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Abstract 

The concept of exaptation was originally introduced in evolutionary biology. In innovation studies, 

an exaptation refers to a technology co-opted for its current function thanks to technological 

features selected for old functions, or that had no function at all. Previous empirical studies have 

focused on the organizational-level conditions of exaptation. This paper focuses on invention-

level conditions such as technological complexity, inventors’ analogical ability, and patent scope. To test our 

hypotheses, we analyse a large sample of U.S. patents obtained from the USPTO and NBER 

databases.  

Key-words: exaptation, complexity, analogy making,  patents 

  

                                                             
1  Corresponding Author 

   Antwerp Centre of Evolutionary Demography (ACED), Department of Management, University of Antwerp.   
mariano.mastrogiorgio@uantwerpen.be.  

2   
   Antwerp Centre of Evolutionary Demography (ACED), Department of Management, University of Antwerp. 
 Center for Innovation Research (CIR), Department of Organizational Studies, Tilburg University 
   victor.gilsing@uantwerpen.be. 

 



2 
 

1. Introduction 

Recently, the concept of exaptation has made its appearance in innovation studies (Andriani and 

Cohen 2013; Andriani and Carignani 2014; Cattani 2005, 2006; Dew et al. 2004; Furnari 2011; 

Lane et. Al 2007). Gould and Vrba (1982: 6) originally introduced the concept of exaptation in 

evolutionary biology to contrast it with that of adaptation and to refer to ‘biological characters 

evolved for other usages (or for no function at all) and later “coopted” for their current role’.i In 

innovation studies, an exaptation refers to a technology that is fit for its current function thanks 

to technological features that were selected for old functionsor that had none at alland were 

later ‘co-opted’ for their current function. Gutenberg’s invention of the printing press, for 

example, was based on technological components of the wine press co-opted for the new 

function of printing (Johnson 2010).   

An exaptation always implies the ‘functional shift’ of technological features. To some 

extent it also implies ‘non-anticipation’, as very often the emergence of a novel function is the 

result of a serendipitous process that was not anticipated ex ante. Exaptation has a central 

importance for innovation for two reasons. First, it is a pervasive phenomenon in many 

industries and the examples abound. For instance, the birth of the modern pharmaceutical and 

chemical industries was triggered by multiple exaptations of coal tar (see Andriani and Carignani 

2014 for an extensive list of examples).ii . As noticed by Dew et al. (2004), exaptations ‘… are an 

important part of what  entrepreneurs do’. Second, it constitutes an important and little-studied 

mechanism that underlies the emergence of new technologies and ‘the genesis of new markets’ 

(Dew et al. 2004: 70). As noticed by Stuart Kauffman, ‘one of the most striking facts about 

current economic theory’ iii is the lack of an account of the persistent explosion of technologies, 

goods, and markets into their ‘adjacent possible’ through exaptation (Kauffman 2000: 212). In 

this paper, we frame exaptation as a technological diversity-generating mechanism and explore 

conditions that foster it.  

Despite the increasing interest, the literature on exaptation is still limited in size and it has 

focused on the theoretical aspect or it has been conducted through case studies and simulations. 

The few existing Previous empirical studies have focused on the organizational-level conditions 

for exaptation. For instance, Cattani (2005) has analysed the role played by firm ‘pre-adapted- 

capabilitiesthat is those capabilities   accumulated in the past that turned out to be useful for 

co-opting an existing technology for a new function (defined as ‘pre-adapted’ capabilities). In 

particular, he has analysed how the accumulation of capabilities in the production of glass 

allowed big glass manufacturers (such as Corning) to co-opt glass fibers for long-distance 

communication and thus enter the fiber optics industry. He found that both the stock of pre-

adapted capabilities and the extent to which firms build on them increase firms’ technological 

performance. This paper digs deeper into exaptation, adopting a more micro approach and 
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focusing on invention-level rather than organizational-level conditions. This focus on invention-

level conditions is consistent with a recent call for research on exaptation: Cattani argued that 

inventors play a ‘key role in facilitating the diffusion and recombination of skills and knowledge 

accumulated in otherwise distinct technological domains [and] future research should explore this 

issue more deeply’ (Cattani 2005: 577). Our focus on invention-level conditions is also consistent 

with a very recent theoretical contribution by Andriani and Carignani (2014) that analysed the 

relationship between technological modularityan invention-level conditionand exaptation, 

and argued that modularity plays a positive role for exaptation. However, their contribution is 

mostly theoretical and no empirical test exists on the impact of these conditions on exaptation. 

Our paper is a first attempt in that direction. Based on the empirics of Fleming and Sorenson 

(2001)’ Technology as a Complex Adaptive System, we explore those conditions that foster Exaptive 

(rather than Adaptive) innovations and offerin this waya complementary framework.     

Our objective is to arrive at a more comprehensive understanding of the invention-level 

conditions that foster exaptation. We examine: 1) those conditions related to the underlying 

technology itself such as technological complexity and ‘institutional’ conditions related to patent 

scope, which also affects technological development in a significant way; and 2) those conditions 

related to the inventors ‘acting’ on the technology and to their ability to draw inventive analogies 

between different technological domains. This ability, in turn, is a function of their stock of 

knowledge that spans these domains. This comprehensive treatment of these conditions allows 

us to focus both on the technology and the agents, and to avoid focusing solely on one while 

reducing the other to a secondary role (Lane et al. 2007). A quote that best summarises the need 

for a comprehensive treatment can be attributed to Vincenti (1995: 557), who has repeatedly 

stressed that technology is ‘influenced by many factors besides the technical’, and they ‘must 

figure in any complete treatment of the shaping of technology’ (see also Vincenti 1991).iv  

We examine the following conditions:  

 1) Technological complexity, which is the necessaryv condition that makes exaptation 

‘possible’. Technological complexity is defined in terms of the level of interdependence among 

the physical components of a technology (Fleming and Sorenson 2001; Kauffman 1993; Ulrich 

1995). We focus on technological complexity because, as pointed out by Dew et al. (2004), 

exaptation follows from the possibility to decompose a technology into its components and 

therefore directly depends on a not-excessive level of interdependence among them.vi A similar 

point has been raised by Andriani and Carignani (2014: 1609) who note that the possibility to 

decompose a technology multiplies the design options of the technology and ‘the overall effect is 

a combinatorial explosion of innovative possibilities’.  

 2) Inventors’ analogical ability, which is the ‘ability to realise’ the possibility opened up by 

technological complexity. New creative syntheses often result from linking different knowledge 
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domains. This is the ability of inventors to draw inventive analogies between different 

technological domains. This ability, in turn, is a function of their stock of knowledge that spans 

these domains.  

3) Patent scope, which is, in a certain way, the ‘institutional room’ that shapes the two 

previous conditions. Patent scope is the set of hypothetical developments of the technology that, 

together with the main configuration, are also subject to patent protection. We focus on patent 

scope because, as recently emphasized by Andriani and Carignani (2014: 1616), ‘exaptation-based 

processes face multiple obstacles that are rooted in the way innovation is conceptualised […] and 

property rights are regulated’. Similarly, Merges and Nelson (1990) have argued that the 

possibility to explore novel technological configurations can be seriously limited by the extension 

of patent scope.  

To address these aspects, we proceed in three stages, analysing 1) the relationship 

between technological complexity and exaptation, then 2) the direct role of inventors’ analogical 

ability and patent scope for exaptation, and then 3) the moderating role of inventors’ analogical 

ability and patent scope in the relationship between technological complexity and exaptation. In 

order to test our hypotheses, we analyse a large sample of patents obtained from the U.S. Patent 

and Trademark Office (USPTO) and the National Bureau of Economic Research (NBER) 

databases. As our objective is to examine the conditions of exaptation at the invention level, we 

assume that a generic invention is identified by a patent. The main challenge is how to deal 

empirically with exaptation. As mentioned, exaptation always implies some degree of non-

anticipation, which arises when the emergence of a new function of an existing technology has 

not been originally envisioned (often because it is the result of a serendipitous process). 

Exaptation also involves, by definition, a functional shift. In order to address both, we introduce 

a novel proxy based on the proportion of cross-class forward citations. We also introduce a 

proxy for inventors’ analogical ability, while we rely on Fleming and Sorenson (2001) for the 

measure of technological complexity.  

This paper offers several contributions. The first contribution is that it expands the to the 

innovation literature that has adopted evolutionary analogies (Nelson and Winter 1982) and , 

buildsing on the idea that ‘...invention…much resembles a biological process’ (Gilfillan 1935: 275; 

Fleming and Sorenson 2001). Several studies have started to shed light on the black box of 

invention in order to go beyond the simple analysis of the economic and organisational impact of 

‘given’ technological innovations (Fleming and Sorenson 2001; Rogers 1983; Rosenberg 1982; 

Tushman and Anderson 1986). Some of these studies have described the evolutionary 

mechanism that lies behind the process of invention and that leads to the emergence of new 

technological innovations (Fleming and Sorenson 2001). These studies have mainly adopted a 

‘recombinant’ perspective: technological innovations are the result of a recombination of existing 
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technologies, followed by adaptive market selection (Arthur 2009).vii However, as noticed by 

Andriani and Carignani (2014: 1614), recombinant innovation ‘may also exhibit an exaptive 

aspect’. In other words, recombinations are often triggered by the serendipitous discovery of new 

functions of existing technologies.: as the Gutenberg example illustrates, the recombination of 

movable type and a wine press that led to the printing press was triggered by the discovery of a 

novel function of the wine press. The adoption of a novel conceptexaptationand the 

introduction of a novel measure will therefore allow us to shed light on two important yet 

neglected issues: 1) a functional shift issue, which arises when recombination is triggered by the 

emergence of a new functionality of an existing technology;viii and 2) a non-anticipation issue, 

which arises when the emergence of a new functionality has not been originally envisioned 

(because it is the result of a serendipitous process).ix  

The second contribution of this paper is the focus on a comprehensive set of invention-

level conditions that make exaptation more likely; previous empirical studies have mainly focused 

on organizational-level conditions. Our focus responds to a call for deeper exploration of the role 

played by invention (Cattani 2005). The third contribution of our paper is methodological. As 

mentioned above, the main challenge is to deal empirically with exaptation. To our knowledge, 

ours is the first attempt to study exaptation at the invention-level using a combination of novel 

measures and empirical strategies based on state-of-the-art patent literature.  

