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Abstract

In this paper, a novel hierarchical global path planning approach for mobile robots in a clutter environment is proposed. This
approach has a three-level structure to obtain a feasible, safe and optimal path. In the first level, the triangular decomposition
method is used to quickly establish a geometric free configuration space of the robot. In the second level, Dijkstra’s algorithm is
applied to find a collision-free path used as input reference for the next level. Lastly, a proposed particle swarm optimization called
constrained multi-objective particle swarm optimization (CMOPSO) with an accelerated update methodology based on Pareto
dominance principle is employed to generate the global optimal path with the focus on minimizing the path length and maximizing
the path smoothness. The contribution of this work consists in providing a solution which combines classical algorithms with
nature-inspired algorithm to reduce complexity and improve the quality of the robot path. Another advantage of such a hierarchical
approach is computational efficiency and effective implementation to generate optimal paths. Simulation results in various types of
environments are conducted in order to illustrate the superiority of the hierarchical approach.

Keywords: PSO, Multi-objective optimization, Pareto front, Constraints optimization, Mobile robot, Optimal path planning,
Triangular decomposition, Dijkstra’s algorithm.

1. Introduction

Recently, there has been an increased interest in develop-
ing intelligent mobile robot with advanced autonomous capa-
bilities. The robot offers major advantages when used for re-
connaissance, spatial and terrestrial explorations [1], harvesting
[2, 3], cooperative formation [4, 5], coordinated manipulation
of multi-robots [6], and decentralized multi-task distribution in
multi-robot systems [7]. To accomplish the above mentioned
missions, the prerequisite requirement is that the robot has to
be able to handle various unexpected events that can disrupt
the performance, thus global path planning becomes vital. The
existing path planning methods are mainly grouped into two
categories: i) classical algorithms and ii) heuristic-based algo-
rithms [8], [9].

Prominent classical methods consist of cell decomposition
method (CD) [10], potential field method (PFM) [11], road-
map method (RM) [12] and subgoal method (SG) [13]. Heuris-
tic methods include neural network (NN) [14, 15], fuzzy logic
(FL) [16] and nature-inspired methods from which the most fa-
mous ones are genetic algorithm (GA) [17] and particle swarm
optimization (PSO) [18]. Each of the above approaches has its
own limitations and so far, one individual method cannot per-
fectly solve the robot path planning problem. Thus, researchers
have been patiently seeking for more powerful integrated meth-
ods for this problem. The aim of those methods is to figure out

∗Corresponding author
Email address: thoa.macthi@ugent.be (Thi Thoa Mac)

an optimal collision-free path from a starting position to a goal
position under certain constraints. Since there are many types
of robots with different characteristics, constraints and applica-
tions, it is nearly impossible to introduce an exact definition for
the term ”optimal path”. However, it can be focused on several
aspects, such as safety, smoothness, short distance approaches
and energy with respect to constraints of changing direction and
velocity. In other words, the robot path planning needs to be
seriously considered as a constrained multi-objective optimiza-
tion problem which contains more than one objective that needs
to be achieved simultaneously [19]. Some of the suggested inte-
grated methods are good for dealing with simple environments,
however they work inefficiently and are time consuming for a
clutter environments.

Consequently, this study proposes a novel hierarchical ap-
proach which combines triangular decomposition, Dijkstra’s al-
gorithm and CMOPSO. The interesting problem is the global
path planning of a mobile robot evolving in such clutter en-
vironments. The aim of the approach is to generate optimal
collision-free paths focused on minimizing the path length and
maximizing the smoothness taking into account the robot’s abil-
ities. The proposed approach has a three level structure. In the
first level, the triangular decomposition is used to divide the
robot’s working environment into obstacle configuration space
and free configuration space. Next, in the second level, Dijk-
stra’s algorithm is applied to find the collision-free path from
the starting point to the goal point. Finally, CMOPSO with
an accelerated update methodology based on Pareto dominance
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principle is proposed to find the optimal path in terms of the
path length and the path smoothness. Briefly, this work pro-
vides a novel solution which combines classical algorithms with
nature-inspired algorithm to reduce complexity and improve the
quality of the robot’s path. Another advantage of such a hier-
archical approach is computational efficiency and effective im-
plementation to generate optimal paths.

The remainder of this paper is organized as follows: the
related work is introduced in section 2 followed by section 3
where the single objective particle swarm optimization algo-
rithm is presented in detail. Thereafter, the hierarchical path
planing approach is described in section 4. The robot path
planning formulation is given and explained in section 5. In
section 6, the constrained multi-objective particle swarm opti-
mization with a new update methodology based on Pareto dom-
inance principle is described. Then, implementation of the pro-
posed algorithm is described in section 7. Extensive simula-
tions are carried out and performance evaluation of the pro-
posed approach is discussed in section 8. Section 9 concludes
with a summary of our contributions and a suggestion for future
work.

2. Related work

As mentioned in previous section, the path planning meth-
ods are mainly divided into two categories : i) classical algo-
rithms and ii) heuristic-based algorithms, as shown in Figure 1.
Although such classical methods are often used in robot navi-
gation tasks, there are still some challenges to deal with. For
example, they do not take into account the robot’s constraints
and the obtained paths are not optimal.

Figure 1: The classification of robot path planning algorithms.

Artificial neural network (ANN) have been applied to solve
the path planning problem in modified forms. In [20], a self-
adaptive auto-wave pulse-coupled neural network (SAPCNN)
approach is applied for dealing with the shortest path problem.
A novel contribution of the proposed SAPCNN is adjusting
the propagation speed of the auto-wave adaptively according to
the current state so that it spreads faster in finding the shortest
paths. The experiments illustrate that SAPCNN outperforms
classical algorithms. In [21], pulse coupled neural network
(PCNN) is also employed for the all pairs shortest path prob-
lem (APSP). The authors proposed a novel parallel algorithm
to solve APSP by a matrix multiplication method. This deter-
ministic method guarantees the global solutions. A modified
continued pulse coupled neural network (MCPCNN) model is

proposed to solve two kinds of K shortest path (KSP) problems
[22]. The method is able to find K shortest paths quickly by
using the parallel pulse transmission characteristic of PCNN.
However, ANN has several limitations: firstly, it requires an
enough variety of training data and a possibly large learning
cost with the increase in network structure. Secondly, ANN
does not provide optimal paths.

