reconstructed
unambiguously, and thus the system fulfills the condition. For
our purpose, we take the magnitude of the complex-valued
STFT:

SL[m, k] = |XL[m, k]|
SR[m, k] = |XR[m, k]|

resulting in a spectrogram S, which represents the estimated
intensity of each frequency at each time step.

A spectrogram can be used to observe the spectral content
of a signal while retaining temporal information. In this
work we use spectrograms to properly calculate the change
in signals over time. This is necessary because subsequent
signals can vary in both time and frequency. For example,
when moving toward a reflector the received echo changes
in its time of arrival. On the other hand, the reflection of a
corner changes in spectral content depending on its relative
orientation with respect to the sensor. Both these phenomena
are simultaneously captured in spectrograms.

III. CONTROL ARCHITECTURE

Subsumption architecture is a behavior-based control ar-
chitecture, designed in a bottom-up, layered manner. Most
classical control systems follow a sequence of operations
which are executed in a fixed order. This usually consists
of the following steps; sensing the external world, building
and updating the internal model of that world, deciding on

Radar measurement Signal processing

Straight Drive

Corridor Following

Collision Avoidance

Obstacle Avoidance

Collision Detec�on Robot control

Fig. 4: Schematic representation of the subsumption architecture. Information
flows from left to right; a radar measurement is performed and processed for
both channels. This information is passed on to each of the behaviors, which
signal their intent to the arbitrator. A single behavior is then selected to take
control of the robot, based on priority.

which action to take, taking into account the effects of that
action, and executing the actual action. On the other hand, a
system built according to subsumption architecture is made
up of layers of separate behavior which execute in parallel.
These behaviors consist of tightly-coupled sensorimotor loops.
Each behavior has its own priority and tries to achieve its own
goal. Behaviors are given control according to their priority;
low-level behaviors, such as stopping when an object is near,
take precedence over high-level behaviors such as reaching a
specific location. Only when there is no object near, does the
low-level behavior relinquish control and can the high-level
behavior take over. Although separate behaviors do not directly
communicate with one another, they can sense each other’s
actions through the external world and will react accordingly.
For our specific implementation of subsumption architecture,
an arbitration scheme is used. In this scheme, the arbitrator
selects a single behavior to take control of the mobile robot,
based on each behavior’s state and priority. An overview of
the implementation of subsumption architecture in our system
can be seen in Figure 4. At each time step, the radar performs
a measurement for both the left and right channel of the
sensor. The system calculates the envelope and spectrogram
of these signals according to the methods described in Sec-
tion II-B. These signals are then passed on to the appropriate
behaviors and each behavior decides if it needs to activate
under the current conditions. The arbitrator then selects the
active behavior with the highest priority in the system and
collects its intended velocity vectors, which are passed on
to the robot. This architectural layout is inspired by previous
work of Steckel and Peremans regarding robot control using
acoustic flow [24]. It should be noted that similarities restrict
themselves solely to the layout, as the previously mentioned
work uses a sonar imaging sensor which enables explicit
3D localization of reflectors, while the current work uses a
biomimetic radar sensor which implicitly localizes reflectors
through the use of temporal and spectral cues. As such the
sensorimotor control laws underlying these architectures differ
greatly.

The rest of this section will specify the individual behaviors
in order of priority. Each section has a mathematical notation
of the rules governing the velocity outputs. The variables used
in these equations are detailed in Table I. Here, the distance
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TABLE I: Behavior variables

Variable Explanation

Vl Linear velocity produced by the behavior
Va Angular velocity produced by the behavior
V min , V max Minimum and maximum value for a velocity component
dr Distance to closest reflector
∆r Difference in distance between closest reflector at left

and right channel
∆s Difference in temporal-spectral change between signals

at left and right channel
TA Threshold of the amplitude for which the behavior

activates, defined experimentally
Td Threshold of the distance for which the behavior acti-

vates
C Activation condition of the behavior, as binary value

to the closest reflector is determined by:

dL = min(n) : n < Td ∧ senvL [n] > TA

dR = min(n) : n < Td ∧ senvR [n] > TA

dr = min(dL, dR)

with dL and dR the distance to the first peak above threshold
TA within distance Td in the envelope senv of the signal at
the left and right receiver respectively. The difference between
the closest reflectors is determined by:

∆r = dL − dR

These equations imply that the system responds the closest
reflector encountered at each channel, which does not require
matching of multiple, distinct echo signals.

