

This item is the archived peer-reviewed author-version of:

Isolated populations of **Ixodes lividus** ticks in the Czech Republic and Belgium host genetically homogeneous **Rickettsia vini**

Reference:

Novákova Markéta, Heneberg Petr, Heylen Dieter, Medvecky Matej, Muñoz-Leal Sebastián, Šmajs David, Literák Ivan.- Isolated populations of **kodes lividus** ticks in the Czech Republic and Belgium host genetically homogeneous **Rickettsia vini** Ticks and tick-borne diseases - ISSN 1877-959X - 9:3(2018), p. 479-484 Full text (Publisher's DOI): https://doi.org/10.1016/J.TTBDIS.2017.12.018 To cite this reference: https://hdl.handle.net/10067/1490180151162165141

uantwerpen.be

Institutional repository IRUA

1	Isolated populations of Ixodes lividus ticks in the Czech Republic and
2	Belgium host genetically homogeneous Rickettsia vini
3	
4	
5	Markéta Nováková ^{a, b*} , Petr Heneberg ^c , Dieter J.A. Heylen ^d , Matej Medvecký ^e , Sebastián
6	Muñoz-Leal ^f , David Šmajs ^a , Ivan Literák ^g
7	
8	^a Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
9	^b CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech
10	Republic
11	°Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
12	^d Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp,
13	Belgium
14	^e Veterinary Research Institute, Brno, Czech Republic
15	^f Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina
16	Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
17	^g Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology,
18	University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
19	
20	
21	[*] Corresponding author at: Department of Biology, Faculty of Medicine, Masaryk University,
22	Kamenice 5, Building A6, 625 00, Brno, Czech Republic
23	E-mail address: novakova.marke@gmail.com (M. Nováková)
24	
25	Petr Heneberg: <u>petr.heneberg@lf3.cuni.cz</u>
26	Dieter J.A. Heylen: dieter.heylen@uantwerpen.be
27	Matej Medvecký: <u>356979@mail.muni.cz</u>
28	Sebastián Muñoz-Leal: seba.munozleal@gmail.com
29	David Šmajs: <u>dsmajs@med.muni.cz</u>
30	Ivan Literák: <u>literaki@vfu.cz</u>
31	
32	
33	
34	

35 Abstract

36 In the last two decades, advent of molecular methods revealed a remarkable diversity of 37 rickettsiae (Rickettsiales: Rickettsiaceae) in invertebrates. Several species of these obligate 38 intracellular bacteria are known to be associated with human infections, hence more attention 39 has been directed towards human-biting ectoparasites. An uncharacterized spotted fever group 40 rickettsia has recently been detected in *Ixodes lividus* ticks (Acari: Ixodiade). In order to 41 determine whether this rickettsia varies among isolated tick populations, a total of 1758 and 42 148 Ixodes lividus ticks (Acari: Ixodidae) were collected in the Czech Republic and Belgium, 43 respectively, from nests of sand martins (Hirundinidae: *Riparia riparia*) or by mist-nets. All 44 165 and 78 randomly selected ticks for screening and 3 females of *Ixodes arboricola* (Acari: 45 Ixodidae), obtained previously in another study screened for the presence of rickettsial DNA 46 yielded positive for *Rickettsia vini*, a spotted fever group rickettsia that has recently be found 47 in the closely related I. arboricola. Maximum Likelihood analysis of the obtained rickettsial 48 sequences showed that the most closely related genospecies to Rickettsia vini corresponds to 49 an uncharacterized rickettsia detected in Argas lagenoplastis (Acari: Argasidae), a nidicolous 50 soft tick of fairy martin (Petrochelidon ariel) (Hirundinidae) in Australia, followed by various 51 rickettsial genospecies. Considering the apparently endosymbiotic nature of R. vini, the 52 existence of R. vini genospecies infecting ticks of different genus and different geographical 53 distributions, suggest the existence of an initial infection in a common Ixodidae ancestor. 54 55 56 57 **Research Highlights** 58 • The tick *Ixodes lividus* contains *Rickettsia vini* with 100% prevalence. 59 *Rickettsia vini* and its most closely related genospecies infect nidicolous ticks. • 60 • A common ancestor of the genera *Ixodes* and *Argas* hosted a rickettsial endosymbiont. 61 62 63 Keywords: Ixodes, Argas, Rickettsia, spotted fever group, Riparia riparia, coevolution 64 Introduction 65 Rickettsiae are obligate intracellular bacteria of invertebrates, some rickettsial species can 66 67 propagate in vertebrates, to which they are transmitted via blood-sucking arthropods (Parola et al., 2013). Based on whole-genome analyses, a single topology of the genus Rickettsia has 68

been estimated (Murray 2016), while the members of the well-sampled spotted fever group

- 70 (SFG) are mainly associated with ixodid ticks (Parola et al., 2013). As many ticks are
- common parasites of free-ranging vertebrates, some ancestral groups exhibit a nidicolous
- behaviour, parasitizing their hosts within caves, burrows, and nests, which is the case of
- representatives of the family Argasidae and many species of the genus *Ixodes* (Ixodidae)
- 74 (Sonenshine and Roe, 2014).
- 75

Ixodes lividus C.L. Koch, 1844, a nidicolous tick species, has been found to contain rickettsial
DNA with the 100% prevalence (Elfving et al., 2010; Graham et al., 2010). The obtained
sequences had been assigned to those available in GenBank, however, the rickettsial agent
had remained uncharacterized.

