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Abstract 16 

1. There has been rapid increase of interest in the role that information acquisition plays in 17 

ecological process and in shaping life histories and their evolution. Compared to auditory and 18 

olfactory cues, the range at which visual cues are likely to be informative to animals is particularly 19 

sensitive to the spatial structure of the environment. However, quantification of and accounting for 20 

availability of visual information in fundamental and applied ecological research remains extremely 21 

limited. 22 

 23 

2. We argue that a comprehensive understanding of animal behaviour in a spatial context 24 

would greatly benefit from objective quantification of the area an animal can potentially obtain 25 

visual information from and therefore draw broad attention to viewshed analysis. This analysis 26 

identifies all cells of a gridded surface that are connected by lines-of-sight to a viewpoint, hence, 27 

providing information on how much of the environment surrounding a location can be seen given the 28 

structure of the environment. Although heavily used in non-ecological disciplines including civil 29 

planning and archaeology, viewshed analysis has seldom been applied in an ecological context. 30 

 31 

3. Here, we highlight the opportunity to make use of viewshed approaches in conjunction with 32 

three-dimensional remote sensing data and (3D) data from animal tracking to make major progress 33 

in understanding how visual information influences animal spatial behaviour, ecology and evolution. 34 

 35 

 36 

 37 

Keywords: viewshed analysis; LiDAR; visual information; animal behaviour; visual ecology; distance 38 

sampling; perceptual range; conservation planning 39 

  40 
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Introduction 41 

The ecology of information (Schmidt et al. 2010) is a rapidly developing field that is producing 42 

increased understanding of the role that information acquisition and use by individuals and groups 43 

plays in a broad range of ecological processes. These include eavesdropping to avoiding predation 44 

(Magrath et al. 2015), social foraging (Fernández-Juricic et al. 2004), location of and foraging on 45 

resources in complex environments (Verdeny-Vilalta et al. 2015), individual movement decisions 46 

(Strandburg-Peshkin et al. 2013), the use of social information in determining decisions related to 47 

dispersal (Boulinier et al. 2008) and habitat choice (Forbes & Kaiser 1994, Doligez et al. 2002). 48 

Information from the environment is acquired mainly through perception of visual, olfactory or 49 

auditory cues. Vision is often of particular importance as it provides information of high precision (i.e. 50 

ability to discriminate a signal from background noise) and accuracy (ability to locate a detected 51 

signal in space) (Stevens 2013). For visual information to be transferred, sender and receiver need to 52 

be directly linked in space which makes the range over which animals can obtain visual information 53 

particularly sensitive to the spatial structure of the environment. However, accounting for the 54 

availability of visual information in ecological research remains extremely limited, constraining our 55 

ability to understand animal behaviour in a spatial context. For instance, an apparent suboptimal 56 

movement decision of a forest bird may simply be attributable to the fact that a nearby forest 57 

corridor was visually obscured by other land cover. 58 

Here, we highlight the opportunity to make use of viewshed approaches in conjunction with three-59 

dimensional (x, y, z) remote sensing data (LiDAR) and data from animal tracking to advance 60 

understanding of how visual information influences animal spatial behaviour, ecology and evolution. 61 

 62 

The dimension of an animal’s visual space 63 

Regardless of the effects of the structural environment on the transmission of visual cues, availability 64 

of visual information is determined by the range at which an animal can detect objects with sufficient 65 

resolution to inform behavioural decisions. This distance is determined by the upper limit of an 66 
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animal’s maximum spatial resolving power (visual acuity) which in turn is determined by eye-size 67 