The difference in temporal-spectral change is determined by
looking at difference in change of subsequent spectrograms
between both channels:

∆s =

M∑
m=1

K∑
k=1

|StR[m, k]− St−1R [m, k]|−

M∑
m=1

K∑
k=1

|StL[m, k]− St−1L [m, k]|

with St[m, k] the spectrogram of the signal at the current time
step t, with size M ×K.

A. Collision detection (CD)

Collision detection is the most low-level behavior in the
system and thus has the highest priority. Its goal is to detect
and handle situations where a collision is (almost) imminent.
It does this by applying a backwards throttle to prevent or
minimize the impact of a collision when an object is detected
at close range, with the amount of throttle depending on how
close the object is:

C = (n < Td ∧ (senvL [n] > TA ∨ senvR [n] > TA))

Vl = V min
l + (V max

l − V min
l ) · Td − dr

Td
Va = 0

with Td corresponding to 0.1 m, V min
l equal to −0.1 m/s and

V max
l equal to −0.8 m/s.

This behavior is ballistic, meaning that its actions continue
even after its activation condition is no longer satisfied. This is
useful for behaviors which might otherwise exhibit oscillatory
activity. The idea is to take the system well out of the current
conditions, instead of placing it at the boundary where it can
easily re-enter the previous, undesirable state. In this case, the
robot will keep moving backwards even after the obstacle is
out of range. This way it is more likely to reach a safe position
where a higher-level behavior can take over.

B. Collision avoidance (CA)

Collision avoidance attempts to prevent collisions at an
earlier stage by stopping the robot and turning away from the
nearest reflector until no further reflectors are in range. This
ensures that after its execution, the robot has an unhindered
path in front of it:

C = (n < Td ∧ (senvL [n] > TA ∨ senvR [n] > TA))

Vl = 0

Va = V max
a · sgn(∆r)

with Td corresponding to 0.2 m and V max
a equal to 1 rad/s.

This behavior is also ballistic; the robot will keep turning
in the same direction until no more reflectors are within an
extended range. This is to prevent oscillations which might
otherwise occur, for example in corners. Ballistic behaviors
can still be interrupted by lower-level behaviors. In this case
the CD behavior can interrupt the CA behavior when an object
comes too close while the robot is turning.

C. Obstacle avoidance (OA)

Obstacle avoidance enables the robot to follow smooth
trajectories around objects. It will adjust its translational
speed proportional to the distance to the closest reflector.
Its rotational speed calculated inversely proportional to the
distance to the closest reflector, as well as to the difference
between the left and right reflectors. This allows the system
to curve its path around distant obstacles and to pass through
doors:

C = (n < Td ∧ (senvL [n] > TA ∨ senvR [n] > TA))

Vl = V min
l + (V max

l − V min
l ) · 3

√
dr
Td

Va = V min
a · sgn(∆r) + (V max

a − V min
a ) · (∆r

Td
· Td − dr

Td
)

with Td corresponding to 1 m, V min
l equal to 0.05 m/s, V max

l

equal to 0.2 m/s, V min
a equal to 0.05 rad/s and V max

a equal
to 0.8 rad/s.

