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Abstract

LOCATION data is required for a plethora of Internet of Things (IoT) applications run-ning on billions of mobile devices worldwide. A few example applications include asset

tracking, search-and-rescue operations and the scientific monitoring of air or water quality.

Global Navigation Satellite Systems (GNSSs), such as Global Positioning System (GPS)

or Galileo, have been established as the standard for worldwide localization. However, the

rapidly increasing need to locate IoT devices in recent years has exposed several shortcomings

of traditional GNSS approaches. These limitations include the weak signal propagation in

indoor and dense environments, a high energy consumption and the inability to communicate

a location to a remote end user. Therefore, several industries have shown an increasing

demand for alternative, innovative, and energy-efficient positioning solutions that are more

suited in an IoT context.

In contrast to GNSS, Low Power Wide Area Networks (LPWANs) were designed for energy-

efficient communication of small sensor readings in a metropolitan area. In this type of

terrestrial networks, thousands of IoT devices can send a message to nearby gateways, which

in turn deliver the message to a central server. Interestingly, the uplink communication

signals can be exploited to locate the mobile transmitter. Such a localization approach

benefits from the low-power and low-cost LPWAN communication, as well as from the

coverage in indoor environments.

Another very promising alternative to GNSS is the use of satellites in Low Earth Orbit (LEO)

for Positioning, Navigation and Timing (PNT). Driven by the recent ‘New Space’ movement,

the commercialization of the space market has opened the door to a myriad of opportunities.

The thousands of LEO satellite launches of Iridium, SpaceX, Amazon, OneWeb and many

others enable applications such as high-quality satellite telephony, worldwide Internet access

and smart agriculture through Earth Observation. Providing PNT services through LEO

satellites in an energy-efficient way will only improve the value of these applications in the

emerging market of satellite IoT.

The objective of this thesis is to investigate innovative, large-scale, and energy-efficient posi-

tioning technologies and techniques in the context of IoT. I examine how wireless networks,

either terrestrial or space-based, can be leveraged for locating IoT devices, and how I can

improve their positioning performance.

The performance analysis and optimization of localization using LPWAN technologies con-

stitute a significant part of the work in this thesis. To this end, three major LPWAN

technologies are investigated: Sigfox, LoRaWAN and Narrowband IoT (NB-IoT). Localiza-

tion experiments are carried out using real-world measurement data collected in Antwerp,

Belgium. Within these experiments, I analyze the performance of Received Signal Strength
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(RSS)-based positioning algorithms. More specifically, I evaluate different path loss models

in range-based algorithms and apply Machine Learning to optimize the performance of RSS-

based fingerprinting methods. Furthermore, I discuss how the positioning performance can

be further improved through changes in network infrastructure and User Equipment (UE).

In the final part of this work, I conduct a survey for the European Space Agency (ESA)

with the goal to explore innovative space-based PNT solutions, again with a focus on low

energy consumption. I analyze the state-of-the-art performance of novel GNSS approaches,

such as Assisted GNSS (A-GNSS) and snapshot processing techniques (S-GNSS). When

compared to conventional pseudoranging, these techniques significantly reduce the overall

energy consumption of the UE. Moreover, my survey covers the potential of Doppler posi-

tioning techniques leveraging LEO satellite Signals of Opportunity (SOOP), as well as the

promising dedicated LEO-PNT systems under development.

IoT-enabled devices have different constraints and application requirements. Therefore,

the important trade-off between positioning accuracy and energy consumption is discussed

throughout this work. There exists no one-size-fits-all technology that performs excellent in

any use case in terms of these two parameters. Thus, interoperability between technologies

is key to enable global energy-efficient communication and positioning applications.



Samenvatting

LOCATIEGEGEVENS zijn noodzakelijk voor een groot aantal Internet of Things (IoT)toepassingen die op miljarden mobiele apparaten draaien. Enkele voorbeelden van

toepassingen zijn het traceren van goederen, opsporings- en reddingsoperaties en het weten-

schappelijk monitoren van lucht- of waterkwaliteit.

Global Navigation Satellite Systems (GNSSs), zoals Global Positioning System (GPS) of

Galileo, zijn de norm geworden voor wereldwijde lokalisatie. De snel toenemende noodzaak

om IoT-apparaten te lokaliseren in de afgelopen jaren heeft echter verschillende tekortko-

mingen van de traditionele GNSS-benaderingen blootgelegd. Deze beperkingen omvatten

de zwakke signaalpropagatie in binnen- en stadsomgevingen, een hoog energieverbruik en

het ontbreken van de mogelijkheid om een locatie te communiceren naar een eindgebruiker

op afstand. Daarom is er in verschillende industrieën een toenemende vraag naar alter-

natieve, innovatieve en energie-efficiënte positioneringsoplossingen die meer geschikt zijn in

een IoT-context.

In tegenstelling tot GNSS zijn Low Power Wide Area Networks (LPWANs) ontworpen voor

energiezuinige communicatie van kleine sensorwaarden in een grootstedelijk gebied. In dit

soort netwerken kunnen duizenden IoT-apparaten een bericht verzenden naar grondstations

in de buurt, die het bericht op hun beurt afleveren aan een centrale server. Interessant is

dat deze communicatiesignalen kunnen worden gebruikt om de mobiele zender te lokaliseren.

Een dergelijke lokalisatiebenadering geniet van de LPWAN-communicatie met laag vermogen

en lage kosten, alsook van de dekking in binnenomgevingen.

Een ander veelbelovend alternatief voor GNSS is het gebruik van satellieten in een lagere

baan rond de Aarde (Low Earth Orbit - LEO) voor plaatsbepaling, navigatie en tijdsbepaling

(Positioning, Navigation and Timing - PNT). Onder impuls van de recente ‘New Space’

beweging heeft de commercialisering van de ruimtevaartmarkt de deur geopend naar een

groot aantal mogelijkheden. De duizenden LEO-satellietlanceringen van Iridium, SpaceX,

Amazon, OneWeb en vele anderen maken toepassingen mogelijk zoals satelliettelefonie van

hoge kwaliteit, wereldwijde internettoegang en slimme landbouw door aardobservatie. Het

op energie-efficiënte wijze aanbieden van PNT-diensten via LEO-satellieten zal de waarde

van deze toepassingen in de opkomende markt van satelliet-IoT alleen maar verhogen.

Het doel van deze thesis is om innovatieve, grootschalige en energie-efficiënte positioner-

ingstechnologieën en -technieken in een IoT context te onderzoeken. Ik onderzoek hoe

draadloze netwerken, zowel op Aarde als in de ruimte, kunnen worden gebruikt voor het

lokaliseren van IoT-apparaten, en hoe ik hun positioneringsprestaties kan verbeteren.

De prestatie-analyse en optimalisatie van lokalisatie met behulp van LPWAN-technologieën

vormen een belangrijk deel van het werk in deze thesis. Daartoe worden drie belang-
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rijke LPWAN-technologieën onderzocht: Sigfox, LoRaWAN en Narrowband IoT (NB-IoT).

Lokalisatie-experimenten worden uitgevoerd op basis van meetgegevens verzameld in Antwer-

pen. Binnen deze experimenten analyseer ik de prestaties van positioneringsalgoritmen

gebaseerd op de ontvangen signaalsterkte (Received Signal Strength - RSS). Meer bepaald

evalueer ik verschillende signaalsterkte modellen in afstand-gebaseerde algoritmes en pas

ik Machine Learning toe om de prestaties van RSS-gebaseerde fingerprinting methodes te

optimaliseren. Verder bespreek ik hoe de positioneringsprestaties verder kunnen worden

verbeterd door veranderingen aan netwerkinfrastructuur en gebruikersapparatuur.

In het laatste deel van dit werk voer ik een onderzoek uit voor het Europees Ruimteagentschap

(ESA) met het doel innovatieve ruimtegebaseerde PNT-oplossingen te onderzoeken, op-

nieuw met de nadruk op een laag energieverbruik. Ik analyseer de prestaties van de nieuwste

GNSS benaderingen, zoals Assisted GNSS (A-GNSS) en snapshot verwerkingstechnieken

(S-GNSS). In vergelijking met traditionele GNSS technieken, zorgen deze technieken voor

een significante vermindering van het totale energieverbruik van het apparaat. Bovendien

behandelt mijn onderzoek het potentieel van Doppler-positioneringstechnieken die gebruik

maken van opportunistische signalen van LEO-satellieten, alsook de veelbelovende LEO

satellietsystemen die specifiek voor lokalisatie-doeleinden ontwikkeld worden.

IoT-apparaten hebben verschillende beperkingen en toepassingsvereisten. Daarom wordt in

dit werk de belangrijke afweging tussen positioneringsnauwkeurigheid en energieverbruik be-

sproken. Er bestaat geen ‘one-size-fits-all’ technologie die het best presteert in eender welke

toepassing op vlak van deze twee parameters. Aldus is interoperabiliteit tussen technolo-

gieën de sleutel om wereldwijde energie-efficiënte communicatie en lokalisatie toepassingen

te verwezenlijken.
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Introduction

THE introduction of the Internet substantially changed the way we live today. We

are now able to search for online information, videocall with our family and organize

digital conference meetings with people from across the globe in times of a pandemic. A

new revolution in the history of the Internet is the Internet of Things (IoT). As the name

indicates, the IoT is a network that connects physical things or smart devices to each other

via the Internet. By 2025, it is estimated that 152,200 new devices will connect to the IoT

every minute, reaching a total of more than 27 billion connected devices and generating

$4-11 trillion in economic value [1, 2].

The problem with this massive number of IoT devices worldwide is that they need to be

monitored properly. In many IoT applications, location-awareness is of crucial importance.

Example applications include the tracking of things like industrial assets, moving sensors,

animals in the wild or your beloved dog. In each of these applications, energy consumption

may be equally or even more important than positioning accuracy, given the limited battery

capacity of the device.

Global Navigation Satellite Systems (GNSSs), such as Global Positioning System (GPS) or

Galileo, have been used for decades to locate a device on Earth. Using the latest satellite

augmentation systems and services, the positioning accuracy of GNSS has increased from a

few meters to a few centimeters. However, several problems arise when leveraging GNSS to

locate IoT devices. First, GNSS were not designed with low energy consumption in mind.

The battery lifetime of a typical IoT device with a GNSS receiver does not exceed a few

months [3, 4]. While efforts exist to lower the overall energy consumption, IoT devices

often require a lifetime of multiple years without recharging batteries, e.g., when tracking

bird migrations over their full lifespans. Obviously, the actual energy consumption highly

depends on the environment and the application requirements [5]. A second disadvantage

of GNSS is the weak signal reception on Earth. Moreover, the signal from Medium Earth

Orbit (MEO) does not penetrate through walls. Therefore, localization in indoor or dense

urban environment is limited or impossible. Third, GNSSs suffer from unintentional and

intentional interference. The latter is caused by jamming and spoofing attacks, which poses

security threats in autonomous driving, for instance [6]. Finally, a GNSS receiver is only able

to locate itself. However, in many IoT applications, the user needs to know the position

of the mobile device, which consequently requires the device to send the estimated GNSS

coordinate over a wireless network to the user application, consuming even more energy.

1



2 CHAPTER 1. INTRODUCTION

In order to establish communication between IoT devices and their users, Low Power Wide

Area Network (LPWAN) standards such as Sigfox [7], LoRaWAN [8], Narrowband-IoT (NB-

IoT) and Long Term Evolution for Machine Type Communication (LTE-M) [9] have been

developed. Generally, LPWAN standards enable IoT devices to exchange small messages over

long distances while maintaining a very low energy consumption, which allows these devices

to work for multiple years on small batteries. This meets the need of an endless number of

sensing applications in the domains of healthcare [10], environmental monitoring [11, 12, 13,

14], wildlife monitoring [15], smart agriculture [16], logistics [17] and smart cities [18, 19],

amongst many others [20, 21, 22].

As an alternative to GNSS, LPWAN technologies provide a modern solution for both com-

munication and localization. Figure 1.1 lists only a few example IoT applications in which

location context is important. LPWAN signals can be used to determine the location of

an IoT device [5, 23, 21]. More specifically, we can exploit or derive the characteristics

of sub-GHz LPWAN signals such as the Received Signal Strength (RSS), Time of Arrival

(ToA) or the Angle of Arrival (AoA) to locate a mobile transmitter. Fingerprint-based and

range-based algorithms are commonly implemented in indoor positioning systems. These al-

gorithms can be applied and optimized for use in outdoor environments as well. Due to the

star topology of most LPWANs, end devices cannot directly communicate with other nearby

end devices. Therefore, Non-Cooperative Localization (NCL) schemes are mostly consid-

ered in LPWAN-based localization. In contrast, Cooperative Localization (CL) schemes can

lead to higher accuracies; however, they do not outweigh the increased device complexity

and energy consumption. For the same reason, it is common to perform the localization in

the cloud, instead of on the device itself.

Transport &
Logistics 

Fleet management 
Asset tracking

Environment 
Environmental

monitoring 
Wildlife tracking

Location-enabled
IoT 

Utilities 
Smart metering 

Smart grid

Smart cities 
Parking sensors 
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Consumers &
Healthcare 
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Figure 1.1: Location context is important in many IoT applications.



1.1. MOTIVATION 3

Terrestrial networks only cover about 10% of the world’s surface [24]. Due to the economical

and geographical reasons, they simply cannot cover the entire planet (e.g., oceans, jungles,

deserts and mountainous regions) [25, 26]. Therefore, we have to look up to the sky. The

New Space movement focuses on removing barriers to increase the access to space. Where

traditional space missions were managed and funded by large governmental agencies, the

New Space era has opened the door for independent private space missions. The reusable

rockets and ridesharing missions of Elon Musk’s SpaceX are an excellent example of this

approach. Besides large companies like SpaceX, Amazon and OneWeb, a myriad of start-ups

with innovative ideas also find their way to space [27]. Every single week of 2022, multiple

satellites and rockets were launched [28]. The commercialization of the space market was

the key for enabling a plethora of new opportunities in space. Nowadays, we are able to

navigate, make a phone call, browse the Internet, or observe live satellite imagery from

almost anywhere on Earth thanks to satellite constellations.

In the last few years, many satellites are launched into the emerging Low Earth Orbit (LEO).

Satellites in LEO are around 20 times closer to Earth compared to GNSS satellites. There-

fore, a LEO satellite signal reaches the Earth faster, enabling low-latency communication.

Moreover, the signal oftentimes arrives more powerful, improving penetration in harsh envi-

ronments. While most of the currently available systems primarily focus on communication,

there are many reasons to explore a LEO Positioning, Navigation and Timing (PNT) system

that overcomes the aforementioned limitations of GNSS in MEO. Such a system can provide

a backup or even an alternative for GNSS. The estimated cost of a GNSS outage to the

UK alone is over £1B per day [29]. Moreover, it was estimated that a single GPS-III satel-
lite costs as much as 300 small LEO satellites with matching visibility and geometry [30].

Finally, LEO satellites provide more robustness to interference, more resistance to spoofing

attacks and, similar to LPWAN, the ability to communicate the location of a remote device.

In this thesis, I explore these novel LPWAN and LEO satellite technologies, as well as novel

GNSS techniques, and I evaluate their feasibility for localization.

1.1 Motivation

Traditional GNSSs were not designed with low energy consumption in mind. Our planet

has a limited number of resources, and at the time of writing the amount of available

renewable energy is insufficient. Therefore, new localization technologies must consider

energy-efficiency in their design, paving the road towards a sustainable IoT. Moreover, a

few years ago, alternatives to GNSS for large-scale localization barely existed. These were

two motivating factors to research alternative, large-scale and energy-efficient positioning

technologies.

With technological advancements such as autonomous driving and smart agriculture, new

positioning challenges arise. Key performance requirements such as positioning accuracy,

reliability and energy-efficiency will continue to improve. Every 30 years, the positioning

error decreases by an order of magnitude due to new technological infrastructure [30]. LEO

satellites are expected to play a major role in this trend [31]. Furthermore, LEO satellites

and LPWAN gateways feature energy-efficient communication, which is lacking in GNSS.
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Personally, I have always had a passion for technology, especially for technology used to

navigate around the world. About a decade ago, I learned about Geocaching. Whenever I

have the time, I still explore new places I otherwise wouldn’t go to by discovering hidden

treasures around the world. What I also find interesting, is how localization technology

impacts our everyday lives, aside from being used in an industrial context. All of this inspired

me to investigate new ways to locate anything, anywhere, anytime.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

1. Improve RSS-based localization with Sigfox and LoRaWAN. (Chapters 3–6)

In 2018, Aernouts et al. set a baseline for localization in LPWAN [32]. I improved

the existing RSS-based fingerprinting and ranging algorithms leveraging innovative

Machine Learning (ML) algorithms. Using the original Sigfox and LoRaWAN data sets,

I was able to double the localization accuracy. Moreover, I experimented with sending

W-Fi fingerprints over LPWAN to further increase the accuracy. Lastly, I investigated

the feasibility of using LoRa modulation in the 2.4 GHz band for localization purposes.

2. Provide first insights in RSS-based localization with NB-IoT. (Chapter 7)

Shortly after the deployment of a public NB-IoT network in Belgium, I collected ex-

perimental measurements in a realistic environment in the city of Antwerp. By doing

so, I was able to perform the first RSS-based localization experiments with NB-IoT.

I shared my data set with interested researchers, who used it to test new positioning

algorithms or to apply coverage analyses. Moreover, I raised the issue that changes in

User Equipment (UE) hardware and network infrastructure are needed to improve cel-

lular IoT positioning and mobility. I am delighted to announce some UE manufacturers

already implemented these proposed changes.

3. Explore the possibility for PNT services leveraging LEO satellites. (Chapter 8)

After having submitted a project proposal for the European Space Agency (ESA), I

received funding to bring IoT localization to space. By replacing the LPWAN gateways

with LEO satellites and discussing the potential PNT performance, I provided ESA with

insights into what strategic steps need to be taken for a fully functional LEO-PNT

system. Moreover, I investigated a Signals of Opportunity (SoOP) approach.

4. Compare energy-efficient positioning technologies and techniques. (Chapter 8)

During the aforementioned project for ESA, I analyzed the state-of-the art of large-

scale and energy-efficient positioning systems. Through a survey, I compare the per-

formance of LPWAN localization, novel GNSS approaches such as Assisted GNSS (A-

GNSS) and Snapshot GNSS (S-GNSS), and positioning techniques leveraging LEO

satellites.
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For each of these contributions, more details can be found in the following publications:
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https://doi.org/10.3390/app7090936.

2. T. Janssen, M. Aernouts, R. Berkvens, and M. Weyn, “Outdoor Fingerprinting Lo-

calization Using Sigfox”, in 2018 International Conference on Indoor Positioning and

Indoor Navigation (IPIN). IEEE, sep 2018, pp. 1–6, https://doi.org/10.1109/

IPIN.2018.8533826.

3. T. Janssen, R. Berkvens, and M. Weyn, “Comparing Machine Learning Algorithms

for RSS-Based Localization in LPWAN”, in Proceedings of the 14th International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2019).

Editors: L. Barolli, P. Hellinckx, J. Natwichai, Springer International Publishing, 2019,
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https://doi.org/10.1016/j.iot.2020.100235.
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door NB-IoT Localization”, in 2020 International Conference on Localization and

GNSS (ICL-GNSS), IEEE, Jun. 2020, pp. 1–6, https://doi.org/10.1109/ICL-

GNSS49876.2020.9115578.
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uation Using a Single NB-IoT Cell”, Sensors, vol. 20, no. 21, p. 6172, Oct. 2020,
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1.3 Outline

Figure 1.2 shows the organization of the chapters in this thesis. Each chapter is based on

the publications listed in Section 1.2.

Chapter 2: LPWAN state-of-the-art

Chapter 7:  
NB-IoT

Chapters 5 & 6: 
LoRa(WAN)

Chapters 3 & 4: 
Sigfox 

Chapter 1: Introduction

Chapter 8: Survey on LPWAN vs. GNSS vs. LEO

Chapter 9: Conclusion

Figure 1.2: Thesis outline

This thesis continues with Chapter 2, which describes the state-of-the-art (SOTA) of LP-

WAN. I explain LPWAN technologies, concepts and methodologies to calculate the position

of a mobile device. The purpose of this chapter is to provide the building blocks of LP-

WAN upon which I build in the next chapters. Please note that the SOTA of satellite-based

technologies and techniques is covered in Chapter 8.

Chapters 3 and 4 describe RSS-based localization experiments with the Sigfox technology.

While the experiments in Chapter 3 use Wi-Fi fingerprints transmitted over Sigfox, Chapter 4

focuses on localization using Sigfox only.

Chapters 5 and 6 focus on localization using LoRaWAN and LoRa, respectively. In Chapter 5,

I apply ML to improve the performance of RSS-based fingerprinting in a public LoRaWAN

network. Chapter 6 explores the feasibility of localization using LoRa modulation in the

2.4 GHz band.

In Chapter 7, I present the first RSS-based positioning results using the NB-IoT technology.

I describe the measurement campaign in Antwerp, as well as the proximity, ranging and

fingerprinting algorithms. After the evaluation of these algorithms, the chapter ends with a

discussion on how to improve the mobility of NB-IoT.

Chapter 8 provides an in-depth survey conducted in the framework of the projects carried

out for ESA. The purpose of the survey is to compare LPWAN localization to positioning

using GNSS and LEO satellites. In a state-of-the-art analysis, I compare terrestrial and

innovative space-based technologies and techniques in terms of positioning performance.

Finally, Chapter 9 summarizes the conclusions of this thesis and indicates directions for

future research.
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State-of-the-art of LPWAN

WHEN you want to keep track of something valuable, the required technologies and

techniques often depend on the context and the application requirements. For ex-

ample, a postal service can locate parcels inside a warehouse using Wi-Fi technology. From

the moment a parcel leaves the warehouse, however, the delivery van needs to be tracked via

different technologies, as the range of Wi-Fi is limited. A track-and-trace device in the van

often uses a GNSS receiver to determine the position of the vehicle, while a cellular network

technology communicates this position to a remote end user. In many IoT applications,

energy efficiency, low cost and low complexity are given higher priorities than meter-level

localization accuracy [20]. Moreover, privacy sensitive applications encourage not knowing

the exact location of e.g., the postal worker. Thus, we can use LPWANs to estimate the

rough location of a mobile device in a large-scale outdoor environment with minimal energy

consumption [33, 34].

The purpose of this chapter is twofold. First, I explain the basic concepts of LPWAN, which

are required in order to follow the reasoning in the next chapters. By doing so, I hope the

reader becomes acquainted with the building blocks of my work. Second, I provide insights

on what was already investigated before I started my research. Therefore, I discuss several

related works that are relevant in the fields of IoT and LPWAN localization.

This state-of-the-art chapter is structured in the following way. The basic concepts and

terminology of LPWAN are described in Section 2.1. Subsequently, Section 2.2 provides

an overview of LPWAN technologies from a historical perspective. I explain what LPWAN

technologies are, how to classify them and how they have evolved over time. Finally, Sec-

tion 2.3 describes localization techniques that are and can be used for LPWAN localization.

I discuss how LPWAN signal characteristics can be exploited to determine the position of a

mobile IoT device and elaborate on the available algorithms in the literature.

7
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2.1 LPWAN Communication & Architecture

Communication in a typical LPWAN scenario takes place in the following way. A general

LPWAN architecture is visualized in Figure 2.1. An IoT device, also referred to as UE,

sporadically transmits a small uplink message to one or more nearby terrestrial gateways.

The gateways, sometimes referred to as base stations, subsequently forward the message to

a server of the network provider they belong to. From there, the payload of the message can

be obtained via the Internet to end user devices and applications. This uplink communication

using a star topology is mostly used in LPWAN for transmission of sensor data. However,

downlink communication in the reverse direction is also possible. This is convenient to

remotely activate or configure devices in the field.

Figure 2.1: General LPWAN architecture

Thus, devices in an IoT scenario have a connection to the Internet through a network of

gateways. In theory, this connection can be a continuous data connection. This is the

case for devices that are large enough to carry additional batteries or for static devices

with a power supply. In practice, many IoT devices are mobile and equipped with small

batteries. Therefore, LPWANs propose to reduce the energy requirement of the mobile

data connection, albeit at reduced data rates [33].

2.2 A Brief History of LPWAN Technologies

The landscape of LPWAN technologies can be categorized based on the frequency bands

at which they operate. Technology operators can acquire a license to exclusively operate at

dedicated frequencies. LPWAN standards leveraging licensed frequencies include the cellular

NB-IoT and LTE-M. In contrast, LPWAN technologies operating in unlicensed frequency

bands need to share the spectrum with other technologies. Most prominent examples of

unlicensed LPWAN include Sigfox and LoRaWAN, operating in the 868MHz band in the

EU and the 915MHz band in the US. Obviously, many other LPWAN technologies exist,

such as Weightless, DASH7, Telensa, NB-Fi and the Institute of Electrical and Electronics

Engineers (IEEE) 802.15.4 group of standards. The low energy consumption of LPWAN
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technologies is extensively investigated in the state-of-the-art [35] and therefore falls outside

the scope of this work. For an in-depth technology specification of all aforementioned

LPWAN technologies, the interested reader is referred to a set of recent surveys [5, 20, 36,

34].

Ever since their introduction, LPWAN technologies have evolved thoroughly. Cellular LP-

WAN technologies have known a rapidly increasing economic growth. With 47% of all

LPWAN-enabled devices, NB-IoT is currently leading the market, followed by LoRaWAN

with 36%. Together with Sigfox and LTE-M, they account for 96% of the global LPWAN

market [37]. Therefore, I chose NB-IoT, LoRaWAN and Sigfox for the localization exper-

iments in this work. LTE-M was omitted simply because there was no such network fully

available in Belgium at that time. Thus, as the focus in this work is on Sigfox, LoRaWAN

and NB-IoT, the key characteristics of these technologies are summarized in Table 2.1 and

their evolution is described in the following subsections. Note the fact that the developed

algorithms and methodologies are generic and can easily be applied to other LPWAN tech-

nologies.

Table 2.1: Key characteristics of LPWAN technologies discussed in this work.

Characteristic Sigfox LoRaWAN NB-IoT

Licensed frequencies No No Yes

Frequency band
868 MHz (EU)

915 MHz (US)

868 MHz (EU)

915 MHz (US)

LTE bands

(450-2200 MHz)

Bandwidth 100 Hz 125 - 500 kHz 180 kHz

Max. data rate
100 bps (UL)

600 bps (DL)
0.3 - 37.5 kbps

150 kbps (UL)

127 kbps (DL)

Communication range
3-10 km (urban)

30-50 km (rural)

5 km (urban)

20 km (rural)

1 km (urban)

10 km (rural)

Modulation
DBPSK (UL)

GFSK (DL)
LoRa CSS QPSK

Max. payload size
12 bytes (UL)

8 bytes (DL)
250 bytes 1600 bytes

Max. update rate
Limited (duty

cycle restrictions)

Limited (duty

cycle restrictions)

Unlimited (until

intolerated)

2.2.1 Sigfox

Founded in 2010, the French company Sigfox was one of the pioneers in the LPWAN mar-

ket. The Sigfox technology employs an Ultra-Narrow Band (UNB) channel of 100Hz with

a Differential Binary Phase Shift Keying (BPSK) modulation operating on the 868MHz

telecommunication frequency in the EU. This frequency does not require a license for oper-

ating Short Range Devices (SRD), defined as devices with a limited transmission power. To

comply with the EU regulations, a Sigfox device can only transmit up to 140 messages of
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12B each on a single day at 100 bit/s. This stems from a 1% hourly duty cycle regulation,

limiting Sigfox to 36 s of signal transmission or six messages per hour. The transmission of

a single Sigfox message takes 6 s, during which the same information is transmitted three

times for error prevention. The communication range varies from 30–50 km in rural areas

to 3–10 km inside cities [33, 38].

In 2017, a nationwide Sigfox network was deployed in Belgium [39]. In the first part of my

research, I simulated the transmission of Wi-Fi fingerprints over this network for localization

purposes. Around the same time, a colleague in my research group employed this network

to collect a large database of Sigfox messages in Antwerp, Belgium [32]. Using these

two databases, I improve the localization with Sigfox as discussed in Chapters 3 and 4,

respectively.

In January 2022, the French company behind the Sigfox technology filed for bankruptcy

protection due to to significant financial challenges [40]. After a few months however,

the company with all its assets and contracts with customers and operators was acquired

by UnaBiz, a Singapore-based massive IoT service provider [41]. From July 2022 onwards,

UnaBiz continued the operations, keeping Sigfox as the name of the technology [42]. Please

note that these events do not affect the validity of the results of my localization experiments

using Sigfox.

2.2.2 LoRaWAN

With the aim of providing a low-power, long-range wireless communication protocol, the

French start-up Cycleo developed the LoRa (Long Range) technology in 2009. Three years

later, the California-based company Semtech acquired the startup and further improved

the technology. Semtech now owns a patent and therefore sells licenses to LoRa chipset

manufacturers. At the same time, the LoRa Alliance was founded in 2015 and maintains

the open-source LoRaWAN standardization [43].

Sub-GHz LoRa-based communication has been studied thoroughly in the past decade. The

authors in [44] were the first to provide an in-depth analysis of the functional components of

both the physical (LoRa) and data link (LoRaWAN) layer. A more recent characterization

of the popular LPWAN protocol operating in unlicensed bands is compiled in [45], along

with related surveys. Derived from Chirp Spread Spectrum (CSS), the proprietary LoRa

modulation achieves high resilience to interference and fading effects. When compared to

Sigfox, LoRaWAN in general provides more flexibility through the use of a variable bandwidth,

coding rate and Spreading Factor (SF). By configuring a higher SF, the airtime and thus

the communication range increases at the expense of a reduced data rate, payload size and

battery lifetime.

LoRaWAN is widely used to communicate small messages over large areas. A LoRaWAN

network can fully cover a city-scale environment with only a few gateways. Due to the

deployment of public and private LoRaWAN networks, both academia and industry performed

research about the sub-GHz technology. The mobility of LoRaWAN has been addressed

in [46], while enhancements of the Adaptive Data Rate (ADR) mechanism are suggested

in [47]. The forwarding of an uplink message by multiple gateways ensures that a handover
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can take place without any loss of data. In another study, a robust frame detection algorithm

was proposed in order to detect LoRa-modulated frames with minimal complexity [48].

Furthermore, a frame relay strategy was found to be a feasible way to improve the link

quality of poorly connected nodes and successfully extend the range of LoRaWAN [49].

More than a decade ago, LoRa was invented to provide a LPWAN protocol operating at

sub-GHz frequencies. Because of local spectrum regulations, LoRa hardware modules need

to be adapted to operate in different frequency bands. However, a few years ago, Semtech

started developing a range of LoRa transceivers operating within the 2.4 GHz band [50].

The motivation to operate in this band was mainly because it is globally available. On

the one hand, this tackles the problem of having to develop multiple chipsets operating in

different frequency bands, thus paving the way for the development of a universal chipset

which can operate anywhere in the world. This is especially valuable for track-and-trace

applications, where goods cross different zones worldwide. Moreover, LoRa devices operating

at 2.4 GHz can transmit at higher data rates because of the higher available bandwidth [51].

Consequently, this technology can offer a balance for applications that require a higher

data rate than sub-GHz LPWANs and a longer communication range than classic 2.4 GHz

technologies such as Wi-Fi and Bluetooth. Additionally, a higher bandwidth also allows for

more accurate time-based localization [52]. On the other hand, a few concerns are raised

with the expansion of LoRa to the widely used unlicensed 2.4 GHz Industrial, Scientific, and

Medical (ISM) band. The interference properties of Wi-Fi devices operating in this band

were characterized in [53]. In another study, Polak et al. address coexistence issues with Wi-

Fi and LoRa 2.4GHz [54]. The theoretical assumptions about the high robustness of LoRa

against interference are confirmed. However, it was found that the robustness highly depends

on both the configuration and the properties of interfering technologies. Moreover, Polak

et al. used different bandwidths in their evaluation and compared them to the bandwidths

that are currently available for LoRa at 2.4 GHz.

The maximum communication range in the 2.4 GHz band strongly depends on the technology

and its respective transmission power. For the Bluetooth Low Energy (BLE) 5 standard,

the maximum communication ranges in different scenarios are summarized in [55]. Typical

ranges are 50m in an indoor scenario, 165m in an outdoor Non-Line of Sight (NLoS) scenario

and 780m in a Line of Sight (LoS) scenario. Semtech aims to outnumber these ranges with

their LoRa 2.4GHz chipset, featuring a Time of Flight (ToF) ranging possibility [56]. A

proof-of-concept implementation for coherent multi-channel ranging with this LoRa radio

chip is provided in [57]. However, the potential benefits of LoRa in the 2.4 GHz band have

not yet been investigated thoroughly, which constitutes the main objective of Chapter 6.

2.2.3 NB-IoT

In 2016, the 3rd Generation Partnership Project (3GPP) introduced NB-IoT in Release 13.

In contrast to other LPWAN technologies such as Sigfox and LoRaWAN, NB-IoT operates

in the licensed spectrum. Therefore, specific frequency bands are reserved, which reduces

interference effects. Moreover, there are less duty cycle limitations and regulations on

the amount of data to transmit. The technology is popular amongst cellular providers, as

they can easily deploy an NB-IoT network on top of existing Long Term Evolution (LTE)

infrastructure in a rapid and scalable fashion.
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Every new 3GPP release has brought improvements to the NB-IoT technology. A historic

overview of releases is provided by Rastogi et al. [36]. Release 14, for instance, introduced

increased data rates and transmission block sizes. Other additions include the ability to

multicast, a wake-up signal to further reduce the energy consumption, and even positioning

features. The specifications of both physical and data link layers of NB-IoT are detailed

in [36, 58] and summarized in Table 2.1.

There are a few important architectural differences between NB-IoT and LoRaWAN [59].

After a negotiation phase between the network and the end device, an NB-IoT end device

connects to a single cell of a nearby base station, i.e., the serving cell. In contrast, a

LoRaWAN-enabled end device transmits an uplink message to all nearby gateways. Another

noteworthy difference is that usually the density of NB-IoT base stations is higher compared

to the density of LoRaWAN gateways, as NB-IoT leverages ubiquitous LTE infrastructure.

During the real-world NB-IoT localization experiments in Chapter 7, I experienced mobility

limitations in the NB-IoT protocol. Because of the aforementioned architectural decision,

the UE only reported the currently serving cell, instead of all neighboring cells. According to

Radnosrati et al., the number of reported cells is reduced to a minimum in order to minimize

the signaling cost and support a large number of devices [60, 61]. Obviously, this behavior

is undesirable in localization use cases, since more participating Evolved Node Bs (eNBs)

result in a higher location accuracy [62, 63]. Many simulation studies use the LTE module in

Network Simulator 3 (NS3) to simulate an NB-IoT network [64]. However, by doing so, they

do not face the aforementioned issue. Therefore, I chose to address this issue and evaluate

the performance of NB-IoT localization using real-world measurement data. Fortunately,

from 3GPP Release 16 onward, a UE may optionally report about strongest neighbors [36].

Another mobility issue in the NB-IoT protocol is the lack of handover support. Moon et

al. explain the concepts of Extended Discontinuous Reception (eDRX) and cell reselection

of NB-IoT [65]. They acknowledge that cell reselection can only take place while the UE

is in idle mode. Moreover, the cell selection process described in [61] suggests that only

after failing to connect to the currently serving cell, the cell reselection process is initiated.

Additionally, this issue introduces latency which can reach up to 10 s [46]. Furthermore, it is

proven that when reselecting a cell more frequently, despite the increased energy consump-

tion, the mobility performance increases significantly [65].

In July 2019, 3GPP Release 16 announced that NB-IoT will be adopted under the umbrella

of Fifth Generation (5G) mobile network technologies and will therefore evolve as part of

5G specifications [9].

Finally, a lot of academic research has been devoted to extending the coverage of NB-

IoT using satellites in LEO [66, 67, 68, 69, 70]. In conjunction, 3GPP Release 17 adds

standardization for Non-Terrestrial Networks (NTNs) to address massive IoT use cases in

remote areas via satellites in LEO, MEO and GEO [71]. The survey in Chapter 8 elaborates

on the interoperability between terrestrial and satellite networks for positioning purposes.
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2.3 LPWAN Localization Techniques

As an alternative to GNSS-based solutions, LPWANs are being used to locate a transmitting

device in large-scale environments with minimal energy consumption [33, 34]. In general,

localization based on wireless communication can be split into three categories [21, 23], as

shown in Figure 2.2. Each category employs a different characteristic of the signal arriving

at the nearby gateways. The first category constitutes algorithms that calculate the Time of

Arrival (ToA) or Time Difference of Arrival (TDoA) of the signal at the gateways to deter-

mine the position of the UE. A second category covers positioning algorithms based on the

Angle of Arrival (AoA) of the received signal through an antenna array. In the third category,

the Received Signal Strength (RSS) is exploited. This category further distinguishes between

RSS-based proximity, ranging and fingerprinting approaches. Oftentimes, these techniques

are combined in a single positioning system. A multimodal localization framework enables

to switch to an optimal localization method, as well as location-based seamless handover

mechanisms [72, 73]. In the following subsections, I analyze the state-of-the-art of these

approaches through related works.

Figure 2.2: Techniques to locate an LPWAN-enabled device, categorized by signal characteristic.