(Kiltie 2000) and the retinal ganglion cell density (Collin & Pettigrew 1989). Information on spatial 68 

visual acuity and the size of a visual stimulus allows calculation of the threshold distance at which an 69 

object can be resolved from the background. For instance, brown-headed cowbirds Molothrus ater 70 

have an estimated spatial visual acuity of 5.1 cycles/degree which would allow them to resolve a 2m 71 

high feature from a distance of 1012m (Blackwell et al. 2009). Hence, depending on the visual 72 

stimulus of interest, information on an animal’s visual acuity allows ecologists to estimate the 73 

dimension of the visual space. In reality, this visual space is additionally structured by the 74 

architecture of the animal’s eye implying that its dimension at any one instance varies around an 75 

animal’s head (Martin 2007). Fig. 1 illustrates the potential visual space from a given location 76 

considering all possible head angles of the animal (i.e. imagine an individual perched in a tree, taking 77 

time to look in all directions prior to making a decision). In addition, external factors affecting visual 78 

signal transmission or reception may modulate the relationship between spatial visual acuity and the 79 

dimension of the visual space. For instance, an object that is barely detectable at a certain distance 80 

at high light levels will only be detectable at a much shorter distance at lower light levels (Cronin 81 

2014). This means that the dimension of an animal’s visual space can vary in time (e.g. midday versus 82 

dusk) and in space (e.g., open canopy versus closed canopy forest or shallow versus deeper water). 83 

Despites these physical and external factors influencing the size of an animal’s visual space, in many 84 

situations, a visual threshold distance will surpass the scale of the structural environment making the 85 

dimension of an animal’s visual space primarily a function of it’s location in 3D space. For example, 86 

imagine an individual of a bird species that has the ability to recognise suitable fruiting trees from up 87 

to 1000m away. Perched on a tree, it will be able to acquire this visual information for up to 1000m if 88 

it is looking over an open field of wheat. But, if there is a patch of woodland located within the field 89 

at 500m, the visual information obtainable in that direction will be curtailed to 500m (Fig. 1). 90 

 91 

Page 4 of 26Methods in Ecology and Evolution



 5

 92 

Figure 1. Simplified graphical representation of the visual space, in this case of a blackbird Turdus 93 

merula perched atop of a tree with an assumed threshold distance of 1000m (grey circle). The 94 

blackbird’s potential visual space is curtailed by a woodland patch to the NW (green), and a building 95 

(dark grey) to the SE. The white woodland patches outlined in grey are not visible to the blackbird - 96 

the one to the SW is located beyond the bird’s threshold distance while visibility of the one to the 97 

NW is obstructed by a nearby patch in the same direction (see text for further explanation). 98 

 99 

As information acquisition is key to individual fitness (McNamara & Dall 2010), an animal’s spatial 100 

behaviour can be expected to be co-driven by the need to collect visual information from it’s 101 

surroundings (i.e. optimizing the size of the visual space). Indeed, there are studies that provide 102 

evidence for this relationship. Animals may move vertically in order to collect visual information at 103 

larger distances (Dokter et al. 2013), choose territories offering good views such that they can be 104 

efficiently defended against rivals (Eason and Stamps 1992, 2001), or choose locations allowing good 105 

views of the surroundings to optimize anti-predatory vigilance (Krams 2001, Embar et al. 2011). 106 

The other way around, an animal’s spatial behaviour can also determine its visual exposure to 107 

potential viewers. In some cases, animals may select highly exposed locations allowing for visual 108 

signals to be optimally communicated to a targeted audience, for instance during behavioural 109 

1000 m

N

E

S

W
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displays (Alonso et al. 2012), while in other cases, animals may prefer locations that offer high 110 

degree of concealment to minimize predation risk (Kopp et al. 1998). Most likely, many of the 111 

decisions an individual makes on location choice represent a trade-off between visibility and 112 

concealment (Camp et al. 2012), with the balance between the two likely to be highly context 113 

dependent. For example, we might anticipate that during the breeding season, when young require 114 

high levels of resource provisioning, an adult bird may trade-off a degree of concealment in order to 115 

increase access to visual information that results in a higher rate of resource acquisition. 116 

 117 

Despite the potential strong influence of the interaction between location and visual information 118 

acquisition on animal behaviour, few studies have addressed this. This may be explained by 119 

challenges in quantifying what an animal can potential see or is visually exposed to in a structured 120 

environment using traditional field methods – for instance, by visual estimation (Eason & Stamps 121 