Fuzzy logic is considered for expressing the subjective un-
certainties in the human mind. A human has a notable capacity
to perform navigation tasks without any exact measurements or
computations. It is highly desirable to mimic this ability to de-
velop autonomous robot navigation strategies [23]. In [24], J.H.
Lilly proposed an approach using both negative fuzzy rules and
traditional positive rules. In which, positive rules are stated to
drive the robot to the goal in the absence of obstacles while a
negative rules are activated in the presence of obstacles. As a
result, fewer rules than using solely positive rules are applied
on the obstacle avoidance controller. A fuzzy logic system with
48 fuzzy rules is presented in [25]. A combination of multiple
sensors is equipped to detect the obstacles, the target and mea-
sure the current robot speed. It generates suitable paths toward
the target in various scenarios without the ”symmetric indeci-
sion” and the ”dead cycle” problem. A positive aspect of the
fuzzy approach is expressing navigation tasks in terms of lin-
guistic variables which is simple and transparent. However, it
has difficulty in selecting the most suitable rules and member-
ship functions.

Nature-inspired algorithms are recognized to be properly
suitable for solving optimization problems such as path plan-
ning because they can handle the complexity of multi-modality,
nonlinearity and discontinuity which the robot often encoun-
ters in the autonomous navigation tasks. Therefore, those algo-
rithms have recently received considerable interest from many
researchers. Until now, a majority of research has been ded-
icated to looking for a feasible shortest path by formulating
the robot path planning problem as a single-objective problem
[26, 27], [28]. However, the optimized paths in real applica-
tions are not single-objective problems since many attributes
such as path safety, path smoothness and minimum energy are
also desirable. Unfortunately, very limited research into multi-
objective robot path planning optimization has been conducted.

In [29], a multi-objective robot path planning has been de-
veloped to optimize the path length, the path safety and the path
smoothness using Non-dominated Sorting Genetic Algorithm
II (NSGA-II). To facilitate a discrete representation and for the
navigation implementation, the grid-based approach is adapted
in this study. However, the size of the robot is assumed to be
smaller than unit cell size so that the dynamics of the robot is
ignored and the obstacles are supposed to be the same size and
shape. The disadvantage of this approach is that the computa-
tion increases dramatically as the number of obstacles grows.
NSGA-II algorithm is also used for off-line path planning of
unmanned aerial vehicles by applying B-spline curves. The
objectives of minimizing the path length and maximizing the
safety margin are also considered in [30].

PSO is a well-known nature-inspired algorithm because of
its lower computational costs. The distribution of all publi-
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cations and publication per year between 2010 and 2014 pre-
sented in [31] indicates that the number of total publications
related to PSO is higher than the sum of other algorithms. This
reveals that PSO is the most predominant swarm intelligent
based optimization algorithm. The developments on PSO can
be divided into the following five aspects: i) modifications of
PSO such as quantum- behaved PSO, chaotic PSO, fuzzy PSO,
topology; ii) hybridization of PSO with other heuristics meth-
ods such as GA, ant colony optimization (ACO), Tabu search
(TS), artificial bee colony (ABC); iii) extensions of PSO to
other optimization fields, consisting of multi-objective, con-
strained, discrete and binary optimization; iv) theoretical anal-
ysis of PSO with parameters selection and convergence anal-
ysis; v) parallel implementation of PSO, consisting of multi-
core, cloud computing and GPU computing. PSO has been
applied in many applications in numerous academic and in-
dustrial fields including electrical and electronic engineering,
automation control systems, communication theory, operations
research, mechanical engineering, medicine, biology, chemistry,
fuel and energy [31].

Several papers compare PSO with GA showing that PSO
can provide better performances in some cases [32, 33]. The
existing studies have shown the capability of PSO to tackle
the robot path planning in static and dynamic environments
[34, 35]. In [36], the robot path planning with precise positions
of the danger sources is solved by using multi-objective PSO.
In [37], a new modified PSO named Stochastic PSO (S-PSO)
is proposed which possesses a higher exploration ability than
the original PSO so that a swarm with small size is employed
to achieve the optimal path. With two objective functions with
respect to trajectory’s length and the obstacle avoidance, the
algorithm is able to generate on-line, safe and smooth paths de-
scribed by high order polynomials. In a similar approach, a
hybrid of PSO and Gravitational Search Algorithm (GSA) was
applied to find a short and safe path in dangerous environments
[38]. A multi-objective path finding problem in a stochastic net-
work is presented in [39], in which the parameters are divided
into two types: deterministic variables and random variables.
The authors proposed a chaos immune particle swarm opti-
mization (CIPSO) which combines an artificial immune sys-
tem (AIS), a chaos operator and PSO. Realistic computation
shows that CIPSO has good performance in terms of route op-
timality and convergence time. Another interesting work which
solves the unmanned combat air vehicle (UCAV) path planning
problem by fitness-scaling adaptive chaotic PSO is presented in
[40]. To improve the performance of the basic PSO algorithm,
the authors propose three improvements: i) a new power-rank
fitness-scaling method; ii) adaptive varied parameters to search
an expansive area at the pro-phase stage and a restricted area at
the anaphase stage; iii) apply chaos to improve the robustness
of PSO. The performance evaluation function includes both the
threat cost and the fuel cost in which the velocity of UCAV
is supposed as a constant. The total cost for UCAV trajectory
traveling is performed based on a weighted sum method.