2.3.1 Time-based Algorithms

The principle behind timing-based localization is quite straightforward. In a ToA algorithm,

the distance between a mobile device and the gateway is calculated by multiplying the sig-

nal propagation time with the speed of light. When three or more gateways receive the

signal, the position of the mobile transmitter can be determined through a multilateration

algorithm [74]. However, ToA-based solutions require precise synchronization between gate-

ways and the mobile node, increasing device complexity and power consumption. Therefore,

the TDoA is often calculated instead [75]. Nonetheless, TDoA-based solutions still require

precise synchronization between the gateways themselves, at the expense of the operator.

Timing-based localization solutions have been studied extensively. A comparison of state-of-

the-art TDoA algorithms is provided in [76]. Such algorithms are widely applied in LPWAN

technologies [77]. The authors in [78] demonstrated the use of TDoA-based positioning

with LoRaWAN, leading to a median accuracy of 200m. This accuracy was significantly im-

proved to 75m by tracking the movement speed and taking road infrastructure into account.



14 CHAPTER 2. STATE-OF-THE-ART OF LPWAN

Similarly, TDoA-based positioning experiments in a public LoRa network lead to a median

accuracy in the order of 150m [79]. Furthermore, a new frequency hopping pattern for the

preamble of physical random access channel (NPRACH) in NB-IoT has been designed to

further increase the ToA estimation accuracy [80, 81]. In contrast to LoRa and NB-IoT,

timing-based localization using Sigfox is considered not feasible due to the extreme low time

resolution of the UNB technology [82]).

With 3GPP Release 14 of the NB-IoT standard, two advanced positioning techniques are

introduced: Enhanced Cell ID (E-CID) and Observed Time Difference of Arrival (OT-

DoA) [83, 84]. In E-CID, the position of the UE is estimated by performing measurements

on radio signals [85]. These measurements estimate either the Reference Signal Received

Power (RSRP), TDoA or the AoA. This enhancement of traditional cell identification en-

ables more accurate localization. The accuracy however still depends on the cell size and

can vary significantly.

In contrast to the aforementioned uplink TDoA approaches, OTDoA is a downlink-based

localization approach. OTDoA combines Reference Signal Time Difference (RSTD) mea-

surements between neighboring eNB cells and a reference cell to estimate the location

of a mobile UE [86]. However, the implementation of OTDoA requires precise synchro-

nization between the eNBs and the presence of a location server, leading to an increased

network complexity and eNB cost for operators. Therefore, the OTDoA feature has not

yet been implemented in many countries, such as Belgium. Consequently, most perfor-

mance evaluations of OTDoA-based positioning are carried out in the form of simulation

studies [62, 86, 87, 88, 89, 90]. Recently, the first implementation of an OTDoA-capable

NB-IoT chip was presented [91]. Measurements carried out in a laboratory setup result in

a Root Mean Square (RMS) error of around 50m. Furthermore, Tong et al. developed a

general analytical model to study the performance of OTDoA [62], where the module needs

to keep track of the time of arrivals. As an alternative to OTDoA, a 1-bit passive radar was

used to reduce the complexity and energy consumption of the localization [92].

Besides the limited number of OTDoA-enabled NB-IoT networks, an OTDoA-capable UE

requires the presence of highly accurate clocks, which is often not the case in low-cost

IoT devices. This again highlights the need for more energy-efficient, low-complexity and

low-cost localization methods in NB-IoT.

2.3.2 Angle-based Algorithms

Instead of estimating the distance between a mobile device and a gateway, one can also

estimate the AoA or the Angle of Departure (AoD) between them. In AoA-based localiza-

tion, the first step is to measure the phase of the arriving signal at multiple points in space.

Therefore, the receiver (i.e., a nearby gateway) requires an antenna array system. The sec-

ond step is to calculate the AoA based on the phase measurements. When the AoA at two

or more receivers is determined, one can estimate the position of the mobile transmitter

through a triangulation algorithm [75]. To keep the complexity of an LPWAN end device to

a minimum, AoA approaches are more attractive compared to AoD approaches.

A state-of-the-art AoA estimation algorithm for use in sub-GHz bands is presented in detail
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in [93, 94]. By synchronizing antennas, the AoA of a narrow-band signal was estimated with

an absolute mean error well below 2 degrees. These experimental results along with the

development of a low cost AoA unit [95] prove the feasibility of AoA estimation techniques

for localization of IoT devices in outdoor environments.

Oftentimes, AoA estimation is combined with other techniques. For example, Aernouts et

al. devised a probabilistic localization model that combines TDoA and AoA estimations in

a sub-GHz LoRa network [52, 96]. Simulations show that adding AoA reduces the median

localization error with 57%. These results are validated through the use of real LoRaWAN

data, achieving a mean location estimation error of 339m and 153m in a LoS and NLoS

scenario, respectively. Finally, AoA techniques are also combined with RSS-based tech-

niques [97], which are discussed next.

2.3.3 Received Signal Strength-based Algorithms

In contrast to TDoA-based and AoA-based localization approaches, gateways or antennas

do not need to be synchronized in an RSS-based approach. In such an approach, nearby

gateways measure the signal strength of the received signal (expressed in dBm) to determine

the position of the mobile transmitter. As localization using TDoA [5] and AoA [94] is

extensively investigated in literature, this work focuses on RSS-based localization techniques.

Because of the narrowband nature of LPWAN technologies, localization based on LPWAN

communication signals is very challenging. Gezici et al. show that the Cramer-Rao Lower

Bound (CRLB) for estimating the range between mobile device and gateway through the

RSS is proportional to the distance between them [98]. Given the wide area networks, one

can generally assume that the CRLB will be rather high. Moreover, RSS-based approaches

need to deal with signal fluctuations, interference and multipath effects [99].

RSS-based algorithms can be further classified into three main classes. Proximity-based,

range-based and fingerprint-based localization are the most common techniques found in

recent literature [100, 101]. While this section provides the state-of-the-art of RSS-based

algorithms and how they perform in LPWANs, the actual workings of the algorithms are

illustrated and discussed in more depth in Chapters 4, 5 and 7. Hence, the results of related

works serve as a baseline for my RSS-based localization experiments.

2.3.3.1 Proximity

Proximity localization assumes that a mobile device is at or near the location of the gateway

with the strongest link. The accuracy of the proximity method depends on the range of the

communication method. Therefore, proximity localization is often used in Radio Frequency

Identification (RFID) scenarios, which have a limited range [102]. If the range increases,

the mobile device can be in communication with multiple gateways. This enables more

sophisticated location estimation algorithms, such as taking the centroid of the gateway

locations and clustering techniques [103].

While an RSS proximity algorithm with map matching in a public LoRaWAN network lead to
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a median estimation error of 1000m, a TDoA-based approach in the same environment lead

to a median error of 150m [79]. Despite its low accuracy, a simple proximity algorithm can

provide a rough location estimate in areas with limited coverage, i.e., with a single nearby

gateway.

2.3.3.2 RSS Ranging

In RSS ranging localization, the signal strength between a mobile device and a gateway

is translated into a distance between them using a radio propagation model, also referred

to as path loss model [104]. Similar to timing-based techniques, the range estimates to

multiple gateways are subsequently used as the input for a multilateration algorithm. From

a geometry perspective, this boils down to calculating the intersection of circles in 2D or

spheres in 3D spaces [75]. However, due to inaccuracies in the range estimates, these do

not always overlap and more sophisticated algorithms are required. The output coordinate

of the multilateration algorithm is the final location estimate of the mobile device.

The way a signal propagates through the air strongly depends on the environment. There-

fore, numerous path loss models have been developed for use in free space, indoor, urban and

rural areas. For instance, the International Telecommunication Union (ITU) has developed

an indoor path loss model for 2.4 GHz technologies [105], a model for free space attenuation

and multiple outdoor propagation models [106]. Various models for mobile communication

are introduced in [99] and compared by Singh in [107]. Examples include the empirical mod-

els of Okumura, Hata and COST-231, which are most widely used in urban areas, but are

adapted for use in rural areas as well. The COST-231 Walfisch-Ikegami model is further

discussed in [108]. Propagation models have been studied extensively for many technologies,

such as BLE [55], IEEE 802.11ah [109] and 4G LTE [110]. More recently, these models

have been modified for use in LPWANs [111]. More specifically, the model parameters are

tuned in order to match urban [112], suburban and rural scenarios [113]. One goal of these

models is to support operators with network planning, which involves coverage analysis [114]

and estimation of link quality [115]. For example, given the distance between gateway and

receiver, the link budget is analyzed. Opposed to this, the inverse operation can also be used

for localization purposes. As I evaluate the feasibility of these models for use in LPWAN

localization, more details can be found in Chapters 5, 6 and 7.

Recent works investigated RSS-based ranging localization in LPWAN. A preliminary perfor-

mance evaluation of a Min-Max ranging algorithm [116] in a public Sigfox network was carried

out in [103]. The empirical Hata model resulted in a mean location estimation error of 721m.

Robles et al. improved the Min-Max algorithm by adding weights [117]. Another popular

ranging algorithm is ordinary Least Squares estimation. Telles et al. demonstrated that a

simple weighted centroid localization algorithm can outperform TDoA techniques [118].

In my research, I analyze these ranging algorithms to improve the overall localization per-

formance of LoRaWAN. However, LoRaWAN ranging [119] can be quite challenging, since

the frequency hopping in LoRaWAN significantly impacts the localization accuracy [120].

Consequently, Wolf et. al designed a multi-channel ranging system for LPWAN [100]. Fi-

nally, to the best of my knowledge, I am the first to apply RSS ranging in a public NB-IoT

network.
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2.3.3.3 RSS Fingerprinting

Pattern recognition, most commonly known in the localization community as fingerprinting,

consists of comparing a snapshot of the current environment with a database of such snap-

shots linked to known locations [75]. In contrast to the aforementioned timing-, angle- and

other RSS-based approaches, the (sometimes sensitive) gateway locations do not need to

be known in a fingerprint-based approach.

More specifically, an RSS-based fingerprint localization approach consists of an offline and

online phase. During the offline phase, a measurement campaign is conducted in a prede-

termined area. Each fingerprint holds RSS measurements of receiving access points or gate-

ways. This fingerprint is stored along with the ground-truth location in a training database.

During the online phase, a mobile device is localized by matching its fingerprint measure-

ments against the earlier collected measurements in the training database. This matching

procedure can be implemented through probabilistic methods, Machine Learning algorithms

or by applying a pattern matching technique such as k-Nearest-Neighbors (kNN) analysis.

Fingerprinting is mostly used in constricted indoor environments with wireless technologies

such as Wi-Fi and BLE [121, 122, 123]. Obviously, indoor approaches tend to obtain better

accuracies than outdoors because of denser network deployment. One thing to consider in

Wi-Fi fingerprinting is how to compare the fingerprint created by the mobile device with

the fingerprints in the database. Torres-Sospedra et al. provide an overview of 51 distance

metrics that could be used for this comparison [124]. Another consideration in Wi-Fi fin-

gerprinting is the challenge of constructing the fingerprint database. While the traditional

approach is to collect the fingerprints during a labor intensive site survey, newer studies have

looked into crowdsourcing the database construction [125]. Following the latter approach,

Sapiezynski et al. achieved a 15m median location error for 73% of their Wi-Fi scans in

an outdoor environment, similar to the accuracy of Google’s crowdsourced geolocation ser-

vice [126]. Another new trend is to apply Deep Learning algorithms for fingerprint-based

indoor localization [127].

To date, there already exist a number of studies on fingerprint-based localization in LPWAN.

For example, Song et al. use Channel State Information (CSI) of NB-IoT for indoor pattern

matching localization [128]. The majority of studies, however, explore fingerprinting in an

outdoor scenario. Sallouha et al. evaluated a fingerprint classification method based on

Support Vector Machines (SVMs) [82]. In their implementation, RSS measurements are

used to estimate the distance between a transmitting Sigfox device and the responding

gateways to classify in which area the transmitter is located. Within such a class, the

location estimation is improved by distance estimation between end-devices and ground-

truth GPS devices. They achieve a classification accuracy of 78% in fingerprints with a

radius of 150m, separated by 2.5 times this distance from other fingerprints. However, the

experiments were conducted in a small area which contains only two classes. To overcome

this pitfall, Aernouts et al. collected Sigfox and LoRaWAN datasets with a spatial spread that

covers the entire city center (53 km2) of Antwerp, Belgium [32]. The open-source datasets

are subsequently used by other researchers to evaluate and compare the performance of their

algorithms [129, 130, 131, 132, 133, 134]. For instance, Sallouha et al. again tested their

fingerprint classification algorithm with seven classses spread over the city of Antwerp. They

were able to classify the location of a mobile device with an accuracy of 80% [135]. Lastly,
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besides the RSS values in the dataset, Etiabi et al. also include the SF in the fingerprint,

achieving increased localization accuracy [136].

In order to improve the accuracy of outdoor RSS fingerprinting, the distance metric and RSS

representation in a kNN algorithm should be optimized, as suggested in [124]. I carried out

this optimization process for Sigfox and LoRaWAN in Chapters 4 and 5, respectively. The

performance was further improved by Anagnostopoulos et al. in [130, 131]. In Chapter 7, I

present the results of the first RSS-based experiments with NB-IoT.

Besides estimating the location of an IoT device in LPWAN, fingerprinting approaches can

also provide an estimate of the localization error [137]. By providing such a reliability

estimate, end users are aware of the possible size of the area in which their device is located.

To quantify this level of uncertainty, a dynamic accuracy estimation method is presented

in [138]. In this method, a first model is trained to estimate multiple device locations.

Next, a second model is trained but with corresponding location estimation errors (i.e., the

difference between estimated and ground-truth location) as target values. Hence, one can

predict the accuracy of a new fingerprint in a data-driven way. In [139], the same authors

raise the problem that many researchers use their own data and metrics to evaluate their

algorithm, which does not allow fair comparison between algorithms. Therefore, the authors

use all available indoor and outdoor datasets to apply the most frequently used algorithms and

compare their positioning performance using various metrics (mean, median, 95th percentile,

standard deviation, etc.). Thus, the study provides a comprehensive overview of what

algorithm yields the best results, independent of the data set.
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Fingerprints

SUPPLY chain management requires regular location updates of assets, which can beenabled by LPWANs, such as Sigfox. While it is useful to localize a device simply by

its communication signals, such an approach may not fulfill the accuracy requirement of the

application, given the ultra narrowband nature of Sigfox. On the contrary, installing a GNSS

receiver on the device greatly increases its energy consumption.

In this chapter, I present my solution to this localization problem, based on sensing nearby Wi-

Fi access points and transmitting over Sigfox. It is important to note that there is no need to

connect to the Wi-Fi access points. Due to the 12 byte payload limit of Sigfox, I can transmit

only two Basic Service Set Identifiers (BSSIDs), which are six bytes each. This leaves no

payload space to transmit any RSS information. While Wi-Fi fingerprinting is well studied,

I investigate for the first time the location error when reducing the available information to

only two BSSIDs. Usually, anywhere between ten to sixty BSSIDs are discovered, including

an RSS value to indicate if it is nearby or far away. Although more information can be

transmitted over Sigfox by sending multiple messages, it still has a limit of six messages

per hour. Thus, using two messages instead of one increases the update period from ten

minutes to twenty minutes. This is why I am interested in using just a single Sigfox message.

The aim of the research in this chapter is to establish the expected location error for this

approach. Therefore, I use online crowd sourced Wi-Fi access point databases, which are

inherently less accurate than the carefully constructed databases in common research. While

crowd sourced services have obvious drawbacks, especially being noisy, they create a myriad

of opportunities [126].

This chapter continues as follows. Section 3.1 outlines the localization approach, discusses

the online Wi-Fi databases, and presents the measurement locations. Section 3.2 shows

the results in terms of location accuracy and the frequency of missing an access point.

Section 3.3 analyzes and discusses those results. Finally, Section 3.4 draws the conclusion.
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3.1 Methods and Materials

This section first describes the localization principle and the approach for the experiments.

Subsequently, I discuss the characteristics of the available online Wi-Fi access point databases.

The section ends with an overview of the measurement locations in Antwerp.

3.1.1 Localization Approach

The general approach of Wi-Fi fingerprinting localization can be divided into two steps: the

training and operational step. Firstly, the training step involves matching information about

the discovered networks or Wireless Access Points (WAPs) (i.e., their BSSID and RSS) to

a measurement location in a database. Secondly, the operational step involves requesting

from the database the location of newly discovered WAPs during operation. The database

will reply with the location of each WAP. I will not construct the database myself, as there

already exist many databases that are available online.

To discover nearby access points, a laptop or a smartphone with a Wi-Fi adapter is required.

A Python script saves the BSSID and RSS of each discovered access point. In Windows,

this can easily be done by running the following command: netsh wlan show networks

mode=bssid. The Python script then saves the output to a file, together with the current

location. The current location is determined by a GPS module. To be more accurate, all

locations are chosen to be recognized on a map, so that a visual check of the GPS location

can be performed. This procedure is executed on 36 locations in and around Antwerp,

Belgium.

When the Wi-Fi data is collected and transmitted over Sigfox to a backend server, this server

will perform an HTTP-request to a database for every BSSID. Afterwards, the database will

respond with a message, which includes the coordinate of the access point. If the BSSID is

not found in the database, an error message will be sent. Subsequently, all possible combi-

nations of two BSSIDs are generated and the mean coordinate of every pair is calculated.

If only one of the two BSSIDs was found in the database, the coordinate of that BSSID will

be considered as the mean coordinate. Finally, the distance error can be calculated. This is

the distance between the coordinate of the position where the measurement took place and

the mean coordinate of the pair of BSSIDs. This distance is calculated using the Haversine

function, which takes into account the curvature of the Earth [140].

Additionally, I calculate the probability of having no match of the BSSID in the database:

P (¬nB) =
(¬B
n

)(
W
n

) , (3.1)

where P (·) is the probability operator; W is the number of access point seen at a location;
B are the BSSIDs in W that are found in the database, ¬B are the BSSIDs that are not
found in the database; n is the number of BSSIDs that can be used for localization—in this

case, this is maximum 2 because of the limitations of Sigfox communication; ¬nB are the
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combinations of n BSSIDs that are not found in the database. This probability is interesting,

because if no BSSIDs of the Wi-Fi access points that are seen at a location can be found

in the database, the location of the device cannot be estimated.

In an attempt to improve the accuracy of the results, I develop an additional strategy: only

sending the combination of BSSIDs that have the strongest signal strength. It is not possible

to send the RSS values together with the BSSIDs in one Sigfox message, but I can use it in

the sending device to determine the right combination of BSSIDs. Although this strategy is

likely to consume more energy from the device (to pick the right combination of BSSIDs),

it may decrease the mean location errors.

Another improvement is attempted by combining databases. In my experiments, I use the

WiGLE and LocationAPI databases (see Section 3.1.2). The most straightforward com-

bination is to take the average of the locations returned by each database. If a database

does not return a location for one or both access points, these locations are simply disre-

garded in the calculation of the average. Since LocationAPI returns a single location for two

BSSIDs, I account for that location twice, so that it receives an equal weight compared to

the two results from the WiGLE database. In fact, it is impossible to know if LocationAPI

knows about only one of the two access points; in this case the weight of that location is

erroneously doubled, which cannot be prevented.

This straightforward combination neglects the fact that the location error from the Loca-

tionAPI database is generally much better than that of the WiGLE database. Thus, another

approach for combination is to choose the location provided by the LocationAPI database,

unless the BSSIDs could not be found in that database; in which case the WiGLE database

is consulted for a location estimate. While I will show the location error results of the first

approach, this second combination approach will be further analyzed.

To summarize, I apply the following localization strategy and improvements when localizing

a device with Wi-Fi access points using Sigfox as communication channel:

1. Choose any combination of two BSSIDs for localization;

2. Choose the two BSSIDs with the highest RSS for localization;

3. Combine the two databases through averaging; and

4. Combine the two databases by preferring the LocationAPI database, using WiGLE

only when the BSSIDs cannot be found in LocationAPI.

A single Sigfox message allows an update period of ten minutes. Using two messages would

increase the period to twenty minutes, which is why I keep the focus on a single message of

12B. Localization with this constraint has not been researched before.

3.1.2 Wi-Fi Databases

There is a variety of fingerprinting databases to work with. Some companies send their

so called wardrivers all over the world to gather information about Wi-Fi access points.
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However, there is a trend to create more crowd-sourced databases [126]. People can create

a free account and upload data of the access points in their neighborhood. The most popular

and largest databases are summarized in Table 3.1.

Table 3.1: Summary of largest Wi-Fi fingerprinting databases.

Database Name Number of Wi-Fi Access Points Reference

Combain Positioning Service 1,296,000,000 [141]

LocationAPI by UnwiredLabs 1,500,000,000 [142]

Mozilla Location Service 30,000,000,000 [143]

Navizon unknown [144]

WiGLE 4,750,076,107 [145]

Databases with information about Wi-Fi access points are growing at a significant rate.

This can be stated by observing that, for example, the Navizon database is growing at a

rate of 500,000 data points every day [144]. It is interesting to note that this database also

keeps track of the number of cell phone towers. One of the many reasons of this significant

rate is the IoT and the world of ubiquitous computing we are living in today. Navizon even

pays people [146] to contribute to the database. The one million registered users can just

download the app, drive around in their car and earn a pay-out of 15$ for every 10,000
access points.

One database used for this research is called WiGLE [145]. WiGLE is short for Wireless

Geographic Logging Engine. The website is an open source platform; everyone can view

registered BSSIDs around the world on a map. If a free account is created, requests can be

made and data can be uploaded to the database. At this moment, WiGLE wardrivers have

discovered over 4.5 billion Wi-Fi access points around the world. This database is chosen

because it is easy to work with and has a decent number of access points.

Another database used for this research is LocationAPI [142]. LocationAPI is a website

hosted by UnwiredLabs, an Indian corporation focusing on positioning systems. At this mo-

ment, LocationAPI wardrivers have discovered over 1.5 billion Wi-Fi access points worldwide.

Its database contains a large number of wireless access points in Belgium.

To obtain an objective look at the error or accuracy of Wi-Fi localization through a Sigfox

network, the characteristics of both databases are compared. WiGLE has a larger worldwide

database. This does not mean that the WiGLE results are more accurate, because there are

more access points discovered in the US than in Belgium. WiGLE claims wardrivers have

discovered 1.7 million WAPs in Belgium. On the other hand, while LocationAPI contains a

smaller number of access points, this database includes 11 million WAPs in Belgium.

A request to the WiGLE database results in a string with a lot of information. It returns

the latitude and longitude, but also data like security details and uptime indicators, see

Figure 3.1. LocationAPI returns less information, but it is important to note that the data

it does return is more useful: each result includes the mean coordinate of multiple BSSIDs,

plus the estimated accuracy in meters. A useful extra feature is the ‘balance’ parameter.

This informs the user on how many successful requests are left, see Figure 3.2. However, it

is not possible to request the location of a Wi-Fi access point in LocationAPI.
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”resultCount ”:1,

”last”:1,

”success ”:true ,

”results [–” trilat ”:51.17709351 ,

”trilong ”:4.41607475 ,

”ssid ”:” UAntwerpen”,

”qos”:1,

”transid ”:”20110605 -00081” ,

”firsttime ”:”2011 -05 -31 T17 :11:13.000Z”,

”lasttime ”:”2013 -10 -28 T11 :32:52.000Z”,

”lastupdt ”:”2013 -10 -28 T09 :33:29.000Z”,

”netid ”:”00:0b:86:26:86:16” ,

”name”:null ,

”type ”:” infra”,

”comment ”:null ,

”wep”:”2” ,

”channel ”:6,

”bcninterval ”:0,

”freenet ”:”?” ,

”dhcp ”:”?” ,

”paynet ”:”?” ,

”userfound ”:false˝],

”first ”:1

Figure 3.1: WiGLE returns detailed information about an access point.

‘status ’: ‘ok ’,

‘balance ’: 89,

‘lat ’: 51.17786625 ,

‘lon ’: 4.42454131 ,

‘accuracy ’: 10

Figure 3.2: LocationAPI returns only the average location of multiple BSSIDs, but also an estimated

accuracy.

The documentation of both services helps to get started with making requests [145, 142].

However, the documentation of WiGLE is harder to find and understand, since it is still under

development. The LocationAPI documentation is very easy to find, easier to read and it

contains examples. Table 3.2 presents a summary of all the properties and characteristics

of the two databases.
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Table 3.2: Comparison of the properties and characteristics of the WiGLE and LocationAPI

databases.

Property WiGLE LocationAPI

Number of access points worldwide 4,750,076,107 1,500,000,000

Number of access points in Belgium 1,700,000 11,000,000

Accuracy given in request No Yes

Balance given in request No Yes

Number of BSSIDs in a request 1 BSSID At least 2 BSSIDs

Number of coordinates in a response 1 coordinate per WAP 1 mean coordinate

Documentation More complex More intuitive

3.1.3 Measurement Locations

A measurement is executed at 36 different locations in and around Antwerp. The locations

are chosen so that there is a variety of more and less densely populated areas. At every

location, a script is run to save all BSSIDs and RSS values of the access points in the vicinity,

together with the exact coordinate of the measurement location. Figure 3.3 shows a map

of the different measurement locations.

BAP: Wi-Fi Localization

Map creator: Thomas Janssen 
- University of Antwerp. 
For my bachelor thesis, I 
discovered around 800 access 
points on 36 different 
locations in Antwerp.

BAP punten

All items

Figure 3.3: Measurement locations in Antwerp, ©2017 Google.
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3.2 Results

This section summarizes the location estimate results by database. First the WiGLE

database, then the LocationAPI database, and finally the combination of both databases.

For each database, I discuss the overall location error, the probability of finding the BSSIDs,

and the location error when transmitting only the two BSSIDs with the highest RSS value.

3.2.1 WiGLE Results

The location estimates when localizing using the WiGLE database are prone to large errors,

see Figure 3.4. The overall mean location error is 6.24 km, while the overall median location

error is 77m. The 75th percentile location error is larger than 1 km only at locations 12 and

14; at location 14, it is 5.12 km. Ten locations have an error greater than 2 km, which are

clipped in Figure 3.4. One of those is location 8. The mean location error is 101 km and the

median location error is 45m. To represent the measurement, a cumulative distribution of

the errors at this location is shown in Figure 3.5. There are some combinations of BSSIDs

with a significant location error: 802 km and 1633 km. However, more than 90% of the

BSSID combinations have an error smaller than 119m, see Figure 3.5b.
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Figure 3.4: Overview of the location error on all 36 locations using the WiGLE database. Errors

larger than 2 km are clipped.
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Figure 3.5: Cumulative distribution of the location error at the eighth measurement location, using

the WiGLE database. A detail of Figure (a) is shown in Figure (b). The mean location error is

101 km, the median location error is 45m.

The average probability of finding the BSSIDs of a single WAP in the WiGLE database at

one of the 36 locations is 32.6%. This is calculated using Equation (3.1) with n = 1.

The average probability of finding neither of two BSSIDs in the WiGLE database is 13.2%,

which is calculated with n = 2 or:

P (¬2B) =
(¬B
2

)(
W
2

) . (3.2)

A graph of the probability of finding neither BSSIDs in the WiGLE database is shown in

Figure 3.6.
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Figure 3.6: Probability of finding no match for either of two BSSIDs in the WiGLE and LocationAPI

database. The mean chance of finding no match over all locations is 13.2% for WiGLE, 12.5% for

LocationAPI, and 1.9% for the combination.

When sending the combination of BSSIDs with the highest RSS values to the WiGLE

database, the mean error of all measurement locations decreases from 6.24 km to only

103m. The median error decreases from 77m to 66m. The probability that neither of

those BSSIDs could be found, however, is 11.1%; no location can be estimated at those

locations. Figure 3.7 shows the distribution of the error.
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Figure 3.7: Cumulative distribution of the location error when two BSSIDs with the highest RSS

are transmitted. One outlier of LocationAPI and the combination is at 2.01 km.

3.2.2 LocationAPI Results

The location estimates when localizing using the LocationAPI database are much less prone

to large errors than with the WiGLE database, as shown in Figure 3.8. The overall mean lo-
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cation error is 21.06 km, while the overall median location error is 37m. The 75th percentile

location error is never larger than 0.5 km. Seven locations have an error greater than 2 km,

which is clipped in Figure 3.8. One of those is location 1. The mean location error is 546 km

and the median location error is 23m. Figure 3.9 shows the cumulative distribution of the

errors at this location. There is one combination of BSSIDs with a significant location error:

8543 km. However, more than 93.6% of the BSSID combinations have an error smaller than

43m, see Figure 3.9b.
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Figure 3.8: Overview of the location error on all 36 locations using the LocationAPI database.

Errors larger than 2 km are clipped.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Error [km]

C
u
m
u
la
ti
ve
fr
eq
u
en
cy

(a)

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Error [km]

(b)

Figure 3.9: Cumulative distribution of the location error at the first measurement location, using

the LocationAPI database. A detail of Figure (a) is shown in Figure (b). The mean location error

is 546 km, the median location error is 23m.

The average probability of finding neither BSSIDs in the LocationAPI database of a combina-

tion of WAPs seen at one of the 36 location is 12.5%. This is calculated as in Equation (3.2).

Since it is not possible to request a single BSSID to the LocationAPI database, the chance

of match of a single BSSID cannot be calculated. A graph of the probability of finding

neither BSSIDs in the LocationAPI database is shown in Figure 3.6.

When only sending the combination of BSSIDs with the highest RSS values to the Location-

API database, the mean error of all measurement locations decreases from 16 km to only

114m. The median error decreases slightly, from 37m to 33m. The probability that neither
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of those BSSIDs can be found, however, is again 19.4%; no location can be estimated at

those locations. Figure 3.7 shows the distribution of the error.

3.2.3 Combination of WiGLE and LocationAPI

A straightforward solution to improve the results is to combine the WiGLE and LocationAPI

databases. As a first approach, I propose to combine the location estimates from both

databases by taking their average; this result can be seen in Figure 3.10. The overall

mean location error is 31.79 km, while the overall median location error is 53m. The 75th

percentile location error is only once larger than 1 km. Fifteen locations have an error greater

than 2 km, which is clipped in Figure 3.10.
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Figure 3.10: Overview of the location error on all 36 locations using the combination of the two

databases by averaging. Errors larger than 2 km are clipped.

The location error overview of the second approach, which favors the LocationAPI database

since it generally has a lower location error, is shown in Figure 3.11. The overall mean loca-

tion error is 24.17 km, while the overall median location error is 40m. The 75th percentile

location error is never larger than 0.5 km. Twelve locations have an error greater than 2 km,

which is clipped in Figure 3.11.
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Figure 3.11: Overview of the location error on all 36 locations using the combination of the two

databases by favoring LocationAPI over WiGLE. Errors larger than 2 km are clipped.
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The average probability of finding neither BSSIDs in the LocationAPI database, nor in the

WiGLE database, of a combination of WAP seen at one of the 36 locations is 1.9%. This

is calculated as in Equation (3.2). A graph of the probability of finding neither BSSIDs in

the combination of databases is shown in Figure 3.6.

When only sending the combination of BSSIDs with the highest RSS values to the combi-

nation of databases, the mean error of all measurement locations decreases from 24.17 km

to only 125m. The median error decreases slightly from 40m to 39m. Using this method,

a location could be estimated at all 36 test locations. Figure 3.7 shows the distribution of

the error.

3.3 Discussion

The WiGLE and LocationAPI Wi-Fi fingerprint databases both contain a large number of

entries worldwide as well as in Belgium. However, the localization results significantly rely

upon these databases.

3.3.1 Database Comparison

When considering the median location errors, the LocationAPI results are usually better than

the ones of WiGLE. At only 4 out of 36 measurement locations, the requests to WiGLE

yield a smaller median location error, see Figure 3.12. The mean distance errors are in the

range of 15m to 546 km. This variety of mean errors is, as mentioned in the results, caused

by outliers in the location estimates.
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Figure 3.12: Median location error at each test location for the WiGLE and LocationAPI databases,

and for their combination. The location error is not consequently larger in less populated areas.
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The probability that a BSSID combination is sent that contains two BSSIDs that result in

no match is for both databases around 13%. However, there are large differences in this

probability at specific locations, see Figure 3.6. This is how the combination of the two

databases reduces the probability to 1.9%.

3.3.2 Reasons for Flaws in the Results

When looking at the size of the location errors, I observe that a large error often occurs

because a single BSSID leads to a wrong latitude and longitude pair. This causes a large

error in every combination which contains that BSSID. When not considering that single

‘failed BSSID’, the errors will remain quite small and the distance error would decrease.

Therefore, I always calculate the median location error, which is more resistant to such

outliers.

There will definitely be a fault during the transformation of some BSSIDs to coordinates.

Therefore, when localizing a device using Wi-Fi and the WiGLE or LocationAPI database,

one should keep in mind that there could be a ‘corrupt’ BSSID in the databases. When

requesting a BSSID, the servers might respond with a wrong coordinate of the wireless

access point. The distance between the GPS coordinate and the mean coordinate can vary

from a few meters to over several thousands of kilometers. Of course, this influenced the

mean error of every measurement where such a flaw occurred.

For example, at location 1, when using the LocationAPI database, the errors of on ore more

BSSIDs show a large deviation. Only 5% of all combinations result in an error that is equal

to 8543 km. The coordinates that are returned are located in Brazil. The remaining 95%

of the errors are always below 44m. Therefore, the median error is only 23m, while the

mean error is 546 km. This outlier problem is much less apparent when selecting the two

BSSIDs with the highest RSS. The error at location 1 is then 3.7m. Location 29, however,

still has an error of 2.01 km. Overall, as shown in Figure 3.7, the mean location error in

the WiGLE database is 103m, the median location error is 66m, and no location estimate

can be found at 4 test locations. In the LocationAPI database, the mean location error is

114m, the median location error is 33m, and no location estimate can be found at 7 test

locations. When combining the databases, the mean location error is 125m, the median

location error is 39m, and an estimate can be found at all 36 test locations.

If I select the four BSSIDs with the highest RSS, which requires me to use two Sigfox

messages and increases the ten minutes update period to twenty minutes, the location error

improves only slightly. In the WiGLE database, the mean location error becomes 56.11 km,

due to outliers. The median location error becomes 63m, which is an improvement of only

3m. However, no location estimate can be found at only 2 test locations. In the LocationAPI

database, the mean location error is 71m, and the median location error is 31m. This is a

larger improvement than in the case of WiGLE. A location estimate can be found at all 36

test locations. Because the best combination favored the LocationAPI estimate, the results

for the combination are equal to those for LocationAPI. Thus, while faults in the results

can be alleviated partly by sending two Sigfox messages rather than one, the improvement

in location error is not so large as to make it an attractive option.
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Additionally, the reliability of the databases can definitely be questioned. For example,

anyone can anonymously upload data to the databases. Hopefully, there is a validation

step before the data is actually made available to other users. Otherwise users can enter

wrong data into the database, for any number of reasons. The managers of the WiGLE

and LocationAPI database admit that there could be geographical errors in their databases.

However, an administrator of the LocationAPI website stated the following [147]:

“A lot of effort has gone into enabling our algorithms to auto-adapt based on

the type of geography requested, correct for unclean data-sets (in case of crowd-

sourced data) by intense cleansing of both contributor and customer data.”

Since it is not possible for companies like WiGLE of UnwiredLabs to verify each coordi-

nate of every uploaded WAP, a localization application should have some built-in control

mechanisms. Imagine, for example, a user uploading 100 coordinates of access points in a

specific, relatively small region. If 99 of the coordinates are only a few meters away from

each other, and there is one coordinate a few kilometers further, this could indicate that

this single coordinate is the result of the bad resolving in the database. The information of

this access point should be left out of the data, to avoid sending a combination with the

coordinate of that ‘corrupt’ BSSID. Another problem which must be tackled is that, even

though Media Access Control (MAC) addresses are unique worldwide, there will always be

spoofers manipulating their MAC addresses for any number of reasons. Therefore, there

should be a Duplicate Address Detection (DAD) mechanism in the localization application.

DAD enables eliminating the entry with the ‘false location’ from the database if the ‘real’

location is already registered multiple times in the database.

Furthermore, it needs to be mentioned that there could be small distance errors, due to the

limitations of the hardware. The GPS and the Wi-Fi adapter of the laptop have a certain

refresh speed, so the user location or list of wireless access points is not instantly updated

when moving.

3.3.3 Population Density

Usually, a lot of Wi-Fi networks can be discovered in the heart of a city like Antwerp. In

the countryside or in open fields or parks, it is harder to detect a Wi-Fi network, because

there are just less WAPs available in such areas. Therefore, it is interesting to investigate

whether or not there is a relationship between the kind of area and the distance error. Of

the 36 locations, there are six locations which can be categorized as less densely populated

areas: locations 6, 9, 10, 23, 14, and 32. These locations are indicated in Figure 3.12.

Three out of the five biggest median errors were measured at a less densely populated

location. However, the largest error was measured at a densely populated location and there

are also errors in less densely populated areas that are smaller than the mean error. So, I

cannot confirm if there is a relationship between the distance error and the kind of location.

Despite the limitation of using only two BSSIDs, the number of access points in the vicinity

does play a role. The chance of having no match in the database increases in less populated

areas from 13 to 20%.
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3.4 Conclusion

I wanted to know how accurately one can localize a mobile device that communicates over

Sigfox by discovering nearby Wi-Fi access points. I used two online databases, WiGLE and

LocationAPI, to look up the locations of Wi-Fi access points discovered by the mobile device.