The paper is organised as follows. In Section 2 we formulate testable hypotheses, in 

Section 3 we describe the data and the empirical setting, and in Section 4 we present the results. 

Section 5 presents our discussion and conclusions; Section 6 contains a technical appendix.  

 

2. Theory 

2.1 Technological Complexity and Design Options 

We first define a technology as a system composed of a hierarchy of subparts (Vincenti 1994; 

Whitney 2005). We then define technological complexity in terms of the level of interdependence 

between the subparts (Fleming and Sorenson 2001; Kauffman 1993; Ulrich 1995).x When 

technological complexity is high, the inventive process of ‘decomposition and modification’ is 

constrained by complex interdependencies between the subparts. The idea that such constraints 

matter for invention is well established in engineering studies. According to Phillips (2007: 4), 

‘there is a struggle between the creative ideas of machine designers and their recalcitrant, real 

machinery’that is between the ideas of inventors and the physical constraints imposed by 

technologies. Similarly, according to Vincenti (1991), inventors they can have more degrees of 

freedom and arrive more easily at novel solutions when these constraints are low. The 

importance of constraints is also evidenced by the daily current use of scientific and visual 

approaches for their representation, such as ‘kinematic’ principles and the use of ‘design structure 
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matrices’ in current engineering practice.xi xii The different ways to decompose and modify a 

technology have been classified by the modularity literature, which has defined a set of six 

different ‘operators’ such that any technological decomposition and modification can be 

represented by a combination of them (Baldwin and Clark 2000).xiii. ‘Substituting’ and 

‘augmenting’ operators are of pivotal importance. ‘Substituting operators’ (Baldwin and Clark 

2000)substituting a technological subpart for a better one after the technology has been 

decomposedhave been studied in the innovation literature that has explicitly focused on the 

processes of technological ‘adaptation’. For example, In particular, Fleming and Sorenson (2001) 

have found that technological improvements or adaptationsrealised through substituting 

operators, although they are not explicitly mentionedare enhanced by intermediate levels of 

technological complexity. However, ‘Aaugmenting operators’which consist in adding a new 

technological subpart that gives the technology a new functionality and are the implicit focus of 

our paper (Baldwin and Clark 2000)have  give rise to novel functionalities or exaptations but 

they have received much less attention in the literature despite their breakthrough-generating 

nature.  

As noted by Dew et al. (2004), exaptation follows from the ‘possibility’ of decomposing a 

technology into its subparts. Andriani and Carignani (2014) theoretically argue a similar point. We 

will argue that intermediate levels of complexity positively increase the degrees of freedom to add 

new subparts to a technology and the likelihood of realising configurations with novel 

functionalities, and therefore of exaptation. This suggests that intermediate levels of complexity 

increase the ‘design options’ of a technology (Baldwin and Clark 2000) and expand the set of 

novel functionalities. In fact, as argued by Kauffmann (2000), ‘a system in which combination is 

easy to happen will rapidly explore the adjacent possible’ (Farmer et al. 2012: 7). Similarly, as 

argued by Andriani and Carignani (2014: 1609), the possibility to decompose a technology 

multiplies the design options of the technology and ‘the overall effect is a combinatorial 

explosion of innovative possibilities’.xiv The history of computers illustrates the point very well: 

modular designs of the 1990s started to include new components with no counterpart in older 

designs, many of which were ‘never-before-imagined’ software applications (Baldwin and Clark 

2000; Langlois and Robertson 1992).  

The fact that the potential or likelihood of exaptation increases for intermediate levels of 

technological complexity means that the relationship between technological complexity and 

exaptation is sensitive to two opposing effects. First, below a certain threshold, technological 

complexity has a positive effect on the potential of exaptation. Second, above a certain threshold, 

technological complexity has a negative effect on the exaptation potential because it significantly 

limits the possibility of decomposing and modifying a technology through the addition of a new 

Met opmaak: Lettertype: Cursief
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subpart that gives the technology ‘some new type of functionality’ (Baldwin and Clark 2000: 

136).xv This suggests an inverted U-shaped relationship between the exaptation potential and 

technological complexity: exaptation is more likely for intermediate levels of technological 

complexity and is less likely for both very high and very low levels of technological complexity.   

High levels of technological complexity expose inventors and designers to a ‘complexity 

catastrophe’ (Kauffmann 1993): they will have to devote their efforts to the processing of 

complex interdependencies and interactions among subparts (Fleming and Sorenson 2001). This 

will reduce their ability to explore ‘augmenting configurations’, and therefore the exaptation 

potential. Low levels of technological complexity, on the other hand, allow inventors and 

designers to eliminate cycling traps and loops in the design process and to explore augmenting 

configurations more easily (Baldwin and Clark 2000; Fleming and Sorenson 2001). However, low 

values of technological complexity are achieved through the imposition of ‘design rules’ that 

remove certain variables from the set of choices, and this reduces the ability of inventors and 

designers to explore certain areas of the ‘space’ of possible designs (Baldwin and Clark 2000; 

Fleming and Sorenson 2001). As argued by Baldwin and Clark (2000: 69): ‘Converting an 

ordinary design parameter into a design rule entails both benefits and costs. […] Designers will 

lose the ability to explore some parts of the space of designsin effect, the architects will restrict 

the search, declaring some parts of the design space to be out of bounds’. This means that both 

high levels and low levels of technological complexity reduce the ability of inventors to explore 

augmenting configurations, and therefore thus the exaptation potential. This is consistent with 

the conclusions of Ethiraj and Levinthal (2004), who analysed the trade-offs between the poor 

recombinant performance that results from excessively high or low levels of interdependence. 

Hence, we expect the exaptation potential to be highest for intermediate levels of technological 

complexity. This leads to our first hypothesis: 

H1. Technological complexity exhibits an inverted U-shaped relationship with exaptation the exaptive potential.  

 

2.2 Analogy Making 

Exaptation also follows from the ‘ability’ of inventors to draw new creative syntheses that often 

result from linking different knowledge domains. This is the ability of inventors to draw inventive 

analogies between different technological domains. This ability, in turn, is a function of their 

stock of knowledge that spans these domains.xvi Analogy making plays a central role during the 

process of invention (Hargadon and Sutton 1997). In a more fundamental way, it ‘stands at the 

very basis of thought and makes human reasoning possible’ (see Chalmers at al. 1995).xvii Indeed 

analogy making is gaining ground in management and innovation studies (Gavetti et al. 2005) as 

well as in the exaptation literature (Furnari 2011). Analogy making is the transfer of a solution 

from a known field to a new one (Gentner 1983; Gick and Holyoak 1980): 1) inventors identify a 
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synthetic representation of the ‘target domain’ that contains the problem to be solved (e.g. the 

printing press); 2) they then recall a synthetic representation from a ‘base domain’ they had 

previous experience with and whose problems displayed a similar structure to that of the target 

problem (e.g. the wine press); 3) this base domain provides solutions to the target problem; and 

4) one of the solutions may eventually be applied. Therefore, successful analogy making depends 

on the inventors’ ability to create a map between a base domain and the target problem (Gentner 

1983). This ability, in turn, is a function of the inventors’ prior knowledge stock in these domains. 

As argued by Salomon (1994: 372), ‘knowledge acquired prior to the analogy task may also affect 

positive analogical transfer’ (see also Gentner and Landers 1985; Gick and Holyoak 1983). This 

knowledge can be more or less domain specific or generic (Gavetti et al. 2005; Rumelhart 1980; 

Widerman and Owston 1991).  

We hypothesise that inventors’ analogical ability allows them to envision a novel function 

for an existing technology (e.g. for a wine press). Moreover, inventors’ analogical ability allows 

them to arrive at a richer representation of the ‘architecture’ of the inventive problem (e.g. how 

to exapt the wine press into a printing press) and to process interdependencies during the 

inventive process more successfully. This is consistent with recent findings that analogy making is 

powerful in high-complexity settings (see Gavetti et al. 2005). This has two implications: 

inventors’ analogical abilities have a direct, positive effect on the exaptation potential, and they 

also positively moderate the inverted U-shaped relationship between technological complexity 

and the exaptation potential. This means that for an inventor with greater analogical ability there 

is a sharper advantage (more exaptive innovations) in moving from low to medium levels of 

technological complexity: the left-side of the curvilinear relationship will increase more rapidly. 

Similarly, for an inventor with greater analogical ability there is a sharper advantage in moving 

from medium to high levels of technological complexity: the right-side of the curvilinear 

relationship will decrease more slowly.  

H2. Inventors’ analogical ability positively affects the exaptation potential.  

H3. Inventors’ analogical ability positively moderates the inverted U-shaped relationship between technological 

complexity and the exaptation potential. 

 

2.3 Patent Scope 

Exaptation also follows from the possibility to build on a technology whose successive 

developments are not overly protected by patent scope.xviii We define patent scope as the size of 

the set of hypothetical developments of the technology that, together with the main 

configuration, are also subject to patent protection. Patent scope is the set of hypothetical 

‘embodiments’ of the technology that were originally envisioned by the inventors, and can be 

likened to the fence around a real property: it distinguishes inventors’ intellectual property from 
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the surrounding ‘terrain’ of technological possibilities (Merges and Nelson 1990).xix Despite its 

‘institutional’ dimension, patent scope acts as an important invention-level condition that shapes 

successive technological developments (Kitch 1977; Merges and Nelson 1990).xx In particular, it 

plays an important role for those technologies whose developments can proceed on alternative 

trajectories (Merges and Nelson 1990). As argued by Bonaccorsi (2011), the greater the patent 

scope, the stronger the monopoly power granted to the technology owner and the fewer the 

incentives for other firms to develop a new technology that may infringe on the old one. Indeed 

Klemperer (1990) and Gilbert and Shapiro (1990) have argued that patent scope is a positive 

input of an innovator’s profit function. Reitzig (2003) has argued that patent scope is a ‘value 

driver’, and Lerner (1994) has found that patent scope increases the value of biotech firms. Other 

economists, on the other hand, have stressed the negative aspects of patent scope, such as social 

losses from monopoly and from the power to block future technological developments (Gallini 

1992; Machlup 1958; Scherer 1980; Turner 1969).xxi  

 We hypothesise that the extension of patent scope limits the incentive of inventors’ 

incentive to modify a decomposable technology ‘capitalise on’ decomposability in order to and 

explore new a technology’s exaptive options. This is consistent with the idea that patent scope 

blocks successive technological developments (Kitch 1977; Merges and Nelson 1990). This has 

two implications: patent scope has a direct negative effect on the exaptation potential, and it 

negatively moderates the inverted U-shaped relationship between technological complexity and 

the exaptation potential. This means that those technologies with greater patent scope are 

characterised by a sharper disadvantage (less exaptive innovations) moving from low to medium 

levels of technological complexity: the left-side of the curvilinear relationship will increase more 

slowly. Similarly, those technologies with greater patent scope are characterised by a sharper 

disadvantage moving from medium to high levels of technological complexity: the right-side of 

the curvilinear relationship will decrease more rapidly.  