The nature-inspired algorithms can deal with multi-objective
robot path planning optimization problems however the draw-
back of those approaches is that they are time consuming and

fail to create a feasible path in some scenarios. As updated
trends, path planning approaches with hierarchical structures
have been proposed in [41, 42, 43] to solve this type of problem.
In those studies, the lower level principally focuses on obtain-
ing a geometric collision-free path. To find such a path, graph
search methods can be applied, such as A* [41, 42]. Then, the
higher level is used to provide a series of subgoals to gener-
ate an optimal path. In [43], X. Yang et al. argue that due to
the hierarchical structure design and the interpolative reasoning
mechanism, the proposed path planning is very simple and con-
cise. That brings several benefits, such as the reduction of com-
putation time, re-usability of modules, and easy extensibility.
In [44], a modified A∗ algorithm, called Multi-Neuron Heuris-
tic Search (MNHS) is implemented in a hierarchical manner
where each generation of the algorithm provides a more de-
tailed path with a higher reaching probability. The algorithm is
able to give an optimal path in numerous situations with vary-
ing degrees of complexities where the standard A∗ algorithm
fails. Such a hierarchical approach is also very successful in
structural engineering as presented in [45] using graph theory,
Matroids and greedy algorithm for optimal cycle basis selec-
tion. In [46], size/topology optimization of trusses is proposed
using GA, the force method and some concepts of graph theory.
The approach is improved by using a suitable penalty function
to reduce the number of numerical operations and to increase
the speed of the optimization toward a global optimum.

In short, a hierarchical approach which combines several al-
gorithms, for example classical algorithms with nature-inspired
algorithms, reduces complexity of operations and can lead to
impressive improvements in the area of robot application [47].
Another advantage of such a hierarchical methods is that they
have computational efficiency and an effective implementation
to generate an optimal path.

3. Single objective particle swarm optimization

PSO algorithm was firstly proposed by Eberhart-Kennedy
[48] to solve the single objective optimization problem. PSO
is inspired by social behavior of bird flocking or fish school-
ing. This algorithm is a population based stochastic optimiza-
tion technique. In PSO, a swarm includes a set of particles and
each particle is a potential solution of the optimization prob-
lem. Basically, PSO is initialized with a set of random solutions
and then updated each generation based on an optimal scheme.
Then, the global optimum is achieved by changing the collec-
tion of particles in a search space towards a promising area.

Considering the search space D that has dimension N (D ⊂
RN), the position and velocity of the ith particle in the swarm
are Xi = (Xi1, Xi2, ..., XiN) ∈ D and Vi = (Vi1, Vi2, ..., ViN) ∈ D .
The particles will update their locations in the swarm towards
the global optimum (or target position) based on two factors: 1)
the personal best position (Pb) and 2) the global best position
(Gb). The first term is the best position found by the ith particle
itself over iterations 1 ... t which is termed local leader and rep-
resented as Pbi(t)= (Pbi1(t), Pbi2(t), ..., PbiN(t)). The second
term is the best position of the whole particles in the swarm
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over iterations 1 ... t, which is termed global leader and rep-
resented as Gb. At the iteration t +1 of the search process, the
velocity and the position will be updated according to following
equations:

Vi(t +1) = wVi(t)+ c1r1(Pbi(t)−Xi(t))

+ c2r2(Gb(t)−Xi(t))
(1)

Xi(t +1) = Xi(t)+Vi(t +1) (2)

where:
w is the inertia weight;
c1 and c2 are two nonnegative constants, referred to as cognitive
and social factors, respectively;
r1 and r2 are uniform random numbers in [0, 1] that brings the
stochastic state to the algorithm.
The pseudo code of this algorithm for minimizing a cost func-
tion J is provided in Algorithm 1.

Algorithm 1 PSO pseudo-code
Initialize population, parameters
While Termination criterion is unsatisfied

For i=1 to Population Size
Calculate particle velocity according to (1)
Update particle position according to (2)
If J(Xi) <J(Pbi)

Pbi = Xi
If J(Pbi)<J(Gb)

Gb = Pbi
End

End
End

End

The original PSO algorithm is designed to solve a single-
objective optimization for a continuous solution space so that
we must propose the particle representation, particle velocity
and particle movement so that they work properly with multi-
objective optimization for the robot path planning problem. The
proposed method is described in sections 5 and 6.

4. The hierarchical robot path planning approach

In this section, the problem statement and important con-
cepts are briefly introduced in the first subsection. Then, the
framework of the proposed hierarchical path planning approach
is presented in the next one. Finally, the triangular decomposi-
tion method and Dijkstra’s algorithm also are shortly described.

4.1. Problem statement and definitions

First, the problem of path planning investigated in this study
can be stated as follows: considering a cluttered environment,
a start position and a goal position; path planning is to find
a collision-free optimal path with a sequence of points that is
safe and feasible for the mobile robot to follow. Without loss

of generality, the obstacles are assumed to have convex polyg-
onal shapes. From representation point of view, this assump-
tion is not restrictive since any convex non-polygonal shape can
be bounded by a convex polygonal region and a non-convex
object can be divided into several convex objects. As the ap-
proach covers several notions related to the configuration space
C , some important definitions are introduced as follows.

Definition 4.1 (Working space): a working space C is a phys-
ical space that is a sub-set of R2 for planar 2D or R3 for 3D
spaces.

Definition 4.2 (Obstacles configuration space): Obstacles are
portions of C which are occupied, denoted by O1, O2, ...., On.
The obstacles configuration space C O is the mapping of the
obstacles in the working space to the configuration space.

Definition 4.3 (Free configuration space): Free configuration
space C f ree is a set of configurations in which the robot is free
from collision with obstacles:

C f ree = C \C O (3)

4.2. The framework of the proposed approach

In this subsection, the developed approach for the robot path
planning problem is introduced. The key point is to develop
multiple objective optimization based on PSO algorithm in a hi-
erarchical manner. There are three different levels in the frame-
work of the proposed approach presented in Figure 2. In the
first level, the boundaries of every obstacles (in orange areas)
are firstly expanded by an amount that is equal to the size of
the robot plus a safety distance (in red areas) as shown in Fig-
ure 3. Therefore, the mobile robot can be considered as a point
which freely moves out-side those boundaries. The triangular
decomposition method is applied to quickly find the free space.
In the second level, Dijkstra’s algorithm is used to generate the
collision-free path from the start location to the goal location
(dashed red path). In the last level, a CMOPSO with an ac-
celerated update methodology based on the Pareto dominance
principle is applied to obtain the optimal robot path planning in
terms of solution quality and actual execution time (solid blue
path).