Because of the limitations in Sigfox communication, only two BSSIDs can be searched for

in a single transmission, with a maximum of 140 transmissions per day.

Using the WiGLE database, I achieved a median location error of 45m, with a 86.8% chance

of finding the combination of BSSIDs transmitted by the device. Using the LocationAPI

database, I achieved a median location error of 23m, with a 87.5% chance of finding the

combination transmitted by the device. Both databases have outliers well above 100 km.

However, only in the WiGLE database the 75th percentile location error exceeds 1 km, and

this only at two of the test locations.

In order to increase the chance of finding the combination of BSSIDs transmitted by the

device, I combined the results of both databases. Since the LocationAPI database is more

accurate than the WiGLE database, I chose to combine them by only using the WiGLE

database when the combination of BSSIDs was not found in the LocationAPI database.

With this method, I achieved a median location error of 40m, with a 98.1% chance of

finding the combination transmitted by the device.

Since only 140 transmissions are allowed per day, with only 6 per hour, and only two BSSIDs

can be sent in a single transmission, I additionally explored a strategy for selecting the

combination of BSSIDs. The strategy consists of selecting the two BSSIDs with the highest

RSS value. Using the combination of both databases, the median location error is 39m,

and this combination could be found on all 36 test locations. Moreover, I found that using

two messages to transmit four BSSIDs does not decrease the location error significantly.

Future work consists in increasing the localization reliability by building a device that can

both sense Wi-Fi access points and transmit two BSSIDs over Sigfox. Such a device would

not only validate my results in a closed experiment, but also allow to measure how much

energy is exactly required for this type of localization. This would verify if it is a viable way

to track and trace assets in an IoT scenario.
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V ARIOUS IoT applications benefit from context awareness. For example, a mobile

environmental monitoring device has to send an alert if a certain air quality threshold

is exceeded, but the threshold in a dense urban area will be different from the threshold in

rural areas. Concisely, the application has to adapt its behavior based on context information

such as the current location of the IoT device. Hence, localization methods have to be

applied to obtain this context information.

As discussed in Chapter 2, localization based on GNSS is considered not suitable for long-

term battery-powered IoT devices that sporadically transmit location updates. Hence, I

investigate alternative solutions.

In the previous chapter, I explored the concept of localization by transmitting Wi-Fi finger-

prints over a Sigfox network. However, in such an approach, one needs to sacrifice limited

payload data for localization purposes. In order to eliminate this need, this chapter investi-

gates localization using the signal strength of the Sigfox communication link itself. By doing

so, no additional message or energy is required to obtain a location estimate.

Thus, the current chapter presents my research on outdoor Sigfox fingerprinting localization.

More specifically, I use an openly available dataset of Sigfox fingerprints [32] to analyze and

optimize the performance of a kNN fingerprinting algorithm. Similar to previous research

on indoor Wi-Fi fingerprinting [124], I analyze the effect of 31 distance functions and 4 RSS

representations on the location estimation error.

The remainder of this chapter is structured in the following way. Section 4.1 describes the

publicly available dataset and how I use it to analyze outdoor Sigfox fingerprinting algorithms.

In Section 4.2, I present and discuss the results of this analysis. Finally, Section 4.3 concludes

the chapter, summarizing the main observations.

35
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4.1 Methodology

Several steps needed to be taken in order to setup the localization experiments successfully.

In this section, I describe the procedure of every experiment and explain why I performed

each particular step. Figure 4.1 shows an overview of these steps.

Outdoor Sigfox Fingerprinting database

Normalized
RSS

Positive  
RSS

Exponential
RSS

Powed  
RSS

31 distance
metrics

31 distance
metrics

31 distance
metrics

31 distance
metrics

Apply kNN fingerprinting algorithm 

Smallest evaluation set error: k, distance metric, RSS

Validation: Distance matrix + kNN on test set 

Figure 4.1: Overview of localization experiments

4.1.1 Sigfox dataset

In order to implement fingerprinting in a large outdoor area, an extensive measurement

campaign has to be conducted to create a large training database that covers the entire

area. Previous work by Aernouts et al. provided the research community with large LPWAN

fingerprinting datasets in outdoor areas [32]. One of these datasets holds 14,378 Sigfox

messages which were collected in the city center of Antwerp, using the Sigfox network which

is deployed by Engie M2M. These messages were transmitted by devices that were mounted

on 20 cars of the Belgian postal service. The cars commute through the entire city center

on a daily basis, which benefits the spatial spread of the dataset. Every twelve minutes,

the current GPS coordinates of such a device are sent via a Sigfox message. Together

with the RSS measurements of every Sigfox gateway that received the message, the GPS

coordinates of the message were stored in the Sigfox dataset. Consequently, the dataset

consists of 14,378 rows where each row represents a unique training sample. The first 84

columns represent all Sigfox gateways which are present in the dataset. If a gateway received
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a message, the RSS value for that gateway is filled in in its respective column. Otherwise,

an out-of-range value of −200 dBm is inserted. The last columns in the dataset show the
receiving time and GPS coordinates of a message.

For the experiments, I divided the Sigfox dataset in a training set, validation (or evaluation)

set, and test set. The size of these subsets are respectively 70%, 15%, and 15% of the

complete dataset.

4.1.2 Distance functions and RSS representations

In a fingerprinting algorithm, the distance between two points in space needs to be calculated.

So far, investigations have been confined primarily to the Euclidean distance and RSS data

expressed in dBm. However, various options can be considered to improve the results of the

distance calculations. Cha et al. described several distance functions and similarities [148].

Torres-Sospedra et al. implemented all these distance functions for an indoor fingerprinting

positioning system using Wi-Fi [124]. Based on this research, I investigate the accuracy of

Sigfox in outdoor environments. In total, 31 different distance functions are implemented.

Some distance functions are excluded, since some of them are equivalent or irrelevant for

the outdoor experiments. Besides, in distance-based methods (such as kNN), some distance

functions are equivalent and some similarities occur since two distances can only differ by a

single constant. In general, distance functions are categorized into families, based on their

similarities. The 31 implemented distances are listed below by family.

• Minkowski family : Euclidean, Manhattan, Minkowski-3, Minkowski-4, Minkowski-5,
Chebyshev

• L1 family : Gower, Sørensen, Soergel, Kulczynski, Canberra, Lorentzian

• Intersection family : Intersection, Wave Hedges, Czekanowski, Motyka

• Inner product family : Jaccard, Dice

• Fidelity family : Hellinger, Matusita, Squared Chord

• Squared L2 family : Squared Euclidean, Pearson χ2, Neyman χ2, Squared χ2, Proba-
bilistic χ

2
, Divergence, Clark, Additive Symmetric χ

2

• Combinations: Kumar-Johnson, Average(L1, L∞)

Additionally, Torres-Sospedra et al. list four alternatives to represent the signal strength val-

ues: positive, normalized, exponential and powed values. For the mathematical background

of these data representations, the interested reader is referred to the work of Torres-Sospedra

et al. [124]. Note that I use the same values for the parameters required in the exponential

and powed representations, so α = 24 and β = e. As mentioned before, an out-of-range

value of −200 dBm is put into the fingerprinting database for gateways that did not receive
a Sigfox message.



4.1. METHODOLOGY 39

4.1.3 Distance matrices

In order to perform a fingerprinting algorithm, distance matrices need to be generated in the

next step. Each row in a distance matrix represents a validation sample, while each column

represents a training sample. Thus, for every validation sample, the distance (in the signal

space, not the geographical distance) to every training sample is stored in the corresponding

cell in the distance matrix. This is visualized in Figure 4.2. For every distance function and

for every RSS representation, a distance matrix is generated.
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Figure 4.2: Representation of a distance matrix

4.1.4 Fingerprinting algorithm

Given the dataset and the distance matrices, I can start processing all this data and apply a

fingerprinting algorithm. Many algorithms are available, e.g., kNN, SVMs [149] and Neural

Networks (NNs). For my experiments, I apply the kNN classification algorithm. Note that

I evaluate the performance of other algorithms in Chapter 5. In the kNN algorithm, the

coordinates of the k nearest training samples are used to estimate the position of the device

of interest. In practice, a sample of signal strengths is compared to the training samples in

the fingerprint database. Using the kNN algorithm, I can then obtain a location estimate

for the transmitting device. In pursuance of achieving the highest possible accuracy, I search

for the optimal k for every distance function and RSS representation, with k ranging from

1 to 16. The optimal k is defined as k where the smallest distance is measured.

4.1.5 Error calculation

After applying the fingerprinting algorithm, I calculate the error between the estimated

position and the actual position of the device. This is done by calculating the Vincenty

distance, which takes into account a newer and more accurate model of the curvature of

the Earth than the Haversine distance. For every distance function and RSS representation,

the mean distance error is calculated for every k in the validation set and for the optimal k

in the test set, which is discussed in the next section.
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4.1.6 Validation

Finally, in order to validate the parameters of the fingerprinting algorithm and the results, a

test dataset is used. From this set, a distance matrix is generated for the distance function

and RSS representation with the smallest distance error and optimal k. In that way, I can

compare the distance error of the test dataset to the distance error of the validation dataset,

for the optimal k and distance function. If these errors are similar, the results are assumed

to be valid.

4.2 Results

In this section, I present the results of the experiments and compare the different distance

functions and RSS representations to each other. In order to validate the results, I use a

test set for the case with the smallest error, optimal k and RSS representation.

In Table 4.1, the optimal k and mean location estimation error are listed for every distance

function and every RSS representation. In almost all cases, the lineal representations (pos-

itive and normalized) yield similar results. Furthermore, one can observe a decrease of the

mean error for the exponential and powed representations. Using one of these two repre-

sentations always results in a smaller distance error as when using a lineal representation,

except for the Kumar-Johnson distance. When comparing the exponential and powed rep-

resentations, the exponential RSS representation always yields the smallest distance error.

The Sørensen, Soergel, Kulczynski, Czekanowski and Motyka distance functions all yield

the exact same errors. Using the exponential RSS representation and k = 6, the smallest

distance error can be achieved. In these cases, the mean estimation error is 322m.

Since Sørensen distance requires the least computational power, I choose this distance

function for the test set calculations. Thus, the test set distance matrix is created using

exponential RSS representation, the Sørensen distance and k = 6. When performing the

same fingerprinting algorithm as with the validation set, the mean test set error equals

340m, which is close to the mean error of 322m obtained with the validation set. Therefore,

I can assume the results to be valid. Figures 4.3a and 4.3b show a box plot and Cumulative

Distribution Function (CDF) of the test set errors, respectively. The median error is 150m

and the 95th percentile yields an error of 1548m.

In Figure 4.4, the correlation between the number of gateways that received a test message

and the estimation errors for that message is shown. In general, one can observe that if

more gateways receive a message, the estimation error decreases. Consequently, Sigfox

network operators should take the number of gateways into account to improve the location

estimation accuracy.
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Table 4.1: Fingerprinting results for the Sigfox urban dataset, showing the optimal value of k and

the mean location estimation error in meter for every RSS representation and distance function.

Measure Positive RSS Normalized RSS Exponential RSS Powed RSS

k Error k Error k Error k Error

Euclidean 10 667 10 667 6 329 9 361

Manhattan 7 537 7 537 6 333 6 356

Minkowski 3 9 729 9 729 6 341 7 373

Minkowski 4 13 752 13 752 6 357 6 394

Minkowski 5 14 762 14 762 6 367 7 409

Chebyshev 7 906 7 906 5 413 4 494

Gower 7 537 7 537 6 333 6 356

Sørensen 9 539 9 539 6 322 7 346

Soergel 9 539 9 539 6 322 7 346

Kulczynski 9 539 9 539 6 322 7 346

Canberra 9 687 9 687 8 488 7 543

Lorentzian 6 460 6 524 6 333 6 357

Intersection 7 537 7 537 6 333 6 356

Wavehedges 7 613 7 613 7 453 7 481

Czekanowski 9 539 9 539 6 322 7 346

Motyka 9 539 9 539 6 322 7 346

Jaccard 11 677 11 677 7 325 6 352

Dice 11 677 11 677 7 325 6 352

Hellinger 9 775 9 775 8 417 9 567

Matusita 9 775 9 775 8 417 9 567

Squared Chord 9 775 9 775 8 417 9 567

Squared Euclidean 6 789 10 667 6 329 9 361

Pearson χ
2

3 1122 3 1113 3 575 2 847

Neyman χ
2

4 1056 6 1048 3 739 4 830

Squared χ
2

12 747 12 747 6 391 8 477

Probabilistic Symmetric χ
2
10 758 12 747 6 391 8 477

Divergence 10 707 10 707 9 588 10 682

Clark 9 687 9 687 8 487 7 543

Additive Symmetric 6 955 6 948 7 555 6 939

Kumar-Johnson 6 950 6 940 7 636 6 947

Average(L1, L∞) 8 853 6 730 6 390 6 443
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Figure 4.3: (a) Box plot and (b) Cumulative Distribution Function of estimation errors of the

Sigfox urban test dataset.
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Figure 4.4: Box plots of estimation errors of the Sigfox urban test dataset.
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4.3 Conclusion

Due to the proliferation of IoT devices, new energy-efficient technologies are needed to

locate them. In this chapter, I carried out experiments to investigate the accuracy of RSS-

based fingerprinting localization using Sigfox. A kNN algorithm was implemented to match

a new fingerprint to a training dataset. In that way, I was able to estimate the position of

the mobile device.

Furthermore, I improved the location estimation by analyzing 31 distance functions and four

ways to represent RSS data. In the optimal case, k = 6 and the Sørensen distance is used

in combination with the exponential RSS representation. Compared to the state-of-the-art

in the same network and region [103], my results double the accuracy with a reduction in

mean location estimation error from 689m to 340m.

The achieved positioning accuracy might still seem very poor compared to GNSS. However,

this level of accuracy is sufficient to provide location-awareness in many IoT applications.

When tracking an asset worldwide, for instance, a location estimate with an accuracy of

340m does give you a good idea of where it currently resides. Moreover, remember that no

additional energy on the mobile device is required to obtain a location estimate.

In future work, several options can be explored to further improve the location estimation

accuracy of the fingerprinting algorithm. First, my results show higher location estimation

errors in areas with few receiving gateways. Therefore, increasing the number of gateways in

sparsely covered areas will generally increase the localization accuracy in these areas. Second,

fine-tuning of the α and β parameters in the exponential and powed RSS representations,

respectively, may lead to higher location accuracy. Third, the kNN algorithm can be improved

by implementing a weighted variant of this algorithm. Finally, more studies are required to

optimize the size of the datasets. In the next chapter, I will repeat this analysis using

other ML algorithms on a LoRaWAN dataset that was also collected in the city center of

Antwerp [32].



44 CHAPTER 4. SIGFOX FINGERPRINTING LOCALIZATION



Chapter 5555555555555555555555555555555555555555555555555555555555555555555555555
RSS-based LoRaWAN Localization

WHEN choosing a localization algorithm for any IoT application, a trade-off between

location accuracy, deployment cost and computational performance should be con-

sidered. Therefore, this chapter examines this trade-off for RSS-based localization in a

LoRaWAN network. I use a publicly available outdoor LoRaWAN data set to evaluate

fingerprint-based and range-based location estimation algorithms. The data is collected in

the same environment as in the experiments of the previous chapter, enabling positioning

performance comparison between Sigfox and LoRaWAN. The experimental results presented

in this chapter serve as a benchmark for RSS-based LoRaWAN localization methodologies

in a real-world large-scale environment.

The major contributions in this chapter can be summarized as follows:

• In an RSS-based fingerprinting approach, I evaluate and compare the performance of
ten Machine Learning (ML) algorithms in terms of location accuracy and computa-

tional complexity.

• I assess the accuracy of RSS-based ranging approaches by implementing and comparing
several outdoor path loss models. In addition, I evaluate a modified version of the E-

Min-Max location estimation algorithm using different weight functions.

• I implement different gateway selection strategies in order to improve the range-based
localization accuracy.

• I discuss the benefits and limitations of both fingerprint-based and range-based outdoor
localization approaches.

The rest of this chapter is organized as follows. Section 5.1 briefly describes the public

LoRaWAN data set used to evaluate all localization algorithms. Subsequently, the large-scale

localization experiments are outlined. While Section 5.2 presents ML algorithms to apply in

a fingerprinting approach, Section 5.3 describes novel combinations of path loss models and

location estimation algorithms in a range-based approach. Furthermore, different gateway

selection strategies are discussed. Section 5.4 presents the results of the experiments in

terms of localization accuracy and performance. Finally, the benefits and limitations of each

approach are discussed in Section 5.5 and the main conclusions are drawn in Section 5.6.

45
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5.1 Publicly available LoRaWAN data set

The algorithms presented in this chapter are evaluated on a publicly available data set. This

enables other researchers to compare their algorithms on the same data set. Aernouts et al.

collected a large number of LoRaWAN messages in the city of Antwerp, Belgium [32]. In

total, 130,430 messages are collected by 72 LoRaWAN gateways throughout the city. Each

message consists of the RSS in dBm to all gateways, together with a GPS coordinate. The

latter is used as a ground truth reference. If a message is not received by a gateway, the

RSS value for that gateway is set to −200 dBm. Figure 5.1 displays the messages inside
a predefined bounding box on a map of Antwerp, Belgium. The gateway locations are not

shown, since these are confidential.

Figure 5.1: The public data set consists of 130,430 LoRaWAN messages collected in the city

of Antwerp, Belgium [32]. The blue dots represent the GPS coordinates of every measurement.

© 2020 OpenStreetMap contributors

5.2 Machine Learning-based fingerprinting algorithms

The location of a mobile transmitter can be estimated by matching the RSS values from

receiving gateways to earlier collected data at known locations. In this section, I describe

the steps taken to evaluate a fingerprint-based localization approach, leveraging the power

of ML algorithms. First, some preprocessing steps need to be taken in order to represent

the data in the most optimal way. Second, since I am predicting continuous-valued output,

regression-based algorithms are most suitable for this supervised ML problem. In total, ten

regression algorithms are evaluated, which can be classified into four different categories.

For every category of algorithms, I clarify how the algorithms work and what parameters are

optimized. Finally, the benefits and limitations of each algorithm are discussed.
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In my experiments, each algorithm is benchmarked in terms of three performance metrics,

defined as follows:

• Location estimation error, i.e., the distance in meter between the GPS coordinate and
the estimated coordinate;

• The R2 score, i.e., a ML performance metric indicating how close the actual target
values are to the fitted regression line;

• The computation time, i.e., the elapsed time between the fitting of a model and the
estimation of an output coordinate for all validation messages, using a Virtual Machine

with 32GB Random Access Memory (RAM) memory and 10 Central Processing Unit

(CPU) cores, of which 6 are used in parallel in every algorithm.

5.2.1 Preprocessing steps

To put the LoRaWAN data set discussed in Section 5.1 into a more ML perspective, each

message is related to a single sample and each receiving gateway relates to a feature.

Therefore, the data set consists of 130,430 samples and 72 features in total. In ML, data

preprocessing is required to prepare raw, sometimes incomplete data for further processing.

Hence, before feeding the ML algorithms with the data set, some preprocessing steps are

taken.

A common first step in supervised ML approaches is to divide the data set into three subsets.

The largest subset (70%) of the data set is used as training data, 15% of all messages is

used to validate the localization algorithms and 15% is used as unbiased test data to evaluate

the results obtained through the validation set.

Subsequently, the RSS data is transformed into another format. In the raw data, the RSS

values are represented in decibels relative to a milliwatt (dBm). Similar to the experiments

in Chapter 4, I evaluate the localization accuracy when using the normalized, exponential

and powed RSS representation [124]. While some scaling is already introduced when mod-

ifying the RSS representations, the data is scaled before passing it to the input of the ML

algorithms.

Finally, a Principal Components Analysis (PCA) is performed on the data set. With PCA,

I can extract the most relevant features out of the data set. This is highly desired, since

not all gateways receive each message, thus reducing the number of features and noise.

Moreover, extracting the principal components of the data set is often used to decrease the

computation time of each ML algorithm. I performed PCA on the data set with 95% of the

variance retained, resulting in a reduction from 72 to 40 components.

5.2.2 Linear regression algorithms

Linear regression algorithms attempt to fit a linear function from the provided training data

and estimate the numeric output values, given new input values. By fitting the function, a
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linear ML model is created. This model can be represented in the form:

ypred = w [0]∗ x [0]+w [1]∗ x [1]+ ...+w [n]∗ x [n]+b, (5.1)

where x is the feature vector of length n and w and b are the parameters that need to be

learned by training the model.

Several variations of linear regression algorithms exist. In this research, I evaluate the follow-

ing linear algorithms: Ordinary Least Squares (OLS), Ridge, Lasso, Elastic Net, Stochastic

Gradient Descent (SGD) and Polynomial regression.

As the name suggests, Ordinary Least Squares is the most basic linear regression algorithm.

In this algorithm, the Mean Square Error (MSE) between the predicted and real output

values is minimized. If the features of the data are correlated, the number of random errors

in the target values increases. This phenomenon is called multicollinearity. Therefore, the

independence of the features is very important in the OLS algorithm.

Ridge regression is similar to OLS, with the difference that in Ridge regression the magnitude

of the coefficients w is reduced by a factor α, as can be seen in Eq. (5.2). This constraint is

known as ℓ2 regularization. The optimal value of α is found by evaluating Ridge regression

with cross-validation. During the cross-validation, the value of α is optimized through

approximate value iteration.

min
w
∥Xw − y∥22+α∥w∥22 (5.2)

In the Lasso regression algorithm, some coefficients in Eq. (5.1) are set to zero. Conse-

quently, some features are ignored by the model. This is called ℓ1 regularization. Similar to

Ridge, the optimal value of α is found through cross-validation. With only a few non-zero

weights, the advantage of the Lasso regression is the reduced amount of time needed to

train the model.

The Elastic-Net linear regression model performs both ℓ1 and ℓ2-norm regularization of the

coefficients. In fact, it is a combination of the Ridge and Lasso algorithms, in the sense that

there are fewer non-zero weights and the regularization properties of Ridge are maintained.

Stochastic Gradient Descent is a ML algorithm that can be used for classification and re-

gression problems. It is often used for training Artificial Neural Networks (ANNs). However,

it can also be used for training linear regression models. Gradient Descent is a method to

find the values of a function that minimizes a cost function. To find the optimal values, the

initial parameters are constantly updated. Thus, Gradient Descent is an iterative method,

resulting in slower training times. In the stochastic variant of this algorithm, one iterates

over a few randomly selected samples, reducing the computational complexity in large data

sets. Furthermore, different cost functions and corresponding parameters have been evalu-

ated on our data set. By iterative approximation, it was found that the Huber cost function

lead to the most accurate results (i.e., smallest location estimation error) with ϵ = equal

to 1 × 10−2 and a stopping criterion equal to 1 × 10−3. The Huber cost function uses a
squared cost function and past a distance of ϵ it uses a linear cost function. Therefore, it

becomes less sensitive to outliers in the data set.
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The last linear regression algorithm I discuss is the polynomial regression algorithm, in which

a linear function is fitted within a higher-dimensional space. Thus, the degree of a polynomial

function is lowered. In our case, the localization accuracy was maximized when reducing the

degree to 1. This approach allows to fit a much wider range of data and benefits from the

relatively fast performance of linear regression algorithms.

5.2.3 Support Vector Regression

Support Vector Regression (SVR) can be used in classification and regression problems, both

in lower and higher dimensional cases. Simple regression algorithms attempt to minimize

the error rate, while in SVR, the goal is to maximize the margin between the hyperplane

and the support vectors (i.e., the data points closest to that hyperplane). In other words,

one needs to find a function that has at most ϵ deviation from the actually obtained targets

in the training data [150]. Hence, a loss function with a margin of tolerance ϵ is defined

because of the real numbered target values. Furthermore, SVR is characterized by a kernel

function that maps lower dimensional data to higher dimensional data. I implemented SVR

with a third-degree polynomial kernel function and free parameters ϵ= 0.01 and C = 1000,

determined by iterative approximation on the training subset. The parameter C controls

the penalty imposed on observations that lie outside the ϵ margin and helps to prevent

overfitting. The main advantage of SVR is that the computational complexity does not

depend on the dimensionality of the input space. However, when the number of samples

in the data set exceeds a few tens of thousands, the algorithm becomes computationally

demanding.

5.2.4 k Nearest Neighbors

The k-Nearest-Neighbors (kNN) algorithm is an intuitive yet effective ML approach which is

often used in indoor and outdoor localization applications [128]. During the offline training

phase of the fingerprinting algorithm, the feature vectors and target values are stored. In

the online validation phase, I estimate the target values (i.e., the GPS coordinates) of a test

feature vector. This is done by calculating the distance or similarity between each training

vector and the test vector [124]. As a final step, the centroid of the target values of the

k smallest distances is used as the estimate for the target values, where k is user-defined.

In our experiments, I iterate over k ranging from 1 to 20, thus optimizing the number

of nearest neighbors. In the weighted variant of the kNN algorithm, neighbors that are

closer to the test sample have a greater influence than neighbors which are farther away.

An important advantage of the kNN algorithm is the fact that there is no explicit training

phase, i.e., the training messages only need to be stored, instead of used to fit a model as in

previously mentioned algorithms. Other benefits of kNN are the simplicity of the algorithm

and the variety of distances to choose from. On the contrary, the user-defined value of

k, the computational complexity and the high outlier sensitivity are the limitations of the

algorithm.
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5.2.5 Random Forest

Random Forest is an ensemble technique, i.e., multiple ML algorithms are combined to solve

classification or regression problems. The general idea is to construct multiple decision trees

during the training phase and output the mean of all individual predictions as an estimated

target value. The technique randomly samples the training observations when building the

trees. Random Forest has been proven to outperform other ML algorithms in terms of indoor

fingerprinting localization accuracy [151]. Despite the computational complexity of each

individual decision tree, the overall training and matching speeds are very fast, even for high-

dimensional input data. Finally, since multiple algorithms are combined, overfitting is reduced

significantly and the stability of the technique increases. In my implementation, I chose

100 estimators that are combined using the bootstrap aggregation (bagging) technique.

Increasing the number of trees above 100, vastly increased computational cost and only

slightly improved prediction performance.

5.3 Range-based localization algorithms

Besides fingerprint-based methods, range-based methods can estimate the location of a

mobile device as well. As discussed in Chapter 2, range-based estimation algorithms use a

path loss model to convert an RSS value from a specific gateway into an estimated distance

to that gateway. Afterwards, geometrical principles are used to estimate the location of a

device. One should choose a path loss model depending on the used technology and the

environment under consideration. Given the dynamic and heterogeneous environment of

the city of Antwerp, I implement and evaluate the performance of several path loss models,

which are specified in Section 5.3.1. The actual localization algorithm and its weighted

variants are discussed in Section 5.3.2.

5.3.1 Path loss models

The environment under consideration consists of the urban city center of Antwerp, in com-

bination with more rural and open spaces, such as the river Scheldt, docks, quays and parks.

This makes it a challenging task to find an optimal path loss model for this environment,

because most outdoor path loss models are either optimized for use in an urban, suburban

or rural area. Furthermore, I do not want to create a custom path loss model for Antwerp,

since I want to provide a general deterministic algorithm which can be deployed in similar

environments.

In the next paragraphs, I describe the path loss models which are used to evaluate the

accuracy of range-based LoRaWAN localization. Table 5.1 lists the parameters used in

these path loss models.
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Table 5.1: Parameters used in the path loss models for the range-based localization algorithms.

Description Symbol Value Unit

Frequency f 868 MHz

Gateway height hb 30 m

Mobile node height hm 1.5 m

Building (rooftop) height hr 25 m

Street width w 10 m

Incident angle φ 90 °
Distance between buildings B 10 m

Distance between Tx and Rx d N/A m

5.3.1.1 Okumura-Hata models

The Okumura-Hata model is an empirical path loss model which can be used in an outdoor

context with transmission distances up to 20 km [107]. The path loss equations for urban,

suburban and rural environments are:

Lurban = A+B log10(d), (5.3)

Lsuburban = A+B log10(d)−C, and (5.4)

Lrural = A+B log10(d)−D, (5.5)

with:

A= 69.55+26.161log10 f −13.82log10 hb−3.2[log10 (11.75hm)]2+4.97,
B = 44.9−6.55log10 hb,
C = 5.4+2[log10 (f /28)]

2, and

D = 40.94+4.78(log10 f )
2−18.33log10 f .

5.3.1.2 COST-231 Hata models

The COST-231 Hata model extends the original Hata model and the path loss formula

is [107]:

L= A+B log10 d +C (5.6)

with

A= 46.3+33.9log10 f −13.28log10 hb−3.2[log10 (11.75hm)]2+4.97,
B = 44.9−6.55log10 hb, and
C = 0 (for suburban environments) or

C = 3 (for urban environments).
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5.3.1.3 IEEE 802.11ah models

The IEEE TGah working group proposed several outdoor path loss models for use with

IEEE 802.11ah, i.e., in sub-GHz frequency bands [152]. I evaluate two of these models: a

near-LoS macro deployment (further referred to as ah-macro) and the ah-pico model. The

equations for these models are:

Lmacro = 8+36.7log10 d (5.7)

and

Lpico = 23.3+36.7log10 d +21log10 (f /900), (5.8)

respectively.

5.3.1.4 COST-231 Walfisch-Ikegami model

Finally, the COST-231 Walfisch-Ikegami model is a widely used path loss model which

can be highly configured with parameters such as building heights and street widths [153].

Since I am evaluating the path loss models in a large-scale heterogeneous environment, the

parameters set in Table 5.1 are averaged values. The COST-231 Walfisch-Ikegami path

loss:

L= Lf s +Lr ts +Lmsd , (5.9)

is calculated by adding the free space loss:

Lf s = 32.4+20log10 d +20log10 f , (5.10)

rooftop to street and scatter loss:

Lr ts =−16.9+ log10 f +20log10 (hr −hm)−10log10w +Lor i , (5.11)

with the orientation factor given by: Lor i = 4−0.114(φ−55) and multi-screen diffraction
loss:

Lmsd = Lbsh+ka+kd log10 d +kf log10 f −9log10B, (5.12)

with factors ka = 54, kd = 18 and kf = −4+1.5(f /925−1). Since the gateway height is
higher than the average rooftop height, the shadowing gain is given by:

Lbsh =−18log10 (1+hb−hr ).

5.3.2 Location estimation algorithm

Through the path loss models presented in the previous section, the distances between the

device and the receiving gateways are calculated. A location estimation algorithm leverages
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these distances to estimate the location of the mobile transmitter. I modify an extended

version of the well established Min-Max algorithm, referred to as E-Min-Max [117]. This

algorithm can be explained visually by composing a rectangle based on the estimated dis-

tances to every receiving gateway, as shown in Figure 5.2. Given a certain weight function,

a weight is calculated for each vertex of the rectangle. The weights are based on both the

estimated distances from the gateways and the Karney distance (i.e., an improved version of

the Haversine and Vincenty distance) between the gateways and that vertex [154]. Finally,

the transmitter location is determined by taking the weighted average of the locations of

the vertices.

1 d1

3
d3

2

d2

Figure 5.2: A graphical representation of the E-Min-Max algorithm with estimated distances to 3

gateways, represented by the blue circles. The estimated location (indicated with a green dot) is

shifted from the center of the Min-Max rectangle depending on the weights to every vertex of the

rectangle. The red square indicates the actual location of the mobile transmitter.

Originally, four weight functions were introduced in [117]. Additionally, two new weight

functions were introduced in [155]. In order to use these functions, I modify them to work

with the WGS-84 coordinate reference system of the Earth. The weight functions for a

vertex j are defined in Eqs. (5.13) to (5.19), where W0 refers to the non-weighted Min-Max

algorithm:
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W0(j) = 0.25 (5.13)

W1(j) =
1

∑
n
i=1

∣∣Ki ,j −di ∣∣ (5.14)

W2(j) =
1

∑
n
i=1

(
Ki ,j −di

)2 (5.15)

W3(j) =
1

∑
n
i=1

∣∣Mi ,j −di ∣∣ (5.16)

W4(j) =
1

∑
n
i=1

∣∣∣K2i ,j −d2i ∣∣∣ (5.17)

W5(j) =
1

∑
n
i=1

(
Mi ,j −di

)2 (5.18)

W6(j) =
1

∑
n
i=1

∣∣∣M2i ,j −d2i ∣∣∣ (5.19)

with di the estimated distance from the device to gateway i and Ki ,j and Mi ,j the Karney

distance and the Manhattan distance on the surface of the Earth as a WGS-84 ellipsoid

from gateway i to vertex j , respectively.

After selecting a weight function from the above, the final coordinates of the mobile device

are estimated as:

[lat0, lon0] =

[
∑
4
j=1Wa(j) · latj
∑
4
j=1Wa(j)

,
∑
4
j=1Wa(j) · lonj
∑
4
j=1Wa(j)

]
(5.20)

5.3.3 Gateway selection strategies

The number of receiving gateways plays a significant role in localization research [79]. There-

fore, I investigate this aspect in more detail in my experiments. One can expect LoRa gate-

ways located tens of kilometers away from the mobile transmitter to be able to pick up the

LoRa signal in ideal circumstances and open areas. From a localization point of view, the

number of receiving gateways located far away from the transmitter should be limited, as

they might decrease the localization accuracy. To that end, I run my experiments with three

different gateway selection strategies, listed below.

1. I evaluate the localization performance using all receiving gateways of a given message.

Participating gateways can be located throughout the public nationwide LoRaWAN

network.

2. I only consider messages that were picked up by three or more gateways. If only one

or two gateways receive a message, the range-based E-Min-Max algorithm cannot be

evaluated. In that case, the algorithm boils down to a simple proximity algorithm,

where the location of the gateway with the strongest link is used as a location esti-

mate of the mobile device. However, I want to evaluate the accuracy of range-based
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methods in this experiment. Thus, all messages with less than three measurements

are discarded. Obviously, I do keep track of the number of messages with three or

more gateways.

3. A last strategy extends the previous one, adding a geographical limitation. The goal

in this strategy is to only use messages with at least three receiving gateways located

inside a specific bounding box of Antwerp. This bounding box is constructed to remove

receiving gateways that are far away and result in a high number of outliers. It is

defined by the following minimum and maximum latitude/longitude pairs: (51.171931,

4.297380) and (51.245467, 4.518483). Note that the bounding box is larger than

the bounding box for collected messages, as defined in Section 5.1. This is because

messages near the edge of the inner bounding box can still be received by nearby

gateways outside the inner bounding box, but inside the outer bounding box.

5.4 Results

5.4.1 Fingerprint-based localization performance

The ten ML algorithms presented in Section 5.2 are now evaluated in terms of location

estimation error, R2 score and the time needed to compute the results. Table 5.2 summarizes

these metrics for every algorithm and for the lineal, exponential and powed representations

of the fingerprinting data set.

Table 5.2: Mean location estimation error (in meters), R2 score, and computation time (in seconds)

for every ML algorithm using the lineal, exponential and powed RSS representation of the LoRaWAN

data set.

Algorithm Lineal RSS Exponential RSS Powed RSS

Error R2 Time Error R2 Time Error R2 Time

Linear OLS 801 0.70 1.19 785 0.73 1.15 786 0.72 1.08

Linear Ridge 800 0.70 0.82 785 0.73 0.84 785 0.72 0.83

Linear Lasso 801 0.70 0.88 785 0.73 0.90 786 0.72 0.98

Linear Elastic

Net

801 0.70 0.94 785 0.73 0.92 786 0.72 0.98

Linear SGD 799 0.70 11 784 0.73 11 784 0.72 12

Linear Polyno-

mial

801 0.70 1.20 785 0.73 1.20 786 0.72 1.29

SVR 1148 0.57 1168 1206 0.49 1616 1155 0.55 1162

kNN 354 0.90 131 345 0.90 517 349 0.90 131

kNN weighted 348 0.90 146 344 0.90 484 343 0.90 147

Random For-

est

351 0.91 56 609 0.84 56 340 0.91 53

For the set of linear regression algorithms, the exponential RSS representation yields the

smallest location estimation errors. By using this representation, the accuracy of all linear

algorithms varies around 785m. The R2 score, which gives an indication of how close the

actual target values are to the fitted regression line, increases accordingly from 0.70 using

lineal RSS to 0.73 using exponential RSS.
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Out of all evaluated algorithms, the SVR performs the worst. Due to the use of kernels, it

took an extraordinary amount of time to compute the results. Furthermore, the R2 score

of 0.49 for exponential RSS indicates the model could not find a good fit, leading to mean

location estimation errors above 1 km.

In contrast, the (weighted) kNN and Random Forest algorithms yield the best results re-

garding localization accuracy and R2 score. The weighted variant of the kNN algorithm is

slightly more accurate than the non-weighted version, leading to a mean location estima-

tion error of 343m using powed RSS and k = 15. Similarly, the Random Forest ensemble

technique results in an accuracy of 340m, using powed RSS as well. Figure 5.3 shows a box

plot of localization errors for every algorithm using the powed RSS representation. While it

takes 147 s to compute the results in the kNN algorithm, Random Forest takes advantage

of its bagging technique, reducing the computation time to 53 s.

0 500 1000 1500 2000 2500

kNN
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Linear OLS

Linear Elastic Net
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SVR

Random Forest

Location estimation error [m]

Figure 5.3: Location estimation errors for every regression algorithm using the powed RSS repre-

sentation of the LoRaWAN data set

5.4.2 Range-based localization performance

As defined in Section 5.3.3, I evaluated three gateway selection strategies. The first strategy

is to use all receiving LoRaWAN gateways. Since 58% of all messages were received by

only one or two gateways, this strategy leads to mean localization errors above 1 km for

all path loss models. By eliminating these messages from the experiments in the second

gateway selection strategy, a mean location estimation error of 869m was achieved for the

rural Okumura-Hata model. In 95% of all messages, the estimation error is below 2217m.