H4. Patent scope negatively affects the exaptation potential.  

H5. Patent scope negatively moderates the inverted U-shaped relationship between technological complexity and the 

exaptation potential. 

 

3. Methods 

3.1 Data 

Figure 1 illustrates the expected effects for the main hypothesis and the interactions (H1, H3, and 

H5 respectively). In order to test our hypotheses, we studied exaptation at the invention level; we 

identified an invention with a patent and considered a cross-section of U.S. patents. Raw patent 

data were obtained from the USPTO and NBER databases (Hall et al. 2001), and the main 

measures were built after merging these databases to the Patent Network Dataverse (Lai et al. 
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2011). Patent data allowed us to exploit the information contained in forward citations and in the 

classification system, which proved particularly useful. Forward citations not only reflect the 

replication around the ‘prior art’ of an invention, they also reflect the extension of the prior art in 

novel technological domains (Sorenson et al. 2006). This is demonstrated by the fact that, quite 

often, forward citations come from different technological classes (Ghiglino and Kuschy 2010).xxii 

This allowed us to introduce a novel proxy of exaptation based on the proportion of cross-class 

forward citations.xxiii  The fact that a patent receives cross-class forward citations does not 

necessarily imply that the underlying invention (or parts of it) has been truly exapted for new 

functions. We would have had to embark on a detailed case study for each invention -well 

beyond the scope of our study-  in order to assess this. Rather, our measure captures the 

‘potential’ of an invention to be exapted and constitutes, to our knowledge, a first attempt to 

measure exaptation-like phenomena at the patent-level.xxiv We refer to our measure as ‘exaptive 

potential’.  

Overall, our empirical framework builds strongly on the work of Fleming and Sorenson 

(2001) (see also: Fleming 2001; Singh and Fleming 2010; Sorenson et al. 2006). That empirical 

treatment is the first attempt in the innovation literature to deal with issues such as technological 

complexity (beyond the use of simulations, such as NK simulations). Our empirical framework 

consisted of the following steps: 1) we considered a random cross-section of U.S. patents granted 

between January and June 1991 (both the January-June interval and the year 1991 were chosen 

randomly); 2) for each patent we used a 1991-1999 window of forward citations to calculate its 

exaptationexaptive potential; 3) for each patent we then considered a 1975-1990 pre-sample 

window in order to calculate technological complexity, inventor’s analogical ability, and other 

controls. The estimation sample for the main hypothesis consists of 19,076 patents. Figure 2 

illustrates our empirical setting.  

 

3.2 Measures 

3.2.1 Exaptationive Potential 

Exaptation always implies two aspects: the ‘functional shift’ of an existing invention, and a certain 

degree of ‘non-anticipation’, as the functional shift cannot always be envisioned ex-ante and is 

often the result of a serendipitous process. Our novel measure of exaptation exaptive potential 

tries to captures both aspects. In order to capture the functional shift, we built on the fact that 

forward citations often come from different technological classes (Ghiglino and Kuschy 2010). 

This means that forward citations often reflect the extension of an invention in novel 

technological domains (Sorenson et al. 2006). We assumed that cross-class forward citations 

reflect the co-option of potential that an invention is co-opted for novel functions. We therefore 

assumed that different technological classes identify different functions, and this is consistent 
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with the classification system developed by the USPTO. Indeed the USPTO uses the 

‘fundamental, direct, or necessary function as the principal basis of classification’, where the 

‘function’ is the result achieved by ‘similar processes or structures […] by the application of 

similar natural laws to similar substances’ (USPTO 2012b: 3).  

In order to capture non-anticipation, we built on the fact that the USPTO assigns a 

patent to several classes: an OR class, which is mandatory and reflects the most comprehensive 

claim or main function of the invention, and XR classes, which may reflect alternative 

applications envisioned when the patent was granted.xxv If both the OR and XR classes of the 

focal patent differed from the OR class of the citing patent (at the three-digit level), we assumed 

that the functional shift was not originally envisioned when the focal patent was granted. This 

can be an indirect indication of the fact that the functional shift was conceived later on, maybe as 

the result of unplanned serendipity. Overall, our measure of exaptation exaptive potential is 

based on the proportion of cross-class forward citations. In our setting, a forward citation is 

cross-class if both the OR and XR classes of the focal patent differ from the OR class of the 

citing patent. Therefore, the exaptation forexaptive potential of patent i is given by: 

𝑦𝑖 = ∑
dj

N

N
j=1             

where N is the number of forward citations received until the end of 1999,xxvi and dj is a dummy 

equal to 1 if the both the OR and XR classes of patent i differ from the OR class of the citing 

patent j (0 otherwise). Therefore, our measure differs from patent generality indexes (Trajtenberg 

et al. 1997) used in a variety of studies in order to identify general-purpose technologies. These 

indexes, also based on the range of technology fields that cite the focal patent, are only based on 

OR classes. Figure 3 contains a graphical illustration of the measure.  

 According to the fourth and fifth hypothesis, patent scope blocks technological 

developments of other inventors andpursued by different firms and therefore also plays a 

negative moderating role in the relationship between technological complexity and exaptation. In 

order to test this hypothesis, we had to modifyied our measure of exaptation exaptive potential as 

follows: 

𝑦 𝑖,𝑒𝑥𝑡. = ∑
dj

𝑁𝑒𝑥𝑡.

𝑁𝑒𝑥𝑡.
j=1   

where 𝑁𝑒𝑥𝑡. is the number of forward citations received from patents that belonging to these 

different firms, and dj is defined as above. In order to identify different firms, we used a PDPCO 

identifier (see NBER PDP Project User Documentation: Matching Patent Data to Compustat Firms). The 

PDPCO identifier is the result of several algorithmic procedures that were designed to match 

patent data to Compustat Data. Patent ownership may change over time, and therefore dynamic 

matches are recorded in the PDP database. However, for this study, we considered only the 

match that corresponds to the first owner.xxvii  
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Example 

An illustrative example is the invention of the microwave oven, which resulted from the 

discovery of a new functionexaptationof a radar component called ‘magnetron’. The 

discovery happened serendipitously when Mr. Spenceran engineer working for a U.S military 

contractordiscovered that the magnetron was responsible for the melting of a candy bar in his 

pocket. Now the magnetron is a key component of the microwave (Andriani and Carignani 

2014).  

Mr. Spencer obtained a patent for the first microwave oven in history: U.S. patent No. 

2,495,429, Method of treating foodstuffs, grant date: Jan. 24 1950. The magnetron, however, was 

invented several years before by Mr. Hollmanna German electronic specialist, who obtained 

a patent for it: U.S. patent No. 2,123,728, Magnetron, grant date: July 12 1938.xxviii The microwave 

patent falls in the OR class No. 426 (Food or edible material: processes, compositions, and products) while 

the magnetron patent falls in the OR class No. 315 (Electric lamp and discharge devices: systems), which 

differs from the microwave OR class as it clearly refers to an entirely different functional domain. 

The magnetron patent also falls in the XR class No. 313. This class also differs from the 

microwave OR class, as it refers to other application domains that did not yet include possible 

uses of the magnetron for cooking. This is evidenced by the corresponding absence of any 

reference to cooking uses in the claims of the magnetron patentxxix.   

 

 

3.2.2 Technological Complexity 

We measured technological complexity as in Fleming and Sorenson (2001) (see also Sorenson et 

al. 2006). The measure is based on the historical difficulty of recombining the subclasses the 

patent is composed of. The underlying assumption is that patent subclasses are proxies of 

underlying components, which can be physical components or pieces of knowledge only 

indirectly connected to physical configurations (Sorenson et al. 2006). The idea behind the 

measure is that if the patent is composed of subclasses that, in the past, could not be easily re-

combined with many other subclasses, this is an indication of the fact that components are 

characterised by sensitive interdependencies and their actual configuration belongs to a small set 

of possible alternative configurations. This kind of patent receives a high value of technological 

complexity. Conversely, if the patent is composed of subclasses that, in the past, could be re-

combined easily with many other subclasses, this is an indication of the fact that components are 

not characterised by sensitive interdependencies and they can be mixed and matched 

independently. In other words, their actual configuration belongs to a large set of possible 

alternative configurations. This kind of patent receives a low value of technological complexity. 

