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–Summary in Dutch–

Draadloze communicatie is een gebied met vele toepassingsmogelijkheden dat snel
evolueert. Voor elk soort van applicatie is er wel een bepaald netwerk dat ervoor
kan dienen. Binnen elk van die netwerken bevinden er zich verscheidene onderdelen
waarbinnen onderzoek uitgevoerd wordt. Slechts een klein gedeelte van het beschik-
bare onderzoek is in dit werk beschreven, dat onderzoek uitgevoerd binnen drie
verschillende netwerk types bevat, voornamelijk in de context van Medium Access
Control (MAC) protocollen. De aangehaalde netwerken bevatten Wireless Sensor
Networks, Wireless Local Area Networks en Cognitive Radio Networks.

Wireless Sensor Networks (WSNs) zijn bekend om hun relatief beperkte capaciteiten
zowel wat betreft energie als processing power. Vandaar dat vele werken gefocust
zijn op de energie efficiëntie van MAC protocollen voor wat betreft sensor netwerken.
Een onderscheid kan gemaakt worden tussen een gecontroleerde medium access en
een random medium access. Veel van de werken die de laatste methode gebruiken,
stellen een verdeling van de beschikbare tijd voor, zodat een deel van de tijd de
nodes actief zijn en een deel van de tijd energie kunnen sparen. Evenals de meth-
ode van Low Power Listening wordt gebruikt in dergelijke situaties om energie te
sparen. Helaas neemt dit niet weg dat idle listening of overhearing nog steeds kunnen
gebeuren. Een gecontroleerde medium access biedt de mogelijkheid om de voorge-
noemde fenomenen grotendeels te elimineren dankzij de nauwkeurige controle over
de transmissies en ontvangsten. Vandaar dat een groot deel van de reeds beschik-
bare MAC protocollen voor WSNs gebaseerd zijn op Time Division Multiple Access
(TDMA). Binnen deze protocollen bestaat nog steeds een grote verscheidenheid wat
betreft de methode van slot allocation. Sommige methodes gebruiken een gedis-
tribueerde aanpak, terwijl andere dan weer een gecentraliseerde aanpak verkiezen,
sommigen beschouwen zelfs een geladderde slot allocatie, etc. Wat duidelijk is, is
dat er weinig werken zijn die een heterogeen network in beschouwing nemen. Met
heterogeen wordt een netwerk bedoeld waarin niet elke node evenveel informatie
te versturen heeft. Deze thesis neemt dergelijke netwerken wel onder beschouwing
en stelt een protocol voor waarin zowel nodes met een grote hoeveelheid data, als
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nodes met een kleine hoeveelheid data kunnen co-existeren binnen eenzelfde netwerk.
Vaak wordt de nood aan synchronisatie beschouwd als een nadeel van gecontroleerde
medium access. Vandaar dat dit werk zich dan ook verdiept in bestaande synchro-
nisatie methodes. Allereerst wordt een theoretische beschouwing gedaan van de pro-
tocollen, waarna deze wordt toegepast op hedendaagse sensor netwerk platformen.
Gebaseerd op de resultaten van deze analyse is een meer efficiënt synchronisatie pro-
tocol gecontrueerd. Om de performance van dit protocol voor wat betreft efficiëntie
en stabiliteit te kunnen aantonen, wordt de implementatie ervan en diens resultaten
in een Proof of Concept (PoC) beschreven.

Een tweede netwerk dat beschouwd wordt in dit werk is het Wireless Local Area
Network. Vanwege een hele reeks redenen zijn de specificaties opgesteld door het In-
stitute of Electrical and Electronics Engineers (IEEE) niet geschikt voor een aantal
specifieke doeleinden, zoals bv. Long Range Networks, een gegarandeerde Quality
of Service (QoS) voor onder andere multimedia streams of Voice over IP (VoIP) of
batterijgevoede bewakingscameras. Het gebrek van bepaalde functionele elementen
van de hardware, die compatibel is met de standaard, zorgt ervoor dat een min-
der dan optimale performance wordt bereikt in dergelijke toepassingsgebieden. Een
aantal van de ondervonden problemen zijn onder andere idle listening, het gebrek
van QoS garanties, de beperkte tijd voor wat betreft het ontvangen van een Ac-
knowledgement (ACK) of het uitvoeren van een Clear Channel Assessment (CCA).
Verscheidene werken hebben onderzocht hoe commercieel beschikbare hardware die
voldoet aan de specificaties van de standaard kan gebruikt worden op een niet stan-
daard manier. De onderzochte materie bij de meeste van dergelijke werken houdt
in dat een gecontroleerde medium access is geplaatst bovenop de Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) medium access die door de
hardware wordt aangeboden. Verscheidene manieren werden gebruikt om de doel-
stelling te bereiken. Een aantal werken passen de MadWiFi driver [1] aan, oftewel
implementeren een laag bovenop deze driver, dewelke reeds een oudere driver is voor
legacy hardware. Andere werken bereiken hun doelstelling door een combinatie van
user space drivers en kernel modules die de commandos doorgeven. Nog andere
werken gebruiken een ander type van hardware en passen de specifieke driver aan,
of ze gebruiken de hardware in monitor mode, waardoor de gebruikelijke standaard
functionaliteit van de radio wordt opgehoffen.

Ongeacht van de gebruikte methode, hebben de meeste, of zelfs alle, van deze werken
hun doelstelling kunnen bereiken dankzij het open source karakter van de Linux ker-
nel. Bij het ontwerpen of wijzigen van delen van de kernel zodat een gecontroleerde
medium access mogelijk gemaakt wordt is het belangrijk om de verschillende delen
van de kernel te identificeren die mogelijks een invloed kunnen hebben op de precisie
waarmee de transmissie gecontroleerd wordt. Een van deze onderdelen is het process
scheduling systeem dat bepaalt welke taak als volgende dient te worden uitgevoerd
en bepaalt ook mede de onderlinge prioriteit van de verschillende taken. Verder is
het gedeelte dat verantwoordelijk is voor het afhandelen van interrupts van belang,
aangezien het het normale verloop van de processes beïnvloedt en vaak vandaar uit
een tasklet of softirq gescheduled wordt, dewelke een hogere prioriteit hebben dan
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reguliere processen. De timer functionaliteit biedt een essentiële service van precieze
timer interrupts om zodanig de transmissies en ontvangsten nauwkeurig te kunnen
controleren. Uiteraard dient ook met het netwerk subsysteem van de Linux kernel
rekening gehouden te worden, wat de hardware drivers implementeert, alsook de
MAC functionaliteit, de Logical Link Control (LLC) en de hogere lagen met onder
meer Internet Protocol (IP), User Datagram Protocol(UDP) en Transport Control
Protocol(TCP). Een zekere mate van begrip omtrent deze onderdelen is vereist in-
dien dergelijke tijds gevoelige applicaties worden ontworpen.

Aangezien de meeste hardware chips enkel maar de CSMA medium access methode
ondersteunen, moet de werking van de verschillende onderdelen en functionaliteiten
van de standaard, die mogelijks een invloed zouden kunnen uitoefenen op de precisie
van de transmissie of ontvangst, moeten worden bestudeerd. De Distributed Coor-
dination Function (DCF) is een van de onderdelen die hierop het meeste invloed
zal hebben, maar ook met aggregation en het Block Ack mechanisme moet rekening
gehouden worden, daar die toch ook een belangrijke invloedssfeer hebben. Om een
dergelijke implementatie tot stand te brengen is allereerst een nauwkeurige timer
source nodig. Vandaar dat een performance analyse van beschikbare timer sources
is uitgevoerd foor een reeks van verschillende omgevingen en parameters. Van ver-
scheidene Linux kernel real-time extensions en een enkel real-time operating system
zijn ook mede gebruik gemaakt binnen deze analyse. Op basis van de verkregen
resultaten is een van de timers geselecteerd om de precieze transmissie tijden aan
te geven. De implementatie toonde nog verscheidene hardware artefacten die een
invloed hadden op de nauwkeurigheid, waar voor ieder verschijnsel een oplossing of
een workaround is gevonden.

Een derde netwerk dat in rekening wordt gebracht binnen dit werk is het Cogni-
tive Radio Network (CRN). Daar waar al het voor vermelde werk gerelateerd was
tot MAC protocollen, gaat dit gedeelte van het werk over een functionaliteit dit
wordt uitgevoerd nog voordat de MAC laag aan het werk moet. Een CRN is een
netwerk dat specifieke eigenschappen en eisen vertoont, waar aan gehouden moet
worden. Bijvoorbeeld, de Primary User (PU) activiteit zou nooit onderbroken of
verstoord mogen worden door een Rendezvous protocol. Verder moet er rekening
gehouden worden dat een PU plots actief kan worden op het kanaal dat de Secondary
Users (SUs) momenteel aan het gebruiken zijn. Vandaar dat het ontwerpen van een
Rendezvous protocol de nodige aandacht vereist. Een populaire aanpak is die van
channel hopping, waarbij nodes over de verschillende kanalen hoppen volgens een
vastgestelde sequentie en proberen andere SUs te detecteren.

Binnen de werken die channel hopping beschouwen bestaat er nog een grote verschei-
denheid over de manier waarop het hopping patroon tot stand komt. De aanpakken
gaan van het aanmaken van een random hopping patroon, waarbij dan op ieder
kanaal een evengrote kans is om een rendezvous te hebben, tot een voorspelbare
rendezvous die gebaseerd is op numerieke analyse. Ongeacht van de varïeteit van
dergelijke protocollen, de meesten nemen het natuurlijke asynchrone karakter van
het systeem niet in rekening, terwijl dit net de performance enorm zou kunnen
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beïnvloeden.

Dit werk stelt een manier voor waar op een efficiënte manier een asynchrone analyse
kan uitgevoerd worden van bijna elk Rendezvous protocol. Het resultaat van die
analyse toonde dat de werking op een asynchrone manier een verbetering met zich
meebrengt voor wat betreft de performance van het Rendezvous protocol. Vandaar
dat een extension is ontworpen die een dergelijke asynchrone werking forceert bij
eender welk Rendezvous protocol door een grotere slot size te bieden aan kanalen die
een hogere prioriteit hebben. Verder is in dit werk een meer geoptimaliseerde exten-
sion voorgesteld die een betere verdeling van de slot sizes over de beschikbare kanalen
verzorgt. Wanneer deze extension gebruikt wordt in combinatie met een Rendezvous
protocol dat specifiek was ontworpen om gebruikt te worden met deze extension, is
het duidelijk dat de performance van deze combinatie ver bovenuit de performance
van eender welk regulier Rendezvous protocol uitsteekt. Bemerk wel dat de meeste
werken enkel maar een analyse of bewijs leveren voor een Rendezvous aan het begin
van het hopping patroon. Dit werk neemt alle mogelijke rendezvous volgens dit
hopping patroon in rekening en het resultaat is een statistische voorstelling van alle
mogelijke rendezvous.
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English summary

The area of wireless communications is a broad and fast evolving area. For each
application area a specific network type is available. Those network types are com-
posed of several subareas in which research is being performed. A small section
of the available research is presented in this work, which discusses three different
network types in the context of mostly Medium Access Control (MAC) protocols.
The discussion includes Wireless Sensor Networks, Wireless Local Area Networks
and Cognitive Radio Networks.

Wireless Sensor Networks (WSNs) are characterized by their low amount of avail-
able resources, both in terms of battery power as processing power. Most works
therefore focus on the energy efficiency of MAC protocols for sensor networks. The
approach taken by the different works can be divided in two main classes, a sched-
uled approach and an uncoordinated approach. The latter either makes use of duty
cycling, or low power listening in order to reduce the energy consumption of the net-
work. However, idle listening and overhearing is not completely eliminated by these
methods. A scheduled approach can, thanks to its precise control of the transmis-
sions and receptions, avoid most of the idle listening and overhearing. Therefore,
a considerable number of MAC protocols for WSNs are Timer Division Multiple
Access (TDMA) based. The slot allocation methods for those protocols come in a
wide variety. Some allocation methods use distributed approaches, others a central-
ized approach, a staggered slot allocation might be considered, etc. However, few
works actually consider a heterogeneous network in which the sensor nodes have a
different amount of data to transmit. This work proposes a method which ensures
that both high throughput and low throughput nodes can exist simultaneously in
the same network. Note that an often considered downside of the scheduled medium
access is the need for synchronization. This work elaborates on existing synchroniza-
tion methods, first from a theoretical viewpoint and afterwards applied to common
sensor network platforms. Based on the outcome of the analysis, a more efficient
synchronization protocol is proposed, which has also been implemented in a Proof
of Concept (PoC) to demonstrate its efficiency and stability.

The second type of network considered in this work is the Wireless Local Area
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Network. For a wide range of reasons, the Institute of Electrical and Electronics
Engineers (IEEE) specifications do not match the requirements of specific target
applications, such as Long Range Networks, a guaranteed Quality of Service (QoS)
for multimedia streams or Voice over IP (VoIP) or battery powered surveillance
cameras. Due to the lack of certain features the default operation of the standard
compliant hardware is suboptimal for such applications. The encountered issues
include idle listening, the lack of a QoS guarantee, the limited timing constraints for
both Acknowledgement (ACK) and Clear Channel Assessment (CCA), etc. Numer-
ous works have been investigating the usage of Commercial Off-the-Shelf hardware
(COTS) in a non-standardized manner. The modification for most of these works
involves a scheduled medium access on top of the by hardware implemented Car-
rier Sense Multiple Access with Collision Avoidance (CSMA/CA) medium access
technology. The modifications were accomplished by means of different approaches.
Several works consider the modification of or implementation on top of the MadWiFi
driver [1], which is a driver for older hardware. Other works consider a user space
driver in combination with custom kernel modules which pass the commands. Yet
other works use a different type of hardware or use it in monitoring mode, thereby
disabling the usual default functionality of the radio.

Irrespective of the used methodology, most, if not all, of these works were able to
complete their target thanks to the open source character of the Linux kernel. Im-
portant to consider when designing or modifying a part of the Linux kernel, in order
to ensure a scheduled transmission, are the different subsystems which influence the
global behavior. The process scheduling for example controls which task is to be
scheduled next and determines the priority of the processes. Moreover, the interrupt
handling process influences the normal operation of the process scheduling in that
the Interrupt Request (IRQ) handler and the often from there scheduled tasklets
and softirqs have a higher priority than a regular process. The timer subsystem
provides critical functionality of accurate time interrupts in order to schedule the
transmission and receptions at precise time intervals. A last subsystem which greatly
influences the network operation is the network subsystem of the Linux kernel, which
implements the hardware drivers, the MAC protocol, Logical Link Control (LLC),
and upper layers such as Internet Protocol (IP), User Datagram Protocol(UDP)
and Transport Control Protocol(TCP). A certain comprehension regarding these
matters is imperative when designing such time critical application.

Considering only the CSMA access method of the standard is implemented in most
hardware chips, the different functionalities which could influence the timing of the
transmission or reception needs to be studied in detail. Amongst those is the Dis-
tributed Coordination Function (DCF) the one with the largest impact, notwith-
standing that aggregation and the Block Ack mechanism also have a significant
influence. Note that the implementation of a scheduled transmission requires a pre-
cise timer source. Therefore a performance analysis of the available timer sources
is done for different environments and parameters. Several Linux kernel real-time
extensions and a single real-time operating system are included in the timer source
performance analysis. Based on the obtained results, one of the timers is selected as
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a source for triggering the exact transmission times. The implementation revealed
several hardware functions which impacted the accuracy of the transmission time,
for each of which a solution or workaround has been found.

The third considered network regards a Cognitive Radio Network (CRN). The pre-
vious work was oriented towards MAC protocols or related functionality. The work
performed in the CRN considers Rendezvous protocols, which is an operation that
should be performed in an earlier stage than the MAC protocol operation. A CRN
is a type of network with its own specific properties that should be adhered to.
As such, the Rendezvous protocol should not interfere with the operation of the
Primary User (PU). Moreover, it should be taken into account that the PU could
appear suddenly on the channel used by the Secondary User (SU). Therefore the
design of a Rendezvous protocol requires the necessary attention. A popular ap-
proach for Rendezvous protocols is the channel hopping method, where nodes hop
according to a certain channel sequence and sense the channel for any presence of
other SUs.

Within the set of works that consider a channel hopping approach, a wide variety
of methodologies exists in determining the hopping pattern. The approaches range
from the generation of a random hopping pattern, thereby ensuring a statistical
equal distribution of the rendezvous over the number of available channels, towards
a most deterministic rendezvous based on numeric system analysis. However, most
works do not consider the natural asynchronous character of the system, while this
property could influence the performance in a great deal.

This work considers a method to perform an asynchronous analysis in a most efficient
manner for any Rendezvous protocol. The outcome of such analysis showed that the
asynchronous operation of the system improves the performance of the Rendezvous
protocol. Therefore an extension was designed such that the asynchronism is in-
duced on any regular protocol by assigning a larger slot to higher priority channels
compared to lower priority channels. Based on the previously designed extension,
an improved version has been designed, in order to improve the distribution between
the slot sizes over the channel priorities. The performance of the combination with
a Rendezvous protocol specifically designed to cooperate with the extension clearly
shows a significant improvement compared to regular Rendezvous protocols. Note
that while most works relate the performance of their proposed protocol to the start
of the hopping pattern, this work considers an analysis of the entire set of possible
rendezvous as a result of the generated hopping pattern.
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CHAPTER 1

Introduction

Timeliness is "The fact or quality of being done or occurring at a favorable or useful
time" according to Oxford Dictionaries [2]. In other words, timeliness signifies being
on time, which is an ever present concept, probably recognizable for everyone. A
student who needs to finish a thesis before the deadline, A mom who needs to drive
her kids to school, people which need to get to work on time, a demo that needs
to be working before the grand presentation, etc. Everyone is familiar with the
phenomenon ’being on time’ and realizes that it can be sometimes hard to comply
to this time demand. In wireless networks time is equally important, perhaps even
more so than in our everyday life. One could consider the timeliness issue of com-
municating nodes similar to the communication between persons. Although people
consider it implicitly when talking, timeliness plays a large role during the process.
When one person is talking, the other person should be listening. When the timing
is not accurately timed, misconceptions or even arguments could arise. Likewise,
when the transmission and receptions of network nodes are not accurately timed,
messages are either misinterpreted or missed, which could result in catastrophic
results in some cases. Note that the transmission and reception timings are the
most obvious time restrictions that influence the performance of wireless networks.
This work considers not only those obvious restrictions, but also the more subtle
variations in timings that could affect the network performance adversely. Note
that some concepts will be used during this introduction, such as Synchronization
protocols, Rendezvous protocols, etc., which will be explained in one of the next
chapters.

As already mentioned, time is rather important in wireless communication. Syn-
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Chapter 1. Introduction

chronization protocols enable wireless nodes to use a comparative time reference,
such that for example data measurements can be correlated to each other by means
of their timestamps. Moreover, the time synchronization enables nodes to coordi-
nate a spectrum access time slot allocation. However, such allocation should take
into account amongst others the switching time between radio states, such as idle,
transmitting or receiving, and the time required to transmit the preamble when
considering implementations on actual hardware. Such physical limitations influ-
ence the effective throughput, that is, the number of bytes sent per time unit, and
latency, which is defined as the time required for node B to receive a packet origi-
nating from node A. Besides the physical limitations, the implementation of a MAC
protocol can influence both throughput and latency in a great deal. For example,
an efficient TDMA protocol should be able to schedule its time slots and packets in
a very precise manner. In order to achieve such precision, a very accurate timer is
required. Any deviations in spectrum access time could result in collisions, which is
to be avoided in TDMA spectrum access mode. Therefore, the slot timings should
take into account the expected deviations, such that no collisions occur. As such,
large deviations lower the effectively achievable throughput and increase the min-
imal latency. Therefore, all functionality which could possibly have an impact on
the transmission time is to be disabled or its effect is to be minimized. Besides the
throughput and latency, there exists also other metrics which are related to time.
In Rendezvous protocols, the Time-To-Rendezvous is one of the most prominent
metrics according to which its performance is evaluated. The more time it takes to
have a Rendezvous, the fewer Rendezvous opportunities arise during a specific time
interval.

This work, which includes mostly research focused on the MAC layer of wireless
communication networks, considers all previously mentioned cases where time proves
to have a significant impact on the efficiency. More specifically, this work focuses on
low latency communication where the overall efficiency is optimized. Note that the
concept of time is not dedicated to one single research area. Therefore, this work
covers various research areas concerning wireless communications, such as Wireless
Sensor Networks (WSNs), Wireless Local Area Networks (WLANs) and Cognitive
Radio Networks (CRNs), implying the importance of time in all those disciplines.
Each of the disciplines is shortly discussed in the following paragraphs, after which
the specific properties that a MAC layer should adhere to are mentioned. Note
that this introduction employs several concepts which are left unexplained in this
chapter, since they are discussed in detail in the respective chapters.

A WSN can be considered as a network of a large number of small devices, each
of them performing a small portion of the work. The devices, also called sensor
nodes, usually are small and constrained in terms of resources such as battery power,
processing power, memory, etc. On the other hand, the cost of such devices is usually
kept low, making it feasible to include a lot of such devices in the network, from a
budgetary point of view. A sensor node can be classified as an actuator, that is, a
node which enforces some action on its environment, or as a sensor, i.e., a device
which gathers information about its environment. In this work, only sensor nodes
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that gather information are being considered. The gathered information is usually
forwarded to the sink node and thanks to the multitude of sensor nodes collecting
and forwarding information, a very precise view of the measured parameters can
be constructed. Therefore, despite the limited available resources of the devices,
they provide a significant added value with respect to information gathering while
organized in a network. Besides the obvious appeal of WSNs, most of the sensor
node hardware also allows low level programming and configuration. As such, the
research is not limited to strictly standardized hardware and new designs can be
verified in a straightforward manner. The hardware usually provides the basic means
to construct a packet, such as the preamble and Start of Frame Delimiter which
are automatically added by the physical layer, and provides several signals and
methods to start a transmission or reception and keep track of the process. When
conceiving new ideas at the lowest level, the devices can be used without the aid of
any Operating System (OS), however, several OSs are available that were specifically
designed for sensor nodes, such as TinyOS and Contiki, where support is provided for
the higher communication layers. Note that since the hardware allows new designs
at a low level, both CSMA and TDMA protocols are supported.

A WLAN is well known for its adoption in the office and home environments, where
people are working on their laptops, checking the Internet over their wireless connec-
tion, reading the latest news or enjoying a movie on their tablets, etc. However, the
WLAN technology, nowadays usually based on IEEE Std 802.11, marketed under
the Wi-Fi brand name, is also employed in other fields, such as long range commu-
nication between ships at sea or in order to offer communication to rural areas in
India. Moreover, the technology offers such interesting characteristics that it is also
being used for multimedia communication, such as videoconferencing, or wirelessly
displaying a presentation. On top of this, thanks to the widespread usage and inte-
gration of WiFi compatible chipsets in products, the cost of the chipsets has become
reasonably priced, thereby making the technology extra attractive. Note that both
the operational cost as well as the procurement cost of WiFi chipsets is a certain
factor higher than the cost of sensor devices [3]. WiFi chipsets are more expensive,
consume more energy and require a more complex, and therefore more expensive,
microprocessor to control the radio chip. However, the technology is developed for
an entirely different market segment, where high throughput and moderate power
consumption are considered as important, whereas sensor nodes are developed for
low throughput and low power consumption. A WiFi chipset is usually supported
by a general purpose OS, such as Linux, which provides an entire network stack
to facilitate the wireless communication. As such, several modes of operation are
supported by the stack, such Access Point (AP), mesh and ad hoc mode. New evo-
lutions in the IEEE Std 802.11 standards result in the continuous extension of the
network stack in order to keep up to date with the latest developments. Such devel-
opments do not only impact the in software implemented network stack, but also the
hardware itself. Certain functional components have been implemented in hardware,
such as DCF and automatic acknowledgements, and provisions are made for QoS
by providing several queues with adjustable parameters. The latest standards even
force the hardware developers to abandon the software MAC functionality, which
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needs to run on the dedicated radio chip processor in order to obtain the promised
performance. As a result, the WiFi technology can not be adjusted at such a low
level as sensor nodes, resulting in fewer design options regarding research.

A Cognitive Radio (CR) can be defined as a fully reconfigurable wireless transceiver
which automatically adapts its communication parameters to network and user de-
mands [4]. Around the turn of the millennium, researchers started to realize that
certain bands of the radio spectrum were not used, either at all or not used all
the time, or would become available thanks to the switch from analog to digital
broadcast television, which was able to compress that data in a much more efficient
manner. Dynamic Spectrum Access (DSA) is a specific field of Cognitive Radio
which employs such white spaces, that is, spectrum bands which are unused. The
radio identifies the portions of the spectrum that are not being used [5]. In this
work the concept of Cognitive Radio Network is limited to the Neighborhood Dis-
covery phase in the case in which an entity, also called the Primary User (PU),
which operates in a licensed band does not use the band in its full capacity, allow-
ing opportunistic channel access by Secondary Users (SUs). Since the SUs exploit
these frequencies in such manner, they should not interfere with the transmissions
of the PU. Such access scheme clearly impedes the communication between SUs.
While a communication path has been established by the SUs, the PU might ini-
tiate transmissions, causing the SUs to abandon the selected frequency band. SUs
therefore require an adaptive and dynamic method to establish a communication
link. Rendezvous protocols provide a such a method which allows SUs to meet on
specific channels for a minimum duration of time. Because of the extremely dy-
namic context in which the nodes operate, a flexible hardware platform is required,
on which designs can be implemented on a extremely low level, even lower than
on sensor nodes. The employed hardware in CRNs consists usually of a Software
Defined Radio (SDR), where even parts of the physical layer can be programmed.
Examples of such hardware platforms include the USRP and WARP platforms [6]
[7].

The remainder of this chapter starts with a discussion of the MAC layer and its po-
sition with respect to the other networking layers. Section 1.2 considers the pros and
cons regarding contention based and scheduled medium access. The timely schedul-
ing of transmissions or tasks is tightly related to real-time scheduling. Therefore, a
limited introduction in real-time systems is provided in Section 1.3. The following
section discusses the contributions of this work and the final section concludes this
chapter by indicating the relation between previous publications and the chapters
of this work.

1.1 Networking stack

In order to send a packet successfully from node A to node B over a network, a
whole range of operations need to be passed. Assuming that the destination address
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is known, a path towards the destination can be found. Such a path consists of
a series of intermediate node addresses, or at least the following address, which
need to be passed in order to reach the destination. In wired communications,
such path depends on the number of routers and subnets the packets needs to
pass through. In wireless communications, such path is determined by the physical
distance between the two radios and the routing protocols which are implemented in
the specific network. Besides the route towards the destination, the nodes need to
follow a specific protocol in order to communicate to each other. The transmission
towards the following node in the path needs to follow this protocol, in order to
make sure that for example the packet has been received by the node, that the
transmission does not interfere with other ongoing transmissions, etc. Moreover,
too large packets need to be fragmented and are sent in multiple packets over the
link. Both wired and wireless technologies define a certain upper bound on the
packet size, based on the capabilities and properties of the physical transmission
method. Due to retransmissions or different paths, it might happen that packets
arrive in a different order at the receiver than in which they were transmitted. The
receiving side therefore needs to make sure that all packets are rearranged according
to the original order before defragmenting the packets again.

It is clear that a multitude of functional entities needs to be provided by the net-
work, which can easily become confusing, thereby clouding the global picture. In
order to be able to explain and understand data communications between differ-
ent networking technologies, the ISO OSI (Open Systems Interconnection) reference
model [9] was created, which is depicted in Figure 1.1. The model is composed out
of seven networking layers, each depicting a specific networking function which is
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realized by a network protocol. Each layer provides the necessary abstractions to-
wards the lower and upper layers. The upper three layers refer to the functionality
required when the data is either originating from or destined to the userspace of the
Operating System. The upper layers are not discussed here, since they are either
related to the specific user application, or the functionality is already provided in
contemporary lower layer protocols. The lower four layers address the reception and
transmission of data when simplifying their functionalities to the extreme. Those
layers present a framework according which protocols can be designed. A protocol
stack is formed by a set of protocols which interact with the protocols on the lower
and upper layer. Note that the reference model does not dictate the strict separa-
tion between the layers. It is known that some protocols transgress the boundaries
of the layers. The protocol stacks related to this work include the TCP/IP stack
and the ZigBee stack, which both define four layers. The TCP/IP stack defines
the host-to-network layer, Internet layer, Transport layer and the Application layer.
The ZigBee stack on the other hand defines the Physical layer, Data-Link layer,
Network layer and the Application layer. A rudimentary description of the lower
four layers of the OSI reference model is provided next.

The lowest layer in the reference model is represented by the physical layer. This
layer is considered to be different for each communication technology and medium. It
defines the available modulation schemes, the encoding on the medium and therefore
implicitly also the maximum transmission rate, the required adapters to connect to
the physical interface, whether or not the interface supports full-duplex, etc. The
characteristics consider mainly mechanical and electrical properties and the physical
medium over which the data transmission is carried. Because of the strong link
between the hardware and technology, usually the physical layer is implemented in
hardware and is not to be modified. In order to allow the higher layers some control
of the physical layer, most hardware allows to configure some physical parameters.
An exception to the fixed hardware design is Software Defined Radios (SDR), where
the physical layer can be defined and programmed on the hardware.

The data-link layer, also referred to as L2, is the layer which is responsible for peer-
to-peer communications, that is, communication between nodes within the same
local area segment. Communication to nodes beyond the local LAN segment is
to be orchestrated by the higher layers. The L2 layer solely provides the means
to communicate to the next node in the path. According to the OSI reference
model, the data-link layer is composed out of two sublayers, the Logical Link Control
(LLC) and the Medium Access Control (MAC) sublayers, each with its own specific
functionality. The LLC sublayer is used for data link layer addressing, flow control,
address notification and reliable transmission over the link. The MAC sublayer
controls the access to the physical medium, attempting to ensure a collision free
transmission when multiple nodes compete for the same physical link. However, in
actual protocol implementations, the two sublayers might be difficult to discern. In
fact, some protocol stacks, such as ZigBee do not define an LLC sublayer, instead
only a MAC layer is defined, which also incorporates the functionalities that are
theoretically assigned to the LLC. In this work the MAC is therefore considered as
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the L2 layer, which is for example responsible for reliable peer-to-peer transmissions,
medium access mechanisms, addressing, etc. Reliable transmissions require the
means to detect and whenever possible correct errors that may have occurred at
the physical layer. In wireless communications, there are plenty of reasons why a
transmission may have failed, a too low Signal to Noise Ratio (SNR), too much
interference, bad bit synchronization, multipath fading, etc. As a result of those
errors, the receiving radio might miss the packet transmission, or might detect some
wrong bits, that is, there are some bit errors. In the first case, the packet is not
received at all, thereby creating a situation where the receiver is unaware of any failed
transmissions and thereby also unable to inform the transmitter of the failure. The
L2 layers provides means to recover from such situation, allowing the transmitter to
be informed even when the receiver is unaware of the failed transmission. Received
packets containing bit errors can be identified as failed transmissions by for example
a straightforward Cyclic Redundancy Check (CRC). The L2 layer is capable of
informing the transmitter about an erroneous packet reception, which might invoke
a retransmission or the receiver might make an attempt to correct the erroneous
bits by means of an error correction mechanism, such as Forward Error Correction
(FEC). Note that nodes transmitting at the same time can result in failed receptions.
Therefore, the medium access control is such a vital functionality of the MAC. The
MAC will provide means such that the probability that two nodes are sending at
the same time can interfere with each other is minimized, i.e., the MAC attempts to
prevent collisions. Upon such collision, specific recovery mechanisms are provided,
as a collision is considered as one of the errors that may occur at the physical
layer. Note that MAC protocols can be classified according to their channel access
method, of which the two most prominent classes are contention based channel access
(CSMA/CA - Carrier Sense Multiple Access/Collision Avoidance) and scheduled
channel access (TDMA - Time Division Multiplexed Access). The pros and cons of
each of the classes is depicted in the following section. For both networks for which
this work considers the MAC, WLANs and WSNs, the MAC provides a similar
yet different functionality. Both provide control over the medium access, are able
to provide QoS, can provide addressing of the nodes and consider power efficiency
either by design or by including a power saving protocol. However, the MAC of
the WiFi, as defined by the IEEE Std 802.11 standard, incorporates a significant
amount of functionalities more than the MAC of the WSN. The former operates
in the comfortable context defined within a General Purpose Operating System,
whereas the latter needs to be able to operate on resource constrained devices.
Specific MAC protocols for both network types are discussed in more detail in the
relevant chapters.

