
This item is the archived peer-reviewed author-version of:

Knowledge-guided local search for the vehicle routing problem

Reference:
Arnold Florian, Sörensen Kenneth.- Know ledge-guided local search for the vehicle routing problem
Computers & operations research - ISSN 0305-0548 - 105(2019), p. 32-46
Full text (Publisher's DOI): https://doi.org/10.1016/J.COR.2019.01.002
To cite this reference: https://hdl.handle.net/10067/1585050151162165141

Institutional repository IRUA

https://repository.uantwerpen.be

Accepted Manuscript

Knowledge-guided local search for the Vehicle Routing Problem

Florian Arnold, Kenneth Sörensen

PII: S0305-0548(19)30002-4
DOI: https://doi.org/10.1016/j.cor.2019.01.002
Reference: CAOR 4624

To appear in: Computers and Operations Research

Received date: 26 April 2018
Revised date: 3 October 2018
Accepted date: 7 January 2019

Please cite this article as: Florian Arnold, Kenneth Sörensen, Knowledge-guided local search
for the Vehicle Routing Problem, Computers and Operations Research (2019), doi:
https://doi.org/10.1016/j.cor.2019.01.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cor.2019.01.002
https://doi.org/10.1016/j.cor.2019.01.002

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Local search suffices to compute high-quality solutions for routing problems in a
short time

• Large neighborhoods combined with a well-implemented pruning make local search
effective

• Problem-specific knowledge can help to guide the search more effectively

• The heuristic scales well in problem-size and can be applied to problem variants

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Knowledge-guided local search for the Vehicle Routing Problem

Florian Arnold 1a, Kenneth Sörensena

aUniversity of Antwerp, Departement of Engineering Management,
ANT/OR - Operations Research Group

Abstract

Local search has been established as a successful cornerstone to tackle the Vehicle
Routing Problem, and is included in many state-of-the-art heuristics. In this paper we
aim to demonstrate that a well-implemented local search on its own suffices to create a
heuristic that computes high-quality solutions in a short time. To this end we combine
three powerful local search techniques, and implement them in an efficient way that
minimizes computational effort. We conduct a series of experiments to determine how
local search can be effectively combined with perturbation and pruning, and make use of
problem-specific knowledge, to guide the search to promising solutions more effectively.
The heuristic created in this way not only performs well on many benchmark sets, it
is also straightforward in its design and does not contain any components of which the
contribution is unclear.

Keywords: vehicle routing problem, local search, heuristics, metaheuristics

1. Introduction

The vehicle routing problem (VRP) is one of the most intensively studied problems
in the field of combinatorial optimization. The objective of the VRP is to find a set of
vehicle routes that, starting from and ending at a depot, visit a set of customers in such
a way that the total cost traveled by all vehicles is minimal. Customers and the depot
are nodes of a complete, undirected graph where the cost of an edge (i, j) corresponds
to the Euclidean distance c(i, j) between the adjacent nodes. Customers have a known
demand, and the total demand served by each vehicle cannot exceed its capacity (where
all vehicles are assumed to be identical). For a more formal introduction we refer
to Laporte (2007). Notwithstanding its simplicity, the VRP and its many variants
have considerable importance in practice and underlie a large number of commercially
available logistic planning tools.

Even though significant progress has been made in the development of exact methods
for the VRP, state-of-the-art algorithms can only solve relatively small instances of this
NP-hard problem to optimality within a reasonable computing time limit. A significant
research effort has therefore been devoted to the design of heuristics that attempt to

1corresponding author. Email: florian.arnold@uantwerpen.be

Preprint submitted to Computers and Operations Research Tuesday 8th January, 2019

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

find a good solution quickly, but do not guarantee to find the optimal solution in a
finite amount of time.

In the last decade many successful heuristics have been developed that can solve
instances of several hundred customers to near-optimality in a few minutes of comput-
ing time (Vidal et al., 2013a). Most heuristics are based upon metaheuristic designs,
and a comprehensive survey about the plethora of heuristic designs is provided by Salhi
(2014). Many authors have shown that high-quality results can be achieved with differ-
ent designs, most notably with genetic algorithms (Vidal et al., 2013a), a mix of exact
solvers and heuristics (Subramanian et al., 2013) and memetic algorithms (Nagata and
Bräysy, 2009). However, one component that probably all good heuristics for the VRP
have in common is local search.

Local search has proven to be the cornerstone of many solution techniques for various
combinatorial optimisation problems. Complete metaheuristic designs revolve around
an effective local search, e.g., variable neighborhood search (Mladenović and Hansen,
1997) or guided local search (Voudouris and Tsang, 2003), and it has been particularly
successful to solve the Traveling Salesman Problem (TSP) (Lin and Kernighan, 1973).
In the context of the VRP, many effective local search operators have been developed
over the years, and have been condensed in an online library (Groër et al., 2010).

Despite its known success, it appears that most state-of-the-art VRP heuristics use
local search to boost a heuristic framework, rather than the other way around. As a
consequence, less research has been devoted for a deeper analysis of how succesful local
search operators can be setup and implemented effectively on their own. That such an
analysis and refinement of local search can result in impressive solution methods has
already been shown for the TSP by Helsgaun (2000).

In this paper we aim to demonstrate that a well-implemented local search suffices to
create a heuristic that can compete with the best heuristics in the literature. To this end
we combine three powerful local search techniques, and implement them in an efficient
way that minimizes computational effort. Furthermore, we make use of problem-specific
knowledge, to guide the search to promising solutions more effectively. The heuristic
created in this way not only performs well on many benchmark sets, it is also straight-
forward in its design and does not contain any components of which the contribution
is unclear. The heuristic can also be readily applied to the VRP with multiple depots
(MDVRP) and the VRP with multiple trips (MTVRP). The heuristic, together with
benchmark instances, is available at http://antor.uantwerpen.be/routingsolver/.

In Section 2 we introduce local search components, and show how they can be imple-
mented efficiently. In Section 3 we demonstrate how local search can be guided by the
penalization of edges. Through various experiments we analyse different components
of the resulting local search framework in Section 4, and extend it to problem variants
in Section 5. In Section 6 we conduct detailed testing on the CVRP, the MDVRP and
the MTVRP, and we conclude with a brief summary of our findings in Section 7.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Local search

Local search is one of few general approaches to combinatorial optimization problems
with empirical success (Johnson et al., 1988). The basic idea underlying local search
is that high-quality solutions of an optimization problem can be found by iteratively
improving a solution using small (local) modifications, called moves. A local search
operator specifies a move type and generates a neighborhood of the current solution.
Given solution s, the neighborhood of a local search operator is the set of solutions
N (s) that can be reached from s by applying a single move of that type.

After generating the neighborhood of the current solution, the neigborhood is eval-
uated, and local search uses a move strategy to select at most one solution from the
neighborhood N (s) to become the next current solution. The most commonly used
move strategy is called steepest descent, that selects the solution from the neighbor-
hood with the best objective function value, provided that this solution is better than
the current solution. If no improving solution is found in the neighborhood of the
current solution, a local optimum has been reached.

In general, local search operators for the VRP can be distinguished between opera-
tors for intra-route optimization and operators for inter-route optimization. These two
operator types reflect the two tasks that one has to solve in a VRP: (1) The allocation
of customers to routes (inter-route optimization), and (2) the optimization of each route
in itself (intra-route optimization). These two tasks do not necessarily have to be solved
in this order, nor sequentially. For instance, an Ejection Chain (Glover, 1996) solves
both tasks simultaneously. However, intra-route optimization can be executed rather
efficiently, since it corresponds to solving a TSP with relatively few customers. There-
fore, it seems sensible to optimize the routes in themselves, before they are optimised
jointly.

The most commonly used operator for intra-route optimization is 2-opt. The idea
of 2-opt is to remove two edges from the considered route and replace them by two
new edges, such that a new route is formed. The same idea can be extended to three
edges (3-opt) and four edges (4-opt). However, the size of the considered neighborhood
increases quickly in the number of considered edges. Lin and Kernighan (1973) (LK)
have generalized this idea for the TSP in a computationally feasible way. LK has
proven to be highly effective to solve TSPs, and therefore constitutes an ideal operator
for intra-route optimization.

On the other hand, operators for inter-route optimization try to change the alloca-
tion of customers to routes. Let a route ri be defined by the string (an ordered set)
of customers that are visited on this route ri = {I1, I2, . . . , I|ri|}. The neighborhood of
the operator relocate contains all solutions, in which a single customer is removed from
its route and inserted into another route. More formally, it looks for a substring r̂i of
a route ri, which is inserted into another route rj, where the substring only contains
a single element |r̂i| = 1. The operator Or-exchange generalizes this idea by removing
and re-inserting longer substrings |r̂i| ≥ 1. A swap tries to exchange two customers from
two different routes. A substring r̂i is exchanged with a substring r̂j with |r̂i| = |r̂j| = 1.

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 1: Illustrations of different local search moves. The routes are visualized vertically, the depot
nodes are pairwise the same. From left to right: a swap (4 edges are exchanged), an Or-exchange (3
edges are exchanged), a Crossover (2 edges are exchanged).

This idea can again be generalized by exchanging larger substrings |r̂i|, |r̂j| ≥ 1. In a
Crossover both exchanged substrings are connected to the depot, and thus contain I1
or I|ri|. Hereby, the substrings have possibly to be inverted. Finally, CROSS-exchange
(CE) exchanges any two substrings of any size. Again, the substrings can be inverted
(which is called I-CROSS, we denote both variants with CE in the following). Note
that |r̂i| = |ri| and |r̂j| = |rj| would result in an exchange of two entire routes and the
solution remains unchanged. These operators are the most commonly used and they
are illustrated in Figure 1. Further operators include the ejection chain and the GENI
insertion operator (Gendreau et al., 1992). Given this large pool of local search opera-
tors, there are some established principles as to which operators to choose in practice.