4.2.1. Triangular Decomposition
Cell decomposition is a partition of the free space into polyg-

onal regions of the same type of geometry. The typical geome-
try are trapezoidal cells, triangular cells, polytonal cells, rectan-
gular cells. In [10], the complexity and the quality of the path
planning approach with respect to the chosen cell decomposi-
tion type are investigated. In that study, the results of decompo-
sition types suggest that the triangular decomposition algorithm
is the most advantageous choice from the point of view of com-
bination of low number of cells, robustness to noise, small com-
putation time and its large percentage of finding feasible paths.
Thus, the triangular decomposition method is very promising
and applied in this study.

4



Figure 2: The structure of the hierarchical robot path planning approach.

Figure 3: An example of the robot working space with four obstacles.

Basically, the triangular decomposition method has inputs
C and C O while the outputs consist of a set of triangular cells
C = {c1, c2, ...., cm} and the edges which correspond to adja-
cency among cells. The middle points of these adjacent edges
are later used for Dijkstra’s algorithm. Figure 3 is an example
of the robot working space C , 100 by 100 square meters which
includes 4 obstacles. Points START and STOP respectively de-
note the starting and the goal positions. The white areas are free

configuration space C f ree and the red ones are C O . Obviously,
the configuration free space includes a set of triangular cells:

C f ree = {c1,c2, ....,cm} (4)

4.2.2. Dijkstra’s algorithm
Dijkstra’s algorithm is an efficient algorithm used to search

the shortest path in a graph. In order to solve the robot path
planning problem, a graph is constructed from the triangular
decomposition where each node corresponds to a cell. The start
cell is the one containing the start point and the destination one
contains the goal point. Dijkstra’s algorithm is employed to
find an optimal sequence of the cells to be traveled. Then, the
robot path is generated by linking the middle points of the line
segments shared by successive cells from the sequence. For
more details about that algorithm, please refer to [49].

4.2.3. Constrained multi-objective particle swam optimization
Evolutionary algorithms in general and PSO in particular

may find an optimal path by themselves, however the disadvan-
tage of those approaches is expensive computation. The aim of
this step is to generate an optimal path based on the adjustment
of the collision-free path points with the defined constraints by
the proposed CMOPSO. More details on how the optimal path
is generated will be given in sections 5 and 6.

5. Robot path planning formulation

In this study, the specific knowledge of the robot path plan-
ning problem is used to create proper initial particles, constraints
and objective functions. To achieve this purpose, appropriate
initial particles are created based on the results obtained from
the combination between the triangular decomposition algo-
rithm and Dijksra’s algorithm. In addition, the modification
of the original PSO is proposed to increase the speed of con-
vergence, to evolve the robot constraints and to solve a multi-
objective optimization problem. This section is divided into
four subsections. The particles representation is firstly intro-
duced (subsection 5.1). Then, the multi-objective path planning
problem is defined (subsection 5.2), followed by the constraints
problem (subsection 5.3). In the end, the problem formulation
of the robot path planning is described (subsection 5.4).

5.1. The particles representation

Normally, the initial particles can be randomly created. This
means a number of points are arbitrarily selected from the robot
working space. However, this strategy has little chance to ob-
tain a feasible path. When the environment becomes more com-
plex, it will be more difficult to obtain a feasible one. Consider-
ing this problem, the combination of triangular decomposition
and Dijkstra’s algorithm is applied to ensure that all initial paths
are free-collision ones.

As mentioned in section 4, the triangular decomposition
method is employed to archive C f ree of the robot, then Dijk-
stra’s algorithm is implemented to find a collision-free path.
One example shown in Figure 4, using Dijkstra’s algorithm,
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the obtained collision-free path is START → P1 → P2 → ...
→ P8 → STOP when the robot moves in the environment with
three obstacles. Since the robot moves in the 2D environment,
each point is represented in x and y coordinates. For the path
consisting of eight intermediate points, the corresponding par-
ticles representation is shown in Figure 4. The coordinates of
the eight intermediate points are give by xi and yi (i = 1...8),
which form particles denoted by Xi (i = 1...16).

Figure 4: Solution representation of the robot path planning.

Obviously, each intermediate point Pi is the middle point of
a line segment shared by adjacent cells. Assume, the relevant
line segment has two vertexes termed Pi1 and Pi2 (for example
P2 is the middle point of the line with two vertexes termed P21
and P22 as shown in Figure 4). Thus, in general, for a path con-
sisting of d intermediate points, the robot path planning prob-
lem is transformed into the following optimization problem.

Find a set of points S = {P1, P2, ..., Pd} together with the
start point and the goal point to create an optimal path where
Pi (i = 1 ... d) satisfies the following coordinate constraints:
min{Pi1(x), Pi2(x)} ≤Pi(x)≤max{Pi1(x), Pi2(x)} (i = 1 ... d)
and min{Pi1(y), Pi2(y)} ≤Pi(y)≤max{Pi1(y), Pi2(y)} (i = 1 ...
d). These constraints ensure that the robot is able to safely move
in C f ree.