2001, van der Meer et al. 2013), photographing cover boards (Camp et al. 2012), or through 122 

measurement of the distance and angle to obstruction of sightlines from the perspective of a prey 123 

animal (Kopp et al. 1998). These approaches are limited in applicability by poor repeatability of 124 

measurements and sampling inefficiency and also because the information they provide on a visual 125 

space cannot straightforwardly be integrated with other spatially explicit data. However, a 126 

confluence of technical advances in computational tools and remote sensing means that there are 127 

now excellent opportunities to substantially advance beyond these field methods to provide high 128 

resolution representations of an animal’s potential visual space and to thus begin to understand how 129 

behavioural decisions and ecological and evolutionary processes and patterns relate to them.  130 

 131 

A call for ‘viewshed ecology’ 132 

We argue that objective quantification of an animal’s potential visual space would strongly advance 133 

our understanding of animal behaviour in a spatial context and draw attention to the opportunities 134 

offered by “viewshed analysis”. A viewshed refers to the area in a spatial environment that is directly 135 
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visible from a particular location (Tandy 1967). This concept has been implemented in Geographic 136 

Information System (GIS) software (ArcGIS, GRASS GIS) to calculate viewsheds across digital elevation 137 

surfaces (hererafter “viewshed analysis”; see Chang 2006 for a useful introduction and Box 1 for 138 

guidance). In a GIS, a viewshed is represented by all cells of a gridded surface that are connected by 139 

lines-of-sight to the viewpoint. A viewshed, hence, provides information on how much of the 140 

environment surrounding a location can be seen given the terrain. Further, viewshed analysis can be 141 

used to quantify relative visibility of each cell in a landscape by determining how well it can be seen 142 

from many viewpoint locations and generating what is termed, the cumulative viewshed (Fig. 2b) 143 

(Wheatley 1995). 144 

  145 

Viewshed analysis has been well developed for and heavily used in a range of disciplines, particularly 146 

in civil planning and archaeology. In these disciplines, viewsheds have provided major gains in both 147 

understanding and predictive capability. For example, viewshed analysis allowed archaeologists to 148 

demonstrate that historical site-placement decisions were influenced by the degree to which a 149 

location allowed man to control the surroundings visually (i.e. sites had significantly larger viewsheds 150 

compared to random locations; Marsh & Schreiber 2015), or by the degree to which locations 151 

allowed inter-visibility between sites (Wright et al. 2014). In the present, decisions on infrastructure 152 

siting are also influenced by human visibility, and viewshed analysis, for instance, is used to either 153 

minimize the visual impact of large infrastructure (Griffin et al. 2015), or to find building locations 154 

that offer highly valued views to its future inhabitants (Alphan and Sonmez 2015). However, despite 155 

the technical methods used to generate and analyse viewsheds maturing they have, to date, seen 156 

very limited use in ecological research. Indeed, we have found just eight studies that applied 157 

viewshed analysis in conjunction with ecological data (i.e. Camp et al. 1997, Aspbury & Gibson 2004, 158 

Hopcraft et al. 2005, Alonso et al. 2012, Ransom et al. 2012, Loarie et al. 2013, Davies et al. 2016a, 159 

Davies et al. 2016b), and a single methodological study (Olsoy et al. 2015). 160 

 161 

Page 7 of 26 Methods in Ecology and Evolution



 8

Of these eight studies, however, only four applied viewshed analysis to explicitly consider visual 162 

information acquisition: Camp et al. (1997) used viewsheds from golden eagle Aquila chrysaetos 163 

nests to determine buffer zones where recreational use should be limited to minimize disturbance, 164 

Ransom et al. (2012) used viewsheds from human observer locations to account for spatially 165 

structured visibility and Aspbury & Gibson (2004) and Alonso et al. (2012) used viewsheds to explain 166 

selection of lekking sites of ground-displaying birds in mountainous terrain. The latter two being the 167 

only examples where animal visual acuity was taking into account for generating the viewsheds (i.e. 168 

viewsheds were curtailed using threshold distances that were based on actual estimates of visual 169 

acuity). The remaining studies, merely used viewshed analysis to derive a measure of structural 170 

complexity of the environment (i.e. the size of the viewshed area was used as measure of vegetation 171 

density) as an explanatory variable to analyse site selection and, as such, do not represent examples 172 

of viewshed ecology. 173 

 174 

Perhaps a major reason why viewshed approaches have not been more widely adopted by ecologists 175 

