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1. INTRODUCTION

Recently, Cannings and Holland [7] showed that right ideals of the first
Weyl algebra 4 = 4 ,(C) come in families determined by certain “moduli.”
More precisely, for every n € N, any n-points on the affine line, x,,..., x,,
and all n-tuple positive integers m,,...,m, they construct a variety
X(xy,...,x,;m,...,m,), the points of which parametrize the isoclasses
of right A-ideals. Moreover, for each point they give generators for a
representant,

Although this is in a sense the ultimate answer, there are a few
unsatisfactory aspects. For example, given generators of a right ideal it
seems to be rather hard to calculate the corresponding moduli. More
important, there are too many moduli and the obtained varieties have no
apparent connection with more traditional moduli problems.

The hope that another approach might be possible is based on an
intriguing analogy noted by Stafford in [19, p. 625] between the study of
right ideals of A4 and that of projective right ideals of a polynomial ring
over a division algebra.

The special case of projective right ideals of H[x, y] (where H is the
quaternion algebra) has been worked out extensively in a series of papers
by Knus, Ojanguren, Parimala, and Sridharan; see for example [12] or [13].
Their approach is as follows. A projective (non-free) ideal P of H[x, y] is
a free module of rank 2 over the subalgebra C[ x, y]. They show that P can
be extended to a vector bundle % of rank 2 over the projective plane
P2(C) with first Chern number ¢, = 0 and even c¢,. Using Beilinson’s
spectral sequence [17, Chap. II, Sect. 3] one can describe the moduli
spaces of such bundles entirely by linear data; see for an example [10].

*Research associate of the NFWO (Belgium). E-mail address: lebruyn{@wins.uia.ac.be.

32

0021-8693 / 95 $6.00
Copyright ©& 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



RIGHT IDEALS OF THE WEYL ALGEBRA 33

Translating these results back to H[x, y] they obtain a “moduli space”
description of the isoclasses of projective right ideals.

In view of these results one would expect some numerical invariants to
be associated to a right ideal of A (replacing the role of Chern numbers
above) to give a coarse classification of the isomorphism classes. Ideally,
the corresponding moduli spaces would then be related to well understood
moduli problems such as vector bundles on projective spaces [17].

In this paper we will show that these hopes are (at least partially)
justified. One can mimick the Knus et al. approach by replacing the
projective plane with Artin’s quantum plane [1] associated to the homoge-
nized Weyl algebra H. This quantum space has a scheme-like structure
and one can extend a right ideal of A4 to a vector bundle over it and use a
version of Beilinson’s derived equivalence to study moduli spaces of such
noncommutative vector bundles. For this approach the reader is referred
to the preprint version of this paper [14].

In this revision we hope to give a more ring-theoretical treatment. If we
homogenize a right ideal P of A with respect to the induced Bernstein
filtration we obtain a graded reflexive right ideal of H which is an
Auslander regular algebra of global dimension 3. We show that the E,
term of the naturally associated spectral sequence has only two nonzero
entries: the homogenization itself and a finite dimensional graded vec-
torspace V. The main point is that V' contains enough information to
reconstruct the right ideal and that a suitable shift of it is an isomorphism
invariant.

In fact, we will prove that just two consecutive homogeneous compo-
nents of V' and the connecting multiplication maps suffice to reconstruct
the right ideal. Hence, to a right ideal we can assign two integers m and n
(the dimensions of these homogeneous components) and three m X n
matrices (representing the action of the generators of H). The main result
states that two right ideals are isomorphic if and only if the integers
coincide and the triples of matrices are equivalent under the natural
GL,, X GL,, action. This can then be used to construct moduli spaces
M(A; m, n).

In the last section we show that these numerical moduli separate the
“canonical” right ideals P, =x"*'4 + (xy + n)A and that there is a
rational map from the corresponding moduli space M(A;n,n) to the
moduli space Mpn;0, n) of stable vector bundles of rank n on P? with
Chern numbers ¢, = 0 and ¢, = n.