However, some extreme outliers were observed. For example, a message transmitted in the

city center of Antwerp was received by a gateway in Brussels, located 43 km farther away.

A third strategy, which applied a geographical filter on participating gateways, successfully

reduced the number of outliers and thus increased the overall localization performance. It

should be highlighted that in the following, all range-based localization results are calculated
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using the third gateway selection strategy. Thus, I use 55,259 out of 130,430 LoRaWAN

messages with three or more receiving gateways located within a predefined bounding box

to evaluate the performance of range-based localization.

Table 5.3 lists the mean location estimation errors for all path loss models and weight

functions of the E-Min-Max algorithm. It shows that in 4 out of 8 evaluated path loss

models, the third weight function, W3 (5.16), achieves the lowest location estimation error.

With an average localization error of 729m, the IEEE 802.11ah macro model is the most

accurate path loss model using this weight function. However, the non-weighted Min-Max

algorithm leads to a smaller estimation error of 700m and 722m when using the suburban

and rural Okumura-Hata models, respectively. The reason for this is discussed in Section 5.5.

Figures 5.4 and 5.5 show the location estimation errors for every path loss model in a box

plot, for the non-weighted (W0) and weighted (W3) Min-Max algorithm, respectively. In

order to visualize the outliers in the results, the location estimation errors are shown on

a map for the Min-Max (W0) algorithm with the suburban Okumura-Hata model and the

E-Min-Max (W3) algorithm with the IEEE 802.11ah macro model in Figures 5.6 and 5.7,

respectively.

The time to retrieve a location estimate should be taken into account when dealing with

real-time and time-critical localization applications. Therefore, I compared the computation

times for the different weight functions in the E-Min-Max algorithm. The time needed to

calculate a position estimate for a single message on a computer with 16GB RAM using

a single core @ 1.8GHz is shown in Figure 5.8. While it only takes 3ms for the Min-Max

algorithm with W0 (5.13) to compute an estimate, the computation time for the weighted

variants of the E-Min-Max algorithm varies from 43ms to 83ms. As can be observed in

Equations (5.13) to (5.19) in Section 5.3, some weight functions require more complex

operations, e.g., the square of the Manhattan distance in W6.

Table 5.3: Mean location estimation errors for every combination of path loss model and weight

function of the E-Min-Max algorithm. The optimal weight function for each path loss model is

indicated in bold.

Path loss model W0 W1 W2 W3 W4 W5 W6

Urban Okumura-Hata 776 746 772 733 758 742 742

Suburban Okumura-Hata 700 800 938 731 786 788 733

Rural Okumura-Hata 722 1174 1687 806 1105 1021 821

Urban COST-231 Hata 789 743 758 742 756 751 752

Suburban COST-231 Hata 773 747 776 731 758 740 739

IEEE 802.11ah macro 763 757 804 729 765 743 736

IEEE 802.11ah pico 825 741 733 746 747 743 750

COST-231 Walfisch-Ikegami 896 790 761 789 761 766 766
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Figure 5.4: Location estimation errors of the Min-Max algorithm (without weights, i.e., W0) for all

path loss models.
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Figure 5.5: Location estimation errors of the E-Min-Max algorithm with weight function W3 for all

path loss models.
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Figure 5.6: Location estimation errors for the Min-Max algorithm (without weights, i.e., W0) and

suburban Okumura-Hata path loss model, plotted on the GPS coordinate of every message in the

data set.

Figure 5.7: Location estimation errors for the E-Min-Max algorithm with weight function W3 and

the IEEE802.11ah macro model, plotted on the GPS coordinate of every message in the data set.
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Figure 5.8: Average time needed to compute a single location estimate using different weight

functions of the E-Min-Max algorithm, based on all 55,259 messages in the data set.

5.5 Discussion

Balancing location accuracy and computational performance is important when designing a

localization application in an IoT context. In some applications, location accuracy is the

most important aspect, e.g., the localization of a smartphone in a specific room. Outdoor

applications with a need for high localization accuracy should use GNSS-based solutions.

In contrast, other IoT applications, such as large-scale asset tracking, only require a rough

location estimate and focus more on extreme battery lifetime. Such applications are realized

by exploiting the advantages of LPWAN, such as low power consumption, long-range com-

munication and indoor and outdoor coverage. The work in this chapter provides a benchmark

for established RSS-based localization algorithms in LoRaWAN, for both fingerprint-based

and range-based approaches.

5.5.1 Fingerprint-based localization

In total, ten pattern-matching ML algorithms are evaluated on a data set with 130,430

samples. Given the GPS coordinates as ground truth reference data, the objective was to

assess the ability of each regression algorithm to accurately locate a mobile transmitter,

using the RSS values to multiple gateways. Moreover, the computational performance of

each algorithm was studied. In order to optimize the input data for the regression algorithms,

I changed the representation of the RSS data, performed scaling and a PCA analysis on the

data set as preprocessing steps. Afterwards, I evaluated every algorithm in terms of location

estimation error, total computation time and R2 score.

The optimal representation of signal strength values is determined for every algorithm being

evaluated. Except for SVR, all algorithms benefit from transforming the RSS values to

an exponential or so-called powed representation. These results are expected, given the
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logarithmic nature of signal strength values. Thus, changing these RSS representations

often leads to an increased localization performance.

The use of kernels in SVR is time consuming. Since the fit time complexity of SVR is more

than quadratic with the amount of samples, the algorithm is unable to scale to data sets

with more than a couple of 10,000 samples, resulting in significantly higher computation

times. Moreover, taking into account the mean localization error of over 1 km, SVR is not

a good choice to evaluate with our large data set.

Given their simplicity, the six linear regression algorithms all yield estimation errors around

800m. However, out of all fingerprint-based algorithms, this category of algorithms com-

putes a location estimate in the least amount of time. This can be important for fingerprint-

based applications where a location estimate should be generated or updated in near real-

time.

Finally, the weighted kNN and Random Forest algorithms achieve the highest localization

accuracy. In both algorithms, a mean location estimation error of around 340m is achieved

when the RSS values are transformed to the powed representation. The Random Forest

ensemble technique successfully avoids overfitting by averaging the predictions of multiple

decision trees, while still being able to compute the results faster than the kNN algorithm,

due to the bagging technique. Therefore, out of all ML algorithms, the Random Forest

algorithm provides the best overall localization performance.

5.5.2 Range-based localization

Similar to the fingerprint-based experiments, I evaluated both the accuracy and computa-

tional performance of a range-based localization approach. I defined three gateway selection

strategies, adapted the weight functions of the established E-Min-Max algorithm and eval-

uated the use of several outdoor path loss models.

The selection and number of participating gateways has a significant impact on the resulting

localization accuracy. Therefore, three gateway selection strategies were developed. In a

first strategy, all receiving gateways in the LoRaWAN network were used. However, in 58%

of all 130,430 messages, only one or two gateways received the message. Regardless of the

path loss model used, this consequently lead to location estimation errors above 1 km. With

less than three receiving gateways, the RSS range-based algorithm boils down to an RSS

proximity algorithm. The results of this strategy are in line with the RSS proximity results

presented in [79]. With the aim to increase the localization accuracy, I developed a second

gateway selection strategy. In this strategy, I only consider messages with three or more

receiving gateways. For the most accurate path loss model, this strategy leads to a mean

location estimation error of 869m. However, when examining the estimation errors of this

approach, a significant number of outliers were detected, because some distant gateways

were still be able to receive the LoRaWAN signals. In order to limit the number of these

gateways which are far away from the area under consideration, I defined a bounding box

for gateways in a third strategy. In total, 55,259 out of 130,430 messages of the public

data set satisfied the requirement of being received by three or more LoRaWAN gateways

located within the bounding box. This strategy leads to an overall increase in localization
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accuracy and thus is used to evaluate the performance of the outdoor path loss models and

the E-Min-Max algorithm.

The purpose of the extended version of the Min-Max algorithm is to provide a weight to every

vertex of the resulting rectangle, indicating how close the mobile transmitter is located to a

specific vertex. The weight functions depend on how well the distance from the transmitter

to a gateway is estimated. When investigating the performance of the E-Min-Max algorithm

using an urban path loss model, shorter distances are estimated more accurately, when

compared to long distances to gateways that are located farther away. Therefore, for all

urban path loss models, the weighted E-Min-Max algorithm performs better than the non-

weighted Min-Max algorithm. However, when using more rural path loss models, more free

space path loss is considered during the translation from RSS values to distances and less

building interference and multipath propagation effects are taken into account. Therefore,

if a rural path loss model is used in the E-Min-Max algorithm, the distance estimates from a

mobile device to nearby gateways are less accurate, whereas distances to gateways located

farther away are estimated more accurately. Consequently, the resulting weights shift the

original location estimate from the Min-Max algorithm towards the wrong vertices, leading

to a decrease in localization accuracy.

The suburban and rural variants of the Okumura-Hata model exhibit the behavior mentioned

above, as can be observed in Table 5.3. Therefore, these models might seem to outperform

all other path loss models when using the non-weighted (W0) Min-Max algorithm. For the

suburban Okumura-Hata model, the mean and median location errors are 700m and 528m,

respectively. However, when using different weight functions, the location estimation errors

increase significantly for the suburban and rural Okumura-Hata models. Thus, it is of utmost

importance to find the optimal combination of path loss model and weight function for the

E-Min-Max algorithm.

In contrast to the findings in [117, 155], weight functions W5 and W6 of the E-Min-Max

algorithm do not result in higher localization accuracy, despite the additional computational

complexity.

In the box plots of Figures 5.4 and 5.5, it becomes clear that there is no path loss model that

outperforms the other ones significantly. Therefore, I investigated the spatial distribution

of the location estimation errors for the best performing combinations of path loss models

and weight functions of the Min-Max and E-Min-Max algorithms. As can be observed in

Figures 5.6 and 5.7, most location estimation errors below a threshold of 500m originate

from messages sent from within the city center of Antwerp, where the building density is

the highest. Furthermore, a significant number of outliers up to 5 km can be observed

from messages collected near water and more open areas. Due to this heterogeneity of the

environment, it is a challenging task to choose a path loss model. In order to avoid the use

of a single existing path loss model in a large-scale environment, a custom path loss model

can be created for the application environment. However, this eliminates the advantage of

a fast deployment in a range-based localization approach.

For the COST-231 Walfisch-Ikegami model, W2 and W4 are the best performing weight

functions in terms of localization accuracy. This path loss model yields the most varying

location estimation errors because model parameters such as street width and inclination

angle vary from one location to another. Given the heterogeneous environment in our setup,
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the COST-231 Walfisch-Ikegami model is not feasible to evaluate the average localization

accuracy of a large-scale environment.

In four out of eight path loss models, weight function W3 outperforms the other weight

functions in terms of localization accuracy. However, the computational complexity of each

location estimation algorithm should be taken into account as well. Based on a single Lo-

RaWAN uplink message, a location estimate can be calculated within 3ms when using the

non-weighted Min-Max algorithm. Adding weights to this algorithm can increase location

accuracy, but requires more time to compute the increased number of mathematical expres-

sions, depending on the weight function. For example, it takes 73ms to compute a location

estimate when using weight function W3.

In [117, 155], weight functions with the Manhattan distance (i.e., W3, W5 and W6) were

originally introduced to reduce the computational complexity of calculating the Euclidean

distance in a two-dimensional space. However, both the Euclidean and Manhattan distances

are converted to calculate the distance from point A to B on the surface of the Earth,

modeled as a WGS-84 ellipsoid. To this end, the Euclidean distance can be replaced by

the Karney distance, while the Manhattan distance needs to be calculated by computing

the Karney distance twice, i.e., one time on the latitude line from point A and another

time on the longitude line to point B. As a result, the Manhattan distance on a WGS-84

ellipsoid actually requires more computation time than the Karney distance. Therefore,

weight functions W3, W5 and W6 require more time to compute an estimate, as shown in

Figure 5.8.

5.5.3 Comparing fingerprinting to ranging

Since I developed a range-based approach to locate a mobile device in a city-scale environ-

ment, as well as several fingerprint-based algorithms using the same data set, I am now able

to compare these two RSS-based localization approaches to each other.

In the range-based approach, the E-Min-Max algorithm has been investigated using different

path loss models and weight functions. The significant number of outliers due to the het-

erogeneous environment, fading and shadowing effects lead to a mean location estimation

error of 700m. In contrast, a fingerprint-based approach includes the effects on the signal

strength in the training phase, leading to 50% more accurate results. For example, the

Random Forest ensemble technique yields a mean localization error of 340m.

When implementing a fingerprint-based approach in a localization application, several con-

siderations should be taken into account. Building a large outdoor LPWAN training database

takes a considerable amount of time, effort and cost. In the case of unlicensed LPWAN,

messages need to be collected with respect to the uplink duty cycle regulations. Ideally,

the messages in a fingerprinting database should be uniformly spread across the application

environment. All of this leads to an increased deployment time, whereas in a range-based

approach, the localization system can be deployed as soon as an appropriate path loss model

has been chosen. Despite the maintenance cost, crowd-sourced fingerprinting initiatives

such as The Things Network (TTN) assist in reducing the cost and time to build a large

outdoor LPWAN database [156].
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Another limitation of fingerprinting is the fact that mobile devices need to be localized in

a predefined area, because training data is required for the pattern matching technique.

Contrarily, a range-based localization system can be deployed anywhere, as long as the area

is covered by at least three gateways. Unlike in a fingerprinting approach, the sometimes

confidential gateway locations need to be known in a range-based approach. Finally, both

localization approaches can be implemented on the server-side to preserve the minimal energy

consumption of LPWAN communication. In Table 5.4, the benefits and limitations of both

range-based and fingerprint-based localization approaches are summarized.

Table 5.4: Overview of the evaluated RSS-based localization algorithms, comparing the character-

istics of both range-based and fingerprint-based localization.

Range-based

localization

Fingerprinting-based

localization

Evaluated

algorithms
Min-Max, E-Min-Max

ML algorithms: Linear

regression, SVR, kNN,

Random Forest

Accuracy

(mean error)
700 m 340 m

Deployment time Low High

Cost to deploy in

new environment
Medium High

Maintenance cost Low High

Size of environment Unlimited Limited to training area

Number of RX gate-

ways required
3 or more 1 or more

Gateway locations

required
Yes No

Power consumption Low (unaffected) Low (unaffected)

5.6 Conclusion

In light of the extreme battery lifetime requirements in some IoT use cases, GNSS-based

solutions are not feasible. Therefore, I used an energy-efficient and long-range LPWAN

network to estimate the location of a mobile device. Since simulations can lead to over-

optimistic results, I chose to conduct this research in a real-world city-scale environment

using a publicly available data set. I evaluated two RSS-based approaches in terms of

accuracy and computational performance: fingerprint-based and range-based localization.

Outdoor RSS-based fingerprinting localization can be challenging, given the dynamic envi-

ronment of a city. It takes time, effort and cost to create and maintain a training database.

Nonetheless, a fingerprint-based approach results in a significantly higher localization accu-

racy when compared to range-based approaches. The Random Forest ML algorithm leads

to an average location estimation error of 340m and the shortest computation time due to

the bagging technique. Interestingly, the location accuracy is equivalent to the accuracy of

the Sigfox fingerprinting experiments conducted in the same environment in Chapter 4.
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In a range-based approach, distance estimations obtained from RSS measurements are

strongly influenced by various wireless propagation effects, such as shadowing and fading due

to multipath propagation, leading to a mean accuracy of around 700m. However, in opposi-

tion to fingerprint-based solutions, range-based localization algorithms can be implemented

in applications where a fast deployment or near real-time location updates are of utmost

importance. In this approach, a path loss model and location estimation algorithm should

be chosen carefully, keeping the building density and type of environment in mind. However,

given our dynamic test environment with both urban and rural areas, the E-Min-Max algo-

rithm in combination with any path loss model yields a significant number of outliers. To

reduce the outliers, several gateway selection strategies have been evaluated, successfully

increasing the localization accuracy.

Given the comparative study on RSS-based LoRaWAN localization approaches in this work, it

should be straightforward to choose the most suitable approach to design an IoT application,

considering the trade-off between localization accuracy, deployment cost and computational

performance.
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Opportunities with LoRa 2.4 GHz

RECENTLY, Semtech has released a range of LoRa transceivers which operate at the

globally available 2.4 GHz frequency band, on top of the existing sub-GHz, km-range

offer [50]. As stated in Chapter 2, this enables hardware manufacturers to design region-

independent LoRa modules. Moreover, the 2.4 GHz transceivers promise an ultra-long com-

munication range while withstanding heavy interference in this widely used band.

LoRa at 2.4 GHz has the potential to become an interesting solution for a variety of ap-

plications that involve indoor localization, such as warehouse management, but also for

outdoor localization applications, such as construction site monitoring and livestock track-

ing. Moreover, the adoption of this technology can add flexibility to applications that require

consistent asset tracking in both indoor and harsh outdoor environments, e.g., smart ports.

The goal of this chapter is to study the inverse relationship between the maximum communi-

cation range and the corresponding data rate of LoRa in the 2.4 GHz ISM band. Therefore,

I first provide a mathematical description of the physical layer of LoRa in the 2.4 GHz band.

Secondly, I investigate the maximum communication range of this technology in three dif-

ferent scenarios. Free space, indoor and urban path loss models are used to simulate the

propagation of the 2.4 GHz LoRa modulated signal at different spreading factors and band-

widths. Additionally, I investigate the corresponding data rates. The results show that due

to the configurable bandwidth and lower data rates, LoRa outperforms other technologies in

the 2.4 GHz band in terms of communication range. In addition, both communication and

localization applications deployed in private LoRa networks can benefit from the increased

bandwidth and localization accuracy of this system when compared to public sub-GHz net-

works.

The remainder of this chapter is structured as follows. A mathematical background of LoRa

at 2.4 GHz is provided in Section 6.1. Subsequently, three path loss models are presented in

Section 6.2 in order to estimate the maximum communication range and corresponding data

rate in a free space and in indoor and urban environments. The results of these estimations

are shown in Section 6.3 and compared to other technologies operating in the 2.4 GHz band

in Section 6.4, which also discusses the impact on the application potential of LoRa at

2.4 GHz. Finally, general conclusions are drawn in Section 6.5.

67
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6.1 LoRa in the 2.4 GHz Band

The physical layer of LoRa is a proprietary and closed source. Therefore, there are no official

references or protocol specifications for the transmitted Radio Frequency (RF) signal [157].

Accordingly, several research groups have been working to provide an understanding of the

LoRa modulation scheme in the sub-GHz frequency band. Vangelista [158], for instance,

has provided a mathematical model, called Frequency Shift Chirp Modulation (FSCM), that

describes the LoRa modulation process. The same model has been adopted by Bernier et

al. [48]. On the other hand, Knight [157], Robyns et al. [159] and Ghanaatian et al. [160]

have provided a model called Chirp Spread Spectrum (CSS) modulation based on the reverse

engineering of LoRa’s physical layer. Even though the formulation of the LoRa modulation

scheme in the literature has been provided for the sub-GHz frequency band, the basic re-

sponse of the modulation is expected to be the same for LoRa signals in the 2.4 GHz

frequency band. Therefore, in this section, I modify the available physical layer models of

sub-GHz LoRa to make them suitable for use in the 2.4 GHz frequency band.

Assume xs(k) is the transmitted LoRa sample; then, the received sampled signal xr (k) with

index k can be expressed as

xr (k) = arxs(k−τ)e i2π∆f k +ω(k), (6.1)

where ar < 1 is the received signal amplitude, τ is the time delay of the sample xs(k) at

the receiver, ∆f is the frequency offset between the transmitter and the receiver, and ω(k)

is the identically independently distributed (i.i.d.) complex-valued Gaussian noise with zero-

mean and variance σ2; i.e., CN(0,σ2). The time and frequency synchronization are beyond

the scope of this work. Therefore, in the following, I will consider a simplified version of

Eq. (6.1), shown in Eq. (6.2).

xr (k) = arxs(k)+ω(k) (6.2)

The LoRa standard linear upchirp—also called a base chirp—can be expressed as [159, 160]

xs(k) = e
i2π(BW2K k

2+f◦k), (6.3)

where BW is the operational bandwidth of the LoRa signal in the 2.4 GHz frequency band

(as shown in Table 6.1) and K = 2SF/BW is the symbol duration, with SF representing the

spreading factor (also shown in Table 6.1). Finally, f◦ is the initial frequency, which can be
expressed as

f◦ = s
BW

2SF
, (6.4)

where s ∈
{
0,1 . . .2SF

}
is the transmitted data symbol. Setting s = 0 results in an upchirp,

in which the frequency continuously increases during the symbol duration K.

One can also present Eq. (6.3) as

xs(k) =W
BW
2 k

2+Kf◦k
K , WK = e

i2π/K . (6.5)
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Table 6.1: Parameters used for path loss modeling.

Model Parameter Symbol Value Unit

Frequency f 2.4 GHz

Spreading factor SF 5–12 -

Bandwidth BW 203/406/812/1625 kHz

Code rate RC 4/5 -

Transmission power PTX 12.5 dBm

Transmitter antenna gain GTX 2 dBi

Transmitter cable losses LTX 2 dB

Fading margin Lm 0 dB

Receiver antenna gain GRX 2 dBi

Receiver cable losses LRX 2 dB

Base station height hb 20 m

Mobile station height hm 2 m

The model in Eq. (6.5) is the linearly cyclically shifted version of a base Zadoff–Chu (ZC)

sequence [161]. The ZC sequence possesses a unique autocorrelation property, in which

the periodic autocorrelation is orthogonal (i.e., equal to zero) for all shifted replicas [162].

Therefore, the LoRa communication protocol uses this unique property to impose a random

multiple access technique. Accordingly, an efficient utilization of the unlicensed spectrum

can be obtained. The correlation between the received signal and the base chirp leads to

z(k) =
1

K

K−1

∑
p=0

x(k+p)x∗s (k)modK

=
1

K

K−1

∑
p=0

(arxs(k+p)+ω(k+p))x
∗
s (k)

=

{
arEs +νω forp = 0

νω forp ̸= 0

, (6.6)

where Es is the energy of the symbol xs . Furthermore, νω is the correlation between complex

noise and the base chirp, which can be expressed as

νω =
1

K

K−1

∑
p=0

x∗s (k)ω(k+p), (6.7)

in which νω ∼ CN(0,σ2/K).

Figure 6.1 presents two received LoRa signals that constitute eight preamble (upchirp)

symbols at 2.4 GHz with a bandwidth equal to 812 kHz. The short signal was transmitted

at a SF of 9, while the longer signal was transmitted at a SF of 10. Figure 6.1a,b shows

the combined received signals in the time domain and in the spectrogram (i.e., time and

frequency) domain, respectively. Figure 6.1c,d shows the cross-correlation functions (6.6)

when the received signals have been cross-correlated with base chirps of the SF equal to

10 and 9, respectively. It is clear that the two signals can be distinguished correctly, even

though they interfere with each other. The unique orthogonality property of the ZC sequence
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allows the LoRa communication system to provide a multiple access technique in the 2.4 GHz

frequency band.

Figure 6.1: Two received Long Range (LoRa) signals constitute eight preamble upchirp symbols

at 2.4 GHz with a bandwidth equal to 812 kHz. The SF of the short signal, which ended after

approximately 5ms, is equal to 9, while the SF of the long-duration signal is equal to 10. Figures

(a) and (b) represent the combined received signals in the time domain and in the spectrogram

(i.e., time and frequency) domain, respectively. Figures (c) and (d) are the cross-correlation

functions (6.6) when the received signals have been cross-correlated with base chirps of the SFequal

to 10 and 9, respectively.

6.2 Path Loss Modeling

In order to obtain the maximum communication range of a LoRa signal at 2.4 GHz (further

denoted as d), one needs to find the maximum link budget for which the signal can be

received properly; i.e., at the receiver sensitivity PRX . This receiver sensitivity depends on

two key factors: the used SF and bandwidth (BW). While the SF can range from 5 to 12,

the possible bandwidths of LoRa at 2.4 GHz are 203, 406, 812 and 1625 kHz. Furthermore,

the combination of a certain SF and BW results in a certain data rate, along with the

receiver sensitivity, as shown in Table 6.2. The raw data rate Rb, expressed in kbit/s, can

be calculated as

Rb =
SF ∗BW
2SF

, (6.8)

with SF and BW as defined in Table 6.1. As an example, a LoRa signal transmitted with an

SF of 8 and a BW of 406 kHz results in a receiver sensitivity of −116 dBm and a data rate
of 12.69 kbit/s. The receiver sensitivities and data rates used in this work originate from

the datasheet of the Semtech SX1280 LoRa module [51].
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Table 6.2: Receiver sensitivities (PRX in dBm) and corresponding data rates (RD in kbit/s) of the

SX1280 LoRa module for every combination of spreading factor (SF) and bandwidth (BW).

BW (kHz)

203 406 812 1625

SF PRX RD PRX RD PRX RD PRX RD
5 −109 31.72 −107 63.44 −105 126.88 −99 253.91

6 −111 19.03 −110 38.06 −108 76.13 −103 152.34

7 −115 11.1 −113 22.2 −112 44.41 −106 88.87

8 −118 6.34 −116 12.69 −115 25.38 −109 50.78

9 −121 3.57 −119 7.14 −117 14.27 −111 28.56

10 −124 1.98 −122 3.96 −120 7.93 −114 15.87

11 −127 1.09 −125 2.18 −123 4.36 −117 8.73

12 −130 0.595 −128 1.19 −126 2.38 −120 4.76

The total link budget of a wireless communication signal propagating from the transmitter

to receiver can be represented as [163]

PRX = PTX +GTX −LTX −Lp(d)+GRX −LRX , (6.9)

where PRX is the received power in dBm, PTX is the transmission power in dBm, GTX is the

antenna gain at the transmitter in dBi, LTX is the cable loss in dB, Lp(d) is the path loss

in dB in terms of the function from the distance d , GRX is the antenna gain at the receiver

in dBi and LRX is the cable loss at the receiver in dB. Except for the path loss, all these

parameters are set to typical values which are commonly used when simulating a wireless

communication link between two dipole antennas [163]. The values of these parameters are

summarized in Table 6.1.

The path loss Lp(d) is defined as the propagation loss caused by the signal traveling from

the transmitter to receiver over a distance d . The goal in this research is to maximize d

while still being able to successfully receive the LoRa-modulated signal at the receiver. For

the sake of simplicity, the simulated LoRa signal contains eight preamble symbols and no

payload bytes.

Depending on the environment, the path loss should be modeled differently. Therefore, in

the next three subsections, I discuss indoor, outdoor (urban) and free space path loss models

to translate the propagation loss into a distance between the transmitter and receiver. The

parameters required by these models are also summarized in Table 6.1. No fade margin is

taken into account; this is further discussed in Section 6.4.

6.2.1 Free Space Environment

The first scenario can be described as a free space environment in which there is a LoS (i.e.,

the primary Fresnel zone must be at least 60% clear.) between the TX and RX locations.

In this case, I can use the widely used Free Space Path Loss (FSPL) model to evaluate

the maximum communication range. This model calculates the loss between two isotropic
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radiators in free space, without considering any obstacles, reflections or interference. The

model solely relies on the frequency and distance between the transmitter and receiver to

calculate the path loss:

Lp,LoS(d) = 32.44+20log10(f )+20log10(d), (6.10)

where f is in MHz and d is in km. The combination of a given SF and BW yields a certain

sensitivity PRX . Consequently, given the maximum path loss obtained from Eq. (6.9), one

can calculate the maximum distance as

d = 10(Lp,LoS(d)−32.44−20log10(f ))/20. (6.11)

6.2.2 Indoor Environment

In the second scenario, I evaluate the maximum communication range in an indoor envi-

ronment. To this end, I slightly adapt a heuristic algorithm that was developed based on

real measurements in an office-like environment [164]. The path loss model is based on

the Indoor Dominant Path (IDP) model, which focuses on the dominant path between the

Transmit (TX) and Receive (RX) location. In general, the total path loss is the sum of the

distance loss, accumulated wall loss and interaction loss and can be calculated as

Lp,in(d) = Lp0(d0)+10∗n ∗ log10(
d

d0
)+∑

i

LWi +∑
j

LBj , (6.12)

where Lp0(d0) represents the path loss at a distance d0 and n is the path loss exponent.

The accumulated wall loss is the sum of losses LWi caused by each wall along the dominant

path. Finally, the interaction loss is the sum of losses LBj caused by all directional changes

of the propagating signal.

Given the semi-empirical nature of this path loss model, some parameters need to be set

to commonly used values in order to provide a generally applicable model that can predict

ranges in other indoor environments. Therefore, Lp0(d0) is set to 40 dB at a distance d0 =1

m, as suggested in [164]. The path loss exponent is set to n = 5, which is generally used

for obstructed paths inside buildings [165]. For the accumulated wall and interaction loss,

values of 6 and 3 dB have been taken into account respectively, as found specifically for the

office-like environment in [164]. Consequently, the path loss model can be simplified to

Lp,in(d) = 40+5∗10∗ log10(d)+6+3. (6.13)

Thus, the range can be empirically estimated based on the path loss:

d = 10(Lp,in(d)−49)/50. (6.14)

6.2.3 Urban Environment

An urban path loss model is used in the third scenario to evaluate the range of LoRa at

2.4 GHz in an outdoor city-scale environment. The Okumura-Hata Urban Path Loss model
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is an empirical model that is often used in sub-GHz wireless communication systems, as

shown in Chapter 5. While the COST-231 urban model extended its use up to 2GHz, the

Electronic Communication Committee (ECC) modified the original Okumura-Hata model to

work with frequencies up to (and beyond) 3GHz in the ECC-33 model [166, 167]. Therefore,

the ECC-33 model is suitable to evaluate the maximum communication range of LoRa at

2.4 GHz in an urban environment. The path loss equation for this model is given by

Lp,urban(d) = Af s +Abm+Gb+Gm, (6.15)

where Af s is the free space attenuation, Abm is the basic median path loss, Gb is the base

station height gain factor and Gr is the receiver height gain factor, which can be calculated

as

Af s = 92.4+20log10(d)+20log10(f ), (6.16)

Abm = 20.41+9.83log10(d)+7.894log10(f )

+9.56[log10(f )]
2, (6.17)

Gb = log10(
hb
200
){13.958+5.8[log10(d)]2}, and (6.18)

Gm = [42.57+13.7log10 f ][log10(hm)−0.585] (6.19)

for medium-sized urban environments. Given the complexity of this set of equations, I

extract the maximum range by iterating over values of d from 1m to 10 km and solving the

optimization problem given a certain path loss Lp,urban(d).

6.3 Range Versus Data Rate: Results

Figures 6.2 to 6.4 show the maximum communication range and corresponding data rate at

each combination of SF and bandwidth for the free space and indoor and urban environments,

respectively. In all cases, the highest possible data rate decreases in a logarithmic way when

the communication range between the transmitter and receiver increases.

Using the FSPL model, it is found that a 2.4 GHz LoRa signal can travel up to 133 km

in free space and still be received properly. Obviously, this is only a theoretical range and

cannot be realized in real-world environments.

The performance of a more realistic indoor path loss model has been visualized in Figure 6.3.

When transmitting with a spreading factor of 12 and the lowest bandwidth (i.e., 203 kHz),

the path loss equals 142.5 dB. Consequently, a maximum communication range of 74m can

be achieved. Furthermore, the highest possible data rate at that range becomes 0.595 kbit/s.

At the other extreme, the highest achievable data rate of 253.91 kbit/s is possible at a range

of up to 18m.

Finally, the communication range of the urban ECC-33 path loss model varies from 3m at

the highest achievable data rate of 253.91 kbit/s to 443m at the lowest possible data rate

of 0.595 kbit/s.
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Figure 6.2: Communication range and data rate for every combination of spreading factor (SF) and

bandwidth (BW) in a free space line of sight (LoS) environment.
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Figure 6.3: Communication range and data rate for every combination of spreading factor (SF) and

bandwidth (BW) in an indoor environment.

0 50 100 150 200 250 300 350 400 450 500

100

101

102

Range (m)

D
a
ta
ra
te
(k
b
p
s)

BW (kHz) SF

203 5

406 6

812 7

1625 8

9

10

11

12

Figure 6.4: Communication range and data rate for every combination of spreading factor (SF) and

bandwidth (BW) in an urban environment.
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6.4 Discussion

I investigated the maximum communication range of LoRa in the 2.4 GHz band, which

is defined as the maximum distance between a transmitter and receiver at which a LoRa-

modulated message can be received properly. My investigations included three environments:

LoS free space, NLoS indoor and urban outdoor. In all three scenarios, I maximized the range

by reducing the bandwidth and increasing the spreading factor.

Based on the total link budget of the wireless communication system, including receiver

sensitivity, antenna gains and cable losses, I was able to estimate the range of LoRa at

2.4 GHz. It is important to note that I did not include a fade margin in the link budget

calculations. The fade margin can be defined as the level of received power in excess of that

required for a specified minimum level of system performance. The reason for excluding this

loss parameter in Eq. (6.9) is the high variability of fade margin in different scenarios. For

instance, a 5 dB fade margin decreases the maximum urban range from 443m to 277m,

while a 10 dB fade margin further decreases the range to 164m. Thus, this should be taken

into account when analyzing the results. Nonetheless, the most significant factor in a link

budget is the path loss.

The free space line-of-sight scenario resulted in a theoretical maximum range of 133 km

when transmitting at the highest SF and using the lowest bandwidth. In reality, the signal

will always have to cope with obstacles, multipath propagation effects and interference with

other signals. Therefore, these ranges will never be achieved in a real-world environment.

Nevertheless, the results of the Free Space Path Loss model are useful as a benchmark as

they enable comparison between different frequencies and technologies. For instance, the

maximum range of LoRa at 868MHz calculated with the FSPL model equals 921 km, which

is almost seven times the range of LoRa at 2.4 GHz.

For the indoor range estimation of 2.4 GHz LoRa, I evaluated an indoor path loss model. In

order to provide the highest possible accuracy, I adopted and slightly modified a model based

on real-world measurements, taking into account both wall and interaction loss [164]. The

estimated range varies from 18m to 74m, depending on the SF and BW. It should be noted

that a path loss exponent of 5 was chosen, simulating an obstructed indoor environment.

However, in an indoor LoS scenario, the range might therefore be increased.

Finally, the maximum communication range in an urban environment was found to be 443m.

This is similar to the results of the outdoor experiments with the SX1280 transceiver carried

out by Wolf et al. [57]. They found that the ToF ranging feature failed for ranges over

about 500m. Thus, this validates my range estimations of the ECC-33 path loss model.

Besides the communication range, I investigated the data rates for all combinations of SFs

and BWs and consequently associated this information with the highest achievable range.

The highest possible data rate of LoRa at 2.4 GHz equals 253.91 kbit/s, which is almost

seven times higher than the maximum data rate of LoRa at 868MHz. This data rate can

be achieved if the distance between the transmitter and receiver is not greater than 3739m,

18m and 3m in a free space, indoor and urban environment, respectively.

Some significant differences in terms of range arise when comparing LoRa to other technolo-

gies operating in the 2.4 GHz band. As mentioned earlier, the range of the latest Bluetooth
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standard equals 50m and 165m in an indoor and outdoor environment, respectively. More-

over, the maximum range of 2.4 GHz Wi-Fi networks typically varies around 100m. Thus,

the outdoor range of LoRa is almost three times larger than the outdoor range of BLE 5

and more than four times larger compared to typical IEEE 802.11 networks. This is mainly

due to the lower bandwidth and data rates used in LoRa, as well as the robustness of the

LoRa-modulated signal. These numbers clearly indicate the significant difference in intended

applications between LoRa (such as long-range communication and localization) and Wi-Fi

and Bluetooth (such as video and audio streaming).

Since LoRa modulation at 2.4 GHz has a higher bandwidth than sub-GHz LoRa modulation,

the rising edge of a signal pulse can be determined more accurately. Therefore, I expect

that time-based localization methods for this technology will result in lower estimation errors.

However, the results in this chapter show that it is not possible to achieve the same long

communication ranges as sub-GHz LoRa and other sub-GHz LPWANs. Therefore, more

LoRa receivers have to be deployed to cover wide areas, which makes it a less feasible

solution to build large public networks. On the other hand, 2.4 GHz LoRa is an interesting

option for both communication and localization in privately deployed networks that are

purposed for asset tracking and monitoring in large warehouses, construction sites, farms,

etc.

6.5 Conclusion

With the expansion of LoRa to the globally available 2.4 GHz ISM band, hardware manufac-

turers are able to design a uniform LoRa module which functions independently of the region

of deployment. However, as a consequence of moving to a higher frequency, the range of

LoRa is reduced when compared to the sub-GHz range of several kilometers. In this chapter,

I have provided a technology overview of LoRa operating in the 2.4 GHz band. By calcu-

lating the link budget of a system operating in this band, the range of a LoRa modulated

signal is estimated in a free space and in indoor and outdoor scenarios. When compared

to other technologies operating in the 2.4 GHz band, LoRa outperforms them in terms of

communication range, due to the configurable SF and bandwidth. Thus, when configuring

a LoRa channel at 2.4 GHz, a trade-off between range and data rate should be considered.