One thing to note is that the system cannot clearly distin-
guish between a single reflector straight ahead and two sepa-
rate reflectors at exact opposite angles of the normal. Although
theoretically this would cause the system to drive directly at
objects when encountered straight ahead, the metastability of
this situation is easily disturbed and the robot will divert to
one side of the obstacle. Similarly, doors and corners appear
identical to the system, both as two equally-spaced reflectors.
Because the behavior is made to pass through doors, it will
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Fig. 5: Overview of the system used for autonomous navigation. (a) The
physical system consisting of the Pioneer mobile robot (bottom, red), Hokuyo
laser rangefinder (middle, blue) and custom radar sensor (top, white). The Intel
NUC PC is located behind the laser rangefinder. (b) Schematic representation
of the hardware and software components of the system. It should be noted
that lidar is used only for gathering ground truth data and not for autonomous
navigation or SLAM.

attempt to perform the same action at a corner. Although this
would cause it to get stuck in the very tip of the corner, the
system relies on the lower-level behaviors to take over and put
the robot back on a suitable track.

D. Corridor following (CF)

Corridor following tries to steer the robot through its
environment on stable paths. It does this by balancing the
amount of change in energy of both channels. This is achieved
converting a signal’s waveform to its spectrogram representa-
tion. Next, the difference between the current spectrogram and
that of the previous time step is calculated for each channel.
Finally, the angular velocity is based on the difference in
change between the left and right channel.

C = (|∆s| > TA)

Vl = V max
l

Va = V max
a ·

√
|∆s| − TA · sgn(∆s)

with Td corresponding to 4 m, V max
l equal to 0.2 m/s and

V max
a equal to 0.5 rad/s.
When the robot is driving in an environment such as a

corridor, it might end up on a path close to one of the walls.
This will cause echoes to vary strongly on the side facing the
wall, because any irregularities of the surface pass by quickly.
On the other facing side these echoes will vary less because of
the distance between the surface and the sensor. As a result,
the robot will turn away until the change in the spectral energy
is equal and the path of the robot is centered. A side effect is
that when one of the walls is rougher then the other, i.e. causes
more change in spectral energy, the stable path of the robot
will not coincide with the centerline of the corridor. Instead it
will lie parallel to it, but farther away from the rough surface.
This behavior is based on the concept of optical flow, which
is present in both insect and mammal vision [25]. In essence,
optical flow is the extraction of information about movement
from a series of consecutive visual images. It can be used
to estimate the egomotion of a system, and to regulate speed
or correct for drift in closed loop control. This principle also

applies to active sensing mechanisms such as sonar and radar,
where it is called acoustic, or echoic, flow [26]. By analyzing
the continuous variation of echo signals through time, similar
functionality to optical flow can be achieved.

E. Straight drive (SD)

Straight drive is the default behavior when none of the
other behaviors are activated. It moves the robot forward in
its current direction at a constant speed until another behavior
takes over control.

Vl = V maxl

Va = 0

The path of the robot might not be completely straight, as any
misalignment of the wheels causes drift over time.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of our
system in two distinct environments. For this purpose, we use
the robotic setup shown in 5. This setup is composed of a
Pioneer P3DX mobile platform, Intel NUC NUC5i7RYB PC,
Hokuyo UBG-04LX-F01 laser rangefinder, and the modified
Flat Earth Ancho radar kit. The NUC hosts a MATLAB in-
stance which interfaces with the radar sensor and executes the
control architecture, and also hosts several ROS nodes which
interface to the mobile robot and generate ground truth data.
The lidar sensor serves the sole purpose of generating ground
truth data with which our system can be validated. This ground
truth consists of a metric map of the environment, generated
with the GMapping ROS-module, and the exact trajectory
driven by the robot, produced by the AMCL ROS-module [27],
[28]. These are not used in autonomous navigation or SLAM,
but only for verification and visualization purposes.

In both cases the robot was placed in part of a real-
world office environment where some obstacles were added
to increase the difficulty of navigation. The first environment
is a corridor with added obstacles as shown in Figure 6.
This layout serves as a suitable testbed to determine how
the system responds when forced to pass close to objects,
how quickly its path stabilizes afterwards, and how it handles
dead ends. The second environment is a hallway with benches,
vending machines and open spaces as shown in Figure 7. This
environment has more variability in both space as well as the
type and size of objects present. It allows us to observe how
the system behaves and stabilizes when less constrained in its
movement.