2. THE STATEMENT

This section will lead to the statement of the main result. The first Weyl
algebra A = 4/,(C) is the algebra generated by x and y satisfying the
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canonical commutation relation [x, y] = 1. The Bernstein filtration by
giving x and y degree 1 makes A4 into a positively filtered algebra
C=A,CcA,C - C U7 A, with finite dimensional 4, and with asso-
ciated commutative graded ring gr{ 4) = Clx, y]. Any right ideal P of A4
becomes a filtered A4-module via the induced filtration; that is, P, = P N
A;. The Bernstein filtration extends to a filtration on the Weyl skewfield
D = D (0).

With H we denote the homogenization of 4 with respect to a central
element ¢. That is,

H= @ 4, cA[t, 7).
i=0

H is a gquadratic algebra on three generators X =x-¢, Y=y ¢ and
Z =1 -t with defining equations

XY — YX = Z?
XZ - ZX =0
YZ ~ ZY = 0. (1)

Observe that H/(Z — 1) = A and that H/(Z) = gr( A). This allows us to
lift homological properties from A and gr( A) to H. We refer the reader to
[16] and [15] for more details.

In particular, H will be an Auslander regular quadratic algebra of
global dimension 3 which satisfies the Cohen—Macaulay property. We
recall that this means that for every finitely generated one-sided H-mod-
ule M, all i, and every finitely generated H-submodule N of Ext, (M, H),
one has j,(N) = inf{i: Ext},(N, H) # 0} U {«} > i. The Cohen-
Macaulay property means that GK dim(M) + j, (M) = GK dim(H) = 3
for all finitely generated H-modules M. In particular, Auslander regularity
implies that for every finitely generated H-module M there is a conver-
gent spectral sequence

E?~9(M) = Ext§(Ext§,(M, H)) = H” (M)

where HY(M) =M and H (M) =0for i # 0.

Although all this can be deduced from standard filtered techniques, it is
also a direct consequence of the general results of [3] on graded
Artin—-Schelter regular algebras of global dimension 3. In their classifica-
tion, H is a triple line example. Further, it follows from [2] that there is a
resolution of the augmentation map of the form

0->H(-3)»H(-2)®>H(-1) >H->C—-0

which makes H into a Gorenstein~Koszul algebra.
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If P is a one-sided fractional ideal of 4 we denote its homogeniza-
tion ®P,t' < D[t,t~'1 by h(P). If P is a right ideal of A4, then A(P) is a
graded reflexive right ideal of H.

ProposiTioN 1. Let h(P) be the homogenization of a right A-ideal P.
The E, term of the spectral sequence for h(P) has the shape shown in Fig. 1,
where U = h(P) and V' is a finite dimensional graded H-module.

Proof. From Auslander regularity of H we know that the E, term of
h(P) looks like Fig. 2a below. As EX° = El% fori = 2,3we have c =d =
0. If we denote h(P)* = Hom(h(P), H) this means that Ext'(h(P)* H) =
0 for { = 2,3, or equivalently, that pd(h(P)*) < 1. As h(P) is reflexive we
can apply this argument to A(P)* and obtain that pd(h(P)) < 1. This

implies that # =i =/ = 0.
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Combining this with [15, Theorem 2.2(b)] and the fact that F'(A(P)) = 0
because H is 0-pure using the terminology of [15, 2.4], we see that e = 0.
So, the E, term of A(P) reduces to Fig. 2b with connecting morphisms «:
a — f and B: b — g. By reflexitivity @ = A(P) and as EJ® = E?? = h(P),
« must be the zero map. If & = Ker(B) and ! = g/Im(B), the E, term of
h(P) is shown in Fig. 3. As this is also the E_ term we get that f = 0 and
that k =/ = 0, so 8 is an isomorphism.

It only remains to show that V' = b = g is finite dimensional. From the
second row in the E, term we get that j(Ext'(h(P), H) = 3. We could
have applied the same argument to A(P*) so also j(b) = j(Ext!(A(P)*, H)
= 3. From the Cohen-Macaulay property we get that GK dim(b) = 0,
finishing the proof. ||

CoroLLarY 1.  With notations as above,

1. There exist integers n;,,m; € Z and an exact sequence

0- @ H(n) > @ H(m;) > h(P) -0

where H(k) is the graded free rank-one module with H(k), = H, _,.

2. The finite dimensional vector space V = Ext'(h(P)*, H) is nonzero
iff P is not principal.

Proof. (1) Use the fact that pd(h(P)) =1 and that every finitely
generated graded projective H-module is free and hence a direct sum of
H(k)'s.