Whereas the MAC is responsible for local addressing and providing the peer-to-peer
communication, the networking layer is responsible for providing a logical address
and the routing between networks. The logical address indicates both the node and
the network in which it resides, thereby enabling not only communication with nodes
of the same LAN segment, but also with nodes in a different network. A second
responsibility includes the routing between networks. In the ZigBee stack [10], this
layer is concerned with multi-hop routing.
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The transport layer considers a reliable transmission of data. The received data
should be free of errors and in the same order as it was transmitted. The layer
differentiates between connection-oriented protocols and connectionless protocols.
Two of the most know transport layer protocols are TCP and UDP.

1.2 Uncoordinated vs coordinated channel access

This section discusses the pros and cons of two of the most notorious classes of
medium access mechanisms, contention based channel access, also known as CSMA,
and scheduled channel access, also referred to as TDMA. Most researchers have a
certain preference for one of these access mechanisms, which usually coincides with
the type of research they are performing. One of the access methods is usually
more suited for a specific research area, when compared to the other. This section
discusses both mechanisms in an objective manner, without specifying a certain
targeted research field.

Carrier Sense Multiple Access (CSMA) is an access mechanism where the nodes are
said to be contending for the channel access. CSMA is an uncoordinated access
mechanism, that is, there is no negotiation or agreement on the time the channel
can be used by the nodes. As a result, the nodes need to decide for themselves
whether it is advisable to start a new transmission or wait until the medium becomes
free. Therefore, before transmitting data, the nodes first listen to the activity on the
channel. When the channel is assumed to be busy, the nodes defer their transmission
and either wait until the channel is free again, or wait until they are allowed to make
a new attempt to access the channel. The precise methodology depends on how
collisions are dealt with or are attempted to be avoided. The CSMA/CD (CSMA
with Collision Detection) is used for Ethernet transmissions [11], where the links are
determined by the cabling. Since there is a physical wire over which the signal is
transfered, a collision can be detected during the transmission. When a node detects
that its transmission is colliding with the transmission of another node, it aborts its
transmission, sends a jam signal to inform the nodes about the corrupted packet and
enters a wait state. During this state, the node performs a random backoff before
attempting a retransmission of the data. The waiting time of the random backoff is
determined by means of a Binary Exponential Backoff (BEB) mechanism.

Since wireless communication is unable to detect a collision based on the voltage
on the wire, a different collision handling is proposed for wireless transmissions.
The method is called CSMA/CA (CSMA with collision avoidance), where the nodes
also sense for the medium to be idle before attempting a transmission. When the
medium is not considered to be busy, the node is allowed to transmit immediately. If
an ongoing transmission is detected, the node waits until the end of the transmission,
waits for a specific time, determined by the standard, and then performs a random
backoff. After the backoff period, the node senses the channel again and attempts a
transmission when it is considered to be free. Collisions are not so easily detected,
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therefore the standard includes an acknowledgement mechanism to inform the nodes
of a successful transmission. Upon a failed transmission, the node attempts a new
transmission according to the channel access rules. Upon a failed transmission, the
Contention Window (CW) is enlarged in a binary exponential manner. The new
backoff time is selected randomly from the CW value range, thereby providing a
larger probability for nodes to have a different backoff period and thus enhancing
the probability of a successful transmission. Interesting about this method is that
a certain QoS can be provided by means of specifying a lower CW range for higher
priority packets, such as defined in the IEEE Std 802.11n standard [12]. Note that
according to the IEEE Std 802.14.5 standard the nodes first perform a random
backoff before sensing whether the channel is idle.

One of the major advantages of CSMA is its scalability. It makes no assumptions
regarding the size of the network, neither does it require such information. Moreover,
thanks to the carrier sensing and the random backoff, the method is robust to
interference and is able to adapt to the variable network conditions. Moreover,
by adjusting the time before starting the backoff time and the window in which a
random value can be selected, a certain QoS can be provided. Whereas the lack
of coordination ensures the necessary flexibility and adaptiveness, it also requires
neighboring nodes to keep listening for incoming packets. As such, when no data
is being transmitted, a lot of power is wasted due to idle listening. Likewise, when
data is being received that is not destined for the current node, which is called
overhearing, energy is wasted. Note that the power consumption of a reception
is in most radio chips comparable to the power consumption of a transmission.
Moreover, in dense networks the uncoordinated operation of the access method
results in a lower overall throughput, and therefore also a lower bandwidth usage
efficiency. When a considerable number of nodes attempt to send at the same time,
either the backoff, collisions due to hidden nodes or virtual carrier sensing result in
a considerable amount of time not spent for transmissions. Note that although the
method allows the possibility for a certain QoS, no guarantees can be provided for
a fair bandwidth allocation between the nodes. Moreover, even though QoS can be
used, the time required to access the wireless medium is not bounded.

Time Division Multiplexed Access (TDMA) mode on the other hand ensures a co-
ordinated medium access. All nodes operating within the network are assigned a
duration of time, also called time slots, during which they are allowed to access the
wireless medium. The set of time slots are typically organized in frames, which de-
note a collection of time slots. Note that the allocation of time slots can be assigned
in a periodic manner, not necessarily every frame, but can also be assigned in an
on-demand base. Once a node has access to its designated time slot, it performs no
channel sensing like CSMA mode dictates, it assumes the channel is free to trans-
mit. The control of the medium access is organized such that no collisions happen
between the nodes and therefore, no retransmissions are required. Such behavior
is only possible when the network and access method comply to certain conditions.
First, the slots should be assigned such that no neighboring transmission will inter-
fere with the current transmission. The phrasing already implies that when nodes
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are sufficiently geographically separated, such that their transmissions can not col-
lide with one another, not even at a common receiver between both nodes, then they
are allowed to use the same time slot. Second, the nodes should become synchro-
nized since the entire slot allocation is relative to a certain reference time. When
nodes are out of sync, that is, the time reference of one node is different from the
time reference of another node, then nodes start to transmit packets outside of their
designated time slot, possibly resulting in collisions with other transmissions. Third,
nodes should maintain their synchronization, since due to the small differences in
clock source frequency, the reference time clocks tend to drift apart.

Decades of research have contributed to numerous slot allocation methods. Some
methods adhere to a centralized scheduling algorithm, where only a single coordina-
tor can be found. Others employ a distributed method, where each node determines
its own time slot based on local information. Such local information can be collected
by means of information exchange packets, passive listening, geographical position
in relation to other nodes, etc. The advantage of the distributed allocation method
is the independence on any central coordinator, thereby eliminating any required
feedback towards this single point of failure. Moreover, since each node selects its
own time slot, there is no problem with any joining or leaving of nodes. Any new
slot allocation scheme is selected such that there is no interference with the other
nodes. The centralized allocation method would require to update the entire net-
work of nodes to let them know about the new schedule, thereby making sure that
all nodes effectively employ the new schedule. The downside of the distributed al-
location method can be the overhead of messages, in case of time slot information
exchange messages, the required geographical location knowledge of other nodes,
which is limited because of the available memory, etc.

In contrast to contention based access methods, a medium access according to
TDMA mode should not result in collisions. All time slot assignments are such deter-
mined that no collisions can occur. Therefore, operating in TDMA mode saves more
energy because of the lack of collisions and therefore, retransmissions. Moreover,
the TDMA operation ensures a precise control of the transmission and reception of
the nodes such that idle listening and overhearing can be avoided, allowing nodes
to enter a low power state, thereby reducing the energy consumption. As such, a
TDMA protocol is more suited in applications where the energy consumption is a
vital parameter or in dense networks, when compared to contention based medium
access modes.

Note that a TDMA protocol requires the nodes to be time synchronized. The over-
head of such synchronization protocol is often considered as a downside of a TDMA
protocol. However, there are very efficient synchronization protocols, which do not
require any substantial message exchange in order to synchronize the nodes, some
of which are discussed in Chapter 4. On top of that, one should also consider the
message overhead of a contention based protocol when retransmissions are required.
Moreover, the synchronization ensures a time relation between the nodes, allowing
the gathered data to be compared. Another drawback of a TDMA protocol is that
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it is more complex than a contention based protocol. A contention based protocol
does not need to make any agreements with its neighboring nodes, it can transmit
its data based on a local sensing method. Nodes operating according to a TDMA
protocol need to agree on a certain time slot assignment. Such agreement can either
be reached in a distributed or centralized fashion. A last issue which is often being
raised as a downside of TDMA protocols is the rigidness of the protocols, that is,
the protocol is not sufficiently flexible to changes in the network. Certainly, due to
the required time slot assignments which can not overlap with neighboring nodes,
acting upon changes in the network is more complex in comparison to contention
based protocols. However, the claim of this disadvantage is due to some badly de-
signed TDMA protocols. Protocols where each node is assigned exactly a single slot,
without taking into account the required throughput, would indeed be rigid. At a
certain point in time, the pool of available time slots is depleted and new nodes at-
tempting to enter the network are refused. Such protocols determine the maximum
number of nodes at design time. Such protocols might work excellent for the task
for which they were designed, but offer a poor performance in other environments.
An intelligent design, which considers the required throughput of the nodes is not
obstructed by this issue, neither is an algorithm which makes use of spatial reuse of
the slots.

1.3 Real-Time Systems

A common misconception is that real-time systems means the systems need to be
fast, or that when a system is sufficiently fast, it can perform real-time tasks. Noth-
ing could be further from the truth, a real-time system deals with reliability and
guaranteed response times within specified deadlines. Even a very slow system, tak-
ing hours to complete a single task, could be real-time. This section elaborates on
some basic principles of real-time systems and in order to start with it, first a quote
of a definition of a real-time system [13] is presented:

Any system in which the time at which output is produced is signif-
icant. This is usually because the input corresponds to some movement
in the physical world, and the output has to relate to that same move-
ment. The lag from input time to output time must be sufficiently small
for acceptable timeliness.

The definition indicates a certain relation to the time required to perform a specific
task. However, note that the time duration should be sufficiently small within the
context of the specified system. For example, a missile guidance system will require
a faster response time than a word processor which records the keystrokes from the
keyboard in order to be considered as real-time. The most known definition of a
real-time system includes that the correctness of a real-time system depends not only

on the logical result of the computation, but also on the time at which the results
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are produced [13]. In other words, every task should be finished within the specified
deadline, otherwise the results can not be considered as valid and could even have
disastrous results.

However, a distinction needs to be made between the effect of receiving a too late
response. When the word processor is not able to produce the characters on time,
it is not considered to be a disaster. On the other hand, the too late response
of a missile guidance system could have catastrophic consequences. In order to
convey the concept of importance of reaching the deadline, a differentiation is made
between hard and soft real-time systems. The former requires that every task is
executed within the specified deadline. Not reaching the deadline is not acceptable
for the system and could cause much harm to either the operation of the system or
its environment. Soft real-time systems, on the other hand, consider the execution
within the specified time important, but is able to handle an occasional task whose
execution was too late [14].

The key element of such real-time system is obviously the scheduling of tasks. Over
the years, a considerable collection of scheduling algorithms has been constructed by
researchers all over the world. The scheduling algorithms are typically categorized
according to the type of task they are trying to schedule. Some algorithms are only
applicable to periodic tasks, whereas others specifically aim for aperiodic tasks.
Algorithms can also be discerned based on whether the scheduling is dynamic, that
is, the scheduler determines at run time the next tasks which should be scheduled,
or is a static scheduler. Certain algorithms take into account the dependencies of
the tasks, whereas others assume an independent task. This discussion does not go
further into the details of these scheduling algorithms since they are out of the scope
of this work.

The designer of a real-time scheduler needs to consider only the tasks at hand.
Imagine designing a real-time operating system, where multiple tasks need to be
performed in the background, one needs to consider whether or not to support
preemption, interrupt handling, whether or not priorities are assigned to tasks, etc.
Ensuring the real-time behavior in such system becomes a strenuous task. A limited
set of factors which have an impact on the real-time behavior of an operating system
is discussed here, such as preemptiveness and interrupt handling [15][16].

Preemption is the ability of a kernel to halt a currently running process or task in
favor for a higher priority process. In non-preemptive kernels, also called coopera-
tive multitasking, a task needs to explicitly abandon control of the CPU in order to
allow another task to run on that CPU. Note that the user believes that all tasks
are running concurrently, which implies frequent context switches from one task to
another. The major disadvantage of such preemption model is the low responsive-
ness. All tasks need to wait until the currently running tasks relinquishes the CPU,
even the high priority tasks. As a result, the response time is nondeterministic, as
it is unknown when the high priority task will acquire control of the CPU.

Preemptive kernels can preempt any task in favor of a higher priority task, thereby
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increasing the system responsiveness. The activation of a higher priority task trig-
gers a context switch, such that it can execute immediately. As a consequence, the
execution of the task with the highest priority is deterministic. Therefore, a con-
siderable number of real-time kernels, such as µC/OS-II, are preemptive kernels[15].
Note that such preemption model requires some extra care to be taken regarding
shared data, since any task can be preempted at any time. Moreover, preemption
entails some extra overhead due to the storing and retrieval of the CPU registers,
the state of the current task, etc. Since preemption is based on the priorities of the
tasks, the priority assignment to tasks suddenly becomes a crucial undertaking. The
priority of a task can also depend on the type of scheduler which is being used. For
example, one of the available methods, Rate Monotonic Scheduling (RMS), consid-
ers that tasks which need to be scheduled more frequently, need to be assigned a
higher priority. One of the assumptions of the method is that all tasks are consid-
ered to be periodic. Issues can also arise specifically due to this priority assignment
when used in combination with locking mechanisms. One of such issues is known
as priority inversion, where a higher priority task is reduced to a low priority task
due to some shared locking. Several resolutions have been presented to prevent or
resolve such situations. Further details are out of the scope of this work.

In systems that support Interrupt Service Routines (ISR), irrelevant of which pre-
emption model is used, any task can be interrupted by an asynchronous interrupt
handling. When considering the timely and deterministic execution of high priority
tasks, such an interrupt might have a significant influence on the real-time behavior
of the system. On the one hand, interrupts ensure the immediate processing of an
event, but on the other hand, the interrupt processing of a less relevant event could
deteriorate the performance, and therefore also the determinism, of a high priority
task. Although the opinions vary, a polling based system could ensure a higher
determinism compared to an interrupt based system. However, the determinism
comes at a cost of extra processing overhead and a lower response time. The polling
based system could be combined with a couple of interrupt based notifications, such
as interrupts from the timer subsystem, which needs to be as accurate as possible.

From this short introduction in real-time systems and real-time operating systems,
it is clear that a lot of consideration is required to design such system. When
employing the functionality of such system, it is therefore also important to keep in
mind the properties of such system in order not to break the rules.

1.4 Outline and main research contributions

Wireless communication is a broad and fast evolving research area, where different
fields are the main focus of contemporary research. Although the research fields
are typically focused on a single layer within the network stack of a specific type
of network, they have some elements in common. Certain methods or concepts
need to be adjusted, since each type of network has different priorities, but some
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commonality can be found. This works is also mostly restricted to the MAC layer,
but in order to show the overlapping properties, this work considers three different
network types where wireless communication is used: Wireless Sensor Networks,
Wireless Local Area Networks and Cognitive Radio Networks. The work is organized
in parts according to the three network types. In order to provide the reader with
the necessary background and understanding of the concept that is being discussed,
is the first chapter of each part acting as an introduction. As such is Chapter 3
providing relevant information about Wireless Sensor Networks, Chapter 6 depicts
background information on the IEEE Std 802.11 standard, the Linux kernel and
the implementation of IEEE Std 802.11 within the kernel and real-time operating
systems. Chapter 8 unveils generic information regarding Cognitive radio Networks
and Neighborhood Discovery issues.

The first part considers both synchronization and MAC protocols within WSNs.
Chapter 3, which acts as the introductory chapter in this part, provides an intro-
duction in WSNs and the most notorious MAC protocols and their extensions or
improvements in order to give an idea of the research interest regarding MAC pro-
tocol development for WSNs. The discussion is targeted towards both contention
based and scheduled medium access methods, or a combination of both. The chap-
ter provides some insights in the issues surrounding the academic study of MAC
protocols for WSNs, whereas some real-life deployments shed some light on more
practical issues. Note that some protocols, which make invalid assumptions, are not
considered in the discussion due to their inappropriateness for implementations.

The focus of Chapter 4 lies on synchronization methods, both for distributed sys-
tems as for WSNs. Certain general synchronization concepts are discussed, such as
the reason why synchronization is necessary when two nodes meet each other for the
first time and the reason why resycnhronization is vital in such systems due to cer-
tain hardware and physical phenomena. The main approaches for synchronization
are discussed within the context of typical sensor network platforms. The discus-
sion clarifies the possible dependency of a synchronization protocol on its platform.
Therefore, the relevant details of the hardware are discussed and then applied to the
synchronization methods. Based on the analysis of the synchronization protocols in
the context of actual hardware a more optimal synchronization method is proposed.

Chapter 5 focuses on a MAC protocol for WSNs which provides a scheduled medium
access. The protocol employs an intelligent time slot assignment, based on the
required throughput of the sensor node. Even though a centralized scheduler is being
employed, the time slot assignment is arranged in such manner that no update of all
nodes needs to be performed in the case of network changes. Nodes are free to leave
and join the network as they wish, provided there is sufficient bandwidth to support
their bandwidth requirements. Interesting about the protocol is that it employs a
similar consideration as Rate Monotonic Scheduling (RMS), where the data (tasks)
are to be scheduled periodically and the highest rate is assigned the highest priority
during the slot allocation. As a result, the latency is deterministic, which allows the
protocol to be used in a real-time environment. The chapter provides an extensive
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analysis on the performance of the protocol with different parameters.

The second part focuses on the non-standardized operation of Wireless Local Area
Networks. Chapter 6 provides an introduction on the motivations that lead to the
usage of standardized hardware in a non-standardized manner. A short summary
of the MAC functionality as described in the standard identifies the provided func-
tionality of most hardware and network stack combinations. Related work indicates
the application areas and the methods to employ the commercial hardware in such
manner. Since the Linux kernel and its open source character has a significant role
in such operations, an introduction is provided in the process scheduling, interrupt
handling, timer subsystem and the network subsystem. Since the Linux kernel does
not provide any hard real-time guarantees, some kernel extensions which either ap-
proach or enable a real-time behavior are discussed in combination with a real-time
operating system, which was designed independently of the Linux kernel.

Chapter 7 investigates the possibility of using an IEEE Std 802.11n commercially
off-the-shelf available hardware chipset in a non-standardized manner, that is, in a
scheduled access manner. First an analysis regarding the performance of different
timer sources is made, also in combination with real-time extensions and real-time
operating systems. Based on the preliminary results, a timer source has been selected
and the relevant Linux networking subsystems have been adjusted to enable the
precisely controlled slotted transmission algorithm. Unlike a considerable number
of works, this chapter considers the presence of foreign entities, resulting in severe
interference and obstructions for timely transmissions.

The last part considers Cognitive Radio Networks and more specifically Rendezvous
protocols. Whereas the previous parts were oriented towards the development and
operation of MAC protocols, this part is targeted towards a stage which is required
even before the MAC protocol comes into play. Chapter 8 provides a general intro-
duction in the matter of Rendezvous protocols and discusses the different methods
that can be employed.

Chapter 9 discusses the principle of Rendezvous in the context of an asynchronous
environment. Three different methods are proposed of which each makes use of
asynchronism. The first method depicts an approach to analyze Rendezvous proto-
cols in an asynchronous manner, showing interesting results. Based on the outcome
of the first analysis, a protocol extension is designed which ensures asynchronism for
any Rendezvous protocol. As a result, each protocol can be enhanced regarding the
Time-To-Rendezvous and rendezvous opportunities by applying this extension. Note
that the performance analysis is not based on only the first possible encounter be-
tween two nodes, but is a statistical evaluation of all possible rendezvous. The third
method proposes an improvement of the second method, thereby providing a better
distribution of the slot size between the high priority and low priority channels. In
combination with a protocol specifically designed to operate in combination with
the improved extension, it outperforms all other Rendezvous protocols significantly.
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1.5 Contributions

This work provides a contribution in several areas. The first contribution is the
analysis of the hardware of two platforms in terms of timing dependencies. Based
on those findings, the related work was evaluated and a new synchronization method
is proposed, which provides an abstraction of the concept timestamp. The second
contribution is a novel TDMA protocol that ensures a reliable operation in a hetero-
geneous network, while making sure that nodes with small bandwidth requirements
still get regularly access to the medium. The protocol results in a deterministic
behavior in terms of buffer size and latency. A third contribution comprises the
analysis of available timer sources in the Linux kernel or Atheros NICs and the per-
formance analysis thereof in different circumstances. The results have been used to
develop a slotted transmission mode with COTS IEEE Std 802.11n hardware, which
is another contribution, and describes which issues one can encounter when making
an attempt to operate COTS IEEE Std 802.11n hardware in TDMA mode. The
final contribution of this work can be found in the area of Cognitive Radio Networks
and Neighborhood Discovery protocols, where it was found that making an attempt
to a Rendezvous asynchronously offers a higher performance than otherwise. By
proposing an extension that induces this asynchronism, every protocol can benefit
from this.

1.6 Publications

Parts of this thesis can be found in the following publications:

• part of Chapter 4 published as a workshop paper, "WBAN implementation

on Magnetic Induction Radio IC for medical remote monitoring", in proceed-

ings of the 1st International Workshop on Medical Applications Networking,

Dresden, Germany, 2009.

• part of Chapter 5 published as a conference paper, "QoS support for a MAC

with a TDMA tree topology on the Magnetic Induction Radio IC", in pro-

ceedings of the 29th Real-Time Systems Symposium (RTSS 2008), Work in

Progress session, Barcelona, Spain, 2008.

• part of Chapter 5 published as a journal paper, "Analysis of TDMA schedul-

ing by means of Egyptian Fractions for real-time WSNs", in EURASIP Journal

on Wireless Communications and Networking 2011.

• part of Chapter 5 published as a conference paper, "Binary TDMA Schedule

by Means of Egyptian Fractions for Real-time WSNs on TMotes", in proceed-

ings of Med-Hoc-Net 2010, Juan-les-Pins, France, 2010.
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• part of Chapter 7 published as a journal paper, "TDMA on commercial

of-the-shelf hardware: fact and fiction revealed", in International Journal of

Electronics and Communications, Vol 69, No. 5, 2015.

• part of Section 9.2 published as a conference paper, "An analysis of asyn-

chronism of a neighborhood discovery protocol for cognitive radio networks",

in proceedings of IEEE PIMRC, London, UK, 2013.

• part of Chapter 9 published as a conference paper, "Benefiting from an

Induced Asynchronism in Neighborhood Discovery in opportunistic Cognitive

Wireless Networks", in proceedings of ACM MobiWac, Barcelona, Spain, 2013.

• part of Chapter 9 published as a conference paper, "AND: Asynchronous

Neighborhood Discovery protocols for opportunistic Cognitive Wireless Net-

works", in proceedings of IEEE WCNC, Turkey, 2014.

• part of Chapter 9 published as a journal paper, "How to be an efficient Asyn-

chronous Neighbourhood Discovery protocol in opportunistic Cognitive Wireless

Networks", in International Journal of Ad-hoc and Ubiquitous Computing, Vol

20, No. 3, 2015.
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CHAPTER 2

Research Questions

This chapter enumerates the addressed research questions and the approach that
was used to tackle these issues. This work concentrates on a number of research
questions in different Wireless Networks. One major theme that is present in all the
issues, concerns the consideration of the targeted network in real-life. All research
in this work takes into account the hardware on which the protocol should be run
or considers the environment and conditions in which the protocol should run as
accurately as possible. Sometimes an issue that needs to be tackled is not limited
to a single type of network. Therefore, the research can focus on several Wireless
Networks for a single research issue. This works is segregated in three parts, each
part containing a chapter on the State-of-the-Art and relevant background infor-
mation in order to better understand the issues that are present in this research
area. Investigating in which context the research is positioned and possible alter-
native methods in order to resolve the issue is one of the first tasks that needs to
be performed. The second issue that is being discussed is the synchronization in
a Wireless Network. Most of the work in this work is focused on Time Division
Multiple Access, hence the synchronization between nodes is an important issue.
Essential for this synchronization is also the timely transmission of packets, which
can therefore be considered as a subsection of the synchronization. Since a consid-
erable part of this work focuses on TDMA protocols, where time slots are defined
during which data can be sent, the handling of heterogeneousness is an important
issue that needs to addressed. Interestingly, the related work is often neglecting this
possibility and considers only a single slot size for a specific data type. The related
work that considers heterogeneousness often makes use of flexible slot sizes or even
dynamic frame sizes. Such approach provides a solution for the problem at hand,
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however, needs to be considered with care, since it could cause significant issues with
regards to synchronization. One final issue that is tackled in this work, is the accu-
rate performance analysis of Neighborhood Discovery protocols in Cognitive Radio
Networks. A considerable number of works propose new Neighborhood Discovery
protocols, but their performance is often not analyzed in detail. For this reason,
this work considers several Neighborhood Discovery protocols, add some enhance-
ments to certain protocols in collaboration with the RWTH University, Aachen, and
analyze the performance in an asynchronous network simulation.

2.1 Background

2.1.1 Wireless Sensor Networks

The related work in Wireless Sensor Networks is quite extensive. Whereas this work
only focuses on TDMA protocols, it remains important to consider other types of
medium access methods, possibly even hybrid methods. It is interesting to note that
depending on the targeted application, different approaches have been presented,
each of which achieving their goal by means of sometimes unique methods. This
work lists the most renowned CSMA protocols, that is, protocols that are often
referred to. As regards TDMA protocols and hybrid protocols, this work enumerates
protocols that either provide some unique feature that clearly differentiates them
from other protocols, or protocols that have a certain feature which might interesting
to add to the proposed protocol in this work, in order to improve its performance.
The resulting list of protocols forms the content of Chapter 3

2.1.2 Wireless Local Area Networks

The context of the second part of this work is somewhat different, since this part
intends to use commodity hardware in order to improve the performance of a Wire-
less Local Area Network. The work started with a request from one specific party,
whether or not a precisely controlled TDMA protocol would be possible on com-
modity IEEE Std. 802.11n hardware. This soon led to the question whether there
was other research that was tackling this very same issue. The resulting list of re-
search papers indicating the need to adjust the standard operation of the IEEE Std.
802.11n commodity hardware is provided as an introduction in Chapter 6. Since it
is quite a complex matter to adjust the operation of such commodity hardware, a
thorough investigation of the IEEE Std. 802.11n standard is required, listing the
functionality which could influence the precision of a TDMA protocol on hardware
that makes use of the standard. The most critical functionality is listed as a result
in Chapter 6. Important is also the question in which degree the operation of the
commodity hardware can be controlled by means of modifying the Linux kernel in-
ternals. This requires a thorough understanding of the Linux kernel subsystems, of
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which the most relevant sections are discussed in the relevant chapter. Since TDMA
requires a precise control of the transmission and reception timing, real-time exten-
sions and real-time systems are also considered, which are also shortly described in
Chapter 6.

2.1.3 Cognitive Radio Networks

When performing Neighborhood Discovery in Cognitive Radio Networks, it is essen-
tial to understand the specific conditions in which this type of network is supposed
to operate. The background of this type of network is therefore discussed in Chapter
8. Mathematics provides interesting concepts regarding convergence, which makes
it worthwhile to investigate those concepts and a couple of those convergence theo-
ries are therefore listed in the respective chapter. Some of the related work, which
considers Neighborhood Discovery in Cognitive Radio Networks is also discussed in
this chapter, in order to understand the context in which these protocols need to
operate and to be able to compare whether the newly proposed protocol can be con-
sidered an improvement to the State-of-the-Art. Interesting is also the manner of
evaluation whether one protocol is superior to an other. This led to the conclusion
that the protocol evaluation is often insufficient, since asynchronous situations are
often disregarded, whereas this constitutes the natural state of such network.

2.2 Synchronization in Wireless Networks

2.2.1 Wireless Sensor Networks

This work focuses on TDMA protocols in Wireless Sensor Networks, where syn-
chronization between the nodes is essential for a reliable operation of the protocol.
This research addresses multiple questions regarding synchronization, such as "Why
is synchronization required, what are the physical processes that influence the syn-
chronization precision?", "Which synchronization protocols are available and what is
their performance?", "Is there a more efficient method to ensure synchronization?".
These research questions are addressed in Chapter 4. In order to understand the
physical processes of time drift, the hardware schematic of a typical sensor node has
been analyzed, as well as the internals of the clock related subsystems of the micro-
controller on such node. The result of this analysis of these physical processes is used
as an introduction to the synchronization chapter. In order to have an idea of which
types of synchronization methods are available for Wireless Sensor Networks, this
work first focuses on a general synchronization theory, in order to obtain knowledge
about the theory regarding synchronization. Then an overview of existing Sensor
Network Synchronization protocols is made and organized according to their em-
ployed methodology. In order to be able to compare the protocols methodologies,
their approach has been applied to a theoretical model of a specific microprocessor,
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which allows to analyze and more importantly, compare the performance of such
protocols. This led automatically to the question whether or not there exists a more
efficient method in order to synchronize the nodes in a network. By eliminating
specific dependencies on the physical duration of processes, a protocol was designed
which resulted in less overhead, a lower protocol complexity, while at the same time
having a small dependency on the employed hardware.