80

Recently, in *Ixodes arboricola* Schultze & Schlottke, 1930, a tick that strictly feeds on birds
roosting and breeding inside tree cavities (Heylen et al., 2012) and that is closely related to I.
lividus (ref Heylen 2014 => see phylogenetic tree) a new rickettsial organism *Rickettsia vini*has been detected with the prevalence of 94.4-100.00% (Palomar et al., 2012a; Palomar et al.,
2015). Occasionally, this rickettsial organism has also been detected in immature stages of the
field-dwelling *Ixodes ricinus* (Linnaeus, 1758) derived from passerine birds (Keskin et al.,
2014; Palomar et al., 2012a; Palomar et al., 2012b; Špitalská et al., 2011; Novakova et al.,

- 88 2015; Novakova et al., 2016).
- 89
- 90 Both closely related *I. lividus* and *I. arboricola* tick species have Palearctic distribution
- 91 (Guglielmone et al., 2014, Heylen et al., 2014). While a large proportion of *I. arboricola*'s
- 92 hosts are birds showing a relatively low migratory potential, the main host of *I. lividus* ticks is
- 93 sand martin, *Riparia riparia* (Hirundinidae), a passerine bird that breeds in Holarctis and
- 94 migrates south in winter (Svensson et al., 2010).
- 95 During the breeding season, *R. riparia* colonizes river banks in high densities and nests in
- sand holes (burrows) that are up to 1 m long. It is also able to nest at human-made mining
- 97 places (Heneberg et al., 2013).
- 98 The aim of this study is to provide molecular characterization of the rickettsial genospecies in
- 99 *I. lividus* ticks (24 areas in the Czech Republic and 1 area in Belgium), see whether there are
- 100 differences among rickettsial agents of geographically *I. lividus* tick populations and verify to
- 101 what extent the *I. lividus*-associated rickettsial genospecies resembles *R. vini* found in *I.*
- 102 arboricola.

104 **Materials and Methods**

105 106 Nest materials from 20 European bee-eater (*Merops apiaster*) burrows, 8 burrows made by R. 107 riparia but inhabited by Eurasian tree sparrow (Passer montanus) and 325 R. riparia burrows, 108 were collected in May and September 2013 at 24 sampling sites in the Czech Republic (Table 109 1). Nest material was retrieved quantitatively from each burrow by a metal spoon attached to 110 a 2 m pool. Material from each nest was placed into a separate zip-lock plastic bag, brought to 111 laboratory and stored at fridge at 8 °C until analyzed. The nest material was spreaded on a 112 white plastic plate and observed for the presence of ticks (each nest was examined for 15 113 minutes). 114 Complementing the above specimens, bird-derived *I. lividus* ticks were collected from a 115 random subset of 10 out of 49 infested individuals of a total of 135 R. riparia that were 116 caught with mist-nets in August 2013 in Kieldrecht, Antwerp, Belgium (Table 2). 117 All ticks were stored in 70% ethanol and determined according to Nosek and Sixl (1972). 118 Species identification of larvae that were tested for the presence of rickettsial DNA was 119 supported molecularly by amplification of partial sequence of the 16S rDNA mitochondrial 120 gene (Table 3). 121 DNA was extracted according to Sangioni et al. (2005) from randomly selected I. lividus 122 ticks, while a maximum of 10 immature ticks from each sampling site, each individual from a 123 different nest hole (if applicable), and all adult ticks were chosen, and all I. ricinus ticks 124 (Table 1-2). Additionaly, rickettsial DNA from 3 females of *I. arboricola* collected in 125 Břeclav, the Czech Republic, as a part of a previous study (Novakova et al., 2015) has been 126 amplified. 127 Isolated DNA was subjected to polymerase chain reaction (PCR) under the following 128 conditions: 25 µL of PCR reaction was composed of 12.5 µL Combi PPP Master Mix (Top 129 Bio, Vestec, Czech Republic), 1.5 µL of each primer at 20 µM, 7.0 µL of PCR H₂O, and 2.5 130 µL DNA (10-24 ng/µl). Samples were tested by a battery of primers targeting fragments of 131 six rickettsial genes (Table 3). When the amplification of the partial sequence of the *gltA* gene 132 resulted negative, an additional PCR targeting the tick mitochondrial 16S rDNA gene was 133 performed in order to check whether the DNA extraction was successful. 134 For each reaction, negative (PCR H₂O) and positive controls (DNA from *Rickettsia rickettsii* strain I12B-infected Vero cells, 15 ng/µl) were used. PCR products were visualized on 1.5 % 135

- 136 agarose gels (Roche Diagnostics, Basel, Switzerland) and chosen samples were purified by
- 137 Gel/DNA Fragments Extraction Kit (Geneaid, Taipei City, Taiwan). Sanger dideoxy
- 138 sequencing was performed by Macrogen (Amsterdam, Netherlands).

139 Sequences were analyzed by BLAST (Basic Local Alignment Tool) to assign similarities to 140 other Rickettsia sequences available in Nucleotide Database of National Center for 141 Biotechnology Information (NCBI) (Altschul et al., 1990). Sequences were aligned via 142 ClustalW version 2.1 (Larkin et al., 2007), using gap opening penalty 10, gap extension penalty 143 1, DNA weight matrix IUB and transition weight 0.5. Bayesian inference in MrBayes version 144 3.2.2 (Ronquist and Huelsenbeck, 2003) was performed in order to infer the phylogenetic tree 145 topologies, using following parameters: mixed model of nucleotide substitution, gamma-146 distributed rates among sites, four Monte Carlo Markov chains for 2,000,000 cycles, chains were sampled every 1000th generation, first 25% of the samples was discarded as burn-in. The 147 148 final tree topologies were consequently generated employing 50% majority-rule consensus. We 149 obtained summary statistics of Bayesian analyses as follows: average standard deviation of split 150 frequencies 0.0032-0.0079, maximum standard deviation of split frequencies 0.012-0.034, 151 average potential scale reduction factor 1.000 for all the trees, and maximum potential scale 152 reduction factor 1.003-1.010. In order to include as many rickettsial species as possible, only 153 DNA sequences of the *gltA*, *ompA*, and *ompB* genes were aligned. The *gltA*, *ompA*, and *ompB* 154 partial sequences were analyzed separately, and also concatenated.