(2) V=0 iff h(P)* is graded projective, whence free. But then, P*
and hence P must be principal. [
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As V = Ext},(h(P)*, H) is a graded finite dimensional H-module, there
exist k,/ € Z such that "= &/_, V. Hence V can be represented by the
finite dimensional vector spaces V; (k <j </) and matrices XY}, Z;:
V.-V, for k < <[ satisfying the relations

Xj}j'+1 - Yij+1 = Zij+l
XZ, -ZX., =0

YZ,,, - Z;Y;,, = 0. (2)

The main result of this paper will be that a suitable shift of V, namely
1(d) (where d is the minimal filtration degree of an element of P), is an
isomorphism invariant for the nonprincipal right ideal P of A. In fact, we

will prove a stronger result:

THEOREM 1. Let P be a nonprincipal right ideal of A with minimal
filtration degree d = d(P). Let V = Ext},(h(P)*, H) which is a finite di-
mensional graded right H-module. Then, P is determined by the Kronecker
module

X
—_
v, . Ly
d-3 7 Va-2-
—

That is, a right ideal is determined by two integers m(P) = dim(V,_) and
n(P) = dim(V,_,) and three m(P) X n(P) matrices (X(P),Y(P), Z(P)).
If P' is another right ideal of A, then P is isomorphic to P’ if and only if
m =m(P) = m(P),n =n(P) =n(P), and (X(P), Y(P), Z(P)) ~
(X(P),Y(P), Z(P')) under the natural GL,, X GL,, action.

We will end this section with a few remarks on the calculation of these
invariants. This is an application of the theory of stairs due to Galligo [9].

An element fe€ A4 can be written uniquely as a finite sum f=
T menifim mx™y". Define a total order of N* by (m,n) > (m', n') iff
m+n>m +n orif m+n=m+n then m > n. With respect to this
order we define exp(f) = max{(m, n): f,, ,, # O}.

Given a right ideal P of 4 we define its stairs to be Stairs(P) = {exp(f):
f € P} which can be depicted as shown in Fig. 4.

There is a minimal set St(P) = {a,,...,,) such that Stairs(P) =

Um (e, + N?). A set {f,..., f,} of elements of P is called a standard
basis for P iff exp(f,) = a,. Such a set defines a partition of N? as follows:
A =a, + N2, A, =(a, + N?)) —4,...,4, = (a, + N?) - (4,

U--U4,_,),and 4 =N?—(4,U -+ UA4,). The relevant property
of a standard basis is that for every g € A there exist uniquely determined
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elements g,..., &, r € A, such that

g:Zﬁgi+r’
i

with exp(f;g;) € 4, and exp(r) € A. In particular, g € P iff r = 0. In [9,
Sect. 2] an algorithm is given to find the stairs and a standard basis for P
given generators for P.

If P is a right ideal of 4 with standard basis {f,, ..., f,,} and exp(f;) =
(m,, n;) such that m; > m, > --- > m, then there is an exact sequence

m-—1 m
0 - ®H(‘mi_"i+1)_’ @H(_mi‘”i)_’h(}))”o
i=1

i=1

where the rightmost map is given by multiplication with the homogeniza-
tions of the f; and the leftmost map by the homogenizations of the
canonical sums giving f;  x™+'~™, Similarly, one can find a resolution of
the graded left H-module A(P)*, and dualizing it gives the finite dimen-

sional graded vector space V.
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3. THE Proor

In this section we will prove the main theorem. Instead of working in
the category gr( H) of all finitely generated graded right H-modules we
work in the quotient category Coh(P,) modulo the Serre subcategory of all
H ,-torsion modules (that is, the finite dimensional graded H-modules)
with degree preserving maps.

In analogy with the commutative case, one can view Coh([P’q) as the
category of coherent sheaves on a quantum plane Pq, see {1]. Ring
theoretically this can be interpreted as follows. Let &, .# (resp.
@(n), #(n)) be the objects in Coh(P,) corresponding to H, M (resp. to
H(n), M(n)). Let us denote

H‘([F"q, H) = Ext"c()h(pq)(cﬁ, M),
Then for every graded right H-module M we have

'§2H°(Pq,l(n)) = Q¢ (M)

where QF is graded localization at the kernel functor determined by the
filter of graded ideals with basis (H_)* (k € N).