Therefore, we measured the technological complexity of patent i as follows:    
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𝑥 𝑖 =
𝑐𝑠𝑖

∑ 𝑒𝑟𝑗
𝑐𝑠𝑖
𝑗=1

 

where 𝑐𝑠𝑖 is the number of subclasses of patent i, and 𝑒𝑟𝑗 is the ‘ease of recombination score’ of 

each subclass j. In other words, we measured the technological complexity of patent i as the 

inverse of the average ease of subclass recombination. The ease of recombination of a generic 

subclass j is given by: 

𝑒𝑟𝑗 =
𝑁𝑠𝑐,𝑗

𝑁𝑝𝑎𝑡,𝑗
 

where 𝑁𝑠𝑐,𝑗 is the number of subclasses that appeared with subclass j in 𝑁𝑝𝑎𝑡,𝑗 previous patents.xxx 

The ease of recombination scores were calculated on a 15-year pre-sample window of all the 

patents granted in the period from 1975-1990. Sorenson et al. (2006) contains an illustration of 

the measure for a digital technology patent.xxxi  

 

3.2.3 Inventors’ Analogical Ability 

The ability of inventors to draw inventive analogies and exapt existing technologies across 

different domains is a function of their stock of knowledge spanning these domains. We 

introduced a novel measure of inventors’ analogical abilities that quantifies their multi-domain 

skills. In order to build the measure, we considered the inventorxxxii belonging to the first citing 

patent. We then extracted, from the Patent Network Dataverse (Lai et al. 2011), the inventor’s 

previous patents that belong to the 1975-1990 pre-sample window. We then counted the number 

of previous patents whose OR class was equal to the OR class of either the focal patent or the 

citing patent. Moreover, we controlled for those cases in which previous patents were all 

concentrated in only one OR class and not equally distributed across the two. Our measure is 

more specific than the measures of knowledge diversity in the sense that it only captures the 

accumulation of knowledge in the target and base domains (see 2.2), which is a necessary 

condition for the emergence of cognitive mappings or analogies between these domains. 

Moreover, in order to exclude other equally plausible mechanisms at the individual level, we 

introduce several controls such as knowledge diversity, past experience in several areas, inventive 

myopia (see 3.2.5).  

Inventors’ data have several limitations. First, the lack of a consistent and unique 

identification of inventors at the USPTO often results in name ambiguity on patent records. 

Several disambiguation algorithms have been developed recently in order to clean inventors’ data 

and make them available to the public. We used the first release of those data (Lai et al. 2011). 

Second, there is the eventual presence of mismatches and missing data due to algorithmic 

randomness. To account for these limitations, we dropped those cases in which the citing patent 

had no inventor identification. Moreover, we controlled for those cases in which the citing patent 

had one or more inventors with no previous patents.  
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3.2.4 Patent Scope 

We introduced the number of patent claims as a proxy of patent scope. As argued by Lanjouw 

and Shankerman (2000), patent claims define the scope of legal protection of a technology. 

Similarly, as argued by Merges and Nelson (1990), they form a protective line around the patent 

that delimits inventors’ intellectual property from the surrounding terrain of technological 

possibilities.  

 

3.2.5 Control Variables 

We introduced several controls in order to rule out unobserved factors that may be correlated 

with technological complexity and, at the same time, with exaptation (see also Fleming and 

Sorenson 2001; Fleming 2001; Singh and Fleming 2010; Sorenson et al. 2006).  

Inventors’ Generic Experience. A patent may be less exaptive not because of greater technological 

complexity, but because the (team of) inventor(s) that builds on the patent has less prior generic 

experience. We used the number of previous patents of the (team of) inventor(s) belonging to the 

first patent that cites the focal patent i as a proxy of experience (for a similar measure see Singh 

and Fleming 2010). Previous patents belong to a 15-year pre-sample window, consisting of all the 

patents granted from 1975-1990. 

Inventors’ Diversity of Experience. A patent may be less exaptive not because of greater technological 

complexity, but because the (team of) inventor(s) has less prior experience with different 

technological areas. We used the number of technological classes in which the (team of) 

inventor(s)  of patent i had previous patents as a proxy of experience diversity, as in Singh and 

Fleming (2010).  Previous patents belong to a 15-year pre-sample window, consisting of all the 

patents granted from 1975-1990. 

Inventors’ Team Dummy. A patent may be less exaptive not because of greater technological 

complexity, but because the inventor that builds on the patent is working alone. We controlled 

for those cases in which the inventors belonging to the first citing patent are a team.  

Inventors’ Team Size. Adopting a similar logic, we also controlled for the size of the team.  

Concentration Dummy. As mentioned, we controlled for those cases in which the (team of) 

inventor(s) belonging to the first citing patent had previous patents all concentrated in the OR 

class of either the cited patent or the citing patent.xxxiii  

Inventors’ Control. As mentioned, we controlled for those cases in which the first citing patent had 

one or more inventors with no previous patents.xxxiv  

Combination Familiarity. A patent may be less exaptive not because of greater technological 

complexity, but because the (team of) inventor(s) that builds on the patent has excessive 

familiarity with its configuration of components and remains trapped in local search (March 

1991). In order to measure familiarity with the configuration of components of patent i, we 
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measured the average time proximity of patent i to previous patents having an identical 

configuration of patent subclasses. Previous patents belong to a 15-year pre-sample window, 

consisting of all the patents granted from 1975-1990. We measured combination familiarity as in 

Fleming (2001): 

 𝑐𝑓𝑖 =
1

𝑛
∑ 𝑒− 

𝑎𝑑.  𝑖−𝑎𝑑.  𝑗

𝑘𝑛
𝑗=1  ,  

where ad.  𝑖 − ad.  𝑗 is the time distance between the application date of patent i and the 

application date of a patent j with an identical configuration of subclasses, n is the number of 

previous patents with an identical configuration of patent subclasses, and k is a knowledge loss 

parameter.xxxv  

Number of Subclasses. A patent may be less exaptive not because of greater technological 

complexity, but because the (team of) inventor(s) that builds on the patent has to deal with its 

excessive number of components, and this may represent a cognitive bound. We used the 

number of patent subclasses as a proxy for the number of components, as in Fleming (2001). 

Single Subclass Dummy. Several patents in our sample have only one subclass.xxxvi The technological 

complexity measure is not able to capture interdependencies for those patents. We controlled for 

them, as in Fleming and Sorenson (2001).  

Number of Prior Art Citations. A patent may be less exaptive not because of greater technological 

complexity, but because it is characterised by higher technological maturity that limits the 

exploration of exaptive reconfigurations. We used the number of backward citations as a proxy 

of technological maturity, as in Lanjouw and Shankerman (2001) and Ziedonis (2007).  

Scientific References. A patent may be less exaptive not because of greater technological complexity, 

but because it is characterised by lower levels of generality.  We used the number of non-patent 

references (e.g. references to scientific journals) as a proxy of generality. Moreover, non-patent 

references are also an indirect proxy of technological maturity, since patents with more scientific 

references tend to protect early-stage inventions (Hegde 2011; Narin et el. 1997). 

Technology Control. We controlled for the average number of citations received by patents in the 

same technological class of patent i, in order to remove systematic sources of variation in the  

citation process that may affect our dependent variable (see Fleming and Sorenson 2001). If  

patent i falls into different technological classes, we also included those classes in the calculation. 

For example, suppose that patent i falls into one Class 2 and three Classes 16. Let’s also suppose 

that, on average, previous patents belonging to Class 2 and Class 16 receive 2 and 4 citations 

respectively. Then the average number of citations is given by [(1/4)×2.0]+[(3/4)×4.0]=3.5 

(Fleming and Sorenson 2001). In order to calculate the measure, we considered those patents 

granted in 1985 and the citations received until December 1990 (end of pre-sample window).  
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Number of Classes. We included this variable because a patent that falls into a broad range of 

technological classes is more likely to be cited by future patents, and this may affect the 

denominator of our dependent variable (Fleming and Sorenson 2001). Similarly, a patent that 

falls into a broad range of technological classes is more likely to be cited by patents that also fall 

into different technological classes. This may affect the numerator of our dependent variable.    

Diversity of Patent Portfolio. In order to test the fifth hypothesis, we looked at how ‘cross-firm’ 

forward citations spread across different technological classes. We wanted to rule out those 

factors that may depend on the propensity of firms’ patent portfolios to cite patents belonging to 

different technological classes. We therefore used pre-sample information to measure firm 

characteristics. According to Blundell et al. (1995), this means including variables that 

approximate the accumulation of a firm’s technological knowledge and it may constitute an 

approximation of unobservable factors. For each forward citation received by the focal patent i, 

we calculated the technological diversity of the patent portfolio belonging to the citing patent’s 

firm. We then calculated average technological diversity across all forward citations and 

introduced it as a control. In order to calculate technological diversity, we computed a Herfindahl 

index of dispersion across technological classes of the firm’s previous patents. We also controlled 

for the technological diversity of the patent portfolio belonging to the firm of the focal patent i. 

We considered a 10-year pre-sample window in order to calculate these measures.xxxvii  

Size of Patent Portfolio. Adopting a similar logic, we controlled for the average size of the patent 

portfolio belonging to the citing patents’ firms, and for the size of the patent portfolio belonging 

to the firm of the focal patent i.  

Technological Class Fixed Effects. We introduced technological class fixed effects to remove 

systematic sources of variation in the citation process that may take place across technological 

classes and be missed by the technology. 

Application Year and Citing Year Fixed Effects. We controlled for the application year of the focal 

patent and for the application years of the first and last citing patents to remove systematic 

sources of variation in the citing process that may take place over time.   

Grant Month Fixed Effects. We introduced grant month fixed effects to rule out eventual truncation 

issues due to the fact that a patent granted in January 1991 will systematically receive more 

citations than a patent granted in June 1991.  

 

4. Results 

As our dependent variable is a proportion, we adopted the fractional logit estimation procedure 

proposed by Papke and Wooldridge (1996) (see Appendix 6.1). Table 1 presents descriptive 

statistics.  Mean values and standard deviations are consistent with previous studies (Fleming and 

Sorenson 2001; Fleming 2001; Singh and Fleming 2010). Table 2 presents bivariate correlations. 
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Correlation values are generally low, except for inventors’ team size and inventors’ team dummy 

and for the number of subclasses and the number of classes.  

Table 3 presents the results of our estimation for the first hypothesis. Model 1 reports the 

baseline model with control variables. Model 2 adds technological complexity and Model 3 adds 

the squared term of technological complexity. Model 4 shows the full model. Model 5 

demonstrates that the main results are insensitive to the inclusion of controls. The coefficient of 

technological complexity is positive and significant (Model 4). Moreover, the squared term of 

technological complexity is negative and significant. The result confirms our first hypothesis (H1) 

that the relationship between technological complexity and exaptive innovation can be described 

by an inverted U-shaped function.  