Moreover, this trade-off leads to more flexible applications, such as the localization of assets

in a private LoRaWAN network, which will be investigated in future work.
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RSS-based NB-IoT Localization

W ITH hundreds of networks being deployed in a short amount of time, NB-IoT is

stealing the LPWAN market shares from its competitors. The deep indoor coverage

of the cellular IoT technology guarantees the energy-efficient communication link between

a device and a nearby base station.

As discussed in Chapter 2, 3GPP Release 14 introduced OTDoA in the NB-IoT specification.

However, this advanced positioning feature is barely implemented as it requires expensive

and complex infrastructure upgrades, such as eNB synchronization. Hence, there is a need

for alternative methods to locate NB-IoT devices.

To the best of the author’s knowledge, no RSS-based outdoor localization experiments with

NB-IoT have been conducted at the time of writing. When discussing the localization ac-

curacy of a system, simulations are likely to lead to over-optimistic expectations of typical

localization performance. Hence, instead of simulating the experiments, I face the challenges

of working with real measurements of a public NB-IoT network in a real-world city-scale en-

vironment. In contrast to GNSS-based solutions, the position of a mobile device equipped

with a small battery can be estimated in indoor and outdoor environments for several years.

In this chapter, I investigate the accuracy of NB-IoT localization by evaluating three out-

door RSS-based algorithms: proximity, ranging and optimized fingerprinting. Additionally, I

address the practical issues and limitations of dealing with real-world measurements.

During the measurement campaign, I discovered a mobility issue in NB-IoT. In contrast to

other LPWAN and cellular technologies which use multiple gateways or cells to locate a

device, only a single base station cell can be used for RSS-based localization in NB-IoT.

When a UE transmits an uplink message with the request to get the signal strengths to

nearby base stations, only the currently serving cell responds. As the number and placement

of participating base stations significantly impacts the localization accuracy [62], it is highly

preferred to receive a response from multiple nearby base stations. Hence, I evaluated the

behavior of different NB-IoT chipsets, such as the Altair ALT1250, Fibocom MA510-GL,

Mediatek MT2503, Quectel BC95, Sequans NB01Q, u-blox Sara N2 and NB-IoT chips from

Huawei, Intel, and Qualcomm. While some of them should be able to receive a response

from multiple neighboring cells, only the serving cell responded when connected to the NB-

IoT networks of all Belgian providers. In an article from Rohde & Schwarz, the authors try

to address this issue in the design of NB-IoT: “To reduce the complexity and cost of NB-IoT

79
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chipsets, 3GPP has limited the mobility to idle mode only with cell reselection measurements.

This means that neighbor cell measurements can only occur in idle mode, and once the NB-

IoT device is in connected mode, it stops searching for neighbored cells.” [168]. Therefore, I

address this limitation in the current NB-IoT hardware and software by studying the mobility

of the cellular-based 3GPP standard in a localization context. Experimental results show

that the lack of handover support leads to increased cell reselection time and poor cell sector

reliability, which in turn results in reduced localization performance. Fortunately, from 3GPP

Release 16 onward, a UE may optionally report about strongest neighbors [36], and chipset

manufacturers have started upgrading their firmware accordingly.

The proposed RSS-based methods, along with the mobility issue described above, will never

reach GNSS-level location accuracy. Nonetheless, the resulting accuracies often satisfy most

of the IoT use case requirements. LPWAN localization is further encouraged by the fact

that in privacy sensitive applications, it is not desired to know the exact location (i.e., within

a few meters) of a person or a package. For example in logistics, a rough estimate of where

your package is located is usually sufficient. Meanwhile, the exact location of the driver is

not exposed.

The contributions in this chapter are summarized as follows:

• I provide first-hand results of the outdoor localization accuracy of three RSS-based
algorithms (proximity, ranging and fingerprinting) in a public NB-IoT network, based

on the signal strength to a single cell.

• I optimize the fingerprinting algorithm to further increase the localization accuracy.

• I address the mobility issues of NB-IoT in a localization context. More specifically, I
investigate the reason why only the serving cell can be used to locate a transmitter

and I evaluate the cell sector reliability, as well as the cell reselection time.

The remainder of this chapter is structured as follows. Section 7.1 describes the outdoor

localization experiments. The data sets used for both localization and cell reselection eval-

uation are described first. Second, three optimized RSS-based localization algorithms are

proposed, namely proximity, range-based and fingerprint-based localization. The section

ends with a description of the setup to evaluate the cell reselection in NB-IoT. The results

in terms of localization accuracy and mobility performance are shown in Section 7.2. Finally,

the main observations regarding localization accuracy and mobility of NB-IoT are discussed

in Section 7.3 and summarized in Section 7.4.
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7.1 RSS-based Localization Experiments

This section describes the steps taken during the real-world localization experiments. It

starts with an explanation on how data is collected during the measurement campaign.

Subsequently, three RSS-based methodologies to locate a mobile UE are presented. First,

a simple proximity algorithm is presented. Second, I modify a range-based algorithm, which

uses a path loss model in combination with the sector information of the received eNB. Third,

I create a fingerprinting database and optimize the hyperparameters of a kNN algorithm.

Finally, I describe the setup to evaluate the mobility of NB-IoT.

7.1.1 Measurement Campaign

Two sets of data are collected for this research. The first data set contains NB-IoT messages

collected during an outdoor measurement campaign in the city of Antwerp, Belgium. This

data set is used to evaluate the performance of RSS-based localization algorithms in an

urban environment. The second data set is smaller and is used to evaluate the mobility of

NB-IoT.

All NB-IoT messages are collected by sending uplink messages from a u-blox Sara N211

System on Chip (SoC) over a Release 13 NB-IoT network to a backend. Each message

contains the Cell ID of and the RSS value to the responding eNB. By connecting a GPS

module to the UE, the current location (i.e., latitude, longitude, altitude) is added to the

message. The GPS coordinate is used as a ground truth reference location. Therefore,

in the following, I define the location estimation error as the geographical distance from

the estimated location to the location provided by the GPS receiver. A picture of the

battery-equipped UE with GPS is shown in Figure 7.1.

Figure 7.1: Composition of the User Equipment (UE) used to collect NB-IoT messages.

Since a colleague collected a large outdoor publicly available Sigfox and LoRaWAN data

set in the city of Antwerp [32], I decided to perform the NB-IoT measurements in the
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same environment. In this way, I am able to compare the localization performance of the

three most popular LPWAN technologies available on the market. The heterogeneous zone

of interest covers an area of 53 km2 and is fully covered by a public NB-IoT Release 13

network, consisting of 83 eNBs. During the measurement campaign, I collected 1307 NB-

IoT messages within the predefined zone, as shown in Figure 7.2.

Figure 7.2: Map of the 53 km2 test environment in the city of Antwerp, Belgium, used to study the

localization accuracy of NB-IoT. The 1307 blue dots represent the GPS locations of the transmitter

where a message was sent, while the 83 red triangles indicate the eNB locations.

A smaller data set is collected in northern Antwerp. In order to evaluate the mobility issues

addressed earlier, I want to analyze the performance of cell selection and reselection in NB-

IoT. The eNB centered around the track of my measurement campaign consists of three

directional antennas, with each cell covering a sector of 120°. Note that other configurations
such as four antennas separated 90° exist. To evaluate the handover between two antennas
or cells, I collected 95 messages by moving counterclockwise around the eNB at a constant

speed of 7 km/h and an update rate of 5 s. Figure 7.3 depicts a map of the uplink messages,

together with the cell sector boundaries.
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Figure 7.3: Map of the measurement campaign around a single eNB with three cell sectors, used

to study the mobility. The 95 blue circles represent the GPS locations of each uplink transmission.

The sector boundaries of each cell of the eNB are shown in red.

7.1.2 Proximity Localization

In a proximity-based localization algorithm, the location of the eNB with the strongest link to

a mobile UE is used as the estimated location of that UE. This basic yet efficient RSS-based

algorithm can already satisfy the requirements of several localization or tracking applications,

such as logistics use cases and asset tracking. However, the accuracy highly depends on the

base station density and the type of environment.

7.1.3 Range-based Localization

In RSS-based ranging approaches, the RSS from a UE to a specific eNB is translated into

a distance by means of a propagation channel model or path loss model. Most path loss

models can be customized by configuring environment-specific parameters. Given the urban

nature of my large-scale environment, I set the height of the mobile station hMS to 2m and

the height of the base station hBS to 27m. The carrier frequency f varies between 800 and

900MHz and the transmission power is set to 14 dBm.

In this work, I evaluate the performance of four urban path loss models. First, the Hata

model is an empirical path loss model based on the widely used model of Okumura [107]. The

European Cooperation in Science and Technology (COST) received funding to extend the
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Hata model, resulting in the COST-231 model [107]. Last, two empirical outdoor path loss

models based on the 3GPP Spatial Channel Model (SCM) were proposed by the IEEE TGah

group, which standardizes IEEE 802.11ah. Although the original models were devised for

LTE, they have been transformed for use in sub-GHz frequency bands [152]. The first model

targets a macro LoS deployment scenario (further referred to as AH-macro), while a second

3GPP model targets a pico deployment scenario (further referred to as AH-pico). The

mathematical expressions of all these models are introduced in the LoRaWAN experiments

in Section 5.3.1.

Given the mobility issues addressed earlier and in Section 2.2.3, it is not possible to retrieve

information about multiple neighboring cells in NB-IoT. In other words, only the antenna

of the serving eNB can be used to estimate the location of a UE. As a consequence, well

known ranging localization approaches such as triangulation or multilateration cannot be

applied. Therefore, I propose a novel algorithm that estimates the position of a UE based

on the combination of the serving cell and sector information. First, I estimate the distance

d between the UE and eNB using one of the four previously presented path loss models.

This results in a circle around the eNB with a radius equal to d , representing all possible UE

locations. With the aim to further improve the localization accuracy, I take into account the

azimuth of the directional antenna of the serving cell, which covers a sector of 120°. Thus,
the antennas provide a spatial filter, eliminating location estimates located outside a given

sector. As I assume the location of the UE on the resulting arc to be uniformly distributed,

the final location estimate is set to the center of the arc, as illustrated in Figure 7.4.

Figure 7.4: Visualization of the RSS ranging algorithm with sector information. The RSS from a

single NB-IoT base station antenna is translated to a distance d . The orange dot indicates the

resulting location estimate.

7.1.4 Fingerprint-based Localization

Fingerprinting localization is well established in indoor localization applications. The reason

for this is that the first phase, i.e., the building of a training database, requires a significant

amount of time and effort. However, recent crowd-sourced database initiatives can tackle

this problem. Similar to the work in Chapter 4 for Sigfox and Chapter 5 for LoRaWAN,

I optimize a ML-based fingerprinting algorithm for localization of NB-IoT devices in an

outdoor environment.



86 CHAPTER 7. RSS-BASED NB-IOT LOCALIZATION

As in many ML-based approaches, the localization data set described in Section 7.1.1 is split

into 70% training messages, 15% validation messages and 15% test messages. The actual

fingerprinting technique is split into two phases, as visualized in Figure 7.5. The first and

offline phase consists of collecting training messages into a fingerprint database. Each entry

of the fingerprint database consists of the RSS value to the serving eNB and its Cell Global

Identity (CGI) (i.e, the features), as well as the GPS coordinate of the ground-truth location

(i.e., the target). Consequently, in the second and online phase, a validation fingerprint is

being matched to the earlier collected fingerprints, stored in the training database. Using

the kNN algorithm, I calculate the distance between the validation sample and each training

sample in signal space. Afterwards, the location of the UE is estimated by computing the

centroid of the ground truth locations of the k nearest neighbors.
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CGI RSS GPS
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Figure 7.5: Procedure of the fingerprint-based kNN algorithm.

Similar to the Sigfox and LoRaWAN fingerprinting experiments, I also optimize several kNN-

based algorithms in this work. In brief, I iterate over four different RSS representations, 31

distance metrics and several values of k. After the most optimal parameter configuration is

found, I validate my results using the messages in the test data set.

7.1.5 NB-IoT Mobility Evaluation Setup

In traditional RSS-based localization algorithms, the position of the UE is determined by

combining the estimated distances to multiple base stations in a multilateration algorithm.

For example in LTE, the location of a UE is estimated based on timing information to

multiple eNBs, leading to an increased localization accuracy. Similarly, an OTDoA-capable

UE is able to request information from neighboring cells, due to the presence of a location

server in the OTDoA-capable NB-IoT network. However, I discovered that only a single

(serving) cell of an eNB can be used for RSS-based localization in NB-IoT. Therefore, in

this chapter, I study the mobility of NB-IoT in a localization context. In order to assess the

performance of the cell reselection process, I collected messages at a constant velocity and

update rate around a single eNB with three cells, as discussed in Section 7.1.1 and shown

in Figure 7.3. The azimuths of the three directional antennas are separated 120 degrees,

pointing to 0°, 120° and 240°. The trajectory around the eNB was chosen with the objective
to force a handover between each cell of the eNB. Consequently, I am able to evaluate two

mobility parameters: The sector reliability, i.e., whether the UE is located inside the correct
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sector of the serving cell, and the cell reselection time, i.e., how long it takes to switch to

another base station antenna.

7.2 Results

In this section, I present the preliminary results of the RSS-based localization algorithms in

terms of location estimation error. Subsequently, the mobility of NB-IoT is evaluated in

terms of sector reliability and cell reselection time.

7.2.1 RSS-Based Localization Accuracy

The proximity algorithm results in a mean location estimation error of 340m and a median

of 294m. In many applications, these rough location estimates can be sufficient, especially

when the cost and complexity of the localization needs to be reduced to a minimum.

To optimize the ranging algorithm for my test environment, several urban path loss mod-

els have been evaluated. As shown in Table 7.1, all path loss models yield similar location

estimation errors. The 3GPP AH-macro model yields the smallest mean and median local-

ization error of 320m and 259m, respectively. Although the ranging algorithms perform

only slightly better than the proximity algorithm, one needs to keep in mind that only a

single eNB cell sector is used to estimate the position of the mobile node.

Table 7.1: Location estimation errors for different urban path loss models of an RSS ranging

algorithm in a public NB-IoT network in the city center of Antwerp, Belgium.

Path loss model Mean error Median error 95th percentile

[m] [m] [m]

Hata 325 272 783

COST-231 327 276 780

3GPP AH-macro 320 259 790

3GPP AH-pico 330 279 776

Finally, a fingerprint-based kNN algorithm is evaluated and optimized. As suggested in [124],

different RSS representations and distance metrics are evaluated, along with a parameter

sweep of k, i.e., the number of neighbors considered during the matching phase. Table 7.2

shows the location estimation errors and optimal value of k of the NB-IoT fingerprinting

algorithm for each RSS representation and distance. In general, the estimation errors vary

from 184m to 207m. In contrast to previous research, the lineal (i.e., positive and normal-

ized) RSS representations yield the smallest location estimation error. In combination with

the Pearson χ
2
distance metric, the smallest location estimation error of 184m is achieved

for the validation set. After iterating over different values of k, it appears that considering

the ground truth reference locations of the k = 2 nearest neighbors results in the highest

localization accuracy.
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The location estimation errors from the validation data set are validated by running the

algorithm with the optimal parameter set again with unbiased data from the test data set.

This yields a mean and median location estimation error of 204m and 132m, respectively.

Moreover, 95% of all measurements result in a localization error under 679m.

The location estimation errors for the outdoor proximity, ranging and fingerprinting algo-

rithms are summarized in box plots in Fig. 7.6.
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Figure 7.6: Location estimation errors for every outdoor RSS-based localization algorithm when

using a single NB-IoT base station antenna. The left box plot shows the proximity algorithm results.

The box plot in the middle shows the errors of the ranging algorithm with the 3GPP AH-maco path

loss model. The right box plot shows the estimation errors of the validation fingerprinting data set

using the optimal parameter configuration.

7.2.2 Mobility Evaluation

Figure 7.7 visualizes the connections between every transmission location and the currently

serving cell, as well as the respective cell sector boundaries. Starting at the north side and

moving counterclockwise, the first UE positions (i.e., red dots) are located within sector

1, which is the sector of the serving cell. When the UE moves outside sector 1, the cell

reselection takes place and in most cases the adjacent cell corresponding to sector 2 becomes

the serving cell. After leaving sector 2, the UE remains connected to the cell related to sector

2 and never connects to the cell covering the area of sector 3. Instead, I observe serving

cells from other eNBs for short amounts of time (i.e., cell sectors 4 and 5). Thus, only two

out of three cells of the center eNB are used.
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Table 7.2: Results of the kNN-based fingerprinting algorithm with a single NB-IoT base station

antenna, showing the mean location estimation errors and optimal values of k for every RSS repre-

sentation and distance metric.

Distance measure Positive RSS Normalized RSS Exponential RSS Powed RSS

k Error [m] k Error [m] k Error [m] k Error [m]

Euclidean 1 201 1 201 1 205 1 205

Manhattan 1 201 1 201 1 205 1 205

Minkowski-3 1 201 1 201 1 205 1 205

Minkowski-4 1 201 1 201 1 205 1 205

Minkowski-5 1 201 1 201 1 205 1 205

Gower 1 201 1 201 1 205 1 205

Lorentzian 1 201 1 201 1 205 1 205

Intersection 1 201 1 201 1 205 1 205

Chebyshev 2 196 2 194 2 198 2 198

Sørensen 2 202 2 202 1 205 2 202

Soergel 2 202 2 202 1 205 2 202

Czekanowski 2 202 2 202 1 205 2 202

Motyka 2 202 2 202 1 205 2 202

Kulczynski 2 185 2 185 1 205 2 185

Canberra 2 202 2 202 1 207 2 202

Divergence 2 202 2 202 1 207 2 202

Clark 2 202 2 202 1 207 2 202

Wavehedges 2 202 2 202 1 207 2 202

Jaccard 2 202 2 202 1 190 2 202

Dice 2 202 2 202 1 190 2 202

Hellinger 1 204 1 204 1 205 1 205

Matusita 1 204 1 204 1 205 1 205

Squared χ
2

1 204 1 204 1 205 1 205

Probabilistic Symmetric χ
2
1 204 1 204 1 205 1 205

Squared Chord 1 204 1 204 1 205 1 205

Squared Euclidean 4 185 1 201 1 205 1 205

Average(L1, L∞) 4 185 1 201 1 205 1 205

Pearson χ
2

2 184 2 184 1 207 2 185

Neyman χ
2

4 185 4 185 1 205 4 185

Additive Symmetric 2 185 2 185 1 205 4 185

Kumar-Johnson 2 185 2 185 1 205 4 185
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Figure 7.7: Visualization of NB-IoT cell reselection when moving at a constant speed around an

eNB with three cell sectors. The color and pattern of the line connecting the GPS location of the

UE to the eNB indicates the currently serving cell. The cell sector boundaries are indicated with

thicker lines.

The time to select another serving cell varies from 51 s to 104 s, with a mean cell reselection

time of 73 s. Within these periods, it is not possible to send NB-IoT messages. Furthermore,

the UE remains connected to the cell covering sector 2 for more than four minutes after

leaving that sector, without ever connecting to the cell corresponding to sector 3.

7.3 Discussion

While OTDoA in NB-IoT networks promises high-level accuracy, the technology is still

in its infancy. As synchronizing eNBs in an NB-IoT network is a challenging and costly

task, few operators already deployed this feature in their networks. Moreover, a location

server is required in an OTDoA-capable network, which performs the actual localization.

Furthermore, a highly accurate clock required in the UE leads to additional device complexity,

which is often not desired.

In this chapter, RSS-based localization has been studied using real-world NB-IoT measure-

ments in a city-scale environment. Three RSS-based GNSS-less algorithms are evaluated in

terms of localization accuracy. The mean location estimation error varies from 340m with

a basic proximity algorithm to 204m with an optimized fingerprinting approach. Set side by

side, my research in Chapter 4 using multiple Sigfox base stations in the same environment

resulted in a mean location estimation error of 340m in the most optimal fingerprinting
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approach. Moreover, I studied RSS-based localization with LoRaWAN in Chapter 5, which

coincidentally lead to an accuracy of 340m as well, using another fingerprinting approach

and multiple base stations. Even though there are more NB-IoT base stations than Sigfox

and LoRaWAN base stations located in the test environment, only a single base station an-

tenna was used per measurement in the NB-IoT experiments. Contrarily, in the LoRaWAN

experiments, up to 10 gateways were considered to estimate the location of the transmitting

device. In the Sigfox experiments, the maximum number of receiving gateways increases to

48. From this point of view, the ability to reach multiple NB-IoT base stations promises to

increase the localization accuracy significantly, outperforming other LPWAN technologies.

While the proximity algorithm results in a mean accuracy of 340m, the localization accuracy

of the RSS-based ranging algorithm increases only slightly to 320m. This result can be

explained by discussing three limitations of the proposed ranging algorithm. First, estimating

the path loss in an urban but heterogeneous environment is not straightforward. Therefore,

finding an optimal path loss model is a challenging task. Even if the path loss model estimates

all distances very well, the average localization error highly depends on the sector size. This

is due to the fact that all locations of UEs sending from within a certain cell sector and

distance d to the eNB are estimated at the same centered location of that sector. A second

limitation in the ranging algorithm is the fact that only a single directional cell antenna can

be used to estimate the position of a UE. This is in contrast to Sigfox and LoRaWAN, where

multiple receiving gateways yield more accurate results by performing multilateration. This

argument indicates the growing need for multiple receiving cells in NB-IoT. Finally, the last

limitation involves the issue of cell sector reliability, which is why I carried out a separate

analysis of the mobility issues in an NB-IoT localization context.

Fingerprint-based localization approaches all share one major disadvantage: creating and

maintaining a large-scale outdoor fingerprint database requires a significant amount of time

and effort. For this reason, outdoor fingerprinting is not that popular as when compared

to outdoor ranging or indoor fingerprinting. However, this issue is being tackled by crowd-

sourcing initiatives such as TheThingsNetwork [156], which enable efficient worldwide collec-

tion of training data through sensors, chipsets and even smartphones. Besides, fingerprint-

based approaches have several benefits over others. In contrast to ranging, the locations of

the base stations do not have to be known. Furthermore, when collecting training data, the

particularities of the signal strength are stored in the fingerprint database. For this reason,

the proposed fingerprinting algorithm consistently yields the highest localization accuracy.

In order to evaluate the localization accuracy of an RSS-based fingerprinting approach,

the parameters of a kNN algorithm are optimized. While in the Sigfox experiments, the

exponential RSS representation led to the highest localization accuracy, the best results in

this chapter were obtained using the lineal (i.e., positive and normalized) RSS representation.

Furthermore, the optimal parameter set can be expressed by the Pearson χ
2
distance and

k = 2. Since the 1307 measurements in the fingerprinting data set are spread over an

area of 53 km2, the distance between each measurement in the training set is quite large,

which in turn leads to a smaller value of nearest neighbors k. Finally, the optimal parameter

configuration is validated by running the kNN algorithm with unseen data, leading to a mean

and median location estimation error of 204m and 132m, respectively.

During the collection of real-world measurement data for the localization study, I encountered

some mobility issues in the NB-IoT protocol. Therefore, I highlight these issues in this work
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and analyze the impact on the localization performance. One major problem I faced was

the inability to use information of neighboring cells in my localization algorithms. While

in LTE, this feature has been implemented for years, only the serving cell can be used

for RSS-based localization in NB-IoT. Some studies speculate that this limitation might

be on purpose, in order to increase scalability and decrease signaling overhead and power

consumption [60, 61]. Nonetheless, multiple neighboring cell reports can definitely increase

the accuracy of RSS-based localization. Fortunately, after the publication of this work,

more and more chipset manufacturers started implementing the scanning for neighboring

cells, which is an optional feature in NB-IoT. To further support this, De Nardis et al. used

a network scanner to demonstrate that the average positioning error drops below 100m

when scanning for multiple nearby eNBs [63].

The results of the mobility analysis in Figure 7.7 demonstrate the cell reselection process of

NB-IoT. When moving at a constant speed of 7 km/h, the cell reselection process took 73 s

on average. Important to note is that this cell reselection time depends on both the velocity

of the UE and cell reselection parameters configured by the network operator. Decreasing

the update rate of the cell reselection increases battery lifetime but is unfavorable from

a localization perspective, as this introduces latency and reduced location update rates.

Additionally, I investigated the cell sector reliability. After each cell reselection process,

most of the messages are located within the sector of the new serving cell. However, it

is worth discussing two peculiarities that can be observed from Figure 7.7. First, the UE

remains connected to the same serving cell after moving outside the serving cell sector.

Second, serving cells from eNBs located further away are reported, especially after losing

the connection to the currently serving cell. The first issue might arise when the connection

to the currently serving cell remains stronger than the connection to an adjacent cell, e.g.,

due to multipath or interference effects. The second issue can be caused by side and back

lobes of directional antennas, which seem to establish a better connection for a short amount

of time. Furthermore, despite being located in the serving cell sector, the UE might select

a stronger cell from a nearby eNB if there is no more LoS to the current eNB. Thus, in

line with the ideas of Moon et al. [65], it can be concluded that the performance of the cell

reselection process in the NB-IoT technology should be improved.

7.4 Conclusion

The cellular-based NB-IoT technology connects a plethora of devices to the IoT. Conse-

quently, there is an urgent need to localize such devices in an energy-efficient way. While

OTDoA is introduced in 3GPP Release 14, few operators deployed this localization feature

in their networks, given the cost and complexity to synchronize eNBs. Therefore, I investi-

gated RSS-based localization approaches, providing an energy-efficient solution at low cost

and low complexity.

Simulations of localization experiments often result in over-optimistic localization perfor-

mance. Therefore, I insisted to perform outdoor localization experiments using real-world

measurements. In this way, I can paint a more realistic picture of the localization perfor-

mance. Additionally, I face the practical issues and constraints of working with real-world

data.
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This chapter provided the firsthand results of RSS-based localization experiments using a

public NB-IoT network. Experiments carried out in a large-scale urban environment led to

mean location estimation errors ranging from 340m in a basic proximity algorithm to 204m in

an optimized fingerprinting algorithm. While a fingerprinting approach usually requires more

time and effort, the location accuracy can thus be increased. Eventually, crowd-sourced

fingerprinting can solve city-scale collection of training data.

Traditional multilateration approaches could not be applied, since many UE firmwares only

report the serving cell rather than all neighboring cells within range. In order to address

this issue, I studied the mobility of NB-IoT in a localization context. Due to unpredictable

antenna patterns and environmental influences, a UE might connect to a cell while not

located inside the corresponding cell sector. This poor cell sector reliability and the long cell

reselection times indicated the need for proper handover support and observation of multiple

cells in NB-IoT networks. After addressing and publishing these findings, I am happy to

notice that chipset manufacturers such as Nordic Semiconductor have started updating

their firmware to include multi-cell discovery for localization purposes [169]. Future research

may therefore investigate the increase in location accuracy when considering multiple cells

in a multilateration approach.
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From Ground to Space: A Survey on

Energy-efficient Large-scale Positioning:
LPWAN vs. GNSS vs. LEO-PNT

As an alternative to GNSSs, all previous chapters described how terrestrial LPWANs can be

used to estimate the location of a mobile transmitter. Advantages of these technologies

are the optimized energy consumption profiles for IoT use cases and the ability to provide

location updates in both indoor and outdoor environments. On the other side of the coin, the

positioning accuracy is rather limited when compared to GNSS and the coverage is bound

to the range of the often nationwide terrestrial networks.

Despite all the limitations of GNSS described in Chapter 1, GNSS technologies and tech-

niques have continued to evolve [170]. While Assisted GNSS (A-GNSS) receivers were

introduced in the market years ago, novel techniques are only being adopted very recently.

For example, snapshot processing techniques (S-GNSS) enable cloud processing by trans-

mitting raw observables over a terrestrial connectivity link to the cloud, successfully reducing

the UE complexity and energy consumption [171].

Recently, a myriad of companies started deploying LEO satellite constellations in the race

towards the constant global coverage on Earth for the emerging market of satellite IoT [172,

173]. On the one hand, big tech companies like SpaceX, OneWeb, and Amazon are deploying

hundreds and even thousands of satellites to provide worldwide broadband Internet. On the

other hand, smaller companies such as Kineis, Lacuna Space, Wyld and Hiber focus on

very low energy satellite communication and positioning of mobile end devices, which are

especially of our interest. As illustrated in Figure 8.1, LEO satellites are around 20 times

closer to Earth compared to GNSS satellites. Therefore, the oftentimes stronger LEO

satellite signals enable PNT applications in GNSS-denied environments.

95
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Figure 8.1: Three categories of technologies enabling large-scale positioning.

This chapter comprises a survey carried out for ESA, in which I investigate what energy-

efficient large-scale positioning techniques are available today and how they perform when

compared to each other. I tackle this by making the following contributions:

• I provide an overview of state-of-the-art, energy-efficient and large-scale positioning
techniques using LPWAN, LEO and GNSS technologies. To the best of my knowledge,

I am the first to combine these in a single comprehensive survey.

• I compare the performance of each positioning technique in terms of 16 dimensions
and visualize them in a performance matrix.

• For each positioning technique, I evaluate the interoperability and the possibility to
integrate multiple techniques in a single satellite IoT device.

• Through example IoT positioning use cases, I discuss a set of important trade-offs to
consider during their design.

The survey in this chapter is structured in the following way. I first introduce state-of-the art

positioning techniques leveraging LPWAN, GNSS and LEO systems in Section 8.1. Their

performance is evaluated in Section 8.2. Using a defined set of dimensions, I am able to

compare these techniques and to create a performance matrix. Section 8.3 discusses the

trade-offs to be made when designing a location-enabled IoT use case. Finally, Section 8.4

summarizes the main conclusions and discusses remaining challenges.



97

This chapter is based on:

Thomas Janssen, Axel Koppert, Rafael Berkvens, & Maarten Weyn. A Survey on

IoT Positioning leveraging LPWAN, GNSS and LEO-PNT (submitted on July 30, 2021).

IEEE Internet of Things Journal, pp. 1–25, 2023.



98

CHAPTER 8. FROM GROUND TO SPACE: A SURVEY ON ENERGY-EFFICIENT

LARGE-SCALE POSITIONING: LPWAN VS. GNSS VS. LEO-PNT

8.1 State-of-the-art positioning techniques

When discussing positioning systems, it is important to distinguish between positioning tech-

nologies and techniques. Within the scope of this work, a positioning technology is char-

acterized by wireless connectivity combining a network of end devices, gateways and/or

satellites, which enables positioning. In contrast, a positioning technique refers to a certain

method or algorithm to estimate the position of a device or UE, independent of the used

technology. Therefore, multiple positioning techniques can be applied using the same tech-

nology. LPWAN, GNSS and LEO technologies constitute three large-scale categories of

positioning technologies, as illustrated in Figure 8.1. A high-level overview of state-of-the-

art positioning technologies and techniques in each of these categories discussed in this work

is shown in Figure 8.2. Their core concepts are briefly described in the following subsections.

In order to provide a comprehensive survey, please note that the state-of-the-art LPWAN

positioning techniques of Chapter 2 are briefly reintroduced.

Alternative surveys exists, although they specifically target LPWAN [21], GNSS [174] or

LEO [172, 175, 176] technologies. Besides, many works focus on communication rather

than localization. To the best of our knowledge, no other work in literature has investigated

and compared this wide range of IoT positioning solutions, taking into account their energy

efficiency.

Large-scale Positioning

GNSS

Technologies 
GPS 

Galileo 
Glonass 
BeiDou 

Techniques 
Pseudoranging

A-GNSS 
Snapshot-

GNSS 

LEO

Technologies 
Iridium 
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Orbcomm 
Lacuna Space 

Techniques 
Doppler at
satellites 

Doppler at  
UE 

LPWAN

Techniques 
RSS 
ToA 

TDoA 
AoA 

Technologies 
LoRa 
Sigfox 
NB-IoT 
LTE-M 

Figure 8.2: Overview of large-scale positioning technologies and techniques discussed in this work.

8.1.1 LPWAN

Terrestrial LPWANs are designed for long-range and low-power communication of small

messages [34]. In more recent years, the networks of IoT transceivers and ground stations

are also used as a means to provide a localization solution. LoRaWAN and NB-IoT are

by far the most prominent LPWAN technologies available on the market [114, 9]. Where

LoRaWAN provides operational flexibility and the choice for a private or public network,

NB-IoT can be easily deployed on top of existing cellular infrastructure. Other LPWAN

technologies include Sigfox and LTE-M, which offer battery lifetimes of several years as

well.

As in most LPWAN positioning techniques, an RSS-based approach determines the location

of a mobile IoT device through uplink communication. When a UE transmits a message, the

RSS is measured at nearby gateways. This information is sent as metadata along with the
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payload to the cloud, where the data processing and location estimation steps are performed.

An RSS ranging technique uses a path loss model to translate the signal strength into a

distance to a certain gateway. The position estimate can subsequently be calculated using

various algorithms, such as Least Squares or Min-Max. Another RSS-based technique is

fingerprinting, in which training RSS data with ground-truth information is collected in the

area of interest, and a new fingerprint is matched to this training database to locate the

mobile transmitter. While this technique incorporates multipath effects and environmental

influences, it requires a lot of effort, cost and time to create a large fingerprinting database.

The accuracy of these positioning techniques highly depends on the number of receiving

gateways, as well as the accuracy of the path loss model in a given environment, as discussed

in Chapter 4.

Another popular technique to estimate the location of an LPWAN-enabled device is time-

based ranging. In traditional ToA approaches, the absolute time for a signal to travel from

transmitter to receiver is measured. Multiplying by the speed of light yields the distance

between the UE and the gateway. If enough gateways received the signal of a mobile

transmitter, a multilateration algorithm is used to estimate the location of the transmitter.

However, to avoid the need for synchronization between the UE and gateways, TDoA has

become more popular. In this technique, the distance between the target and reference

points is calculated based on the difference of arrival times at these reference points [177].

Geometrically, this leads to a hyperbola. With at least four gateways, the final location

estimate can then be calculated as the intersection of the hyperbolas. It should be noted

that when discussing TDoA, one mostly refers to uplink TDoA approaches. However for NB-

IoT, the 3GPP has defined OTDoA in Release 14. Despite the limited number of networks

currently supporting this feature, the first OTDoA experiments show promising positioning

improvements [91].

In combination with RSS- or time-based techniques, the AoA of an LPWAN signal can be

determined using an antenna array at the gateway side and a triangulation algorithm [93].

Finally, it was demonstrated that an increased positioning accuracy can be achieved using a

combination of TDoA and AoA via sensor fusion in a particle filter [96].

8.1.2 LEO

While there are hundreds of LEO satellite constellations in orbit or to be launched, they

are designed with different objectives in mind. For example, Iridium and Globalstar provide

a voice service, while SpaceX, Amazon and OneWeb aim to deliver global broadband In-

ternet [178]. Similarly, Telesat aims to deliver secure broadband connectivity. The Argos

system is designed for Earth observation purposes [179], similar to the Sentinel satellites

of the EU Copernicus programme [180]. Omnispace focuses on the integration of their

satellite network with a terrestrial NB-IoT network, while Hiber, Wyld and Lacuna Space

aim to achieve this using a network of LoRa gateways and LEO satellites [172]. Although all

of these examples may not be primarily designed for positioning purposes, the satellite IoT

market has made a myriad of companies to shift focus towards the monitoring and locating

of remote IoT devices leveraging LEO satellites. For instance, Satelles is developing a ser-

vice which provides a true ranging signal similar to GNSS, leveraging Iridium satellites. Two

companies are currently testing a system targeting the autonomous driving market. Xona
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Space Systems is developing a standalone LEO-PNT system using a dedicated constellation

of 300 cubesats [181]. The company aims to deliver a reliable and resilient PNT service

that is ten times more accurate compared to GNSS [182]. Similarly, Geespace is developing

a 240-satellite constellation that will feature combined Precise Point Positioning (PPP) and

Real-Time Kinematics (RTK) services, aiming to provide centimeter-accurate precise posi-

tioning and connectivity for automaker Geely [183]. While many of the positioning solutions

are still in a research or testing phase, some industry leaders already provide early access to

a commercial localization service. The interesting part of this type of positioning approach

is the fact that most LEO satellites support two-way communication via ground stations,

enabling to transmit a location estimate from the UE to the cloud.

In order to provide a positioning service leveraging LEO satellite signals, most currently avail-

able solutions exploit the Doppler effect. For instance, the Argos system operated by CLS

and Kinéis provides satellite telemetry services for scientific and environmental applications.

Through precise Doppler measurements with the Argos constellation, end users are provided

with a location estimate, along with an indication of the estimation accuracy [179, 184]. By

sending multiple uplink messages, a single receiving satellite performs a Doppler measure-

ment. The time and frequency observation of the received signal is forwarded via a ground

station to a solver, which estimates the user position using either a Least Squares algorithm,

or a more advanced Extended Kalman Filter (EKF) [185]. Several improvements to Doppler

positioning are being investigated, such as only transmitting during a satellite pass using

forecasting software.

Due to the increasing number of LEO constellations provided by different operators, it

has become a challenging task to provide a universal positioning technique. However, the

Doppler positioning technique can also be performed by the UE, rather than by the satellites.

Exploiting SoOP from LEO satellite constellations is one of the most recent developments

and is referred to as instantaneous Doppler positioning. This approach has the poten-

tial to leverage mega-constellations for zero-cost worldwide access to space signals using

Software Defined Radios (SDRs), removing the need for specific indoor infrastructure [26].