is the challenge of obtaining appropriate high quality data on 3D landscape attributes. In comparison 176 

to the questions civil planners and archaeologists address using viewshed analyses, ecologists will 177 

often require substantially higher spatial and/or temporally resolved information to answer many of 178 

the ecological questions that viewshed analysis can potentially inform. While an archaeologist asking 179 

questions related to inter-visibility between archaeological site can make good use of viewshed data 180 

that is generated using a digital elevation model (DEM), an ecologist interested in the foraging 181 

behaviour of a frugivorous bird across a landscape is likely to require 3D data on vegetation structure 182 

in order to obtain relevant information on a location’s viewshed. 183 

 184 

A model of 3D vegetation structure can be obtained by means of Light Detection and Ranging (LiDAR) 185 

(Lefsky et al. 2002); an active remote sensing technique that measures the location of of a structure 186 

in 3D space based on return-times of laser pulses emitted from an airborne (i.e. airborne laser 187 
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scanning; ALS) or a ground-based platform (i.e. terrestrial laser scanning; TLS). Amongst the wide 188 

uptake of LiDAR in ecology (Davies & Asner 2014), four recent studies perfectly demonstrated the 189 

potential LiDAR offers for viewshed ecology: ALS was used by Loarie et al. (2013) to model lines-of-190 

sight at a height of 1m above the ground (essentially a 2D viewshed) from lion Panthera leo 191 

relocation data (Fig. 2a), by Davies et al. (2016a) to model viewsheds from African wild dog Lycaon 192 

pictus den locations, and by Davies et al. (2016b) to model viewsheds both from lion kill sites and 193 

resting sites, while TLS was used by Olsoy et al. (2015) for mapping ‘fearscapes’ (i.e. spatial explicit 194 

representation of predation risk) thereby demonstrating the potential of the cumulative viewshed 195 

approach (Fig. 2b). 196 

 197 

 198 

 199 

Fig. 2. Using (a) airborne LiDAR to model the size of the viewshed (here represented by lines-of-sight 200 

in white) for lion locations and (b) terrestrial LiDAR and the cumulative viewshed approach to 201 

quantify level of prey concealment. Hypothetical prey locations are indicated by the numbers 1, 2, 202 

and 3 and, in this example, individual 3 will be much more visible to predators than individuals 1 and 203 

2. Examples from Loarie et al. (2013) and Olsoy et al. (2015), respectively. 204 

 205 
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The nature of the LiDAR data will influence the type of ecological questions that can be addressed 206 

using viewshed analysis. Typically, TLS has a much higher resolution than ALS, hence, it is better 207 

suited for modelling realistic viewsheds in complex environments (e.g., within a woodland) 208 

(Murgoitio et al. 2014). Also, by having the option to scan the environment horizontally, TLS provides 209 

a method for modelling views from the opposing perspectives of both predator and prey (Olsoy et al. 210 

2015). ALS, on the other hand, allows data collection over larger areas hence making it particularly 211 

useful for integration with remotely collected animal movement data (see Strandburg-Peshkin et al. 212 

2017 for an example) or for viewshed applications in landscape ecology (see below). When collected 213 

at sufficiently high density (~170 pt/m²), ALS point clouds can also be used to model 3D structure of 214 

individual vegetation strata which allows modeling viewsheds below forest canopies (Hamraz et al. 215 

2017).  ALS (both processed and as point clouds) is becoming freely available for a rapidly increasing 216 

number of countries. However, usefulness of these data for viewshed ecology will depend on LiDAR 217 

point density requirements and on the date of collection (i.e. vegetation structure may vary within 218 

and between years). In this respect, the increased availability of unmanned aerial vehicles (UAVs) 219 

offers ecologists an unprecedented opportunity to obtain LiDAR data at a user-defined scale and 220 

point density (Anderson & Gaston 2013, Strandburg-Peshkin et al. 2017). In addition, technical 221 

advances in animal tracking (Cagnacci et al. 2010, Kays et al. 2015, De Margerie et al. 2015) has 222 

drastically increased the spatial resolution (also in 3D) of location data which means that the spatial 223 

precision offered by LiDAR can increasingly be utilized to its full potential for viewshed ecology. 224 