5.2. Multi-objective problem

The robot path planning is formulated as a multi-objective
optimization problem with the aim of optimizing two objective
functions while satisfying several inequality constraints. First,
the objectives are formulated as follows:

Minimization of the path length:
Every path planning application must provide some degree

of the shortest path. For the first performance criterion, the

objective function is the total length of path, determined by:

J1 = L(P) =
d

∑
i=0

L(Pi,Pi+1)

=
d

∑
i=0

√
(xi+1− xi)2 +(yi+1− yi)2

(5)

where L(Pi, Pi+1) presents the distance between two nodes Pi
and Pi+1; xi, yi are the variable coordinates of node Pi (i = 0 ...
d+1) in C f ree. In (5), P0 (START ) and Pd+1 (STOP) represent
the start point and the goal point with chosen coordinates.
In the particles form, equation (5) can be written as:

J1 = L(X) =
√
(X1−X0)2 +(X2−Y0)2

+
N

∑
k=1

√
(Xi+2−Xi)2 +(Xi+3−Xi+1)2

+
√

(Xd+1−XN−1)2 +(Yd+1−XN)2

(6)

where:
N = 2d;
X0 and Y0 are chosen coordinates of P0;
Xi denotes particles.
Xd+1 and Yd+1 are chosen coordinates of Pd+1.

Maximization of the path smoothness:
The path smoothness is evaluated by summing the robot’s

turning angle in the desired path. The smoothness of a trajec-
tory is a very important attribute in robot path planning since
the robot should not significantly change its direction. The
path smoothness leads to lesser energy and time consumption.
Therefore in this study, the smoothness is considered as a sec-
ond objective function. Obviously, maximizing the path smooth-
ness is equal to minimizing the total of the robot’s turning an-
gle. The cost function of the robot’s turning angle is defined as
follows:

J2 = Θ(P) =
d

∑
i=1
|θi| (7)

where θi is the angle between two vectors
#         »
Pi−1Pi and

#         »
PiPi+1:

θi = atan2
(

yi+1− yi

xi+1− xi

)
−atan2

(
yi− yi−1

xi− xi−1

)
(8)

In a similar way, equation (7) can be written in the particles
form as follows:

J2 = Θ(X) = atan2
(

X4−X2

X3−X1

)
−atan2

(
X2−Y0

X1−X0

)
+

N−5

∑
k=1

atan2
(

Xi+5−Xi+3

Xi+4−Xi+2

)
−atan2

(
Xi+3−Xi+1

Xi+2−Xi

)
+atan2

(
Yd+1−XN

Xd+1−XN−1

)
−atan2

(
XN−XN−2

XN−1−XN−3

) (9)

5.3. Constraints problem
This section is devoted to define the constraints problem

for the robot path planning. There are two considered factors:
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the position constraints and the heading angle constraints of the
robot.

The position constraints:
The generated points Pi with i ∈ {1, 2, ..., d} are restricted

by the coordinates of two points Pi1 and Pi2. Thus, the lower
bounds and upper bounds are:

min{Pi1(x),Pi2(x)} ≤ Pi(x)≤ max{Pi1(x),Pi2(x)} (10)

min{Pi1(y),Pi2(y)} ≤ Pi(y)≤ max{Pi1(y),Pi2(y)} (11)

Based on the definition of the particles presented in subsection
5.1, the generated points Pi can be expressed as:

Pi(x) = X2i−1 and Pi(y) = X2i.

Let’s define:

XLB
2i−1 = min{Pi1(x),Pi2(x)}; XUB

2i−1 = max{Pi1(x),Pi2(x)}
XLB

2i = min{Pi1(y),Pi2(y)}; XUB
2i = max{Pi1(y),Pi2(y)}

(12)

The general form of the position constraints problem is:

LBk ≤ Xk ≤UBk

LBk = (XLB
k ); UBk = (XUB

k ) ∀k ∈ {1,2, ...,N}
(13)

The heading angle constraints:
In the robot performance, it is difficult to rotate a large an-

gle at one time because of the physical system limitations. Con-
sider the changing direction has a range of [−90◦ 90◦]. This
can be stated as an inequality constraint:

ψi(X) = |θi(X)|−90◦ ≤ 0 ∀i ∈ {1,2, ...,d} (14)

Since the particles form of θi is mentioned in subsection 5.2, it
is skipped in this subsection.

5.4. Problem formulation

Aggregating the proposed objectives and constraints, the
global robot path planning can be mathematically formulated as
a constrained multi-objective optimization problem as follows:

Minimize [J1(X),J2(X)] (15)

Subject to:

ψi(X)≤ 0 ∀i ∈ {1,2, ...,d} (16)

LB≤ X ≤UB (17)

In this problem, there are no equality constraints.

6. Constrained multi-objective optimal particle swarm op-
timization algorithm

In order to solve the robot path planning problem described
in section 5, a proposed CMOPSO algorithm is introduced in
this section. First, the multi-objective optimization approach
is presented. Then, the constrained method based on Pareto
dominance principle is described, followed by the update of the
archive, the global best and the particle position subsections.

6.1. Multi-objective optimization problem

For a multi-objective optimization problem (MOP), the most
common approach is combining the optimization criteria into
a single objective function by linear combinations of attribute
values (called weighted sum method). This method is sim-
ple however it is problematic as the final solution depends on
weighting factors.

Instead, the best trade-off solutions, called the Pareto op-
timal solutions or Pareto set, is the most powerful approach to
solve the MOP. It is worth to note that multi-objective optimiza-
tion provides a set of solutions (called Pareto-optimal) rather
than one solution. This set includes the solutions that no solu-
tion is better than others with respect to all objective functions.
In the following subsection the constrained dominance to deal
with the multi-constraints in MOP is introduced. This relation-
ship is used to update the feasible archive, the global best and
the particle position.