In particular, if M is «,-closed (such as H, h(P), and h(P*)) we get
that M = ®,_,H(P,, #(n)).

The Koszul resolution becomes in Coh(P,) the exact sequence

0-0(-3)>e(-2) »o(-1)% > 0.

Hence HZ(IPq, @(—3)) #+ 0 and, more precisely, one can translate the
Gorenstein property of H into the statements H'(P,, #(k)) = 0 for all
k € Z and HZ([P’q, @(k)) = H*, _, as C-vector spaces as in the commuta-
tive case.
In particular, & = @ @ #(1) ® #(2) is an exceptional (or tilting) object
of Coh(P,), as in [6], [4] and hence gives rise to a derived equivalence.
Let B = EndCOh(pq)(éf ); then B is the incidence algebra of the quiver

X, X
— —
£ Y2

* — 06 — &
Z, Z,
— —

with relations
X\Y,-YX,=2,Z,
X\Z,-Z,X,=0
Y.Z,-2Y,=0. (3)
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Then we have following version of Beilinson’s derived equivalence [5]:

ProrosiTioN 2. The functors
F = Hom o (€ @ O(1) ® €(2), —): Coh(P;}) — mod( B)
G=-8&(coa(1) ®(2): mod(B) — P?
induces an equivalence of derived categories

2°(Coh(P,)) =2"(mod(B)).

Proof. This is just [6, Theorem 6.2] adapted to our situation. The
required conditions follow from the Koszul sequence. |l

Of course, we would prefer to be able to assign to an object in Coh(P,) a
right B-module rather than a bounded complex of such modules. This can
be achieved for certain subclasses of objects.

With 2, we denote the set of all .# € Coh(P,) such that

Extlone (€ © (1) ©® #(2), #) =0 forall j #1i.
Likewise, with %, we denote the set of all M € mod(B) such that
Tor’ (M, ® #(1) ® #(2)) =0  forall j #i.
Then one deduces precisely as in e.g. [4, Sect. 3.2}.
CoroLLARY 2. The functors
F' = Exteone, (@ © @(1) ® 2(2), —)
G, =Tor?(—,7 & @(1) & 2(2))
establish an equivalence

X, =Y,

{ H

Hence, an object .# € %, is uniquely determined t_)y a B-module and
hence by linear data. In particular, # € £, if the H'(P,, #(i)) have the
shape shown in Fig. 5. Hence, if .# € 2, then .# is completely deter-

mined by the B-module
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where V, = H'(P,, #(—3 + i)) and where the maps are induced by multi-
plication with X (resp. Y and Z). Sometimes, one can even do better and
show that # is determined by the three rightmost maps, hence by a
Kronecker module. To do this, we can repeat the argument of Baer given
in [4, Corollary 7.2]. Then we get that .# € Coh(P,) is uniquely deter-
mined by a Kronecker module if both .# and .#(1) belong to 27,. That is,
the cohomology groups H’(P,, #(i)) have the shape shown in Fig. 6.
Using these general results we are now in a position to prove the main
theorem. We will need a result on the minimal filtration degree of
elements of right ideals in A. For a fractional onesided A-ideal F let
d(F) denote the minimal filtration degree of a nonzero element of F.

LemMmA 1. Let P be a non-principal right ideal of A, then d(P*) >
~d(P) + 1.

Proof. Observe first that the statements are preserved under isomor-
phism. Hence we can take a representant in the isomorphism class such
that P N C[x] # 0 (this can be done by [19]). Now look at Fig. 7. Here,
the top right corner region (marked 1) is the stairs of P. By assumption,

3o -l og 1 1

FiGure 6
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FiGure 7

this region is bounded at the bottom right by the horizontal axis and at the
top left by the line n = a. Therefore, the stairs of P* lie in the region
marked 2 which is bounded on the left by the line n = —a.

As P (and equivalently P*) is nonprincipal, (a,0) (resp. (—a,0)) does
not lie in the stairs of P (resp. P*). Therefore, d(P)>a + 1 and
d(P*) > —a + 1 from which the result follows. [

Proof of Theorem 1. As H, h(P), and h(P)* are «,-closed, we have for
the objects &, &, and S* which they represent in Coh(lP’q) that

@D HP,.0)=H, © H'(P,, P)

=hn(P), D H(P,,2*) = h(P)".