Table 4 presents the results of our estimation for the second (H2) and third (H3) 

hypotheses. Model 1 reports the baseline model with control variables. Model 2 adds 

technological complexity and its squared term, and Model 3 adds the inventors’ analogical ability. 

Model 4 adds the interaction terms of the inventors’ analogical ability with technological 

complexity and its squared term. Model 5 shows the full model. Inventors’ analogical ability is 

positive and significant (Model 5), supporting H2 that analogical ability positively affects exaptive 

innovation. However, the interaction terms are not significant; this finding does not support H3. 

 Table 5 presents the results of our estimation for the fourth (H4) and fifth (H5) 

hypotheses that patent scope blocks the exaptive technological developments of inventors at 

other firms. In order to test For these hypotheses we had to consider a subset of the initial 

sample, consisting of 4,685 patents. Tthe sample size decreased smaller4,685 patents 

because of the following reason: the assignees of many several patents of the original sample 

were are not firms, and therefore a unique PDPCO identifier did does not exist for them. In 

other words, several patents of the original sample did not belong to firms and they had to be 

excluded in order to build the measure for hypotheses H4 and H5. Model 1 reports the baseline 

model with control variables. Model 2 adds technological complexity and its squared term and 

Model 3 adds patent scope. Model 4 adds the interaction terms of patent scope with 

technological complexity and its squared term. Model 5 shows the full model. Patent scope is 

positive and significant (Model 5), in contrast with H4 that asserted that it negatively affects 

exaptive innovation. Moreover, the interaction terms are not significant, which does not support 

H5. Overall, these results suggest that patent scope (number of patent claims), which is positively 

correlated with cross-class forward citations, signals patent quality instead of blocking successive 

technological developments. This is an interesting and unexpected finding; we will come back to 

it in Section 5. In Table 6 we check the robustness of the main results under alternative 

specifications (see Appendix 6.2).  
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5. Discussion and Conclusions 

Previous empirical studies have mainly focused on the organizational-level conditions of 

exaptation. For instance, Cattani (2005) has analysed the role played by those firm capabilities 

accumulated in the past that turned out to be useful for co-opting an existing technology for a 

new function (defined as ‘pre-adapted’ capabilities). This paper explores the invention-level 

conditions of exaptation, in particular, technological complexity, inventors’ analogical ability, and 

patent scopea focus consistent with Cattani’s call to extend the research on exaptation (2005), 

and with more recent contributions by Andriani and Carignani (2014). 

We situated our analysis in the context of patent data. We analysed a large sample of U.S. 

patents obtained from the USPTO and NBER databases, assuming that a patent identifies an 

invention. We introduced a measure of exaptation exaptive potential using cross-class forward 

citation patterns in a novel way, in order to capture the functional shift of a technology as well as 

the possibility that this functional shift had not been originally anticipated (being the result of 

some underlying serendipitous process). Our results showed that our prediction of the curvilinear 

relationship between technological complexity and exaptation exaptive potential is confirmed. 

Moreover, inventors’ analogical ability plays a direct positive role in exaptive innovation. 

However, we could not find statistical support for our hypothesis that inventors’ analogical ability 

positively moderates the relationship between technological complexity and exaptive innovation. 

This result is puzzling, because it suggests that the prior knowledge owned by inventors positively 

affects exaptive innovation but not because it helps them to arrive at a richer representation of 

the architecture of the inventive problem and to better process complex interdependencies 

(Gavetti et al. 2005). As argued by Gavetti et al. (2005), we believe that this linkage between 

inventors’ analogical ability and the architecture of the inventive problem is a crucial aspect that 

future studies should explore more carefully.  

Also, we could not find statistical support for our hypotheses that patent scope is a direct 

moderator of exaptive innovation. This result is surprising but not puzzling, and may be 

explained as follows. If patent scope is larger, inventors may experience a stronger incentive to 

look for new application domains that fall beyond the claims specified in the patent. While larger 

patent scope may indeed block innovations that fall within the scope claimed by the focal patent, 

at the same time it may stimulate innovations that fall beyond this scope. This seems to suggest 

that patent scope blocks more incremental innovations but might stimulate exaptive innovations 

that may form precursors or more radical innovation. This is consistent with some recent studies 

that contradict the widespread argument that patent scope blocks all downstream technological 

developments. For example, Katznelson and Howells (2012) have analysed the activity directed at 

‘designing-around’ Edison’s patent of the incandescent lamp. They have shown that the legal 

enforcement of Edison’s patent stimulated several downstream developments of major 
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technological importance, some of which were directed to design around Claim 2 of Edison’s 

patent (the hardest claim to circumvent at the time). We suggest this as an issue for future 

research.  

Our paper has several limitations. First, our empirical setting was based on a cross-

sectional sample of patents. In order to rule out eventual unobserved heterogeneity, the 

identification strategy proposed by Mehta et al. (2010)which is based on the exploitation of the 

patent grant lag as a source of exogenous variationmay represent a starting point for future 

studies that will adopt a similar empirical setting. Second, our novel measure may be coarse in the 

sense thatbesides exaptationsit may capture a subset of functional shifts that are due to 

different technological characteristics such as ‘generality’. Although our measure differs from 

generality (see 3.2.1) and we control for that (see 3.2.5), there is room for improvement: we leave 

this to future research. Overall, cross-class forward citations are systematic (Ghiglino and Kuschy 

2010) and they may reflect the pervasivity of technological exaptation (Dew et al. 2004; 

Kauffman 2000). Ours is the first attempt to exploit cross-class forward citations in order model 

exaptation phenomena.  our measure of exaptive potential is a coarse measure since it captures 

the ‘potential’ of an invention to be exapted for new functions rather a realised exaptation.xxxviii In 

order to understand if each invention/patent in our database has actually been exapted, we would 

have to embark on a detailed case study of each, well beyond the scope of our study. Third, our 

empirical setting was based on patent data, characterised by several shortcomings. As mentioned, 

inventors and firms often apply for patents only to protect their best inventions, so that many 

inventions have no corresponding patents; this has consequences for generalisability. Moreover, 

the accuracy of the other patent measures can vary significantly across technologies. For instance, 

patent subclasses may not always correspond to underlying technological components (Fleming 

and Sorenson 2001). Future research should explore these measurement issues more deeply.   

Despite these limitations, our paper offers several contributions. First, our findings 

contribute to the general debate on the emergence of radical innovations by further illuminating 

underlying exaptive mechanisms. We examined those exaptive mechanisms and the invention-

level conditions that foster them. Second, our empirical results shed light on a number of specific 

theoretical arguments that have been made recently in the exaptation literature, particularly that 

literature that has analysed the role of exaptation, recombination, and modularization (Andriani 

and Carignani 2014). Third, our findings contribute to the debate on how innovation is shaped by 

exaptive and adaptive mechanisms. The concept of ‘exaptation’, which implies a sudden 

functional shift of a technology, has been introduced to make a distinction from the concept of 

‘adaptation’, which implies a gradual process driven by selective pressures. The conditions that 

lead to adaptation have been analysed in a comprehensive manner; see Fleming and Sorenson’s 
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Technology as a Complex Adaptive System (2001). Our paper adopts a similar empirical framework in 

order to fill a gap and explore the conditions of exaptive mechanisms. Although we emphasise 

exaptation, we do not want to downplay adaptation. As noted by Dew et al. (2004), both 

exaptation and adaptation play a central role; Andriani and Carignani (2014) note that the two 

mechanisms are ‘intertwined’. Similarly, as argued by Henderson and Clark (1990), innovation is 

always characterized by periods of novel (exaptive) experimentation, followed by periods of 

adaptation and design stability. Future research should explore exaptive and adaptive 

mechanisms, in order to model the exaptation-adaptation cycle (Andriani and Carignani 2014) 

and explore how it varies depending on invention-level conditions; the ‘dynamic’ of cross-

class/within-class forward citation patterns could be informative.   

 

Appendix 

Econometric Specification  

Fractional logit estimation (Papke and Wooldridge 1996) is designed to take into consideration 

the possibility of observing values that pile at the boundaries as well as within the unit interval. 

We have: 

E(y
i
|xi, 𝑍𝑖)=G(α xi+β 𝑍𝑖 ) 

where 0 ≤ 𝑦𝑖 ≤ 1 is the exaptation exaptive potential of patent i,  xi is the technological complexity 

of patent i, 𝑍𝑖 is a vector of controls, and 𝐺 is a known function, which is a logistic in our case: 

𝐸(𝑦𝑖|𝑥𝑖 , 𝑍𝑖) =
𝑒𝑥𝑝 (α xi + β 𝑍𝑖)

1 + 𝑒𝑥𝑝 (α xi + β 𝑍𝑖)
 

The estimation procedure is a quasi-maximum-likelihood method, as in Gourieroux et al. (1984) 

and McCullagh and Nelder (1989), where 𝑦𝑖 are allowed to be continuous on the unit interval. 