6.2. Constrained Pareto dominance principle

For the constrained multi-objective robot path planning op-
timization problem, the dominance relationship which includes
not only the objective function values but also its violation de-
gree constraints is taken into account. It is reasonable to use its
constraints-violated function to evaluate the violation degree. It
means that each time the defined constraints is not satisfied, the
violation degree increases according to following formulas:

vd =
1
d

d−1

∑
i=0

vd j(X) (18)

where:

vd j(X) =

{
0 if ψi(X)≤ 0
1 if ψi(X)> 0

To handle efficiently constraints, an effective scheme is ap-
plied in the proposed algorithm. The constrained dominance
principle is defined as:
(1) The solution with a smaller constrained violation degree is
chosen to dominate the other.
(2) Two solutions have the same values of constrained violation
degree, non-dominance principle is based on cost functions to
choose the better solution.
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6.3. Update the archives and the global best

For the robot path planning problem, a particle represents a
potential path which connects the start point to the goal point
and avoids all obstacles. Using the constrained Pareto dom-
inance principle is a straightforward way to extend the basic
PSO to handle multi-objective optimization problems. In this
study, the update of the archives is based on this principle. At
each iteration, the best solutions found by the swarm are com-
pared on a peer to peer basis with elements in the archive which
is set to empty at the beginning of the search. If the archive is
empty, the current solution is directly stored. If the solution that
the algorithm is wishing to enter, is dominated by any element
in the archive then it is automatically discarded; otherwise, such
a solution is stored in the archive. In addition, if any elements
in the archive are dominated by the new element, then such old
elements are removed from the archive [50].

The global best position (Gb) is the best solution obtained
by all particles so far. In the proposed algorithm, the archive set
is firstly found along the search process according to the above
principle. Then the global best is chosen from the archive set
by applying roulette wheel selection.

6.4. Update particle position

It is important to have a flexible search strategy based on the
exploration ability and the exploitation ability. One approach
is studied in [40], in which the parameters (w, c1, c2) change
adaptively. In the search process of PSO, the search space will
gradually decrease as the generation increases. In addition, a
chaotic operator is applied to generate parameters (r1, r2). It is
obvious that at the beginning of the search, the exploration abil-
ity is necessary to ensure that the algorithm can search in large
space. Thereafter, the exploitation ability is preferred to guar-
antee that the algorithm can search promise areas carefully and
converge to the optimal solution. In the conventional PSO, each
particle updates its position based on both the current global
best-Gb and the personal best-Pb (or local best) as mentioned
in section 3.1. The purpose of using the local best is primar-
ily to expand the diversity of the quality solutions, however,
the diversity can be simply simulated by randomness at the be-
ginning (for the exploration ability purpose) then reduces the
randomness at each iteration (for the exploitation ability pur-
pose). Therefore, in order to accelerate the convergence of the
algorithm, it is possible to use the global best only [51].

The update strategy of the particle position is based on the
accelerated particle updates method. The purpose is an increas-
ing convergence speed toward global non-dominated solutions.
Based on that statement, the velocity vectors are formulated as:

Vi(t +1) =Vi(t)+ c1 + c2(Gbi(t)−Xi(t)) (19)

Xi(t +1) = Xi(t)+Vi(t +1) (20)

where:
c1 is a random value in (UB-LB) that brings the stochastic state
to the algorithm;
c2 ∈ [0.1 0.7]; Gb(t) is the global best in iteration t.

Vi(t),Vi(t +1) are velocities of particles i in iteration t, t +1.
Xi(t),Xi(t +1) are positions of particles i in iteration t, t +1.
To reduce the randomness as iterations are updated, the value
of c1 can be designed as:

c1 = c0γ
trand(UB−LB) (21)

where c0 ∈ [0.1 0.5] is the initial value of the randomness pa-
rameter while t is the number of the iterations and γ ∈ (0 1) is
a control parameter.

6.5. Complexities of the algorithms
The computational complexity of the proposed algorithm is

an important aspect that should be considered carefully. Mea-
sure of an algorithm complexity usually is the execution time,
which can be estimated or predicted. Using quantity called
steps is able to make the time measurement independent to a
specific computer. The total number of steps is normally ex-
pressed as a function of the input size, called complexity func-
tion T (n), where n is input size. Bounds of running time of Di-
jkstra’s algorithm can be characterized as a function of the num-
ber of the edges, denoted |E| and the number of vertices, de-
noted |V |. The algorithm running time is O(|E|log(|V |)) [52].

The number of computation required for a complete run of
the PSO algorithm are the sum of the computations required to
calculate the cost of a candidate solution (based on current po-
sition of the particles) and the computations required to update
each particles position and velocity. Both of these are directly
proportional to the number of iterations. In the robot path plan-
ning problem, the problem size is the number of intermediate
path points. When apply the pure PSO algorithm, the problem
size is a designed parameter, which depends on each scenario
of working environment. To generate a feasible path in clut-
tered environment, this parameter is needed to set big enough
(i.e. K=2* the numbers o f obstacle as each intermediate point
has two coordinates x and y). The use of Pareto based pure PSO
has led to program run times in O(KTmaxMS2), where K is the
number of intermediate points, Tmax is the number iterations, M
is the number of objectives, and S is the population size.

The proposed CMOPSO uses archives to store non-dominate
solutions based on Pareto dominance principle. For the robot
path planning problem, this requires time O(NMSNa) to test a
candidate solution, while insertions and deletions can be done
in constant time [53]; where N=2*d, d is the number of inter-
mediate points as mentioned in section 5.1, Na is the size of the
archives. Obviously, the required time of the proposed method
is much lower than pure PSO. Compared to pure graph algo-
rithm, the computational time is also smaller. In addition, it
provides an optimal path which cannot be done by Dijkstra’s
algorithm in the robot path planning application.