Complementarity
An important observation is that a local optimum for one local search operator is gen-
erally not a local optimum for another one. For this reason, it is sensible to use several
local search operators in a single algorithm. This is the underlying principle of the
variable neighborhood search metaheuristic framework (Mladenović and Hansen, 1997),
but it is extremely common in the area of vehicle routing (Sörensen et al., 2008). For
example, the active-guided evolution strategies of Mester and Bräysy (2007), use relo-
cate, swap, 2-opt and Or-exchange, the hybrid genetic algorithm of Vidal et al. (2013b)
uses relocate, swap and 2-opt, and the iterated local search of Subramanian et al. (2013)
uses relocate, 2-opt, Or-exchange and CROSS-exchange. However, the usage of several
local search operators is only beneficial as long as they explore different neighborhoods.
In the best case, the pairwise intersections of the considered neighborhoods are empty,
i.e., given two operators o1 and o2 we have N o1(s) ∩N o2(s) = ∅ for every solution s.

Complexity versus neighborhood size
In general, the computational complexity of a local search operator depends on the
size of its neighborhood. The larger the neighborhood, the more solutions need to be
generated and evaluated. On the other hand, larger neighborhoods also come with a
larger probability of finding improvements. Consequently, there is a trade-off between
computational complexity and the probability of improvement. This trade-off presents

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

one of the greatest challenges in the design of an efficient local search. A balance needs
to be reached between the size of the neighborhood and the computational effort re-
quired to generate it. Operators with relatively small neighborhoods such as a swap
can be easily implemented and quickly executed. However, they might not explore a
sufficiently large neighborhood to find improvements. Reversely, operators with large
neighborhoods such as CE exhibit a high complexity (O(n4)). For larger instances al-
ready a quadratic complexity might be computationally too expensive. A commonly
used tool to reduce the complexity of local search operators is heuristic pruning. Rather
than generating the entire neighborhood for each operator, pruning tries to limit the
considered neighborhood to promising options. As an example, CE usually only consid-
ers substrings up to a certain length, or a relocate-move can be restricted in such a way
that only insertions next to relatively close nodes are considered. A metaheuristic that
drastically restricts neighborhoods is, e.g., granular tabu search (Toth and Vigo, 2003).
Another very effective approach to prune the neighborhood of more complex operators
is sequential search (Irnich et al., 2006), which constitutes a generalization of the par-
tial gains criterion in LK. The idea of sequential search is to split complex operators
into exchanges of edges, and only consider subsequent exchanges as long as overall im-
provements are obtained. We provide a more elaborate description of sequential search
below.

In summary, we argue that a successful local search for the vehicle routing problem
contains a small yet diverse set of well-chosen local search operators for intra- and
inter-route optimization that have sufficiently large neighborhoods, but are able to find
improvements without exploring the neighborhood exhaustively. In the following, we
outline how such an efficient implementation of local search operators can be realized,
using the example of LK and CE. Both operators generate and evaluate rather large
neigborhoods (LK incorporates 2-opt and 3-opt moves, CE includes insert, swap, and
crossover). These operators can be complemented by an operator that can improve
more than two routes simultaneously, and we introduce such an operator using the idea
of embedded neighborhoods.

2.1. Lin-Kernighan Heuristic

Intra-route optimisation corresponds to solving a TSP in which the nodes are com-
posed of the depot and all customers on the respective route. One of the most effective
heuristics for the TSP is the heuristic by Lin and Kernighan (1973) (LK), which has
been further refined by Helsgaun (2000) and Applegate et al. (2003) to solve instances
with more than 100.000 customers. LK looks for κ-opt moves by exchanging κ existing
edges with κ new edges. Since the complexity of finding κ-opt moves increases rapidly
for larger κ, usually 2-opt and 3-opt are used in heuristics. LK introduces some clever
ideas to also generate and evaluate more complex moves in a feasible runtime.

Starting with the longest edge in the considered route, edges are iteratively removed
and added, such that the pair of removed and added edge shares an endpoint, fulfills the
partial gain criterion and results in a feasible tour if the tour would be closed. With the
partial gain criterion only those pairs of edges are considered for removal and insertion,

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

Figure 2: Illustration of the sequential removal and adding of edges in LK. Starting with the removal
of one edge (1,2), an edge (2,5) starting from one of the endpoints is added, such that c(1, 2) > c(2, 5).
Because of the positive gain, the process continues by removing an edge incident to node 5, and adding
an edge, e.g., (4,5) and (4,6). A continuation is considered, if c(1, 2) + c(4, 5) > c(2, 5) + c(4, 6). The
tour could be closed by removing edge (5,6) and adding edge (1,5) to obtain a 3-opt move.

such that the overall sequence of exchanges results in an overall improvement. This
criterion reduces the neighborhood drastically by restricting the search to promising
options for larger κ. If, for instance, there is no sequential removal and insertion of two
pairs of edges with a positive gain, LK does not continue to remove and add more pairs.
An example is provided in Figure 2. As soon as an improving move is found with the
closure of the tour, the move is executed and LK is restarted. The heuristic stops, if
for each initially removed edge no improving move can be found. For a more elaborate
description of LK we refer the interested reader to Helsgaun (2000).

As in previous LK implementations, we prune the neighborhood by only considering
new edges between a node and its ten nearest nodes within the considered route. Routes
in VRPs tend to be rather small TSPs with few customers so that we slightly adapt
the standard version. Instead of executing the first improving move, we generate and
evaluate all feasible κ-opt moves (starting with the removal of one particular edge) and
execute the best improving move. The upper limit for κ is set to four.

2.2. CROSS-exchange

The CROSS-exchange operator (CE) is a generic local search operator that tries to
exchange two substrings r̂i and r̂j of two different routes ri and rj (Taillard et al., 1997).
An example of such a move is visualized in Figure 3. The generation of all substrings of a
route has the theoretical complexity O(n2), and thus matching two substrings amounts
toO(n4). To tame this complexity, the length of considered substrings is usually limited.
In the following we adopt the idea of partial sums from LK and sequential search to
efficiently prune the neighborhood of CE.

The evaluation of a CE move can be deconstructed into two parts: (1) The identi-
fication of the start of two substrings and (2) the determination of a suitable length of
both substrings. To find the start of a substring that is potentially removed from route
ri, one first need to determine an edge that is removed. Let this edge be (Ik, Ik+1).
For Ik a new neighbour in another route needs to be found. Using the idea of heuristic
pruning we only consider potential neighbours among the C closest nodes. Let Jl be
such an option, a node in a different route that is among the C closest of Ik. If (Ik, Jl)
is added as a new edge, one of the edges (Jl, Jl−1) or (Jl, Jl+1) needs to be removed,
since Jl can only have two adjacent nodes. Finally, the incident node of the removed

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ik

Jl

Jl−1

Ik+1

(a) A complete CE move.

Ik

Ik+1

Jl−1

Jl

Jl+1

Ik

Ik+1

Jl−1

Jl

Jl+1

(b) Starts for a CE move.

Figure 3: (a) Illustration of a CE move with substrings of two customers. (b) Two possibilities to
generate starts for a CE. Starting with the removal of (Ik, Ik+1), we add an edge (Ik, Jl). We can
either complete the start by removing (Jl, Jl−1) and adding (Ik+1, Jl−1), or by removing (Jl, Jl+1) and
adding (Ik+1, Jl+1). Starts are considered, if the sum of the costs of added edges is not higher than
the sum of costs of removed edges. In both cases, the substrings can start from Ik+1 and Jl (see left),
or from Ik and Jl−1.

edge Jl+1 or Jl−1 is reconnected to Ik+1. A visualization is given in Figure 3. In total,
at most 4C starts are evaluated for a CE move which starts with the removal of one
edge (Ik, Ik+1) (2C for all nearest nodes of Ik and 2C for all nearest nodes of Ik+1).

For each start generated this way, we only continue with (2) the determination of
substrings, if the start does not increase solution costs, e.g., c1 = c(Ik, Jl)+c(Ik+1, Jl−1)−
c(Ik, Ik+1) − c(Jl, Jl−1) ≤ 0. The start generates a first ‘cross’ between two routes,
and can already be stored as a candidate move if route constraints are not violated (a
crossover). For a CE move we need to determine a second ‘cross’ between the two routes.
Starting form the first ‘cross’, substrings can be constructed in two ways. The start of
the substring to be inserted into rj can either be Ik or Ik+1. Let r̂i = {Ik+1} be the sub-
string to be inserted into rj and r̂j = {Jl} be the corresponding substring to be inserted
into ri (the description for r̂i = {Ik} and r̂j = {Jl−1} follows analogously). Then the
cost of the second ‘cross’ is c2 = c(Ik+1, Jl+1) + c(Jl, Ik+2)− c(Ik+1, Ik+2)− c(Jl, Jl+1). If
c1 + c2 ≤ 0, a candidate move has been found (a swap). We repeat this evaluation for
different lengths of the substrings. Keeping r̂i = {Ik+1} fixed, we extend r̂j = r̂j ∪ Jl+1,
recompute c2 with l = l+1, and add it as candidate move if c1 + c2 ≤ 0. This extension
of r̂j is continued until the depot node is reached, or until the capacity constraint of ri
is violated. We then iteratively extend r̂i, starting with r̂i ∪ Ik+2, and repeat the above
process. In this way, we determine all combinations of substrings starting from Ik+1

and Jl, whose exchange result in a non-increasing solution value while meeting route
constraints.

The special cases r̂i = ∅ or r̂j = ∅ (an Or-exchange) can be generated and evaluated
analogously with different functions c∗1 and c∗2. Using the example above with r̂i = ∅,
we have c∗1 = c(Ik, Jl) − c(Ik, Ik+1). If c∗1 ≤ 0, we again evaluate all extensions of r̂j

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

until the depot node is reached or constraints in ri are violated. For r̂j = {Jl} we have
c∗2 = c(Ik+1, Jl) + c(Jl−1, Jl+1)− c(Jl, Jl−1)− c(Jl, Jl+1).

In summary, we suggest the following approach to iteratively generate and evaluate
the neighborhood of the CE operator, starting with the removal of edge (Ik, Ik+1) :

Algorithm 1 CROSS-exchange with sequential search.

1: Determine the nearest nodes of Ik and Ik+1 that are in a different route rj.
2: Determine all starts with c1 ≤ 0 and c∗1 ≤ 0.
3: For each remaining start, iteratively evaluate and extend the substrings. If the

exchange results in feasible routes and c1 + c2 ≤ 0, store the move as a candidate
move (CE), analogously for c∗1 + c∗2 ≤ 0 (Or-exchange).