Farhangian et al. designed a LEO satellite receiver to perform local Doppler measurements

using downlink signals from multiple LEO constellations in an opportunistic way [186]. The

feasibility of this approach was demonstrated using Iridium NEXT, GlobalStar, Orbcomm

and Starlink satellites in both simulations and experimental setups [187, 188, 189, 190].

Moreover, the fusion of mixed SoOP has been proven beneficial in weak signal environments

as well [191]. Finally, the Doppler measurements can be used as assistance data in A-GNSS

(see Section 8.1.3), as well as in Inertial Navigation Systems (INSs) [192].

8.1.3 GNSS

When it comes to GNSS-based localization solutions, the trend in the last decade was

to manufacture multi-constellation GNSS receivers, e.g., combining the American GPS,

European Galileo, Russian GLONASS and Chinese BeiDou satellite constellations in a single

chipset. In this way, both global coverage and availability are extended. However, innovations

to increase the energy efficiency lie in the used GNSS technique. In general, GNSS techniques

relevant to IoT use cases can be further categorized into conventional observable-based

GNSS, A-GNSS, and S-GNSS techniques.
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Conventional GNSS receivers attempt a continuous signal tracking, which yields pseudor-

ange, Doppler and phase observations. The tracking stage is preceded by an acquisition

stage, in which the satellite signals are detected and the tracking loops are initialized. GNSS

positioning is based on ToA, as the time to travel from the satellite to the receiver is used

to calculate the distance, i.e., pseudorange, between them. Provided that satellite orbit

and clock information is known, and at least four satellites are in view, the receiver can

determine its position based on the pseudoranges. While Doppler-only positioning could be

performed with similar principles as for LEO positioning, it is rarely applied due to the low

accuracy of several kilometers. The reason for this is that GNSS satellites orbit the Earth

at significant lower velocities than LEO satellites. A common way to cope with the high

energy consumption of conventional receivers is duty cycling, i.e., periodically waking up to

receive GNSS signals and going back to low-power sleep modes. However, this technique

does not meet the energy requirements of IoT use cases. Therefore, a significant amount

of research is devoted to novel energy-efficient GNSS techniques.

Obtaining a first GNSS fix on the UE can consume a considerable amount of time and

energy. Therefore, several techniques exist to reduce the Time To First Fix (TTFF), and

consequently, the energy consumption. In order to compute a first fix, the satellite signals

have to be acquired and the ephemeris data containing information on the satellite orbits

and clock needs to be decoded from the satellite navigation message. The acquisition

requires multiple correlations for different time (i.e., delay of the ranging code modulated

on the carrier) and frequency (i.e., carrier Doppler) offsets. The more a-priori information

is available, the narrower the search space and the more efficient the acquisition processing

becomes. The principle of A-GNSS has been developed in order to provide such assistance

data from an external source to the GNSS receiver, with the aim to reduce the TTFF [193].

The assistance data can be a rough location and time estimate of a terrestrial network, as

well as ephemeris data, which can be valid for up to a few weeks. Providing ephemeris data

makes decoding it from the GNSS signal obsolete. For example, LPWAN can provide this

information in an energy-efficient way. Moreover, this connection with a terrestrial network

rises the opportunity to communicate the GNSS location to the cloud. Furthermore, if there

is no possibility to connect to a terrestrial network, a GNSS receiver can reduce the TTFF

by predicting the ephemeris data, based on previously calculated location, time and orbital

parameters.

Snapshot processing techniques constitute a third set of energy-saving GNSS techniques.

The main idea of these cloud processing techniques is to only sample a short portion of the

received satellite signal (referred to as a snapshot), digitize the samples and transmit them

via a connectivity link to the cloud, where the data is processed and the location is calcu-

lated [171]. By performing the most power-hungry functions in the cloud, the overall energy

consumption is drastically reduced. The connectivity link can be provided though ground

stations or LEO satellites. Depending on the length of the snapshot and the limitations

of this link, a trade-off needs to be made between how many processing is performed on

the device and how many data is sent to the cloud [194]. Furthermore, a S-GNSS receiver

requires some adaptations from standard GNSS processing to derive a Position, Velocity and

Time (PVT) solution. A basic block diagram for snapshot processing is shown in Figure 8.3.

Even with small snapshot lengths, the frequency and code phase can be detected. To calcu-

late the pseudoranges and solve some ambiguities, a rough estimate of the current location

and time is often required. This information can be sent to the receiver via an LPWAN
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connection, together with the ephemeris data. Using the latter, the current position and

time can be calculated. Finally, it has been proven that even without a rough position and

time estimate, meter-level accuracy can be achieved [195].

Snapshot
recording

Assistance
data

Satellite
acquisition

Pseudorange
determination

PVT 
solution

Figure 8.3: Block diagram of snapshot processing using GNSS. Note that all steps except the

snapshot recording might be outsourced from the UE to the cloud.

8.1.4 Additional sensors

The aforementioned technologies and techniques can be complemented with sensors provid-

ing more accurate or contextual information of the device location. Inertial Measurement

Units (IMUs), e.g., a combination of accelerometer, gyroscope and magnetometer can be

used for dead reckoning in GNSS-denied environments, or to save energy if the transmit-

ter has not moved since its last position update. Barometers are often used to estimate

heights, e.g., to determine the floor level in an indoor positioning use case. Finally, Wi-Fi

scanning, Near Field Communication (NFC) tags and BLE ranging can yield better posi-

tioning performance in indoor or urban environments. As the goal of this survey is to assess

the performance of large-scale positioning techniques, i.e., tens of squared kilometers, these

additional sensors fall outside of the scope of this work.

8.2 Positioning performance evaluation

In this section, I compare the current state-of-the-art of the aforementioned positioning

techniques using LPWAN, GNSS and LEO technologies. The matrix in Table 8.1 shows an

overview of the performance comparison in terms of 16 dimensions. This qualitative matrix

enables the relative comparison between localization approaches. More context and a more

detailed discussion on the performance of each positioning technique with respect to the

dimensions is provided in the following subsections.

8.2.1 Hardware availability

The first dimension indicates how accessible the hardware of a technology is, and if there

are Commercial Off-The-Shelf (COTS) chipsets available.
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Table 8.1: Qualitative performance comparison matrix of LPWAN, GNSS and LEO positioning

techniques in terms of 16 dimensions. A score of 1 (red) is highly limiting, while a score of 5

(green) is highly beneficial. A minus sign (gray) denotes not applicable.
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Hardware availability 5 5 3 3 4 3 4 3 5 5

Network accessibility 5 5 5 4 3 4 5 4 5 5

Energy consumption profile 5 5 5 3 3 3 3 2 2 1

Localization accuracy 1 2 3 3 3 4 4 5 5 5

Ubiquity of coverage 3 2 3 5 4 4 4 5 4 4

Scalability 5 4 4 5 4 4 4 5 4 5

TTFF 5 5 5 3 2 2 4 2 4 2

Data rate & BW - - - - - - - - - -

Interoperability 5 5 5 5 5 5 5 5 5 5

Communication of observables 5 5 5 5 5 5 5 5 5 1

Index of technology readiness and maturity 5 5 4 2 3 2 3 4 5 5

Standardized or proprietary - - - - - - - - - -

UE cost 5 5 5 3 2 4 4 2 3 4

UE complexity 5 5 5 4 4 3 4 3 3 3

Location update rate 4 4 4 3 2 4 4 2 5 5

Local or remote processing - - - - - - - - - -
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Table 8.2: Non-exhaustive list of commercially available positioning chips and modules. Positioning

techniques marked with an asterisk (*) denote that the chip or module does not natively implement

the technique but provides support (i.e., required hardware/software) for it.

Category Technology Chipset / module name Positioning technique

LPWAN

NB-IoT

u-blox SARA-N3/R5 series RSS*, OTDoA*, AoA*

Nordic Semiconductor nRF9160 RSS*, OTDoA*, AoA*

Qualcomm 212 LTE modem RSS*, OTDoA*, AoA*

Quectel BC660K-GL RSS*, OTDoA*, AoA*

LoRa

Semtech SX1276 RSS*, OTDoA*, AoA*

Semtech LR1110 & LR1120 RSS*, OTDoA*, AoA*. LoRa geolocation

Microchip RN2483 RSS*, OTDoA*, AoA*

Sigfox Sigfox TD1207R RSS*

GNSS

u-blox MAX M10S Pseudoranging, A-GNSS

GPS, Quectel LC79D Pseudoranging, A-GNSS

Galileo, Baseband Technologies snapshot GNSS receiver A-GNSS. snapshot GNSS, cloud processing

GLONASS, Syntony SoftSpot IoT A-GNSS. snapshot GNSS, cloud processing

BeiDou Semtech LR1110 A-GNSS, cloud processing

Maxim MAX27690 RF frontend Snapshot GNSS, cloud processing

LEO

Iridium Jackson Labs PNT-62xx STL receiver Instantaneous Doppler positioning

Argos
ARTIC R2 chipset Doppler positioning at satellites

Arribada Horizon ARTIC R2 development kit A-GPS, INS

Orbcomm Orbcomm OG2-M modem Instantaneous Doppler positioning

Globalstar, GPS Globalstar SPOT Trace Doppler positioning at satellites

LoRa, GNSS, Wi-Fi
Semtech LR1110 Doppler, GNSS and Wi-Fi scanning

Miromico FMLR-LR1110-X-STL0Z module Doppler, GNSS and Wi-Fi scanning

8.2.1.1 LPWAN

Since the rise of the IoT, LPWAN devices are becoming highly available to both industrial

and commercial users. End devices are so commonly integrated in our society that they have

become ubiquitous. A few examples include smart meters, temperature and humidity sensors.

LoRaWAN and NB-IoT, two of the most popular LPWAN, each provide several UEs in a

different way. While Semtech is the major manufacturer of LoRa chips, some manufacturers

have a license to produce them (e.g., Microchip) or collaborate with Semtech (e.g., ST

Microelectronics). Alternatively, manufacturers may develop a LoRa module based on a

chip from Semtech. In contrast, any manufacturer is allowed to produce NB-IoT-enabled

chipsets and modules, provided that the corresponding 3GPP standard is followed.

The first rows of Table 8.2 provide an overview of commonly used LPWAN chipsets and

modules. Common NB-IoT manufacturers include U-blox, Nordic Semiconductors, Qual-

comm and Quectel. Among the LoRa chips, the LR1110 chip from Semtech integrates

LoRa with GNSS and Wi-Fi, providing a geolocation service through the ‘LoRa Edge’ plat-

form. Finally, the company behind Sigfox provides LPWAN modules that work together with

GNSS and accelerometers to provide a low-power localization service.

In general, one can conclude that LPWAN chipsets and modules are highly available. As

RSS- and timing-based localization techniques generally do not depend on the manufacturer

or type of UE, they are given a score of 5 in Table 8.1. Note however that UEs must sup-

port advanced localization techniques. For example, OTDoA requires accurate timestamps.

Furthermore, besides a transmitter, AoA-based techniques require an antenna array at the

receiver side to determine the angle of the incoming signal. Although antenna arrays are

widespread, most LPWAN gateways are only equipped with a single antenna. Therefore, it

is often not possible to deploy AoA in a public LPWAN network.
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8.2.1.2 GNSS

Conventional observable-based GNSS and A-GNSS features are implemented in nearly all

recent GNSS receivers and smartphones. Moreover, industry-leading companies such as

u-blox provide an assistance service along with their multi-constellation GNSS chipsets. In

contrast, S-GNSS receivers can be less complex and expensive as some traditional building

blocks are not required in this type of receivers. On the one hand, the building blocks of

S-GNSS receivers are widely available and consist of an RF frontend and a storage element,

in order to digitize and store an incoming signal for processing at a convenient time in the

cloud. An example is the Maxim MAX2769 GNSS-specific frontend. On the other hand, only

few snapshot receivers are commercially available, e.g., the Baseband Technologies S-GNSS

receiver. Furthermore, the aforementioned LR1110 chipset from Semtech is a LoRa chip

which enables passive Wi-Fi and GNSS scanning [196]. The device captures a short portion

of the satellite signal, extracts pseudoranges and aggregates them into a NAV message,

which can be sent to the cloud for position estimation.

8.2.1.3 LEO

The category of LEO-based positioning techniques is the most recent category, and there-

fore, chipsets and modules of these techniques are not as ubiquitous as LPWAN or GNSS

devices. For example, both Jackson Labs and Orolia do provide Iridium-enabled devices but

these do not support actual location estimation yet. In contrast, commercial positioning

hardware is available for the Argos system. The ARTIC R2 chipset, for example, is compat-

ible with the Argos-2, Argos-3, and the upcoming Argos-4 system. An open source reference

design is provided, along with all technical details of the chip. Moreover, an Arduino library

and multiple development kits are widely available. Furthermore, the KIM1 module provided

by CLS and certified by Kinéis and CNES offers a more finished product, requiring less de-

velopment. A shield board is also available to ease integration. Other companies providing

LEO hardware include Orbcomm and Lacuna Space, as listed in Table 8.2. Finally, the

feasibility of instantaneous Doppler-based positioning using LEO signals has mostly been

demonstrated based on SDR implementations, rather than tailored end products [197].

Recent hardware modules support the combination of LEO with LPWAN and GNSS. Kinéis

is partnering with Bouygues Telecom to integrate the Argos system with the LoRaWAN

standard. Hiber, Lacuna Space and Wyld are competing companies, also providing a combi-

nation of a LEO constellation and a LoRa network. Orbcomm has designed a ‘dual-mode’

platform, in which their LEO constellation is combined with a cellular network. Similarly,

Intellian is manufacturing the user terminals for OneWeb, aiming to deliver commercial com-

munications services to remote regions and industrial sectors. Globalstar provides devices

combining LEO and GPS satellites to provide near real-time positioning in areas without

terrestrial networks. While some of these companies are still developing and evaluating their

solutions, some of them already offer commercially available hardware, as listed in Table 8.2.
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8.2.2 Network accessibility

A second dimension indicates how accessible a network of gateways or satellites is, e.g., for

commercial, personal, or industrial use. Table 8.3 lists currently available networks which

are used for positioning. Additionally, I discuss any restrictions or limitations on the usage

of these networks.

Table 8.3: Overview of available positioning networks and a non-exhaustive list of providers.

Category
Network

technology
Network provider(s)

LPWAN

NB-IoT Orange, Vodafone, T-mobile, China Mobile, Telia

LoRa The Things Network, Actility, private network operators

Sigfox Sigfox (UnaBiz), Engie M2M, HELIOT, WND

GNSS

GPS US Air Force

Galileo European GNSS Agency

GLONASS Russian Federation

BeiDou China National Space Administration (CNSA)

LEO

Iridium Iridium

Argos CLS, Kinéis

Orbcomm Orbcomm

Globalstar Globalstar

LoRa Lacuna Space

8.2.2.1 LPWAN

Since the emergence of the IoT, the number of low-power long-range networks worldwide

has been growing rapidly. LPWAN technologies are deployed in various ways. Currently, 148

public and private LoRaWAN network operators are active in 162 countries [8]. Similarly, as

of September 2022, 167 operators are actively investing in NB-IoT technology, of which 124

have commercially launched NB-IoT networks in 80 countries [198]. Sigfox networks are

operated nationwide, either by Sigfox or a partnering telecom provider. All of these networks

are accessible for commercial, industrial, and personal use. Roaming between these networks

has been a hurdle, but recent initiatives aim to tackle the problem and accelerate LPWAN

roaming worldwide. For instance, full LoRaWAN roaming is available in 27 countries around

the world as well as via the satellite network of Lacuna Space.

8.2.2.2 GNSS

GNSS networks are highly accessible. While there are signals dedicated to certain user

groups (e.g., military or public authorities), everybody can use most signals from the different

constellations free of charge. The system providers publish all required information to exploit

the open services. The plethora of multi-constellation GNSS receivers allow the end user to

use satellites from multiple constellations simultaneously.
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8.2.2.3 LEO

In general, LEO satellite networks are not as accessible as when compared to GNSS con-

stellations. First, most LEO positioning providers, such as Argos and Lacuna Space, require

a paid subscription to use their Doppler positioning service. Second, many LEO constella-

tions are not finished yet and only a small number of often region bound beta testers can

participate in the program. When passively performing Doppler measurements on the UE

using SoOP from multiple constellations, however, the network accessibility increases.

8.2.3 Energy consumption profile

As the aim of this survey is to provide energy-efficient positioning techniques for the IoT,

the energy consumption profile is one of the most critical dimensions. This section covers

various energy-related parameters, ranging from overall UE energy consumption, over bat-

tery lifetime, to the availability of different energy profiles (e.g., sleep modes, idle mode,

cold/warm/hot start). It is very important to highlight that, even though I provide numerical

results originating from data sheets, simulations and experiments, the overall energy con-

sumption highly depends on a plethora of parameters, which may significantly differ based

on the used hardware, the use case and the environment. Examples of such parameters are

the location update rate, transmission power, payload size and sleep mechanisms.

8.2.3.1 LPWAN

Most LPWAN localization systems work through the ‘localization by communication’ con-

cept, i.e., by sending an uplink message. Therefore, the energy consumption of positioning

techniques such as RSS, TDoA and AoA equals the energy consumption of this uplink com-

munication using a certain LPWAN technology. Several recent studies have analyzed, sim-

ulated and demonstrated the ultra-low power consumption of LPWAN technologies. Singh

et al. provide an analysis of the actual energy consumption profiles of Sigfox, NB-IoT and

LoRaWAN [35]. The analysis shows that a LoRa transmitter consumes 37.05mJ to transmit

a 5-byte uplink message and has an average sleep current of 81 µA at 3.7 V, while NB-IoT
transmission consumes 63.48mJ, with a deep sleep current of 0.10 µA at 3.7 V. However,
the overall energy consumption can vary significantly depending on the configuration param-

eters such as payload size, SF, update rate and sleep modes. For different update rates, the

resulting estimated battery lifetimes are shown in Figure 8.4.

The energy consumption profiles of LPWAN technologies show a peak in current consump-

tion during message transmission and in the idle period, which highlights the need for sleep

modes. Examples are the eDRX and Power Saving Mode (PSM) of NB-IoT, as shown in Fig-

ure 8.5. While a Quectel BG96 NB-IoT module consumes 623.7mW during transmission at

23 dBm, these modes consume only 3.63mW and 10 µW, respectively [199]. Furthermore,
the SF or LoRa provides the flexibility to tune the balance between energy consumption,

data rate and communication range, depending on the application requirements [200].
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Figure 8.4: Battery lifetime for different LPWAN technologies and uplink message update rates,

using a 5-byte payload size and a 2500mAh battery [35].

Figure 8.5: NB-IoT transmission cycle with sleep mechanisms [199].

8.2.3.2 GNSS

In high contrast to LPWAN, GNSSs originally were not designed with low energy consump-

tion in mind. The GNSS technology report of 2020 lists several market segments and typical

state-of-the-art receiver specifications [201]. In the IoT market segment, a typical receiver

consumes 17mA during signal acquisition and 0.5–8mA during tracking, using a power sup-

ply of 1.4–4.3 V. The feasibility of adding a GNSS receiver to a LoRaWAN tracking device in

terms of location accuracy, battery lifetime and location update rate is analyzed in [5]. The

study shows that a GNSS receiver should only be omitted if a location error of more than

100 meters is acceptable and the energy budget is extremely constrained, provided that the

LoRa SF is configured correctly. Furthermore, the battery lifetime of LoRaWAN trackers is

estimated, depending on different application requirements. When tracking an animal with

48 location updates per day, a SF equal to 9 and a minimum battery lifetime of 3 years, the

battery of the IoT device would last 4688 days without GNSS receiver and 2446 days with

GNSS receiver. However, when tracking an animal using the same location update rate but

with a desired 10 year battery lifetime, a GNSS receiver can no longer be used.

An empirical study on energy consumption of GNSS chipsets in smartphones, which also have

energy constraints, demonstrates that a smartphone with a dual-frequency GNSS chipset

consumes on average 28% and 37% more power compared to a single frequency GNSS

smartphone, in indoor and outdoor environments, respectively [202]. Figure 8.6 shows the
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energy consumption profile for the two smartphone GNSS receivers. Using a location update

rate of 1 s, the mean energy consumption of the single- and dual-frequency receivers equals

232mJ and 318mJ, respectively. Due to this difference, the battery of the smartphone with

single-frequency GNSS receiver lasts 10 hours longer.

Figure 8.6: Energy consumption of a single (Redmi Node 7, green) and dual (Mi 8, orange) frequency

receiver in two smartphone models [202].

During initial signal acquisition, a GNSS receiver consumes more energy than the subsequent

tracking mode. Hence, the TTFF has a significant impact on the overall energy consump-

tion. This is especially true for IoT applications with low update rates. In this case, virtually

every localization attempt can be regarded as a first fix. Therefore, several energy-saving

GNSS techniques are focusing on TTFF reduction, as discussed in Section 8.1.3. While the

TTFF evaluation is discussed in more detail in Section 8.2.7, the focus here is on the energy

consumption profiles of these novel techniques.

The first and most widely adopted energy-saving technique in GNSS receivers is duty cycling.

By putting the receiver in sleep mode between location updates, the total energy consump-

tion can be reduced significantly, especially in IoT use cases where a location update is only

required every few hours, days, weeks or even months.

The widely adopted A-GNSS approach ensures all data needed to compute a location is

present in the UE, successfully omitting power-hungry satellite communication to retrieve

e.g., coarse location, time or ephemeris data. Several GNSS manufacturers provide a plat-

form or service to download this data and send it to a UE, e.g., the AssistNow platform of

u-blox. Furthermore, the integration of an assistance network and a GNSS receiver in an

all-in-one SoC leads to a lower overall power consumption. A SoC integrating GNSS and

NB-IoT consumes 50mW for receiving and 1610mW for transmitting, while the always-on-

block consumes 15 µW and the sleep current is smaller than 10 µA at 3.8 V [203]. When
using a 300mAh battery, this results in a lifetime of 306 days for a daily uplink message,

while the lifetime significantly decreases to only 15 days when an hourly location update is

required.

Snapshot processing and cloud computing are two emerging techniques to reduce the energy
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consumption of a GNSS receiver. They are especially of interest in case the GNSS receiver

is connected to an LPWAN transceiver, as the latter is able to transmit snapshot data to a

processing center for subsequent outsourced position calculation. Taking a snapshot of up

to 25ms with a cloud GNSS receiver is an order of magnitude more energy-efficient than a

conventional A-GNSS receiver [194]. The snapshot receiver of Baseband Technologies lasts

for 18 days to 1 year depending on the snapshot length, while a conventional receiver would

only last for 2 hours on the same 10mAh battery [204]. Finally, u-blox recently introduced

their ‘CloudLocate’ service, offering a S-GNSS approach in which the receiver acquires a

snapshot of a few seconds, performs some preprocessing steps such as the extraction of

code phases, sends this information to the cloud and turns itself off. Designed for use cases

with battery-operated devices with large power autonomy and internet connectivity, this

approach performs well in terms of energy consumption, successfully filling the gap between

traditional (A-)GNSS and GNSS-less positioning, as shown in Figure 8.7. According to u-

blox, the additional power demand constitutes only 10% of the total UE power consumption.
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Figure 8.7: Total daily energy consumption comparison of different GNSS techniques, for a UE

combining a u-blox M10 chip with LTE-M connection, with 6 location updates per day [205].

A white paper of the European GNSS Agency (GSA) describes the relative amount of

energy saved with the aforementioned techniques, compared to a standard single-frequency

GNSS receiver [206]. A-GNSS can be up to 10 times more energy-efficient, while snapshot

processing and cloud computing can be 2-25 times more energy-efficient. For the latter

category, higher energy efficiency is achieved when more location processing functionality

is outsourced to the cloud. Finally, Figure 8.8 shows the relationship between the energy

efficiency of each technique and the connectivity requirements of the terrestrial network.

8.2.3.3 LEO

While constellations such as Starlink are designed for broadband mobile Internet access,

other LEO constellations are designed for low-power communication with terrestrial IoT de-

vices. Despite many studies evaluating and improving the accuracy of LEO-based positioning

systems, little attention has been paid to their energy consumption profile. Therefore, I now

provide an overview of energy characteristics as specified in data sheets. Thus, it is im-
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Figure 8.8: Relationship between connectivity requirements and energy efficiency of different GNSS

techniques [206].

portant to keep in mind that the actual energy consumption of these systems is not widely

evaluated yet.

The Argos system was introduced with the aim to serve environmental applications, including

wildlife tracking and oceanography. The so-called Platform Terminal Transmitters (PTTs)

are designed to have an autonomy of multiple years. An Argos transceiver has a typical

transmission power of 500mW, but this setting can be configured in a range from 250mW to

2W, which is equivalent to 24–33 dBm. A popular chipset is the ARTIC R2, which supports

bidirectional communication and is compatible with the Argos-2, Argos-3 and the future

Argos-4 system. On average, the chipset consumes 15–20mA when receiving, 350mA

when transmitting and has an extremely low sleep current of less than 1 µA, at a supply
voltage of 1.8 V or 3.3 V [207]. Arribada provides an Argos module integrating an ARTIC

R2 transmitter and a GPS receiver and claims to achieve a 20 µA sleep current and 5 years
of autonomy. Additionally, the module provides support for hybridization with a cellular or

LoRaWAN daughter board [208].

Lacuna Space uses the LR1110 ‘all-in-one’ chip from Semtech to perform Doppler position-

ing using LEO satellites. Even though no details about the actual power consumption of this

localization technique are public, the energy consumption profile of the LR1110 for different

modes is shown in Table 8.4, using an operating voltage around 3.3 V. Obviously, the power

consumption depends on the bandwidth, SF and transmit power. Furthermore, the GNSS

scanner typically needs to scan for 1–2 s, depending on the assistance data, and leads to a

power consumption of 8.5 µWh for GPS. For the on-board passive Wi-Fi scanner, it takes
65–75ms to scan 3 Wi-Fi channels and capture 6 MAC addresses, consuming 0.5–0.7 µWh.
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Table 8.4: Energy consumption profile of the Semtech LR1110 chip [209].

Mode System component
Current consumption

(@ 3.3 V)

Receive

(SF12, 125 kHz)

LoRa 5.7 mA

Wi-Fi scan 3-11 mA

GNSS scan 5-10 mA

Transmit

(868 MHz, 14 dBm)
LoRa module 28 mA

Transmit

(868 MHz, 22 dBm)
LoRa module 118 mA

Sleep (no RTC) All 1.6 µA
Power down All 0.8 µA

8.2.4 Positioning accuracy

In this section, I discuss the average, 3D RMS and 95th percentile of the difference between

the estimated location and the ground-truth location. The lower this location estimation

error, the higher the positioning accuracy of a technique.

8.2.4.1 LPWAN

Leveraging LPWAN communication to locate a device has been a popular research topic in

recent years. While some approaches only aim to provide location awareness, i.e., a rough

location estimate, other approaches try to improve the localization accuracy in order to

attract more IoT use cases.

In general, RSS-based localization algorithms perform the worst in terms of positioning accu-

racy. Reasons for this are the high number of multipath effects (shadowing, reflections etc.)

and signal interference. Moreover, the environment plays a significant role when judging

the accuracy of RSS-based LPWAN localization. Although some studies categorize differ-

ent environments into urban, sub-urban and rural areas, these terms are not clearly defined

and ambiguous. This consequently leads to inaccuracies when applying signal propagation

models in RSS ranging algorithms. Other popular algorithms range from simple proximity es-

timation to advanced Machine Learning and Neural Network-based fingerprinting. While the

former has a typical localization error of several hundreds of meters to a few kilometers, the

latter is able to locate a transmitter with a mean location error below 500m. A benchmark

of RSS-based ranging and fingerprinting algorithms using LoRaWAN is detailed in Chapter 5.

The kNN and Random Forest algorithms yield the most accurate fingerprint-based results,

while it was found that changing the path loss model in range-based approaches does not

significantly impact the final location accuracy.

Timing-based approaches generally are more accurate as when compared to RSS-based al-

gorithms. TDoA experiments in a public LoRa network resulted in a median and maximal

location error of 150m and 350m, respectively [79]. However, TDoA requires accurate syn-

chronization between gateways and is therefore not feasible in some LPWAN technologies.
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For instance, applying TDoA in the UNB technology of Sigfox is not feasible as the accu-

racy is directly proportional to the bandwidth (see Section 8.2.8). Furthermore, at least four

nearby gateways need to receive an uplink message in order to estimate the location of the

transmitter. For these reasons, it is not always possible to provide a TDoA location estimate.

Lastly, the first OTDoA experiments in a laboratory environment report an RMS positioning

accuracy of 48.5m and 65.5m in normal and extended coverage, respectively [91].

AoA systems using LPWAN signals are proven to accurately estimate the angle of arrival,

with an error below 5 degrees, 80% of the time [93]. The combination of AoA and RSS

in NB-IoT is very welcome, as a lot of NB-IoT modules and networks only report the

currently serving cell, instead of all nearby base stations (see Chapter 7). Furthermore, the

combination of AoA and TDoA (also referred to as TDAoA) yields more accurate results,

with a mean localization error of 159m in a NLoS environment [96].

With the aim to compare localization algorithms and LPWAN technologies in a fair way,

together with a colleague, I have investigated the accuracy of several LPWAN localization

algorithms in the same urban environment in the city of Antwerp, Belgium (see Chapters 4,

5, 7 and [96]). The results are summarized in Figure 8.9. It is important to mention the

difference in base station number and density. For example, while only a single NB-IoT

base station is reported per measurement, some Sigfox messages were received by more

than 40 gateways. However, the high density of the cellular NB-IoT network compensates

for this fact, resulting in mean location estimation errors between 204m and 340m when

applying fingerprinting and proximity algorithms, respectively. Despite several outlier detec-

tion algorithms, the outliers of LPWAN localization algorithms remain significant. Finally,

the accuracy can be further improved by combining different techniques. Examples include

applying Artificial Intelligence (AI) for optimized fingerprinting, estimating heights based on

altimeters, and implementing road mapping filters.

8.2.4.2 GNSS

In high contrast to LPWAN localization techniques, GNSS techniques achieve much higher

accuracies, up to several orders of magnitude. Important to note is that I evaluate the

accuracy of Standard Positioning Service (SPS) GNSS receivers, as these are most common

in IoT tracking devices. Hence, advanced positioning techniques such as RTK and PPP fall

outside the scope of this discussion.

The GNSS technology report of 2020 lists a horizontal positioning accuracy of 5–10m with

a dual-frequency GNSS receiver, and a typical accuracy of 15–30m for a single-frequency

receiver [201]. These are typical accuracies however, and thus cannot always be guaranteed,

i.e., in complex propagation environments such as high-speed moving trains, dense urban

scenarios, tunnels and multi-story car parks [210]. Furthermore, pseudorange measurements

are affected by various effects, such as errors in the satellite clock and orbit information,

errors in the ionospheric or tropospheric models and multipath effects. The Dilution Of

Precision (DOP) accounts for the error propagation and provides an indication for the

accuracy of a location estimate.

The accuracy of consumer-grade GPS and Assisted GPS (A-GPS) receivers has been eval-
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Figure 8.9: Positioning accuracy of LPWAN localization algorithms, compiled from Chapters 4, 5,

7 and [96].
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uated in [211]. No remarkable differences were observed two minutes after the first fix.

Nonetheless, in both approaches, the accuracy of the first fix is generally lower, due to the

fact that a receiver initially has a fix on only 3-5 satellites. It was shown that with 95%

probability, the first fix was accurate within 28–77m, depending on manufacturer and type

of the GNSS receiver.

When no terrestrial communication link is available, a GNSS receiver can autonomously

predict ephemeris data. However, due to satellite orbit perturbation and environmental

factors, ephemeris data is subject to change. This leads to a decrease in orbit prediction

accuracy over time, which in turn leads to a reduced positioning accuracy.

S-GNSS and cloud processing techniques enable low energy positioning in return for a re-

duced sensitivity and accuracy [206]. Given the low energy consumption requirement, most

S-GNSS receivers are using a single frequency, resulting in less accurate positioning, as men-

tioned before. Nonetheless, modern coarse-time navigation algorithms achieve an accuracy

of a few meters from a one-shot position solution, depending on the length of the acquired

signal and the accuracy of the code phase measurements. It was demonstrated that taking

a 2ms snapshot yields an accuracy below ±1m in north and east directions despite a re-
duced precision, as shown in Figure 8.10 for various snapshot lengths [212]. With a snapshot

length of 1 s, the CloudLocate GNSS solution from u-blox achieves a median accuracy within

6m [205]. Finally, it was demonstrated that a cloud GNSS sensor in an outdoor environment

may offer the same horizontal accuracy as a conventional GNSS receiver, while consuming

less energy. This relationship is visualized for different carrier-to-noise densities (C/N0) in

Figure 8.11 [194].

Figure 8.10: Time free pseudorange positioning results for various snapshot lengths, using GPS,

Galileo and BeiDou signals [212].
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Figure 8.11: Expected energy consumption and accuracy of a cloud-based GNSS sensor under

different C/N0 environments [194].

8.2.4.3 LEO

The accuracy of positioning techniques using LEO satellites is studied to some extent in

state-of-the-art literature. More specifically, the accuracy of Doppler positioning systems is

being evaluated in a limited amount of test scenarios. Therefore, accuracy numbers may

vary significantly.

Tan et al. proposed an instantaneous Doppler positioning solution using SoOP of Iridium

NEXT satellites [187]. The inputs of the positioning system are the observed Doppler shifts

and a precise orbit model. The SGP4 simplified perturbations model uses periodically up-

dated Two Line Element (TLE) data obtained from the North American Aerospace Defense

Command (NORAD). The proposed solution requires at least 4 LEO satellites in view and

at least 6 Doppler measurements at different moments in time. The location of a static

receiver was estimated in an open sky with a total of 7 satellites in view for 30 minutes.

Using 25 different Doppler measurements in a Least Squares algorithm, the mean error in

the east-direction is significantly higher than the mean error in the north-direction, as shown

in Figure 8.12. The Doppler positioning was further improved by height aiding, resulting in

a largest mean error of 46m and 24m in the east- and north-direction, respectively (also

shown in Figure 8.12). Kalman filtering improves the accuracy even further, achieving a 2D

position error of 22m (1σ) for a static receiver in an open sky. This algorithm was also

tested in a dense forest, which lead to a location estimation error of 108m. Finally, it was

concluded that satellites with high elevations and equally spaced velocity directions are more

suitable for improving the horizontal positioning accuracy, while the subtracks of satellites

at lower elevations should be used to restrict the vertical positioning errors.

Operating the Argos constellation, Kinéis claims to provide a native Doppler positioning

accuracy of 150m with the latest Argos satellites [208]. Optionally, users can combine this

service with GNSS, in order to increase the accuracy if desired. More recently, the system

can determine the position of a mobile transmitter using a single satellite. However, the

resulting accuracy can vary from several hundreds of meters to several kilometers, depending

on the number of transmissions during a single satellite pass. A complete and open manual
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Figure 8.12: Mean and RMS errors of east (blue), north (red) and up (green) directions. Top:

instantaneous Doppler positioning, Bottom: height aiding [187].

of the Argos positioning algorithms is available online [213]. Before 2011, a nonlinear Least

Squares (LS) algorithm was used, which required at least 4 messages to get information

about the accuracy of the position estimation. Since 2011, a new algorithm utilizing an

EKF was introduced, which was proven more accurate and reliable [185]. Moreover, an

error estimate can be provided through 7 so-called location classes, even with a single

message per satellite pass. A location class is defined by the estimated positioning error of a

measurement, as well as the number of messages sent during a satellite pass. A comparison

of both LS and EKF algorithms in terms of location error and number of messages is shown

in Figure 8.13. The reason for the biggest outliers is the incorrect choice between nominal

and mirror locations. Moreover, both algorithms underestimate the positioning error due

to non-normally distributed errors and changing frequency measurement noise, e.g., due to

temperature changes. Furthermore, Lopez et al. developed an EKF algorithm that is able

to switch between multiple motion models based on behavior (e.g., winter sleep versus hunt

in animal tracking use cases), achieving higher accuracy.

Although Orbcomm does not provide an actual positioning service, their satellites can be

used to perform Doppler-based positioning. Due to the lack of accurate LEO products and

incomplete constellations, researchers found a significant gap between expected accuracy

through simulations, and measured accuracy in real-life experiments: While simulation results

show an 11m accuracy with 25 LEO satellites over a period of four minutes, only 2 Orbcomm

satellites are visible to the UE in reality, resulting in an accuracy of 360m over a period of one

minute [197]. When using the Starlink mega-constellation, the authors obtained an accuracy

of 33.5m and improved it to 7.7m by adding an altimeter [190]. Thus, the accuracy of LEO

positioning systems will increase as more constellations will be completed in the future.

Using the Iridium constellation of 66 LEO satellites, Satelles provides a globally operational

PNT solution complementary to GNSS. The Satelles Time and Location (STL) service
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Figure 8.13: Mean and standard deviation errors for the Argos LS and EKF algorithms in different

tracking uses cases (a) with at least 4 messages (b) with less then 4 messages [185].

mostly focuses on accurate timing requirements. While the STL data sheet does not specify

an estimated position accuracy, a test performed by Satelles demonstrated an accuracy of

around 20m in deep indoor environments [29].

Reid et al. observed an interesting trend in positioning accuracy, depicted in Figure 8.14.