Parameter estimates are consistent and √𝑁 asymptotically normal regardless of the distribution of 

𝑦𝑖 conditional on 𝑥𝑖: 𝑦𝑖 can be a discrete variable, a continuous variable, or it can have both 

discrete and continuous characteristics (Papke and Wooldridge 1996). The main drawback of the 

approach is that it assumes that: 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖 , 𝑍𝑖) = 𝜎2 𝑒𝑥𝑝(α xi+β 𝑍𝑖)

1+𝑒𝑥𝑝(α xi+β 𝑍𝑖)
(1 −

𝑒𝑥𝑝(α xi+β 𝑍𝑖)

1+𝑒𝑥𝑝(α xi+β 𝑍𝑖)
)      

but in fact mechanisms by which this variance assumption may fail can be common. As noticed 

by Papke and Wooldridge (1996), if we assume that each 𝑦𝑖  is the average of 𝑛𝑖 independent 

binary variables 𝑦𝑖𝑗 , then it can be shown that: 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖 , 𝑍𝑖) = 𝐸(𝑛𝑖
−1|xi, 𝑍𝑖  )

𝑒𝑥𝑝(α xi + β 𝑍𝑖)

1 + 𝑒𝑥𝑝(α xi + β 𝑍𝑖)
(1 −

𝑒𝑥𝑝(α xi + β 𝑍𝑖)

1 + 𝑒𝑥𝑝(α xi + β 𝑍𝑖)
) 

and, unless 𝑛𝑖 and 𝑥𝑖, 𝑍𝑖 are independent, the variance assumption fails. In our case, 𝑦𝑖𝑗 is a binary 

indicator of whether a citation j to patent i comes from a different technological class, 𝑛𝑖 is the 

number of citations received by patent i, and 𝑥𝑖 and 𝑍𝑖 are patent characteristics. Therefore, it is 

unlikely that 𝑛𝑖 and 𝑥𝑖, 𝑍𝑖 are independent. McCullagh and Nelder (1989) suggested rejecting the 
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logit quasi-likelihood approach, and relying on a more complicated quasi-likelihood when the 

variance assumption fails. However, since we were interested in the conditional mean, we 

followed the approach of Papke and Wooldridge (1996), who propose asymptotically robust 

inference for the parameters of the conditional mean, rather than abandoning the Bernoulli 

quasi-likelihood approach because the variance assumption may fail. We thus used robust 

standard errors, as in Papke and Wooldridge (1996).xxxix  

 

Robustness checks 

Technological classes may overlap: for example, despite having a different 3-digit code, Class 514 

is the same as Class 424.xl This may cast doubt on our measure of exaptation exaptive potential, 

which is based on the assumption that a citation that goes from Class 514 to Class 424 reflects a 

technological shift, taking place between those classes. Table 6 reports some robustness checks. 

In particular, in the first two columns we checked the robustness of our main results when we 

used two alternative measures of exaptation exaptive potential. Making use of the NBER 

aggregation of technological classes in broader industrial sub-categories/categories (Hall et al. 

2001), we considered a forward citation to be different when it was cross-class and, at the same 

time, came from a different industrial sub-category/category, noting that technological 

complexity and its squared term remain significant and with the expected sign. This also means 

that for exaptive innovation taking place in remote technological areas, the relationship between 

technological complexity and exaptive innovation can be described as an inverted U-shaped 

function. In the third and fourth column, we checked the robustness of our main results when 

we used OLS and TOBIT specifications for our fractional dependent variable. Despite the 

inappropriateness of these specifications in our setting (see Ramalho et al. 2011),xli xlii the main 

results for technological complexity remained significant and with the expected sign. In the fifth 

column, we manipulated technological complexity and subtracted its sample mean to force the 

estimated coefficients to reflect parameters that are of theoretical interest (Jaccard 2001). Again, 

the main results did not change substantially. We also calculated conditional partial effects at 

means and average partial effects for technological complexity (not reported here). We did not 

find substantial differences in terms of statistical significance. Finally, as in Fleming and Sorenson 

(2001), we split technological complexity into 20 percentiles and assigned a dummy variable to 

each percentile plus a dummy variable for extreme values. We then plotted the exponentiated 

coefficients of the significant dummies. The plot conformed to a non-linear relationship, as in 

Fleming and Sorenson (2001).xliii  
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Figure 1 

Theoretical Framework: H1, H3, H5 
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Figure 2 

Empirical Framework: Research Design 
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Figure 3 

Empirical Framework: Exaptation Exaptive Potential 
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Table 1. Descriptive Statistics 

 

Variable Mean  Std. Dev. Min Max 
     

ExaptationExaptive Potential 0.29 0.31 0 1 
Technological Complexity 0.67 0.76 0.07 40 
Inventors’ Analogical Ability 0.93 5.05 0 178 
Patent Scope 12.97 10.85 1 292 
Inventors’ Generic Experience 7.55 19.26 0 472 
Inventors’ Experience Diversity 2.82 5.29 0 152 
Inventors’ Team Dummy 0.55 0.49 0 1 
Inventors’ Team Size 2.13 1.46 1 22 
Concentration Dummy 0.10 0.31 0 1 
Inventors Control 0.67 0.46 0 1 
Combination Familiarity 0.45 0.13 0.01 2.44 
Number of Subclasses 4.28 3.43 1 164 
Single Subclass Dummy 0.07 0.26 0 1 
Number of Prior Art Citations 7.77 7.33 0 173 
Scientific References 1.10 3.49 0 110 
Technology Control 3.63 1.05 1 11.64 
Number of Classes 1.82 0.98 1 9 
Diversity of Patent Portfolio    (focal) 0.07 0.11 0.01 1 
Size of Patent Portfolio            (citing) 0.10 0.13 0.01 1 
Diversity of Patent Portfolio    (focal) 2970.5 2453.1 1 8746 
Size of Patent Portfolio            (citing) 2424.6 1905.8 1 8746 
     

 

 

  



30 
 

Table 2. Correlations 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
                 

1.Technological Complexity 1.00                

2. Inventors’ Analogical Ability -0.03 1.00               

3.Patent Scope -0.00 0.00 1.00              

4.Inventors’ Generic Experience -0.03 0.39 0.01 1.00             

5.Inventors’ Experience Diversity -0.04 0.06 0.01 0.15 1.00            

6.Inventors’ Team Dummy -0.07 0.09 0.03 0.19 0.08 1.00           

7.Inventors’ Team Size -0.07 0.14 0.02 0.27 0.08 0.69 1.00          

8.Concentration Dummy -0.01 0.20 0.01 0.06 0.04 0.11 0.10 1.00         

9.Inventors Control -0.00 -0.09 -0.02 -0.18 -0.05 0.26 0.25 -0.13 1.00        

10.Combination Familiarity -0.05 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 1.00       

11.Number of Subclasses -0.20 0.05 0.08 0.05 0.06 0.06 0.08 0.05 -0.00 0.06 1.00      

12.Single Subclass Dummy 0.24 -0.01 -0.02 -0.00 -0.00 -0.01 -0.01 -0.01 -0.00 -0.09 -0.27 1.00     

13.Number of Prior Art Citations 0.01 -0.01 0.18 -0.01 -0.02 -0.03 -0.04 -0.00 -0.01 0.01 0.05 -0.05 1.00    

14.Scientific References -0.05 0.01 0.12 0.00 0.00 0.08 0.08 0.02 0.02 0.01 0.11 -0.01 0.11 1.00   

15.Technology Control 0.04 -0.00 0.04 0.02 0.04 0.08 0.08 0.01 -0.02 0.05 -0.03 0.04 0.00 0.03 1.00  

16. Number of Classes -0.04 0.05 0.04 0.01 0.05 0.01 0.03 0.11 0.00 0.06 0.50 -0.23 0.05 0.08 -0.00 1.00 
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Table 3. Hypothesis 1 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 
      

Technological Complexity  0.0419** 0.1044*** 0.1042*** 0.1384*** 

  (0.0180) (0.0260) (0.0260) (0.0257) 

Technological Complexity^2   -0.0031*** -0.0030*** -0.0039*** 

   (0.0010) (0.0009) (0.0011) 

Inventors’ Analogical Ability    0.0227***  

    (0.0031)  

Patent Scope    0.0016*  

    (0.0009)  

Inventors’ Generic Experience -0.0015** -0.0015** -0.0015** -0.0048***  

 (0.0007) (0.0007) (0.0007) (0.0010)  

Inventors’ Experience Diversity 0.0047** 0.0047** 0.0047** 0.0052**  

 (0.0022) (0.0022) (0.0022) (0.0022)  

Inventors’ Team Dummy -0.0365 -0.0363 -0.0357 -0.0307  

 (0.0312) (0.0311) (0.0311) (0.0311)  

Inventors’ Team Size -0.0058 -0.0057 -0.0057 -0.0059  

 (0.0108) (0.0108) (0.0108) (0.0109)  

Concentration Dummy 0.8810*** 0.8806*** 0.8808*** 0.8234***  

 (0.0337) (0.0337) (0.0337) (0.0346)  

Inventors Control 0.1434*** 0.1444*** 0.1449*** 0.1410***  

 (0.0259) (0.0259) (0.0259) (0.0266)  

Combination Familiarity -0.1190 -0.1148 -0.1235 -0.1226  

 (0.1488) (0.1488) (0.1487) (0.1488)  

Number of Subclasses -0.0159*** -0.0150*** -0.0137*** -0.0144***  

 (0.0047) (0.0047) (0.0046) (0.0047)  

Single Subclass Dummy 0.1771*** 0.1568*** 0.1398*** 0.1407***  

 (0.0465) (0.0472) (0.0475) (0.0473)  

Number of Prior Art Citations 0.0029** 0.0029** 0.0029** 0.0023  

 (0.0014) (0.0014) (0.0014) (0.0014)  

Scientific References 0.0049 0.0048 0.0048 0.0046  

 (0.0030) (0.0030) (0.0030) (0.0030)  

Technology Control -0.0304 -0.0302 -0.0292 -0.0307  

 (0.0282) (0.0282) (0.0282) (0.0281)  

Number of Classes -0.0965*** -0.0987*** -0.1018*** -0.1056***  

 (0.0142) (0.0142) (0.0142) (0.0142)  

Constant -1.2035* -1.2180* -1.2360* -1.2425* -1.2503*** 

 (0.7006) (0.7036) (0.7073) (0.7112) (0.4508) 

Tech Class Fixed Effects yes yes yes yes yes 

Application Year Fixed Effects yes yes yes yes yes 

Citing Year Fixed Effects yes yes yes yes yes 

Grant Month Fixed Effects yes yes yes yes yes 

      

Observations 19,076 19,076 19,076 19,076 19,076 

 Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Fractional logit estimation. 
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Table 4. Hypotheses 2 and 3 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 
      

Technological Complexity  0.1044*** 0.1047*** 0.1055*** 0.1049*** 

  (0.0260) (0.0261) (0.0265) (0.0264) 

Technological Complexity^2  -0.0031*** -0.0031*** -0.0031*** -0.0031*** 

  (0.0010) (0.0009) (0.0010) (0.0009) 

Inventors’ Analogical Ability   0.0227*** 0.0239*** 0.0238*** 

   (0.0032) (0.0041) (0.0041) 