155

156 **Results**

- 159 unfed *I. ricinus* ticks (one larva, 4 nymphs) have been found in *R. riparia* nests. Ticks have
- 160 been found at 17 out of 24 examined sampling sites in the Czech Republic (Table 1). 148
- 161 ticks were derived from *R. riparia* individuals in Belgium (Table 2). The infestation
- 162 prevalences for the adult birds (total captured: 61 individuals) and the fledgelings (total
- 163 captured: 74 individuals) were 6.6% and 47.3%, respectively.
- 164 DNA was successfully isolated from 178 out of 243 *I. lividus* ticks (136/165 ticks from the
- 165 Czech Republic, 42/78 ticks from Belgium), 5/5 *I. ricinus* ticks and 3/3 *I. arboricola* ticks.
- 166 Rickettsial DNA was detected in all 178 *I. lividus* and 3 *I. arboricola* but none of *I. ricinus*
- 167 ticks.
- 168 DNAs of 3 samples of *I. lividus* ticks from each locality from the Czech Republic (if
- applicable), three *I. arboricola* ticks and all samples from Belgium were sequenced.

¹⁵⁸ In total, 1,758 unfed *I. lividus* ticks (1,707 larvae, 15 nymphs, 10 males, 26 females) and 5

- 170 The rickettsial agent in all the samples has been determined as *R. vini*. The identification has
- been supported by 100.00% sequence identity of all 5 loci previously sequenced from *R. vini*
- 172 (Table 4).
- 173 The amplification of the partial sequence of the rickettsial 16S rRNA has not been successful
- 174 for *I. arboricola* ticks and we were not able to repeat the experiment as no DNA of *I*.
- 175 *arboricola* left. All sequences obtained in this study were identical to each other and to
- 176 previously amplified sequences of *R. vini* isolated from *I. arboricola* ticks. The only
- 177 difference (99.88% similarity, 808/809 nt) has been observed for the *sca4* sequence of all
- 178 tested *I. lividus* ticks from Pouzdřany and Vémyslice compared to corresponding sequences
- 179 obtained from *I. lividus* ticks from other Czech localities, Belgium and *I. arboricola* ticks
- 180 from Břeclav.
- 181 We suggest that *Rickettsia* sp. IXLI1 (Accession Numbers GU124744-5), isolated from *I*.
- 182 *lividus* ticks in the United Kingdom (Graham et al., 2010) may belong to *R. vini*. Similarities
- 183 are 100% (293/293 nt) for the *gltA* and 98.63% (289/293 nt) for the *ompA* partial sequences.
- 184 The closest similarity to *R. vini* sequences showed uncharacterized *Rickettsia* sp. obtained
- 185 from Argas lagenoplastis Froggatt, 1906 tick from Australia followed by several
- 186 uncharacterized *Rickettsia* spp. from Australia and the Old World (Table 4). These rickettsiae
- 187 were included in the phylogenetic analysis in case that *gltA*, *ompA*, and *ompB* sequences were
- available in NCBI. In concatenated analysis, *R. vini* clustered together with *Rickettsia* sp.
- 189 from A. lagenoplastis, Rickettsia sp. from Argas (Carios) dewae Kaiser & Hoogstraal, 1974,
- 190 Rickettsia heilongjiangensis and Rickettsia japonica (Figure 1). Analyses of single genes
- 191 provided slightly different topologies within the cluster of the five above mentioned
- 192 rickettsiae (S1-S3 in Supplemental Material).
- 193

194 **Discussion**

- 195
- 196 *R. vini* has been found to infect 100% of tested *I. lividus* ticks in the Czech Republic and
- 197 Belgium, which is in compliance with previous studies when an uncharacterized *Rickettsia* sp.
- 198 has been found infecting 100% of *I. lividus* ticks in Sweden and the Great Britain (Elfving et
- al., 2010; Graham et al., 2010). A surprising fact is that *Rickettsia* sp. with the highest
- 200 similarity of DNA sequences to *R. vini* was detected in *A. lagenoplastis*, a nidicolous soft tick
- 201 species associated with fairy martin (Petrochelidon ariel) (Hirundinidae) followed by
- 202 Rickettsia sp. in A. (C.) dewae, a nidicolous bat tick from Australia, and various species of
- 203 both free-living and nidicolous Asian hard tick species (Table 4).

- 204 The origin of the genus *Rickettsia* has been estimated to occur 150 million years ago (Weinert
- et al., 2009), while the origin of the order Passeriformes is dated about 40 millions years ago
- 206 (Brusatte et al., 2015). An evolution of nest construction habits of Hirundinidae showed that
- 207 nest burrowing is plausibly primitive and mud-nesting is more recent (Winkler and Sheldon,
- 208 1993). This supports the fact that *R. riparia* (nest burrows) is not closely related with *P. ariel*
- 209 (mud-nesting) (Sheldon et al., 2005). It indicates that coevolution of *R. vini*-like rickettsiae-
- 210 tick associations developed independently on host bird species.
- 211 Most recent review of tick evolution by Mans et al. (2016) has presented that clades that
- 212 possess both argasids and ixodids are estimated <150 millions years ago. It is believed that
- 213 two sister clades of Ixodida, Argasidae and Ixodidae, have probably common ancestors
- 214 (Klompen et al., 1996). Nidicolous way of life is typical for almost every species of
- 215 Argasidae. In the sister clade Ixodidae, numerous species of the most ancient genus *Ixodes*
- show nidicolous behavior and is considered being ancestral in this genus (Sonenshine and
- 217 Roe, 2014). Hence, evolution of rickettsial endosymbionts may correlate with evolution of
- ticks. Our study suggests that a common ancestor of the genera *Ixodes* and *Argas* hosted a
- 219 rickettsial endosymbiont.
- 220 It has frequently been reported that there is no species-specific tick-host affinity of nidicolous
- ticks and the observed species-specifity is more probably due to an extremely unique habitat,
- such as nest burrows and tree holes (Sonenshine and Roe, 2014). The *Ixodes* spp. parasitizing
- swifts, and passerine birds including swallows appear to be able to feed on most host species
- they might contact (George, 1987; Elfving et al., 2010). One example, *P. montanus*, may
- 225 occupy both these habitats, thus may be infested both by *I. lividus* and *I. arboricola* ticks
- 226 (Novakova et al., 2015). These situations may cause shifts of rickettsiae among tick species
- by cofeeding, e.g., *R. vini* has already been detected in *I. ricinus* ticks collected from birds
- 228 (Palomar et al., 2012a). However, no evidence of birds as reservoirs or amplifiers of
- rickettsiae has been shown (Ogrzewalska and Pinter, 2016) and transovarial transmission is
- still the main route of spotted fever group rickettsiae perpetuation in tick population
- 231 (Socolovschi et al., 2009). We detected DNA of *R. vini* in all stages of *I. lividus* ticks. This
- 232 supports successful transovarial and transstadial transmission of this bacteria.
- 233 *R. vini* has been found with high prevalence in two closely related species *I. lividus and I.*
- 234 arboricola, which supports its endosymbiotic character. The genus Ixodes is the most ancient
- in the family Ixodidae (Sonenshine and Roe, 2014). The finding of the most closely related
- 236 rickettsial genospecies to *R. vini* in *A. lagenoplastis* and *Argas dewae*, nidicolous tick species,
- endorses the theory that a nidicolous way of life is primitive in the family Ixodidae.