7. Implementation of the proposed algorithm

Based on the previous described content, the proposed con-
strained multi-objective particles swarm optimization algorithm
for tackling the robot path planing is presented according to the
following steps.
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Step 1 (Model the working space) Establish C f ree of the robot
using the triangular decomposition method, then find a collision-
free path S = {P0, P1, P2, ..., Pd , Pd+1} by using Dijkstra’s algo-
rithm; where P0 and Pd+1 denote the starting and the goal points
of the robot.
Step 2 (Mathematical model) Build the mathematical model
of the robot path planning optimization (particle representation)
by the method proposed in Section 5.1. Consider the path has
d intermediate nodes, each node has two coordinates x and y
and the archived particles representation is X = {X1,X2, ...,XN}
with N = 2d. Then, the objective functions and constraints are
defined as in sections 5.2 and 5.3.
Step 3 (CMOPSO algorithm) Implement the proposed algo-
rithm to find the mathematical model of robot path planning
optimization problem.
Step 3.1 (Initialization) Set the necessary parameters (size of
swarm-N, the size of the archives-Na, the maximal sampling
time Tmax). The time (iteration) counter is set to 0 and the ini-
tial values are c0 ∈ [0.1 0.5], c2 ∈ [0.1 0.7]. To increase the
optimal convergence, an initial swarm X is randomly generated
in [LB UB]. The pseudo code for this step is:

• For i = 1 to N

• Initialize Vi = 0

• Initialize Xi in [LBi UBi]

Step 3.2 (Evaluation) Calculate the objective functions and the
constrained violated degree of each particles based on (6), (9),
(18).
Step 3.3 (Update the archives) Search for non-dominated so-
lutions and put in the archives.
Step 3.4 (Update the global best) The global best is selected
from the archives.
Step 3.5 (Main loop) While (t<Tmax),
(where Tmax: predefined maximum iterations)

1. Update control parameter c1= c0* γ t where γ is a control
parameter, chosen in (0 1).

2. Update velocity and position according to equations (19),
(20).

3. Calculate the objective functions and the constrained vi-
olated degree of each particle based on (6), (9), (18).

4. Update the archives and the global best based on the prin-
ciples introduced in section 6.3.

5. Update the iteration t = t+1

Step 4 (Display results) Display the optimal robot path.

8. Simulations and analysis

In this section, the proposed algorithm is validated through
several test cases, assuming that a robot is performing respec-
tive mission in a 100x100 square meters working space. In each
test, the obstacles are generated with different size, shape and
the robot has different start and destination points. In the fol-
lowing simulations, the proposed algorithm used a set of pa-
rameters as: the swarm size S = 60, the size of archive Na =
20; the maximum number of iterations Tmax = 60, c0 = 0.2; c2
= 0.7; γ = 0.97.

(1) Test case 1
This test case includes two obstacles where their positions

are not in the connection between the start and goal points. The
positions of the start and the goal are (9.1, 83.6) and (80.7,
13.8), respectively. Ideally, the proposed algorithm should be
able to find the straight line between those points.

Figure 5: Obtained paths by Dijkstra’s algorithm (dashed red line) and
CMOPSO (solid blue line) in the test case 1.

For this test case, Figure 5 presents two obtained paths by
Dijkstra’s algorithm (dashed red line), and CMOPSO (solid
blue line). Table 1 shows the coordinate values of those cor-
responding paths. For this problem, there are four intermediate
points which form particles denoted by Xi (i = 1 ...8). In other
words, the dimension of decision variable is 8. The position
constraints which ensure that the robot is able to move freely in
the working space are found as (according to subsection 5.1):

LB = [21.6, 37.8, 34.6, 31.7, 34.6, 31.7, 34.5, 18.1]

UB =[48.8, 53.8, 48.8, 53.8, 72.3, 39.9, 72.3, 39.9]

The heading angle constraints also are formulated according
to equation (14). Dijkstra’s algorithm is used to find the best
direction from the start position to the goal position, then the
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proposed CMOPSO is applied to generate the optimal path fo-
cused on minimizing the path length and the path smoothness.
It can be seen that the obtained path is the optimal solution for
test case 1.

(2) Test case 2
Figure 6 displays a clutter space with 10 obstacles and shows

two paths obtained by Dijkstra’s algorithm (dashed red line) and
CMOPSO (solid blue line) in the same approach as mentioned
in test case 1. Dijkstra’s algorithm finds the collision-free path
from the start point to the target point via 8 intermediate points,
thus the dimension of the decision variable is 16. The start and
end points are (4.5, 45.9) and (93.4, 43.3), respectively. The re-
sults are summarized in the Table 2 for the position constraints
and in the Table 3 for the trajectories generated by Dijkstra’s
algorithm and CMOPSO.

Figure 6: The multi−objective optimal paths obtained by Dijkstra’s algorithm
(dashed red line), CMOPSO (solid blue line).

(3) Test case3
The test case includes 20 obstacles with different sizes and

shapes. The start position of the robot is (7.2, 92.6). Sim-
ulations in this scenario are performed for three different lo-
cations of the targets STOP1= (50.4, 22.6); STOP2 = (85.9,
72.2); STOP3 = (9.5, 4.7). The dimension of decision variable
is 30, 24 and 14 respectively. The results are summarized in the
Table 4 for the position constraints and in the Table 5 for the
trajectories generated by Dijkstra’s algorithm and CMOPSO.
The simulations are shown in Figure 7. Figure 8 presents the
approximated time consumption with different obstacles using
CMOPSO. As can be seen from this figure, the proposed ap-
proach generates optimal solutions in the an extremely short
computation time for environments with low, medium and high
density (in terms of obstacles). The time consumption is less
than 1 second for the environment with 20 obstacles.

Figure 7: The multi-objective optimal paths obtained by Dijkstra’s algorithm
(dashed red line), CMOPSO (solid blue line) with the same start position and
three different targets.

Figure 8: The actual execution time of CMOPSO with different number of
obstacles.