 225 

Opportunities for viewshed ecology: 226 

The few recent applications of viewshed approaches in ecology begin to illustrate the potential of the 227 

method in conjunction with emerging opportunities for data acquisition and modelling. We believe 228 

that there is substantial potential for viewshed ecology to transform the quality of our understanding 229 

regarding how individuals behave in order that they acquire visual information and also how they 230 

may behave such as to increase or decrease the likelihood that they are seen (e.g., by a potential 231 
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mate, or a predator, respectively). There are also major opportunities for integrating these 232 

approaches with methods used for modelling and predicting animal decisions and behaviours, (e.g., 233 

movement behaviours, foraging site selection) and for using the insights that these provide for 234 

informing conservation and landscape management. We structure the next sections by first 235 

considering how we can make progress by defining viewsheds from recorded animal locations and, 236 

second, to make progress by applying viewshed analysis from multiple hypothetical locations to 237 

define relative visibility of landscape features. Third, and finally, we consider how we can use 238 

viewsheds to improve our interpretation of human visual sampling of ecological systems, recognizing 239 

the fact that visual observations by humans will also be influenced by the environment. 240 

 241 

Viewsheds from actual viewpoints – defining the potential visual space 242 

This application lends itself to address questions that relate to (1) spatial behaviours that are 243 

hypothesized to be related to the dimension of the visual space, or (2) to improve understanding of 244 

variables (other than properties of the viewshed itself) driving spatial behaviours or selection of 245 

habitat/resources or (3) that seek to model animal spatial behaviours realistically in function of a 246 

landscape (e.g., spatially explicit individual-based models; IBMs). These applications broadly fall into 247 

two categories: (a) where the size of the viewshed is taken as an explanatory variable (questions 248 

under 1) and (b) where the viewshed is used in a GIS to identify landscape features that are potential 249 

visible from a given location (2 and 3). 250 

 251 

Information acquisition and spatial behaviour 252 

Information results in better informed decisions and one could investigate if a relationship exists 253 

between the size of a viewshed and movement behaviours of an individual. For instance, it could be 254 

hypothesized that individuals having, on average, large viewsheds should travel more efficient routes 255 

and have less tortuous movement paths compared to individuals that had, on average, smaller 256 

viewsheds. The fact that previous studies found that path tortuosity was higher in structurally more 257 
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complex landscapes (where relatively small viewsheds can be assumed) (Prevedello et al. 2010) may 258 

be indicative of such a relationship, although other factors could also provide explanations (e.g., path 259 

tortuosity determined by physical obstruction of land cover). The viewshed approach can help 260 

disentangle these likely interacting effects of the structural environment on spatial behaviours. 261 

From this a second question naturally follows; if we assume that a better view of the landscape 262 

increases navigation capacity, could it be that animals select locations that increase their ability to 263 

obtain visual information? Contrasting the size of viewsheds from actual locations with those 264 

calculated from a set of random locations could provide insight into how individuals exploit their 265 

environments to optimise information acquisition. 266 

 267 

Information availability, spatial behaviour and habitat or resource selection 268 

At the core of several research fields, notably in movement and landscape ecology, an individuals’ 269 

decision routinely needs to be interpreted or set according to its perceptual range. In this context, 270 

the perceptual range does not necessarily refer to the range at which an animal can perceive a 271 

particular visual cue (the actual threshold distance) but rather to the range at which an animal is 272 

likely to respond to it (i.e. the realized perceptual range, sensu Olden et al. 2004) which, in a 273 

landscape ecology context, has been experimentally defined only for a small number of species (e.g., 274 

Zollner 2000, Schtickzelle et al. 2007, Turgeon et al. 2010, Prevedello et al. 2011). However, 275 

whatever threshold distance is used to delimit the perceptual range, it is virtually always assumed 276 

that the animal has unobstructed views across it (e.g., Fronhofer et al. 2013, Laforge et al. 2016). This 277 

reduces our ability to use models to infer how individuals respond to different features of the 278 

landscape because we are not properly controlling for the locations that are actually visible. 279 