238	Further studies based on a wide range of argasid and ixodid ticks are needed to elucidate the
239	rickettsia-tick coevolution.
240	
241	
242	Acknowledgments
243	This research has been financially supported by the Ministry of Education, Youth and Sports
244	of the Czech Republic under the project CEITEC 2020 (LQ1601). We are grateful to Koen
245	Maes, for his assistance in capturing the Belgian bank swallows.
246	
247	Conflict of interest statement: The authors declare that the research was conducted in the
248	absence of any commercial or financial relationships that could be construed as a potential
249	conflict of interest.
250	
251	
252	
253	
254	References
255	
256	Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local align-
257	ment search tool. J. Mol. Biol. 215, 403-410. doi:10.1016/S0022-2836(05)80360-2
258	
259	Brusatte, S.L., O'Connor, J.K., Jarvis, E.D., 2015. The origin and diversification of birds.
260	Curr. Biol. 25, R888–R898. doi:10.1016/j.cub.2015.08.003
261	
262	Choi Y.J., Jang W.J., Kim, J.H., Ryu J.S., Lee S.H., Park K.H., Paik H.S., Koh Y.S., Choi
263	M.S., Kim I.S., 2005. Spotted fever group and typhus group rickettsioses in humans, South
264	Korea. Emerg. Infect. Dis. 11, 237–244. doi: 10.3201/eid1102.040603
265	
266	Elfving, K., Olsen, B., Bergström, S., Waldenström, J., Lundkvist, A., Sjöstedt, A., Mejlon,
267	H., Nilsson, K., 2010. Dissemination of spotted fever Rickettsia agents in Europe by
268	migrating birds. PLoS ONE 5, e8572. doi:10.1371/journal.pone.0008572
269	

- 270 George, J.E., 1987. Field observations on the life-sycle of *Ixodes baergi* and some seasonal
- and daily activity cycles of Oeciacus vicarius (Hemiptera, Cimicidae), Argas cooleyi (Acari,
- Argasidae), and *Ixodes baergi* (Acari, Ixodidae). J. Med. Entomol. 24, 683–688.
- 273
- 274 Graham, R.I., Mainwaring, M.C., Du Feu, R., 2010. Detection of spotted fever group
- 275 *Rickettsia* spp. from bird ticks in the U.K. Med. Vet. Entomol. 24, 340–343.
- 276 doi:10.1111/j.1365-2915.2010.00886.x
- 277
- 278 Guglielmone, A.A., Robbins, R.G., Apanaskevich, D.A., Petney, T.N., Estrada-Peña, A.,
- 279 Horak, I.G., 2014. Hard Ticks of the World, first edn. Springer, Dordrecht.
- 280
- Heneberg, P., 2013. Burrowing bird's decline driven by EIA over-use. Resources Policy 38,
- 282 542-548. doi:10.1016/j.resourpol.2013.09.001
- 283
- Heylen, D.J.A., White, J., Elst, J., Jacobs, I., van de Sande, C., Matthysen, E., 2012. Nestling
 development and the timing of tick attachments. Parasitology 139, 766–773.
- 286 doi:10.1017/S0031182011002277
- 287
- Heylen, D., De Coninck, E., Jansen, F., Madder, M., 2014. Differential diagnosis of three
- 289 common *Ixodes* spp. ticks infesting songbirds of Western Europe: *Ixodes arboricola*, *I*.
- *frontalis* and *I. ricinus*. Ticks Tick. Borne. Dis. 5, 693–700. doi:10.1016/j.ttbdis.2014.05.006
 291
- 292 Keskin, A., Koprulu, T.K., Bursali, A., Ozsemir, A.C., Yavuz, K.E., Tekin, S., 2014. First
- 293 Record of *Ixodes arboricola* (Ixodida: Ixodidae) from Turkey with presence of *Candidatus*
- 294 Rickettsia vini (Rickettsiales: Rickettsiaceae). J. Med. Entomol. 51, 864–867.
- 295 doi:http://dx.doi.org/10.1603/ME13169
- 296
- 297 Klompen, J.S., Black, W.C., Keirans, J.E., Oliver, J.H., 1996. Evolution of ticks. Annu. Rev.
- 298 Entomol. 41, 141–161. doi:10.1146/annurev.ento.41.1.141
- 299
- 300 Labruna, M.B., Whitworth, T., Horta, M.C., Bouyer, D.H., Mcbride, J.W., Pinter, A., Popov,
- 301 V., Gennari, S.M., Walker, D.H., 2004a. Rickettsia species infecting Amblyomma cooperi
- 302 ticks from an area in the State of São Paulo, Brazil, where Brazilian spotted fever is endemic.
- 303 J. Clin. Microbiol. 42, 90–98. doi:10.1128/JCM.42.1.90
 - 9