4: Execute the candidate move with the steepest descent.

This approach generates a potentially very large neighborhood, especially since we
do not impose a restriction on the length of substrings. However, the evaluation of
starts runs in linear time, and is likely to remove many options, especially in good VRP
solutions.

2.3. Complementary compound moves - Relocation chain

CE generates large neighborhoods to improve a pair of routes simultaneously, while
LK optimises the individual routes. These two operators can be complemented by an
operator that affects more than two routes simultaneously. Such an operator can be
constructed by using the ideas of an embedded neighborhood. In an embedded neigh-
borhood several simple moves are combined to form one compound move (Ergun et al.,
2006). An example for a compound move is the ejection chain introduced in Glover
(1996) and formalized in Rego (2001) for the VRP.

An ejection chain can induce changes in several routes simultaneously, however, it
also generates intra-route moves. With LK we have a dedicated operator for intra-
route optimisation, and thus a complementary operator should focus exclusively on
changes between routes. We build such an operator by combining several relocation
moves. This idea is similar to the concept of an ejection chain, however, we only allow
inter-route relocations. A relocation is simple to implement and to evaluate, and thus,
it constitutes a suitable building block for a more complex compound move. In the
following we will call this compound move relocation chain (RC).

A RC starts with a relocation of a customer node from route ri into route rj.
This relocation is followed by a relocation of a customer node from route rj into route
rk (where i = k is possible). This process can be repeated until an upper limit of
relocations is reached. The motivation for such an operator is to change the solution
while maintaining feasibility. Especially in tightly-constrained VRPs, many pairwise
exchanges between routes will violate constraints, so that the neighborhood of feasible
solutions can be relatively small. A relocation of a node from ri into rj might improve
the solution, but exceed the capacity constraints of rj. However, the move might

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ik−1
Ik

Ik+1

Jl

Jl+1

Figure 4: Illustration of a relocation chain with two relocations.

become feasible, if we make space by simultaneously relocating a node from rj into
another route. An example is visualized in Fig. 4.

The complexity of this compound move is relatively high. Let us assume that we
start a RC with node Ik. We can relocate this node into any position of any other route
(O(n)). Let rj be an option for a destination route (there might be several options).
Then we can continue the RC by relocating any node in rj into any other position of
any other route (O(n2)). Thus, with every continuing relocation, the complexity of the
operator grows exponentially.

This complexity can be reduced with ideas from sequential search, pre-processing
and heuristic pruning. Let a RC start with node Ik. Then the costs of a relocation of
Ik next to Jl can be computed as the difference between the minimal costs of inserting
Ik either in front or behind of Jl, and the detour induced by the visit of Ik in its current
route. The insertion cost can be computed as cI = minJ∗

l ∈{Jl−1,Jl+1}{c(Ik, Jl)+c(Ik, J
∗
l)−

c(Jl, J
∗
l)} and the cost of the detour as cD = c(Ik−1, Ik+1)− c(Ik, Ik+1)− c(Ik, Ik−1).

This cost information can be preprocessed at the start of the heuristic and updated
when necessary. If the relocation does not increase solution costs and we have cI +cD ≤
0, we consider it as start of a RC. This corresponds to the idea of partial gains in LK
and the basic idea of sequential search. If the relocation keeps rj feasible, we store it as
candidate move. Otherwise, we try to extend the RC by a relocation of a node in rj. A
subsequent relocation is considered, if it restores feasibility in rj, and the overall costs
of both relocations are non-positive. If the destination route of the second relocation
is feasible, we store the set of both relocations as a candidate move. Otherwise, we
continue the same process until an upper bound of relocations is reached.

In other words, we sequentially relocate nodes in such a way that the aggregated
costs are non-positive and all but the destination route of the last relocation are feasible.
For every relocation there might be several options for a continuation move, and thus,
information about moves and their continuations is stored in a tree-structure. In order
to avoid further cost computations, we do not allow an insertion into the position
of a previously ejected customer node in the same RC. As in CE, we further reduce
complexity by only considering insertions of a node next to its C closest customer nodes.
The more of those nodes are in the same route, the less options remain. Additionally,

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

we only consider one relocation position per destination route. If, for instance, two of
the nearest nodes of I2 are J3 and J5, we only consider the relocation of I2 into the
position of route rj that results in the lowest insertion cost.

After, for each starting relocation, we have explored an upper limit of following
relocations, we execute one of the candidate moves. A simple idea to improve efficiency
and make use of the possibly quite long list of generated candidate moves, is to execute
multiple moves. We first execute the candidate move with the largest decrease in costs
(steepest descent), and then remove all other candidate moves that ‘interfere’ with the
executed move. A move interferes with another move, if it includes a relocation of a
node that is also relocated in the other move, or a relocation of a node that is a new
or old neighbor of a node relocated in the other move. This interference changes the
cost evaluation of the respective moves and would require additional cost computations.
Among all non-interfering moves we again execute the one with the largest decrease in
costs, and so forth.

We observed during the experiments described in Section 4 that the computation of
RCs with a maximal length of four relocations requires up to 10 times more computation
time than RCs with maximal three relocations. To keep computations efficient, we
therefore limit RCs to three sequential relocations.

3. Guiding local search

The three operators LK, CE and RC generate large and diverse neighborhoods. Yet,
at some point they will inevitably reach a local optimum s∗ for which the generated
neighborhoods N (s∗) do not contain a better solution. Heuristics usually use pertur-
bation to escape this local optimum. The idea of perturbation is to change solution
s∗ where, in contrast to local search, this change does not necessarily have to result in
an improving solution. Perturbation can appear in many different forms. Large neigh-
borhood search and ruin & recreate destroy and repair parts of the solution. Methods
based on simulated annealing accept, with a certain probability, local search moves that
worsen the solution. Generally, most heuristics utilize some form of randomization to
achieve a perturbed solution, or a pool thereof.

One approach that does not rely on randomization nor on additional algorithmic
components is guided local search (GLS) (Voudouris and Tsang, 2003). Even though
GLS is not as popular as other metaheuristics (for instance tabu search or variable
neighborhood search), it has been successfully applied to the TSP (Voudouris and
Tsang, 2003) and the VRP (Mester and Bräysy, 2007).

The idea behind GLS is to change the cost evaluation of s∗, rather than s∗ itself.
Features that are considered bad are penalized. In the context of the VRP, those
features are edges, and the costs of bad edges are increased. More formally, we change
the cost c(i, j) of an edge in the current solution between customers i and j to

cg(i, j) = c(i, j) + λp(i, j)L, (1)

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where p(i, j) counts the number of penalties of edge (i, j), L is a proxy for the average
cost of an edge, computed as the costs of the starting solution divided by the number
of customers, and λ controls the impact of penalties. Kilby et al. (1999) experimentally
found λ ∈ [0.1, 0.3] to be a good choice while Mester and Bräysy (2007) use λ = 0.01.
We confirmed in pre-tests that λ = 0.1 works well on the tested instances in Section 4,
and use this value in the remainder of the paper.

After the penalization of an edge, local search can be used on the adapted search
space to potentially remove this edge. With increasing costs, the probability of finding
an cg-improving move increases. Note that a cg-improving move does not have to
correspond to a c-improving move.

The effectiveness of this penalization strategy hinges on the identification of ‘bad’
edges. An obvious idea is to focus on the most expensive edges as in Mester and
Bräysy (2007), since these contribute more weight to the objective function. This
simple observation seems to constitute the entire body of knowledge on which features
of a VRP solution should be considered ‘bad’, or, more precisely, which edges should
be removed preferentially.

In order to shed some light on this issue, we have performed an exploratory study
that attempted to find common characteristics of both good and bad solutions, in order
to decipher which properties are likely to appear in good solutions and not in bad ones
or vice versa. Details of both the methodology and the results of this study are beyond
the scope of this paper, and can be found in Arnold and Sörensen (2018). First, we
generated sets of instances with varying instance attributes, such as the number of
customers and the positioning of the depot. For each instance we computed a near-
optimal solution, as well as a non-optimal solution. Both solutions were computed with
a GLS similar to the one used in Section 5 and a classical edge penalization. The non-
optimal solutions were generated to have a pre-defined gap to the near-optimal value
of either 2% or 4%, while the near-optimal solutions were expected to have a small
gap to the optimal solution (on a benchmark set of similar instances the average gap
was computed as 0.20%). We then defined several metrics to transform the structure
of a solution into quantitative metrics. These metrics were largely based on geometric
properties, such as the width and depth of routes (see further for definitions), or the
number of intersecting edges. In total, we generated and quantified about 192.000
solutions for 96.000 different VRP instances. We then used a classification learner to
discover metrics that distinguish near-optimal from non-optimal solutions.

The most predictive metrics, as to whether a solution is near-optimal or non-optimal,
were the width and compactness of routes. Solutions of higher quality appear to have
narrower and more compact routes. Hereby, the width of a route is defined as the max-
imum distance between any pair of customers, measured along the axis perpendicular
to the line connecting the depot and the center of gravity of a route. The coordinates
of the center of gravity of a route are calculated as the average of the coordinates of
all nodes in that route. The compactness of a route is the average distance to the line
connecting the depot and the center of gravity of all customers in that route. Other
metrics with a lower predictive power included the number of intersections (edges in

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

w(i, j)

c(i, j)

i

j

Figure 5: Metrics determining the ’badness’ of edge (i, j). The width w(i, j) is computed as the distance
between nodes i and j measured along the axis perpendicular to the line connecting the depot and the
route’s center of gravity (gray dot). The cost c(i, j) is equal to the length of the edge.

different routes that cross each other) and the average length of edges connected to the
depot.

In other words, moves that reduce the width of a route or increase its compactness
are likely to make the solution better. Within the context of a GLS, we need to translate
these general findings on bad solutions into guidelines on bad edges. Firstly, wider and
less compact routes tend to have wider edges, and thus, it seems straight-forward to
penalize and thereby avoid wide edges. We adopt the same definition for the width
of an edge as in Arnold and Sörensen (2018), and compute the width of an edge as
the distance measured along the axis perpendicular to the line connecting the depot
with the center of gravity of the route. Secondly, the penalization of long edges, i.e.,
edges with a high cost, seems reasonable since it has already proven to work well in the
context of the VRP and the TSP. We confirmed with the above study that especially
those edges that are connected to a depot tend to be shorter in high-quality solutions.