2.2.2 Wireless Local Area Networks

The synchronization between nodes can be easily achieved in WLANs, since the
hardware has a built-in timestamping mechanism in for example AP mode, to which
the stations can synchronize to. The frame synchronization is therefore accom-
plished by the hardware functionality. Slot synchronization on the other hand, is
non-existent in such networks. Since the fundamental operation of the standard
hardware is CSMA mode, the question needs to be raised to which degree it is pos-
sible to modify the behavior of the hardware and to which degree changes need to be
incorporated in the Linux kernel. Moreover, in order to obtain a reliable transmis-
sion scheme, the question needs to be raised whether there are timers available in
either hardware, the Linux kernel, potentially with a real-time extension, or a real-
time Operating System which provide a sufficiently precise timer interrupt to serve
the packet transmission scheduler. Chapter 6 refers to the search for background
information, which was required to understand in detail how the Linux kernel oper-
ates, which processes, system interrupts, etc could influence the reliable operation
of a timer source, how the kernel is controlling the wireless network card and de-
termine which actions are taken by which kernel modules. Moreover, information
needed to be gathered how the hardware clock input is able to generate a software
clock source and determine how accurate this operation is. Part of the result of
this information gathering is used as background information in Chapter 6, and this
information is also employed to understand and implement the required changes in
the Linux kernel. Moreover, the operational knowledge of the kernel and WLAN
hardware, allowed to execute a performance analysis on several timer sources, in
order to obtain a measure of how precise those timer sources could be. In order to
verify whether the system would exhibit a similar performance when the system is
overloaded, the timer analysis was performed in different conditions, with a number
of stress tests that could influence the timer precision. The result is shown in Chap-
ter 7, explaining the timer analysis in detail. During this investigation, the question
was also raised whether or not the entire set of timer interrupts of the system would
not result in an overloaded timer system. In order to verify this, a real-time timer
subsystem was created on an ARM platform where the real-time timer subsystem
received its clock input from a second hardware timer. The results showed that both
timers were able to show a performance that was comparable to each other.

All previous research questions and results were the enabling factor to adjust the
Wireless LAN driver such that certain hardware functions were disabled, which led
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to a less CSMA mode. On the other hand, they provided the necessary information
to adjust the network drivers such that a precise timer source could trigger the packet
transmission. The resulting packet transmission was very accurate, exhibiting only a
small number of packets where the deviation from the intended transmission interval
exceeded 10 µs.

2.3 Heterogeneous Wireless Networks

An question that was left unanswered by most of the Wireless Sensor Network State-
of-the-Art, is how to ensure an efficient TDMA protocol, having a fixed time frame,
fixed time slots, operating in a heterogeneous network, where sensor nodes might
require a bandwidth that is multiple times higher than the bandwidth demand of
other nodes. Another question that influenced this work, was how to ensure the
network is able to operate in a stable manner, even while nodes are joining and
leaving the network, causing disruptions in the network connectivity, transmission
scheme updates, etc. In other words, how to ensure a robust network which is able
to operate in an autonomous manner. The last question that triggered this research,
was how to provide fairness in such network, such that high bandwidth nodes would
not occupy the wireless medium at the expense of the low bandwidth nodes.

Interesting is to note that a lot of work in the previous century was targeted at
providing fairness in wired networks. An extract of the most interesting parts of
this related work is shown in Chapter 5. Note that real-time scheduling problems
also attempt to find a schedule in which tasks can be scheduled such that the total set
of tasks is guaranteed to finish in time. However, since there is a huge conceptual
difference between executing a task and sending a packet, no reference is made
towards real-time scheduling, although it surely provides interesting background
information. Real-time MAC protocol on the other hand are described Chapter 5,
since the proposed TDMA protocol exhibits real-time characteristics with regard to
latency determination.

The research in Chapter 5 focuses on a MAC protocol for WSNs which provides
a scheduled medium access that complies to all these demands. The protocol em-
ploys an intelligent time slot assignment, based on the required throughput of the
sensor node. Even though a centralized scheduler is being employed, the time slot
assignment is arranged in such manner that no update of all nodes needs to be per-
formed in the case of network changes. Nodes are free to leave and join the network
as they wish, provided there is sufficient bandwidth to support their bandwidth re-
quirements. Interesting about the protocol is that it employs a similar consideration
as Rate Monotonic Scheduling (RMS), where the data (tasks) are to be scheduled
periodically and the highest rate is assigned the highest priority during the slot al-
location. As a result, the latency is deterministic, which allows the protocol to be
used in a real-time environment. The chapter provides an extensive analysis on the
performance of the protocol with different parameters.
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2.4 Neighborhood Discovery performance

In Cognitive Radio Networks, some Neighborhood Discovery protocols make great
efforts to synchronize the nodes, before being able to exchange neighborhood infor-
mation. However, it has been shown that in some cases asynchronism is beneficial
towards the performance of such protocol. However, firstly, the question is in which
situations is this asynchronism beneficial and when will it result in a decrease of the
performance. Secondly, the nodes require a certain amount of overlap between their
slots. How much overlap is required in order to ensure that nodes can still commu-
nicate to each other? Thirdly, if asynchronism ensures an improved performance,
are there ways in order to ensure the protocol is operating in an asynchronous man-
ner? As first step towards the asynchronism in Neighborhood Discovery protocols,
a methodology was designed that enabled the evaluation of asynchronism and its
influence on the metrics in Neighborhood Discovery protocols. By evaluating several
protocol in such manner, the influence of the amount of overlap between the slots
could be measured. Thanks to the gathered information regarding the performance
in an asynchronous environment, this work proposes a protocol extension, which
ensures asynchronism for any Rendezvous protocol. As a result, each protocol can
be enhanced regarding the Time-To-Rendezvous and rendezvous opportunities by
applying this extension. Note that the performance analysis is not based on only
the first possible encounter between two nodes, but is a statistical evaluation of all
possible rendezvous. After analysis of these results, an improvement is proposed
in this work, which provides a better distribution of the slot size between the high
priority and low priority channels. In combination with a protocol specifically de-
signed to operate in combination with the improved extension, it outperforms all
other Rendezvous protocols significantly.
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Wireless Sensor Networks

25





CHAPTER 3

Introduction in Wireless Sensor Networks

The concept of Wireless Sensor Networks (WSNs) has become increasingly popular
during the last decades. Their popularity comes forth from their small form factor,
low cost and while they individually portray a limited added value, when organized
in a network, they can provide a tremendous amount of information regarding the
phenomenon of interest. Due to the small form factor and low cost, the devices are
restricted with regard to memory, CPU power and energy. A sensor network usually
consists of a large number of these resource constrained sensor devices, that are
able to detect one or more environment variables. Often the deployment regions of
sensors can be considered as hazardous environments, or not easily accessible places,
thereby making the replacement of batteries a difficult, if not impossible, task. It is
therefore expected that sensor nodes are able to function in an autonomous fashion
during their entire lifetime, which can be expected to be in the range of several
months or even years.

It is no surprise that the reduction of energy consumption has become a frequently
discussed topic in research targeting sensor networks, considering their energy con-
straints. In order to preserve the energy, the CPU can be placed in a sleep state,
where it consumes less power. Since the power consumption of the radio transceiver
is of such considerable extent compared to the required power for the CPU to op-
erate, additional energy savings can be achieved by eliminating unnecessary radio
operations which result in a waste of energy. It is well known that listening for
incoming packets while no transmissions are expected, is one of the major sources
of energy waste. This phenomenon is also referred to as idle listening. The other
sources of excessive power consumption include overhearing, collisions, and control
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packet overhead [17]. Overhearing is the case where a node is receiving data, i.e., the
node is in the receive state, but this node is not the destination node of the packet
and therefore needs to discard the packet although it did consume energy to receive
the packet. Like overhearing, the energy consumption of a transmitted packet that
experiences a collision is considered a waste of energy due to the futile operation.
Evidently, control package overhead does not attribute to the data transfer and is
therefore also considered as a waste which should be minimized.

This chapter provides an overview of methods that existing MAC protocols for Wire-
less Sensor Networks employ for resolving the known issues. Since the applicability
of WSNs, and therefore also the targeted research areas, is extensive, this chapter
focuses on a limited set of MAC protocols. It is believed that this set includes
the necessary work to provide a general overview of Wireless Sensor Network MAC
protocols. Protocols specifically related to the work in the following chapters are
discussed in the respective chapters.

The approach at the MAC layer to cope with the energy constrained operation of
the sensor is widely varying. A basic differentiation can be made between contention
based MAC protocols and scheduled MAC protocols, although hybrid solutions exist.
Such solutions use some combination of both types of access methods, where for
example the transmission is scheduled but the nodes are still able to contend for
slot access. Contention based MAC protocols for WSNs either enhance their channel
sensing methods, or define a certain periodic operation during which the nodes are
active for only a specific portion of the time. The remainder of the cycle, the nodes
are in low power mode. Such approach is also referred to as a duty cycle method.
Several versions of such methods and optimizations are conceived to achieve the
most optimal performance during specific circumstances, which will be shown in the
following section.

A scheduled medium access method, that is, a Time Division Multiple Access
(TDMA) or Frequency Division Multiple Access (FDMA) method, or a combination
of both, require a precise time synchronization in order to allow a detailed control
of the medium access. Whereas contention based algorithms usually do not require
such time synchronization, they are also not able to exert such precise medium
access control. Thanks to the accuracy in scheduled access, the idle listening is
automatically reduced to a minimum, since nodes only listen to the medium when
they are the destination of a scheduled neighboring transmission. A wide range of
approaches are used to define an efficient slot assignment, such as a distributed or
centralized slot assignment, an assignment based on geographical location, cluster
based allocation, etc. The disadvantage of such scheduling is the extra overhead
incurred by the synchronization protocol. Several such protocols that are common
for WSNs are discussed in more detail in Chapter 4.

It is noted that although the network topology is not typically part of the MAC layer
functionality, in WSNs the MAC layer takes it in some cases into account as the
boundaries between network and MAC layer can be vague. Some protocols make no
assumptions at all regarding the network topology, which does not pose constraints
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on the applicability. However it requires some sort of routing protocol to run on
top of the MAC layer in order to ensure the delivery of packets, resulting in a more
complex network stack. Protocols which provide a precise definition regarding the
network topology, often employ a tree structure, that is, a many-to-one routing tree,
since typically all data is forwarded to a single sink. Such tree structure provides
a straightforward structure to forward data to the sink by means of a parent-child
relationship. All data is forwarded to the parent and eventually arrives at the
sink. An often encountered protocol design issue, which often presents itself when
organizing the network in a tree while using a scheduled medium access method, is
the buffer overflow of parent nodes. Nodes accept packets from multiple children, but
often only a single slot is foreseen to forward data to its own parent, which needs to be
shared between its own data and the combined data of its children. Solutions exists
in the form of aggregated messages, where a single message is considered to contain
all data, both from the children as the data from the node itself. The required
level of aggregation depends on the size of the data messages and the correlation
between the data. Some data can be represented by means of statistical values,
such as minimum, maximum and average values, however, for some application
domains such approach is insufficient. Some network applications could also allow
for processing locally the data and only forwarding the result or even discard the
data for its irrelevant contents [18]. An estimation on the viability of aggregation
is discussed in Chapter 5. Another solution is to ensure sufficient allocated slots to
allow the forwarding of both children data and locally gathered data. The latter
solution is called the raw forwarding of data, which provides the advantage of data
processing outside of the sensor network. One of the advantages is the elimination
of the resource constrained operation from the sensor network, thereby enabling
more complex operations, such as floating point calculations. Moreover, by having
obtained all data in its raw form, it allows for the easy adaptation of the processing
algorithm, without requiring any modification to the sensor network itself. It is
noted that if the sensor system supports modularity, such that part of the code can
be updated over the air, the processing of an aggregation based data forwarding
would also be capable of updating the processing algorithm without requiring all
nodes to be re-flashed.

Besides the differences in access mode and technology, protocols can also be differ-
entiated based on their data collection methodology, which depends on the type of
application. Some applications do not expect any data to be transmitted, except
during an emergency situation, in which case the sensor network should react im-
mediately. Other applications expect to receive, either in a continuous transmission
flow or in bursts, a collection of data representing periodic measurements. Sensor
networks that support such applications are designed to monitor the environment
and typically transmit at regular intervals the collected data. Instead of immedi-
ately forwarding the data towards the sink node, certain MAC protocols store the
collected data in persistent memory and transmit their data in a burst to the sink
when the opportunity arises. Such operation can be employed for example in the
gathering of information related to a flock of animals that regularly visit certain fixed
areas, such as a pond. An intelligent manner to reduce the required throughput is
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by means of filtering the collected data and only forwarding the requested data. In
order to make such system flexible, it is controlled by a query system, that is, the
application sends queries to the sink, which distributes the query to the respective
network area that should respond to the query.

As the applications of the sensor network vary, the targeted optimization within the
research also differs. The goal usually includes reduction of energy consumption, but
can also consider the latency or throughput optimization. The latter is particularly
important in networks where the traditional sensor is replaced by a video camera,
which generates a considerable amount of data.

The remainder of this chapter discusses an overview of a small set of existing MAC
protocols for WSNs, classified mainly according to their medium access method and
type of slot assignment. Some interesting MAC protocols, that can be either con-
tention or scheduled based, are grouped according to their data forwarding method.
A last section depicts some actual sensor network deployments, where issues that
might arise in a realistic environment are discussed. Note that this chapter does not
provide an entire survey of existing MAC protocols for WSNs. The discussed pro-
tocols provide an idea of possible MAC protocols, interesting and/or similar ideas
as the concepts used to design the MAC protocol which is described in Chapter 5,
show an alternative way of achieving similar goals or take similar approaches. For a
survey of existing MAC protocols for WSNs, can be referred to [18], [19], [20], [21]
and others.

3.1 Contention based data transmissions

Contention based MAC protocols are usually proposed for networks that do not have
any predefined topology, thereby allowing a flexible MAC operation. The main goal
of such protocols is the reduction of energy consumption, and mainly the energy
consumption due to idle listening. In traditional CSMA systems, for example in
ad hoc networks, all nodes need to keep listening to the wireless medium when not
transmitting, according to [22]. This results in a significant energy waste due to idle
listening. The protocols in this section alleviate the issue by either introducing a
periodic sleep cycle or by means of Low Power Listening (LPL). Both concepts are
introduced in the discussed work, as well as work which proposes improvements on
the original MAC protocols. Note that the IEEE Std 802.11 standard defines Power
Saving Mode (PSM), which allows nodes to enter a sleep state without missing any
packet receptions by introducing an ATIM Window during which nodes that were
asleep can be informed about buffered packets. However, according to [23] and
[24], PSM is insufficient to eliminate the idle listening entirely. When stations have
only a moderate amount of traffic to send or receive, is is shown that the stations
spend 80% of their time to idle listening, even with PSM enabled. Moreover, while
the overhead of the message exchanges might seem negligible in WLANs, it could
be considered as a huge overhead in WSNs, where data packets sometimes merely
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consist of some bytes.

A frequently referred to work on MAC protocol design in Wireless Sensor Networks
(WSNs) is called S-MAC [22]. The protocol is designed such that energy efficiency
is optimized while still taking into account the scalability of the network. The work
identifies several sources of energy wastage, such as packet collisions and thereby
associated retransmissions, overhearing, control packet overhead and idle listening.
The protocol makes an attempt to reduce the energy wastage from all mentioned
sources by introducing three different methods. First, a periodic listen and sleep
scheme is introduced. During the sleep period the transceiver is placed in power
down or low power mode, whereas during the listen period the node is actively
listening to the medium. Second, the protocol makes use of CSMA/CA, not unlike
the method defined in IEEE Std 802.11. By employing both virtual and physical
carrier sensing, collisions are avoided and nodes which do not participate in a packet
exchange are allowed to sleep.The virtual carrier sensing is implemented by means
of a duration field in the packets and a Network Allocation Vector (NAV) which
maintains the longest known duration. As long as the NAV does not indicate a free
medium, the node is not allowed to transmit, even when the physical carrier sensing
assumes the medium is free. A third method is the fragmentation of large packets
into smaller packets that are sent in a single burst, where for each individual package
an ACK message is expected. According to the authors, such method provides
more time to access the medium to nodes with more data to sent. It is noted
that the proposed medium access mechanism has similar issues as the IEEE Std
802.11 standard. One of those issues is the hidden node problem, where interfering
transmitters are unable to sense the other transmitter. In order to avert the hidden
node issue, a method similar to the RTS/CTS message exchange is exploited. For the
burst transmissions of fragmented packets, only a single RTS/CTS exchange is used,
thereby reducing the overhead. Even though the access mechanism is contention
based, a certain synchronization is required to align the sleep phase and active
phase time intervals. Otherwise nodes would be sleeping and unable to receive any
incoming transmissions of neighboring nodes that are in the active phase. In order
to reduce the overhead of a synchronization mechanism, nodes are synchronized in
a very coarse manner, that is, the clock drift time is considered to be insignificant
compared to the listen duration. All nodes periodically broadcast their schedule,
that is, the duration until the next sleep time, relative to the transmission time of
the sender. The receiver of such synchronization message assumes the transmit time
is equal to the receive time and adjusts its counter. Nodes that did not obtain a
schedule yet adopt the received scheme, whereas nodes that already follow a scheme,
adopt both schemes. Such synchronization method makes certain assumptions which
result in an inaccurate synchronization, which is explained in detail in the next
chapter.

S-MAC already shows a reduction in energy consumption when compared to con-
ventional contention based protocols. However, due to its fixed duty cycle, that is,
its listening period is fixed for the whole network, significant power savings can yet
be made. According to [25], all nodes will attempt a transmission at the start of
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the active period, a large idle period might be present where the radio is still oper-
ating, resulting in a waste of energy. T-MAC [25] addresses this issue by defining a
dynamic active period, depending on the amount of traffic. The protocol employs
similar mechanisms as S-MAC, such as, it employs a comparable synchronization
method, the same RTS/CTS data ACK scheme, and a similarly defined active and
sleep cycle. However, T-MAC proposes an optimization for the active period du-
ration, which involves prematurely termination of the active phase when no more
data is presented. If no communication is detected during a certain timeout inter-
val, the nodes enter a low power mode and deactivate their transceivers. Since, like
S-MAC, T-MAC performs synchronization in so-called virtual clusters, boundary
nodes might need to provide support for two active periods. Although the shorten-
ing of the active period based on the traffic demand effectively reduces the energy
consumption, it might also lead to an increased latency when the activity period
was terminated too soon. In order to prevent such case, T-MAC proposes a Future
Request-to-Send (FRTS) packet, notifying the listening nodes that a packet is being
prepared for transmission.

Another protocol where the active period is adjusted to the amount of traffic is TA-
MAC [26]. The protocol performs a dynamic adjustment of the duty cycle based
on the traffic load, the energy level and the status of the TX and RX buffers. The
foundations of the protocol are based on those of U-MAC, a protocol which is not
included into this discussion. U-MAC makes adjustments to the duty cycle based
solely on the traffic load. During each synchronization period, the nodes determine
their utilization factor and adjust their duty cycle accordingly. An issue would arise
if a node receives packets from multiple nodes and needs to forward those to multiple
nodes. The forwarding node would have a larger duty cycle in order to cope with
the amount of traffic passing through. However, the receiving nodes have a smaller
duty cycle, which could amount to a situation where the forwarding node makes
an attempt to send packets, whereas the receivers are sleeping. TA-MAC makes
improvements towards the duty cycle adjustment, such that not only the traffic
load is taken into account, but also the remaining energy level to determine a valid
duty cycle. Moreover, when the TX buffer is deemed to overflow and the receiver
has a lower duty cycle compared to the sender, a packet is sent during the next
synchronization cycle to request the adaptation of the duty cycle of the receiver,
such that both sender and receiver use an equal duty cycle. The receiver is free to
accept or reject the request based on its remaining energy level.

Whereas S-MAC and T-MAC provide not only a link protocol, but also services such
as synchronization, B-MAC is focused specifically to the link layer [27]. The differen-
tiation between the protocols is not solely based on the type of service they provide.
B-MAC examines the channel sensing mechanism with greater detail and makes use
of it in both its collision avoidance mechanism and low power communication. An
optional automatic ACK functionality is provided, which can be turned on or off by
the configuration methods provided to higher layers, which are responsible for the
routing, synchronization, etc. Key to the design of B-MAC is the CCA mechanism
and noise floor determination. In order to determine whether the medium is idle,
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protocols usually collect a single received signal strength sample and compare this
to the noise floor. However, such practice leads to a large number of false negatives,
that is, the channel is too often deemed to be busy. As a remedy, B-MAC collects a
number of samples and attempts to detect outliers, such that the channel energy is
significantly below the noise floor. Since the noise exhibits a significant variance in
channel energy, while the channel energy of a received packet maintains fairly con-
stant, the only case in which a signal strength below the noise floor can be detected
is while the medium is idle. When in one of the samples no such outliers is detected,
the channel is considered to be clear. For this Clear Channel Assessment to work
properly, an accurate noise floor estimation needs to be made. Since the ambient
noise changes depending on the environment, software automatic gain control is used
to estimate the noise floor. During a period in which the medium is assumed to be
idle, such as after the transmission of a packet, signal strength samples are gathered
and placed in a FIFO queue. The median of the queue is added to the weighted
moving average with a decay of α to obtain an estimation of the noise floor.

This CCA mechanism is used in B-MAC both for collision avoidance and low power
communication. The former is achieved by starting a CCA when a request to send a
packet is received and to perform backoff if necessary. The low power communication
is realized by means of Low Power Listening (LPL). When a node wakes up, it senses
the medium shortly by means of the CCA mechanism and determines whether a
transmission is ongoing. If no transmission is sensed the node returns to its sleep
state, otherwise the node remains awake to receive the transmitted packet. Since
the nodes are not synchronized, they each sense the medium according to their own
clock. In order to make sure the data payload is received correctly, B-MAC employs
a rather large transmission preamble, which is in direct relation to the wakeup cycle
of the listening nodes.

It can be said that LPL facilitates significant energy savings when compared to
(idle) listening to the channel. However, the energy savings at the receiver side
come at a penance at the transmitter side. A longer duty cycle allows nodes to
save more energy, however if a significant amount of data needs to be transmitted,
it could be more efficient to provide shorter duty cycles, thereby balancing the
energy consumption between the receivers and transmitters. Therefore the system
is sensitive to traffic flow changes.

The work in [28] proposes SCP-MAC, a MAC protocol based on scheduled chan-
nel polling, such as LPL. In order to alleviate the known issues that are inherent
to LPL, the long preambles are eliminated and is thereby not sensitive to variable
traffic loads. By introducing a coarse wakeup cycle synchronization method, such
as the one employed in S-MAC [22], all nodes enter the active state at the same
time. As such, only a short preamble is required to detect network activity. Such
short preambles makes SCP-MAC more robust to changing traffic conditions. It
needs to be noted that the length of the preamble is dependent on the precision
with which the nodes are synchronized. A synchronization ensures a compensation
for the clock drift, but the longer the synchronization period, the more the clocks
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drift apart. Therefore, the preamble needs to take into account a certain guard time,
allowing nodes to detect an ongoing transmission, even when the nodes are not in
sync anymore. A very small synchronization period would ensure a smaller pream-
ble, however, the synchronization does incur an extra cost in terms of energy since
control messages need to be exchanged. Therefore, the work considers an analysis
for regarding the optimal synchronization period and channel polling duration such
that the energy consumption is minimized. It is noted that due to the synchronized
wakeup periods extra care needs to be taken with regard to collisions. SCP-MAC
splits up the transmission of the preamble and the data by introducing two back-
off periods with two different Contention Windows (CW). During the first backoff
period, the transmitter waits for a time randomly selected from CW1, after which
it senses whether the medium is idle. If the medium is considered to be free, the
transmitter sends its wakeup tone, that is, the preamble. If the medium is sensed to
be busy, such as by detecting the preamble transmission of other transmitters, the
transmitter defers its attempt to transmit until the next transmission opportunity.
This reduces the number of transmitters that need to contend for the channel during
the actual data transmission, which is preceded by a backoff time randomly selected
from CW2.

Whereas SCP-MAC makes an attempt to reduce the required preamble lengths by
synchronizing the wakeup cycles of the nodes, it also introduces an increased con-
tention, overhearing and delay. The work in [29] proposes a protocol, named Asyn-
chronous Scheduled MAC protocol (AS-MAC), which employs duty cycling and Low
Power Listening to minimize the periodic wakeup time, like SCP-MAC. However, in-
stead of synchronizing the wakeup time of all nodes in order to shorten the required
transmission preamble, nodes store the wakeup schedules of their neighbors. Nodes
can either be in the ’initialization’ or in the periodic ’listen and sleep’ phase. During
the latter phase, nodes perform LPL every wakeup interval and send a ’Hello’ packet
every Hello interval, which is used to notify its neighbors of local parameters, such
as the wakeup interval, the Hello interval and the offset of the periodic wakeup. The
nodes gather ’Hello’ packets for a certain time during the initialization phase. The
collection of packets needs to be longer than the Hello interval in order to collect
a complete overview of the available schedules in the neighborhood. Afterwards,
nodes determine their own periodic wakeup offset by either a random selection al-
gorithm, or by marking the middle of the longest interval between all offsets of the
nodes within the neighborhood. In order to notify all neighbors of the new schedule,
the node sends its new schedule to each of its neighbors at their respective wakeup
time. After the initialization phase, nodes enter the ’periodic listen and sleep’ phase.
During each wakeup interval, a node sends a ’Hello’ packet before performing LPL
when the Hello interval corresponds to the wakeup interval. In all other cases, the
node performs LPL immediately. When the medium is considered to be idle after a
specific time, the node returns to sleep state, otherwise the node receives the packet
and enters a sleep state afterwards. The senders do not wakeup until the destination
is scheduled to wake up. In order to prevent collisions between potential senders,
each performs a collision avoidance backoff in combination with carrier sensing.
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Most works on WSNs either consider an ad hoc network topology, such as S-MAC,
or focus on the data delivery of the sensor nodes towards the sink. The work
in [30] focuses on the delivery of data from the sink towards the sensors in the
context of an infrastructure network topology. Such data transfers are often limited
to configuration information or requests, where the inter-arrivals of the packets
are considered to be larger than the packet transmission time. The root of this
research topic can be found in the fact that the Access Points (APs) are usually not
considered to be power constrained. Therefore, upstream data transfer is not deemed
an issue since the AP is allowed to continuously keep listening for data packets. The
downstream communication on the other hand requires the minimization of idle
listening and overhearing to preserve the energy. As such, nodes should define a
duty cycle, where the nodes are operational in one part of the cycle and are in a
sleep state in the second part of the cycle. The proposed protocol, WiseMAC [30],
is based on preamble listening. The concept is to listen for activity on the wireless
medium at periodic intervals. If such activity is detected, and the packet is destined
for the receiver, it maintains in its receive state, otherwise returns to sleep. An issue
with this method is the length of the preamble. On the one hand, it limits the actual
throughput of the network, while on the other hand, it presents an overhead at the
receiving node. WiseMAC defines an alternative method of determining the length
of the preamble in a dynamic manner, taking into account the network load. The
AP is to learn about the sampling schedule of the nodes by extracting the relative
time to the next scheduled sampling time from the packet acknowledgements. Since
the clock drift needs to be taken into account in any possible manner, the preamble
length needs to cover all those time differences. Therefore, the preamble length is a
function of the inter-arrival time of the packets and the clock drift. If the function
results in a preamble duration longer than the sampling period, the sampling period
is used for the preamble duration. As a result, in high traffic conditions, the preamble
is very short, while in low traffic loads the preamble is rather large. In order to
minimize overhearing in such low traffic conditions, the preamble includes sections
of data, containing the data header. Nodes search for the Start of Frame Delimiter
(SFD) to detect an incoming packet, after which the destination address is verified.
If the receiver is not the destination for the packet, it goes back to its sleep state.

3.2 Scheduled data transmissions

Time Division Multiple Access (TDMA) is a popular method in WSNs to alleviate
the energy waste due to idle listening. Thanks to the precisely controlled operation,
nodes are allowed to sleep during the time where no communication is required.
A downside of the scheduled access is the increased complexity and the additional
control overhead. Therefore, a large number of works is devoted to finding an
efficient slot assignment algorithm. The discussed works are a selection of different
slot assignment methods.

Note that some protocols, such as [31][32] and [33], either propose a flexible frame
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length, by either the dynamic adjustment of slot sizes or the number of slots, or
announce the slot schedule of the following frame in a beacon. Often both methods
are combined. Most of those works are not discussed in this chapter, since they
present practical issues. The passing of information regarding the adjustment of the
slot size and in most cases also the frame size to all sensors in the network needs to be
carefully planned. The wireless medium is considered to be a lossy medium, which
complicates the size adjustments, that is, nodes are not guaranteed to receive the new
schedule. For the same reason is having an adaptive frame length a concept which
poses practical issues. Some of the discussed works do make adjustments to either
slot or frame size, however provide either a revert operation or ensure a secondary
method that distributes the schedule information further, often in combination with
CSMA channel access mode to prevent collisions during the slot access.

3.2.1 Distributed slot assignment

The slot assignment methods can be categorized according to the location of their
assignment decisions. A first category makes use of a distributed slot assignment,
where the decision of which slot to assign is made by each node individually. The
process usually involves a certain information exchange with the neighboring nodes,
some within a request and grant negotiation, others by means of control messages. It
should be noted that the slot assignment is independent of the employed topology.
Nodes ordered in a tree can also make decisions in a distributed manner, as one
of the discussed protocols will show. The provided overview depicts only a small
subset of the state of the art. The selection is based on the feasibility to implement
the protocol on a sensor device without too many changes, some of the discussed
protocols show similarities to the protocol that is discussed in Chapter 5, others
present interesting features which could be used to enhance the protocol in Chapter
5, and others provide some alternative methods to achieve the same goal.

The problem of scheduling broadcasting slots is targeted in [34], which comprises the
search for an interference-free schedule that provides an optimal throughput. The
work identifies the NP completeness of the problem and proposes a heuristic for
achieving a ’maximal’ schedule. It has been assumed that all nodes have a uniform
transmission requirement, that is, every node has an equal amount of data to trans-
mit. The proposed method employs a slotted time, where the duration of a single
slot matches the transmission time of a single packet, which are of constant length.
Moreover, the identity of two-hop neighbors is assumed to be known by means of
some higher layer protocol. In order to agree on a schedule that eliminates all possi-
ble collisions between transmissions, the two-hop neighborhood schedule information
is required. Obviously, such requirement forms an issue, since the schedule needs to
be derived from a schedule that requires other schedule information. As a means to
resolve the issue, the protocol assumes a skeleton schedule, where each node within
the two-hop neighborhood is assigned a single slot according to its identity. Part of
the schedule of its two-hop neighbors is also known to the node, since it is aware
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that none of the two-hop neighbors are allowed to send at the same time. By ex-
changing the schedule with the other nodes, a more complete schedule is achieved.
In order to determine the assignment of free slots, that is, slots that are assigned to
a non-interfering node, a certain priority is assigned to the nodes.