Systematic biases may occur where visual signals are more rapidly curtailed by particular habitat 280 

features or where particular habitat features are routinely more (or less) visible than would be 281 

expected by chance. For example, if we were fitting a movement model that incorporated 282 

resistance/preference/cost values for different landscape elements and one high quality habitat 283 
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category was typically obscured from view by another (as an extreme example, imagine forest glades 284 

hidden by trees), then by not accounting for relative visibilities we might incorrectly assign too high a 285 

cost value to what is actually a preferred and high quality habitat type, that is simply hard to find. 286 

Incorporating viewshed analysis in models that fit parameters describing animal spatial behaviours 287 

can yield significant improvements, as it can allow sampling of alternatives from what is actually 288 

visible within the hypothesized perceptual range, hence likely increasing the power of models to 289 

detect relationships between the landscape and animal behaviour.  290 

 291 

The concept of a spatially explicit perceptual range can be applied in individual-based movement 292 

models. For instance, the Stochastic Movement Simulator (SMS; Palmer et al. 2011) simulates 293 

movement across a gridded surface where transition probabilities are governed by cost values within 294 

a predefined perceptual range. This modelling approach, and an extended version that can work in 295 

3D, has already been applied to fundamental and applied research questions in both terrestrial and 296 

marine environments (Chimienti et al. 2014; Coulon et al. 2015; Aben et al. 2016). In SMS’s current 297 

form, the perceptual range represents a predefined number of grid cells evenly distributed around 298 

the location of the virtual animal. Adding a layer that gives information on the z value (height) of 299 

each cell and calculating the viewshed would account for the effects of topography and vegetation 300 

structure on movement behaviour which in turn is likely to increase realism in IBM predictions (Pe'er 301 

and Kramer-Schadt 2008). For instance, Graf et al. (2007) demonstrated that estimates of patch 302 

connectvity were closer to expert predictions when the perceptual range of simulated capercaillie 303 

Tetrao urogallus individuals was constrained by mountain topography. 304 

One potential application of these movement models is to utilise them in conjunction with inverse 305 

fitting methods to make inference about ecological behaviours and processes for which direct 306 

estimates are hard to obtain. For example, given 3D data on the landscape and on movement 307 

trajectories, Approximate Bayesian Computation (van der Vaart et al. 2015) could be used together 308 

with stochastic simulations to provide estimates for an animal’s perceptual range threshold distance 309 
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 310 

Viewsheds from hypothetical viewpoints – defining a location’s relative visibility using the cumulative 311 

viewshed approach 312 

Viewshed analysis can be used to quantify relative visibility of a location of interest. This is done by 313 

calculating viewsheds from multiple hypothetical viewpoints and adding them up to create a “heat 314 

map” where each cell gives the number of overlapping viewsheds. Because this analysis can be 315 

performed for all locations in the area of interest, it provides a superior alternative for the 316 

conventional photograph-based visibility measures (Olsoy et al. 2015) that are routinely used in 317 

behavioural ecology. 318 

 319 

Relative visibility to guide landscape scale conservation management 320 

Interestingly, by taking the cumulative viewshed approach we can begin to characterise the relative 321 

visibility of different landscape elements, providing potentially useful applications. For example, 322 

visibility of corridors and stepping-stones in a landscape can be hypothesized to influence the rate at 323 

which these features are encountered by dispersing individuals (Vergara et al. 2013) which in turn 324 

will affect their effectiveness in promoting functional connectivity. The cumulative viewshed 325 

approach could be used to determine relative visibility of landscape features and use this 326 

information to evaluate relative effectiveness of alternative scenarios of corridor placement. A 327 

similar approach could be taken to evaluate to what extent patch functional connectivity is 328 

influenced by variation in patch visibility. For example, it could be hypothesized that patches that are 329 

relatively visible in a landscape have higher immigration rates compared to patches that are less 330 

visible or that the degree of patch inter-visibility explains patterns of connectivity (e.g., are ‘visually 331 

connected’ patches also functionally connected?). 332 

We see great potential of the cumulative viewshed approach to inform landscape management. For 333 

example, it would allow planners to constrain placement of stepping-stones, corridors and additional 334 