305	Labruna M.B., McBride J.W., Bouyer D.H., Camargo L.M.A., Camargo E.P., Walker D.H.,
306	2004b. Molecular evidence for a spotted fever group Rickettsia species in the tick
307	Amblyomma longirostre in Brazil. J. Med. Entomol. 41, 533-537 doi:
308	http://dx.doi.org/10.1603/0022-2585-41.3.533
309	
310	Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin
311	F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and Higgins DG. 2007. Clustal W
312	and clustal X version 2.0. Bioinformatics 23(21): 2947-2948.
313	
314	
315	
316	Mangold A.J., Bargues M.D., Mas-Coma S., 1998. Mitochondrial 16S rDNA sequences and
317	phylogenetic relationships of species of Rhipicephalus and other tick genera among
318	Metastriata (Acari: Ixodidae). Parasitol. Res. 84, 478-84. doi: 10.1007/s004360050433
210	
319	Mans PI de Cestre MH Dienser P de Klerk D Gewen P Genu S Letif A A 2016
320	Anasstral reconstruction of tick lineages. Ticks Tick, Demo. Dis. 7, 500-25
321	doi:10.1016/i.ttbdia.2016.02.002
322	doi.10.1010/j.ttbdis.2010.02.002
323	Márquez, F.J., Muniain, M.A., Soriguer, R.C., Izquierdo, G., Rodriguez-Baño, J., Borobio, M.
325	V., 1998. Genotypic identification of an undescribed spotted fever group <i>rickettsia</i> in <i>Ixodes</i>
326	<i>ricinus</i> from southwestern Spain. Am. J. Med. Hvg. 58, 570–577.
327	
328	Murray, G.G.R., Weinert, L.A., Rhule, E.L., Welch, J.J., 2016. The Phylogeny of Rickettsia
329	Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution? Syst. Biol.
330	65, 265–279. doi:10.1093/sysbio/syv084
331	
332	Nosek, J., Sixl, W., 1972. Central-European ticks (Ixodoidea). Mitt. Abt. Zool. Landesmus.
333	Joanneum 1, 61–92.

334	
335	Novakova, M., Bulkova, A., Costa, F.B., Kristin, A., Krist, M., Krause, F., Liznarova, E.,
336	Labruna, M.B., Literak, I., 2015. Molecular characterization of 'Candidatus Rickettsia vini' in
337	Ixodes arboricola from the Czech Republic and Slovakia. Ticks Tick. Borne. Dis. 6, 330–333.
338	doi:10.1016/j.ttbdis.2015.02.006
339	
340	Novakova, M., Costa, F.B., Krause, F., Literak, I., Labruna, M.B., 2016. Rickettsia vini n. sp.
341	(Rickettsiaceae) infecting the tick Ixodes arboricola (Acari: Ixodidae). Parasit. Vectors 9,
342	469. doi:10.1186/s13071-016-1742-8
343	
344	Ogrzewalska, M., Pinter, A., 2016. Ticks (Acari: Ixodidae) as ectoparasites of Brazilian wild
345	birds and their association with rickettsial diseases. Brazilian J. Vet. Res. Anim. Sci. 53, 1–31.
346	doi:10.11606/issn.1678-4456.v53i1p1-31
347	
348	Palomar, A.M., Santibáñez, P., Mazuelas, D., Roncero, L., Santibáñez, S., Portillo, A., Oteo,
349	J.A., 2012a. Role of birds in dispersal of etiologic agents of tick-borne zoonoses, Spain, 2009.
350	Emerg. Infect. Dis. 18, 1188–1191. DOI: 10.3201/eid1807.111777
351	
352	Palomar, A.M., Portillo, A., Santibáñez, P., Santibáñez, S., García-Álvarez, L., Oteo, J.A.,
353	2012b. Genetic characterization of Candidatus Rickettsia vini, a new rickettsia amplified in
354	ticks from La Rioja, Spain. Ticks Tick. Borne. Dis. 3, 318–320.
355	doi:10.1016/j.ttbdis.2012.10.025
356	
357	Palomar, A.M., Portillo, A., Crespo, A., Santibáñez, S., Mazuelas, D., Oteo, J.A, 2015.
358	Prevalence of "Candidatus Rickettsia vini" in Ixodes arboricola ticks in the North of Spain,
359	2011-2013. Parasites & Vectors 8, 110. doi:10.1186/s13071-015-0724-6
360	
361	Parola, P., Paddock, C.D., Socolovschi, C., Labruna, M.B., Mediannikov, O., Kernif, T.,
362	Abdad, M.Y., Stenos, J., Bitam, I., Fournier, P.E., Raoult, D., 2013. Update on tick-borne
363	rickettsioses around the world: a geographic approach. Clin. Microbiol. Rev. 26, 657-702.
364	doi:10.1128/CMR.00032-13
365	
366	Regnery R.L., Spruill C.L., Plikaytis B.D., 1991. Genotypic identification of rickettsiae and

367 estimation of intraspecies sequence divergence for portions of two rickettsial genes. J.