The work in [35] considers a WSN as a network in which a large number of sensors
are deployed in an ad hoc manner. Therefore the self-organization of such network
is imperative. Since the recharging of sensors may be too costly, energy efficiency is
also paramount. The proposed protocol, TRAMA, attempts to reduce the energy
consumption, provide sufficient throughput and fairness while ensuring a collision
free schedule. The protocol is fundamentally based on the exchange of informa-
tion. A neighborhood discovery protocol gathers information about the two-hop
neighborhood during a random access period. Since CSMA is employed during that
period, the duration of the random access is made sufficiently long to provide a high
statistical probability of receiving or transmitting their messages successfully. The
remainder of the periodic cycle is made available for scheduled data transmissions.
The last slot assigned to a node is used to notify its direct neighbors about its
planned transmissions, indicating the expected receivers by constructing a bitmap
which represents all neighbors. Nodes that are neither a transmitter, nor a receiver
for a certain slot, can enter the sleep state in order to preserve energy. The slot as-
signment to nodes is determined by means of a hash function which determines the
priorities of nodes based on the unique node id and the slot index. When a node has
no data to transmit, it can forfeit its ownership of the slot, thereby allowing other
nodes to take ownership of the slot. Since the protocol makes use of TDMA mode,
synchronization of the cycles is required, which is not explicitly specified in the work.
Since the transmission rate of sensor networks is rather limited, the clock drift is
considered to be insignificant to the duration of a packet and therefore a simple
synchronization protocol is said to suffice. It is assumed that some synchronization
protocol operates during the random access period in order to ensure a sufficiently
accurate timing. The work in [36] is based on this work, however, instead of basing
the adaptiveness on the queue information of nodes, it is based on a more general
application flow information, which is distributed during the random access period.

The work in [37] regards a sensor network as an intelligent entity, instead of just a
data gathering network. The proposed protocol, AI-LMAC, considers the behavioral
constraints of the application in order to adapt the network operation. The frame
format, slot allocation and transmission method of the protocol are based on LMAC,
which is a TDMA based protocol where nodes determine their slot assignment by
means of two-hop neighborhood information. In LMAC, Each time slot consists of
a Control Message (CM) and a Data Message (DM) section. The Control Message
is transmitted by every node for the first owned slot, since nodes may own several
slots. Neighboring nodes are expected to listen for the CMs and may enter sleep
mode if the transmission is not directed to them. Beside controlling the early sleep
of nodes, the CM supports the local time synchronization, provides an indication
of the distance in hops to the sink, announces the slots that are considered to be
owned by the node and its neighboring nodes, and provides an acknowledgement
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mechanism for successfully received data messages. Since the CM is responsible for
the frame synchronization, the Control Messages are precisely timed. Thanks to
the exchange of the occupied slots of its neighborhood, nodes can select a free slot
in a distributed manner without causing conflicts. The AI-LMAC protocol includes
small improvements over LMAC, however, the major enhancement is the introduc-
tion of a data management framework, which resides on each node. The considered
application is environmental monitoring, where a set of heterogeneous nodes is used,
that is, nodes can have different sensors attached to them. Nodes can appear and
disappear from the network at any time. The sensor network is considered to be
a large storage of information, shaped according to a tree topology, which can be
queried by several environmentalists, even at the same time. Depending on the
query, certain parts of the network might experience an increased data throughput
compared to others. Therefore, the network should adapt itself based on the pro-
vided queries. In order to support the adaptivity, a Data Distribution Table (DDT)
is defined for each sensor. The table is updated upon each packet arrival from one
of its children, storing statistics of the traffic flowing through the network, such as
type of sensor data, the originating region, etc. Based on this information, a more
intelligent dissemination of the queries is made possible, instead of just flooding the
network with queries. Based on the information gained from the tables, AI-LMAC
is able to vary the number of slots a particular node owns depending on the ex-
pected data flow. Note that a node is able to deduce the relative needs of each of
its children, however, it is not able to deduce its own relative need compared to its
siblings. Therefore, the parent node is responsible for advising its children about
the optimal number of slots. The child needs to consider the advise and make an
attempt to follow it as closely as possible, depending on the number of free slots.
Note that the number of slots of the child should not exceed the number of slots
of the parent to prevent buffer overflows. The advice should start at the root node
when a query is proposed to the network.

The work in [38] proposes a lightweight and localized algorithm to determine an
available time slot in a dynamic manner. The algorithm operates in a completely
distributed manner and is proposed to be used in combination with LMAC, where
the schedule is assumed to be fixed. It is well known that the optimal slot assignment
is an NP-hard coloring problem. The protocol therefore does not make an attempt
to assign the minimum number of time slots, however targets to find a reasonable
number that is sufficiently flexible to support the adding of new nodes and changes
in the network density due to mobility. It is assumed that a frame has a fixed
number of slots, which is a global network parameter. During the initialization
state of a node, it samples the wireless medium in order to detect other nodes to
which it can synchronize. When the synchronization is complete, the node waits
for a random time before gathering network information to determine the available
slots in its two-hop neighborhood. Every slot consists of a Control Message (CM)
and a Data Message (DM). This Control Message takes a crucial role in the selection
of a free slot. The transmitted bit vector, which is embedded in the CM, considers
the controlled slots in the neighborhood of the node, allowing nodes to construct an
overview of the slot usage in their two-hop neighborhood. Such overview provides
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sufficient information for the node to select a free slot.

The Advanced Medium Access Control (A-MAC) protocol is a TDMA based protocol
designed specifically for low rate and reliable data transfer, while keeping in mind
the requirements regarding power preservation [39]. The protocol is claimed to be a
modification of LMAC. As such, each medium access time slot is composed of two
messages: a beacon and data. Every node transmits a beacon at the beginning of its
own assigned slot. Such beacon contains not only synchronization information, but
also neighborhood and future data transmission information. As such, nodes are
aware of which nodes will participate in the communication during the next frame.
Nodes that are not engaged in the communication can enter a sleep state, thereby
conserving energy. The TDMA slot assignment is decided in a distributed manner,
based on the information distributed through the beacons. The slot assignment is a
procedure comprising three phases. First, a node trying to join the network listens
for transmitted beacons. A node that synchronizes to one of the beacon messages,
remains in the synchronization state during a certain time in order to select the most
fit beacon transmission to synchronize to. Second, after the synchronization phase,
the node waits for a random number of waiting frames such that not all nodes
enter the discovery stage at the same time. During this stage, the node gathers
neighborhood information during a specified time interval and creates a bitmap of
the assigned slots. From this bitmap, a random free slot is selected to be assigned
to itself. Last, once a slot has been selected, it transmits its own beacon at the start
of its slot.

The slot allocation mechanism, called DRAND, proposed in [40] and [41] is based on
a channel allocation scheme, called RAND, used in mobile ad hoc networks. RAND
arranges all nodes in a graph in a random total order and assigns to each of them
the minimal color that has not been selected previously by one of its neighboring
nodes. Due to the typical network size of WSNs, RAND is not particularly suited to
be used in such networks. DRAND provides a randomized slot selection algorithm
which complies to the requirements that a protocol for WSNs need to comply to.
It is assumed that the slot size is selected such that they are sufficiently large to
transmit a single packet. The number of slots is set to a fixed number per frame and
the network is assumed to be synchronized. Moreover, all neighbors in the two-hop
neighborhood are assumed to be known. DRAND operates in a number of rounds,
during which each of the contending nodes is allowed access to the channel with a
probability inversely related to the number of contending nodes. A node that has
won the channel access lottery, sends a request message to all its neighbors. Those
should all respond with a grant message for the requesting node to be granted access
to a slot. The nodes that received the request are required to retransmit their grant
packets until they are notified by the requesting node. Such notification can indicate
the resign of the current slot selection round when a grant was not received by all
neighbors within the current round. In this case the node has not selected a time
slot. Otherwise, such notification can indicate the decision of which slot has been
selected. When all a grant has been received from all neighbors, the requesting node
selects the lowest time slot index that is not yet assigned to one of its neighbors. In
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order to prevent collisions during this setup phase, all nodes make use of a random
backoff time before accessing the wireless medium. When all contending nodes have
decided on a slot, the maximum slot size is distributed periodically to the global
network, where the maximum slot number is transmitted in the owned slot. Nodes
that have a different view of the maximum number of slots, adopt the maximum
number of slots and forward this number.

Thanks to the collision free schedule that a TDMA access mechanism is able to
provide, the waste of energy can be reduced in Wireless Sensor Networks [42]. The
work proposes a Receiver-Driven Medium Access Control (RMAC), where the slots
are assigned to the receiver, instead of the transmitter such as in most works. The
protocol is claimed to prevent the broadcasting of explicit control messages or traffic
schedules. RMAC is composed of three phases, the neighborhood discovery phase,
the slot allocation phase and a data phase. During the first phase, one-hop neighbor-
hood information is exchanged by means of broadcasting ’Hello’ messages, allowing
all nodes in the neighborhood to construct a consistent view of its neighborhood.
By employing DRAND, each node is guaranteed to be assigned a single slot, unique
within its two-hop neighborhood. As such, the schedule is ensured to be collision
free. The nodes are assumed to act as receivers during their assigned time slot and
are sleeping during the remainder of the slots. The receiver requests in its assigned
slot for a specific node to act as its sender by means of a ’textitRequest’ message.
While the sender acknowledges this request, the other nodes are able to overhear the
messages exchange, thereby removing the sender from their list of potential senders.
All receiver nodes will eventually select one of the nodes in their neighborhood to
act as their sender. By the end of the time slot allocation phase, every time slot
will have a designated sender and receiver node. During the scheduled data phase,
all nodes either act as sender or receiver in their assigned time slots, or sleep. This
scheme eliminates the need of the sender to inform their receivers of a future trans-
mission. As an optimization, the receiver can return to its sleep state if no data is
being received during a certain time interval. In order to alleviate the rigidness of
the fixed TDMA slot assignment, the concept of slot stealing is introduced. Besides
the primary assigned sender, a receiver is capable of selecting a secondary sender,
which should perform channel sensing before transmitting in the slot in which its
role is to act as secondary sender. If the primary sender is not using the wireless
medium, the secondary sender is provided the opportunity to send its data. While
the slot stealing does provide some flexibility to handle variable transmission loads,
the performance is dependent on the pairing of the primary and secondary sender
nodes. Therefore, RMAC proposes an additional slot reassignment scheme. Each
sender is required to maintain the number of backlogged packets for n frames, while
the receivers keep track of the number of times no data has been received. During
the nth frame, each sender broadcasts a control message in its assigned time slot,
containing information regarding its backlog. Based on the received information
of each node and the local information, each node decides on the reassignment of
its time slot to another sender node. As such, lightly loaded sender nodes can be
assigned a single time slot in multiple frames, while heavily loaded sender nodes can
be assigned multiple time slots per frame.
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As already mentioned in the introduction, there exist certain hybrid protocols, which
employ both TDMA and CSMA channel access in order to make use of the interest-
ing properties of both, without inheriting any of the negative characteristics. Z-MAC
[43] is such a protocol, where the protocol is designed for its adaptability to changing
traffic conditions; in low contention situations, the protocol behaves as CSMA, while
it adopts more TDMA characteristics in high contention environments. The nodes
in Z-MAC can operate in either Low Contention Level (LCL) or High Contention
Level (HCL). The channel access time is controlled by means of time slots for both
methods. The major distinction between the LCL and HCL mode is the slot access
permission. During the default LCL mode, all nodes are allowed to contend for
access to every slot. The slot owners are assigned a higher priority to access the
slots thanks to a shorter backoff time. Non-owners can use the slot when the chan-
nel is considered to be free, that is, neither the owner, nor any other sensor makes
use of the slot. The backoff, CCA and LPL mechanism of B-MAC are employed to
allow for an efficient usage of the slots. In HCL mode, on the other hand, nodes
are not allowed to use a slot which they do not own. The switch from LCL to HCL
is controlled by transmissions of Explicit Contention Notification (ECN) messages
to the destinations towards which high contention is experienced. It is noted that
even though contention based channel access is used, the access times are controlled
through the use of specific time slots. It is claimed that the protocol is able to work
with a low-cost local synchronization algorithm, which makes use of the clock value
of the neighbors, derived from received packets, to calculate a weighted moving av-
erage, which is robust against Byzantine errors [44]. The synchronization is made
dependent on the traffic pattern of the nodes; the number of synchronization packets
is a small percentage of the number of transmitted packets. Such synchronization is
insufficient were it not that during the setup phase, a global synchronization, such
as TPSN [45], is performed. Besides the global synchronization of the network, the
setup phase also ensures a collision free slot assignment. By means of periodical
ping broadcast transmissions, all nodes are able to construct a two-hop neighbor
list. Such list is used as input to the DRAND protocol, which is responsible for the
slot assignment. As such, a broadcast schedule is created where no two nodes within
a two-hop neighborhood are assigned the same slot. Moreover, DRAND is capable
of coping with a small number of nodes that join the network at a later stage without
requiring the modification of the already existing slot schedule. The distributed slot
assignment could result in nodes not employing the same time frame, that is, the
periodicity with which nodes access the time slots. Since distributing the maximum
slot number to all nodes in the network is a costly undertaking, Z-MAC allows each
node to decide on its own cycle based on the local parameters.

As stated in [46], the conditions in emergency situations pose specific requirements
on WSNs. The proposed protocol, ER-MAC, enables an energy efficient and delay
tolerant operation during normal monitoring mode. In emergency mode, the pro-
tocol adjusts itself and gives priority to high packet delivery ratio and low latency
over the energy efficiency. The switch from monitor mode to emergency mode is
triggered by the detection of an emergency event. In such case, the nodes that de-
tected the event broadcast an emergency message, which triggers the switch from
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monitor mode to emergency mode in neighboring nodes. The message propagates
towards the sink, converting the one-hop neighbors of the path towards the sink.
The remainder of the nodes in the network maintain their normal operational mode.
For both the monitoring mode as the emergency mode two data queues are defined,
one for high priority traffic, the other for low priority data. The data stored inside
those queues are ordered according to their slack time, that is, the time remaining
until the expiration of the packet delivery deadline. The order is used to determine
the packets that need to be dropped in case the queue is full and new packets are
arriving. During the monitor mode, the queue from which data is sent is the highest
priority queue, unless the queue is empty. The slots in which the nodes transmit is
determined by the slot allocation phase. Specifically for the emergency mode, four
sub-slots are defined at the start of each slot. The four sub-slots are sufficiently
large to transmit a MAC header, while the remainder of the slot is sufficiently large
to transmit a data packet. If the owner of a slot has high priority data to send,
it activates the transmission mechanism immediately. Neighboring nodes with high
priority packets perform carrier sensing in the first sub-slot, t1t, and when no high
priority data from the owner has been detected, it contends for the medium by
sending a slot request in sub-slot t1. The owner replies with a slot acknowledgement
in the same sub-slot. The owner of a slot with low priority data can access the
medium if it did not receive any slot requests in sub-slots t0 and t1. Neighboring
nodes with low priority messages need to verify whether the owner has no packets
to send, and the neighboring nodes have no high priority messages before request-
ing access to the slot by contending for the medium during sub-slot t3. Interesting
about the protocol is that a tree topology is used, even though the slot selection
is done in distributed manner. The setup method of the network consists of three
phases, starting with the tree construction. Initially, before the tree structure is
created, the protocol makes use of CSMA/CA to convey messages over the wireless
medium. The tree construction is similar to the one in [47], which is discussed in
detail in Section 3.2.2. The sink initiates the tree construction by flooding the net-
work with topology discovery messages, containing the hop count, new parent ID
and old parent ID. The message is used both for allowing nodes to select their parent
and for a parent to detect joining or relinquishing children. The second phase, the
slot assignment, is initiated by the leaf nodes and follows the reverse direction, that
is from the leaf nodes to the sink node. Based on the neighborhood information
gathered by the tree construction phase, nodes select a unique slot in its two-hop
neighborhood and announce this information to their parents. Non-leaf nodes wait
until all their children have announced their slot before selecting a slot for its own
data, its synchronization broadcast slot and a slot for transferring the data of its
children to its own parent. The last phase starts when the sink has received the slot
information of all its children and starts the synchronization by broadcasting a syn-
chronization message in its broadcast slot. Such synchronization message contains
the ID of the sender, the current slot index, the TDMA frame length, the clock and
the hop count. The receiver of such message is able to synchronize to the sender
and is able to detect possible candidates to act as its parent in the event of a new
node joining the network. Although the number of nodes that actively participate
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in the network also determine the TDMA frame size, ER-MAC provides a means to
distribute the frame size changes to all nodes in the network upon the joining of a
new node. In order to take into account the lossy character of the wireless medium
and the fact that all nodes are required to switch to the new TDMA frame length
at the same time, a countdown counter is included in the synchronization messages,
specifying the time at which the new frame length will be enforced.

3.2.2 Centralized slot assignment

The centralized slot assignment usually makes use of the sink to make the slot
allocation decisions, which distributes the TDMA scheme to all nodes. The sink
is provided an entire view of the network, allowing it to construct an efficient slot
allocation. The methods discussed in this section are only a small selection of the
state of the art and are widely varying, such as genetic algorithms, breadth first
search, graph coloring, etc. The algorithms are selected based upon similar features
or goals as the proposed MAC protocol in Chapter 5, but also in order to provide an
overview of alternative methods. Thanks to the centralized gathering of topology
information, a complete view of the network is available. Nonetheless, often heuristic
approaches are used since the search for the minimal TDMA cycle is proven to be
NP-complete. It is also noted that in order to provide extra robustness, flexibility
or features, often a contention based access method or carrier sensing is provided
besides the existing TDMA scheme.

Although the work in [48] does not target sensor networks, battery operated devices
are taken into account where the energy is considered as a critical resource. The
proposed protocol, E2MAC, considers the energy efficiency while maximizing the
performance of the network. The performance is expressed in terms of the ability
to provide support for certain QoS classes, which manipulate the available resources
for multimedia traffic. The network architecture is infrastructure based, that is, the
wireless stations of a single radio cell are supported by their base station, which
is considered to be virtually resource unconstrained. Both the uplink and down-
link traffic is Time Division Multiplexed (TDM), where the frames are of constant
length, consisting of multiple slots. The mobile nodes and the base station are syn-
chronized such that the frame start of the nodes is aligned. The operation of the
protocol requires three different slot types: traffic control, shared, and data slots.
The traffic control slots are used by the base station to direct the traffic of all nodes
by broadcasting the schedule. Since the network operation and QoS depends on
the information embedded within those packets, they are protected with an error
correction mechanism. The data slot is used to transmit data and is ensured a
collision-free operation. The remainder of the slots are considered shared slots, from
which the first half of the slot can be used by the base station to transmit downlink
calls, and the second half can be used by the nodes to make connection requests.
The connection requests are successful if no contention occurred and the message
successfully arrived at the destination. While establishing a new connection, the re-
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quested service class and QoS parameters are announced to the base station, which
is responsible to translating these requirements into network parameters such as
number of data slots, frequency and delay. Depending on the current traffic load
in the radio cell, the base station determines whether it is capable of accepting
the new connection. If sufficient resources are available, the node is notified of the
connection-ID assigned to the new connection. Updates of reservations can be re-
quested by piggy-backing information on the data packet. The scheduling of the
data slots is arranged such that the energy consumption is minimized, by reducing
the number of required transitions.

The work in [49], the PRNET model, focuses in finding the smallest possible TDMA
frame, while ensuring a conflict-free concurrent transmission of multiple nodes dur-
ing a single slot. An attempt is also made to maximize the channel utilization
with regard to the throughput. The nodes are assumed to be frame synchronized
by means of a single clock source and a single slot size is considered sufficient for
transmitting a packet. The idea is to find the minimal TDMA cycle where all nodes
are provided with an opportunity to transmit data. Since the targeted problem is
proven to be NP-complete, a Genetic Algorithm (GA) is used to find a near optimal
solution. Common concepts used in GA are chromosomes, selection, crossover, and
mutation. Two algorithms have been verified, the standard GA and a modified GA.
A GA consists of three steps, the encoding and initial population, the fitness evalua-
tion and selection, and the crossover and mutation step. The differentiation between
the two methods is made in the final step. Since a TDMA cycle can be expressed
as a binary code, the encoding step is straightforward. The chromosome is initial-
ized by a TDMA cycle with N time slots, each of which is allocated to a different
node. By random permutations of 1 to N, several such solutions can be generated
by providing a different slot assignment to the nodes. The quality of the different
competing solutions is measured by the length of the TDMA cycle, provided the so-
lution is valid. The crossover operation, which involves swapping part of the TDMA
sequence with another chromosome, could generate offspring that would violate cer-
tain constraints, thereby resulting in invalid solutions. Such solutions are penalized
by means of a penalty function. All generated solutions are ranked according to
the fitness property. A tournament selection is used for selecting the chromosomes
to be used for generating the next generation. This process is repeated P number
of times to select P members of the next generation. This method works for a low
number of nodes in the network, however, for larger networks, the approach fails.
The modified GA approach introduces some knowledge about the constraints in the
crossover operation, such that no invalid combinations are generated. This approach
led to a more successful method, where also larger networks could be modeled.

The work in [50][51] considers Wireless Sensor Networks where all sensors periodi-
cally generate data. The network is constructed according to a tree topology, where
all sensors are assumed to be energy constrained devices, whereas the sink is not
subjected to such constraints. As a consequence, the packets originating from one
of the nodes within the network need to be transfered in multiple hops to the sink,
while the sink is sufficiently powerful to cover the whole network with a single trans-
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mission broadcast. The proposed MAC protocol, PEDAMACS, which is a TDMA
based protocol, defines a topology learning phase, a topology gathering phase and
a scheduled data transfer stage. The ’Topology Learning Phase’ is initiated by the
sink, which transmits a topology learning control packet containing its current time
and the next scheduled control packet. As such, all nodes are able to synchronize
to the sink, while at the same time they are being informed of any future control
packet transmission. Following this control packet, the sink floods the network with
a tree construction packet, containing amongst others the number of hops the packet
has traversed. Each node increments the number of hops and forwards the packet.
As such, nodes obtain a list of potential parent nodes, of which the node with the
lowest hop count is selected to act as its parent. Thanks to the flooding of the
network, each node is able to construct a table of all its neighbors and interfer-
ers. The ’Topology Collection Phase’ is initiated in a similar manner as the former
phase, that is, by the broadcast of a control packet by the sink. The control packet,
a topology collection packet, also includes the current time and the next time a
control packet is to be expected. The reception of such packet triggers the transmis-
sion of a ’Local Topology Packet ’, consisting of the parent, neighbors and interferers
of the sender. The packet is forwarded from child to parent until it reaches the
sink. Both phases employ a random backoff wait time in combination with carrier
sensing since no schedules have been defined yet. In order to ensure the successful
reception of the ’Local Topology Packet ’, an implicit acknowledgement mechanism
is employed, where the sender tries to overhear the transmission of the packet by its
parent. The collected topology information enables the sink to create a schedule,
where each node is assigned a single slot in order to promote fairness. The schedule
is constructed such that the packet latency, that is, the time between the generation
of the packet and its arrival at the sink, is minimized. Since this optimization prob-
lem is known to be NP-complete, this work proposes a polynomial-time scheduling
algorithm that achieves a delay proportional to the number of nodes. Based on the
collected topology information a connectivity, interference and conflict graph can be
constructed. The conflict graph includes edges between node pairs that should not
transmit at the same time, such as when two children of the same parent should
not transmit in the same time slot in order to prevent collisions. Based on those
graphs, a linear connectivity and interference graph is constructed, where a single
node represents all nodes at a certain level in the original connectivity graph. The
interference graph includes edges where an interference is present between a node
at a certain level and any node of another level in the original interference graph.
The linear network is then colored such that two nodes with the same color are
able to send at the same time without causing collisions. The resulting schedule is
broadcast by the sink at the start of the scheduling phase.

Based on the conjecture that TDMA protocols are more interesting for WSNs, the
work in [52] proposes two methods for multi-hop TDMA scheduling. The schedule
needs to be designed such that not only collisions are avoided, but also the number
of slots is minimized to optimize the overall latency. Multi-hop TDMA scheduling
differs from the single hop scheduling in that spatial reuse may be possible, that is,
multiple nodes may be able to transmit during the same time slot without interfering
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each other. This work first proves the NP-completeness of the depicted problem and
then proposes two centralized heuristic approaches based on conflict coloring to gen-
erate a minimal schedule. The considered network comprises a single Access Point
and several sensor nodes that periodically generate data. The network is represented
by a graph, which forms a tree structure. Since all data is destined towards the AP,
all packets are sent to the immediate parents in the tree. The interference graph,
indicating the nodes of which the transmissions would interfere with each other, is
assumed to be known. The first method is based on a classical method employed in
ad hoc networks, modified specifically for Wireless Sensor Networks. The algorithm
constitutes of two parts, the coloring of the conflict graph and the scheduling of the
links based on this coloring. As regards the coloring, any protocol, which ensures
that two nodes are assigned a different color if their combination is marked in the
conflict graph, can be employed. The work selected the heuristic vertex coloring as
preferred protocol. Vertices are colored sequentially with a selected color, taking
into account the already chosen colors in the neighborhood of the vertex. Usually
the nodes are first ordered according to a decreasing order of degree, since the high
order degree vertices pose a higher number of color constraints. The algorithm then
assigns the smallest color to the nodes such that there exists no edge in the conflict
graph between nodes with the same color. As a result of the spatial reuse of slots,
the number of slots within a frame is limited to the number of employed colors. A
mapping is therefore made between the colors and the slots within the frame. The
second method involves coloring based on the node levels within the tree topology
and is comprised of three elements. First a linear network is constructed corre-
sponding to the original network. A linear conflict graph is constructed where the
edges indicate whether the transmission of a node at a certain level interferes with
a node of a different level in the original network. Any coloring algorithm can be
employed for the constructed network conflict graph. The slots are allocated to the
nodes of different levels such that each level of the tree is capable of forwarding at
least one packet to the next level during a single frame. Like in the first approach,
the number of slots is limited to the number of colors, since nodes at different lev-
els with the same color are expected not to interfere with each other. The results
indicate the advantage of using the level-based scheduling in a network where a
larger number of packets are being transmitted at the higher levels of the topology.
However, in networks where an equal transmission flow is present in the network,
the direct scheduling of the nodes shows an improved performance. Since both ap-
proaches require information about the full network topology, possible approaches
towards a more scalable solution have been investigated. A possible improvement
could comprise the organization of the network in clusters.

Wireless Sensor Networks exhibit usually a typical communication pattern, that is,
a many-to-one traffic pattern to one or multiple sinks. The work in [53] focuses
on the funneling effect of such pattern, where nodes closer to the sink experience
an increased number of packet collisions and congestions compared to nodes far-
ther from the sink, should a contention based access method have been used. The
nodes closest to the sink, each of them within a small number of hops from the sink,
present a larger loss of packets and a thereby associated higher energy consumption
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due to retransmissions. Therefore, the work presents F-MAC, in which the nodes
closest to the sink operate in a scheduled mode, that is, TDMA, whereas the nodes
farther away operate in CSMA mode. The TDMA mode operation is triggered by
a beacon sent by the sink. Such beacon contains the superframe duration, TDMA
duration and beacon interval. A superframe is composed of a CSMA period and
a TDMA period, of which the TDMA duration can be adjusted dynamically upon
demand. All nodes operate by default in CSMA mode, unless such beacon has been
received. The sink regulates the power by which the beacon is sent and thereby
regulates the number of nodes that operate in TDMA mode. The region in which
nodes access the medium according to the TDMA schedule is called the intensity
region and the nodes residing in this region are called f-nodes. Besides the triggering
of the TDMA medium access operation, the beacons are also employed to ensure
a synchronization of the receivers, similar to Reference Broadcast Synchronization
(RBS) [54], which is discussed in more detail in the following chapter. In order to
measure the required dynamical adjustment of the size of the intensity region, each
packet is marked by the first f-node it passes, which is designated as the path head.
Each subsequent node increases the number of hops counter of the packet. The sink
maintains a table of possible paths and their associated traffic rate. During each
superframe, the sink calculates the weighted moving average of the measured traffic
rate per path and uses this information to allocate time slots per path. In order to
optimize the slot allocation, F-MAC makes use of a simple rule that enables spatial
reuse, that is, nodes that are separated by more than two hops are not assumed
to interfere with each other. The schedule is not transmitted in the beacon packet
in order to minimize the overhead. When a schedule is to be conveyed, a sched-
ule bit is marked in the beacon packet, notifying all nodes in the intensity region
about the impending schedule transmission. The schedule packet is sent with the
same transmission power as the beacon message such that the entire intensity region
should be capable of receiving the schedule. The schedule itself contains the path
identification, by means of the path head, and the number of slots assigned to the
path. Since all nodes maintain a list of paths they belong to, each node is capable
of determining its assigned time slot. Since the wireless medium is considered lossy,
F-MAC incorporates mini-schedules, which are regularly transmitted by the f-nodes
to announce the used schedule to inform other nodes. Some optimizations are taken
into account to improve either the robustness or power efficiency. To safe-guard the
robustness of the protocol carrier sensing is performed at each packet transmission,
even though the TDMA slots are scheduled. In order to improve the power effi-
ciency of the carrier sensing, Low Power Listening (LPL) is employed, such as in
B-MAC. The nodes operating in contention based access mode are required to use
long preambles. However, the nodes operating in TDMA access mode can afford
smaller preambles, thanks to their scheduled spectrum access.

Despite the specific requirements and resource constraints of WSNs, some protocols,
such as HyMAC [55], are designed to provide a high throughput and bounded latency
across multiple hops. Thanks to a TDMA schedule, the protocol is able to reduce
the waste of energy to a minimum thanks to the predictable sleep interval and
implicit collision prevention. The required synchronization of nodes is assumed to
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be attended by one of the established synchronization protocols. The TDMA cycle
consists of a fixed number of slots, where each slot is designed such that it provides
sufficient time for the nodes to transmit the maximum packet size. A predefined
number of slots are dedicated for scheduled transmissions, while the remainder of
the slots can be shared between the nodes by employing a contention based access
mode. In order to limit the overhead of the contention based access mode, Low
Power Listening (LPL) is used. The contention slots are used both by nodes joining
the network and for publishing the neighbor list that nodes have constructed. The
sink is able to collect all transmitted neighbor lists thanks to the forwarding of such
information towards the sink by each node. By means of the derived global view of
the network topology, the sink is able to compose a TDMA schedule for the entire
network. The construction method is a heuristic algorithm, since the construction of
a minimum delay schedule can be reduced to the NP-complete distance-two graph
coloring problem. The derived tree is traversed in a Breadth First Search (BFS)
manner, where each node of a single level is assigned a default slot, which increases
with the level. Possible interferences between one-hop and two-hop neighbors on the
same level are verified. If two siblings are assigned the same slot, one of the siblings
is assigned a different slot. If the interfering nodes are no siblings, one of the nodes
is assigned a different frequency, such that the nodes are still able to send the data
concurrently, only at different frequencies. When all nodes are assigned both a slot
and frequency, the slot assignment is reversed, such that the slot number of children
is lower than the slot assigned to their parent. Each node in the network is notified
of the schedule by the sink.