A. Autonomous navigation

A comparison of the performance of the different stacks of
behaviors within a corridor environment is shown in Figure 6,
for which we will discuss each stack separately. The produced
trajectories each have a length of approximately 186 m, which
corresponds to three full passes through the environment. Panel
(a): the movement of the robot operated by the lower-level
behaviors (CD, CA) is very basic. The robot only changes
its trajectory when it encounters an object right in front of
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Fig. 6: Trajectories of the different stacks of behaviors in an office corridor
with added obstacles. (a) The path of the robot with only the lowest-level
behaviors active, namely SD, CD and CA. (b) The resulting path when adding
OA to the previous behaviors. (c) The path taken by the full-stack architecture,
i.e. SD, CD, CA, OA and CF.
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Fig. 7: Trajectories of the different stacks of behaviors in an office hallway
with benches, vending machines and open space. (a) The path of the combined
SD, CD and CA behaviors. (b) The path when including the OA behavior.
(c) The path of the full-stack architecture with CF as well as the previous
behaviors.

it, making for very erratic movements. Panel (b): by adding
the OA behavior to the stack, the movements become more
fluent. This can be attributed to the system’s capability of
responding to obstacles from farther away and to the controller
now including a non-linear component. We can observe that
the robot curves around almost all obstacles, except when
approaching the rightmost one. This is likely because it is
centered in the corridor (see explanation in Section III-C).
Furthermore, near obstacles the robot tends to follow the same
path for each pass in a specific direction. Only in the open
spaces is there more variability in its path. Panel (c): when
including the CF behavior the trajectory becomes even more
smooth. This is an effect of the behavior being more sensitive
to smaller perturbations; it takes into account all changes in
spectral energy instead of looking only at the main reflectors.
This also results in the forward path through the environment
now coinciding with the return path.

Next we take a look at the performance of the system in
the second environment (Figure 7). These trajectories have
a length of approximately 225 m, resulting in about four
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Fig. 8: Distribution of the angular velocities for each pose of a trajectory.
Subfigures (a) to (c) show histograms of the angular velocities for the
trajectories of Figures 7a to 7c respectively.

and a half passes through the environment. In the previous
environment, the stability in the trajectory of the full-stack
system could be attributed to the highly constrained space.
In this environment the robot has more leeway and thus we
can determine if the stability is inherent to the system itself
or not. Furthermore, we can establish how well the system
handles a different environment which contains objects of
varying size and materials. Panel (a): using the lower-level
set of behaviors, the system behaves in a very similar way
to the previous environment; arbitrary movement throughout
the available space, no overall pattern can be discerned. Panel
(b): by adding the OA behavior, the trajectory becomes more
regular. However, there is still variability in the sections
where the path is less restricted. Furthermore, the system has
to recover from fewer near-collisions with the environment,
because it is able to start maneuvering at a farther distance.
Panel (c): when including the CF behavior in the stack, the
overall trajectory of the system stabilizes. Consecutive passes
of the same sections overlap highly for the majority of the
trajectory. This overlap can again be credited to the fact that
the CF behavior takes into account the information of the
full surroundings within line of sight. After encountering an
obstacle, the position of the robot will quickly converge to the
most stable path in the environment, without depending much
on the angle at which the obstacle was encountered.

To quantify the smoothness of a trajectory, we have chosen
the distribution of the angular velocities for each pose of
that trajectory as metric. By looking at Figures 6 and 7, we
can intuitively estimate the smoothness of each trajectory.
Trajectories with only the low-level behaviors enabled, consist
of long straight parts with sharp turns in between. The tra-
jectories of the full-stack behavior on the other hand exhibit
more curvature and less discontinuities. The distribution of
angular velocities is visualized in Figures 8a to 8c, for the
trajectories of Figures 7a to 7c respectively. This shows that
the first trajectory has more abrupt turns according to the
higher spread of the distribution. For the third trajectory the
distribution is more concentrated, indicating more fluent turns
overall. This metric can be further condensed by taking the
standard deviation of the distributions, which are 0.255, 0.183,
and 0.137 respectively.