patches of habitat to locations that render them relatively visible at relevant spatial scales and to 335 
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create ‘visually connected’ landscapes. As a large proportion of animals uses visual cues to navigate 336 

through a landscape – accounting for visibility in landscape planning is likely to increase its 337 

effectiveness. 338 

Typically, the cumulative viewshed approach requires calculating multiple viewsheds on large 339 

datasets which may prove computational challenging. However, viewshed modelling is central in a 340 

range of non-ecological research fields and technical developments are yielding improvements which 341 

will facilitate its application in landscape planning (Sang 2016). For example, a recently developed 342 

software that uses raycasting algorithms adapted from computer gaming engines calculates 343 

viewsheds up to 1500 times faster than standard GIS algorithms (Carver & Washtell 2012) allowing 344 

real-time viewshed visualization and interactive planning with stakeholders. 345 

 346 

Viewsheds from researcher locations 347 

Visual census of animals is common in ecological research. In many cases, these data are used to 348 

estimate the size or density of biological populations (i.e. distance sampling). A key assumption of 349 

distance sampling is that all subjects occurring on the census area can be detected. If they are not, 350 

densities will be underestimated (Smolensky & Fitzgerald 2010). Violation of the assumption can 351 

occur from imperfect detection of subjects that are available in the sampling area (i.e. the perception 352 

bias), or when subjects that are in the census area cannot be detected visually (i.e. the ‘availability 353 

bias’). Especially the latter represents a problem that is difficult to account for. A recent paper, for 354 

example, showed that nearly 30 % of sampling area could not be censused visually due to the terrain 355 

(Ransom et al. 2012). Ultimately, the authors chose not to account for this availability bias in their 356 

density estimates but the study nicely illustrates the potential confounding effects of constrained 357 

observers’ viewsheds in distance sampling. The viewshed approach can be used to account for the 358 

availability bias by quantifying for each census location the proportion of area that is actually visible 359 

to the observer or to select census locations that allow maximum visual coverage of the census area. 360 

 361 
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Opportunities for new collaborations with visual ecologists 362 

An animal’s location determines what it potentially can see and how visible it is from its 363 

surroundings. The properties of a suite of locations encountered by an organism can be seen as 364 

exerting potentially strong selective pressures on the evolution of both visual ability (e.g., eye 365 

physiology) and individual spatial behaviour that influences information acquisition (Spiegel & 366 

Crofoot 2016). Recent work at the interface of animal ecology and sensory ecology, for example, 367 

showed that the bog fritillary butterfly Boloria eunomia, a species inhabiting naturally fragmented 368 

habitat, had larger facet sizes in the frontal and lateral region of the eye compared to the cranberry 369 

fritillary butterfly B. aquilonaris that inhabits more continuous habitat, and that, within B. eunomia, 370 

dispersers had larger facets in the frontal region of the eye than resident individuals (Turlure et al. 371 

2016). As larger facets potentially offer increased spatial visual acuity, these findings lead to the 372 

intriguing possibility, suggested by the authors, that better navigation abilities have evolved to aid 373 

dispersal in the more fragmented landscapes. This study highlights the opportunities that can be 374 

gained through ecological researchers collaborating with visual ecologists (see Cronin et al. 2014 for 375 

an excellent introduction to this field), especially when the aim is to understand factors that affect 376 

visual spatial information acquisition. 377 

Viewshed analyses have traditionally been applied from the human perspective, a species for which 378 

relatively much is known with respect to its visual sensory capabilities, its spatial vision and visual 379 

information processing. Compared to other animals, the human eye is exceptional when it comes to 380 

resolving spatial detail, surpassed only by the eyes of some large birds of prey. Hence, most animals 381 

may only be able to resolve spatial details at shorter distances than humans can. Published estimates 382 

of spatial visual acuity for an increasingly large number of species from different groups (e.g., insects 383 

[Bergman & Rutowski 2015], crustacea [Caves et al. 2016], fish [Collin & Pettigrew 1989], birds 384 

[Mitkus et al. 2014]) may help to generate estimates of the dimension of the visual space required in 385 

viewshed ecology to appropriately delimit viewsheds. Given the fact that both spatial visual acuity as 386 

the perceptual range (inferred from release experiments) has been found to be correlated with body 387 