Since WSNs can contain a considerable number of nodes, often a protocol is re-
quired which attempts to minimize at the same time the data gathering time and
the energy consumption. The work in [47] considers such protocol where the goal
is to minimize the time required to perform the data gathering in a fair manner of
all sensors in a single round. By employing a scheduled medium access method, the
energy efficiency is maximized since the sensors are placed in a sleep state when
they are not assumed to be active. The specific use case for which the protocol is
developed makes certain assumptions, such as the network topology being a tree,
all nodes being synchronized, all nodes report periodically to the sink, etc. It is
noted that the nodes forward the measured data in their raw form, that is, not
aggregated, which is claimed to be justified in environments where the correlation
between the different types of data measurements is low and unpredictable. The
work comprises both a theoretical analysis on the most optimal scheduling method,
such that the time required to reach the sink is minimized, and a practical protocol
design. In the theoretical analysis is both the homogeneous, that is, every node
is assumed to have an equal amount of data to send, and heterogeneous case con-
sidered. The analysis focuses first on the subtree data gathering, where different
topologies are considered, such as a linear ’tree’, a binary tree and a more complex
tree structure. By the information gained from the more trivial tree constructions,
an algorithm is designed to schedule the data within the more complex tree, which
can be observed as a collection of more basic subtrees. Since a node is constrained
to be either transmitting or receiving, the transmission and reception functionality
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of nodes is alternated within each level of the respective subtrees, resulting in a
wavelike pattern. Since the sink of the tree is not constrained by the simultane-
ous transmission and reception constraint, the algorithm to gather the data of the
whole tree is constructed such that data is gathered alternately from the largest
subtree and one of the other subtrees, which are scheduled according to their size
in a decreasing order, until the largest subtree has been depleted. It is claimed
that the order in which the subtrees are sorted does not matter, except that in the
descending order a reduction of the maximum buffer size may be achieved. The
data collection from any remaining subtrees is scheduled continuously, one after the
other, until all data is collected. In the case of a heterogeneous data transfer, the
required number of data slots is represented by means of a fractional number based
on the number of transmitted bits and the slot size. The size of the subtree is rede-
fined as the number of required data units, while the algorithm remains the same.
The second part of the work consists of incorporating the obtained algorithm for
the minimum reporting interval in a protocol design. The protocol consists of two
phases, a tree construction algorithm and a slot assignment algorithm. During the
tree construction phase, each node selects its parent base on the relative distance
between the nodes, such that the neighbor with the minimum depth is considered
as its parent. Such method is considered to guarantee a minimum-hop path from
each sensor to the sink. Moreover, such minimum-depth can reduce the interfer-
ence between neighboring communications. The tree construction is initiated by
the sink, which sends a message containing its level, source ID and parent ID. The
nodes receiving this message either accept or reject the sender as their parent, based
on its level in the tree and signal strength of the received message. Upon selecting
a parent, the node broadcasts its own message containing its level, source ID and
parent ID. The parents are notified of the parent selection by the overhearing of the
broadcasted messages of their children. In order to notify the parent that a node has
switched parents, the message includes a previous parent ID field, indicating that
the parent should remove the child from its children list if the field matches its own
ID. When a node does not receive a message from any potential children within a
certain time, the node assumes it is a leaf node and initiates a tree size notification,
that is, it sends a message to its parent indicating its tree size. The parent updates
its own tree size each time it receives such update from one of its children. As soon
as all children have sent their respective tree size, the node sends its own tree size
notification to its own parent, until the complete tree size is propagated to the sink
node. The slot assignment algorithm alternately schedules the data transmissions
on the longest path in the first and second slot. The remaining paths are scheduled
in a reverse manner and the start of the slots is shifted in time in order to allow
transmissions from the subtree. The decision on whether the node is considered as
being a member of the largest subtree is based on a message transmitted by each
parent, providing a list of its children ordered according to their subtree size. As
such, each node is able to determine its own duty cycle based on its tree size.
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3.2.3 Cluster based slot assignment

Cluster based slot assignment is a means to avoid as much interference as possible
and maximize the slot reuse. By segregating the entire network in smaller network
entities, called clusters, often a more simple slot assignment algorithm can be used,
without requiring knowledge of the entire network. However, the slot allocation for
all cluster members is typically determined by each respective cluster head. This
section merely mentions the subject of clusters, since they might provide an added
value towards the protocol described in Chapter 5, but since the protocol does not
make use of them, the subject is limited to the description of only a few clustering
protocols.

The organization of the network in clusters is claimed to provide an improved en-
ergy efficiency [56], which is demonstrated in the discussed protocol, Low-Energy
Adaptive Clustering Hierarchy (LEACH). It is noted that the protocol assumes a
homogeneous network, that is, all sensor consume their energy equally fast and have
an equal amount of energy to their disposition. In order to distribute the energy
load evenly among the available sensors, the protocol ensures a local decision system
for determining the cluster head, while providing a randomized rotation of the clus-
ter head functionality. Since the cluster head needs to transmit the assembled data
over a long distance to the sink, the data is aggregated and compressed to reduce
the energy consumption of such transmission. Since the cluster head functionality
needs to be rotated regularly, LEACH operates in rounds. Each round starts with
a setup phase, where the cluster heads are determined in a distributed manner. For
each type of network, there is an optimal number of cluster heads, such that not too
many nodes need to transmit directly to the sink, while still providing a sufficient
coverage of the network. This optimal number of nodes is called the desired per-
centage of cluster heads, P . Based on this number and the current round, each node
decides internally whether or not to become the next cluster head. A node that has
been a cluster head during the last 1/P rounds is not eligible to become a cluster
head again. As the number of rounds increases, the probability to become a cluster
increases for each node that did not yet assume this functionality during the last
1/P rounds. When all nodes have assumed the role of cluster head, all nodes are
again eligible to become cluster head. Each node that assumes the role of cluster
head announces itself by broadcasting a cluster head advertisement message. The
broadcasting is done by means of a CSMA type of channel access. The non-cluster
heads are required to listen for the advertisements during the setup phase. Based
on the received signal strength each node determines its cluster head and informs
its cluster head of the new member of the cluster. After having obtained all clus-
ter members, the cluster head decides on a TDMA schedule for all members and
broadcasts it to its members. After the setup phase has been completed, the data
dissemination phase starts, where each node follows the assigned TDMA schedule
and transmits data by means of a minimal amount of energy, based on the received
signal strength of the advertisement. Since interference between clusters can hap-
pen, the work proposes the additional use of CDMA codes. That is, each cluster
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head selects a spreading code randomly and informs its members of the selected code
during the setup phase. All members are required to transmit using this code, while
the cluster head filters the received energy by means of the selected spreading code.
When all data from the sensors has been received by the cluster head, it performs
signal processing functions to compress the data into a single signal, which is then
transferred to the sink.

Instead of using a statistical method to select the cluster heads in the network, the
work in [57] makes us of the residual energy of the nodes. During the setup phase the
base station broadcasts a ’Hello’ message across the entire network, thereby allowing
each node to determine its approximate distance to the base station, based on the
received signal strength. During the cluster head selection phase, nodes decide with
a probability T to become candidates for cluster heads and broadcast a cluster head
challenge message to all cluster head candidates within a certain range. Any cluster
head candidate which receives such message from a node with more residual energy,
forfeits the competition. As a result, only the candidates with the highest residual
energy can become cluster heads. After the cluster head election, all cluster heads
send advertisements across the entire network to allow plain nodes to select their
cluster head. Based on the signal strength of the received advertisement and the
distance of the cluster head towards the base station, nodes make a selection to
which cluster head is the most appropriate for them. Since cluster heads located
farther from the BS will consume more power to forward all data to the BS, such
clusters should accommodate fewer cluster members.

Whereas the previous works consider a homogeneous network, where all nodes have
an equal amount of energy, the work in [58] proposes the inclusion of a fixed number
of high power cluster head nodes. The entire geographical area is divided into
hexagonal cells. On the intersection of the vertices with two other cells a high power
cluster head is placed. The regular sensor nodes are deployed in a random manner
within this hexagonal area. The membership towards a certain cluster is determined
in a similar manner as in the previously discussed protocol, that is, by means of the
received signal strength. However, instead of directly communicating to the sink,
the cluster heads communicate in a multi-hop manner with the sink. Since this
communication might cause interference with the intra-cell communication, that is,
the data forwarding of each sensor to the cluster head, FDMA is used. Each cluster
head is assigned a different frequency, such that no interference is caused within
its two-hop neighborhood. The cluster members share this frequency assignment.
In order to prevent collisions between the cluster members, a TDMA schedule is
proposed. The schedule consists of only four time slots that need to be shared
between one fourth of all cluster members. The allocation of the sensors to one of
the slots is based on the two least significant bits of their ID. The cluster head iterates
over the list of members that share the specific slot and polls each of them one at
a time whether one of them has data to send. As such, a considerable reduction in
energy consumption can be achieved.
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3.2.4 Position based slot assignment

Slot assignment based on the relative or absolute position of the nodes is usually a
specific approach of distributed slot assignment. The nodes decide on the slots they
are using based on local information, which is in this case its position towards either
other nodes or the sink. For certain use cases, a disadvantage could be that all
nodes should be aware of their position or should maintain a list of locations. This
section provides two examples of MAC protocols where such methods are employed.
A more in depth discussion regarding this type of protocols is out of the scope of
this work.

The work in [59] proposes a TDMA MAC protocol, GMAC, where the schedule is
determined locally, based on the geographic location of its neighboring nodes. The
position information is assumed to be known or can be obtained by means of GPS or
any other equivalent method. It is noted that GMAC does not require an accurate
positioning method, it simply requires the positioning information to be consistent
in the two-hop neighborhood of the nodes. The TDMA frame, called a super-cycle,
has a specified duration tsc. Each super-cycle is divided into c cycles of length
tc =

tsc
c

, where a single cycle represents a fictive rotation of 360 °of a node. A node
therefore makes c rotations during a super-cycle. Since all nodes are assumed to be
synchronized, each node can start its rotation at the same time in the same direction
with the same speed. In order to control the nodes that can be communicated with
and the direction of the communication, a cycle is divided into s time slots, each of
duration ts =

tc
s
. The fixed slot durations ensure a deterministic delay. By relating

the fictive rotation of a node to the duration of a cycle, a link has been made between
the relative position of a node and time. As time progresses, the angle, relative to
the transmitter, increases. A node positioned on this angle can accept packets from
the transmitter during that specific time slot. During a time slot only a single packet
is transmitted, that is, the slot only allows communication in a single direction. The
acknowledgement therefore needs to be sent in the slot where the receiver’s angle
is aligned to the transmitter of the packet. The synchronization is maintained by
each packet transmission. Each packet is timestamped in the MAC, eliminating any
possible latency from higher layers. Likewise, the arrival time of the packet is stored
in the MAC, such that variable delays of the upper layers do not have any effect.
When the packet is earlier than expected, the receiver’s clock is updated to the
sender. In the reverse case, the sender is updated by including the time difference in
the acknowledgement, allowing the sender to update its clock according to that of
the receiver. In order to ensure a consistent location information, a specific periodic
super-cycle is defined where all nodes broadcast a beacon containing its own position.
Any free slot can be used within the super-cycle to broadcast the information. As a
result of all nodes broadcasting their position information, nodes are able to create
a list representing the position information of nodes in their neighborhood. The
following super-cycle is used for the broadcasting of such list, ensuring a consistent
two-hop neighborhood information. In dense network conditions, multiple nodes
might be assigned to a single slot. To remedy the situation, the deployment area
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is divided into cells of equal size. From each individual cell a node is allowed a
communication opportunity during a unique cycle within the super-cycle, that is,
each cell during its own cycle. Since nodes might have a different data rate, GMAC
includes the possibility of slot stealing. Access to the slots is arranged by means
of priorities. The priority is determined based on the distance between the most
recently assigned slot to node n and the specific slot it is trying to steal. As a result,
the owner of the slot has the highest priority. A neighboring slot can be stolen if
the node does not detect any transmissions during a specified SIFS time.

The work in [60] proposes a MAC protocol, DGRAM, which takes into account
the energy efficiency of the WSN and ensures a deterministic packet delay. The
protocol makes use of the location information of the nodes, ensuring a TDMA
based access based on the radial distance to the sink and the angular distance of
the nodes from the sink with respect to the geographical North axis passing through
the sink. It is claimed that most TDMA MAC protocols consider a centralized slot
allocation, resulting in a scheme which is difficult to scale and requires a considerable
amount of control overhead. DGRAM on the other hand, ensures a distributed slot
allocation method, reducing the number of control messages. The reduction in
energy consumption is established by the deterministic sleep pattern of the nodes,
which is enforced by the TDMA scheme. In order to enforce the timeliness of the
time slots, the protocol does not commit extra resources to time synchronization,
since it is assumed that all nodes are synchronized by means of an out-of-band
synchronization method. A specific requirement is placed on the position of the
nodes, which are assumed to be deployed with uniform density around the sink,
which is positioned at the center of the network. Each node is assumed to have
obtained its own relative position to the sink by means of any of the established
location information gathering methods. Since the nodes closer to the sink need to
be able to cope with the data transmission of multiple nodes, data aggregation is
assumed, where the data from the node itself and its lower positioned nodes can be
aggregated in a single packet. The channel access time is broken down into super-
frames, each of which consists of sub-frames. Likewise, the WSN is subdivided in
tiers, based on the radial distance from the sink. Each tier is represented by a
sub-frame. Since the reuse of slots is encouraged, thereby limiting the end-to-end
delay, every N tiers, the same sub-frame is used. Each sub-frame is subdivided into
a number of blocks, based on the angular position. Each block is assigned a sub-sub-
frame, which in itself consists of a number of slots. Each node is assigned a single slot
during the operation of DGRAM. Interference between neighboring blocks is deemed
possible, therefore, an alternating slot allocation approach is used,that is, slot reuse
is possible for nodes that are positioned two blocks apart. Based on the position
of the node, each node is capable of determining its own tier and block. Nodes
within a block make use of an ordered list containing the location information of
the other nodes belonging to the same block to determine their respective slot. The
exchange of this location information is done once during the setup of the network.
A node broadcasts its location information in combination with a Time-To-Live
(TTL) field. considering the TTL field has a non-negative value, the receiver of
such packet forwards the information after having decremented the TTL field. The
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TTL value is selected such that every node within the block is able to receive the
location information. Any node not belonging to the same block is considered to
discard the received information. Note that the size of a tier depends on the node
density. Therefore, the super-frame length depends on the size of a tier. Since some
tiers can send concurrently, that is, the same sub-frame is used to service nodes from
different tiers, the maximum tier size needs to be taken into account to determine
the size of the super-frame. Based on the distributed algorithm to determine the
tiers and blocks, any node is able to determine the sub-frame and slot in which it is
allowed to transmit. Since any node is able to deduce the transmit time, the receiving
nodes of the higher tiers are able to determine the possible receive slots, where it
might receive a packet from one of the nodes that are positioned in its neighborhood
on a lower tier. Thanks to the hierarchical transmission and reception, no routing
protocol is required, the packet is automatically forwarded towards the sink.

3.3 Latency efficiency through Wakeup patterns

Whereas the previous sections targeted protocols and their channel access method
to avoid energy waste, this section describes protocols that consider the throughput
and latency of the network. Interesting is that all discussed methods are designed
as a solution to the long latencies introduced by duty cycling, such as in S-MAC.
In order to counteract the negative effect on the latency, the transmissions and
receptions of the packets are scheduled in a specific manner, such that a path is
created through which a packet can be immediately forwarded over multiple hops.

The work in [61] proposes a MAC protocol, DMAC, which considers not only the
energy efficiency of the network, but also the throughput and the latency of data
transmissions. The work discloses several disadvantages to existing synchronous
duty cycle approaches. A well known issue is the introduction of a long latency, also
known as the sleep latency. Moreover, a fixed duty cycle provides no adaptation to
traffic variations. The cycle needs to be selected to factor in the highest possible
traffic flow, resulting in a significant energy waste during low traffic conditions.
As a result of the synchronous character, the transmission of all nodes starts at
the same, thereby increasing the probability of collisions. Protocols which adopt
a dynamic duty cycle, such as T-MAC, exhibit the data forwarding interruption
problem. That is, since overhearing is used to determine whether the medium is
still actively used to determine the duration of the active period, the forwarding
of data is interrupted. The nodes that are located several hops further are not
aware of the channel conditions that usher a node to remain active. Their active
period duration is determined based on local conditions. DMAC defines a staggered
active/sleep schedule to eliminate all previously mentioned issues. The network
is assumed to be synchronized by one of the established synchronization protocols
(see Section 4.4). The sensor nodes are assumed to be more or less static and are
organized according to a tree, where all data is directed towards the sink. The time
allotted for transmitting and receiving a packet is sufficient for a single packet to
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be transfered over the medium. Each node is following the same cycle of receiving,
transmitting and sleeping, only with a different offset compared to the frame start
of the sink. As such, the transmit slot of the child node overlaps with the receive
slot of the parent, allowing the traversal of a data packet directly towards the sink.
Since nodes on the path wake up sequentially to forward the packet to the sink, the
sleep latency is eliminated. In order to avoid collisions, the transmission of packets
is preceded by a variable backoff time accompanied by carrier sensing. The general
scheme is designed with the idea that a single packet is being transmitted. To cope
with multiple packets that are available in the transmit queue, the duty cycle needs
to be increased. The node therefore flags the more-data bit in the MAC header,
indicating the request for an additional active period. Since multiple children might
require to transmit data to the same parent, while only a single receive slot is
available, DMAC proposes ’data prediction’ to ensure a timely data transfer. The
parent anticipates that some of its children did not have the opportunity to send data
and therefore employs an extra receive slot. The slot has a fixed offset relative to
the last transmission, allowing the children to deduce the transmission opportunity.

A different method to achieve the same goals, that is, maximizing the throughput
and energy efficiency while minimizing the latency, is proposed in [62]. The Routing
enhanced MAC protocol (RMAC) employs cross-layer routing information such that
the transfer of a data packet over multiple hops is made possible in a single oper-
ational cycle. The operation of the protocol is organized in frames, which consist
of a sync, data and sleep period. The sync period is employed to provide frame
synchronization between the nodes. The work does not elaborate on the specific
methodology, except that it may be one of the existing synchronization methods
such as [45][54]. The data period is employed to request access to the medium, not
unlike the purpose of the RTS/CTS message exchange in IEEE Std 802.11. RMAC
employs PION packets instead of RTS and CTS messages and employs only a single
packet for both the request and confirmation. A node needs to send a PION packet
to its next hop towards the final destination. The next hop information is assumed
to be provided by the routing layer. Upon reception of such PION packet, it makes
a reservation for the reception of the data packet and construct a new PION packet
containing amongst others the next hop address and the previous hop address. The
transmission of such PION packet should be received both by the previous hop and
next hop node. As such, a chain of reservations is made until either the destination
address or the end of the data period is reached. The data transmission will start
during the sleep period. Note that not all nodes in the transmission path need to
be awake at the same time, since the packet might need to traverse a number of
hops first. The nodes maintain their sleep state until the time has arrived to receive
and possibly immediately transmit the packet. Afterwards the node enters its sleep
state again. In order to prevent collisions, the reception of PION packets triggers
the updating of the Network Allocation Vector (NAV). Since the PION requests
for future transmission, not a single NAV duration is modified, instead three NAV
segments are stored. The segments consider the actual PION transmission, the data
transmission and the acknowledgement of the data.
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The introduction of duty cycles is deemed to be a most efficient approach against
idle listening. However, the latency induced by the duty cycle forms a cumulative
latency in multi-hop networks. To counter the long latencies, RMAC includes a
method to transfer a packet over multiple hops during a single cycle [62]. However,
by establishing such method, RMAC also introduces an extra time segment of idle
listening. During the data period, resource allocations are requested, such that
transmission and receive slots are made available during the sleep period. Since all
nodes need to listen during the data period, this incurs a small period of idle listening
when no data is available. The MAC protocol proposed in [63], LO-MAC, proposes
an improvement of RMAC by introducing a small period of time before the data
period, that is, the carrier sensing period. During this period of time, nodes that
have data to transmit emit a busy tone, whereas potential receivers try to detect
whether the medium is idle. If the medium is considered idle, all nodes are allowed
to enter sleep mode, thereby reducing the idle listening which was introduced by the
data period. If the medium is considered busy, the nodes stay awake to complete
the data phase as defined in RMAC. The eventual data transmission is also based
on RMAC, where the data is transmitted during the scheduled slots. However,
while RMAC defines an explicit ACK arrangement, LO-MAC employs an implicit
ACK arrangement, where an energy detection is performed of the first symbol of the
forwarded packet to determine whether the packet has been received successfully.
The final node is required to transmit an explicit ACK in order to notify its sender.

Unlike the previous works, the work in [64] is not designed to improve the through-
put. The protocol focuses on the end-to-end latency and the energy efficiency. The
general belief is that sensor networks are used to detect rare events that require im-
mediate attention. The popular approach of introducing a duty cycle for reducing
the energy, thereby allowing the nodes to periodically enter a sleep state, results
also in a higher latency. It is claimed that, although research has been performed
for new wakeup methods, these methods are considered impractical. Therefore, new
efficient scheduled wakeup schemes should be investigated that can be considered
cost-effective, while at the same time guaranteeing the delay and energy efficiency.
The work assumes the presence of a time synchronization protocol ensuring a con-
sistent notion of time between the nodes. Each node in the network is represented
by a node in a graph, where the edges identify the possibilities to communicate. An
initial connectivity graph is constructed during the network initialization by the base
station, which can be adjusted by occasional updates. It is assumed that such con-
nectivity graph remains fixed. Each node is assigned a level, indicating its minimum
number of hops to the sink, by means of a Breadth First Search of the connectivity
graph. The work performs an analysis on the energy efficiency and latency be-
tween possible wakeup schemes, such as ’Fully Synchronized Pattern’, ’Shifted Even

and Odd Pattern’, ’Ladder Pattern’, ’Two-Ladders Pattern’ and ’Crossed Ladders

Pattern’. The work proposes a novel class of wakeup methods, called multi-parent
scheme, which can be used in combination with any of the previously mentioned
wakeup schemes. The idea is to allow a node to have multiple parents, each of
which belongs to a distinct group. Each group is scheduled to operate during a
different frame, which is defined as a single wakeup period. The number of groups g
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determines the number of frames that constitute a cycle. By increasing the number
of parents, either the parents need to wake up less frequently, or the wakeup pattern
is increased by g, resulting in a lower latency while preserving the consumed energy.
An important part of the protocol is therefore the parent selection, which is defined
as a graph coloring problem and can be assumed to be NP-complete. Therefore, a
heuristic algorithm, which operates on the connectivity graph, is proposed to solve
the parent selection problem. Initially, each node is assigned a layer, which is equal
to its level in the graph. The following steps of the parent selection algorithm are
focused on discerning nodes that are closer to the sink and share a connectivity edge
with the child node. With each step an attempt is made to find a better solution
and when no solution can be found at all, the initial layer assignment is increased,
that is, the child node is placed farther from the sink. In such manner more nodes
are eligible to act as the parent of the child node.

3.4 Interval data gathering

A special type of environment where communication with the sink is not always
possible, requires a different type of MAC protocol. These cases are typical for
certain monitoring environments, where data needs to be stored for a long time
until the sink comes into view. It is noted that since the time available to forward
data to the sink might be limited, energy consumption is taken into account to a
lesser degree. The factor which is considered to be most important is the fast data
forwarding.

Environments where the mobile sensor nodes occasionally are within the range of the
sink pose specific requirements. The protocol proposed in [65] is specifically designed
for such environment. Mobile sensors are considered to sense the environment and
store all measurement data in nonvolatile memory. Once the sensor comes within
range of the sink, it will try to forward all its data as fast as possible. Since the
time required to upload the data to the sink is relatively short compared to the
data measurement time, energy efficiency is not considered. Two channel access
periods are defined within a cycle, a contention period and a transmission period.
Both periods are designated by a beacon transmission from the sink, indicating the
start and end of the period. Following the contention period start message, nodes
contend for the medium by sending RTS messages. Nodes that manage a successful
RTS transmission are registered at the sink as members of the transmission group.
The sink determines suitable members based on the received signal strength. The
transmission period start message includes the schedule of the accepted members.
Note that the transmission period is composed of a fixed number of time slots.
When more slots are available than the number of nodes, a single node is assigned
multiple slots. A Block Ack mechanism is included in the beacon message of the sink
announcing the end of the transmission period. Due to the suboptimal performance
of the protocol in a sparse environment, a variation is proposed, where only a single
node is granted access during the transmission period. As a result, the number of
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contention period advertisements can be significantly reduced. The node that was
granted access uploads all its data to the sink before a new contention period is
announced.

The work in [66] targets the optimization of the energy efficiency, data buffering and
data throughput, while operating in a network environment where transmissions are
only periodically possible. Due to such environment, the network is forced to operate
in two modes. During the data gathering period, nodes accumulate data and store
it into equally sized data packets. The packets are transmitted towards the sink in
the data forwarding phase. The routing tree, which determines the next hop nodes
toward the sink, is periodically generated by the sink. The proposed protocol is
TDMA based, which allows for a precise control of the transceiver, thereby reducing
the idle listening. The tree construction process therefore includes a synchroniza-
tion activity and the assignment of a unique time slot to each of the n nodes. The
sequence of these n slot is called a round. Note that spatial reuse of the slots is not
supported. It is claimed that whereas spatial reuse allows a faster collection of the
data, the protocol becomes more complex, requires more information and control
packet exchanges, and consumes therefore more energy, while the number of trans-
missions remains the same. When all nodes are assigned only a single slot, each of
the parent nodes that have two or more children experience a buffer expansion since
the node can send just a single packet at each round while it receives from multiple
children. Moreover, nodes that have forwarded all the stored data have no more
data to send, while they are still assigned an entire time slot. Such unused slots
reduce the effective bandwidth usage of the network. Both issues are considered
in the proposed protocol, the buffer usage can be restricted by means of additional
information contained in the acknowledgement packet, while the throughput effi-
ciency can be improved by assigning unused slots to the parents. By including slot
information in each data packet and a flag whether this is the last packet a node
will send, the parent is up to date regarding the slot usage of its child and is able to
use some of the free slots of the child. Every second slot that is forwarded by the
child is used by the parent. The remaining slots are forwarded to the parent of the
parent in order to ensure a more equal distribution of the slots and data forwarding.

3.5 Wireless Sensor Network deployments

While the discussed protocols show interesting research results, this section shows
that real-life deployments are not about having a fancy network structure. The
main goal is to provide a stable network operation, which allows an autonomous
operation, that is, without intervention, for as long as possible. The work in [67]
also made a similar observation, where it is said that WSN deployments are often
small scale, single hop, static and have a predefined network topology. A study
of the available literature showed that the proposed protocols in the literature are
often too complex to be used in real life. Moreover, most of the works are not
implemented in one of the known operating systems, such as TinyOS or Contiki,
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making it hard to derive an implementation from the often high level description.
This shows that there is a discrepancy between the objectives and assumptions of
how a sensor network should behave or look in most MAC protocol designs, when
compared to real-life deployments. For example, many papers state that a sensor
network is a dense network, which should be capable to operate autonomously,
without any fixed topology. In the examples shown below, there is often a sparse
network, where the topology of the sensor nodes is optimized in favor of the stable
operation of the network.

Habitat monitoring of the usage pattern of nesting burrows is the goal of the deployed
WSN in [68][69]. The target is to investigate the alteration between the breeding
and feeding role of the Leach’s Storm Petrel during a 72 hour cycle. On top of
that, the environmental conditions of the burrow during the seven month lasting
breeding season is investigated. In the deployment, all sensors form a multi-hop
network, based on a tree structure, in which they forward their data to a single
gateway. The leaf nodes start sending their data to their parents, after which the
following level is activated to send its data to the next level until all data is collected
by the gateway.

A Wireless Sensor Network deployment where the habitat monitoring also targeted
the monitoring of burrows and seabirds is described in [70]. The targeted birds are
Manx Shearwaters, which are being followed by miniature GPS logging devices. The
downside of this method is the manual burrow inspection every 20 to 30 minutes
to recapture the tracked birds. Thanks to the WSN deployment, researchers have
an almost immediate access to arrival or departure information. Moreover, besides
the requested information, environmental data regarding temperature and humidity
inside and outside of the burrows is captured, providing a better understanding of
the ecosystem. The network consists of a small number of sensor nodes placed next
to the monitored burrows, a solar powered base station and a mainland server. The
sensors are configured in a star topology with the base station acting as sink. The
base station ensures synchronization between the sensors and controls the TDMA
schedule the sensors should operate in. Once a day all data is forwarded from the
base station to the mainland server. The arrival or departure of the birds was
detected by two Passive Infrared (PIR) sensors, which activated the RFID reader
for five seconds in order to conserve energy, since the RFID reader consumes a lot of
power. Both the transmission software and the setup of the sensors needed regularly
some adjustments due to external factors, such as light conditions influencing the
sensors and juvenile birds. The research also indicated the requirement of a modular
system which could easily be replaced or updated, since working in harsh whether
circumstances or under the light of a flashlight during the night makes detailed
inspection of the system difficult, such as recognizing the color code of the wires.

The work in [71] describes the deployment of a Wireless Sensor Network to collect
data for geophysical studies, that is, the study of active volcanoes. Both seismic
and infrasonic information is gathered by the network. Typical data collection tools
require a car battery as power source and are difficult to move. A sensor network
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would therefore present a significant improvement. Since the relevant information
is situated before and after an event, such as an eruption, earthquakes or tremor
activity, the sensor nodes continuously gather sensor information and store the data
in a circular buffer. The recently collected data is investigated at each individual
node to detect an event. When an event is detected, the node sends a trigger
message to the base station. If a sufficient number of nodes reported the event, the
base station instructs all nodes to forward the gathered sensor data in a round robin
fashion. The communication methods are based on methods available in TinyOS,
while the synchronization protocol could be easily integrated in the code base. The
synchronization is required to be able to correlate the individual measurements. The
experiment resulted in a data retrieval during 61% of the time. Due to the remote
location, it was impossible to power the logging laptop 24 hours a day. Moreover,
due to a software component failure, all nodes needed a manual reprogramming on
site, which resulted in an outage of three days.

3.6 Conclusion

This chapter provided background information on Wireless Sensor networks by elab-
orating on the most notorious MAC protocols and their improvements within a lim-
ited application area. The application domain for WSNs, and therefore also the
research performed in the context of WSNs, is widely varying. The popularity for
this type of network is a result of the low cost and small form factor of the devices,
and their added value when organized in a network.

Most sensor devices are destined to operate on batteries in remote areas where the
replacement of batteries is difficult, impractical or discouraged. Therefore, the pri-
mary concern of most MAC protocols designed for WSNs is the conservation of
energy, where an attempt is made to reduce the waste of energy to a minimum.
Sources of energy waste are considered to include overhearing, idle listening, col-
lisions and control packet overhead, of which idle listening is assumed to be the
major source of energy waste. The resolution is different for each MAC protocol,
some make use of a duty cycle, thereby allowing nodes to enter a low power state pe-
riodically. Others employ a method called Low Power Listening, where the medium
is sensed for only a short time to determine whether the node should start listening.
Most protocols that employ these techniques are contention based protocols. A dif-
ferent class of MAC protocols are the scheduled access protocols, where the access
to the medium is meticulously controlled, such that the elimination of idle listening
is achieved implicitly.