These two metrics width and cost are illustrated in Figure 5, and they can be readily
transformed into functions that measures the ‘badness’ of an edge (i, j):

bw(i, j) =
w(i, j)

1 + p(i, j)
bc(i, j) =

c(i, j)

1 + p(i, j)
bw,c(i, j) =

w(i, j) + c(i, j)

1 + p(i, j)
(2)

where w(i, j) denotes the width of edge (i, j), and c(i, j) its cost. The division by
the number of previously received penalties is a standard approach in GLS to enhance
the diversification of the penalization, and to avoid that the same edge is penalized over
and over again.

A penalization strategy combined with a set of implemented local search operators
(LS) are sufficient to build a GLS heuristic for the VRP, as outlined in Algorithm 2.
After the construction of a starting solution, LS is applied on the solution until a local
optimum is reached. The local optimum is perturbed by iteratively penalizing and
attempting to remove edges. After an adequate number of changes have been made in
this phase, the resulting solution is re-optimised with LS. Hereby, ‘apply LS on a certain
search space’ means that only moves are considered that originate from this space, e.g.,

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

if the search space is a single edge, only CE moves that start with the removal of this
edge are considered, or RC moves that start with a relocation of one of the incident
nodes. This heuristic framework is entirely based on local search, and does not depend
on other components. Perturbation is achieved by changing the evaluation criterion and
thereby inducing changes in the local optimum. The more moves are executed during
this phase, the more the solution is perturbed. Note that a move is only executed if it
improves the solution under cg(·), and thus, not every penalization has to result in a
subsequent move. Finally, the perturbed solution is optimised under normal evaluation
c(·). We only apply LS on the part of the search space that changed during the previous
perturbation phase, since routes that were not affected are unlikely to be the starting
point of improving moves. This framework poses some interesting research questions
which we will investigate in the following. Which operators should LS contain, how
much perturbation is necessary and which edges should be penalized?

Algorithm 2 A simple GLS framework.

1: Construction. Construct a starting solution.
2: Initial optimisation. Apply LS on starting solution.
3: while not abortion criterion is reached do
4: Perturbation:
5: while not a certain number of moves have been made do
6: Penalize ‘the worst’ edge (i, j) by incrementing p(i, j).
7: Apply LS on (i, j), using cg(·) as evaluation criterion.
8: end while
9: Optimisation. Apply LS on all routes that were changed during perturbation

(using c(·) as evaluation criterion).
10: end while

4. What makes a local search effective?

In the following we conduct a series of experiments to explore various aspects of local
search within the above GLS. We compare different neighbourhoods, different magni-
tudes of perturbation as well as different strategies to penalize edges. Three different
sets of complementary local search operators are used as shown in Table 1. Set LS1

is composed of relatively simple operators and generates the smallest neighboorhods of
all sets. We mirror these operators with our CE implementation, where only exchanges
of substrings of length one are considered (swap) or exchanges in which one substring
is empty (relocate and Or-exchange). For the intra-route optimisation we use our LK
implementation, but only consider 2-opt moves. LS2 generates larger neighborhoods
for both, intra-route and inter-route optimisation and uses the operators as described in
the previous section. In LS3 we additionally use the relocation chain as complementary
neighborhood, so that this set should generate the largest neighborhoods.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Local search operators used in the different setups.

Intra-route LS Inter-route LS

LS1 2-opt relocate, swap, Or-exchange
LS2 LK CE
LS3 LK CE, RC

Each of the three LS variants is used within the GLS framework. A starting solution
is constructed with the popular and relatively simple heuristic by Clarke and Wright
(1964). During the optimisation phase, we first apply the inter-route operators on the
considered search space, execute the move with the most beneficial evaluation (steepest
descent), and then use the intra-route operator to optimise the changed routes. We
iteratively apply this combination of inter- and intra-route optimisation until in one
iteration the solution is not improved.

During the perturbation phase we iteratively penalize an edge and apply the inter-
route operators on this edge, i.e., only moves which start with the removal of the
respective edge are considered. Since the perturbation should trigger changes in the
allocation of customers to routes, we apply the intra-route operator only at the end of
the phase.

All experiments are executed on instances 26 to 55 by Uchoa et al. (2017). These
instances have a reasonable size with 219 to 367 customers and are diverse with respect
to all important characteristics of a VRP instance: clustering of customers (strong
clustering versus uniform distribution), variation in customer demand ([1, 1] to [1, 100]),
the average length of routes (from 3 customers per route up to 24 customers per route)
and depot location (central location versus eccentric location). Thus, experiments on
this diverse set of instances should reduce the danger of overfitting the heuristic to
particular types of instances. We report the results as performance over time on all 30
instances. The performance is expressed as the average gap between the best solutions
found within a specific time horizon and the best known results, as reported by Uchoa
et al. (2017). The average gap of the starting solutions computed with Clarke and
Wright is about 6.4%.

4.1. Neighborhood Size and Perturbation

We investigate the impact of different neighborhoods generated by LS1, LS2 and
LS3 in interplay with different magnitudes of perturbation, where P ∈ {10, 100, 1000}
represent the number of moves that are executed in the perturbation phase. The edge
penalization strategy bc, and the degree of pruning for inter-route operators C = 30 are
kept fixed. From the results in Figure 6 we can make the following observations.

Firstly, larger neighborhoods find better solutions. This seems a straight-forward
statement to make, however, note that usually larger neighborhoods come at the ex-
pense of higher computational effort. Thus, smaller neighborhoods should generally
find improving moves faster, at least at the start of the search. Since we do not observe

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 30 60 90

1

2

3

Computation time in seconds

A
ve
ra
g
e
g
a
p
to

B
K
S
s

LS1

0 30 60 90

1

2

3

Computation time in seconds

LS2

0 30 60 90

1

2

3

Computation time in seconds

LS3

P = 10 P = 100 P = 1000

Figure 6: Average gap (in %) to the best known solutions (BKSs) over time on 30 instances by Uchoa
et al. (2017) for different setups.

this effect, we can conclude that the larger neighborhoods are pruned effectively and
exhibit a good time-quality trade-off. On the other side, the results show that even
a minimal local search implementation of four simple operators can obtain solutions
within a 2% range in a very short computation time. Thus, gaps of this size should
constitute a minimal standard when evaluating the performance of a new heuristic.

Secondly, RC seems to successfully complement CE, since the addition of this op-
erator results in significant performance improvements. This is especially remarkable
given that RC requires the most computation time of all three operators. Depending
on the average length of routes, RC requires between 40% (on instances with longer
routes) up to 80% (on instances with shorter routes) of the entire computation time.
This additional computational effort seems to be beneficial.

Finally, the degree of perturbation should be chosen within reasonable bounds. Even
though little perturbation (P = 10) seems to work well for smaller neighborhoods, for
larger neighborhoods slightly more perturbation appears to be a better choice. An
overly large perturbation (P = 1000) appears to disintegrate the previous local opti-
mum for all considered neighborhoods, and results in a worse performance. Interest-
ingly, the differences between different parameter choices become smaller with larger
neighborhoods, as if larger neighborhoods compensate for a ‘poorer choice’. We con-
clude that good results can be obtained with rather little but not too little perturbation.
In more granular tests we found the best results with P = 30 for LS3, and we will use
this value in the remainder of the paper.

4.2. Penalization criterion

Keeping the best local search setup LS3 with P = 30 fixed, we investigate which
edges should be penalized. We compare five different strategies. The first three strate-
gies correspond to bw, bc, and bw,c. The fourth strategy diversifies the penalization,
and deterministically changes the penalization criterion after every perturbation phase,
in this order (rotation). Finally, we investigate the impact of the guided penalization

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 60 120

0.5

1

1.5

Computation time in seconds

A
ve
ra
g
e
g
a
p
to

B
K
S
s

random

bc

bw

bw,c

rotation

Figure 7: Average gap (in %) to the best known solutions (BKSs) over time on 30 instances by Uchoa
et al. (2017) for different setups.

strategies above by comparing them to an unguided strategy, in which the penalized
edge is chosen randomly (the seed of the random generator is fixed to keep the deter-
ministic behaviour of the heuristic).

The results in Figure 7 reveal that the choice of edge penalization has less impact on
performance than the choice of local search operators. Even with a randomized penal-
ization solutions with an average gap of about 1% can be computed. However, guidance
can still improve this already good performance of the heuristic. Hereby, width appears
to be a slightly better criterion to detect bad edges than cost, which confirms our previ-
ous findings. The combination of both features bw,c yields similar results, while the best
performance is obtained with a diversified penalization. A possible explanation for the
success of the rotation strategy is that the best choice might be instance-dependent.
For some instances it might be better to remove long edges, while for other ones it
might be more important to obtain tight routes. Another explanation could be that
the exclusive focus on one criterion narrows the search, and some edges are targeted
excessively while others remain untouched. In other words, the degree of diversification
might matter. We investigated the impact of diversification by testing the rotation
strategies bw − bc (less diversification) and bw − bc − random (more diversification). In
both cases, we obtained worse results than with bw − bc − bw,c, and thus, this rotation
strategy appears to be a sweet spot for the tested instances.

In conclusion, the penalization strategy has less impact on performance than the
local search, which suggests that most of the heuristic’s efficiency is driven by a well-
implemented local search. Nevertheless, guidance with problem-knowledge still elevates
the overall performance.

4.3. Pruning

For the inter-route operators we only consider new edges between a node and its C
closest nodes. For the experiments above we chose C = 30, since this value appeared to
yield good result in pre-tests. In the following we compare different pruning setups. If

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the value for C is lower, then the pruning is tighter and the local search operators should
be faster so that the GLS can execute more iterations in the same amount of time. On
the other hand, a looser pruning increases the size of the considered neighborhoods at
the expense of higher computational effort.

0 60 120

0.5

1

1.5

Computation time in seconds

A
ve
ra
g
e
g
a
p
to

B
K
S
s

C = 20

C = 30

C = 40

Figure 8: Average gap (in %) to the best known solutions (BKSs) over time on 30 instances by Uchoa
et al. (2017) for different setups.