- 368 Bacteriol. 173, 1576–1589.
- Ronquist, F. and J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference
 under mixed models. Bioinformatics 19:1572-1574.
- 371
- Roux V., Fournier P.E., Raoult D., 1996. Differentiation of spotted fever group rickettsiae by
- 373 sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA
- of the gene encoding the protein rOmpA. J. Clin. Microbiol. 34, 2058–2065.
- 375
- 376 Sangioni, L.A., Horta, M.C., Vianna, M.C.B., Gennari, S.M., Soares, R.M., Galvão, M.A.M.,
- 377 Schumaker, T.T.S., Ferreira, F., Vidotto, O., Labruna, M.B., 2005. Rickettsial infection in
- animals and Brazilian spotted fever endemicity. Emerg. Infect. Dis. 11, 265–270.
- doi:10.3201/eid1102.040656
- 380
- 381 Sekeyova Z., Roux V., Raoult D., 2001. Phylogeny of *Rickettsia* spp. inferred by comparing
- 382 sequences of "gene D", which encodes an intracytoplasmic protein. Int. J. Syst. Evol.
- 383 Microbiol. 51, 1353–1360. doi: 10.1099/00207713-51-4-1353
- 384 Sheldon, F.H., Whittingham, L.A., Moyle, R.G., Slikas, B., Winkler, D.W., 2005. Phylogeny
- 385 of swallows (Aves: Hirundinidae) estimated from nuclear and mitochondrial DNA sequences.
- 386 Mol. Phylogenet. Evol. 35, 254–270. doi:10.1016/j.ympev.2004.11.008
- 387
- 388 Socolovschi, C., Mediannikov, O., Raoult, D., Parola, P., 2009. The relationship between
- spotted fever group *Rickettsiae* and Ixodid ticks. Vet. Res. 40. doi:10.1051/vetres/2009017
 390
- Sonenshine, D.E., Roe, R.M., 2014. Biology of Ticks, second edn. Oxford University Press,
 New York.
- 393
- Svensson, L., Mullarney, K., Zetterström, D., 2010. Birds of Europe, second edn. Princeton
 University Press, New Jersey.
- 396
- 397 Špitalská, E., Literák, I., Kocianová, E., Tarageľová, V., 2011. The importance of *Ixodes*
- 398 arboricola in transmission of Rickettsia spp., Anaplasma phagocytophilum, and Borrelia

399	burgdorferi sensu lato in the Czech Republic, Central Europe. Vector Borne Zoonotic Dis. 11,
400	1235–1241. doi:10.1089/vbz.2010.0210
401	
402	
403	Webb L., Carl M., Malloy D.C., Dasch G.A., Azad A.F., 1990. Detection of murine typhus
404	infection in fleas by using the polymerase chain reaction. J. Clin. Microbiol. 28, 530-534.
405	
406	Weinert, L.A., Werren, J.H., Aebi, A., Stone, G.N., Jiggins, F.M., 2009. Evolution and
407	diversity of Rickettsia bacteria. BMC Biol. 7. doi:10.1186/1741-7007-7-6
408	

- 409 Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J., 1991. 16S ribosomal DNA
- 410 amplification for phylogenetic study. J. Bacteriol. 173, 697–703.
- 411
- 412 Winkler, D.W., Sheldon, F.H., 1993. Evolution of nest construction in swallows
- 413 (Hirundinidae): a molecular phylogenetic perspective. Proc. Natl. Acad. Sci. U. S. A. 90,
- 414 5705–5707. doi:10.1073/pnas.90.12.5705
- 415
- 416
- 417 Figures:
- 418
- 419

421 Fig. 1. Maximum-likelihood analysis of concatenated sequences of gltA, ompA, and ompB

422 genes of Rickettsia vini and its closely related genospecies.

423 A total of 2,092 unambiguously aligned nucleotide sites of the rickettsial genes gltA, ompA,

- 424 and *ompB* were concatenated and subjected to analysis by the maximum-likelihood method.
- 425 The tree is drawn to scale; bar, 0.02 substitutions per site. The GenBank accession numbers
- 426 are shown in brackets.

- 429
- 430 Fig. S1 Maximum-likelihood analysis of gltA gene of Rickettsia vini and its closely related
- 431 genospecies.
- A total of 1,075 unambiguously aligned nucleotide sites of the rickettsial gene gltA were 432
- subjected to analysis. The tree is drawn to scale; bar, 0.009 substitutions per site. GenBank 433
- 434 accession numbers are shown in brackets.

437 438

439 Fig. S2 Maximum-likelihood analysis of *ompA* gene of *Rickettsia vini* and its closely

440 related genospecies.

441 A total of 590 unambiguously aligned nucleotide sites of the rickettsial gene *ompA* were

442 subjected to analysis. The tree is drawn to scale; bar, 0.06 substitutions per site. GenBank

443 accession numbers are shown in brackets.

447 Fig. S3 Maximum-likelihood analysis of *ompB* gene of *Rickettsia vini* and its closely

- 448 related genospecies.
- 449 A total of 455 unambiguously aligned nucleotide sites of the rickettsial gene *ompB* were
- 450 subjected to analysis. The tree is drawn to scale; bar, 0.01 substitutions per site. GenBank
- 451 accession numbers are shown in brackets.
- 452
- 453

Table 1

456 Ticks collected from nest-holes of bird nest holes in the Czech Republic in 2013.

Location				Nest holes			Ticks in each nest h	nole
Sampling site	District	Coordinates	Sampling date	No. of nest holes containing ticks/ Total No.	No. of nesting birds MA/PM/RR ^a	Host bird species	Number, Stage ^b , (Species) ^c	Ticks tested for the presence of rickettsial DNA
ATC Merkur	Brno - venkov	48.90N, 16.57E	07-Sep	0/12	0/0/12	•		
Betlém	Brno - venkov	48.91N, 16.59E	07-Sep	0/2	2/0/0			
Běleč	Beroun	49.91N, 14.17E	04-May	1/13	0/0/13	RR	1L	1L
	Jindřichův		08-Sep	1/3	3/0/0	MA	1N (IR)	1N
Cep I	Hradec	48.92N, 14.88E	06-Sep	3/8	0/0/12	RR	1F	1F
							65L	5L
							13L	5L
Černuc II	Kladno	50.32N, 14.21E	08-Sep	0/8	0/0/8			
Černuc - nová	Kladno	50.32N, 14.21E	08-Sep	7/12	0/0/12	RR	7L	1L
							2L	2L
							2L	2L
							30L	2L
							22L	2L
							1L	11
							2N (IR)	2N