The different TDMA based MAC protocols for WSNs differentiate especially in their
slot allocation approaches, such as a distributed or centralized slot assignment, an
assignment based on geographical location, cluster based allocation, etc. A consid-
erable number of works consider the 2-hop distance coloring method as a means to
determine a slot allocation where no collisions occur in the two-hop neighborhood of
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the transmitter. Several works also attempt to find an optimal slot assignment such
that a maximal throughput is achieved in an interference free slot allocation. Since
this problem is found to be NP-complete, several heuristics are proposed to find one
of the possible solutions. Some works consider the priority of packets, such as for
example in emergency situations. Other works allow the coexistence of a scheduled
medium access and a contention based access in order to improve the performance
or stability of the network. Note that most slot allocation methods assume a node
suffices with a single slot. Such assumption may lead to a bandwidth deficiency,
since the relay nodes need to send both their own data as the data received from
other nodes. Moreover, this type of allocation does not take into account a possible
difference in the traffic demands of the nodes. Only a few works really consider a
heterogeneous network in which sensors might have different traffic demands.

Some special MAC protocols, which can be either contention or scheduled based,
focus on the forwarding of data over several hops per cycle. Another set of specific
MAC protocols is focused on networks where data needs to be sampled and stored for
a certain time since no path towards the sink is available. As soon as a path towards
the sink is found, the data is uploaded as fast as possible. For such protocols, the
energy consumption is of minor importance when compared to the throughput.

In a last section a number of sensor deployments are discussed, from which it is clear
that simple topologies are used with a limited number of hops, often predefined at
deployment time. Most of the encountered issues involved unanticipated practical
concerns, such as animals disturbing the measurement setup, software errors, etc.
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CHAPTER 4

Time synchronization in Wireless Sensor Networks

4.1 Introduction

This chapter discusses the theory and practice of time synchronization in Wireless
Sensor Networks (WSNs). It is an often used method in Wireless Sensor Networks
and is in many cases even required. The contribution of this work can be found
starting from Section 4.5, where an analysis is done of the time critical hardware
elements, related protocols are compared using this hardware information in the next
Section and a novel synchronizaton method is proposed in Section 4.7. A significant
number of works consider a scheduled transmission and reception pattern, that is,
TDMA, which usually requires at least a coarse synchronization. Besides the need
for frame and slot synchronization, a sensor network might also have the need to
correlate the sensor data from different nodes, such as in [71]. In such cases, all
nodes in the network should use the same time reference. Note that synchronization
does not imply the linking of the global time of a network to an external standard
of time. However, if it is required, it can be achieved by connecting the sink to
an external time server, such as a GPS device. The objective of the discussed
synchronization methods in this chapter is to enable a scheduled transmission and
reception. Synchronization to introduce a global timescale to correlate measurement
timestamps is not the targeted application, although implicitly this is also made
possible.

The tracking of time is realized by incrementing a counter at a periodic rate. As
previously mentioned, the rate at which this happens does not need to be equal to
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the periodicity of an external time reference. Such counter, also called a timer, is
usually initialized to zero at startup. In other words, each sensor begins incrementing
its time counter, starting from zero, as soon as it has been activated, i.e., when it is
switched to the ’on’ state. As a result, if not all devices have been activated exactly at
the same time, they will have a different time counter value, which is the reason that
synchronization is required to make sure all nodes have equal counter values. This
initial synchronization can be obtained by using one of the existing synchronization
mechanisms that are discussed in Section 4.4. Any type of synchronization is usually
based on the exchange of information, either by sending explicit information, such
as timestamps, or by means of indirect information, such as the reception time of
a packet. Unfortunately, such initial synchronization does not ensure that nodes
stay synchronized indefinitely. The clocks of the devices, which determine the rate
at which the timers are incremented, are designed to have a very high precision.
However, two clocks will not have exactly the same frequency. Due to the inequality
in the rate at which these timers are updated, the sensors are required to perform
a synchronization operation on a periodic base.

The phenomenon of diverging timer values is called clock drift. The measure of clock
drift can be expressed by two different metrics, the clock skew, that is, the difference
in frequency of the two clocks, and the clock offset, that is, the instantaneous clock
difference. The sensor node clocks exhibit a certain offset relative to the other clocks
from the start due to the different startup times, i.e., they experience a clock offset.
On the other hand, the clock skew is a result of the deviating clock rates of the sensor
nodes. In order to understand the dynamics of this phenomenon and counteract its
impact by means of an efficient algorithm, sufficient knowledge about its origin is
required.

Clock drift is a physical effect that manifests itself due to a gap between the the-
oretical and realistic operation of hardware. The production process of hardware
is precise, but is not able to produce perfect components. All hardware is said to
operate within certain tolerances. In order to determine the components that could
influence the clock drift of sensor nodes, this paragraph enumerates the different
hardware components a sensor node is composed of. A typical sensor node consists
of different components, usually an MCU (microcontroller), a wireless transceiver,
either integrated into the MCU or as an external unit, an antenna system, a power
supply regulator and sensors. Both the MCU and the transceiver require at least a
single periodic signal as input in order to operate, some components even provide
the option of having several clock inputs. The clock signal is used to derive an
internal master clock signal, which operates at a stable frequency and determines
the operational speed of the component, that is, the rate at which instructions are
executed is derived from this clock. A microcontroller contains several peripheral
components that require a clock signal to control their operation. Examples of
such components comprise USART, SPI and I2C amongst others. Since not every
peripheral operates at the same frequency, the master clock is often used to de-
rive several clock signals, amongst which a peripheral clock that can be downscaled
through prescalers for each peripheral component. The timers, which use one of
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the internally defined clock signals as reference input, are implemented as counters
that increment their counter value at every rising or falling edge of the clock source,
which usually depends on the configuration of the MCU. By means of configuring a
preset value to which the timer value should be compared with, the system is able
to generate interrupts at specific time instants. As such, one of the available timers
can be used as a time reference for the sensor node. A mismatch between the timer
values of different nodes, even when they had the same value at the start, can be
attributed to the clock drift.

The precision of the clock signal is affected by for example variations in temperature
of the MCU, however, the major part that attributes to this phenomenon can be
traced back to the periodic signal which is used as input for the MCU. That signal is
usually generated by an external crystal, external oscillator or can even be generated
internally in the MCU, which is called an internal clock oscillator. The latter is
usually based on an RC oscillator, providing a low cost solution where no extra
external components are required. The downside of this type of oscillator is its usual
low precision, even though its frequency is likely to be tunable. The resistor (R)
value can be digitally tuned while the capacitor (C) value stays constant. The reason
for this is discussed in more detail later in this chapter, but basically, constructing
a resistor in silicon requires less space than a capacitor and is therefore cheaper.

In order to understand the dynamics of the imprecision of the clock source, both
the quartz crystal and the RC oscillator is investigated. Note that there exists
many variations to the RC oscillator, some of which are described in chapter 15 of
[72]. However, to go into detail to the specifics of the operation of all these RC
oscillators, would be out of the scope of this chapter. Moreover, the physics behind
the deviation of the frequency is similar for all types of RC oscillators, that is, the
precision of the resistor and the capacitor.

Both the external crystal and external oscillator can be expected to be operating
with a precision of 40 ppm (parts per million). High precision, and therefore also
more expensive components, achieve an even better precision. However, since a sen-
sor node is expected to be cheap it is unlikely to find such high precision components
in a sensor node. The internal oscillator is dependent on the typical precision of both
the R and C components, which is around 1% for high precision configurations. Very
high precision resistors can be expected to have a precision of around 0.1%. The
following paragraphs first discuss the operation and environmental influences of the
quartz crystal, after which one of the RC oscillators is discussed.

A quartz crystal oscillator is comprised of a very thin piece of quartz with two par-
allel metalized surfaces for the electrical contacts [73]. Thanks to the piezo-electric
effect the quartz crystal changes shape when a voltage source is applied. A mechan-
ical force is produced by applying an electrical charge. Likewise, an electrical charge
is generated when a mechanical force is applied. This effect produces mechanical
vibrations, that is, oscillations at a certain frequency, determined by the size and
thickness of the quartz. Although a quartz crystal is considered to be very sta-
ble, it exhibits deviations from its proclaimed frequency due to several factors [74].
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No quartz crystal oscillator is perfect, there can be impurities in crystal growth,
imprecisions in the cut process or uneven thickness. This is called the frequency
tolerance and is expressed in a deviation of parts per million (ppm). Typical values
range from 5 to 100 ppm, where 20 to 30 ppm is an often used value. Note that
even a frequency deviation of just 10 ppm would cause a clock error of about one
second per day. The crystal tolerance is usually specified at a reference temperature
of 25 Ă[75]. Lower and higher temperatures influence the frequency deviation as
depicted in Figure 4.1. Therefore, the emitted heat by the MCU or the environment
in which the sensor is placed could result in a larger deviation from the specified
frequency.
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Figure 4.1: Typical Crystal Frequency deviation due to temperature. (Ref: Adapted from

the datasheet of a 32.768kHz crystal from EuroQuartz[75].)

A third factor that influences the actual frequency of crystals is aging, to which
crystals are subjected due to their electromechanical character. There exists no
simple prediction model that could dictate the aging of a crystal, although it is
known that crystals age the most during the first hours of operation. Very frequency
sensitive applications are therefore equipped with aged crystals, which exhibit a
lower aging rating in ppm/year.

A commonly employed oscillator that works with crystals is the Pierce oscillator,
which is depicted on the left side of Figure 4.3. Such oscillator is also used in the
MSP430 devices and requires two external capacitors as load for the crystal [76].
The capacitors used for these purposes are often NP0 capacitor types, also known
as temperature compensating capacitors. They are class 1 ceramic capacitors and
are known for their stability regarding to temperature (30 ppm/Ă). They also have
the lowest volumetric efficiency among ceramic capacitors and are therefore only
available in very low capacitance values, in the range of 0.1pF till 10nF, with a
tolerance between 1% and 10%. Note that the PCB (Printed Circuit Board) layout,
the width of the traces, number of through holes, etc. also introduce some parasitic
capacitance, which needs to be taken into account. It appears that despite the
interesting tolerance qualities of a crystal, the resulting oscillating frequency might
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be having a larger frequency deviation due to the higher tolerances of the capacitors,
not to mention the parasitic capacitances, which can introduce an additional 2 to
3 pF. However, thanks to the properties of a crystal and the design of the Pierce
oscillator, the influence of both the load capacitors and the parasitic capacitances
are reduced.

R1
C1

L1

C0

Figure 4.2: Equivalent electrical circuit of a crystal. (Ref: Adapted from Texas Instruments

Application Report SLAA322B, revised April 2009, [76], Figure 2, page 2.)

An important piece of information is embedded in the electrical equivalent circuit
of a crystal, which is depicted in Figure 4.2. It shows that the behavior of a crystal
can be modeled as the motional capacitance C1 in series with an inductance and
a series resistance. In parallel to those components, is the shunt capacitance C1.
Based on this information, the sensitivity towards any deviations of the capacitance
value in the Pierce oscillator circuit can be calculated [77]. In order to make the
calculations easier, first the load capacitance, which is defined as the amount of
capacitance measured across the crystal terminals on the PCB, is calculated by
means of Equation 4.1. Cin is the input capacitance of the inverter and Cout is the
output capacitance of the inverter gate. The pcb strays are represented by Cstray .

CL =
(Cin + C1)(C2 + Cout)

Cin + C1 + C2 + Cout

+ Cstray (4.1)

The sensitivity of the frequency towards the changes in the load capacitance can
therefore be calculated by means of the Trim Sensitivity equation:

S =
C1

2(C0 + CL)2
× 10−6(ppm/pF ) (4.2)

In this equation, C1 is the motional capacitance of the crystal, C0 is the shunt
capacitance of a crystal and CL is the load capacitance. It is clear that the impact
of the load capacitance is diminished by the entire circuitry and therefore does
not nullify the excellent properties of the crystal. However, at design time, the
characteristics of all elements should be taken into account in order to attain a
certain frequency precision.

While crystal oscillators are mainly influenced by the precision of the crystal which
is the key component ensuring an oscillation, RC oscillators are characterized by
the use of a combination of a resistor (R) and a capacitor (C) to ensure appropriate
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Figure 4.3: Pierce oscillator (left) and RC oscillator (right). (Ref: Adapted from web tuto-

rial on Quartz Crystal Oscillators, http:// www.electronics-tutorials.ws/oscillator/crystal.html ,

[73].)

oscillation. While many types of RC oscillation circuits are available, only the Wien
Bridge Oscillator circuit is discussed which is a commonly known circuit. The Wien
Bridge oscillator, depicted at the right in Figure 4.3, is known for its good stability
at its resonant frequency, low distortion and is very easy to tune. It makes use of
a series RC circuit, acting as a high pass filter, connected to a parallel RC circuit,
which acts as a low pass filer. Such circuitry results in a band pass filter with a
high Q factor at the selected frequency. Moreover, the RC circuits ensure a phase
shift, except at the resonance frequency. Therefore, a positive feedback will occur
only at the resonance frequency, which is one of the requirements for oscillation.
The resonance frequency is determined by the R and C values and is independent
of R1 or R2, which determine the voltage gain of the amplifier. The frequency can
be expressed as:

fr =
1

2ΠRC
(4.3)

The precision of the RC oscillator is therefore highly dependent on the precision
of the resistor and capacitor values. Like the crystal, the precision of the resistor
can also be classified by its tolerance and temperature coefficient. Typical high
precision tolerance values are 0.1% (that is 1000 ppm), while deviations towards
temperature tend to be around 400 ppm/Ă. The deviation towards the proclaimed
value of capacitors can even be as poor as 10% [78], however, by calibrating either
R or C, a precise frequency can be generated. Due to physical constraints and the
manufacturing process, the most cost effective method is to trim the R value, since it
is much smaller than a capacitor. In order to digitally control the R value, a resistor
array can be made available, where a series of resistors have NMOS switches parallel
to each resistor, which allows each resistor to be shorted, thereby reducing the total
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resistance.

To summarize, the clock drift experienced on sensor nodes is caused by the im-
precision of the production process, for both crystals as RC oscillators. However,
aging and environmental circumstances, such as change in temperature, can cause
fluctuations in the imprecision of the clock drift. It should be noted that designs
that consider operation without the aid of a high precision crystal, that is, solely
relying on the internal RC clock generator, are far less precise and therefore require
a more frequent synchronization message exchange.

In the next section an overview is provided of the theoretical background of time
synchronization, which is employed in practice in Section 4.3 for a general distributed
network. The related work which is specific for time synchronization in a WSN is
presented in Section 4.4, where the synchronization protocols are classified according
to the transmit or receive role of the participating nodes. Some of the hardware
architectures that can be used in WSNs are discussed in Section 4.5, while the
oscillator inaccuracies and the effect of the hardware architecture is discussed in
Section 4.6. Based on the observations of the previous section, a new algorithm is
proposed in the next section, which is evaluated on different types of hardware in
Section 4.8. Concluding remarks close this chapter.

categorized according to the communication method and flow o fthe messages

4.2 Principles and Concepts of Time Synchroniza-

tion

Since the clocks are imperfect, they exhibit a deviation from their desired frequency,
which is called clock drift. In order to define the problem, Kopetz [14][44] suggests
the existence of a perfect reference clock with infinite granularity and defines the
rate at which a clock oscillates and generates events, to be a microtick. Figure 4.4
depicts a perfect clock (the solid blue line) and the area which contains possible
values of the imperfect realistic clock when both reference clock and realistic clock
were synchronized at the start. The drift of a clock between microtick i and microtick
i+1 is modeled as the duration of a granule of clock k, measured with the reference
clock z and dividing it by the nominal number nk of reference clock microticks in a
granule as depicted in Equation 4.4.

driftki =
z(microtickki+1)− z(microtickki )

nk
(4.4)

The drift rate ρ can be defined as: ρ =
∣

∣driftki − 1
∣

∣. A perfect clock has a drift rate
of 0.
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Figure 4.4: Time drift of a clock. (Ref: Adapted from "Real-Time Systems, 2nd edition", H.

Kopetz, Springer, 2011 [44], Figure 3.1, page 55.)

Another frequently used notation is cited in [79], where it is claimed that if there
exists some constant ρ, such that for a clock value C Equation 4.5 holds, the clock
is assumed to be working according to its specifications. The constant ρ is known
to be the maximum drift rate.

1− ρ ≤ dC

dt
≤ 1 + ρ (4.5)

The maximum clock offset between clocks can then be formulated as 2ρ∆t. There-
fore, in order to guarantee a maximum clock offset of δ, the two clocks should need
to be synchronized every δ/2ρ seconds. Note that although the equations don’t take
the variability of the drift into account, the model is correct for sufficiently small
time intervals.

When discussing synchronization methods, the eventual goal needs to be consid-
ered. The distinction needs to be made between internal synchronization, that is,
ensuring an alignment of the clock’s microticks within the network, and external
synchronization, that is linking the time view of the network to an external time
standard [14][44]. For the latter, it is necessary that at least the gateway has access
to a timeserver, for example a connection to a GPS receiver.

The modus operandi of the synchronization method can be either centralized, or
distributed. The centralized method makes use of a central master, which period-
ically sends the value of its clock to all other nodes, the client nodes. The client
records the time of arrival of such timestamp messages. The difference between the
master’s time, contained in the synchronization message, and the recorded client’s
time-stamp of message arrival, corrected by the known latency of the message trans-
port, is a measure of the deviation of the clock of the master from the clock of the
client. The client then corrects its clock by this deviation to bring it into agreement
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with the master’s clock. The synchronization error is determined by the difference
between the fastest and slowest message transmission to the client nodes of the
ensemble, i.e., the latency jitter.

In the distributed method, every node acquires knowledge about the state of the
global time counters in all the other nodes by the exchange of messages among the
nodes. By analyzing the collected information, a correction value for the local global
time counter can be calculated. The local time counter of the node is adjusted by
the calculated correction value.

Note also the difference between state correction and rate correction. Correcting
the state of the clock ensures that the two clocks are nearly synchronized at the
time of synchronization. However, every δ/2ρ seconds, with δ being the maximum
allowed clock offset, a new synchronization needs to be performed, since the clocks
drifted apart again. Note that state correction should always correct the clock in
the future. An excellent example is given in [14], where at New Years Eve at 12:00
midnight the time was corrected a couple of seconds backwards. The next transition
to a full minute resulted therefore also in the transition to a new day and instead
of January 1, it had become January 2. Rate correction, on the other hand, tries
to correct the rate at which the clock is incrementing. By employing this method,
the skew rate could be lowered and therefore, synchronization does not need to be
performed that frequently, or when performed at the same interval, the clock offset
will not be as large.

4.3 Synchronization in Distributed Systems

In [80] several synchronization methods are discussed for distributed systems. Al-
though they are unsuitable for WSNs, they form the base of contemporary syn-
chronization protocols for WSNs. The discussed methods do not consider practical
issues, they focus solely on the methodology and discuss the error margin from
possible sources of error.

The work in [81], called Cristians algorithm, proposed an external clock synchroniza-
tion at the application software level using a probabilistic technique. The proposed
algorithm is depicted in Figure 4.5. At time T1, a node queries the state of the clock
at another node by a query-reply transaction. The message arrives at time T2 at
the receiver of the query, which replies immediately to the requester with its clock
value. At time T3, the requester obtains the requested information. The duration
of the request-reply transaction is measured by the sender. The received time value
is corrected by the synchronization message delay that is assumed to be half the
round-trip delay of the query-reply transaction (assuming that the delay distribu-
tion is the same in both directions). This methodology is straightforward, however,
its accuracy depends on the precision of the time insertion at the transmitter and
the processing time of the receiver. Only an estimate of the transmission delay is
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A

B

T1

T2

T3

Figure 4.5: Cristians algorithm, message flow and timing

taken into account to calculate the clock offset. By running multiple iterations of
the algorithm a more reliable result can be obtained by either selecting the results
with the lowest round trip time or by averaging the measurements.

The principle of Cristians algorithm is also used in [82], where a coordinator com-
puter acts as master. The other computers, which are called slaves, are regularly
requested to send their current clock value. By recording the corresponding round
trip time, the master estimates, by means of Cristians algorithm, the clock value
of all computers according to its own local clock. The fault tolerant average of all
estimated clock values is computed by removing the k largest and k smallest val-
ues from the list and calculating the average of the rest of values. The amount by
which each of the slaves needs to be adjusted is sent to them, which eliminates the
uncertainty caused when sending an absolute adjusted time.

A most notable network synchronization protocol was described in [83][84], called
NTP. The algorithm defines three modes to synchronize nodes, of which symmetric
mode ensures the most precise synchronization. The algorithm is an improvement
of Cristians algorithm, since it only takes into consideration the time required to
transfer the messages. The protocol eliminates the dependency on the time between
T2 and T3 in Figure 4.6. This protocol is later referred to as the classical two-way
message exchange method.

Every message that is sent contains timestamps of recent message events, such as
the local time when a previous NTP message was sent and received, but also the
local time when the current message was sent is included. The clock offset and
the total transmission time, called delay, can be estimated from the information
gathered by collecting a pair of messages. Assuming the actual clock offset at B
relative to A is equal to o and if the actual transmission durations at times T1 and
T3 are respectively t and t’, then Equation 4.6 is true.

T2 = T1 + t+ o and T4 = T3 + t′ − o (4.6)
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Figure 4.6: NTP, message flow and timing. (Ref: Adapted from "Distributed Systems: concepts

and design", Coulouris et al., Pearson Educated Limited, 2001 [80], Figure 10.4, page 395.)

By combining both equations, an estimation can be derived for the experienced
delay, that is the total transmission time, as in Equation 4.7 and the clock offset, as
in Equation 4.8.

di = t+ t′ = T2 − T1 + T4 − T3 (4.7)

o = oi + (t′ − t)/2, where oi = (T2 − T1 + T3 − T4)/2 (4.8)

Since t and t′ > 0, the following statement is also true: oi − di/2 ≤ o ≤ oi + di/2.
From this equation can be deduced that oi is an estimate of the offset and di is a
measure of the accuracy of this estimate. By means of multiple iterations of the
algorithm, the value oj with the lowest di is used as actual clock offset.

In networks, the transmission and reception timing of a message is influenced by
many factors, such as the scheduler, the transmission queues, concurrent message
transmissions and medium access delays. Since the precision of the synchronization
is in a great deal affected by the jitter of the time messages that contain the current
clock values, probabilistic protocols were designed to reduce the effect of the jitter.
The protocol designed in [85] is a probabilistic clock synchronization protocol for
wired networks. A single node acts as a master, while the rest of the nodes act as
slaves. The slaves are synchronized to the master clock by sending its local clock in
a series of N messages, each of which contains the local time at which the message
was sent. The receiver estimates the current time by means of the time of arrival
and an estimation on the message delay.

A somewhat different approach to ensure ordering of events in a network is proposed
in [86]. The proposed method deviates from other previously discussed methods,
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since it does not provide a method for time synchronization, but allows for causal
ordering of events. Before every event that occurs at a node, the clock is incremented
to Li := Li + 1. Each message that is transmitted carries the current logical clock
value, Li. The maximum clock value is chosen between the received clock value and
the local clock value upon reception of a message. While this type of approach may
be interesting in some cases, it is unlikely to find its application in sensor networks.

4.4 Synchronization in WSNs

Time synchronization is of major importance in WSNs for a multitude of reasons,
some among which are ordering or correlation of the recorded sensor values in or-
der to detect duplicate recordings, agreement protocols, TDMA scheduling, power
saving and object tracking. Although a considerable number of protocols have been
designed for distributed networks, they can not be employed for a Wireless Sensor
Network without modifications. WSNs need to comply to specific requirements and
by extension also their related protocols. The most referred to requirements [87]
can be described as energy efficiency, scalability, robustness and ad hoc deployment.
Since the synchronization protocol should consider the limited amount of energy,
it should try to exchange as few as possible messages. Moreover, the synchroniza-
tion should be fast and trivial, no complex algorithms or calculations should be
required. Since WSNs can become rather large, scalability should also be consid-
ered. A synchronization protocol should therefore avoid time negotiations with the
entire network, this would lead to an unmaintainable situation in a rapidly growing
environment. Since sensors could break down, the synchronization should be flexible
and either not depend on a single sensor node, or be able to reconstruct the network
functionality. Those specific requirements make existing synchronization protocols
for distributed networks unsuitable for WSNs. In [87] the argument is made that
NTP is not an appropriate protocol for WSNs due to the frequent re-adjusting of the
system clock and the lack of limits on the number of transmissions. However, the
core idea of NTP, that is the two-way message exchange is a qualified methodology
for use in WSNs.

An often used argument is that there is no predefined topology or structure in WSNs,
since sensor networks do not have an external infrastructure, or a hierarchy rooted
at a single node. Synchronization sourced from the root node, ending at the leaf
nodes would result in a large difference in sync error between root and leaf. This
statement should be reconsidered since a sensor network is in most cases composed
of sensor nodes and one or multiple sinks. Perhaps the sink is not available all the
time, but it is present, since otherwise, the sensor network is an isolated entity with
no means to transmit the gathered data. Moreover, there is no requirement for
the lowest leaf to be perfectly synchronized with the root in case the goal of the
synchronization is to enable transmission scheduling. The network is able to sustain
itself as long as there is a local agreement, ensuring there are no collisions. When
considering real life deployments, a sensor network needs to be deployed with care
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and in most cases N tier hierarchies are avoided as much as possible, since this could
result in an unfair battery usage due to the funneling effect on the traffic load. It is
better if the maintenance is able to predict when batteries should be changed and
easier when all batteries need to be changed at once.

The design of a considerable number of protocols takes into account the differen-
tiation between the sources of time synchronization errors due to the transmission
of messages, which is composed by Kopetz and Schwabl [88]. The work makes
the distinction between four different components that attribute to synchroniza-
tion errors. The first is the ’Send Time’, which is the time spent at the sender to
compose the message. Sources of variable delay could be context switches, system
calls and transfer of the message from memory to the radio. The second compo-
nent is called the ’Access Time’, which takes into consideration the time to access
the wireless medium. Clear channel assessment, RTS/CTS and backoff schemes are
prime sources of variability. The third component, ’Propagation Time’, is the time
required to transmit the message over the medium to the receiver. In the context
of a wide area network, the variability can accumulate to a large value. In WSNs,
this parameter is considered the physical propagation time, which depends on the
physical distance between nodes. The last component, ’Receive Time’, accounts
for the required processing of the received packets. By timestamping the reception
time at an as low as possible level in the communication stack, possible sources of
variability are avoided.

The synchronization protocols that are to be described in the following subsections
can be categorized according to the communication method and flow of the mes-
sages. Protocols that receive a message and synchronize against the other receivers
are considered receiver-receiver based protocols. Protocols that perform some ne-
gotiation between sender and receiver and where the receivers synchronize to the
sender are considered to be sender-receiver based protocols. The last category is
where senders transmit clock information and receivers try to estimate the clock
offset based on knowledge of the hardware, or by means of iterations.

4.4.1 Receiver-Receiver based synchronization

The protocol that is probably the most discussed time synchronization protocol
for WSNs is Reference Broadcast Synchronization (RBS) [54]. Like [85], it is a
probabilistic protocol. Instead of synchronizing the sender with the receiver, RBS
provides synchronization between receivers. A sender node broadcasts beacons at
random times. The beacons do not need to contain any specific information, since
the reception of the beacon itself is the information. All receivers record the time
of reception of such beacon and exchange this information amongst all receivers,
which enables them to make an estimation on their relative skew and offset. By
employing a least-squares linear regression on a limited set of timestamps of the
received beacons, the accuracy can even be improved. Interesting is the elimination
of sources of non-determinism, such as ’Send Time’ and ’Access Time’, according
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to the classification in [88]. The only remaining sources are the ’Propagation Time’
and ’Receive Time’of which the impact is limited since the ’Propagation Time’ is
small considering the radio wave propagation speed, and the ’Receive Time’ can be
reduced by employing a hardware triggered capturing of the current time.

A major disadvantage of RBS [54] is the lack of coordination when the network is
larger than just the broadcast region. Moreover, when the functionality of sender
node is not exchanged with other nodes, a scheduled transmission and reception
is not possible with the sender node. A rotation of the sender functionality would
alleviate this issue, however would incur a significant number of synchronization
traffic. [89] addresses both issues by proposing a protocol which is based on RBS
and the probabilistic character as in [81]. The parent node broadcasts n beacon
packets with a fixed transmission interval. The children nodes each record the time
of arrival and determine the line which fits these timestamps by means of linear
regression. Each child node sends the slope and a point of this line to the parent
node. In order to reduce collisions, a random backoff scheme is used. The parent
node then broadcasts this information to all children. Thanks to this information,
all children are able to determine their relative drift and skew to each other and
the parent node. The advantage of this approach is that the nodes can become
synchronized to their parent and furthermore, the parent node is always the center
of operations. There is no risk that the children are unable to communicate to
each other and therefore are unable to exchange timing information. In a multihop
scenario, the protocol proposes a step wise synchronization. First the nodes in
the direct neighborhood are synchronized. Afterwards, the one hop neighbors are
synchronized by the already synchronized nodes. This process continues until all
nodes are synchronized in the network.

A set of alternative approaches to use RBS in larger types of networks is proposed
in [90] and [91]. The first approach is to organize the network in clusters, of which
the cluster heads are amongst themselves synchronized. Such synchronization is
achieved by an estimation of the total round trip time through all cluster heads and
calculating the average time difference per cluster head by dividing the estimation
through their number. The nodes within the cluster are synchronized to each other
by means of RBS if all cluster members are within hearing distance of the cluster
head. The second proposed approach is to use RBS to gather time difference in-
formation of all neighbors and take the average as their own clock. Since all nodes
perform the same operation, after a number of iterations, the entire network should
become synchronized.

Note that thanks to the elimination of the dependency on ’Send Time’ and ’Access

Time’ at the sender side, the previously discussed synchronization protocols are
suited to be used with a contention based medium access scheme. Especially the
variable access time of a such medium access would gravely affect the accuracy and
reliability of any other type of synchronization protocol and are therefore unable to
use a contention based medium access.
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4.4.2 Sender-Receiver based synchronization

One of the earliest works for time synchronization in WSNs is proposed in [92]. The
protocol is designed to send the timestamp of the local clock to other devices. Since
the clocks of different devices are uncorrelated, the timestamp is first converted into
a common time transfer format, UTC. At reception, the UTC time is converted back
to the local clock time. The transformations lack some precision, however, a lower
and upper bound can be estimated by means of the clock skew, the round trip time
of a packet and the idle time that a sync packet is stored to forward again. These
estimations determine in which bounds the synchronization error will stay.

Although the work in [92] is interesting, such approach is inappropriate for accu-
rately scheduling the transmissions and receptions. Therefore, most of the works
presented in this section refer to the classical two-way message exchange, which
was proposed by [84], where the synchronization error is said to be bounded by the
message delay.

The protocol proposed in [93], [94] and [95] employs the two-way message exchange
in order to gather time information. In order to further increase the accuracy and to
compensate for the skew, linear regression is used on those data. Since the procedure
could be computing intensive, two different protocols are proposed, Tiny-Sync and
Mini-Sync, where the number of data points are reduced to only four points in the
former and a more relaxed reduction in the latter. The protocols do not change the
local clock, they keep track of the relative clock skew and clock offset to compensate
for each of the clocks.