From the results in Figure 8 we observe that a tighter pruning is effective within
short computation times, while C = 30 seems to be the better choice for longer runtimes.
C = 40 appears to be too loose on the tested instances, and the size of the explored
neighborhoods becomes unnecessarily large. We also observed some minor differences
with respect to instance features. Generally, a looser pruning appeared to work better
for instances with relatively small routes or instances with a large variation in demand.
However, these effects were rather weak, and for simplicity we choose the same degree
of pruning for all instances in the following.

Instead of considering the C nearest nodes in terms of cost c(·), one could also
use a different metric to define nearness. A good example is the α-nearness defined in
Helsgaun (2000) for the TSP. The α-nearness cα(·) between two nodes i and j is defined
as the cost difference between the optimal 1-tree of all nodes and the minimum 1-tree
that contains edge (i, j). Since every TSP solution is a 1-tree, both problems have a
certain degree of similarity, but a minimal 1-tree can be computed more efficiently than
a TSP solution. We implemented this idea for the VRP, and construct the 1-trees out of
all customer nodes. We found that on average 96% of the C = 30 nearest nodes in terms
of c(·) were also nearest nodes in terms of cα(·). As a consequence, the local search
considers the same edges and obtains the same performance. We also tested another
metric based on the idea of width. Given two nodes i and j, we compute the distance
between i and the line connecting the depot and j (or reversely if the corresponding
distance is shorter), and add this ‘width’ to the cost c(·). The intuition behind this
metric is to connect customers that are on the same line outgoing from the depot, and
thus to obtain little detours. We found that this metric yielded good performances,
however, it did not perform better than the simple c(·) metric. In conclusion, the

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

traditional pruning with respect to costs appears to be an efficient pruning strategy for
the VRP.

4.4. Inital route minimization

For some VRP instances it is crucial to minimize the number of vehicles used. Even
if the minimisation of routes is not part of the objective function, usually good solutions
have as few routes as possible, since each additional route requires an additional edge
and is thereby likely to increase the overall distance traveled. None of the above local
search operators explicitly attempts to pursue this task and remove routes, even though
a route might be eliminated accidentally. As a consequence, it appears sensible to
minimize the number of used vehicles already in the construction phase.

We realize the minimisation of routes in the following way. We first compute the
lower bound of vehicles Mmin = dD

Q
e (where D is the sum of all demand and Q the

capacity limit), and then construct a solution with the parallel version of CW that
requires MCW routes. The parallel version of CW generally constructs good solutions
but might not minimize the number of routes. If we have MCW > Mmin + 1, we
conclude that this instance is rather difficult with respect to the bin-packing problem
of assigning customers to routes. In this case, we construct a second solution with CW
with one minor modification. Some successful heuristics for bin-packing algorithms like
First Fit Decreasing (Simchi-Levi, 1994) try to group large items first, and we translate
this intuition to the VRP by trying to assign customers with a high demand first. We
compute the weighted saving sw(i, j) of edge (i, j) as sw(i, j) = s(i,j)

maxk,ls(k,l)
+ d(i)+d(j)
maxk,ld(k)+d(l)

,

where s(i, j) denotes the saving as computed in the classical CW heuristic, and d(i)
denotes the demand of customer i. All weighted savings are then sorted in descending
order, and used as input of the parallel CW. Thus, edges between customers with a
high demand are prioritised. This approach successfully reduced the number of routes
in the starting solution of 33 out of 100 instances in the benchmark set by Uchoa et al.
(2017), and in some cases improved the solution quality significantly.

4.5. The complete local search heuristic

On the basis of the experimental results we identified the following local search setup
as the most effective one, which we denote knowledge-guided local search (KGLS).

We assume that larger instances with more customers require more computation
time and, thus, we define the abortion criterion as a maximum runtime with respect
to the number of customers. The heuristic is entirely based on a local search with the
steepest descent acceptance criterion, and thus, it works in a completely deterministic
fashion. This determinism simplifies its analysis and the evaluation of its performance.
In contrast, most state-of-the-art heuristics utilize randomness to diversify the search
and escape local minima (Gutjahr, 2010). The exact role and the benefits of including
random elements are rarely investigated, notwithstanding the fact that reliance on
randomness has some significant disadvantages and, according to some researchers, can
prevent the development of better, deterministic search components, see e.g., Glover
(2007).

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 3 Knowlege-guided local search heuristic (KGLS).

1: Construction. Construct a starting solution with the CW heuristic. If MCW >
Mmin + 1, re-compute the starting solution with adapted savings sw(i, j). Optimise
the individual routes with LK.

2: Initial optimisation. Apply CE and RC on starting solution. Whenever a route is
changed, re-optimise it with LK. Set b(·) = bw(·).

3: while time limit not reached do
4: Perturbation:
5: while not P = 30 moves have been made do
6: Penalize edge (i, j) with the highest value b(i, j) by incrementing p(i, j).
7: Apply CE and RC on (i, j), using cg(·) as evaluation criterion.
8: end while
9: Optimisation. Apply LK, and then iteratively CE and RC on all routes

that were changed during perturbation (c(·) as evaluation criterion). Whenever
a route is changed with CE or RC, re-optimise it with LK. Change b(·).

10: end while

5. Extension to routing variants

In the following, we demonstrate with two examples how the efficiency and relatively
straight-forward design of the knowlege-guided local search heuristic can be used to
tackle other routing variants.

5.1. Multi-Depot Vehicle Routing Problem

In the Multi-Depot Vehicle Routing Problem (MDVRP) customers can be delivered
from a given set of depots (Montoya-Torres et al., 2015). This adds another decision
level: not only does the heuristic have to assign and sequence customers in routes, it also
needs to determine which routes start and end at which depot. Notwithstanding this
additional decision level, we can readily apply the heuristic to the MDVRP. The initial
solution is constructed with a greedy approach, where each customer is assigned to its
closest depot, and the routes per depot are then computed with the Clarke and Wright
heuristic. The MDVRP also involves to determine a suitable number of routes for each
depot, since it is not clear how many and which routes should originate from which
depot. KGLS can remove routes, but it does not create new ones. This is sufficient
for VRP instances in which one usually aims at minimizing the number of routes. For
MDVRP instances, however, it is sensible to also allow the creation of new routes for
a depot, and thereby enable changes in the assignment from routes to depots. We add
one empty dummy route per depot, and allow RC to relocate customers into these
empty routes, as long as the respective move improves the solution.

5.2. Multi-Trip Vehicle Routing Problem

An implicit assumption of the VRP is that each vehicle is responsible for one route.
In some practical applications several tours might be assigned to the same vehicle,

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

e.g., in the context of city logistics smaller vehicles are often used to deliver customers
on several short routes. Such scenarios can be modelled with the Multi-Trip Vehicle
Routing Problem (MTVRP) which extends the VRP by adding the following constraint:
Routes have to be assigned to M vehicles in such a way that the total cost of the routes
assigned to the same vehicle does not exceed a time horizon T (denoted time horizon
constraint in the following). T could for instance define the duration of a typical working
day. For a more elaborate description of the problem we refer to Cattaruzza et al.
(2016). Given an MTVRP, a solution for the corresponding VRP (without the time
horizon constraint) is also a feasible solution for the MTVRP, if a feasible assignment
of routes to vehicles can be found. Finding such an assignment represents a bin-packing
problem which can usually be solved with simple heuristics in a short time.

KGLS performs many slight changes without violating route constraints, and thus,
it generates a large number of routing solutions in a short time. Therefore, a simple
idea to solve an MTVRP is to transform it into the corresponding VRP, solve the VRP
with KGLS, and check for each computed solution whether it satisfies the time horizon
constraint. In short, we generate a large pool of different VRP solutions and hope to
find at least one that satisfies the additional constraints, an approach often used in
the literature (Cattaruzza et al., 2016). The only modification, which is necessary to
incorporate this approach in the knowledge-guided local search heuristic, is the imple-
mentation of a bin-packing heuristic. More concretely, each solution obtained after the
perturbation and the optimisation phase in Algorithm 3 is evaluated with the three
simple bin-packing heuristics First Fit, First Fit Decreasing and Best Fit (Simchi-Levi,
1994). If any of these heuristics find a feasible bin-packing solution that satisfies the
time horizon constraint, then the respective VRP solution is a candidate solution for
the MTVRP. The best candidate solution computed after maximal runtime constitutes
the solution for the MTVRP.

6. Computational Results

We test the performance of KGLS on the entire instance set by Uchoa et al. (2017)
(U). As explained above, this instance set covers a wide problem variety and considers
different degrees of clustering customers, variation in customer demand, and different
depot locations. For the MDVRP we perform the experiments on the benchmark set
by Cordeau (C) (Cordeau et al., 1997). Examples of solutions for both instance sets
are visualized in Figure 9. Finally, we use the benchmark set by Taillard et al. (1996)
to investigate the performance on MTVRP instances.

We compare the performance of KGLS with some of the most efficient VRP heuris-
tics in the literature: the hybrid genetic algorithm (HGSADC) of Vidal et al. (2013b),
the iterated local search (ILS) of Subramanian et al. (2013), and the classical adaptive
large neighborhood search (ALNS) of Pisinger and Ropke (2007). For the MTVRP
we use the results from the ALNSP by François et al. (2016) and the memetic algo-
rithm (MA) by Cattaruzza et al. (2014) as comparison. Whereas KGLS produces the
same solution in every run, all other heuristics include random components, and we

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

present their results as the average performance over a number of runs2. The results of
HGSADC and ILS are reported as the average performance over 50 runs, the results of
ALNS display the average over 10 runs, and the results of ALNSP and MA present the
average performance over 5 runs.

Figure 9: Benchmark instances from the U-set and the C-set.