Therefore, in order to prove Theorem 1 we have to verify that »#(d — 2)
and #(d — 1) belong to 2, where d = d(P). For this we have to show
that

H(P,, #(d - 4)) = 0.
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The starting point is the resolution of graded left H-modules

0> @ H(-u) > @ H(-v) > h(P)" >0

where for every j we have that v, > d(P*). As Ext!(A(P)*, H) is finite
dimensional we get after dualizing this sequence an exact sequence in
Coh(P,),

0->2(k)—> D e(k+v)—> De(k+u) -0

for all k € Z. Consider the sequence with k = d — 4 and assume that
Hz(Pq, P(d — 4)) + 0; then by the long exact cohomology sequence there
must be a j such that HZ([P’q,ﬁ(d — 4 + ;) # 0 or equivalently that
d—4+uv;< -3or v, < —d + 1. As d(P*) < v; this contradicts Lemma
1, finishing the proof.

To a right ideal P of A we can therefore assign two numerical
isomorphism invariants m = m(P) = dim(V,_;) and n = n(P) =
dim(V,_,) where V = Ext'(4(P)*, H). For given integers m,n we can
construct a moduli space M(A4; m, n) whose points represent isomorphism
classes of right A-ideals with these numerical invariants.

M(A; m, n) can be constructed as follows: consider the subvariety of
triples of m X n matrices (A, B, C) which can be extended to a B-module
of dimension vector (2m — n — 1, m, n) and such that this extension is
unique up to B-isomorphism. In this variety consider the closed subvariety
of B-modules M such that TorJ.B(M, & & o(1) ® #2)) =0for j+ 1. The
moduli space M(A; m, n) is then the quotient of this subvariety under the
natural GL,, X GL,, action on the matrices. In the next section we will see
that these moduli spaces sometimes have connections with classical moduli
problems.

4. Tue ExampLE

In this section we will show that the numerical invariants introduced
above separate the “canonical” nonprincipal right ideals

P =x"""4+ (xy +n)A.

n
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We have seen how Galligo stairs can be used to get resolutions of the
homogenized ideals. Here we will see that for the right ideals P, every-
thing can be seen immediately from eigenspace calculations as in [8, Sect.
3; 11, Sect. 1; or 18].

For t € Z define A(t) ={f € Alxy, f]1=tf}. Then, A = & ___A(1)
with A(t) equal to

y'Clxy] = Clxy]y' fort >0
x'Clay] = C[xy]x™"  fort <. (4)

LemMmAa 2. If P,=x""'"A+(xy +n)A then P(t)=x""'A(t+n + 1) +
(xy + n)A(t) is equal to
(xy + n)C[xy]y’ fort>0
(xy + m)Clxy]x™! for —n<t<0
Clxy]x™ fort < —n. (5)

Proof. Let t= —1, then P(—1) is x""'Clxyly” + (xy + m)Clxy]x
which, using x"**'y"*! = xy(xy + 1) - - - (xy + n), is equal to

(xy + 1) (xy +n)Clxy]y ' + (2 + n)Clxy]x.

The first factor is (xy + 1) - - (xy + n)C[xy]x giving the desired result.
All other calculations are similar. ||

ProprosiTION 3.  We have an exact sequence of graded right H-modules

0—H(-n—2) > H(-2) @ H(—n - 1) - h(P,) - 0.

Proof. It is clear that A(P,) is generated by X"*! and XY + nZ? and
that there is a relation between these two generators, namely X" 'Y =
(XY + nT?)X". This gives the required sequence. In order to verify that it
is exact we have to compute the Hilbert series of A(P,). Using the
foregoing lemma we see that it is equal to

1 sZ SZZr_tfllsi Sn+l

i=

-9 |- -5 (-5  U-s9(1-s)
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which simplifies to (s* + s"*" — s"*2) /(1 — 5)* which fits with exactness
of the sequence. |

Next, we perform similar computations for the dual module.