A more deterministic protocol, called TPSN, is a time synchronization protocol
proposed in [45], which also makes use of the classical two-way message exchange
to synchronizes nodes. In the first phase a virtual tree structure of the network is
built, where each node is assigned to a level in the tree by flooding the network
with level discovery packets. The second phase is initiated by the root node by
sending a time_sync packet. The nodes from level 1 (the root is level 0) wait for a
random time and then initiate the two-way message exchange with the root node.
Since the nodes from level 2 can overhear this communication, they backoff for a
random time to make sure all nodes of level 1 are synchronized to the root node
and start their own synchronization phase with the level 1 nodes. By taking the
timestamp as low as possible in the communication stack, that is in the MAC layer,
the authors claim to minimize the uncertainty at the sender. While reducing the
uncertainty at the sender side, the protocol introduces a new uncertainty which
negatively influences the synchronization accuracy. By allowing nodes to start the
synchronization exchange after waiting for a random time, collisions could occur.
Even worse would be if the message exchange of a pair of nodes is interrupted
by a second pair of nodes, requiring the first pair to wait until the end of the
transmission of the message of the second pair. A more convenient method would
be to schedule the individual message exchanges, such that no two-way message
exchange is interrupted.
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A similar protocol, LTS, was proposed in [96], where first a low depth spanning
tree is constructed, since with each level, the synchronization error relative to the
root node increases. The root node is responsible for initiating a synchronization
phase, where a pair-wise synchronization, by means of the two-way message exchange
method, is performed along the edges of the spanning tree. The root node initiates
a new synchronization round depending on the required accuracy and the depth of
the tree.

While the former protocols provide a straightforward method to synchronize the
entire network, they unfortunately also require a considerable amount of communi-
cation. The proposed protocols in [97] and [98] try to reduce the required amount
of communication. The idea of both protocols is similar, that is, a pair of nodes
perform a time synchronization through means of a two-way message exchange,
while other nodes overhear the exchange and estimate or deduce their own offset
and skew. Both protocols rely on the property outlined in [54], where it is said that
the reception of a packet is at nearly the same time available at two nodes. The
difference is that in [97], there is no assumption regarding network topology and the
two-way message exchange is initiated by the child node and an estimation of the
skew and offset is made depending on the reception times and data embedded in the
communication packages. On the other hand, in [98] a spanning tree is created in a
similar manner as in [45] and the message exchange is initiated by the parent node
and broadcasted to its children. Only one of the children nodes responds and par-
ticipates in the message exchange. The parent is able to estimate its relative clock
offset towards the child node and broadcasts this information to all its children.
Since all children received the initial message around the same time, all children are
able to synchronize to the parent node thanks to the clock adjustment information
contained in the second broadcasted packet.

4.4.3 Receiver-Only based synchronization

A protocol which could be mistaken to be a derivative of RBS is SLTP [99]. The
network is first organized into clusters by means of passive clustering. The cluster
head broadcasts at random intervals n time sync messages, containing the local time
of the cluster head, towards its cluster members. At reception of those packets, a
timestamp of the local clock is taken by each of the members. By means of linear
regression the clock skew and offset relative to the cluster head is calculated. The
protocol keeps a list of clock skews and offsets relative to the other nodes instead of
adjusting its own clock. This protocol requires the timestamp of the cluster head to
be embedded in the broadcast packet, thereby failing to eliminate the ’Send Time’
and ’Access Time’ such as in [54].

The protocols presented in this subsection do not attempt to eliminate those sources
of uncertainty, however, they try to minimize them. Therefore, the approach taken
by the former protocol is not a matter of poor decision making when it is properly
executed, such as proposed in [100] and [101]. Both protocols make use of detailed
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knowledge about the radio hardware.

In [100] a packet containing the timestamp at transmission time of the sender is
passed to the receiver. By taking the timestamp as low as possible in the commu-
nication stack, more specifically, after the MAC delay and backoff, the uncertain
duration of the upper layer processing is eliminated from the time synchronization.
The protocol is focused on a contention based access mode, which is known for its
uncertain transmission properties.

Another protocol that takes advantage of detailed knowledge of the radio hardware is
called DMTS [101]. The protocol is designed such that multiple applications are able
to use the hardware time in ’parallel’ by checking the timer configuration at every
timer interrupt. The time synchronization is done by a master that broadcasts its
current time to other nodes. Since this timestamp is set as late as possible, the ’Send

Time’ is claimed to be eliminated. By analyzing the behavior of the radio and packet
transmissions, the packet delay can be accurately modeled. The receivers measure
time of reception by relying on a hardware interrupt which is triggered at the arrival
of the packet. The correction that is applied to the local clock of the receivers is the
timestamp of the transmitter embedded in the packet plus the experienced packet
delay.

A different approach is taken by the protocol proposed in [102], Flooding Time
Synchronization Protocol (FTSP), where the sender node transmits an estimate of
the global time to the receiver. Timestamps are taken at a level as low as possible
in the communication chain, thereby reducing the sources of error. At the reception
side, not only timestamps are taken at reception of the packet, but also at every byte
boundary in order to reduce the invariance due to the interrupt handling procedure.
It is claimed that simply sending a timestamp is not sufficient and therefore linear
regression is applied on the timestamps to be able to compensate for the clock skew.
The protocol does not build a fixed tree structure, however makes use of an ad hoc
structure in order to synchronize the entire network.

Since with every hop the synchronization error towards the root node enlarges, the
protocol in [103] is proposed to ensure an evenly distributed synchronization error.
A beacon containing a global reference timestamp is broadcast to all neighbors. At
reception is not only a timestamp of the time of arrival taken, but also of the first
six byte boundaries in order to be able to compensate for the interrupt handling
variance. Linear regression is performed on k values to compensate for the drift
relative to the root node. The goal of the protocol is to disseminate the global
reference timestamp as fast as possible through the network in order to reduce the
time between the first and last synchronization.

A more controlled methodology is proposed in [104], the Time-Diffusion synchroniza-
tion Protocol (TDP), where beacons containing a global time reference timestamp
and a deviation parameter are broadcast. The receivers acknowledge the reception
of the beacon, thereby giving the master the opportunity to calculate the round
trip time. The average of all acknowledgements and their standard deviation is
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recorded by the master. The neighbors of the master determine which of them will
act as leader, to rebroadcast the timestamp, by performing a diffused leader selec-
tion. Every diffusion leader adds half of the round trip time to the timestamp and
accumulates its round trip time deviation into the deviation which is to be sent.
All received timestamp information is eventually gathered into a table by the sen-
sors, accompanied with the accumulated deviation over the number of hops. After
a predefined time, all nodes assign a certain weight to the stored timestamps that
have been gathered in their time data tables, where the timestamps with a lower
associated deviation obtain a higher weight. A new timestamp value is calculated
by the summation of the recorded timestamps, according to their weight.

Whereas in TDP a weight is assigned to certain timestamp values to determine
its validity and thereby taking into account the values from different sensors, the
following two protocols use a consensus based protocol to collect information from
different sensors and determine a common clock value. In [105] a consensus based
time synchronization protocol is proposed, where beacon packets are broadcast at
periodic intervals. By means of a trivial linear equation the skew and offset can be
determined. Instead of directly applying the resulting skew and offset, a low pass
filter is used, which can be parametrized in order to control the balance between a
fast consensus and an error free consensus.

The protocol studied in [106] and [107] is also consensus based, however, only a
single timestamp pair is stored. The skew and offset are determined by using a
trivial linear equation and is immediately used to correct the clock. Timestamps
from other neighbors eventually ensure a global consensus is reached.

The circumstances and parameters of an underwater acoustic sensor network are
significantly different from a traditional terrestrial sensor network. Due to the ab-
sorbtion properties of water, a traditional electromagnetic field has a very limited
propagation. Therefore, acoustic telemetry if an often used underwater communi-
cation method. Unfortunately, this type of communication is subject to a lower
bandwidth, path loss, noise, multi-path propagation, Doppler spread and high and
variable propagation delay [108][109][110]. Whereas in traditional sensor networks
the propagation delay is often assumed to be negligible, it becomes an important
factor in underwater acoustic communications. Especially the propagation delay,
multi-path propagation and the high bit error rate ensure that traditional synchro-
nization protocols, such as RBS [54] can not be used in these types of networks. In
order to cope with these limitations and the specific communication environment,
a specific method was devised in [111][112]. At first the skew between the nodes is
corrected by means of sending broadcast packets containing a global time reference
timestamp. By means of linear regression on a set of beacon values do the nodes
achieve synchronization of the skew. Afterwards, they synchronize the clock offsets
by means of a two-way message exchange.
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4.5 Hardware in Wireless Sensor Networks

It is difficult to compare the performance of above mentioned protocols due to the
varying parameters and depth of detail in the descriptions. Some of them claim to
be superior in performance to others thanks to low level timestamping. However,
would the same statement be valid if both protocols would use the same type of
timestamping. Therefore, in the next sections the behavior of some protocols is
investigated in detail when they would have been implemented on the same hardware
and timestamping would occur at the exact same event. Since there tend to be
differences in hardware and therefore also in sources of delay or variation, first the
properties of three types of WSN hardware platforms are discussed.

4.5.1 Magnetic Induction Radio ASIC

The Magnetic Induction Radio ASIC (MIRA)1 is a very low power, small footprint
ASIC developed by NXP semiconductors, where a CoolFlux DSP (Digital Signal
Processor) is collocated with a magnetic induction radio component. Only part of
the functionality and possibilities of the ASIC is discussed here due to confidentiality
agreements and the extensiveness of the ASIC. A reduced block diagram of the
internals of the ASIC is depicted in Figure 4.7. The figure shows solely the relevant
components, however, a wide range of additional peripherals are available. The
program memory (PMEM) constitutes of 6 Kwords flash memory, while the X- and
Y-memories represent the available 33 KB SRAM memory. The ASIC supports
both an external clock source as well as an internal RC oscillator aided operation.
The external crystal should have a value between 24.734 MHz and 38.144 MHz.

The radio part of MIRA is composed out of the radio front-end (the physical layer)
and the low-level part of the MAC. The radio makes use of Continuous Phase Fre-
quency Shift Keying (CPFSK) modulation, supports carrier frequencies from 7 MHz
to 15 MHz and a maximum raw bandwidth of 298 Kbps can be attained. At re-
ception, the captured magnetic field will induce a voltage across the external radio
coil, which is tuned by means of an internal capacitor bank. The distance that can
be covered depends on the transmission output power and the type of coil used as
antenna, but ranges in the order of meters have been demonstrated.

The low-level part of the MAC, which is provided by the radio part of the ASIC,
is inherently TDMA based. The radio comprises a 16 bit counter running at the
TX bit clock frequency, which is called the superframe counter. A superframe de-
fines the cycle period of the TDMA algorithm. By means of giving orders, which
are in the form of writing register values, certain actions can be programmed at
given instants of the superframe counter. The orders specify the type of action, the
associated parameters and the time of activation. The type of action can consist
of a receive or transmit command amongst others. The associated parameters can

1For more information contact by email nxh.info@nxp.com
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Figure 4.7: Simplified block diagram of Magnetic Induction Radio IC(Ref: Adapted from

Coolflux Transceiver Radio Specification datasheet, 2007 [113], Figure 1.)

for example specify the DMA channel, and the time of activation is expressed as
a value of the superframe counter. Since the superframe counter is running at the
same clock rate as the bit transmission mechanism, the time of activation can easily
be translated into the number of bits. The slots of the TDMA frame are determined
by the scheduled orders. The evaluation of the orders is done when the value of the
superframe counter equals the activation time of the order. Asynchronous orders are
evaluated as soon as they are scheduled. Upon evaluation of a transmission order,
the TX PLL and TX front-end become active, after which the actual packet is trans-
mitted. Before transmitting the payload, a preamble and sync word is transmitted
first, which are generated by the hardware. During the transmission of the preamble
reaches the power on the antenna its maximum at the transmission side, while the
receiver is able to detect the received signal level, perform gain control and adjust
its bit sampling clock. Likewise, the RX PLL and Rx front-end become active upon
evaluation of a reception order, after which the receiver performs adjustments to
fine tune to the transmitter, thanks to the transmitted preamble. The following
series of bits that is received consists of the frame-sync, which is compared to the
expected frame-sync and the synchronization threshold. When a valid frame-sync
is received, a snapshot of the superframe counter is taken and stored into a register
for later use. After the reception of the sync word, the payload is received.

Neither the reception nor the transmission make use of buffering, the data is trans-
ferred directly to and from memory by means of DMA. Thanks to the DMA transfer,
the DSP can unhindered continue operating and thanks to the prefetching of the first
DMA word while the transmission front-end is being activated, the radio does not
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suffer from unpredictable data transfer times. Since the DSP is specifically designed
to support audio algorithms, the word size of the memory is 24 bits.

The Radio part of the ASIC supports a considerable functionality, flexibility and
configuration options, both low level as well as higher level frame management func-
tions, that are not discussed here. Although this flexibility is extremely valuable, it
is out of the scope of our research area.
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Figure 4.8: MIRA Transmission and Reception timing

Taking all functionality and timings into consideration of the MIRA, a timing di-
agram can be composed , such as Figure 4.8, which shows the possible sources of
delay and more importantly, the possible variations on those delays. The timings
are based on the transmission of 4 bytes data and an additional two bytes for the
CRC. Note that the point of interest is with the different sources of variable dura-
tion, which also explains why the diagram does not show absolute time references,
but relative time durations between the different events.

The time ’Ts ’ indicates the required time to activate the radio, which includes
amongst others starting the corresponding PLLs and activating the radio front-end.
The Radio starts transmitting the preamble, indicated by ’Pr ’ in the figure, after
which it sends the sync word. As soon as the sync word is sent, the data can be
transmitted. Note that the first DMA word has already been fetched while the
radio was sending the preamble. Therefore, there is no delay on the data fetching
and therefore also no variation, all data is available to be sent. All transmission
timings are strictly defined by the register values, configured in the Radio and are
configured on a per bit basis. Therefore, if there are variations on the execution of
the transmission steps, they can be considered minimal.

The receiver does not have the luxury of knowing its timing as precise as the trans-
mitter. After the activation of the radio, it needs to fine tune to the signals it
receives and try to catch the sync word. There is a possible variation of several
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bits on the detection of the sync word, which signifies that a maximum deviation of
∼12 µs is possible.

4.5.2 TelosB sensor node

The TelosB sensor node platform is a popular platform in the Wireless Sensor Net-
work research community. Unlike the Magnetic Induction Radio ASIC, is the control
part and the radio part placed in two different ICs, without direct memory access,
which requires them to communicate over an SPI bus.

CC2420 radio chip
MSP430F1611

SOMI
UCLK

SIMO

SCLK

SI
SO

CSnCS

SFD
FIFO
FIFOP
CCA

SFD
FIFO
FIFOP
CCA

32.768kHz 16MHz

Figure 4.9: Simplified block diagram of TelosB sensor platform. (Ref: Adapted from

MSP430x1xx Family User’s Guide, 2005 [114], Figure 4.1, page 115.)

Figure 4.9 depicts the two major components and their interactions of a TelosB
sensor node, where the MSP430 component is the microcontroller (MCU) and the
CC2420 component is the radio chip. A crystal of 32.786 kHz provides a clock signal
for the MCU, while a 16 MHz crystal provides the clock signal for the radio chip.
The bus that is employed to transfer data between the two components is an SPI bus,
which has the possibility to operate in a full-duplex bidirectional manner. Besides
the SPI bus, there are also individual connections that can signal an interrupt,
announce the state of a component or activate the component. The program that
is loaded into the TelosB is executed on the MCU, which sends commands towards
the radio chip to send data over the wireless medium. Upon reception of a packet,
the radio chip signals an interrupt to the MCU, which takes the appropriate actions
to transfer the received packet from the radio chip to its own RAM. In order to
understand the interactions between the two components and detect possible sources
of variability with regard to timing, it is imperative to understand the components
individually. This discussion will elaborate on the two components and specifically
on the relevant parts that could influence the timing of sending and/or receiving.
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The MCU, MSP430F1611

The MSP430 [115][114] is a 16 bit RISC processor with a plethora of peripherals
and a flexible clock system. The MCU is designed for ultra low power applications
since it provides several low-power modes, where depending on the mode, a number
of components are shut down. The clock system is a most critical component with
regard to timing, which is the reason Figure 4.10 depicts the clock system in more
detail. The figure shows a restricted view of the clock system, depicting only the
configuration used in a specific implementation. The chip can operate with two
external crystals, XT1, which is usually a low frequency crystal which can be con-
trolled by the low power internal oscilator circuit, and XT2, usually a high frequency
crystal. The design of the TelosB mote did not include a second crystal for XT2,
which explains the lack of XT2 on the diagram. Besides the crystals the MSP430
also contains an internal Digitally Controlled Oscillator (DCO) which can act as a
clock source.
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Figure 4.10: Simplified clock diagram of MSP430F1611

Three system clocks can be discerned in the figure, the master clock (MCLK), the
sub-main clock (SMCLK) and the auxiliary clock (ACLK). The MCLK is used by
the CPU and determines the length of CPU cycles. The SMCLK is used as an input
for peripherals that require some sort of timing information. Due to the lack of
XT2, this clock can only be sourced from the internal DCO clock. Each peripheral
can determine a custom divider for itself to create the required clock speed. The
ACLK can be used as a source for timers or just as a reference. The ACLK is a
very stable clock signal, since it is derived from the external crystal. However, the
resolution of this clock is rather low, 32.786 kHz, i.e. a period of 30.5 µs. This is
low in comparison with the transmission rate of the radio, which is 256 Kbps, that

85



Chapter 4. Time synchronization in Wireless Sensor Networks

is a period of 3.90625 µs per bit or a period of 31.25 µs per byte.

The specific setup discussed here selects the master clock from the DCO clock, which
operates at its maximum speed, 4096 kHz. The SMCLK is also derived from the
DCO clock, however, while the master clock uses no prescaler, the SMCLK uses a
prescaler of 1/4, that is, the SMCLK is 1024 kHz. Of all peripherals, only the SPI
bus influences one of the sources of synchronization error due to the transmission of
messages [88]. The ’Send Time’ is influenced since the SPI bus, which operates at
a maximum clock speed of half the SMCLK speed, is used to transfer packets from
the MCU to the radio IC.

Like the Magnetic Induction Radio ASIC, the MSP430 provides DMA functionality.
However, the MSP430 is required to shut down or at least reduce the CPU activity to
20% when allowing the DMA to transfer a block of data. As a consequence, incoming
system interrupts remain pending and are processed only after the completion of the
DMA transfer. Therefore, it is considered cautious not to use the DMA subsystem
when interrupts are to be expected or the CPU is expected to perform some other
tasks in parallel.

A last peripheral of the MSP430 that is discussed here, is the timer. The MSP430F1611
contains two timers, TimerA and TimerB. Those timers have an extensive arsenal
of functionality, however, basically they are counters that increase their count every
time a clock tick is given. The timer can be programmed to signal an interrupt at
a specified time. Possible clock sources are the SMCLK and the ACLK. While the
SMCLK is running at a higher speed and can therefore produce a higher resolution,
the ACLK is more stable. It depends on the requirements of the application which
of the clock sources is preferred. In the discussed setup, TimerB is sourced from the
ACLK for its stability.

The radio component, CC2420

The CC2420 radio operates on its own crystal of 16 MHz and is able to transmit
at 256 Kbps, that is, one byte every 31.25 µs. The radio makes use of a buffered
transmit and receive mechanism, in both directions a 128 byte FIFO is available,
sufficient for a single packet of maximum size. The associated MCU needs to send
the to be transmitted data over the SPI bus towards a specific register, from where
the radio chipset places the data at the correct place in the TX FIFO. Reading from
the RX FIFO is similar, the MCU reads from a single register address over the SPI
bus and each time the radio chip increments the read pointer internally. Specific
commands, such as sending the transmit command, placing the radio in receive
mode etc. can be achieved through the means of a single byte SPI transmission
to a specific address. Upon receiving the command for transmitting the data, the
radio activates the required PLLs and defines a fixed duration of 12 symbols, that
is ∼192 µs, to start up the radio clocks. When the front-end of the radio is fully
active, it first sends a preamble, which is of configurable length, usually 4 bytes,
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and a byte which allows the receiver to identify the start of a packet, the SFD byte.
Upon transmitting or receiving the SFD byte, the line at the SFD pin changes its
level, allowing the MCU to capture the edge transition as an interrupt trigger. This
can be used to capture the current time of the timer located in the MCU.

TelosB timing

When combining the characteristics of both the MCU and the radio chip, the result
is depicted in Figure 4.11, where the timing characteristics of a transmission and
reception are shown.
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Figure 4.11: TelosB Transmission and Reception timing

Note that in this setup the timing parameters are taken as discussed in the previous
sections and the SPI data transmission is performed entirely before sending the
’start transmission’ command to the radio chip. The timing diagram is based upon
a transmission of eight bytes. When the SPI data transfer from the MCU to the
radio chip has finished, an interrupt is generated in the MCU, which takes time to
be served. Unfortunately, this time is variable and care should be taken to ensure
timely interrupt handling. The moment the SFD is transmitted or received, a signal
is generated at the transmitter or receiver respectively, allowing both nodes to record
the actual time. According to the specifications of the CC2420 chip, the time lag
between the two signals could deviate up to 2 µs. As soon as the receiver captured
the complete packet that was sent, an interrupt is generated, which also poses some
variability. The interrupt routine should trigger the function which will transfer the
received data from the radio chip to the memory of the MCU, where the contents
can be processed.

One of the major differences between the MIRA and TelosB platforms is that MIRA
tranfers all data word per word during the reception directly to the right position
in memory, where it can be directly accessed by the DSP, whereas the TelosB nodes
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need to first transfer the entire packet from the radio to the MCU, before any
processing can take place. Moreover, the transmission of the MIRA is likewise
arranged such that the radio can directly access the memory without interfering the
DSP which can process the recently arrived packet. The TelosB node should first
transfer the received packet from the radio chip to the memory of the MSP430, then
transfer the to be transmitted packet to the radio chip, after which it can send the
transmit command to the radio chip and finally can start processing the received
packet. Note that the performance of the TelosB data transfer can be boosted by
first loading a few bytes in the radio chip, then sending the send command to the
radio and while the radio is starting its transmission, the remainder of the bytes are
loaded in the radio chip.

4.5.3 CC2538

While there are up to date no sensor node platforms available with the next gen-
eration IEEE Std 802.15.4 compliant devices, such as the CC2538 chip[116][117],
they provide interesting properties. Therefore, the differences of the CC2538 with
the TelosB platform is shortly highlighted in this section, even though no timing
analysis is performed with this hardware. The most innovative feature of the chip
is that it provides a single chip solution, where the MCU is integrated with the
radio chip into a single package. The advantage is that SPI transfers are no longer
required, this can be achieved by means of memory transfers. However, a lot of ad-
ditional adjustments are performed in order to optimize the performance. The CPU
is more efficient and runs at higher clock speeds, while preserving the low power
consumption. The radio section contains its own dedicated timer, which is running
1000 times faster than the transmission speed of a single byte. Upon reception or
transmission of the SFD, a snapshot of this timer register is taken and stored into a
dedicated register, available for later use. The DMA controller does not shut down
the CPU like on the TelosB nodes and can be used to transfer bytes from memory
to the TX or RX FIFO of the radio, thereby reducing this action to a hardware
triggered action, where no interaction is required. Such changes in the architecture
ensure a more efficient and more accurate operation.

4.6 Hardware related performance

This section discusses the influence of a possible implementation of the discussed pro-
tocols on a realistic hardware platform. From all protocols, three different method-
ologies can be distinguished, a receiver to receiver synchronization, a two way mes-
sages exchange synchronization and a receiver only synchronization. Figure 4.12
depicts a message exchange which comprises all types of communication with re-
gard to the timing specifications of the hardware of the TelosB sensor platform.
The figure shows a transmission of eight bytes and assumes the maximum SPI bus
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speed, that is, 512 Kbps.

The figure depicts all timings that were discussed in Section 4.5.2, where node A
initiates the transmission at time T1, at which point the timestamp is taken and
placed in the data. The timestamp mechanism is ambiguously defined in the related
work. It is mentioned to take a timestamp in the MAC layer, as low as possible.
Therefore, in this analysis, the timestamp is captured right before transmitting the
packet contents to the TX FIFO of the radio over the SPI bus. The data transfer
over the SPI bus from the MCU towards the radio chip is indicated in the figure as
’SPI ’ and the following interrupt is indicated as ’Int ’.
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Figure 4.12: 2-way message exchange on hardware

The interrupt handler triggers the start of the radio transmission directly by sending
a strobe command to the radio chip over the SPI bus, or schedules a routine which
performs this action. Upon receiving this command, the radio chip activates the
related PLLs, upon which the radio chip FSM waits for 192 µs, which is marked as
a thick dashed red line in the figure. When the PLLs are active, the radio starts
the transmission of the preamble and sync byte, which is called the ’Start of Frame

Delimiter ’ (SFD). According to the specifications of the radio chip, there might be
a time difference of 2 µs between the trigger of the SFD pin at transmission and
reception side, which is also shown in the figure, however this time interval is far
smaller than all other timings, such that it is hard to discern. Note that this time
interval also comprises the propagation delay and delays from other sources, such as
demodulation. Radio waves propagate at 3×108m/s in open air, which is equivalent
to 30 meters per 100 ns, which is far less than the 2 µs the radio experiences when
sampling the SFD pins.

At the reception side, the most convenient location for taking a timestamp is at the
reception of the ’Start of Frame Delimiter ’, SFD, which causes a rising edge on the
SFD signal pin. When configuring the MSP430 appropriately, this signal can gener-
ate an interrupt, while capturing the current time. The trigger of the SFD reception
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allows both receivers B and C to take timestamp T2 and T2’ respectively. After
the reception of the data is completed, an interrupt is triggered, which introduces
the transfer of the data from the RX FIFO to the MCU over the SPI bus. Upon
completion of the SPI transfer, an interrupt needs to be handled, after which the
processing of the data can be initiated. The transmission from node B to node A
follows a similar pattern and therefore needs no further explanation.

The diagram shows that CSMA is not considered, since this would increase the
uncertainty at the sender side. Some protocols take the variable access time into
account by capturing the timestamp after the CCA routine has confirmed a free
medium, however, this could lead to more complicated and time critical algorithms.
Only receiver-to-receiver based synchronization algorithms would not experience any
disadvantages. Possible improvements can be made to shorten the total transmission
time by sending the transmission command even while not all data is yet loaded
into the TX FIFO. While this shortens the total time, this does not eliminate the
uncertainty intervals of the process.

The next subsections discuss the figure and respective timings for each type of
synchronization methodology, that were discussed previously.

4.6.1 Receiver-to-receiver

Thanks to the elimination of the ’Send Time’ and ’Access Time’, the analysis of this
type of protocol is rather straightforward. Based on the assumption the timestamp
T2 and T2’ is captured at the arrival of the SFD, it is known there is a worst case
deviation of 2 µs between the two timestamps. This would imply that if all nodes
exchange their timestamp, all nodes could become synchronized within those 2 µs
and even less. The unfavorable characteristics of this type of synchronization are
the tremendous number of messages that need to be exchanged and the lack of
synchronization to the sender. This type of protocol works on a localized scale and
becomes computation intensive on the scale of a complete sensor network.

4.6.2 Two-way message exchange

When taking into account the timings of Figure 4.12 and assuming Φ is the imme-
diate time offset between node A and B, then the times T2 and T4 can be defined
by the following statements:

T 2 = T 1 + tSPI + tintr + tpreamble + tSFD + tSFDdiff + t+ Φ

and

T 4 = T 3 + tSPI + tintr + tpreamble + tSFD + tSFDdiff + t′ − Φ

(4.9)
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The variables can be defined as: tSPI is the required to transfer the data from the
MCU to the radio chi over the SPI bus, tintr is the time required to capture and
handle the interrupts, both from the SPI done interrupt signal as the SFD capture
interrupt signal, tpreamble and tSFD are the times required to transmit the preamble
and SFD bytes respectively, tSFDdiff is the possible time difference between the
transmission of the SFD and the recognition of the signal, which is defined by the
datasheet. Note that the definition of the latter in this formula does not include
the transmission propagation, which is defined as t and t′. Based on the former
statements, the offset of node A relative to node B can be formulated as follows:

Φ =
(T 2− T 1) + (T 3− T 4)

2
+

∆SPI +∆intr +∆TX +∆SFDdiff + t− t′

2
(4.10)

Unlike in the formulation of NTP [83][84], the deduction of the experienced delay by
means of solely the timestamps is not that straightforward. The delay is dependent
not only on the timestamps T1 till T4, but also on the interrupt handling times, the
SPI transferal time, the transmit time of the preamble and SFD, the deviation
between the transmission and reception of the SFD and the difference between
the propagation times. Therefore, when employing a similar reasoning as NTP,
the uncertainty factor, which is based on the RTT is not only dependent on the
propagation delay, but also the duration of the SPI transfer, the interrupt handling
duration and the duration of transmitting the preamble and SFD.

On each of those elements a deviation can be detected. Both ∆SPI and ∆TX are
bound by their respective clocks and their relative frequency difference, which is in
the order of 40 ppm for the radio and a somewhat lesser accuracy for the SPI clock
source. However on such short time frame (156.25 µs SPI transfer and 343.75 µs
preamble and SFD transmission), this deviation can be deemed to be negligible.
Based on a clock with 40 ppm tolerance, the deviation of the radio transmission
would be ∼27.5 ns, whereas the deviation of the SPI transfer, when assuming a
tolerance of the resistor array of 1000 ppm, would be around ∼312.5 ns. In case
the precision of the resistor array, and therefore the DCO clock, is assumed to be
10000 ppm, the deviation between SPI transfers could rise up to 3.125 µs. The
major contributor to possible deviations is the interrupt handling time. When not
correctly handled, the interrupt might be kept pending by other processes that have
disabled interrupt processing for a short time.

A possible improvement could be achieved by capturing the timestamp T1 when the
SFD pin signals the transmission of the SFD byte. When allocating some dummy
bytes right after the SFD and length byte, there is sufficient time to transfer the 16
bit timestamp over the SPI bus to the TX FIFO before the radio starts transmitting
these bytes. In this case, according to the specifications of the CC2420 radio, the
difference between the two timestamps is maximally 2 µs, and therefore provides
an excellent time reference. Moreover, this eliminates the deviations in SPI transfer
speed and radio transmission speed. There is still an interrupt handling uncertainty,
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however, with careful planning of the system, such as reserving the interrupt system
to serve only interrupts from the SFD pin at that specific moment, while preventing
the disabling of interrupts, this could be reduced to an absolute minimum. The
resulting offset equation would be formulated as follows:

Φ =
(T 2− T 1) + (T 3− T 4) + ∆intr +∆SFDdiff + t− t′

2
(4.11)

4.6.3 Receiver-only

The receiver-only protocols that were discussed are based upon knowledge of the
hardware. The timestamp is taken as late as possible, at moment T1, to ensure a
minimal variance of in-between actions. The receiver is expected to derive the time
delay between the capturing of the timestamp and the reception of the information
by means of knowledge of the operation of the hardware. Based upon the information
that time T2 is separated from the transmission of the SFD at most 2 µs, solely the
delay between the transmission of the SFD and the capturing of T1 should be
determined. Unfortunately, the SPI transfer and the interrupt handling determine
the in-between variance and it is already determined in previous section that those
two factors could influence the uncertainty a great deal. Nonetheless, this scheme
is workable, certainly if the to be synchronized clock has a granularity of around
30.5 µs, as the external crystal of the MSP430 at the TelosB sensor node. Usually
this crystal is taken as a time reference for its stability.