6.1. Test details

KGLS has been implemented in Java and all tests are performed within the Eclipse
development environment on an AMD Ryzen 3 1300X CPU working at 3.5GHz on
Windows 10, using a single thread. According to PassMark Software (2018) this setup is
about 25% faster than the setup used to test HGSADC and ILS (Xeon CPU 3.07GHz).
On each instance we run KGLS up to a defined time limit of 3 N

100
minutes, i.e., we

allow 3 minutes of computation time per 100 customers. We observed in pre-tests that
larger time limits yield only marginal improvements in solutions quality, whereas most
solutions are found in significant less time. When we double the time limit, we observe
an average improvement by 0.05% on the U-instances. For each instance we then report
the best solution found within this time horizon as well as the required computation time
to obtain this solution. In the implementation each node is represented by an object
which contains distance information d(·), dg(·), and penalty information to all other
nodes, pre-processed information about the C nearest nodes as well as the respective
insertion costs, alongside basic information such as demand, its current route as well
as the position in its current route. Routes are represented by a list of references to
the respective nodes. For the encoding of routes, and also for other purposes such
as the encoding of candidate moves, we used the datatype ArrayList, since it has a
dynamic size and elements can be accessed in constant time. Even though insertions
and deletions of elements require linear time (for instance to execute a move), they are
executed not as often as accessing elements (for instance to evaluate a move).

2We want to remark that the average is just a rough estimate of an expected result. A statistical
study on the performance of randomized algorithms proposed elsewhere is beyond the scope of this
study.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Results on the 100 U-instances, as average over all instances and for instances with a certain
number of customers N . The gap is reported in % with respect to the BKS, and the time is reported
in minutes, based on Uchoa et al. (2017).

ILS HGSADC KGLS

N Gap Time Gap Time Gap Time

100-250 0.31% 2.4 0.07% 6.0 0.28% 1.8
250-500 0.53% 23.1 0.24% 30.3 0.59% 4.4
500-1000 0.72% 195.7 0.24% 268.6 0.45% 9.9

0.53% 71.7 0.19% 98.8 0.44% 5.3

Table 3: Results on the 23 MDVRP C-instances, as average over all instances. The gap is reported in
% with respect to the BKS, and the time is reported in minutes, based on Vidal et al. (2013b).

ALNS HGSADC KGLS

Gap Time Gap Time Gap Time

0.40% 3.8 0.06% 4.1 0.08% 0.7

6.2. Results

The aggregated results on the VRP benchmark set for KGLS are presented in Ta-
ble 2, detailed results per instance can be found in the appendix. We report the average
gap in% with respect to the best known solutions (BKS) indicated in the respective
papers, as well as the computation time in minutes.

We observe that KGLS computes competitive solutions within a 1% range of the
best known solutions for almost all U-instances. On average the quality of the computed
solutions are comparable to those of ILS and within a 0.25% range of those of HGSADC.
The results in Table 3 highlight that KGLS also computes high-quality solutions for
MDVRP instances, performing similarly to HGSADC. These competitive results are
computed in short computing times, and especially on instances of larger size does
KGLS only require a fraction of computation time in comparison to state-of-the-art
heuristics. Generally, it does not require more than a few minutes to compute solu-
tions with very small gaps for VRP as well as MDVRP instances with several hundred
customers, resulting in an excellent time-quality trade-off. This time-quality trade-off
can be attributed to a good scalability, and opens up the potential to further improve
the heuristic. For instance, we observed that resets can further increase the quality
of computed solutions. If KGLS failed to find improvements for some time, the cur-
rent solution can be reset to the previously best found solution while all accumulated
penalties are removed.

In Figure 10 (left) we visualize the scaling of the heuristic’s computing time with
growing instance size. KGLS computes solutions of similar quality, while the required
computation time grows more or less as a linear function of the instance size. This

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

200 400 600 800 1,000
0

5

10

15

20

25

Instance size

C
o
m
p
u
ti
n
g
ti
m
e
in

m
in

200 400 600 800 1,000
0

0.5

1

1.5

Instance size

G
a
p
to

B
K
S
in

%

Figure 10: Computation time (left) versus performance (right) in dependence of instance size on the
100 U-instances. Solutions of a similar high quality are found within computation times that grow
approximately linear in the instance size.

linear scaling has its origin in the efficient design of the local search operators (see
Section 2), which, despite all the heuristic pruning, generates high-quality solutions.

This efficient generation of a multitude of routing solutions also allows to solve
MTVRP instances. The addition of simple bin-packing heuristics allows to validate
that KGLS computes feasible solutions for 87 out of 99 MTVRP instances that are
known to be solvable. For many of those instances KGLS finds the optimal solution,
and on 21 instances it improves the BKS, challenging dedicated MTVRP heuristics.
As a result, the average gap on those 87 instances to the BKS reported in Cattaruzza
et al. (2016) is -0.06%, computed in 26 seconds (compared to a 0.68% gap of MA and
to a 0.69% gap of ALNSP on those instance, obtained after similar computing times).
We want to stress that the validity of such a comparison is limited, given that ALNPS
and MA find feasible solutions for all instances (and are designed to do so). However,
these results show the potential of applying an efficient local-search based heuristic to
the MTVRP.

All in all, the presented KGLS consistently produces competitive solutions for a
large variety of instances in short computation times.

7. Conclusions and future research

In this paper we have demonstrated how to build a heuristic for the VRP around
a well-implemented local search. We implemented three complementary local search
operators using ideas from sequential search and pruning. This local search was em-
bedded in a guided local search framework that penalizes and removes bad edges. To
detect bad edges more accurately, we used insights from an exploratory study on prop-

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

erties of VRP solutions. Thorough experimentation on all key components showed that
relatively little perturbation combined with large neighborhoods results in an effective
local search.

The resulting heuristic computes high-quality solutions for a wide range of bench-
mark instances in a few seconds or minutes. Therefore, it presents a suitable solution
approach to routing problems that are restricted with respect to computation time.
On the other hand, it might also be a starting point for further extensions to generate
even better solutions, if more computation time is available. It can be extended by,
for instance, adapting the edge penalization through learning mechanisms, or by em-
bedding the heuristic into another metaheuristic. At the same time, we demonstrated
that the heuristic can be used to solve other problem variants like the MDVRP and the
MTVRP.

From a more general perspective, we have shown that the development of a suc-
cessful heuristic for the VRP does not require new operators or complex frameworks.
Using local search operators that have been proven to work well, paired with an effi-
cient implementation and the utilization of problem-knowledge, is sufficient to create
powerful heuristics that work well on a wide range of instances and problem variations.
Rather than through the development of new heuristic operators, let alone new meta-
heuristic frameworks, algorithms can be improved by putting more research emphasis
on how to use existing methods in a more efficient and intelligent way. The utilization of
problem-specific knowledge is a promising starting point for this. Knowing the struc-
tural properties that distinguish a near-optimal solution from a suboptimal solution
allows an algorithm to prioritize certain features in the search process, and to develop
operators that tackle a problem more efficiently. This paper has presented one of the
first approaches in this challenging research direction.

References

Applegate, D., Cook, W., and Rohe, A. (2003). Chained lin-kernighan for large traveling
salesman problems. INFORMS Journal on Computing, 15(1):82–92.

Arnold, F. and Sörensen, K. (2018). What makes a VRP solution good? The generation
of problem-specific knowledge for heuristics. Computers & Operations Research.
Advance online publication. doi:10.1016/j.cor.2018.02.007.

Cattaruzza, D., Absi, N., and Feillet, D. (2016). Vehicle routing problems with multiple
trips. 4OR, 14(3):223–259.

Cattaruzza, D., Absi, N., Feillet, D., and Vidal, T. (2014). A memetic algorithm for
the multi trip vehicle routing problem. European Journal of Operational Research,
236(3):833–848.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568–581.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Cordeau, J.-F., Gendreau, M., and Laporte, G. (1997). A tabu search heuristic for
periodic and multi-depot vehicle routing problems. Networks, 30(2):105–119.

Ergun, Ö., Orlin, J. B., and Steele-Feldman, A. (2006). Creating very large scale
neighborhoods out of smaller ones by compounding moves. Journal of Heuristics,
12(1):115–140.

François, V., Arda, Y., Crama, Y., and Laporte, G. (2016). Large neighborhood
search for multi-trip vehicle routing. European Journal of Operational Research,
255(2):422–441.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postoptimization
procedures for the traveling salesman problem. Operations Research, 40(6):1086–
1094.

Glover, F. (1996). Ejection chains, reference structures and alternating path methods
for traveling salesman problems. Discrete Applied Mathematics, 65(1):223–253.

Glover, F. (2007). Tabu search—uncharted domains. Annals of Operations Research,
149(1):89–98.

Groër, C., Golden, B., and Wasil, E. (2010). A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation, 2(2):79–101.

Gutjahr, W. (2010). Stochastic search in metaheuristics. In Gendreau, M. and Potvin,
J.-Y., editors, Handbook of Metaheuristics (2nd ed.), volume 146 of International
Series in Operations Research & Management Science, pages 573–597. Springer,
New York.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130.

Irnich, S., Funke, B., and Grünert, T. (2006). Sequential search and its application to
vehicle-routing problems. Computers & Operations Research, 33(8):2405–2429.

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. (1988). How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100.

Kilby, P., Prosser, P., and Shaw, P. (1999). Guided local search for the vehicle routing
problem with time windows. In Meta-heuristics, pages 473–486. Springer.

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval
Research Logistics (NRL), 54(8):811–819.

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mester, D. and Bräysy, O. (2007). Active-guided evolution strategies for large-
scale capacitated vehicle routing problems. Computers & Operations Research,
34(10):2964–2975.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &
Operations Research, 24(11):1097–1100.

Montoya-Torres, J., Franco, J., Isaza, S., Jiménez, H., and Herazo-Padilla, N. (2015). A
literature review on the vehicle routing problem with multiple depots. Computers
& Industrial Engineering, 79:115–129.

Nagata, Y. and Bräysy, O. (2009). Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem. Networks, 54(4):205.

PassMark Software (2018). CPU benchmarks. https://www.cpubenchmark.net/. Ac-
cessed: 2018-02-05.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8):2403–2435.

Rego, C. (2001). Node-ejection chains for the vehicle routing problem: Sequential and
parallel algorithms. Parallel Computing, 27(3):201–222.

Salhi, S. (2014). Handbook of metaheuristics. Journal of the Operational Research
Society, 65(2):320–320.

Simchi-Levi, D. (1994). New worst-case results for the bin-packing problem. Naval
Research Logistics (NRL), 41(4):579–585.