9. Conclusions

In this study, a novel hierarchical approach for robot path
planning in the presence of clutter obstacles is proposed. In
this approach, a combination of the triangular decomposition
method, Dijkstra’s algorithm and a proposed constrained multi-
objective particle swarm optimization (CMOPSO) with an ac-
celerated update methodology based on the constrained Pareto
dominance principle is proposed to get optimal path planning
results. The resulting algorithm has a three level structure. In
the first level, the triangular decomposition is used to swiftly
find the obstacle configuration space and free configuration space
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Table 1: The obtained paths of the test case 1

Paths The coordinate of intermediate points (x,y)
Dijkstra’s (35.2, 45.8)→(41.6, 42.8)→(53.4, 35.8)→(53.4, 28.9)
CMOPSO (43.5, 50.0)→(48.0, 45.6)→(61.9, 32.1)→(64.0, 30.1)

Table 2: The robot position constraints of the test case 2

The position constraints
LB [ 0, 0, 0, 0, 0, 0, 0, 0, 74.4, 0 , 77.3, 0, 88.2, 0, 86.5, 0, 90.2, 0]
UB [10.3, 64.3, 5.7, 11.5, 16.1, 7.5, 74.4, 5.6, 100, 5.6, 100, 5.4, 100, 8.4, 100, 35. 8, 100, 74.4]

Table 3: The obtained paths of the test case 2

Paths The coordinate of intermediate points (x,y)
Dijkstra’s (5.2, 32.1)→(2.9, 5.7)→(8.0, 3.8)→(37.2, 2.8)→(87.2, 2.9)→(88,7, 2.7)→(94.1, 4.2)→(93.2, 17.9)→(95.1, 23.7)
CMOPSO (5.4, 13.8)→(5.7, 11.5)→(16.0, 7.3)→(52.5, 3.5)→(74.4, 4.3)→(79.7, 5.4)→(88.2, 8.4)→(89.0, 12.5)→()

Table 4: The robot position constraints of the test case 3

Targets Types The position constraints

STOP1 LB [9.1, 84.9, 9.1, 76.1, 15.1, 70.7, 15.1, 68.5, 13.5, 65.2, 13.5, 57.9, 23.9, 53.1, 24.8, 53.1, 33.3, 39.7, 33.3,
39.7, 33.3, 38.2, 37.2, 35.8, 38.7, 32.3, 38.7, 29.1, 43.2, 23.8]

UB [18.8, 85.2, 19.4, 85.1, 19.4 76.1, 23.9, 70.7, 23.9, 68.5, 23.9, 68.5, 24.4, 68.5, 39.9, 58.7, 39.8, 58.6, 44.5,
53.3, 46.3, 39.7, 46.4, 38.2, 46.4, 38.2, 52.4, 32.3, 52.4, 29.2]

STOP2 LB [0, 84.9, 0, 88.2, 0, 88.3, 0, 89.8, 50.6, 89.7, 54.7, 86.6, 54.7, 86.6, 61.1, 75.2, 65.1, 82.5, 73.5, 82.5, 73.5,
81.9, 66.4]

UB [18.7, 100, 24.2, 100, 43.1, 100, 50.7, 100, 65.9, 95.2, 65.8, 95.2, 65.2, 86.9, 65.1, 86.9, 73.5, 86.9, 77.6,
86.9, 84.9, 82.5, 84.9, 77.1]

STOP3 LB [0, 85.2, 0, 66.4, 0, 42.1, 0, 0, 0, 0, 0, 0, 0, 0]
UB [9.1, 100, 5.9, 100, 2.54, 100, 2.5, 42.2, 3.8, 30.9, 9.4, 24.8, 16.2, 13.3]

Table 5: The obtained paths of the test case 3

Targets Paths The coordinate of intermediate points (x,y)

STOP1 Dijkstra’s (13.9, 85.1)→(14.3, 85.1)→(14.3, 80.6)→(17.3, 73.4)→(19.5, 69.6)→(18.7, 66.8)→(18.7, 63.2)
→(24.1, 60.8)→(32.1, 55.9)→(36.6, 49.2 )→(38.9,46.5)→(41.7, 36.9)→(42.6, 35.3)→(45.6, 30.8)

→(47.8, 26.5)
CMOPSO (11.2, 85.2)→(13.9, 79.9)→(16.1, 75.6)→(19.5, 68.6)→(21.1, 65.3)→(23.1, 61.2)→(24.3,59.2)

→(28.1,53.8 )→(33.8, 45.8)→(36.3, 42.3)→(38.4, 39.4)→(40.5,36.4)→(43.0, 32.8)→(44.6, 30.6)
→(47.8, 26.2)

STOP2 Dijkstra’s (9.4, 92,5)→(12.1, 94.1)→(21.5, 94.2)→(25.3, 94.9)→(58.2, 92.5)→(60.3, 90.9)→(59.9, 86.8)
→(63.1, 81.1)→(69.3, 84.8)→(75.6, 84.7)→(79.2, 79.8)→(83.5, 71.7)

CMOPSO (14.3,93.2)→(20.2, 93.5)→(29.1, 94.1)→(37.9, 93.2)→(50.6, 90.5)→(57.9, 88.1)→(61.6, 86.9)
→(62.3, 86.7)→(68.5, 84.6)→(74.8, 82.5)→(80.0, 77.7)→(83.3, 74.7)

STOP3 Dijkstra’s (4.6, 92.6)→(2.9, 83.2)→(1.3, 71.1)→(1.3, 21.1)→(1.9, 15.5)→(4.7, 12.3)→(8.1, 6.7)
CMOPSO (6.5, 85.8)→(5.0, 71.1)→(2.1, 43.5)→(2.0, 39.4)→(3.0, 30.9)→(4.6, 24.7)→(7.4, 12.9)

in the robot’s working environment. In the second level based
on the free space found in the first level, Dijkstra’s algorithm
is applied to obtain the collision-free path from the starting
point to the target point. Lastly, a CMOPSO which takes the
collision-free path as input, is applied to find the optimal robot
path planning. The methodology on the update of the archive,
the global best and the accelerated update particle position make
the proposed algorithm more effective to reach the optimal so-

lution. The simulation results make a comparison between the
pure Dijkstra’s algorithm to demonstrate the superiority of the
proposed method in terms of the quality solutions. The results
definitely demonstrate the ability of the novel hierarchical ap-
proach based on CMOPSO to solve the robot path planning
problem because it is capable of providing high quality solu-
tions at a very short actual execution time. In the future work,
the proposed approach will be implemented on a real robot
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swarm to evaluate the performance.
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