Tech Compl.     *  Inv. Analog. Ab.    -0.0027 -0.0026 

    (0.0062) (0.0062) 

Tech Compl.^2 *  Inv. Analog. Ab.    0.0003 0.0002 

    (0.0011) (0.0011) 

Patent Scope     0.0016* 

     (0.0009) 

Inventors’ Generic Experience -0.0015** -0.0015** -0.0048*** -0.0048*** -0.0048*** 

 (0.0007) (0.0007) (0.0011) (0.0011) (0.0010) 

Inventors’ Experience Diversity 0.0047** 0.0047** 0.0052** 0.0052** 0.0052** 

 (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) 

Inventors’ Team Dummy -0.0365 -0.0357 -0.0299 -0.0299 -0.0308 

 (0.0312) (0.0311) (0.0311) (0.0311) (0.0311) 

Inventors’ Team Size -0.0058 -0.0057 -0.0060 -0.0059 -0.0058 

 (0.0108) (0.0108) (0.0110) (0.0110) (0.0109) 

Concentration Dummy 0.8810*** 0.8808*** 0.8234*** 0.8245*** 0.8244*** 

 (0.0337) (0.0337) (0.0347) (0.0348) (0.0347) 

Inventors Control 0.1434*** 0.1449*** 0.1405*** 0.1404*** 0.1409*** 

 (0.0259) (0.0259) (0.0266) (0.0266) (0.0266) 

Combination Familiarity -0.1190 -0.1235 -0.1223 -0.1220 -0.1222 

 (0.1488) (0.1487) (0.1488) (0.1489) (0.1488) 

Number of Subclasses -0.0159*** -0.0137*** -0.0140*** -0.0141*** -0.0145*** 

 (0.0047) (0.0046) (0.0047) (0.0047) (0.0047) 

Single Subclass Dummy 0.1771*** 0.1398*** 0.1407*** 0.1409*** 0.1409*** 

 (0.0465) (0.0475) (0.0473) (0.0473) (0.0473) 

Number of Prior Art Citations 0.0029** 0.0029** 0.0027* 0.0027* 0.0023 

 (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) 

Scientific References 0.0049 0.0048 0.0051* 0.0051* 0.0046 

 (0.0030) (0.0030) (0.0030) (0.0030) (0.0030) 

Technology Control -0.0304 -0.0292 -0.0313 -0.0313 -0.0307 

 (0.0282) (0.0282) (0.0282) (0.0282) (0.0281) 

Number of Classes -0.0965*** -0.1018*** -0.1059*** -0.1059*** -0.1056*** 

 (0.0142) (0.0142) (0.0142) (0.0142) (0.0142) 

Constant -1.2035* -1.2360* -1.2166* -1.2156* -1.2416* 

 (0.7006) (0.7073) (0.7106) (0.7095) (0.7102) 

Tech Class Fixed Effects yes yes yes yes yes 

Application Year Fixed Effects yes yes yes yes yes 

Citing Year Fixed Effects yes yes yes yes yes 

Grant Month Fixed Effects yes yes yes yes yes 

      

Observations 19,076 19,076 19,076 19,076 19,076 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Fractional logit estimation. 
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Table 5. Hypotheses 4 and 5 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 
      

Technological Complexity  0.3454** 0.3344** 0.4598** 0.4549** 

  (0.1370) (0.1377) (0.1839) (0.1826) 

Technological Complexity^2  -0.0403* -0.0392* -0.0669* -0.0661* 

  (0.0228) (0.0231) (0.0389) (0.0385) 

Patent Scope   0.0077*** 0.0130** 0.0126** 

   (0.0022) (0.0055) (0.0053) 

Tech Compl.     *  Patent Scope    -0.0107 -0.0101 

    (0.0094) (0.0092) 

Tech Compl.^2 *  Patent Scope    0.0023 0.0022 

    (0.0026) (0.0026) 

Inventors’ Analogical Ability     0.0162*** 

     (0.0059) 

Inventors’ Generic Experience -0.0016 -0.0016 -0.0016 -0.0016 -0.0046** 

 (0.0018) (0.0018) (0.0018) (0.0018) (0.0023) 

Inventors’ Experience Diversity 0.0141** 0.0142** 0.0128* 0.0131* 0.0146** 

 (0.0069) (0.0069) (0.0069) (0.0069) (0.0068) 

Inventors’ Team Dummy -0.0588 -0.0508 -0.0548 -0.0564 -0.0472 

 (0.0742) (0.0744) (0.0746) (0.0746) (0.0743) 

Inventors’ Team Size 0.0105 0.0094 0.0095 0.0102 0.0104 

 (0.0225) (0.0225) (0.0226) (0.0226) (0.0223) 

Concentration Dummy 0.8611*** 0.8617*** 0.8614*** 0.8605*** 0.8188*** 

 (0.0796) (0.0796) (0.0795) (0.0796) (0.0808) 

Inventors Control 0.1006 0.0973 0.0993 0.0975 0.0889 

 (0.0654) (0.0656) (0.0656) (0.0656) (0.0657) 

Combination Familiarity 0.7342** 0.7071* 0.6907* 0.6859* 0.6786* 

 (0.3731) (0.3701) (0.3705) (0.3697) (0.3702) 

Number of Subclasses 0.0066 0.0119 0.0098 0.0088 0.0102 

 (0.0113) (0.0114) (0.0113) (0.0113) (0.0113) 

Single Subclass Dummy 0.4686*** 0.3942*** 0.3966*** 0.3946*** 0.3993*** 

 (0.1147) (0.1180) (0.1179) (0.1179) (0.1180) 

Number of Prior Art Citations -0.0012 -0.0012 -0.0038 -0.0039 -0.0039 

 (0.0042) (0.0042) (0.0043) (0.0043) (0.0042) 

Scientific References 0.0131 0.0131 0.0096 0.0094 0.0094 

 (0.0098) (0.0097) (0.0098) (0.0098) (0.0097) 

Technology Control -0.0643 -0.0661 -0.0698 -0.0713 -0.0744 

 (0.0636) (0.0633) (0.0636) (0.0636) (0.0637) 

Number of Classes -0.1932*** -0.2069*** -0.2064*** -0.2046*** -0.2084*** 

 (0.0374) (0.0380) (0.0381) (0.0381) (0.0380) 

Diversity of patent portfolio  (focal) 0.0519 0.0594 0.0294 0.0351 0.0169 

 (0.2657) (0.2654) (0.2674) (0.2665) (0.2670) 

Diversity of patent portfolio  (citing) 0.0670 0.0674 0.0653 0.0702 0.0668 

 (0.2451) (0.2442) (0.2453) (0.2449) (0.2446) 

Size of patent portfolio          (focal) -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Size of patent portfolio          (citing) -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Constant -0.4937 -0.5829 -0.5961 -0.6576 -0.6937 

 (0.6465) (0.6472) (0.6500) (0.6534) (0.6514) 

Tech Class Fixed Effects yes yes yes yes yes 

Application Year Fixed Effects yes yes yes yes yes 

Citing Year Fixed Effects yes yes yes yes yes 

Grant Month Fixed Effects yes yes yes yes yes 

      

Observations 4,685 4,685 4,685 4,685 4,685 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Fractional logit estimation.         
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Table 6. Robustness Checks 

Variables 1) Exap. Sub-category 2) Exap. Category 3) Ols 4) Tobit 5) Compl. De-Mean 

      

Tech. Complexity 0.1102*** 0.1274*** 0.0210*** 0.0319***  

 (0.0306) (0.0384) (0.0053) (0.0091)  

Tech. Complexity^2 -0.0037** -0.0064** -0.0006*** -0.0009**  

 (0.0015) (0.0028) (0.0002) (0.0004)  

Tech. Complexity      (de-mean)     0.1001*** 

     (0.0250) 

Tech. Complexity^2  (de-mean)     -0.0031*** 

     (0.0009) 

Inventors’ Analogical Ability 0.0300*** 0.0239*** 0.0042*** 0.0068*** 0.0227*** 

 (0.0039) (0.0031) (0.0005) (0.0008) (0.0032) 

Patent Scope 0.0006 0.0001 0.0003 0.0008** 0.0016* 

 (0.0010) (0.0011) (0.0002) (0.0003) (0.0010) 

Inventors’ Generic Experience -0.0053*** -0.0058*** -0.0007*** -0.0011*** -0.0048*** 

 (0.0010) (0.0011) (0.0001) (0.0002) (0.0011) 

Inventors’ Experience Diversity 0.0077*** 0.0053* 0.0009** 0.0018** 0.0052** 

 (0.0027) (0.0028) (0.0004) (0.0007) (0.0022) 

Inventors’ Team Dummy -0.0442 -0.0110 -0.0060 -0.0082 -0.0308 

 (0.0320) (0.0364) (0.0060) (0.0102) (0.0311) 

Inventors’ Team Size -0.0067 0.0089 -0.0016 -0.0030 -0.0060 

 (0.0113) (0.0127) (0.0021) (0.0035) (0.0110) 

Concentration Dummy 0.9545*** 0.7496*** 0.1804*** 0.2886*** 0.8234*** 

 (0.0374) (0.0398) (0.0072) (0.0119) (0.0347) 

Inventors Control 0.1252*** 0.0768** 0.0284*** 0.0453*** 0.1411*** 

 (0.0271) (0.0307) (0.0051) (0.0086) (0.0266) 

Combination Familiarity -0.1429 -0.1579 -0.0250 -0.0436 -0.1226 

 (0.1588) (0.1740) (0.0289) (0.0493) (0.1489) 

Number of Subclasses -0.0321*** -0.0223*** -0.0022*** -0.0027** -0.0144*** 

 (0.0052) (0.0054) (0.0008) (0.0013) (0.0047) 

Single Subclass Dummy -0.1375*** -0.1196* 0.0284*** 0.0401*** 0.1407*** 

 (0.0526) (0.0613) (0.0091) (0.0155) (0.0473) 

Number of Prior Art Citations 0.0024 0.0055*** 0.0005 0.0011** 0.0023 

 (0.0015) (0.0017) (0.0003) (0.0005) (0.0015) 