Sörensen, K., Sevaux, M., and Schittekat, P. (2008). “multiple neighbourhood” search
in commercial vrp packages: Evolving towards self-adaptive methods. In Adaptive
and Multilevel Metaheuristics, pages 239–253. Springer.

Subramanian, A., Uchoa, E., and Ochi, L. S. (2013). A hybrid algorithm for a class of
vehicle routing problems. Computers & Operations Research, 40(10):2519–2531.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y. (1997). A tabu
search heuristic for the vehicle routing problem with soft time windows. Trans-
portation Science, 31(2):170–186.

Taillard, E. D., Laporte, G., and Gendreau, M. (1996). Vehicle routeing with multiple
use of vehicles. Journal of the Operational Research Society, 47(8):1065–1070.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the
vehicle-routing problem. Informs Journal on Computing, 15(4):333–346.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. (2017).
New benchmark instances for the capacitated vehicle routing problem. European
Journal of Operational Research, 257(3):845–858.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013a). Heuristics for multi-
attribute vehicle routing problems: A survey and synthesis. European Journal of
Operational Research, 231(1):1–21.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013b). A hybrid genetic
algorithm with adaptive diversity management for a large class of vehicle routing
problems with time-windows. Computers & Operations Research, 40(1):475–489.

Voudouris, C. and Tsang, E. P. (2003). Guided local search. Springer.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Results on the U-instances. The number of customers N is given in parentheses. The gap is
reported in % with respect to the BKS, and the time is reported in minutes, based on Uchoa et al.
(2017). The best solution per instance, as well as the shortest running time, is highlighted in gray.

Instance ILS HGSADC KGLS

Value Gap Time Value Gap Time Value Gap Time

P01 (101) 27591.0 0.00 0.1 27591.0 0.00 1.4 27650 0.21 3.0
P02 (106) 26375.9 0.05 2.0 26381.8 0.08 4.0 26411 0.19 1.5
P03 (110) 14971.0 0.00 0.2 14971.0 0.00 1.6 14971 0.00 0.1
P04 (115) 12747.0 0.00 0.2 12747.0 0.00 1.8 12747 0.00 0.2
P05 (120) 13337.6 0.04 1.7 13332.0 0.00 2.3 13332 0.00 0.1
P06 (125) 55673.8 0.24 1.4 55542.1 0.01 2.7 55798 0.47 0.1
P07 (129) 28998.0 0.20 1.9 28948.5 0.03 2.7 28973 0.11 0.1
P08 (134) 10947.4 0.29 2.1 10934.9 0.17 3.3 10916 0.00 0.2
P09 (139) 13603.1 0.10 1.6 13590.0 0.00 2.3 13590 0.00 0.1
P10 (143) 15745.2 0.29 1.6 15700.2 0.00 3.1 15728 0.18 0.3
P11 (148) 43452.1 0.01 0.8 43448.0 0.00 3.2 43599 0.35 1.7
P12 (153) 21400.0 0.85 0.5 21226.3 0.03 5.5 21390 0.80 1.3
P13 (157) 16876.0 0.00 0.8 16876.0 0.00 3.2 16876 0.00 4.2
P14 (162) 14160.1 0.16 0.5 14141.3 0.02 3.3 14147 0.06 1.1
P15 (167) 20608.7 0.25 0.9 20563.2 0.03 3.7 20589 0.16 0.2
P16 (172) 45616.1 0.02 0.6 45607.0 0.00 3.8 45807 0.44 0.1
P17 (176) 48249.8 0.92 1.1 47957.2 0.30 7.6 47998 0.39 1.0
P18 (181) 25571.5 0.01 1.6 25591.1 0.09 6.3 25628 0.23 0.7
P19 (186) 24186.0 0.17 1.7 24147.2 0.01 5.9 24194 0.20 2.2
P20 (190) 17143.1 0.96 2.1 16987.9 0.05 12.1 17036 0.33 5.4
P21 (195) 44234.3 0.02 0.9 44244.1 0.04 6.1 44442 0.49 1.6
P22 (200) 58697.2 0.20 7.5 58626.4 0.08 8.0 58747 0.29 5.0
P23 (204) 19625.2 0.31 1.1 19571.5 0.03 5.4 19666 0.52 3.6
P24 (209) 30765.4 0.36 3.8 30680.4 0.08 8.6 30738 0.27 0.5
P25 (214) 11126.9 0.25 2.3 10877.4 0.20 10.2 10929 0.67 2.5
P26 (219) 117595.0 0.00 0.9 117604.9 0.01 7.7 117696 0.09 1.1
P27 (223) 40533.5 0.24 8.5 40499.0 0.15 8.3 40691 0.63 1.6
P28 (228) 25795.8 0.21 2.4 25779.3 0.14 9.8 25830 0.34 1.8
P29 (233) 19336.7 0.55 3.0 19288.4 0.30 6.8 19341 0.58 3.4
P30 (237) 27078.8 0.14 3.5 27067.3 0.09 8.9 27146 0.38 0.2
P31 (242) 82874.2 0.15 17.8 82948.7 0.24 12.4 83144 0.47 6.3
P32 (247) 37507.2 0.63 2.1 37284.4 0.03 20.4 37336 0.17 4.0

0.31 2.4 0.07 6.0 0.28 1.8

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Results on the U-instances. The number of customers N is given in parentheses. The gap is
reported in % with respect to the BKS, and the time is reported in minutes, based on Uchoa et al.
(2017). The best solution per instance, as well as the shortest running time, are highlighted in gray.

Instance ILS HGSADC KGLS

Value Gap Time Value Gap Time Value Gap Time

P33 (251) 38840.0 0.40 10.8 38796.4 0.29 11.7 38916 0.60 1.1
P34 (256) 18883.9 0.02 2.0 18880.0 0.00 6.5 18899 0.10 2.1
P35 (261) 26869.0 1.17 6.7 26629.6 0.27 12.7 26704 0.55 6.5
P36 (266) 75563.3 0.11 10.0 75759.3 0.37 21.4 75966 0.65 4.7
P37 (270) 35363.4 0.21 9.1 35367.2 0.22 11.3 35453 0.46 0.2
P38 (275) 21256.0 0.05 3.6 21280.6 0.17 12.0 21300 0.26 2.2
P39 (280) 33769.4 0.80 9.6 33605.8 0.31 19.1 33709 0.61 7.9
P40 (284) 20448.5 1.10 8.6 20286.4 0.30 19.9 20389 0.81 4.3
P41 (289) 95450.6 0.28 16.1 95469.5 0.30 21.3 95885 0.74 6.6
P42 (294) 47254.7 0.19 12.4 47259.0 0.20 14.7 47450 0.60 4.3
P43 (298) 34356.0 0.37 6.9 34292.1 0.18 10.9 34332 0.30 0.3
P44 (303) 21895.8 0.69 14.2 21850.9 0.49 17.3 21877 0.61 3.1
P45 (308) 26101.1 0.94 9.5 25895.4 0.14 15.3 26072 0.82 2.7
P46 (313) 94297.3 0.27 17.5 94265.2 0.24 22.4 94844 0.85 8.9
P47 (317) 78356.0 0.00 8.6 78387.8 0.04 22.4 78414 0.08 7.2
P48 (322) 29991.3 0.42 14.7 29956.1 0.30 15.2 30038 0.58 2.6
P49 (327) 27812.4 0.93 19.1 27628.2 0.26 18.2 27652 0.35 4.0
P50 (331) 31235.5 0.43 15.7 31159.6 0.18 24.4 31142 0.13 6.2
P51 (336) 139461.0 0.19 21.4 139534.9 0.24 38.0 141060 1.34 0.4
P52 (344) 42284.0 0.44 22.6 42208.8 0.26 21.7 42398 0.71 8.1
P53 (351) 26150.3 0.79 25.2 26014.0 0.26 33.7 26162 0.83 3.0
P54 (359) 52076.5 1.10 48.9 51721.7 0.41 34.9 51988 0.93 0.4
P55 (367) 23003.2 0.83 13.1 22838.4 0.11 22.0 22972 0.69 8.3
P56 (376) 147713.0 0.00 7.1 147750.2 0.03 28.3 147879 0.11 8.7
P57 (384) 66372.5 0.44 34.5 66270.2 0.29 40.2 66400 0.48 0.7
P58 (393) 38457.4 0.49 20.8 38374.9 0.28 28.7 38381 0.29 1.3
P59 (401) 66715.1 0.71 60.4 66365.4 0.18 49.5 66571 0.50 0.5
P60 (411) 19954.9 1.20 23.8 19743.8 0.13 34.7 20065 1.76 10.7
P61 (420) 107838.0 0.04 22.2 107924.1 0.12 53.2 108351 0.51 2.5
P62 (429) 65746.6 0.37 38.2 65648.5 0.23 41.5 65820 0.49 4.0
P63 (439) 36441.6 0.13 39.6 36451.1 0.15 34.6 36502 0.29 4.2
P64 (449) 56204.9 1.53 59.9 55553.1 0.35 64.9 55747 0.70 1.2
P65 (459) 24462.4 1.16 60.6 24272.6 0.38 42.8 24240 0.24 13.5
P66 (469) 222182.0 0.12 36.3 222617.1 0.32 86.7 223433 0.69 2.3
P67 (480) 89871.2 0.38 50.4 89760.1 0.25 67.0 89970 0.49 3.8
P68 (491) 67226.7 0.89 52.2 66898.0 0.40 71.9 67261 0.94 10.9

0.53 23.1 0.24 30.3 0.59 4.4

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Results on the U-instances. The number of customers N is given in parentheses. The gap is
reported in % with respect to the BKS, and the time is reported in minutes, based on Uchoa et al.
(2017). The best solution per instance, as well as the shortest running time, is highlighted in gray.