ČMŠ	Znojmo	48.82N, 16.26E	07-Sep	2/22	0/0/22	RR	1F	1F
							1F	1F
Hýskov	Beroun	50.00N, 14.07E	04-May	4/19	0/0/19	RR	1L	1L
							3L	3L
							1F	1F
							3L	3L
Liteň	Beroun	49.92N, 14.16E	04-May	2/5	0/1/4	RR	27L	1L
							29L	2L
			08-Sep	8/20	0/0/20	RR	2F	2F
							7L, 1F	1L, 1F
							1F	1F
							18L, 1F	1L, 1F
							5L, 1F	1L, 1F
							1L	1L
							4L	1L
							66L	2L
Lžín	Tábor	49.23N, 14.76E	06-Sep	1/11	0/0/11	RR	11L	10L
Martincova pískovna	Znojmo	48.82N, 16.25E	02-May	6/7	0/0/7	RR	36L	2L
							12L	1L
							9L	1L
							3L	1L
							2L	1L
							21L, 1N	1L, 1N
			07-Sep	3/17	0/0/17	RR	33L	1L
							2L	1L
							1L (IR)	1L
Mladošovice	České Budějovice	48.95N, 14.70E	06-Sep	1/8	0/0/8	RR	1N (IR)	1N
Oleksovice	Znojmo	48.90N, 16.25E	02-May	14/14	0/0/14	RR	17L	1L

							14L 22L 24L 37I	1L 1L 1L 1I
							 37L 17L 23L 17L 31L 4L 5L 11L 19L 11L 	IL IL IL IL IL
Oslassa	Duran analysis	40.11N 16.24E	07-Sep	0/2	0/0/2	חח	11L 71	1L 11
Osiavany	Brno - venkov	49.11N, 10.34E	02-May	10/27	0/1/20	ĸĸ	7L 24L 1L 1L 3L 42L, 2F 1L 6L 4L 25I	1L 1L 1L 1L 1L, 2F 1L 1L 1L 1L
Pňovice	Příbram	49.59N, 13.90E	04-May	8/16	0/0/16	RR	4L 3L 7L, 1N	1L 1L 1L, 1N

							8L	1L
							1L	1L
							49L	1L
							2L	1L
							8L, 5N	1L, 1N
Pouzdřany	Břeclav	48.92N, 16.62E	02-May	18/26	0/3/23	PM	103L, 1N	1N
						RR	7L	
							5L	
							13L, 1N	1N
							36L	1L
							58L	1L
							4L	
							41L, 1N	1N
							45L	1L
							6L	
							34L	1L
							33L	1L
							44L	1L
							7L	
							4L	
							25L	
							36L, 1M	1 M
							16L	
			07-Sep	9/18	0/0/18	RR	13L	
							12L	
							32L, 1N, 5F	5F
							3L	
							13L, 1M, 5F	1M, 5F

							35L	1L
							2M	2M
							62L, 3M	3M
							1L	
Roudnice nad								
Labem	Litoměřice	50.42N, 14.22E	04-May	2/6	0/1/5	RR	3L	3L
							28L	7L
Srbsko	Beroun	49.93N, 14.14E	04-May	1/1	0/0/1	RR	21L	10L
Strachotín	Břeclav	48.91N, 16.64E	02-May	0/14	0/0/14			
Straškov	Litoměřice	50.35N, 14.23E	04-May	1/6	0/0/6	RR	1N	1N
Únanov	Znojmo	48.89N, 16.07E	02-May	0/12	10/2/0			
			07-Sep	0/5	5/0/0			
V Holi	Strakonice	49.25N, 13.88E	08-Sep	0/8	0/0/8			
Vémyslice	Znojmo	49.03N, 16.23E	02-May	9/9	0/0/9	RR	5L	1L
							12L, 1N, 1M	1N, 1M
							5L	1L
							14L	1L
							9L	1L
							5L	1L
							12L, 1N, 1M	1N, 1M
							19L, 2N, 1M, 4F	2N, 1M, 4F
			07-Sep	1/4	0/0/4	RR	2L	1L
	Jindřichův							
Záblatí	Hradec	49.10N, 14.67E	06-Sep	0/14	0/0/14			
							1707L, 15N, 10M, 26F: 1L (IR) 4N	118L, 11N, 10M 26F 11
TOTAL				112/349	20/8/325		(IR)	(IR), 4N (IR)

458	
459	
460	^a Merops apiaster (MA), Passer montanus (PM), Riparia riparia (RR)
461	^b larva (L), nymph (N), male (M), female (F)
462	^c Ixodes lividus if not mentioned elsehow, Ixodes ricinus (IR)
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
483	
484	
485	
486	
487	
488	
489	

- Table 2
- Ticks collected from Riparia riparia in Czech Republic in August 2013.