Page 16 of 26Methods in Ecology and Evolution



 17 

size (Kiltie 2000, Mech & Zollner), these estimates may also be approximated for species for which no 388 

experimental data are yet available. Despite the many challenges that exist, careful application of the 389 

standard implemented viewshed tool in a GIS is likely to greatly increase our ability to understand 390 

the relationship between the availability of visual information and spatial behaviour of animals in 391 

structured environments. For species that may see the world very differently from us or that inhabit 392 

a different environment (e.g., aquatic), ecologists may need to modify existing tools to be able to 393 

account for these factors such that viewsheds can appropriately capture an animal’s visual space.  394 

 395 

Concluding remarks 396 

Information represents the basis of an individual’s behaviour and as such strongly influences 397 

biological processes at larger temporal and spatial scales (i.e. populations, communities and 398 

ecosystem functioning). Understanding this complex network starts with objective quantification of 399 

the information that potentially drives observed responses. However, we have exemplified that, at 400 

least in the case of visual information, this objective is not currently at the core of much ecological 401 

research. Secondly, integration of the ecology of information in landscape scale research and 402 

conservation is hampered by limited connectivity between the different disciplines that investigate 403 

information in biology (Lima & Zollner 1996, Schmidt et al. 2010, Greggor et al. 2014). In this respect, 404 

viewshed ecology may represent the much needed link between these fields to facilitate 405 

advancements in the ecology of information. 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 
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Box 1: Performing viewshed analyses 

Tools: 

Viewshed analyses can be performed using ArcGIS Spatial Analyst (ESRI, Redlands, California) or, for an open 

source alternative, using the r.viewshed command in GRASS GIS (Neteler et al. 2012) which also can be 

controlled in R using the rgrass7 package (Bivand 2016). Essentially, both methods are similar but the tool in 

ArcGIS provides more flexibility in setting parameters to control the calculation of a viewshed. In both tools, 

viewing height is automatically assigned to a location based on the corresponding elevation layer plus a default 

value that equals to approximately one meter in ArcGIS and to 1,75m in r.viewshed. The latter value can be 

adjusted to reflect the viewing height of any species relative to the DEM or DSM (see below). 

Input data: 

1. Digital elevation model (DEM): this data is useful when viewshed analysis is performed in three-

dimensionally structured environments devoid of vegetation or seascapes. DEMs with global coverage 

are freely available through a number of online data portals. 

2. Digital surface model (DSM): this data is needed when viewshed analyses are performed in areas that 

are (primarily) structured by vegetation. This data represents elevation including natural (trees, bush) 

and built features extruding from the earth obtained by means of light detection and ranging (LiDAR). 

These data are becoming freely available for a rapidly increasing number of countries through online 

data portals (e.g., https://data.gov.uk/dataset/lidar-composite-dsm-1m1). 

3. Canopy-height model (CHM): These data represent the elevation of features extruding the earth and is 

obtained by subtracting a DEM from a DSM. High point density LiDAR allows to model vegetation 

structure of individual forest strata. These models are useful for modelling viewsheds from locations 

below a forest canopy. 

Location data: 

Viewshed analysis requires entering an x, y, z coordinate. For location data of ground-dwelling animals, the z 

coordinate should simply reflect viewing height of a species (e.g., for lions, a viewing height of 100cm was 

chosen [Loarie et al. 2013]). For animals that move in 3D space, viewing heights will vary between xy locations. 

In this case, z coordinates can be derived from 3D tracking data or from xy data in combination with an 

elevation surface model. Viewing heights relative to the elevation surface can be set using the OFFSETA 

parameter in ArcGIS or the observer_elevation parameter in GRASS GIS. Please note that it is not possible to 

set a viewing height below the value of the elevation surface. For example, a location for a bird in a tree will be 

assigned a viewing height corresponding to the value in the elevation surface. Absolute viewing height can also 

be set directly using the SPOT parameter in ArcGIS. 

Viewsheds can be curtailed depending on the estimated visual distance threshold of a species by specifying the 

Radius2 and max_distance parameter in ArcGIS and GRASS GIS, respectively (see Aspbury & Gibson 2004 for an 

example). 
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