By investing in new positioning infrastructure, the accuracy improves by an order of mag-

nitude every 30 years. Following this trend implies that decimeter-level performance will

be achieved by the mid-2020s [30]. Reid, co-founder and CTO of Xona Space Systems,

predicts that LEO-based positioning could provide more than 10 times better accuracy and

100 times better interference mitigation compared to legacy GNSS. This enables applica-

tions such as autonomous driving, which require < 30 cm accuracy and very high reliability.

Therefore, Xona Space Systems aims to provide Pulsar, a navigation system based on 300

dedicated LEO-PNT satellites, which should be operational in orbit by 2026. The system

will employ signal ranging, similar to how GNSS works [181]. However, very few of the

design parameters are made publicly available. Similarly, the Geely Technology Group is

developing the GeeSpace system targeting the automotive industry. While the group aims
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to offer centimeter-level positioning accuracy leveraging enhanced GNSS-based technology,

the exact design parameters are also not yet available in the open literature [183]. Other

players on the market include DDK Positioning and Trustpoint. They are in the process

of designing PNT systems independent of GNSS, aiming to provide accurate, reliable, and

secure LEO-PNT services.

Figure 8.14: Trend in location accuracy of various technologies over the last century [30].

8.2.4.4 Combined approaches

It is common to combine or integrate the aforementioned standalone solutions, often re-

sulting in an increased accuracy.

A first example is the solution provided by Lacuna Space, which comes in many flavors

depending on customer demands. When accurate positioning is required, GNSS satellites

are used to locate the UE and LEO satellites are only used to communicate the estimated

position to the customer, if no LoRaWAN network is available. If a LoRaWAN network

is available, the UE can also be located using the aforementioned LoRa Edge geolocation

solution, which is less accurate but saves more energy. In addition, if no terrestrial network is

available and battery lifetime is important, Lacuna Space offers a Doppler-based positioning

service, along with their LEO satellite communication. Thus, the trade-off between accu-

racy and energy consumption becomes clear. For the native Doppler positioning system,

Lacuna Space itself currently reports an initial accuracy of a few kilometers, which will be

improved with more satellite passes. To overcome this issue, Wi-Fi and GNSS scanning are

integrated [196]. Wi-Fi scanning is used for indoor positioning where satellite signals do not

reach and has a typical accuracy of 30m. Experiments from Irnas show that the passive

GNSS scanner of the Semtech LR1110 leads to an average accuracy of around 30m after

4.5 s, despite some outliers of around 100m [214].

Aiming to track whales in oceans for a long time, LEO Doppler measurements and FastLoc
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GPS experiments were carried out in [179]. While the former is used to communicate the

observables and provide a rough location estimate, the latter is used to determine a more

accurate GPS location. Hence, the feasibility of combining LEO and MEO satellites was

demonstrated.

Finally, it was shown that LEO constellations can be used as a backup positioning system

for GNSS. It was experimentally demonstrated that LEO Doppler measurements can reduce

the position error of INS from 31.7m to 8.8m, 30 seconds after GNSS signals became

unavailable [189]. The authors elaborated on this by evaluating different satellite propagation

models and comparing three navigation frameworks. The combination of a LEO-aided INS

Simultaneous Tracking And Navigation (STAN) framework and a two-body model with

second gravitational zonal coefficient J2 results in a 3D-Root Mean Square Error (RMSE)

and final position error of 5.3m and 5.4m, respectively [192].

8.2.5 Ubiquity of coverage

The ubiquity of coverage indicates the availability of a positioning system on Earth and is

measured in a quantitative (e.g., 90% worldwide) or qualitative (e.g., deep indoor) way.

8.2.5.1 LPWAN

The coverage of LPWAN technologies has been studied extensively, both in simulation and

real-life environments. With the aim to evaluate which technology provides the best coverage

for IoT devices, a simulation study for Sigfox, LoRa and NB-IoT was carried out in a

7800 km2 area [215]. The results show that NB-IoT provides the best coverage, even in

deep indoor environments, with a Maximum Coupling Loss (MCL) of 164 dB. Moreover, the

cellular technology was proven to have the smallest outage probability when the inter-site

distance is equal, followed by Sigfox and LoRa, respectively. A similar study revealed that

NB-IoT outperforms LoRa in terms of coverage, in both urban and rural environments. The

main reason for this is the directivity of NB-IoT antennas, which provide a better coverage

for devices farther away from the eNodeB but near the main beam [114]. Besides the

excellent performance in outdoor environments, extensive measurement campaigns confirm

the deep indoor coverage of NB-IoT provided through existing LTE infrastructure [216].

In general, LPWAN technologies are able to provide excellent coverage in environments where

terrestrial-based infrastructure is installed. Due to the presence of the communication signal,

localization of the transmitter becomes possible within the same range. Despite the rapidly

increasing number of mobile IoT networks, in some countries and especially in the continent

of Africa, there is no cellular LPWAN connectivity yet, as shown in Figure 8.15. Furthermore,

positioning algorithms such as TDoA require a minimum number of receiving gateways.

Therefore, not all LPWAN positioning techniques can be applied in any environment with

coverage.
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Figure 8.15: Coverage of cellular IoT networks worldwide [217].

8.2.5.2 GNSS

In opposition to LPWAN transmitters, GNSS receivers usually benefit from global coverage,

due to the combination of multiple (both global and regional) constellations. Figure 8.16

shows the evolution of the total number and distribution of satellites across each global

GNSS constellation [201].

Figure 8.16: Evolution of number and distribution of operational GNSS satellites [201].

Despite their ubiquitous worldwide coverage, GNSSs have two main limitations in terms
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of coverage: signal blockage and multipath effects. First, GNSS signals do not penetrate

well through walls, reducing the number of satellites in view, making positioning difficult

or even impossible in indoor and underground environments. Second, NLoS propagation

causes multipath effects, which impact the observation quality and thus the positioning

performance, especially in dense urban environments.

Aside from faster position fixes, A-GNSS improves the performance in difficult indoor and

urban environments thanks to the increased receiver sensitivity [206]. However, A-GNSS

and S-GNSS techniques can only be applied in areas where a communication network is

available.

8.2.5.3 LEO

In comparison to GNSS satellites, satellites in lower Earth orbits provide a smaller coverage,

as the smaller distance to Earth decreases the size of the satellite footprint. More specifically,

LEO satellites are generally placed at altitudes below 1000 km, which is around 20 times

smaller than the altitude of GNSS satellites, leading to a significantly smaller footprint. For

example, Figure 8.17 shows the Iridium NEXT constellation which consists of satellites at

an altitude of 780 km. The resulting satellite footprint has a diameter around 3000 km,

whereas a GPS satellite covers an area of 12,000 km in diameter [178]. Thus, many more

satellites are required to cover the Earth in LEO than in MEO. In order to provide global

coverage with only a few LEO satellites, most satellites follow a polar orbit, i.e., flying

over the North and South poles. As the Earth rotates in the meantime, a single satellite will

eventually map out the entire globe without blind spots. Therefore, there is a higher satellite

coverage near the poles than at the equator. Although a single revolution around the Earth

only takes about 100 minutes, there is no permanent coverage everywhere on Earth. To

solve this problem, several companies such as Argos, OneWeb and Starlink are developing

constellations of tens, hundreds and even thousands of satellites. With more satellites in

view, more accurate positions can be computed. Additionally, a higher location update rate

can be achieved, as discussed in Section 8.2.15.

Due to the closer distance to Earth, LEO satellite signals experience less path loss and

deliver more robust signals than GNSS signals, making them more suitable in difficult to reach

environments. A perfect example of the use of LEO satellites can be found in the Automatic

Identification System (AIS) for the tracking and monitoring of vessels. It was found that

when using LEO satellites instead of GNSS satellites, a stronger signal was obtained at the

AIS receiver and coverage was extended [219]. Moreover, LEO satellite signals are able to

penetrate better in indoor environments. Tan et al. claim that LEO satellite SoOP can

work in severe environments such as when rushing to deal with an emergency, fire control

inside deep buildings and in combat [187]. In contrast, companies providing LEO services

experience limited or precluded coverage in indoor environments. To solve this coverage

issue, Lacuna Space is experimenting with the integration of Wi-Fi scanning for indoor

positioning. Once an indoor position is determined, it can be sent to a LEO satellite via

an outdoor gateway. A final strategy is to wait for certain coverage conditions, such as the

delayed transmission of Argos messages when a whale equipped with a UE surfaces after a

dive [179].
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Figure 8.17: The 66 LEO satellites of the Iridium NEXT constellation with their footprints on

Earth [218].

8.2.5.4 Combined approaches

Aiming to track battery-constrained IoT devices, LEO satellites can successfully extend

the coverage of a terrestrial NB-IoT network [69]. The integration of LEO and LPWAN

becomes more popular, as this combination of technologies provides truly global and deep

indoor coverage. Companies integrating LEO and LPWAN solutions include Lacuna Space

(LoRa + LEO), Hiber (LoRa + LEO), Wyld (LoRa + LEO), OmniSpace (NB-IoT + LEO)

and Orbcomm (cellular + LEO). It should be noted that a roaming agreement needs to be

in place with a public or private network where the device operates, unless it concerns an

open public network such as TTN.

Finally, the combination of GNSS and LEO constellations leverages augmentation of GNSS

for navigation. Moreover, LEO satellites can serve as a full standalone backup. Globalstar,

for instance, provides UEs which are able to communicate with LEO and locate with GPS

satellites, in order to enable near real-time tracking in e.g., mountainous areas where no

terrestrial network is available.

8.2.6 Scalability

In 2021, more than 12 billion devices were connected to the Internet of Things, excluding

computers, laptops, smartphones and tablets [1]. With the explosive growth in mind, modern

communication and localization infrastructure requires a scalable design. In this section, I

focus on the scalability of state-of-the-art positioning solutions towards billions of devices.
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8.2.6.1 LPWAN

The scalability of LPWAN localization techniques depends on the technology and required

network infrastructure. A capacity study of the Sigfox, LoRa and NB-IoT technologies

is conducted in [220]. Capacity experiments were carried out in a 8000 km2 dense urban

environment in Denmark, with a varying number of IoT devices per person. The results show

that NB-IoT outperforms Sigfox and LoRa, with an uplink failure probability below 4% in

the 95th percentile, with 10 devices per person. Reasons for this are the superior coverage

of NB-IoT, the use of link adaptations and a licensed band, which in turn leads to less duty

cycle violations and interference. Moreover, NB-IoT benefits from the scalability of existing

LTE infrastructure, currently supporting up to 200k devices per cell with respect to Quality

of Service (QoS) [221]. This number will only increase with upcoming 5G networks. In

contrast, despite LoRa gateways serving up to 50k LoRa end devices [34], the scalability

of LoRa networks has been questioned in literature. Main drawbacks are the higher chance

of collisions due to the use of unlicensed bands and the longer airtime at higher SFs [222].

Moreover, the use of different carrier frequencies in different regions (e.g., 868MHz in EU

vs. 915MHz in US) makes it a challenging task to track an asset worldwide. As discussed

in Chapter 6, Semtech addressed this issue by introducing LoRa at the worldwide available

2.4 GHz frequency band.

Aside from the underlying technologies, the hardware in both end devices and gateways

impacts the scalability of a certain positioning technique. While any LoRa network can

be used for RSS-based ranging or fingerprinting localization, implementing TDoA-based

ranging requires accurate clocks in the surrounding gateways, as well as synchronization

between them. Similarly, AoA-based approaches require gateways equipped with a more

complex antenna array. Deploying such features in a large-scale network is a costly and

time-consuming task for network operators. Therefore, TDoA and AoA are considered less

scalable than RSS in the performance comparison matrix of Table 8.1.

8.2.6.2 GNSS

GNSS in general is considered highly scalable, as it is a broadcast system which can be

used by an infinite number of users. In the past decades, GNSS systems have been scaled

already, which is why no recent literature is questioning the scalability of the positioning

system anymore. Hardware is inexpensive, widely available and produced in large numbers.

The system is used by millions of users on a daily basis. Moreover, the integration of A-

GNSS in our smartphones has become indispensable. Obviously, the scalability of A-GNSS

and cloud processing techniques also depends on the scalability of the used communication

network.

8.2.6.3 LEO

Due to relatively inexpensive nanosatellites or cubesats and decades of satellite technology

advancements, a plethora of companies are currently deploying LEO constellations on a very

large scale. In fact, one of the main reasons for the high interest in large-scale deployments is
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the capacity of LEO constellations. The more satellites in a constellation, the more satellites

are in view and the higher the capacity of the system [178]. However, the high number of

satellites requires a scalable constellation design. A framework to identify an optimal design

for a constellation of cubesats and for different use cases is developed in [172].

With only 8 operational LEO satellites, the Argos system is currently serving 22,000 active

transmitters per month, spread over 100 countries. In addition, more than 60 ground

stations worldwide and 2 data processing centers ensure the scalable delivery of a location

estimate. The upcoming Kinéis constellation of 25 nanosatellites will further increase the

system capacity [223]. Finally, Lacuna Space aims to provide a near real-time service with

240 satellites in orbit. The first step is to launch 24 cubesats by 2023. From the launch

of their commercial service onward, the constellation will continuously expand. In addition,

better revisit times and more capacity will be provided as per market demand.

8.2.7 TTFF

The TTFF is of high priority in GNSS, as it significantly impacts the duration for which the

components needs to be powered and thus energy consumption. For other systems and use

cases, this dimension might be of lower priority. Even though TTFF is mostly used in GNSS

terminology, I use the term here in a wider context to indicate the time it takes to obtain a

first position estimate. This parameter is not only highly related to the energy consumption

profile (see Section 8.2.3), but also important in low-latency and near real-time tracking

applications.

8.2.7.1 LPWAN

In LPWAN positioning techniques, the TTFF can be seen as the sum of the time it takes to

send an uplink message with observables, the Time of Flight, the time for nearby gateways to

receive the messages and add metadata (e.g., timestamps for TDoA), and the time to send

the message from the gateways via the operator’s network and a localization server to the end

user. In this summation, the wireless transmission obviously is the most time consuming,

introducing latency in the communication and hence also in location updates. In LoRa

technology, the SF determines the transmission speed. For instance, sending a LoRaWAN

packet using SF8 takes twice as long as when using SF7. Duty cycle regulations however

limit the amount of airtime in unlicensed bands. For example, using the EU 868MHz band

limitations, the maximum payload size and 250 kHz bandwidth, the maximum airtime equals

3608.6ms [156]. While NB-IoT transmitters do not have to cope with these limitations,

the time it takes to get location information depends on various parameters and sources of

latency, including the time to wake up the UE from PSM and synchronize with the network,

payload size, subcarrier spacing, multi-tone capability, the chosen resource unit, the number

of repetitions and the efficiency of the location estimation algorithm. This results in an

absolute minimum transmission time of 1ms, and a worst-case latency of 40,960ms [224].

In general, empirical experiments teach us that LPWAN location estimates can be produced

within a few seconds after transmission.
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8.2.7.2 GNSS

There are three requirements for a first fix in GNSS positioning: signal acquisition, availability

of ephemeris, and availability of a precise time of week. The TTFF of a conventional GNSS

receiver can be split into the receiver warm-up time, the acquisition time, the settling time

for code and carrier tracking, the navigation ephemeris read time, the time to retrieve the

system time reference and the time to compute the navigation solution [225]. Information

available to the receiver at the start-up will influence the time spent at these different

stages, especially acquisition and navigation ephemeris read time. The need to update this

information depends on how good the information can be maintained, i.e., the validity of the

ephemeris or almanac, and accuracy of the real-time clock. When there is no information

available (i.e., cold start) the receiver has to go through all the stages mentioned before

and has to search the full frequency-code delay search space during acquisition. This can

take up to several minutes. When there is coarse information on the position, the time,

the frequency and the satellite positions (e.g., based on the almanac), the search space

can be constrained leading to a decreased TTFF of around 30 s (i.e., warm start). In

case of accurate knowledge of all the factors, the TTFF can be reduced to 1 s (i.e., hot

start). The TTFF is also influenced by the environment, especially during a cold start.

Weak signals or signal blockage lead to a longer TTFF because of possible data bit errors,

which extends the navigation data read time considerably [193]. The usual estimations from

chipset manufacturers for the TTFF are 30 s for a cold start and 1 s for a hot start.

Several techniques have been developed to reduce the TTFF. Through an external commu-

nication link, an A-GNSS receiver retrieves aiding information such as ephemeris, almanac,

satellites status, precise network timing, and a coarse approximate position based on e.g.,

network cell ID. Several chip manufacturers, commercial service providers and scientific or-

ganizations have implemented A-GNSS services and platforms to ease the provision of aiding

information.

Alternatively, a receiver can implement self-assistance. This technique is similar to conven-

tional A-GNSS services, but aiding information is computed at the UE based on information

received in the past. A UE can compute ephemeris with a validity interval up to several

weeks which is much more accurate than conventional almanacs. In order to compute orbits

predictions, the UE has to integrate satellite motions by modeling all forces acting on GNSS

satellites [226]. Although this process can be power consuming, self-assistance can reduce

the TTFF by a factor of up to 5 times [227]. More recent studies show how neural networks

are able to more accurately predict orbits with less computational effort [228].

Coarse-time positioning circumvents the need for decoding the time of week, maintaining

the time by an accurate receiver clock or receiving time assistance from A-GNSS (better

than 1 ms) and thus reduces the time by the waiting time for decoding the time of week in

case of coarse (seconds to minutes) time knowledge [193]. Using A-GNSS or self-assistance

together with coarse-time positioning, the TTFF can be reduced by constraining the search

space during acquisition, which reduces the time and improves the sensitivity, by eliminating

the need to decode satellite ephemeris and the need to wait for decoding the satellite time

of week.

Finally, cloud-based S-GNSS techniques do not require any of the aforementioned infor-
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mation at the receiver side. Observables are sent to the cloud, where the latest aiding

information is widely available.

8.2.7.3 LEO

In satellite IoT positioning applications, the TTFF can be defined as the sum of the following

terms:

1. The difference in time between the request of a position update and the passing of a

satellite above the UE,

2. The time for a UE to reach a satellite (transmission time),

3. The time to relay the message from the satellite to a ground station,

4. The time to calculate a position in a processing center.

While the latter term is negligible when using enough processing power, the other three

terms can have a significant impact on the total TTFF.

For the first term, the availability of LEO satellites plays an important role to assess the

overall latency of the positioning system. Because of the relatively small footprint of LEO

satellites (see Section 8.2.5), a UE often has to wait to transmit an uplink message until a

satellite passes. Therefore, a first Doppler location estimate can only be produced when a

satellite is in view. For the Iridium constellation of 66 satellites, each satellite orbits the Earth

about every 100 minutes. This subsequently results in an average satellite revisit time of

around 9 minutes, provided that the UE did not move. Thus, in the worst-case scenario, the

satellite revisit time of an Iridium transmitter can increase up to 9 minutes [229]. Obviously,

the satellite revisit time reduces by adding more LEO satellites to the constellation, which

is an ongoing task in many constellations. For more information about the satellite revisit

time, I refer to Section 8.2.15.

The second term refers to the total transmission time through space. LEO satellites are

closer to Earth and therefore introduce a lower Round-Trip Time (RTT) as when compared

to GNSS satellites. Even for the more uppermost LEO satellites at 2000 km, the RTT is

only 13.3ms [229]. According to Samsung, a LEO constellation below 1580 km has the

potential to be faster than Earth-bound fiber optic networks [178].

The third term accounts for the time needed by the satellite to pass over a ground station

and forward data such as Doppler measurements to it. In the case of Lacuna Space, this

typically takes a few minutes, with a maximum delay of 12 hours. A latency of a few minutes

will be guaranteed soon, when more ground stations are deployed around the world.

In summary, the TTFF of LEO positioning systems can vary significantly, depending on

the number of satellites and ground stations worldwide. In the near future, this number is

expected to rise in a rapid fashion, achieving a latency of a few minutes.
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8.2.8 Data rate & bandwidth

Table 8.5 lists the bandwidth and data rate for each technology considered in this work. In

this section, I discuss how these parameters influence the positioning performance. However,

a lower or higher bandwidth and data rate are not necessarily beneficial or disadvantageous

for the overall positioning performance or power efficiency, hence the gray colored (meaning

not applicable) row in Table 8.1.

Table 8.5: Bandwidth and data rates for each positioning technology.

Category Technology Bandwidth Data rate

LPWAN

Sigfox
0.1 kHz (UL),

0.6 kHz (DL)

100 bps (UL),

100 bps (DL)

LoRa 125/250/500 kHz 300 bps - 50 kbps

NB-IoT 200 kHz 200 kbps

GNSS

GPS
2.046 MHz (L1),

20.46 MHz (L5)

50 bps (L1),

50 bps (L5)

Galileo

32.0 MHz (E1B/C),

24.0 MHz (E5a),

24.0 MHz (E5b)

125 bps,

25 bps,

125 bps

GLONASS
1.022 MHz (G1),

1.022 MHz (G2)

50 bps (G1),

50 bps (G2)

BeiDou
4.092 MHz (B1),

24.00 MHz (B2)

50 bps (B1),

50 bps (B2)

LEO

Iridium 31.5 kHz
4.8 kbps (current),

<512 kbps (NEXT)

Argos 110 kHz

4.8 kbps (UL),

124 bps (UL, VLD-A4),

400 bps (DL)

Orbcomm 15 kHz 4.8 kbps

Lacuna Space Unknown
Up to 20 50-byte uplinks

per satellite pass

8.2.8.1 LPWAN

Out of all LPWAN technologies, the UNB technology of Sigfox has the smallest bandwidth

of only 100Hz uplink and 600Hz downlink. Such narrow-band signals are not feasible to

perform TDoA positioning. Together with a data rate of 100 bit/s, only 12 bytes can be

sent in a single Sigfox uplink message. Note that this is just enough to communicate a

traditional GNSS position.

While the bandwidth and data rate are fixed in many LPWAN technologies, they can be

configured in LoRa. By increasing the SF from 7 to 12, the data rate decreases and a longer

airtime is required. On the upside, the signal becomes more robust against interference,

leading to an extended communication range. Several tools exist to calculate the airtime

depending on the number of input bytes and chosen configuration (i.e., SF, bandwidth and
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region) [156]. The SF can be configured statically on the UE with the aim to optimize

data rate, airtime and energy consumption. Alternatively, the SF can be chosen dynamically

by the network through an ADR mechanism, which takes into account the Signal-to-Noise

Ratio (SNR) and the number of gateways that received the most recent uplinks.

As specified in 3GPP Release 13, NB-IoT occupies a frequency bandwidth of 200 kHz, which

corresponds to a single LTE resource block. Within a licensed frequency band, NB-IoT can

be deployed ‘in-band’, in the guard band or as a standalone operation. In high contrast to

Sigfox and LoRa, the maximum data rate of NB-IoT is 200 kbit/s and an unlimited number

of messages can be sent, with a maximum payload length of 1600 bytes per message [34].

This subsequently enables the faster and unlimited communication of observables of e.g.,

S-GNSS receivers to the cloud.

8.2.8.2 GNSS

Depending on the chosen GNSS technique, there are different requirements for data down-

load to the IoT device and upload to the cloud. Data to be downloaded include:

• GNSS almanac (i.e., coarse satellite orbit and clock information), used to improve the
acquisition performance by constraining the frequency search space. The almanac is

decoded from the GNSS navigation messages or received via external means.

• GNSS ephemeris (i.e., precise satellite orbit, bias and clock information), required to
compute a position. Ephemeris can be directly obtained via the signal in space or via

external means as well.

• Coarse position and fine time, either derived from a terrestrial network or obtained via
an assistance service in the cloud.

There exist a variety of assistance data services, which differ in the volume of the data set

and its validity period, which in turn determines the frequency at which updates have to be

sent to the UE. Most services providing ephemeris data reach a validity period of several

days with a few kB of assistance data [230, 209].

In the opposite direction, data to be transferred from the receiver to the cloud can include

a time-stamped position, a full set of pseudorange and Doppler observations or a GNSS

signal snapshot. For transmitting a time-stamped position, a minimum payload size of 20B

is required and can be extended with information on DOP and velocity. As an example for

the size of an observation set, the Semtech LR1110 receiver transmits pseudorange and

Doppler observations using 34 bits per satellite and a small header. For 20 satellites this

would be equivalent to around 85B.

The size of a GNSS snapshot should be based on a trade-off between the snapshot length,

the sampling frequency and the number of quantization levels. The higher the sampling

frequency the better the resolution of the code phase and thus the better the resulting

positioning accuracy. However, a complete code length of the replica is favorable in order

to ease the reconstruction of the full pseudorange. The snapshot length L as well as the
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sampling frequency fs define the data size S. For a complex signal the size of the data

expressed in bit is defined by:

S = 2 ·Q ·L · fs , (8.1)

where Q represents the quantization. For example, a 20ms snapshot using a sampling

frequency of 20MHz and 8-bit quantization results in a complex signal (I and Q) of 800 kB.

If the sampling frequency is reduced to 4MHz, only 160 kB needs to be communicated. The

relationship between snapshot length, sampling frequency and snapshot size is illustrated by

Figure 8.18 for an 8-bit quantization.

Figure 8.18: The relationship between snapshot length, sampling frequency and snapshot size for

an 8-bit quantization [212].

8.2.8.3 LEO

Depending on the duration of a LEO satellite pass over a UE, a minimum data rate should

be achieved, otherwise both uplink and downlink data can be lost. For example, in the cases

of Lacuna Space and Argos, a passing satellite can only be reached for a duration of around

two and ten minutes, respectively.

Argos uplink messages are sent at a data rate of 4.8 kbit/s. Each message contains a

preliminary synchronization sequence, the total message length, transmitter identification

number, user data and a checksum. Since the 3rd generation of the Argos system, two-

way communication is supported. Downlinks sent at 400 bit/s are used for acknowledgement

(ACK) of uplink messages, as well as for sending data such as timing information and satellite

ephemeris data, in case the UE wants to locate itself or assist a GNSS receiver. Due to the

introduction of ACK messages, redundant messages are no longer required. Moreover, the

two-way communication enables customers to send commands to the UE. Such downlink

messages may contain up to 128 bits by 8-bit increments. As an example, a command can

be sent to the UE to increase the transmission frequency for a certain amount of time if

more location updates are desired.

Apart from the aforementioned data rates, Argos has also developed a Very Low Data rate

standard for the Argos-4 system (VLD-A4). This uplink standard has been designed for
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very low-power transmitters (e.g., wildlife trackers) that transmit very small uplink mes-

sages. VLD-A4 has a modulated bit rate of 200 bit/s, which corresponds to a user bit rate

of 124 bit/s. The message structure is shown in Figure 8.19. For a very short message

containing only the 28-bit ID, the total transmission time equals 515ms. A maximum of

56 bits of user data can be appended to this message, resulting in a transmission time of

965ms. The message repetition period is minimum 30 seconds and can be configured by

CLS according to the application and the geographical position of the UE. The VLD-A4

standard is also integrated in the ARTIC-R2 chipset. Finally, while the current bandwidth of

Argos-3 equals 110 kHz, this number will be multiplied with a factor 8 in the future Argos-4

system of Kinéis [223].

Pure Carrier
CW

Short VLD-A4 message

Sync
pattern
24 bits

Message
length
2 bits

ID
28 bits

Tail
6 bits

Long VLD-A4 message

Pure Carrier
CW

Sync
pattern
24 bits

Message
length
2 bits

ID
28 bits

Tail
6 bits

Data
28 bits

Data
28 bits

Tail
6 bits

Tail
6 bits

160 ms 120 ms 10 ms 225 ms

160 ms 120 ms 10 ms 675 ms

Figure 8.19: Message structure of the Argos VLD-A4 transmission standard.

Due to the way transmission works over a LEO satellite network, rather than throughput or

data rate, it can be more useful to discuss message size and the number of messages per

satellite pass. In the case of Lacuna Space, the maximum message payload size, i.e., ex-

cluding header data, varies between 45 and 125 bytes. The Long Range Frequency Hopping

Spread Spectrum (LR-FHSS) modulation introduced for satellite IoT allows larger payloads

at high power and low data rates. In theory, a UE can transmit 20 messages of 50 bytes

(or equivalent longer messages) during a single satellite pass of 2 minutes. However, as in

terrestrial LoRa networks, local operating conditions apply, limiting the airtime in several

regions. This means that in Europe, for example, only 2 messages of 50 bytes or at most

one 125-byte message can be sent per satellite pass.

8.2.9 Interoperability

The degree to which technologies can co-exist or even co-operate on the same UE without

interfering with each other is referred to as the interoperability. In this section, I elaborate

on the opportunities of combining LPWAN, GNSS and LEO technologies into a single so-

lution, aiming to achieve a better overall positioning performance. A summary is shown in

Figure 8.20.
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Figure 8.20: Interoperability of LPWAN, GNSS and LEO positioning systems.

8.2.9.1 LPWAN

A multiple Radio Access Technology (multi-RAT) UE can communicate with multiple low-

power terrestrial networks. By implementing such a multimodal communication architecture,

a UE is able to switch to an optimal localization method, depending on the context and

constraints of the active wireless technology, as demonstrated in [72]. For example, a UE

is accurately located on a construction site using TDoA in a private LoRa network, while

during transport, RSS-based localization in a public Sigfox network is used to save energy.

8.2.9.2 GNSS

Augmenting GNSS positioning with LPWAN or LEO communication technologies creates a

myriad of opportunities for energy-efficient positioning in an IoT context. A UE becomes

capable to communicate a location estimate to the end user. Moreover, raw observables

of S-GNSS receivers can be communicated to the cloud in order to save energy. In the

opposite communication direction, assistance data can be provided to the GNSS receiver

through a terrestrial communication link or via a LEO satellite network, successfully reducing

the TTFF. Due to its effectiveness and efficiency, many LPWAN chip manufacturers provide

built-in A-GNSS support. The combination of GNSS and LEO satellite communication is

demonstrated by GlobalStar, which integrates LEO and GPS satellites for near real-time

tracking in mountainous areas where no terrestrial network is available.
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8.2.9.3 LEO

Terrestrial LPWANs can aid LEO-based positioning systems by communicating assistance

data, such as a rough location estimate and orbital parameters of LEO satellites, as well as to

exchange data from pseudorange and Doppler measurements. The integration of LPWANs

for satellite IoT is being investigated by Lacuna Space, Fleet Space, OmniSpace, Hiber

and many more companies. By doing so, the coverage of terrestrial LPWANs is extended

by leveraging constellations of LEO satellites, resulting in a myriad of opportunities in the

satellite IoT market. Potential use cases include global energy-efficient asset tracking and

monitoring. Finally, LEO Doppler positioning can serve as a fallback solution for GNSS

positioning in case the UE is located in a harsh environment where GNSS signals do not

reach.

8.2.10 Communication of observables

A next dimension indicates whether there is a possibility to communicate the estimated

position to the end user, or the need to communicate observables to a remote location

processing system.

8.2.10.1 LPWAN

The approach in almost all LPWAN positioning techniques is to communicate one or more

observables over the operator’s network to a certain backend server. Observables in these

uplink communications typically include RSS measurements, accurate timestamps, sensor

readings etc. These features are either collected as nearby gateway metadata or message

payload data and are forwarded over the Internet to a server acting as a localization engine,

where the actual position of the UE is calculated. Finally, the location estimate is often

visualized on a map in the end user application.

8.2.10.2 GNSS

In essence, observable-based GNSS techniques do not provide a means to communicate ob-

servables or a position estimate to an end user. Due to this self-localization, a GNSS tracker

is often equipped with additional LPWAN or LEO communication hardware, as discussed in

Section 8.2.9. Prominent examples of commercial services combining local and cloud pro-

cessing while optimizing the amount of data to be exchanged are u-blox ‘CloudLocate’ [205]

and Semtech ‘LoRa Cloud’ [231]. In the future, it is expected to see an increasing trend

towards cloud processing and the integration of LPWAN and LEO in GNSS.
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8.2.10.3 LEO

In contrast to GNSS, native positioning using LEO satellites leverages the communication

link between the satellites and the ground stations to forward the location estimate to

an end user application. For example in the Argos system, Doppler measurement data is

obtained through the uplink connection to the satellite, relayed to receiving stations on Earth

and forwarded to Global Processing Centers (GPCs), where the location is calculated and

distributed to end user applications. Alternatively, this data can be stored in the memory of

Argos chipsets for later retrieval, successfully saving energy and increasing battery lifetime.

Similarly, satellites from Lacuna Space send frequency and timing information to a solver at

the Lacuna Space backend, where the geolocalization is performed.

8.2.11 Index of technology readiness and maturity

Both academic and industrial research introduce novel positioning technologies and improve

existing algorithms to push the state-of-the-art forward. However, every technology or

algorithm faces challenges in terms of design, implementation, production and large-scale

adoption. These challenges are included in the index of technology readiness and maturity,

also referred to as the Technology Readiness Level (TRL).

8.2.11.1 LPWAN

Communication through LPWAN has been widely adopted, with many studies evaluating

the performance and applications demonstrating the possibilities [232, 14]. Among the

first major long-range energy-efficient networks, Sigfox and LoRa(WAN) have proven their

excellent communication performance for more than a decade. Since 3GPP Release 13 in

2016, the NB-IoT standard has contributed significantly in the cellular IoT market. However,

localization with LPWAN is not as mature as LPWAN communication. In the early years

after the release of the first LPWAN technologies, mostly academic research was devoted to

RSS-based and timing-based positioning algorithms with these novel technologies, in order

to remove the need for a GNSS receiver in low-power IoT applications. Nowadays, several

industry leaders provide a cloud positioning solution, e.g., the LoRa geolocation service of

Semtech. While the standardization of e-Cell-ID and OTDoA in NB-IoT is finalized, the

OTDoA feature is not widely available yet, as it requires an upgrade of the NB-IoT base

station network as well as new network components, which is a challenging and costly task

for network operators.

8.2.11.2 GNSS

Since the development of GPS by the US Department of Defense in 1967, GNSS technolo-

gies have evolved significantly. GNSS receivers nowadays are highly available and inexpensive,

and the satellite constellations are publicly accessible at no charge. As duty cycling and A-

GNSS are highly integrated in modern GNSS chipsets, these GNSS techniques are considered
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highly mature. Snapshot and cloud processing algorithms, contrarily, are currently gaining

popularity and completing the breakthrough in the IoT market. The fusion of these GNSS

techniques with LPWAN technologies results in ubiquitous, energy-efficient and accurate

positioning applications. As the transformation to cloud processing is currently ongoing,

these positioning techniques are not considered highly mature yet, but it is expected that

they will be widely adopted in the near future.

8.2.11.3 LEO

Similar to LPWAN, communication using LEO satellites can be considered mature, while

satellite IoT localization is still in its infancy. A myriad of companies already provide satellite

communication for decades. For instance, mobile communication via Iridium satellites is

provided since 1998. Furthermore, newer LEO constellations such as Starlink aim to provide

global high-speed Internet communication. Only a handful of companies have the primary

objective to provide native positioning and navigation for the satellite IoT market. The Argos

system can be considered as the most mature among the currently existing LEO positioning

solutions. Several Argos chipsets and development kits are commercially available, and the

Doppler positioning algorithm has been evaluated and optimized a few times. Nevertheless,

as in many cases, the LEO constellation is not completed yet. Therefore, there is no 24/7

coverage anywhere on Earth yet. However, this will change rapidly as thousands of LEO

satellite launches are planned in the coming years.

8.2.12 Standardized or proprietary

This section briefly specifies whether a protocol or technology has been standardized or

made proprietary. This dimension does not influence the positioning performance, hence the

corresponding gray row (meaning not applicable) in Table 8.1.

8.2.12.1 LPWAN

In the category of LPWAN technologies, there is a clear distinction between standardized

and proprietary technologies. On the one hand, cellular technologies such as NB-IoT and

LTE-M are based on 3GPP standards. The specification of these licensed technologies

was frozen in Release 13 and is continuously updated in next releases, adding new features

such as e-Cell-ID and OTDoA positioning in Release 14 [233]. On the other hand, several

proprietary LPWAN technologies have arisen. Sigfox creates its own devices which are

basically a ‘black box’ for end users. In the case of LoRa, only the signal modulation has

been made proprietary, while LoRa end devices are licensed by Semtech and can be developed

by other manufacturers. Moreover, LoRa standards are created and improved by the LoRa

Alliance.
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8.2.12.2 GNSS

As a mature positioning technique, GNSSs have been standardized in different specifications

such as the GPS SPS performance standard. In order to cope with messages originating

from multiple constellations on a single UE, the International GNSS Service (IGS) introduced

a Receiver Independent Exchange Format (RINEX) for raw satellite navigation data [234].

While A-GNSS is a well-established technique described in several standards [235], the con-

cept of S-GNSS has not been fully standardized yet. Ad-hoc methods of digitized data

formats do not encourage interoperability and therefore need standardization. To this end,

the Institute of Navigation (ION) aims to develop a specification for standardized metadata

and formats. Adoption of this standard both by the data collection hardware and the SDR

receiver would enable an SDR to process data from multiple sources seamlessly [236].

8.2.12.3 LEO

The rather immature positioning techniques such as Doppler positioning using LEO satellites

have not been standardized yet. With the aim to speed up the development and integration

with other services, several industry leaders decided to move towards an open-source system.

For instance, the reference design and specification of Argos transceivers is fully open-source,

as well as the antenna reference designs. Lacuna Space will also open-source the design of

their devices, helping customers with the integration of other sensors into their system.