Scientific References 0.0012 -0.0008 0.0009 0.0014 0.0046 

 (0.0032) (0.0036) (0.0007) (0.0011) (0.0030) 

Technology Control 0.1469*** 0.1232*** -0.0063 -0.0026 -0.0308 

 (0.0288) (0.0323) (0.0056) (0.0094) (0.0282) 

Number of Classes 0.4688*** 0.3582*** -0.0212*** -0.0296*** -0.1057*** 

 (0.0147) (0.0157) (0.0027) (0.0045) (0.0143) 

Constant -4.3419*** -4.3967*** 0.2202 0.1227 -1.1737* 

 (0.7258) (0.7248) (0.2180) (0.3481) (0.7112) 

Tech Class Fixed Effects yes yes yes yes yes 

Application Year Fixed Effects yes yes yes yes yes 

Citing Year Fixed Effects yes yes yes yes yes 

Grant Month Fixed Effects yes yes yes yes yes 

      

Observations 19,076 19,076 19,076 19,076 19,076 

 Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Fractional logit estimation. 
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Endnotes 
 
i Such as birds’ wings, that originally served to climb the trees or capture preys and later on they were co-opted for flight (Gatesy 
and Baier 2005).       
 
ii Other examples such as the common microwave oven, which resulted from the discovery of a new function of the radar 
magnetron (Andriani and Carignani 2014).   
 
iii Which is considered the science of allocation under conditions of scarcity (Kauffman 2000). 
 
iv We should also mention the debate on the ‘social construction’ of technology, according to which the role played by social 
aspects cannot be ignored (see Pinch and Bijker 1984).  
 
v … but not sufficient.  
 
vi For example, the exaptation that led to the printing press was most likely triggered by the possibility to decompose the wine 
press and to add new components (such as the movable type and the printing table) around the co-opted components (the 
pressing components). 
 
vii The concepts of recombination and market selection respectively correspond to the biological concepts of ‘variation’ and 
‘selective retention’.  

 
viii Functional shifts are fundamental in innovation. A technology brings with itself an infinite potential for novel functions. In 
other words, the physical structure of a technology has many potential novel functions although we only observe a very limited set 
of them (Bonaccorsi 2011). This usually happens because of ‘functional fixedness’, a cognitive bias that limits people to using a 
technology only in the way it is used traditionally (Margolis and Laurence 2007; McCaffrey 2012; Solomon 1994). 

 
ix Non-anticipation is also fundamental. Novel functions cannot always be known or specified ex-ante, since their activation is the 
outcome of a complex and idiosyncratic interaction between the technology and the contexts of use (Bonaccorsi 2011). 
 
x The definition of modularity is similar, although the literature has provided several definitions (Fleming and Sorenson 2000).    
Modularity refers to the degree to which a technology is composed of modules that are relatively weakly connected to each other 
(Baldwin and Clark 2000).  

 
xi Kinematics principles, which are adopted in several sectors, are based on mathematical representations (Eckhardt 1998; Phillips 
2007). For example, the level of constraint of a technology is often expressed in terms of the Kutzbach’s criterion given 

by F=αn(β-6)+6(n-1). F is the number of degrees of freedom of the technology and  α=e/n is the ratio of the number of links 

among subparts and the number of subparts; it expresses interdependence. Unless β>6, increasing levels of α make F negative 
and generate over-constraints (Whitney 2005).  
 
xii Design structure matrices are based on the visual representations of internal constraints (Eppinger 1991, 1997; Steward 1981a, 

1981b). They can be defined as 𝑛 𝑥 𝑛 matrices M in which M𝑖𝑗 ≠ 0 if subparts i and j interact with each other (Casals et al. 2012). 

 
xiii The modularity literature has defined the following operators: substituting, augmenting, splitting, inverting, porting, and 
excluding. 

 

xiv Andriani and Carignani (2013) have started to develop a framework for exaptation and modularity, taking into account the level 
at which exaptation takes place within a modular architecture. They distinguish between ‘radical’, ‘internal’, and ‘external’ 
exaptation. The most interesting case is when an exaptation is radical, and this happens when a module is exapted and an entirely 
new technological architecture, with a new function, arises around the exapted module. An exaptation is internal when a module 
is exapted inside an existing technological architecture, whose function does not change. An exaptation is external when the entire 
architecture is exapted for a new function. In a certain way, our paper provides an empirical framework to test the relationship 
between technological complexity and radical exaptation.  
 
xv From now on we will refer to the ‘likelihood of exaptation’ in a very generic way. In other words, we will not assume any 
underlying ability to overcome Knightian uncertainty and to pre-state all the possible exaptations (and therefore to assign 
probabilities) (Dew et al. 2004).   

 
xvi For example, it is likely that the exaptation that led to the printing press was made possible by Gutenberg’s ability to make an 
inventive analogy between different knowledge domains, wine making and paper pressing. 
 
xvii According to some researchers (De Beaune 2009), analogical transfer is one of the most plausible explanations for the 
invention of stone knapping by Homo erectus, which is probably the first example of human inventive activity. 

 

xviii For instance, it is likely that the exaptation that led to the printing press was facilitated by the possibility to use the wine press 
in a novel way, unless that use was already protected. 
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xix This interpretation is only valid in patent-law systems known as ‘peripheral’ (US, UK, and Japan): in those systems the entire 
set of embodiments exactly defines the ‘fence’ of protection (Fromer 1999). In patent-law systems known as ‘central’ (Germany 
and continental Europe) only few embodiments define protection, and those are used to determine whether potentially infringing 
items are ‘similar enough’ to them.   
 
xx The issue of scope is central in the technological evolution debate. Indeed, as noticed by Merges and Nelson (1990), scope plays 
a very important role in the case of complex technologies, whose developments can proceed on different technological 
trajectories at the same time.  
 
xxi The ‘blocking’ perspective has been recently criticised by Katznelson and Howells (2012).  

 
xxii From now on, we will refer to them as ‘cross-class’ forward citations. 

 
xxiii The way we use citations does not raise issues such as those pointed out by Alcacer and Gittelman (2006). They found that 
almost 40% of citations are added by examiners rather than inventors: this begs the question of whether it is reasonable to assume 
that citations reflect an exchange of knowledge among inventors of different patents. However, we use citations as maps of 
‘technical links’ between inventions (Martinelli 2010) rather than maps of ‘knowledge flows’ between inventors. 
 
xxiv The way we use citations does not raise issues such as those pointed out by Alcacer and Gittelman (2006). They found that 
almost 40% of citations are added by examiners rather than inventors: this begs the question of whether it is reasonable to assume 
that citations reflect an exchange of knowledge among inventors of different patents. However, we use citations as maps of 
‘technical links’ between inventions (Martinelli 2010) rather than maps of ‘knowledge flows’ between inventors. 
 
xxv Usually XR classes are not mandatory unless the controlling claim is too generic and spans different classifications. This 
situation is common when the controlling claim is Markush Type, which usually occurs in the case of chemical compounds 
(USPTO 2012b). 
  
xxvi We therefore make maximal use of our NBER database, which ends in December 1999. Moreover, all the patents of our 
estimation sample were granted in 1991. This allows us to capture the bulk of forward citations, which tend to peak 3-5 years after 
the grant date.   
 
xxvii Instead of PDPCO identifiers, we could have directly used identifiers for assignees. However, quite often, assignees are not 
‘consolidated’ since the same firm may appear in different patents with different assignee identifiers (Hall et al. 2001). 
 
xxviii Both patents are easily accessible on Google Patents.  
 
xxix This is a purely illustrative example of the technological classifications, as the two patents do not cite each other. This is 

probably due to the old age of the patentspre 1950and to the lack of well-established examination and citation procedures at 
those times.   

 
xxx Fleming and Sorenson (2001) measured complexity as the ratio of 𝑥 𝑖 and the number of patent subclasses. This is because 
complexity matters when interdependence among technological components is high relative to their number. Instead of dividing 
by the number of patent subclasses, we introduced it as a separate control, which is the same. Indeed wWe also tried to divide by 
the number of subclasses as in Fleming and Sorenson (2001), and we did not find substantial differences in the main results.   

 
xxxi Fleming and Sorenson (2004) validated the measure through a survey. They asked inventors how coupled the components of 

their patent were. They then compared the results of the survey to their measure, and found a strong correlation.  

xxxii Or, eventually, the single inventor. 

 
xxxiii See the measure of the Inventors’ Analogical Ability.  
 
xxxiv See the measure of the Inventors’ Analogical Ability.  
 
xxxv We set k to 18%, as in Fleming (2001). However, Argote et al. (1990) have estimated a higher value for this parameter. 
 
xxxvi Around 7%, as in Fleming and Sorenson (2001).  

 
xxxvii  We considered the 1980-1990 window. 

 
xxxviii Despite this, we can expect that actual exaptations are a subset of cross-class forward citations.  

 
xxxix Stata’s glm command could not handle Papke and Wooldridge (1996)’s model when their seminal article was published. A few 
years ago, the command had been enhanced to do so. In addition, Ramalho has developed new Stata code for fractional response 
models (see http://evunix.uevora.pt/~jsr/FRM.htm). 
 
xl In other words, classes 514 and 424 refer to the same kind of technology.  
 

Gewijzigde veldcode

http://evunix.uevora.pt/~jsr/FRM.htm
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xli A TOBIT specification is appropriate when the dependent variable is fractional because of censoring: that is when values below 
and above the [0 1] interval cannot be observed (Ramalho et al. 2011). In our case, however, the dependent variable is fractional 
‘by definition’ and not because of censoring. Moreover, a TOBIT specification is very strict in terms of distributional assumptions 
of normality and homoscedasticity of the dependent variable, much like in an OLS regression (Ramalho et al. 2011). In our case, 
these assumptions are not satisfied since a large percentage of values pile at the boundaries of the [0 1] interval.  

xlii We also run a two-part BETA fractional regression model, which assumes that boundary values come from a different data-
generating process (Ramalho et al. 2011). In our case, however, assuming that 0s and 1s come from a different process would 
mean assuming that the process that generates forward citations changes depending on the forward citations’ levels, which is not a 
reasonable assumption.  
 
xliii See Figure 5 in their paper.  
 