LUCATION

Riparia riparia birds Ixodes lividus ticks

Sampling site	Township	District	Coordinates	Age category ^a	Number, Stage ^b	Ticks subjected to DNA isolation
Kieldrecht	Kieldrecht	Antwerp	51.30N, 4.24E	J	3L, 20N	2L, 10N
				J	2L, 12N	2L, 10N
				J	2N	2N
				J	24L, 7N	10L, 7N
				J	6N	6N
				J	28L, 26N	10L, 10N
				А	1N	1N
				А	9L, 2N	3L, 2N
				А	4L	2L
				А	2L	1L
TOTAL				10	72L, 76N	30L, 48N

^a juvenile (J), adult (A) ^b larva (L), nymph (N)

500	
501	
502	
503	Table 3
504	Primer pairs used for amplification of tick and rickettsial genes
505	

			Amplified fragment	
Target gene, primer pair no., and primers	Specifity	Nucleotide sequences $(5' \rightarrow 3')$	(bp)	Reference
mitochondrial 16S rRNA	ticks	• • •		
16S +1		CCG GTC TGA ACT CAG ATC AAG T	≈460	Mangold et al. (1998)
16S -1		GCT CAA TGA TTT TTT AAA TTG CTG T		Mangold et al. (1998)
gltA	Rickettsic	<i>i</i> spp.		
1 CS-78		GCA AGT ATC GGT GAG GAT GTA AT	401	Labruna et al. (2004a)
CS-323		GCT TCC TTA AAA TTC AAT AAA TCA GGA T		Labruna et al. (2004a)
2 CS-239		GCT CTT CTC ATC CTA TGG CTA TTA T	834	Labruna et al. (2004b)
CS-1069		CAG GGT CTT CGT GCA TTT CTT		Labruna et al. (2004b)
ompA	Spotted f	ever group		
Rr190.70p		ATG GCG AAT ATT TCT CCA AAA	632	Regnery et al. (1991)
190-701		GTT CCG TTA ATG GCA GCA TCT		Roux et al. (1996)
ompB	Rickettsic	<i>i</i> spp. ^a		
rompB OF		GTA ACC GGA AGT AAT CGT TTC GTA A	511	Choi et al. (2005)
rompB OR		GCT TTA TAA CCA GCT AAA CCA CC		Choi et al. (2005)
htrA	Rickettsic	<i>i</i> spp. ^a		
17kD1		GCT CTT GCA ACT TCT ATG TT	434	Webb et al. (1990)
17kD2		CAT TGT TCG TCA GGT TGG CG		Webb et al. (1990)
sca4	Rickettsic	<i>v</i> spp. ^a		
1 D1f		ATG AGT AAA GAC GGT AAC CT	929	Sekeyova et al. (2001)

	D928r	AAG CTA TTG CGT CAT CTC CG		Sekeyova et al. (2001
	2 D767f	CGA TGG TAG CAT TAA AAG CT	624	Sekeyova et al. (2001
	D1390r	CTT GCT TTT CAG CAA TAT CAC		Sekeyova et al. (2001)
rickettsial 16S rRN	A R	ickettsia spp.		
	fD1	AGA GTT TGA TCC TGG CTC AG	426	Weisburg et al. (1991)
	Rc16S.452n	AAC GTC ATT ATC TTC CTT GC		Márquez et al. (1998)
^a Except some species	of basal groups (i.e. Rickat	toia hallii)		
Except some species	of basal groups (i.e., Ricker	ista bettit).		

533 Table 4

534 Similarities of partial sequences of rickettsial genes from this study to the corresponding sequences in NCBI, query cover 100.00%.

	-	
5	2	6
J	J	υ

Sequence study	es amplified i	n this	Most simil	ar sequences in NCBI	
Gene	Host tick species/ Country ^a	Length [nt]	Similarity ≥99.00 [%]	Rickettsia species [Accession number(s)] ^b	Accession Numbers
gltA	•	1092	100.00	<i>R. vini</i> [JF803266]	KX159434-6
			99.73	R. sp. Argas lagenoplastis [JF803266]	
				Candidatus R. jingxinensis [KT899089]	
				R. sp. Haemaphysalis longicornis [JQ697958; AB516964]	
				R. heilongjiangensis [CP002912; AB473812; AY285776; AY285776]	
			99.63	R. heilongjiangensis [AF178034]	
			99.54	R. japonica [AP011533]	
				"R. hulinii" [AF172943]	
			99. 45	<i>R. slovaca</i> [CP003375, CP002428; U59725]	
				<i>R. japonica</i> [U59724]	
			99.39	8 sqcs (R. sp. Amblyomma ovale, R. sibirica ssp. sibirica, R. parkeri, R. japonica)	
ompA		590	100.00	<i>R. vini</i> [JF758828]	KX159440-2
			99.32	R. sp. Argas lagenoplastis [KF666477]	
ompB		455	100.00	R. vini [JF758826]	KX159437-9
			99.34	R. sp. Argas lagenoplastis [KF666469]	
			99.12	R. japonica [AP011533; AF123713; AB003681]	
				Rickettsia sp. strain Davousti [AY260452]	

			99.00	R. sp. Argas dewae [JQ727680]	
				R. heilongjiangensis [CP002912; AY280712; AY260451]	
htrA		394	100.00	R. vini [KT187396; JF758827]	KX159431-3
			99.75	Candidatus R. honei [AY737683]	
				R. sp. Haemaphysalis longicornis [AB516960]	
				R. sp. Haemaphysalis hystricis [AB359457; AB114805]	
			99.50	<i>R. japonica</i> [LC101441; AP011533]	
				R. sp. Haemaphysalis japonica [KR733074]	
sca4	IA CZ	1352	99.04	R. sp. Argas lagenoplastis [KF666473]	KX159443
	IL CZ	1330	99.00	R. sp. Argas lagenoplastis [KF666473]	KX159444
	BE	1321	99.01	R. sp. Argas lagenoplastis [KF666473]	KX159445
16S rRN	<i>IA</i> ^c	396	100.00	30 sqcs (R. rickettsii, R. peacockii, R. philipii, R. slovaca, R. vini)	KX159448-9
			99.75	R. sp. Argas lagenoplastis [KF666475]	
			99.49	<i>R.</i> sp. <i>Argas dewae</i> [JQ727684]	

^a *Ixodes arboricola* (IA), *Ixodes lividus* (IL), Czech Republic (CZ), Belgium (BE). Except for the *sca4* partial gene sequence, sequences of other

541 genes were identical to each other.

542 ^b*Rickettsia* (*R*.), sequences (sqcs)

^c The amplification of the partial sequence of the *16S rRNA* gene from *Ixodes arboricola* ticks failed and no DNA left.