In Figure 9 the active behavior for each position of the given
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Fig. 9: Visualization of the active behaviors for each position of the trajectory
in Figure 7c. Behaviors are color-coded and higher-priority behaviors are
plotted on top in case of overlap.

trajectory is shown. In this case the full stack of behaviors
was enabled on the system; CD was active for 0.4 % of the
trajectory, CA for 0.8 %, OA for 12.7 %, CF for 34.2 % and
SD for 51.9 %. The reason for SD being the most active
behavior is that the environment has several parts of open
space; here there are no obstacles and the spectral variation
is low. CF is the most active dynamic behavior. It occurs
particularly in curved parts of the trajectory, because of the
difference in spectral change on each side of the sensor. The
system will activate to make the robot turn such that this
change is balanced, thus following the curve. When the angular
correction of the CF behavior is not enough to steer the robot
away from an obstacle or when an obstacle suddenly appears
in line of sight, the OA behavior will take over. Because it
causes the robot to slow down considerably when close to an
obstacle, the system has enough time to turn and avoid the
obstacle. The sparse occurrence of the lower-level behaviors
can be explained by the fact that high-level behaviors prevent
the system from entering critical situations where they are
necessary. The CA behavior only takes over in the upper right
corner of the map, once for each loop of the trajectory. This
can be attributed to the robot first passing through an open
space where no correction are made, until the left wall appears
in sight. By this time, the system can’t respond fast enough to
smoothly turn the robot around. The CD behavior is activated
only once for the entire trajectory, where the robot managed
to squeeze itself between two objects in the upper left corner
of the map.

The presence of the stable paths we observe with the
addition of the CF behavior can be regarded as an emergent
property of the system. None of the behaviors are explicitly
programmed to adhere to the same path when traversing a
section multiple times. However, we can expect traces through
the environment for which the difference in change of spectral
energy (∆s) is minimal. As long as the the lower behaviors
ensure the robot passes near these minima, the dynamics of
the system will cause it to end up on the same path, even in
the more open areas.

B. SLAM

During the experiments on autonomous navigation, we
recorded the raw radar signals and odometry of the robot.
Using this data we can perform simultaneous localization
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Fig. 10: Topological SLAM using the sensor data and odometry gathered
during the trajectory of Figure 7c. (a) The trajectory generated by path
integration of the odometry of the robot. Cropped to the map boundaries.
(b) The ground truth map and trajectory. (c) The trajectory generated by the
RadarSLAM algorithm [11].
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Fig. 11: Histogram of the absolute and cumulative localization errors com-
pared to the ground truth of the trajectories in Figure 10, . (a) Localization
error of the trajectory generated by odometry as seen in Figure 10a. (b) Local-
ization error of the trajectory generated by RadarSLAM as seen in Figure 10c.

and mapping with RadarSLAM, a biologically-inspired SLAM
solution for radar developed in our previous work [11]. In
summary, this system works by building a database of the
spectrograms observed at each visited position. By comparing
the spectrogram at the current position to those in the database,
while taking into account the recent odometry of the robot, the
system is able to determine the most probable location of the
robot. If necessary the system corrects any error between the
previous estimate and the updated one, which is called a loop
closure. In this case the system also applies graph relaxation,
which adjust previous poses to better match the path leading up
to the corrected pose. As RadarSLAM is a graph-based SLAM
algorithm, the system outputs a topological map. This means
that the map respects adjacency of locations, but does not
preserve absolute distance or direction. This is unlike a metric
map, which can be regarded as an scaled representation of the
real environment. A more detailed description on RadarSLAM
can be found in the original paper [11].