Instance ILS HGSADC KGLS

Value Gap Time Value Gap Time Value Gap Time

P69 (502) 69346.8 0.14 80.8 69328.8 0.11 63.6 69327 0.11 15.0
P70 (513) 24434.0 0.96 35.0 24296.6 0.40 33.1 24287 0.36 2.2
P71 (524) 155005.0 0.27 27.3 154979.5 0.25 80.7 155342 0.48 10.1
P72 (536) 95700.7 0.61 62.1 95330.6 0.22 107.5 95875 0.79 2.6
P73 (548) 86874.1 0.19 64.0 86998.5 0.33 84.2 86920 0.24 11.2
P74 (561) 43131.3 0.88 68.9 42866.4 0.26 60.6 42989 0.54 1.3
P75 (573) 51173.0 0.77 112.0 50915.1 0.27 188.2 51020 0.47 10.5
P76 (586) 190919.0 0.20 78.5 190838.0 0.15 175.3 191094 0.29 3.5
P77 (599) 109384.0 0.52 73.0 109064.2 0.23 125.9 109397 0.54 10.7
P78 (613) 60444.2 1.11 74.8 59960.0 0.30 117.3 60100 0.54 2.6
P79 (627) 62905.6 0.87 162.7 62524.1 0.25 239.7 62612 0.39 2.2
P80 (641) 64606.1 1.20 140.4 64192.0 0.55 158.8 64035 0.31 2.4
P81 (655) 106782.0 0.00 47.2 106899.1 0.11 150.5 106969 0.18 2.2
P82 (670) 147676.0 0.66 61.2 147222.7 0.35 264.1 147796 0.74 0.3
P83 (685) 68988.2 0.82 73.9 68654.1 0.33 156.7 68927 0.73 4.8
P84 (701) 83042.2 0.91 210.1 82487.4 0.24 253.2 82551 0.31 2.4
P85 (716) 44171.6 1.49 225.8 43641.4 0.27 264.3 43772 0.57 16.8
P86 (733) 137045.0 0.50 111.6 136587.6 0.16 244.5 137364 0.73 10.1
P87 (749) 78275.9 0.74 127.2 77864.9 0.21 313.9 78337 0.82 2.6
P88 (766) 115738.0 0.92 242.1 115147.9 0.41 383.0 115418 0.64 9.8
P89 (783) 73722.9 1.37 235.5 73009.6 0.39 269.7 73038 0.43 11.8
P90 (801) 74005.7 0.57 432.6 73731.0 0.20 289.2 73525 -0.08 15.2
P91 (819) 159425.0 0.51 148.9 158899.3 0.18 374.3 159525 0.58 14.8
P92 (837) 195027.0 0.39 173.2 194476.5 0.11 463.4 195203 0.48 13.9
P93 (856) 89277.6 0.24 153.7 89238.7 0.20 288.4 89289 0.26 24.9
P94 (876) 100417.0 0.70 409.3 99884.1 0.17 495.4 100244 0.53 19.9
P95 (895) 54958.5 1.45 410.2 54439.8 0.49 321.9 54321 0.28 4.4
P96 (916) 330948.0 0.33 226.1 330198.3 0.11 560.8 331081 0.38 10.8
P97 (936) 134530.0 1.07 202.5 133512.9 0.31 531.5 133968 0.65 26.3
P98 (957) 85936.6 0.31 311.2 85822.6 0.18 432.9 85756 0.10 14.7
P99 (979) 120253.0 0.89 687.2 119502.1 0.26 554.0 119737 0.46 9.6
P100 (1001) 73985.4 1.71 792.8 72956.0 0.29 549.0 73060 0.44 28.1

0.72 195.7 0.24 268.6 0.45 9.9

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTable 7: Results on the C-instances. The number of customers N is given in parentheses, and D
denotes the number of depots. The gap is reported in % with respect to the BKS, and the time is
reported in minutes, based on Cordeau et al. (1997). The best solution per instance, as well as the
shortest running time, is highlighted in gray.

Instance D ALNS HGSADC KGLS

Value Gap Time Value Gap Time Value Gap Time

P01 (50) 4 576.87 0.00 0.5 576.87 0.00 0.2 576.87 0.00 0.1
P02 (50) 4 473.53 0.00 0.5 473.53 0.00 0.2 473.53 0.00 0.1
P03 (75) 2 641.19 0.00 1.1 641.19 0.00 0.4 641.19 0.00 0.2
P04 (100) 2 1006.9 0.49 1.5 1001.23 0.00 1.9 1001.06 0.00 1.0
P05 (100) 2 752.3 0.31 2 750.03 0.00 1.1 750.59 0.07 0.9
P06 (100) 3 883.01 0.74 1.6 876.50 0.00 1.1 876.70 0.02 0.9
P07 (100) 4 889.36 0.84 1.5 884.43 0.28 1.6 883.91 0.22 1.4
P08 (249) 2 4421.03 1.10 5.6 4397.42 0.56 10.0 4390.22 0.40 0.1
P09 (249) 3 3892.50 0.88 6.0 3868.59 0.26 9.5 3866.95 0.21 1.7
P10 (249) 4 3666.85 0.98 6.1 3636.08 0.14 9.8 3658.64 0.76 0.2
P11 (249) 4 3573.23 0.77 6.0 3548.25 0.06 7.1 3550.88 0.14 4.0
P12 (80) 2 1319.13 0.01 1.3 1318.95 0.00 0.5 1318.95 0.00 0.1
P13 (80) 2 1318.95 0.00 1.0 1318.95 0.00 0.6 1318.95 0.00 0.1
P14 (80) 2 1360.12 0.00 1.0 1360.12 0.00 0.6 1360.12 0.00 0.1
P15 (160) 4 2519.64 0.57 4.2 2505.42 0.00 1.9 2505.42 0.00 0.1
P16 (160) 4 2573.95 0.07 3.1 2572.23 0.00 2.0 2572.23 0.00 0.1
P17 (160) 4 2709.09 0.00 3.0 2709.09 0.00 2.1 2709.09 0.00 0.1
P18 (240) 6 3736.53 0.91 7.0 3702.85 0.00 4.5 3702.85 0.00 3.4
P19 (240) 6 3838.76 0.31 5.3 3827.06 0.00 4.2 3827.06 0.00 0.0
P20 (240) 6 4064.76 0.16 5.0 4058.07 0.00 4.4 4058.07 0.00 0.3
P21 (360) 6 5501.58 0.46 9.7 5476.41 0.00 10.0 5482.47 0.11 1.0
P22 (360) 6 5722.19 0.35 7.7 5702.16 0.00 10.0 5702.16 0.00 0.1
P23 (360) 6 6092.66 0.23 7.4 6078.75 0.00 10.0 6078.75 0.00 1.0

0.40 3.8 0.06 4.1 0.08 0.7

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 8: Results on the MTVRP instances by Taillard et al. (1996). The number of customers N is
given in parentheses. Each instance is defined by the number of vehicles M and a time horizon T 1 or
T 2. The gap is reported in % with respect to the BKS in Cattaruzza et al. (2016), and the time is
reported in seconds. NF denotes that no feasible solution could be found.

KGLS KGLS

Instance M T 1 Value Gap Time T 2 Value Gap Time

CMT1 (50) 1 551 524.61 0.00 1 577 524.61 0.00 1
2 275 533.00 0.00 25 289 529.85 0.00 1
3 192 NF
4 144 NF

CMT2 (75) 1 877 835.26 0.00 1 919 835.26 0.00 1
2 439 835.26 0.00 1 459 835.26 0.00 1
3 292 835.26 0.00 1 306 835.26 0.00 1
4 219 835.26 0.00 1 230 835.26 0.00 1
5 175 836.71 0.11 1 184 835.26 0.00 1
6 146 NF 153 847.7 1.01 13
7 131 NF

CMT3 (100) 1 867 826.14 0.00 3 909 826.14 0.00 3
2 434 826.14 0.00 3 454 826.14 0.00 3
3 289 826.14 0.00 3 303 826.14 0.00 3
4 217 828.73 -0.09 30 227 826.14 0.00 3
5 173 NF 182 832.88 0.06 2
6 145 NF 151 837.34 0.36 1

CMT4 (150) 1 1080 1031.07 0.01 4 1131 1031.07 0.00 4
2 540 1031.07 0.00 16 566 1031.07 0.06 16
3 360 1031.07 0.26 4 377 1031.07 -0.05 8
4 270 1031.07 0.00 4 283 1031.07 0.00 4
5 216 1031.07 0.00 4 226 1031.07 0.02 4
6 180 1038.05 0.33 159 189 1031.07 0.06 4
7 154 NF 162 1035.41 -0.06 111
8 135 NF 141 NF

CMT5 (199) 1 1356 1297.70 -0.36 24 1421 1297.70 -0.17 25
2 678 1297.70 -0.34 24 710 1297.70 -0.59 25
3 452 1297.70 -0.29 24 474 1297.70 -0.26 25
4 339 1297.70 -0.54 24 355 1297.70 -0.46 25
5 271 1298.07 -0.15 59 284 1297.70 -0.45 25
6 226 1297.70 -0.43 25 237 1297.70 -0.65 25
7 194 1298.50 -0.83 60 203 1297.70 -0.29 25
8 170 1296.02 -0.61 35 178 1297.70 -0.85 25
9 151 1298.04 -0.76 48 158 1294.85 -0.95 35
10 136 NF 142 1310.04 0.09 9

CMT11 (120) 1 1094 1042.64 0.05 87 1146 1042.64 0.05 84
2 547 1042.64 0.05 87 573 1042.64 0.05 84
3 365 1042.64 0.05 87 382 1042.64 0.05 84
4 274 NF 287 1042.51 0.04 106
5 219 1044.51 0.23 60 229 1043.80 0.16 119

CMT12 (100) 1 861 819.56 0.00 1 902 819.56 0.00 1
2 430 819.56 0.00 1 451 819.56 0.00 1
3 287 819.56 0.00 1 301 819.56 0.00 1
4 215 819.56 0.00 1 225 819.56 0.00 1
5 172 NF 180 824.78 0.00 1
6 150 823.14 0.00 56

F11 (71) 1 254 241.97 0.00 81 266 241.97 0.00 1
2 127 252,27 0.57 26 133 241.97 0.00 1
3 0.05 87 89 254,07 0.00 1

F12 (134) 1 1221 1162.96 0.00 40 1279 1162.96 0.00 40
2 611 1162.96 0.00 40 640 1162.96 0.00 40
3 407 1162.96 0.00 40 426 1162.96 0.00 40

33