LemMAa 3. The left A-module PF = Ax "' N A(xy + n)™' has
eigenspace decomposition PX (1) = At —n — Dx™""' N AUt Xxy + n)~!
which is equal to

y'Clxy)(xy + n) ™" fort>n+1
y'Clxy] forO<t<n
x'Clay] for + < 0. (6)

Proof. Let us illustrate the calculations with the case ¢ = n. Then

PX(t) = xClxylx "' ny"ClxyXxy + n)~! which equals
y'Clxy]l(xy +n — l)_l (xy)‘l Ny "ClxyJ(xy + n)_',

giving the desired result. The other computations are similar. ||

ProposiTiON 4. There is an exact sequence of graded left H-modules

0->H(~n)—->HoH(-n+1) >h(PF)—0.

Proof. Again, it is easy to see the generators (1 and Y"*'(XY +

nZ?)~') and the relation between them. Therefore it is sufficient to show

that the Hiibert series of A(P)) is of the required shape. Using the above
lemma the series is

1 sn! X7 o8t 2
-9\ (0-9-5) (-5 (-9 -sH |

which simplifies (as required) to (1 + s"~! —s™) /(1 — s)*. |

Observe that A(P,) is not projective as A(P¥)h(P,) doe not have
elements of degree 0, so it cannot be equal to H.

As the minimal filtration degree for elements of P, is 2 we have to
calculate the dimensions of

Vv, = H‘(Pq,g’( —1)) and V, = H‘(Pq,ﬁ’)
and the three maps between them induced by multiplication with the
variables.

ProposiTioN 5. The right ideal P, is determined by the Kronecker
module with dimension vector (n, n) and where the linear maps correspond-
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ing to multiplication with X (resp. Y and Z) can be represented by the
matrices

0 —-n+1 0
0 -n+2
X = - 0 - 0
-1
0
0
1 0
y=-|10 1 0
0 1 0
-Z="1I,
Proof. The starting point is the resolution
0—H(-n) He H(-n+1) — h(PF) — 0.

(YY", -X) (YU XY +nZ?) !

As V — Ext'(h(P*), H) is finite dimensional, dualizing this sequence
gives an exact sequence in Coh(P,),

0-»R ->c6c(n—-1)->c(n) 0.
The long exact cohomology sequence gives the diagram

(Y", —-X)

H(—1) & H(n - 2) H(n - 1) —HY{(2(-1)) —0
HO)® H(n — 1) W H(n) — Hl(f}") —0

So we see that a basis for H'(P

o Pl — 1)) is given by the images of
yr-lLyntiz,o ., yzrzn!

and a basis for H‘(Pq, ) is given by the images of
yr-lz, yrn-2z2,...,YZ"" ', Z".

Hence m(P,) = m(P,) = n and with respect to these bases the maps are
given by multiplication with the given matrices. ||

Recall from [10] that one can associate to a triple of n X n matrices
(M,, M,, M) a stable vector bundle on the commutative projective plane
P2(C) provided dim(C-M, v +C M, v+ C-M;-v) =2 for all 0
+ 1 € C". If one of these matrices is the identity matrix, the rank of the
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vector bundle is equal to the rank of the commutator matrix of the other
two. Applying these facts to the above computations we see that there is a
stable rank n vector bundle on P,(C) with Chern numbers ¢, = 0 and
¢, = n associated to the right ideal P,.

In a neighborhood of P, in M(A;n,n) this gives a rational map
M(A; n,n) - Mpxn; 0, n). We will show that its image is a small subvari-
ety of M(n;0,n). For in a neighborhood of P, we may assume the
Z-matrix to remain invertible and so by a base change we may assume it to
be the identity matrix. As the Kronecker module determines uniquely the
corresponding B-module with dimension vector (n — 1, n, n),

X X2

—> —3
(Cn—l i Ccn 12_) c”

Z Z; ’

—> —

we deduce from the defining relations

X1, =2 X,
Y.I, =2Y,
XY, -YX,=21, (7)

that
Z(XY, - Y, X, - 1,) =0,

and by unicity of the extended B-module we must have that rk(Z,) = n —
1 or equivalently that rk([ X,,Y,] — 1) = 1. Therefore the image must lie
in the subvariety of M(n;0, n) determined by a couple of n X n matrices
(X,Y) such that rk([X,Y] - 1) = 1. Recall that M(n;0,n) = (M, X
M,})/PGL, so the image is a rather small subvariety.

It would be interesting to know whether all moduli spaces M(A4; m, n)
connect with the usual moduli problems.
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