8.2.13 UE cost

The UE cost is defined as the total cost to use a certain positioning technique, including the

cost for hardware, network access and positioning services. This section is highly related to

Section 8.2.6, as the overall cost evolves when scaling up to billions of devices.

8.2.13.1 LPWAN

In 2020, the average terminal cost for Sigfox, LoRa and NB-IoT was $2-3 [9]. These ultra-
low device costs are due to the massive number of IoT devices worldwide and the rapidly

increasing interest to connect nearly everything to the Internet. Additionally, in the case

of cellular IoT, a Subscriber Identity Module (SIM) or e-SIM is required in order to register

to the network. The subscription cost varies per region and operator. As an example,

the average cost of a data SIM card from a Belgian NB-IoT network operator equals €3
and the message transmission fee is in the order of €1/MB per SIM. Similarly, LoRaWAN
end users need to pay a subscription cost, which is determined by the network operator

and may include services such as the LoRa Geolocation Application Programming Interface

(API). The subscription allows the end user to send a limited number of messages over the

LoRa network each month. If this number is exceeded, an additional cost will be charged,

depending on the policies of the operator. Alternatively, some LoRa operators such as TTN

offer a connectivity service with fair-use policy free of charge. Lastly, AoA-based positioning
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does not impact the overall UE cost, as the antenna arrays are placed at the gateway side,

which can be low cost units as well [95].

8.2.13.2 GNSS

The price of a state-of-the-art GNSS receiver varies significantly depending on its capabilities.

As an example, the u-blox MAX-M10S is a single-frequency multi-constellation GNSS module

designed for low-power IoT applications and costs $21 when buying less than 10 units.
Support for A-GNSS is often provided at almost no extra cost, as it is commonly integrated

in nearly all modern GNSS chipsets. Moreover, it was shown that by integrating a GNSS

receiver with cellular IoT connectivity on a single chip, the cost of the Bill Of Materials

(BOM) can be reduced significantly [203]. Although GNSS hardware is more expensive than

LPWAN hardware, no additional service cost needs to be paid in order to use the satellite

broadcast systems. Furthermore, GSA and Ubiscale aim to deliver a Galileo service that

integrates NB-IoT in the ‘Galileo-of-Things’ project, enabling lower chipset cost [201, 237].

Snapshot processing GNSS receivers can be less expensive than an ordinary GNSS receiver,

as the acquisition of GNSS signals only requires an RF frontend [195]. Therefore, an RTL-

SDR dongle of a few euros can be sufficient, while more optimized GNSS-specific frontends

and SDRs can be rather expensive [238]. Finally, it is worth mentioning that the actual

position computation in the cloud also comes at a cost. In an analysis of cloud GNSS

approaches, the economic cost of the required cloud resources was studied. For a cloud

GNSS sensor sending raw snapshot samples of a 15ms duration every hour to a reserved

server, the annual cost per sensor was estimated to be $1.46 [194].

8.2.13.3 LEO

Similar to the cost of LPWAN usage, the cost of satellite IoT solutions is the sum of the

hardware cost, a subscription cost and a message cost. The hardware cost varies depending

on and the level of optimization. For example, a multipurpose low-cost Very High Frequency

(VHF) dipole antenna and an inexpensive RTL-SDR dongle can be used to sample LEO

signals in a receiver-sided Doppler positioning approach [197]. However, if a more robust

device or reliable positioning service is required, an off-the-shelf solution is recommended.

For example, the Argos Receiver Transmitter with Integrated Control (ARTIC) R2 chipset

costs €47, while the ‘plug-n-play’ KIM-1 module costs €50. Due to the all-in-one design,
the Semtech LR1110 chip only costs €8.84. Furthermore, the subscription and message
costs depend on the operator’s business model. For example, Orbcomm charges a monthly

message fee of $7 to get access to the OG2-M network on top of the $1.35 per kB sent.
Lacuna Space only charges $5 per month per UE, but this excludes the LoRa geolocation
service. Being a non-for-profit system, Argos offers unlimited usage of the satellite network

for €63 per month. Finally, it is important to note that these subscription costs are quite
expensive when compared to LPWAN subscription costs. Therefore, it is more cost-effective

to exchange data over a terrestrial link, if available.
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8.2.14 UE complexity

In order to determine a position, a set of hardware components such as chipsets, sensors

and antennas are required. All of these increase the computational complexity of the UE,

which is covered in this section.

8.2.14.1 LPWAN

LPWAN end devices are designed with low complexity in mind. First, this can be observed in

the network architecture. LoRa networks, for instance, use a simple star topology, instead

of more complex meshing topologies. In NB-IoT, a UE only communicates with a single

serving cell, eliminating the need to scan for multiple nearby cells if a good connection

is established. Second, RSS, TDoA and AoA positioning approaches do not increase the

complexity of the UE, as they only require more complexity at the gateway side. Hence,

zero location processing is performed on the device itself. Lastly, a multi-modal LPWAN

localization approach does increase the overall UE complexity as intelligent radio switching

mechanisms need to be implemented and executed by the device [19].

8.2.14.2 GNSS

When comparing single- to dual-frequency GNSS receivers, the complexity of the latter more

than doubles. This is due to the fact that the UE antenna must support both frequencies,

a second saw filter needs to be implemented and the signal needs to be recombined again

to send down the coax to the receiver [239].

When adding LPWAN or LEO connectivity to GNSS-enabled UEs, the complexity changes

depending on the used technique. For instance, adding A-GNSS features requires incor-

porating information into the GNSS tracking loops. In contrast, S-GNSS receiver designs

are usually simpler due to the absence of signal processing blocks. In this case, the reduc-

tion in complexity due to the remote processing capability is more significant. However,

increasing the sampling frequency of a S-GNSS receiver increases the pseudorange accuracy

after the acquisition in exchange for more computational burden. The trade-off between

computational complexity and collaborative GNSS hybridization is further described in [240].

Several techniques are being investigated to further decrease GNSS complexity. The Ac-

curate GNSS Positioning for Low-power and Low-cost Objects (APOLLO) project aims to

provide a Galileo-based location solution using a 100% software GNSS receiver. By getting

rid of chipset constraints, the goal is to reduce device complexity by a factor 10 [201].

Furthermore, a Compressed Sensing (CS) technique requires a smaller number of samples,

reducing the amount of memory needed [241].
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8.2.14.3 LEO

Similar to LPWAN, position calculation in LEO satellite systems often occurs in the cloud,

successfully reducing the UE complexity. Many Doppler positioning systems use an uplink

communication approach, where the final UE position is estimated in ground processing

centers. For example, Lacuna Space uses standard LoRa devices such as the Semtech

LR1110 with a slightly different modulation and antenna to communicate with their satellites.

Moreover, a GNSS receiver in LEO systems could be used to steer the LEO clock, reducing

the onboard clock requirement and complexity [178]. In high contrast, capturing SoOP from

multiple LEO constellations with an SDR at the UE side requires local signal processing,

adding computational complexity.

8.2.15 Location update rate

Where some positioning applications need real-time and fast location updates (e.g., in

vehicle-to-vehicle communication), others only require a location update once a day. In-

dependent of the application, I here discuss the maximum achievable location update rate

for every technology.

8.2.15.1 LPWAN

In unlicensed frequency bands, the amount of airtime is regulated in order to reduce inter-

ference from nearby communications and to maintain a fair use policy. For example, Sigfox

and LoRa transmitters should respect the 1% duty cycle limitation in the EU 868MHz band.

In the case of Sigfox, this results in the transmission of maximum 140 uplink messages per

day. LoRa operators (e.g., TTN) can implement even stricter limitations. In opposition

to unlicensed LPWAN technologies, cellular IoT technologies such as NB-IoT do not face

these duty cycle limitations, enabling the possibility to produce fast location updates, e.g.,

every second if needed.

8.2.15.2 GNSS

One major benefit of traditional GNSS receivers is their ability to produce fast location

updates locally. Once a receiver has acquired a first fix and goes into tracking mode, it

can usually produce a position estimation at an update rate of 1Hz or higher. However,

in order to communicate the position update to a remote user, the system depends on the

location update rate of the LPWAN or LEO communication channel. Therefore, the delay

between the production of the GNSS coordinates and the reception of the location update

by the remote user should be taken into account in (near) real-time tracking applications.

Similarly, the raw observables sent to the cloud in a S-GNSS approach are only valid for a

limited amount of time.
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8.2.15.3 LEO

The location update rate of LEO positioning systems is determined by the number of satellite

passes per day, and thus by the number of satellites in orbit. The satellite revisit time is

defined as the period during which a UE at a given location has to wait until the next satellite

passes to transmit a message. Due to the near-polar orbit of many LEO satellites, the

satellite revisit time shortens with latitude. For example, an Argos satellite is able to receive

messages from a UE at the poles 14 times per day, while this number decreases when the UE

moves towards the equator. In the future constellation of 25 nanosatellites, Kinéis expects

the average satellite revisit time to drop below 15 minutes [223]. A similar simulation carried

out by Lacuna Space shows that 240 LEO satellites are sufficient to provide connectivity

every five minutes. When using SoOP from multiple LEO constellations, more frequent

location updates can be calculated locally. For instance, when the Starlink constellation

of almost 12,000 is finished, a median number of 100 satellites will be in view at any

latitude [178]. Finally, it should be noted that combining LEO and LPWAN communication

enables a higher overall location update rate.

8.2.16 Local or remote processing

A final dimension of this survey indicates whether the localization algorithm or other pro-

cessing steps are performed locally on the UE or remotely in the cloud.

8.2.16.1 LPWAN

When applying localization algorithms such as RSS ranging or TDoA in terrestrial networks,

oftentimes the UE is only required to send uplink messages with network statistics or sensor

data. All further processing is performed on a localization server in the cloud, which in turn

forwards a location estimate to the end user application. The involved processing steps

may include determining the range to each gateway leveraging path loss models, RSS data

or accurate timestamps, combining this data with AoA and sensor data in a sensor fusion

algorithm, and applying a multilateration algorithm to determine a final coordinate.

8.2.16.2 GNSS

In high contrast, traditional GNSS receivers perform all processing steps locally, ranging

from full signal acquisition to pseudorange generation and coordinate production. However,

given the communication and low-energy requirements of IoT as, there is an increasing

interest towards remote processing of GNSS signals. Recent GNSS receivers do not only

integrate LPWAN or LEO communication, but also enable cloud processing. As described in

Section 8.1.3, S-GNSS receivers capture small portions of a signal, digitize them and send

them over a communication channel to the cloud for further processing. As an early adopter

of this technique, Ubiscale provides a solution which shifts power-draining GPS (and Wi-Fi)

processings to the cloud to minimize size, power consumption and cost of trackers [237].
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8.2.16.3 LEO

Location processing in LEO systems can be performed either locally or remotely, depending

on the architecture of the positioning approach. When the satellites perform Doppler mea-

surements based on uplink transmissions from the UE, the data is forwarded via a ground

station to a processing station on Earth, where the location of the UE is calculated. On the

other side, when a UE scans for all available LEO satellite signals, an algorithm on the UE

determines the position of the UE itself. While the former approach requires less on-device

processing and thus lower UE complexity, the latter does not require uplink communication

to the satellites. In practice, most systems such as the one of Argos and Lacuna Space

work using the first approach (i.e., by sending precise frequency and timing information

from Doppler measurements at the side of the satellites to a geolocation solver on Earth),

as this approach eases the communication of the estimated location to a remote end user.

8.3 Trade-offs during use case design

The performance matrix as shown in Table 8.1 and discussed in the previous sections can

serve as a methodology to identify an optimal positioning solution when designing an IoT

positioning application. This section interprets the results of the performance matrix and

discusses important design trade-offs by providing example use cases.

Most prominent is the trade-off between positioning accuracy and energy consumption.

The vast majority of other trade-offs directly or indirectly impacts this trade-off. Hence,

an application designer should choose a certain positioning technique primarily based on the

position accuracy and energy requirements. Consider a construction company aiming to

monitor valuable equipment such as heavy machinery and cranes across several sites. Be-

cause the battery lifetime of the trackers on the equipment is of utmost importance, LPWAN

positioning may be the best choice in this case. As the sites are far away from each other, the

positioning accuracy of several hundreds of meters is acceptable. However, if a higher accu-

racy is required, other techniques should be used. Similarly, a wildlife tracker may perform

LEO Doppler positioning or snapshot GNSS rather than traditional GNSS to save energy.

In high contrast, the battery of a pet tracker can be replaced more frequently, allowing for

meter-level GNSS accuracy. Furthermore, S-GNSS techniques provide great flexibility. If a

higher positioning accuracy is desired, the snapshot size is increased and more observables

are communicated to the cloud, at the expense of additional energy consumption.

In a myriad of positioning use cases, it is beneficial in terms of UE cost, computational com-

plexity and energy consumption to perform the location processing in the cloud. Moreover,

the final location estimate often needs to be available to remote end users. For these rea-

sons, the cloud processing paradigm has been established in the LPWAN and LEO markets

and is gaining popularity in mass-market GNSS receivers. Notwithstanding the foregoing,

there also is a growing interest towards local processing of LEO satellite SoOP, as this ap-

proach does not require communication, and signals from multiple LEO constellations can

be used, improving the coverage in time and space, as well as the location update rate. In

the wildlife tracking use case, for example, location and sensor data can be processed and

stored locally. Afterwards, the logs can be retrieved manually or requested occasionally to
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save on communication energy.

The choice for a certain communication technology comes along with its data constraints,

such as data volume, bandwidth and data rate. Unlicensed terrestrial networks need to

comply with regional duty cycle regulations and need to deal with limited payload sizes, data

rates and location update rates. Therefore, when many observables (e.g., GNSS snapshots)

need to be communicated to a cloud solver, a cellular technology such as NB-IoT is preferred.

However, if smaller payloads need to be transmitted sporadically (e.g., weekly ephemeris data

in A-GNSS), a more flexible LoRa network can be used, possibly in combination with a LEO

constellation to extend the application coverage.

The high interoperability of LPWAN, GNSS and LEO solutions enables interesting novel use

cases such as energy-efficient global tracking, managing natural resources, improving food

production and optimizing global infrastructure. In particular, the compelling multimodal

aspect offers the ability to intelligently change positioning strategies. For example, when

the previously mentioned construction company is transporting equipment across cities or

even countries, a network of terrestrial base stations or LEO satellites is used in order to

save energy. However, when an asset reaches its destination site, the accuracy becomes

more important. Based on a proximity detection algorithm, the UE might now switch to a

more accurate A-GNSS approach, with the last known location and time provided by the

communication network. Finally, switching between technologies also depends on their avail-

ability. For instance, the wildlife tracker may switch from LPWAN to LEO communication

if no terrestrial network is available.

Figure 8.21 summarizes the key dimensions of every positioning technique discussed in this

study. In this figure, it becomes clear that the traditional observable-based GNSS technique

has one main limitation: the system was not designed with low energy consumption in mind.

Hence, techniques such as A-GNSS and S-GNSS aim to solve this issue, leveraging LPWAN

or LEO satellite communication networks [173]. As a more energy-efficient alternative, these

networks can be used for positioning purposes as well, in exchange for positioning accuracy.

While LPWAN hardware is widely available and networks are easily accessible, LEO satellite

networks for both communication and localization have not reached this point yet. Currently,

there is no LEO constellation available which covers each place on Earth permanently (i.e.,

24/7). As more and more LEO satellites will be launched into orbit in the coming years,

satellite revisit times will shorten, increasing the location update rate, as well as the overall

coverage. The most promising feature of LEO satellite networks is the ability to com-

municate a location estimate in areas where no terrestrial networks are available, such as

remote mountainous, desert or jungle regions. Moreover, ESA is planning to add a layer of

LEO-PNT satellites to complement the Galileo system [31, 242]. Hence, I believe LEO con-

stellations have a promising future, combining the benefits of LPWAN and GNSS positioning

solutions.
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Figure 8.21: Summary of the positioning performance analysis.

8.4 Conclusion & Future Work

In this survey for ESA, I have provided a performance analysis of state-of-the-art, large-

scale and energy-efficient positioning techniques for the IoT. Based on 16 dimensions, I

composed a performance comparison matrix, which can be used by application designers to

determine the most optimal positioning solution. In most cases, this solution will consist of

a combination of positioning techniques and communication technologies, which emphasizes

the high interoperability between LPWAN, GNSS and LEO systems. Through example use

cases, important design trade-offs were discussed, in which the location accuracy and energy

requirements play a decisive role.

While techniques such as LPWAN positioning and A-GNSS are widely adopted, others have

remaining challenges to be investigated in the future. First, dedicated S-GNSS receivers

are not widely available, as well as opportunistic LEO positioning hardware. As LEO con-

stellations continue to expand, commercial positioning services will become available for the

general public after the commercialization of this hardware. Second, based on the perfor-

mance comparison matrix in this survey, some practical guidelines can help manufacturers

with the integration of LPWAN, GNSS and LEO technologies, e.g., how to combine tech-

nologies and which configurations (sleep modes, snapshot lengths etc.) to use. Related

research challenges involve the optimization of intelligent switching between positioning and

communication technologies, potentially based on energy and accuracy requirements. Third,

more accurate orbit products can improve LEO positioning, as the current accuracy makes
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up a large part of the localization error budget. Moreover, the propagation of LEO signals

in indoor environments to enable indoor positioning should be further investigated. Finally,

advanced yet low-complex compression algorithms could lower the data constraints of com-

munication networks for efficient data transfer to the cloud. These efforts along with this

state-of-the-art survey should deliver a better understanding of current challenges to enable

ubiquitous, energy-efficient and large-scale positioning solutions in the skyrocketing market

of satellite IoT.
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Conclusion

THE IoT has caused the modern society to connect billions of smart devices with the

aim to improve a myriad of applications and mankind in general. The challenge is to

keep track of this plethora of devices. Therefore, we need communication and localization

technologies. In times of a pandemic and chip shortage, it has become even more clear

how much we rely on such technology to ‘stay connected’. Moreover, the rapidly increasing

energy prices have raised the question: How can we locate IoT devices on a large scale and

in an energy-efficient way to enable location-aware sustainable IoT applications?

The objective of this thesis was to identify novel, energy-efficient and large-scale technologies

and techniques that can be used for positioning purposes, as well as to characterize their

positioning performance. A substantial part of my research focused on localization using

LPWAN. For each of the three most prominent LPWAN technologies, I conducted RSS-

based localization experiments. By implementing fingerprint- and range-based techniques,

I significantly improved the localization accuracy of Sigfox and LoRaWAN, compared to

the state-of-the-art. In the case of NB-IoT, I provided the first RSS-based localization

results based on experiments conducted in the same real-world environment, allowing fair

performance comparison. Closer to the end of my 4-year journey, I replaced the terrestrial

LPWAN gateways with LEO satellites and explored the wonderful world of satellite IoT.

In a survey for ESA, I analyzed the state-of-the-art of novel energy-efficient positioning

techniques. In this survey, I characterized and compared the positioning performance of

LPWAN, GNSS and LEO-PNT.

In this final chapter, Section 9.1 summarizes the main findings of this thesis according to

the contributions listed in Section 1.2. With the aim to continue innovations in the location-

enabled (satellite) IoT market, Section 9.2 describes future research directions.
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9.1 Main findings

This section summarizes the main findings and conclusions of this thesis, based on the four

contributions listed in Section 1.2.

Contribution 1: Improve RSS-based localization with Sigfox and Lo-

RaWAN

Chapters 3 and 4 provide insights in how to leverage the Sigfox LPWAN technology for

localization purposes. The UNB nature of Sigfox does not allow timing-based localization

methods. Therefore, I analyzed and improved various RSS-based techniques to locate a

mobile Sigfox transmitter with minimal energy consumption.

In Chapter 3, I explored the feasibility of combining Sigfox and Wi-Fi. I came up with a

3-step approach. First, the mobile device scans for BSSIDs and RSS values of nearby Wi-Fi

access points. Second, due to Sigfox payload limitations, only two BSSIDs are sent over

a Sigfox network to a backend. Third, the backend contacts a database of access points

with their locations and estimates the location of the mobile device. By optimizing the

considered RSS data, this approach resulted in a median estimation error of 39m, which is

acceptable in many mobile IoT applications. However, a passive Wi-Fi receiver is required in

this approach, which slightly increases the overall UE complexity and energy consumption.

Chapter 4 employs a Joint Communication And Sensing (JCNS) approach, aiming to use

the Sigfox communication signal for localization purposes as well, eliminating the need for

additional hardware. Consequently, this approach has the huge benefit that no additional

localization energy is required, as the location is calculated in the cloud. This is in opposition

to the approach in Chapter 3 or in GNSS. However, on the other side of the coin, the

localization accuracy is poor. In order to improve the accuracy, I optimized a fingerprinting

algorithm, successfully reducing the mean location estimation error from 689m to 340m.

The goal of Chapter 5 is to provide a benchmark of RSS-based localization algorithms in a

public LoRaWAN network and to make a fair performance comparison. On the one hand, 10

ML algorithms were evaluated in a fingerprinting approach. On the other hand, I evaluated

different path loss models in an RSS ranging approach. Despite the need for a maintained

training database, the results show that a fingerprint-based approach leads to 50% more

accurate position estimates compared to range-based approaches, with estimation errors of

340m and 700m, respectively. Furthermore, I demonstrated that the kNN and Random

Forest algorithms perform best in terms of location accuracy.

Finally, Chapter 6 describes the potential of LoRa localization utilizing the worldwide available

2.4 GHz band. Through mathematical analysis, I investigated the maximum communication

range of this technology. The results show a maximum range of 133 km in free space,

74m in an indoor office-like environment, and 443m in an outdoor urban context. Due to

the configurable bandwidth and lower data rates, LoRa outperforms other technologies in

the 2.4GHz band in terms of communication range. In addition, both communication and

localization applications deployed in private LoRa networks can benefit from the increased
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bandwidth and localization accuracy of this system when compared to public sub-GHz net-

works.

Contribution 2: Provide first insights in RSS-based localization with

NB-IoT

Cellular IoT, especially Narrowband-IoT (NB-IoT), is stealing LPWAN market shares from

its competitors. Located under the umbrella of 5G mobile network technologies, NB-IoT

guarantees deep indoor coverage and energy-efficient communication due to a dense network

of existing LTE base stations. While OTDoA positioning was introduced in 3GPP Release

14, network operators refuse or hesitate to implement it because of the increased cost and

synchronization complexity. Therefore, I investigated RSS-based localization techniques

for NB-IoT. Because simulations of localization experiments often result in over-optimistic

localization performance, I insisted to perform outdoor localization experiments using real-

world measurements. In this way, I can paint a more realistic picture of the localization

performance.

Chapter 7 provides the firsthand results of RSS-based localization experiments using a public

NB-IoT network. The experiments I carried out in a large-scale urban environment yield mean

location estimation errors ranging from 340m in a basic proximity algorithm to 204m in an

optimized fingerprinting algorithm. While a fingerprinting approach usually requires more

time and effort, the location accuracy can thus be increased. Eventually, crowd-sourced

fingerprinting can solve city-scale collection of training data.

The discrepancy between what the NB-IoT standard prescribes and how chipset manufac-

turers and network operators choose to implement it, has caused several issues. By working

with real-world data, I faced these practical issues. The most prominent example is the fact

that for many UEs, it was not possible to scan for multiple nearby cells if there is a decent

link quality to the currently serving cell. After addressing and publishing these findings, I

am happy to notice that chipset manufacturers such as Nordic Semiconductor have started

updating their firmware to include optional multi-cell discovery for localization purposes.

In summary, I conducted LPWAN localization experiments in the same real-world city-scale

environment, enabling fair comparison between Sigfox, LoRaWAN and NB-IoT. The mean

localization accuracy is in the order of a few hundred meters. While this may seem very

inaccurate, this level of accuracy is often sufficient in many large-scale, location-aware IoT

applications. For instance, imagine tracking assets on a truck which is driving on a highway

at 120 km/h. This means the truck moves 333m every 10 s. So, with an LPWAN location

update rate which is typically lower, a location estimation error of 340m is negligible in this

non-realtime scenario. If a more accurate position of the asset is required when it arrives at

its destination, one can switch from localization based on LPWAN to GNSS.
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Contribution 3: Explore the possibility for PNT services leveraging LEO

satellites

The idea of putting satellites into orbits that are approximately 20 times closer to Earth

is not new. In the New Space era however, LEO satellites have been rediscovered. LEO

constellations come in different sizes and provide a wide range of services, such as broadband

communication and Earth observation. However, up to now, there is no fully operational LEO

constellation designed for PNT services, and only a few operators provide an exploratory PNT

service. Therefore, I investigated several positioning techniques leveraging LEO satellites and

analyzed their performance and application potential.

Most currently available solutions exploit the Doppler effect of the fast moving LEO satel-

lites to provide a positioning service. The Doppler measurements can take place either at the

satellites or at the UE. Argos and Lacuna Space, for instance, apply the former approach,

obtaining a positioning accuracy of 150m. This approach makes sense given the uplink na-

ture of satellite communication. Moreover, the approach does not impact the UE complexity

and energy consumption. This is not the case when measuring the Doppler frequency at

the UE. However, such approach can leverage any SoOP from any (mega-)constellation for

PVT computation. This leads to varying accuracies up to 8m, depending on the number

of satellites in view and additional sensors used. In turn, the limitation is that a location

estimate cannot be communicated to a remote user.

The most recent development involves building a constellation specifically designed to provide

PNT services from LEO satellites. In other words, GNSS-like ranging signals are broadcast

from LEO satellites to Earth. Both Xona Space Systems and GeeSpace believe such a

system might reach sub-meter accuracy, enabling applications such as autonomous driving.

Furthermore, a dedicated LEO-PNT system can function independent of GNSS, aiming to

provide accurate, reliable, and secure PNT services.

Contribution 4: Compare energy-efficient positioning technologies and

techniques

The goal of this final and overarching contribution was to identify and compare energy-

efficient alternatives to traditional GNSS. Therefore, I combined the knowledge I gathered

from the terrestrial LPWAN localization experiments and the survey for ESA on space-based

positioning technologies and techniques.

Despite standalone GNSS services reaching meter-level accuracies and therefore being widely

adopted, GNSS technology exhibits several shortcomings. Because GNSS satellites move

in MEO and given their low transmission power, GNSS signals often cannot reach indoor

or dense urban environments. Multipath errors degrade the accuracy drastically. Further-

more, GNSSs were not designed with low energy consumption in mind. In contrast, energy

consumption is of utmost importance in mobile IoT applications. Therefore, more energy-

efficient positioning alternatives are gaining increasing popularity. In this context, the ques-

tion raises whether the high GNSS availability and accuracy are required by the application

or if the requirements could be fulfilled by one of these alternatives. A final limitation of tra-
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ditional GNSS approaches is the local PVT calculation, requiring an additional connectivity

link to communicate the computed location to a remote user.

Several industries have shown an increasing demand for alternative and innovative positioning

solutions that are more suited in an IoT context. Hence, I conducted a survey on state-of-

the-art, large-scale and energy-efficient positioning techniques for IoT applications. More

specifically, I analyzed the performance of terrestrial-based LPWAN techniques, novel GNSS

solutions, and innovative positioning techniques leveraging LEO satellite constellations. I

created and discussed a performance comparison matrix based on 16 key dimensions including

energy consumption, positioning accuracy, coverage and scalability.

Attempts to rectify the aforementioned shortcomings of GNSS are currently taking place.

Through a connectivity link, remote location processing techniques are gaining more atten-

tion. For example, S-GNSS techniques enable cloud processing by sending raw observables

via a terrestrial network to the cloud. This improves both the UE complexity and energy

consumption.

The balance between positioning accuracy and energy consumption is thus only one of

the numerous trade-offs use case designers have to consider. Moreover, the application

requirements vary significantly, as well as the positioning techniques that are feasible in a

certain environment. Through the performance comparison matrix, I hope the survey gave

more insights into what technology or technique can best be applied in a certain scenario.

ESA is planning to design a multi-layer ‘system of systems’, including PNT satellites in

LEO and MEO, as well as terrestrial networks [31, 242]. This supports the conclusion of

my analysis, highlighting the importance of interoperability. The survey shows that there

is no ‘one-size-fits-all’ technology. Cooperation between LPWAN, GNSS, LEO satellites

and additional sensors is required to enable energy-efficient communication and positioning

applications in the emerging market of satellite IoT.

9.2 Future work

The previous section summarized the outcomes of the research I conducted in the past four

years. This final section lists a number of potential improvements to my work in the short

term, as well as future research directions in the long term.

The results of the LPWAN localization experiments with Sigfox, LoRaWAN and NB-IoT

show a significant number of outliers, especially for the RSS-based ranging algorithms. These

outliers are caused by the heterogeneous environment, fading and shadowing effects. Due to

this heterogeneity of the environment, it is a challenging task to choose an appropriate path

loss model. In order to avoid the use of a single existing path loss model in a large-scale

environment, a custom path loss model can be created for the application environment.

However, this eliminates the advantage of a fast deployment in a range-based localization

approach. While I introduced three gateway selection strategies in Chapter 5, more advanced

outlier detection algorithms could be implemented. For example, an AI-based algorithm may

flag a measurement when the location estimation error exceeds the 95th percentile during

the training phase. Then, when a similar measurement is observed during the operational
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phase, the algorithm detects this and may discard the measurement.

Instead of just discarding a measurement or providing a location estimate, the end user

can also be informed about the estimation accuracy of the location, i.e., the localization

reliability. By doing so, the end user has more valuable information of each measurement

and can judge whether or not the location estimate is considered valid for the targeted

application. Furthermore, the area of uncertainty in overlapping circles in a multilateration

algorithm (or squares in Min-Max) can serve as a metric for localization reliability.

In the first years after the introduction of NB-IoT, the cellular technology had to deal with

teething problems. A major issue from a localization perspective was the fact that a UE could

only request the RSS from the serving cell. After publishing this issue described in Chapter 7,

more and more NB-IoT chipset manufacturers have started implementing optional multi-cell

discovery for positioning purposes. Hence, the logical next step is to verify how this feature

improves the localization accuracy.

While the current work on LPWAN mainly focused on positioning, future research may

involve navigation. By implementing a navigation framework based on a particle filter, the

location of a mobile IoT device can be updated with an increased accuracy. This framework

can potentially add road snapping features and integrate sensor data from an IMU to further

improve the accuracy.

With new technology, the overall UE energy consumption will only decrease, while the energy

harvesting capability will only increase. Hence, a positioning solution without batteries might

become a reality, paving the road towards a sustainable IoT. The ultimate goal is to create a

system that is able to track any IoT device, anywhere on Earth, anytime, without batteries.

A major trend in the IoT landscape is the extension of terrestrial LPWAN communication

to satellite-based networks. For example, Semtech has designed LoRa chipsets that are

able to communicate with both terrestrial gateways and LEO satellites. These chipsets are

being used by start-ups such as Lacuna Space, Wyld and Hiber. Likewise, cellular LPWAN

technologies such as NB-IoT (under the umbrella of 5G technologies) are complementing

LEO satellite services. By doing so, the coverage of LPWAN is extending to remote regions

without terrestrial infrastructure such as deserts, mountains, oceans and jungles.

In line with this trend, support for NTNs is included in 3GPP Releases 17 and 18, with

the aim to provide worldwide access to 5G, 6G and beyond services via satellite networks.

Mobile devices using 5G New Radio (NR) are generally considered to be more energy-efficient

compared to previous generations of mobile technology. This is because 5G uses advanced

signal processing and multiple antenna techniques such as beamforming to transmit data

more efficiently, which reduces the amount of energy required for data transmission. For this

reason, the ongoing hybridization efforts for 5G and LEO will enable even more innovative

energy-aware communication and localization applications.

The rapidly increasing number of LEO satellites in orbit has a positive impact from a posi-

tioning perspective. When there are always enough satellites in view at any place on Earth,

a UE will not have to wait for a satellite pass to transmit its messages. This will lower the

overall UE complexity and communication delay in near-realtime applications. Moreover,

the location update rate can be increased if desired. That being said, the large number of



9.2. FUTURE WORK 151

LEO satellites with a relatively short lifetime produce a vast amount of space debris. Thus,

the removal or potential reuse of space debris poses a major challenge in the near future.

Navigating on Earth with sub-meter level accuracy. Observing live high-quality satellite

footage of any place on Earth. Sending SOS messages from your smartphone to satellites

in case of an emergency. Organizing commercial spaceflights for space tourism and rideshare

missions. Exploring Mars with rovers and drones. Looking billions of years back in space and

time to learn about the history of our universe through the James Webb Space Telescope

(JWST). All of these astonishing achievements would have been impossible without efficient

communication and positioning systems. The space exploration era has only just begun and

is a given for decades ahead.



152 CHAPTER 9. CONCLUSION



Bibliography

[1] M. Hasan, “Number of connected IoT devices growing 18% to 14.4 billion globally,”

2022, available online: https://iot-analytics.com/number-connected-iot-devices/

(accessed on 17 July 2022).

[2] B. Jovanovic, “Internet of Things statistics for 2022,” 2022, available online: https:

//dataprot.net/statistics/iot-statistics/ (accessed on 17 July 2022).

[3] J. Gante, L. Sousa, and G. Falcao, “Dethroning GPS: Low-Power Accurate 5G Po-

sitioning Systems Using Machine Learning,” IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 10, no. 2, pp. 240–252, jun 2020.

[4] K. Chen, G. Tan, J. Cao, M. Lu, and X. Fan, “Modeling and Improving the Energy

Performance of GPS Receivers for Location Services,” IEEE Sensors Journal, vol. 20,

no. 8, pp. 4512–4523, apr 2020.

[5] M. Aernouts, “Localization with Low Power Wide Area Networks,” PhD thesis, Uni-

versiteit Antwerpen, 2022.

[6] O. Osechas, F. Fohlmeister, T. Dautermann, and M. Felux, “Impact of GNSS-Band

Radio Interference on Operational Avionics,” Navigation, vol. 69, no. 2, jun 2022.

[7] Sigfox S.A., “Sigfox,” 2022, available online: https://www.sigfox.com/en (accessed

on 23 March 2022).

[8] LoRa Alliance, “LoRaWAN: Wide Area Networks for IoT,” 2022, available online:

https://www.lora-alliance.org/ (accessed on 23 March 2022).

[9] E. M. Migabo, K. D. Djouani, and A. M. Kurien, “The Narrowband Internet of Things

(NB-IoT) Resources Management Performance State of Art, Challenges, and Oppor-

tunities,” IEEE Access, vol. 8, pp. 97 658–97 675, 2020.
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BeiDou extended orbit predictions with CNNs,” 2018 European Navigation Confer-

ence, ENC 2018, pp. 54–59, 2018.

[229] X. Yang, “Low Earth Orbit (LEO) Mega Constellations - Satellite and Terrestrial

Integrated Communication Networks,” Ph.D. dissertation, University of Surrey, 2018.

[230] RX Networks, “Predicted GNSS,” 2021. [Online]. Available: https://rxnetworks.

com/location.io#!P-GNSS

[231] Semtech, “LoRa Cloud Geolocation,” 2022, available online: https://www.loracloud.

com/ (accessed on 18 June 2022).

[232] H. Zhu, K. F. Tsang, Y. Liu, Y. Wei, H. Wang, C. K. Wu, and W. H. Wan, “Index of

Low-Power Wide Area Networks: A Ranking Solution toward Best Practice,” IEEE

Communications Magazine, vol. 59, no. 4, pp. 139–144, 2021.

[233] J. Dian and R. Vahidnia, “LTE IoT Technology Enhancements and Case Studies,”

IEEE Consumer Electronics Magazine, pp. 1–1, 2020.

https://www.cls-telemetry.com/argos-solutions/the-future-of-argos-argos4ng/
https://www.cls-telemetry.com/argos-solutions/the-future-of-argos-argos4ng/
https://rxnetworks.com/location.io#!P-GNSS
https://rxnetworks.com/location.io#!P-GNSS
https://www.loracloud.com/
https://www.loracloud.com/


BIBLIOGRAPHY 171

[234] O. Montenbruck, P. Steigenberger, L. Prange, Z. Deng, Q. Zhao, F. Perosanz,

I. Romero, C. Noll, A. Stürze, G. Weber, R. Schmid, K. MacLeod, and S. Schaer,

“The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) -

Achievements, prospects and challenges,” Advances in Space Research, vol. 59, no. 7,

pp. 1671–1697, 2017.

[235] The Radio Technical Commission for Maritime Services, “RTCM standards,”

Arlington, 2021. [Online]. Available: https://www.rtcm.org/

[236] Institute of Navigation, “GNSS Software Defined Receiver Metadata Standard,”

2021. [Online]. Available: https://sdr.ion.org/

[237] Ubiscale, “Ubiscale technology,” 2022, available online: https://ubiscale.com/ (ac-

cessed on 10 June 2022).

[238] J. Curran, C. Fernandez-Prades, A. Morrison, and M. Bavaro, “Innovation: The

continued evolution of the GNSS software-defined radio,” GPS World, 2018.

[Online]. Available: https://www.gpsworld.com/innovation-the-continued-evolution-

of-the-gnss-software-defined-radio/

[239] European GNSS Agency, “GNSS User Technology Report,” Tech. Rep. 2, 2018.

[240] A. Minetto, G. Falco, and F. Dovis, “On the Trade-Off between Computational Com-

plexity and Collaborative GNSS Hybridization,” in 2019 IEEE 90th Vehicular Technol-

ogy Conference (VTC2019-Fall), vol. 2019-Septe. IEEE, 9 2019, pp. 1–5.
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