For the implementation of RadarSLAM used in this paper,
the spectrograms of the signals at the left and right receiver
are concatenated to form the local view template V :

V = (SL|SR)

with V having size M × L and L being equal to 2K. The
distance metric dV is taken as the inverse of the correlation
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coefficient ρ between two template vectors V and W :

ρ(V,W ) =
1

N − 1

N∑
n=1

(
Vn − µV
σV

)(
Wn − µW

σW

)
dV = 1− ρ(V,W )

with µ the mean of a template, σ its standard deviation, and
N equal to M · L. The use of this type of metric makes
RadarSLAM a direct SLAM method.

One of the main advantage of the current setup compared
to that of the previous RadarSLAM paper, is the improved
design of the sensor. The use of two receivers at different
angles allows the system to capture more information about the
environment, which makes place recognition less ambiguous.
When applied to the trajectory of Figure 7c the system pro-
duces accurate localization results, as can be seen in Figure 10.
The odometry exhibits a large drift over time which makes
the original trajectory unrecognizable. However, RadarSLAM
is able to successfully approximate the real trajectory of the
robot. The same conclusion can be drawn from the metrics
presented in Figure 11. For the odometry, the average error
is 6.24 m, while the maximum error is 18.54 m. The SLAM
algorithm on the other hand has an average error of 0.35 m and
a maximum error of 1.4 m. This makes the SLAM results for
this trajectory on average 17 times more accurate than those of
the raw odometry. The reason for this improvement is twofold;
first, the odometry exhibits a high angular bias which causes
it to accumulate a large error over the course of the trajectory.
This bias is negated by the continuous corrections done by
the SLAM algorithm. Second, because the system traverses
stable paths, it visits roughly the same locations on each pass
through the environment. This means that a large portion of
the spectrograms gathered in the first pass can be matched to
spectrograms encountered in consecutive passes, which greatly
facilitates localization.

V. CONCLUSION

This paper describes a system for autonomous navigation
using biomimetic radar sensor. We show that both the hard-
ware and signal processing aspects of the system exhibit
definite similarities to the mechanisms used by an echolocating
bat, in this case the common big-eared bat (Micronycteris
microtis). The use of a single emitter in combination with two
receivers at an opposite angle of each other gives rise to the
interaural intensity and time differences, which are also present
in biological echolocation. These features can be used to locate
reflectors in the horizontal plane, thus allowing the system to
purposefully avoid obstacles. The signal generated by the radar
sensor and the call produced by the M. microtis also share
several key properties. Although the former is a Gaussian-
modulated sine wave and the latter a frequency-modulated
sweep, both signals are very short pulses which exhibit a wide
frequency band. This type of signal has the advantage that it
has a high spatial accuracy and a large spectral content. The
echo-related transfer function of the radar, which is determined
by the combined radiation patterns of the emitter and receivers,
also bears resemblance to its biological counterpart; a main
lobe with high directivity, which varies with the frequency of

the signal. However, the beam of the antenna has a higher
drop-off in intensity and less overall variation, which reduces
the ability of the system to use the spectral cues to their full
extent. Having gained this knowledge, we intend to improve
the variability of the ERTFs by optimizing the antennas in
future work. This will allow the system to make better use of
spectral cues generated by the reflectors in the environment,
which is required to determine the direction of obstacles in
the vertical plane.

We have also demonstrated the performance of the au-
tonomous navigation capabilities in two distinct real-world
environments. We can observe significant improvements be-
tween the different stacks of behavior, as expected; the com-
bination of the straight drive, collision detection and collision
avoidance behaviors results in arbitrary bouncing around the
environment, without much of a pattern to be discerned.
When we add the obstacle avoidance behavior to this stack,
the movement of the robot becomes much smoother and an
overall pattern starts to appear in the trajectory. Finally, by
including the corridor following behavior, movement is even
further smoothed and the system starts to exhibit stable paths
throughout most sections of the environment.

Furthermore, the system is capable of successfully perform-
ing SLAM using the RadarSLAM algorithm developed in
previous work. Even though the raw odometry exhibits a high
bias in its angular accuracy, the system is still able to localize
itself with an average error of 0.35 m.
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