4.7 Slot based synchronization

This section describes a novel synchronization method, which reduces the required
number of message exchanges to a bare minimum, while at the same time reducing
as much as possible sources that could lead to a higher variance. The proposed
methodology is based on the Receiver-Only methodology, however, instead of trying
to synchronize on the captured and sent timestamp, synchronization is performed on
the time of arrival of the sync word or SFD, depending on the naming conventions
for the different hardware. From the hardware analysis in Section 4.5 can be deduced
that the arrival of the sync word is very precise, in the case of the Magnetic Induction
Radio ASIC (MIRA) only a few bits of deviation can be expected, while in the case
of the TelosB platform the deviation is even reduced to a few microseconds. With
accurate knowledge regarding the transmission timings, the time to trigger an action
can be predetermined, such that the sync word arrives at the specified time.

Note that this type of protocol does not attempt to provide external synchroniza-
tion, that is, synchronization relative to a standard clock format. The only type
of synchronization performed here is time synchronization, where an attempt is
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made to synchronize the local timers of the sensor nodes, such that medium access
methods such as TDMA are made possible. Some of the related work seems to
assume a CSMA based medium access, however, if accurate time synchronization is
mandatory, a controlled environment is required and therefore, a TDMA scheme.

The symbiosis between the TDMA scheme and the protocol becomes apparent when
describing the message communication. The sender transmits at regular intervals,
for example once every superframe, a sync packet, containing the slot relative to
the superframe in which it will be sent. This type of information can be scheduled,
is known beforehand and therefore requires no time critical actions. A timer is
scheduled to trigger the start of the transmission at the predefined time, such that
the sync word arrives at the required time instant. The receiver is able to deduce
the time of the sender by means of the slot information embedded into the packet
payload. Therefore, without the TDMA scheme, the synchronization would not be
possible and vice versa.

Figure 4.13 depicts the process of the synchronization, where node A is sending a
synchronization message in the same slot each TDMA frame. Node B, which is
attempting to synchronize to node A, listens for sync packets for a certain time.
Upon reception of such packet, the expected arrival time of the packet is calculated.
Based on the information of the expected arrival time and the actual arrival time,
the new frame boundary can be deduced. Note that the synchronization is a fast
and trivial process.

Figure 4.13: Synchronization process

In order to evaluate the performance of this protocol, it has been implemented on
two types of hardware, the MIRA and the TelosB platform. The implementation
details of the synchronization protocol are discussed in the next subsections, where
the possible sources of uncertainty are considered.

4.7.1 Magnetic Induction Radio ASIC

As previously mentioned, the MIRA provides a superframe counter that operates
on a bit level, that is, its finest granularity is equal to the time required to transmit
a single bit. Orders for transmission or reception can be placed and scheduled
at specific times, based upon this superframe counter. The action of comparing
the order activation time with the current value of the superframe counter is a
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background process which is being handled by the hardware. Therefore, no interrupt
handling uncertainties are generated by this process. Since the duration of the
several elements within the entire transmission chain is expressed in number of bits,
the estimation of the time at which the sync word is sent can be precisely predicted.
Based upon this information, the activation of the order can be scheduled such that
the sync word is sent at a specific time. Since the structure of the TDMA superframe
is known to the whole sensor network, the transmission time of the sync word can
be easily translated into the slot number, which can be regarded as an abstract
representation of the time.

In order to deal with any uncertainties of the transmission or sync word detection,
the receiver hardware defines a synchronization window, during which the sync word
is to be expected. The window is typically in the order of 12 bits. When no sync
word is detected during this window, a predefined action is undertaken, which means
usually that the reception is aborted. Upon detection of the sync word, a copy of
the current value of the superframe counter is stored in a designated register by the
hardware. No user interaction, nor interrupt handling is required, thereby elimi-
nating any possible uncertainties in the operation. The payload of the sync packet
contains the slot number in which it was sent, thanks to which the receiver can cor-
relate the expected arrival time of the sync word to the recorded arrival time. Based
upon this information it is a straightforward operation to adjust the frame length
for a single cycle, such that the super-frames of both nodes start at the same time.
As can be noticed, the synchronization methodology ensures a synchronization with
a precision of the size of the synchronization window, which is 12 bits. Note that
this methodology is suitable for an initial synchronization only. The adjustment of
the superframe can result in a drastic change in superframe size, thereby hampering
the regular data transmissions. Consecutive synchronization attempts should only
adjust the superframe counter with one tick forward or backward, thereby not dis-
turbing the regular operation of the system. When the difference between expected
time and calculated time is far larger than could have been expected, an adjust-
ment, such as the one used during the initial synchronization, is made based on the
obtained timings, thereby resynchronizing the two nodes.

4.7.2 TelosB

Unlike MIRA, the processor element and the radio component are separated on the
TelosB platform. Each component handles its own actions and there is a need to
exchange data between the two components. Moreover, the radio component of the
TelosB platform does not have an embedded counter that is in sync with the bit
transmission, i.e. there is no superframe counter, at least not one that is accessible
to the MCU. As a result, the MCU needs to provide for its own time reference
in order to determine the slot boundaries of the TDMA schedule. However, the
MCU execution speed is determined by a different clock source. The processing of
instructions by the MCU is sourced by the DCO clock. Likewise, the peripherals,
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such as the SPI bus, are also clocked to the DCO clock, which is an RC oscillator
and provides therefore a low time accuracy. When employing this type of clock as
a superframe counter, the worst case situation would result in a time offset between
two nodes of 2 ms every second, assuming the precision of the resistor array equals
1000 ppm. In terms of a radio transmission, 2 ms is equal to a difference of 64 bytes.
Such time offset between the two nodes is unacceptable and would require both
nodes to resynchronize every 15 ms in order to maintain the synchronization within
a single byte difference. Such operation is not feasible if the network should serve
some other functionality besides synchronization, which is usually the goal. In order
to obtain a reasonable synchronization interval, a high precision clock should be
used. Unfortunately, the TelosB platform provides only a single clock which has
a sufficient tolerance, however it is a low frequency crystal. The oscillator is able
to generate a single clock tick every 30.5 µs, which is almost the time to transmit
a single byte. Despite the mismatch in the frequency and the low resolution, this
clock source is the most appropriate source to trigger the step of the superframe
counter. Although the mismatch in frequency is in the order of 2.5%, it does not
hinder the operation, since the two clocks operate in an isolated manner, provided
that the slot sizes take into account the actual transmission time.

The transmission path of the radio component is strictly defined, allowing to predict
very accurately the duration of time from the TXON strobe command until the
’Start of Frame Delimiter ’ (SFD) is sent. Thanks to the abstraction of time in
the form of slot indication, the sync packet can already be preloaded into the TX
FIFO, while waiting for the precise time to start the transmission sequence, i.e.,
no timestamp information needs to be embedded in the packet payload. This is
depicted in more detail in Figure 4.14, which indicates that no strict timing is
required between the transfer of the data over the SPI bus and the start of the
transmission. Unfortunately, due to the timer functionality of the MCU, which
controls the superframe counter, a hardware interrupt needs to be serviced upon
the elapse of the radio activation time, causing an extra source of uncertainty at the
sender side.

As the hardware provides a certain synchronization window for the MIRA, so does
the software for the TelosB platform. The receiver is activated such that there is a
window during which the SFD is to be expected. This uncertainty window is the
size of a few bytes. When no SFD is detected within this window, the reception
is aborted. Upon the reception of the SFD, the signal on the SFD pin goes high,
which triggers an interrupt at the MCU. The interrupt handler results again in
some uncertain time duration while taking a snapshot of the current value of the
superframe counter. Like with the MIRA, the expected arrival time is deduced and
compared to the actual arrival time, which leads to the adjustment of the superframe
counter.

Due to the construction of the TelosB sensor node, more sources of uncertainty are
available compared to the MIRA platform. However, compared to the operation
of related works on the TelosB platform, the possible variance introduced by the
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Figure 4.14: Slot based synchronization on hardware

capturing of the timestamp and the start of the SPI transfer and of the SPI transfer
itself is eliminated.

4.8 Proof of Concept

As a form of evaluation, this section describes the completion of a Proof of Concept
(PoC) where a TDMA based protocol is implemented on the Magnetic Induction
Radio ASIC (MIRA), with the addition of the proposed synchronization mechanism
(Section 4.7). The synchronization protocol is also used to aid an alternative TDMA
based protocol on the TelosB hardware, which is described in detail in Chapter 5.

The MIRA is especially suited for Body Area Networks (BANs) because of its small
communication distances, thereby limiting the exposure of confidential information.
Moreover, thanks to the magnetic radio, the wireless communication ensures a low
radiation. Instead of penetrating the body, the magnetic radio waves rather follow
the curves of the body. The PoC was then also designed in the context of a health
monitoring application. The goal of the PoC was to capture and transmit ECG
and accelerometer data over a multihop sensor network toward a sink, which would
forward the data to a secure server. A snapshot of the system in operation is shown
in Figure 4.15, where at the left side of the figure the three development boards are
depicted, while the right image shows the received ECG signals.

The implemented TDMA protocol is derived from the Cicada protocol [32]. The
protocol is developed specifically for Wireless Body Area Networks (WBANs), where
a single sink is utilized. The routing section of the protocol is reduced to following
the branches of the constructed spanning tree. The protocol employs a dynamic
frame length, where all nodes are assigned a single slot downward in which the
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(a) hardware setup (b) ECG output visualization

Figure 4.15: PoC setup

parent indicates to its children the slots assigned to each of them. During the data
sub-cycle, the nodes use the slots assigned to them to forward data and request
bandwidth in the next cycle. In such way, the protocol achieves a traversal of the
complete tree in a single cycle. A contention slot is made available for new nodes
to be able to register themselves.

Due to the assumptions and methods employed by the Cicada protocol, its imple-
mentation is not straightforward. Some design choices cannot be used in a reliable
manner, such as the dynamic frame length, due to for example a variable number of
slots, which is an unreliable method and should not be applied. Therefore, a derived
protocol is designed and used as a reference for the implementation. This section
does not handle the specifics of the TDMA protocol, since the description would be
out of the scope of this section. Instead, a high level description is provided of the
association and data transmission section, since the focus of this discussion is on the
synchronization section. As already can be noticed, the TDMA protocol consists of
three phases: a synchronization, association and data phase. Those phases define
the different states in which the sensor node is situated. Each of the phases is as-
signed a number of associated slots. The network could operate in the data phase,
while a new node is still in the sync phase, trying to synchronize to the network.
To avert collisions or interference, the slots associated to the different phases are
not shared between the phases. The logical steps in the state of a sensor node are
synchronization, association and data exchange. During the synchronization phase
a node attempts to detect other nodes that already participate in the network and
synchronize to them. The association phase depicts the state in which the sen-
sor requests a slot from its selected parent node, that is, the node to which is has
been synchronized to. The data exchange phase indicates the node has received its
personal data slot and can start sending sensor data in its designated slot.
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The synchronization phase has been assigned four synchronization slots at the start
of the superframe. A node operating in the data phase employs two sync slots, one
to listen to incoming synchronization messages, the other to send its own synchro-
nization message. In order to reduce the required number of slots for the whole
network, spatial reuse of the slots was opted. Otherwise, the number of sync slots
would equal the number of nodes, which is not necessarily a fixed number, espe-
cially when considering the scalability of the network. The network is allowed to
have dynamic allocation, however a dynamic frame length, due to for example a
variable number of sync slots, is an unreliable method and should not be applied.
The chosen method is a flexible solution which does not limit the number of nodes
in the network and yet has a relative small overhead compared to assigning a slot
to each node. Because of the usage of multiple synchronization slots, the payload
of the sync packet should indicate in which sync slot the packet should have arrived
to deduce the time offset relative to the sender.

During the synchronization phase, nodes listen to the medium and collect informa-
tion regarding received synchronization messages, such as slot information, frame
offset, signal strength and number of lost syncs. Based upon this information, the
node is able to select the most optimal node as its parent, adjust its own superframe
boundary to that of its parent and send it an association request. As a response
to the association request, the node receives a message containing information in
which data slot it is allowed to send its data to its parent. Upon reception of this
information, the node enters the data exchange phase, where it will first select an
unused synchronization slot to broadcast its own synchronization messages. If no
free synchronization slots are available, the node stays quiet during the synchroniza-
tion slots, since there are plenty of other nodes in the neighborhood that can fulfill
the role of parent for future nodes that wish to join the network.

Figure 4.16: PoC scope communication detail
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As a rule, all nodes keep listening to the synchronization slot in which their par-
ent sends sync packets, not only to keep synchronized, but also to be informed if
the parent is out of range. If such event should occur, the node returns to the
synchronization state and tries to resynchronize to the network.

The operation of this protocol and its synchronization is depicted in Figure 4.16,
which represents a snapshot of an oscilloscope, attached to the development boards.
The pins that were measured are hardware driven and output a high signal when
the radio is actively transmitting or receiving. The figure shows the communication
between the root node and its child, where probe 4 and probe 1 are attached to the
TX and RX pin of the root node respectively. Probe 2 and probe 3 are connected
to the TX and RX pin of the sensor node respectively. The black arrow, at the top
of figure, which indicates where the trigger has occurred, points to the transmission
and reception of the sync packet of the root node and child node respectively. The
next small peak that was captured on probe 3 indicates an attempt to receive an
association packet, however, no packet was received at that time. This is a normal
occurrence since nodes do not keep on sending association packets. The wide block
captured by probe 2 indicates the transmission of sensor data from the child to the
root node. Although the resolution of the snapshot is relative low, it is noticeable
that the transmission and reception of the packets are aligned nicely.

In order to verify the entire TDMA protocol, the MIRA requires some ECG data
input and accelerometer input. The PoC setup makes therefore use of rather large
development boards, depicted in Figure 4.17, which not only contain the small MIRA
board, but also a plethora of control and debug interfaces, such as SPI, I2C, UART
and debugging tools in order to aid the development of protocols. The MIRA PCB
is comprised of the MIRA chip, a power regulator, an external magnetic coil and
several interfaces. A sensor board is attached to the development board by means
of the UART interface. The default state of the sensor board is in idle state. As
soon as the start command is sent over the UART, the sensor board starts sending
ECG and accelerometer data at regular intervals, such that the MIRA receives at
least 250 samples per second (500 bytes per second) ECG data.

The PoC (Proof of Concept) demonstrates the synchronization, loss of connection
and resynchronization by means of the scenario depicted in Figure 4.18. In the
scenario three different nodes are depicted. The root node, which is not equipped
with any sensors and two sensor nodes, of which one is equipped with an ECG
sensor, while the other node has an on-board accelerometer sensor. Because of the
lack of sensors at the root node, its sole function is to receive sensor data from its
children and transmit it towards the medical hub. The medical hub, represented
by a regular laptop in the PoC, is designed to forward the sensor data to a remote
server to store and process the data. In order to demonstrate the data gathering
process, the PoC laptop which acts as the medical hub also processes the received
sensor data and provides a visualization of the sensor data. Initially, the root node is
directly connected to the node with the ECG sensor as depicted at the top of Figure
4.18. By moving both nodes farther from each other, the link becomes weaker, CRC

99



Chapter 4. Time synchronization in Wireless Sensor Networks

Development board

Radio board

Sensor board

UART_TX
UART_RX

UART_RX
UART_TX

DSP &
RadioECG detection

Accelerometer
X-Y-Z

Control

Figure 4.17: Simplified block diagram of Magnetic Induction Radio IC platform

errors start to happen, the child will miss synchronization messages and eventually
the link is completely broken. This state is depicted in the middle of the figure.
When a third node is inserted between the two original nodes, it first associates to
the root node and then starts its own broadcast of sync packets. Those sync packets
act as a means to synchronize to the network again from the point of view of the
node with the ECG sensor attached. From the moment the last node is associated
with the middle node, the middle node will act as a relay to forward the ECG data
coming from the last node. The stability of the system was verified for a duration
of several hours, thereby proving the accuracy of the synchronization protocol.

4.9 Conclusion

Time synchronization is often required in Wireless Sensor Networks. Not only sched-
uled transmission and reception schemes require a precise time reference, but the
application might also need to be able to correlate the measurements of the different
sensor nodes. This chapter elaborates on the sources that cause the phenomenon
known as clock drift, which can be considered to be composed of two components,
the clock offset and the clock skew. The clock skew can be considered as the de-
viation from the perfect frequency. Since hardware components are constructed in
a real production environment, where a perfect production process is non-existent,
every hardware component exhibits some deviation from its specifications. It is said
that hardware operates within a certain tolerance to its specifications. Because of
the specifications, it is clear that an oscillator which is based on a quartz crystal has
a far better tolerance compared to an RC based oscillator.

Synchronization is an area which has attracted a multitude of researchers since
many decades. The most interesting and relevant works have been described, since
although those works were not designed for Wireless Sensor Networks, they still can
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Figure 4.18: PoC setup: extra node entered

provide valuable insights in time synchronization in itself. A subset of the discussed
synchronization protocols for WSNs in fact make use of one of these works. The
works specific for WSNs can be cataloged according to the role of the sender and
receiver within the synchronization protocol. As such, there is a receiver-receiver, a
sender-receiver, and a receiver-only based synchronization. The protocols in the first
class allow the receiver nodes of the synchronization message to become synchro-
nized to each other, without synchronizing to the sender. The second class proposes
methods for synchronizing the sender with the receiver by means of a message ex-
change mechanism. The third class of protocols synchronize the receiver to the
sender by means of messages coming only from the sender. The last class requires
knowledge about the specifics of the hardware.

As the different protocols use different criteria to define their superiority towards
other protocols, it is hard to make a direct comparison. Therefore, this chapter
discusses all three categories in the context of two sensor node hardware platforms.
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The discussion shows that a great deal of the synchronization protocols exhibit a
certain dependency on the hardware platform, except for the first class of protocols,
which are designed to reduce the number of dependencies. Their downside is the
lack of parent-child synchronization, which is imperative for scheduled transmissions
and receptions. The multitude of the protocols within the second class makes use of
the two-way message exchange, which shows a promising performance when being
considered in theory. However, in practice it is clear that certain factors were not
taken into account and could result in a deterioration of the precision. The last
class of protocols consider knowledge about the specific hardware in order to ensure
a minimal influence of sources of variable delay.

The proposed synchronization algorithm eliminates the dependency on the times-
tamp gathering time as in most discussed related protocols. Instead, the time is
expressed as the slot index number, which is known by all nodes in the network,
thanks to the fixed frame structure. The accuracy of the protocol mostly depends on
the transmission time accuracy. In order to show the advantages of the protocol, its
operation is discussed for both mentioned hardware platforms and is implemented
as a Proof of Concept on one of the platforms in this chapter and is used as syn-
chronization protocol to develop a different protocol in the next chapter.
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CHAPTER 5

Fair Scheduling MAC in Wireless Sensor Networks

5.1 Introduction

As already discussed in Chapter 3, sensor devices that are able to operate in a
Wireless Sensor Network (WSN) are prone to be small, low power and low cost
devices. Therefore, these devices tend to have limited resources. Such resource
limitation is reflected in a low amount of working memory, low amount of program
memory, low processing power, low power MCU, etc. Algorithms running within a
WSN need to utilize these resources as efficiently as possible. This Chapter describes
the contribution of two different protocols and the analysis thereof in terms of latency
and buffer size, starting from Section 5.4

One such resource is the remaining energy, which should be preserved as much as
possible by applying power control on both the MCU and the radio component.
When no tasks need to be performed for a long time by the MCU, it is common
to allow the MCU to enter a low power state, where the power consumption is
reduced to an absolute minimum. The radio component in its active state, i.e.,
either in receive or transmit state, is in most cases a large consumer of energy.
As a derivation later in this chapter shows, is the energy required to transmit one
byte, more than 170 times larger than the average energy required to execute one
instruction. Therefore, when no data needs to be transmitted or received, the radio
is placed in a low power state, where the power consumption is reduced. Chapter 3
already discussed a considerable number of methods, both contention and schedule
based, that allow for energy preservation. However, while the discussed contention
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based protocols make an attempt to reduce idle listening as much as possible by
introducing duty cycles and Low Power Listening, a complete elimination of idle
listening is not feasible by means of these methods due to the lack of an accurate
transmission schedule.

An alternative method is Time Division Multiple Access (TDMA), where a precisely
controlled slot access is provided. Such scheme maximizes the power efficiency by
placing the radio and MCU in low power mode when no action is required. On
the other hand, the allocation of such schedule requires extra control overhead and
time synchronization in order to align the slot and frame boundaries. A fixed frame
duration, and therefore also a fixed number of slots is for practical reasons more
appropriate as shown in the discussion in Section 3.2. However, this makes it harder
for the TDMA protocol to anticipate a certain dynamic behavior of the network,
such as the joining or leaving of nodes to or from the network. Moreover, for a
homogeneous network, where all sensors need to send data at the same rate, a fair
schedule could be realized by means of a trivial Round Robin scheduling scheme.
The network can be designed such that the slot sizes match the precise data rate
requirements. However, the application of a fixed slot size to a network composed of
heterogeneous sensor nodes raises new issues. A slot size optimized for a specific data
rate will result in either a tremendous packet fragmentation or a waste of bandwidth
due to the reservation of a large time slot for just a small amount of data. Note
that the fragmentation of packets should be limited, since every packet transmis-
sion amounts to extra overhead in terms of physical and MAC header information,
while the amount of data per transmission is limited. The Round Robin scheduling
would ensure a fair bandwidth allocation between the different nodes when using
fixed slot sizes, that is, every node is assigned the same bandwidth. However, this
would introduce large latencies for the high throughput devices. Likewise, the waste
of bandwidth by the oversized slots for small data transmission also results in the
usurping of the wireless medium, preventing more urgent or high throughput trans-
missions to seize the medium. As an alternative, other scheduling algorithms that
are discussed in Section 5.3, such as Weighted Round Robin [118] or Weighted Fair
Queuing [119] could be used, but each of them presents its own challenges for them
to be used in a TDMA access mode with heterogeneous sensor nodes. Moreover,
those works were designed in order to solve the contention problem that existed
within the router of wired networks and were to interact with the higher layers of
the network stack. Some protocols offer a guaranteed bandwidth, but it could vary,
depending on the number of streams. The protocol that is being proposed in this
chapter, is a MAC protocol, which is ensuring a collision free access to the wireless
medium. Moreover, the proposed protocol is supposed to work in a stable manner,
that is, once a certain scheme has been decided, it does not need to change anymore,
even when other nodes enter or leave the network. On top of that, is the bandwidth
allocation independent of other nodes, provided there is sufficient capacity within
the network.

The challenges that need to be resolved during the design of a TDMA protocol
therefore include the fixed frame structure, while at the same time a flexible number
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of nodes and variable transmission rate should be provided. The synchronization
ensures an additional overhead, although it is often required even in contention based
system to ensure some correlation between the collected data packets. Moreover, the
precise scheduling of the transmissions and receptions makes a TDMA protocol more
complex and often requires some extra control communication overhead. Chapter 3
discussed several slot allocation methods for scheduled transmissions. However, most
of those methods consider only a single slot per node per frame, thereby renouncing
any consideration regarding different data throughput requirements.

Irrespective of all technical difficulties and constraints, most applications that are
aided by the data collection of sensor networks require to have the most recent data
at their disposal. Providing a protocol that ensures fair scheduling on a heteroge-
neous sensor network under the previously discussed conditions can be a daunting
task. Inspired by the research results of the protocol that was developed as part
of the PoC which was discussed in Section 4.8, this chapter presents two types of
protocols that take into account a heterogeneous transmission pattern of the sensor
nodes, while ensuring a fair scheduling of the data. The design of both protocols
takes into account practical constraints, such as memory consumption, processor
speed, communication overhead, etc.

The protocols are specifically designed to operate in a tree, star or cluster based
topology, where all nodes are constant bit rate sources, that is, there is no processing
of the data on the sensor, or when there is, the outcome is a bitstream with constant
bit rate. Both design decisions are discussed in more detail in Section 5.2. Both
protocols make use of a centralized slot organization mechanism, located at the
parent node or cluster head in case of a clustered network. The network is expected
to be of limited size where the majority of nodes can hear each other. Therefore,
the discussed methods do not consider spatial slot reuse in the strict sense of its
definition, that is, all nodes are assigned a unique set of slots in order to prevent
collisions. Note that the protocols support the sharing of slots between siblings,
which is meticulously controlled by the parent node.

The protocols ensure a fair scheduling of the data, based upon the requested data
rate. Based on this estimation of the required bandwidth, the root node determines
a slot allocation which takes into account the repetition of the pattern, the heteroge-
neous character of the network and prevents the obstruction of sensors to gain access
to the medium by a single sensor node with a large throughput. The distribution
of the available bandwidth over the requesting nodes by the protocols is based on
the application of the operational principle of Pulse Width Modulation (PWM) to
WSNs. Instead of assigning the requested amount of bandwidth, the node is as-
signed an integer number of slots for only a fraction of the time. The utilization
time fraction is determined such that the average bandwidth is equal or nearly equal
to the requested bandwidth. A parent node distributes its available bandwidth be-
tween its children by allowing them to send in the same data slot, but in different
TDMA frames. Moreover, in order to prevent the seizure of the wireless medium
by a high throughput transmission, the slot allocations are dispersed. Granting half
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the available bandwidth to a node could be achieved by assigning a set of sequential
slots, equal to half the number of slots per frame, to the requesting node, or it can
be assigned every second slot. The latter results in an evenly distributed allocation,
which allows other sensors to access the resource at regular intervals. The allocation
is therefore more fair. Note that this method also provides a better response time.

The dynamic behavior of the network is considered by devising a schedule update
method, composed out of resource allocations that consist of repetitive sequences,
such that the existing transmission schedule is not affected by the extra resource
assignment. Such approach and the need to receive the update, which is specifically
for a certain node, only once also takes into account the lossy medium that poses no
guarantees whatsoever on the arrival of the data. The schedule does not need to be
repeated every cycle and if an update message is not received correctly, this does not
affect the remainder of the network, or even the remainder of the schedule, just the
newly requested resource allocation. An interesting property of this methodology is
a perfectly predictable latency, which means that the protocol is suited for real-time
applications.

The following section provides a discussion of the specific design decisions to which
the proposed MAC protocol should comply to. The research that is related to the
discussed topics in this chapter is presented in Section 5.3. Section 5.4 discusses
the first methodology, which makes use of a straightforward slot allocation method
based on the greatest common divisor (gcd). Although the employed principle is
trivial, it exhibits some disadvantages, which are alleviated by the second protocol,
of which a theoretical analysis is discussed in Section 5.5. The slot allocation method
of the second protocol is more sophisticated and exhibits some promising properties,
such as a deterministic latency. Therefore, the remainder of the chapter discusses
the performance of this second protocol, first by means of a theoretical analysis,
where the arrival of new data is represented by a linear function. A second analysis,
Section 5.7, considers a more realistic data arrival in bursts, while a third analysis
considers the performance and impact of the protocol in a networked environment.
All previous analyses were performed by means of simulating the slot scheduling,
which involved certain assumptions which need to be adjusted to more realistic terms
in a protocol implementation. Therefore, Section 5.9 describes a complete TDMA
protocol based on the scheduling protocol. The last section concludes this chapter.

5.2 Design Decisions

In Wireless Sensor Networks, MAC protocols van be classified according to their
topology: tree based protocols and distributed protocols. The tree based protocols
assume the existence of a root node, usually the sink, or one of the sinks, which
starts building a tree network topology based upon a parent-child relationship. The
distributed approach is based upon the idea that there is no central coordination
possible in WSNs to construct a topology, although there always needs to be some
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kind of sink node, but might not be available at all times. Therefore, all sensors are
deemed to act in a distributed manner. Note that a star based topology is a special
case of a tree based topology where only a single level is available. The organization
within each cluster between the members and the cluster head can possibly also be
considered as a tree or star based topology.

Both types of protocols have their pro’s and con’s. The tree based topology requires
time to construct, needs to rebuild a branch of the tree upon failure of a single node
and has an obvious bottleneck, although this is a characteristic of WSNs in general,
since the data usually flows to a single sink. The advantages of a tree topology
are its intrinsically clear construction, where the routing path is usually determined
by the branches towards the root node. This allows for a trivial routing method,
a predictable performance and therefore also accommodates for its optimization.
The distributed approach provides no clear topology, nodes start creating their own
subnetworks within the network and eventually those subnetworks merge into one
complete network. A perfect example of this approach is S-MAC [22]. Such network
is more resilient to node failures, since there is no predefined path which needs
to be followed and usually the network intercommunication is setup more rapidly.
The disadvantage is the uncontrolled evolution of the network topology. Moreover,
a routing protocol will need to define the path towards the sink node, instead of
simply following the branches towards the root.

This chapter focuses on the tree based topology because of all the positive arguments
provided above. Moreover, while a distributed sensor network is interesting from
an academic point of view, a commercial environment requires a stable and reliable
sensor network. Actual real-life sensor deployments for research purposes, such
as [70][120][121][122][123], also point in this direction, where a rather simplified
topology is applied. Often these networks are set up in a star formation, a fixed
mesh network or employ a static routing scheme. Real-life deployments do not
require very complex algorithms, they require stability and reliability, which can be
easily be compromised when the algorithm becomes too complex.

For small scale networks, a tree topology type of a network can provide such prop-
erties, that is, a stable and reliable network, while still being sufficiently flexible to
allow for the removal or the arrival of nodes. Larger scale networks are more likely
to be divided into local clusters, where each cluster is operating in a tree topology
of one or at the most a few tiers, while the cluster heads themselves can either be
connected directly towards the sink, or they can be configured as a mesh network.
Such network is also more interesting with regard to the energy usage and therefore
battery lifetime of the sensors. The sensors in single clusters are expected to have
the same battery lifetime, while the cluster heads have a different lifetime, except
when a rotating cluster head selection algorithm is used to distribute the power us-
age, such as in [56]. When the application allows it, for example when the connected
device itself is line-powered, the cluster heads are not battery-powered at all. An
excellent example is presented in [124], which discusses the commercial applications
of Wireless Sensor Networks using ZigBee. Wireless Sensor Networks operating in a
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Home Automation environment are preferred to have the distinction between sensor
nodes and forwarding nodes. Such distinction is more clear to the end-user, but
also enhances the reliability and predictability. The reliability is enhanced since
a faulty sensor node does not necessarily break the network connection. The for-
warding nodes, i.e., the cluster heads, provide the network connectivity towards the
sink. The predictability is improved since the sensors have a similar lifetime when
all operate at the same duty cycle.

Another distinction that can be observed between WSNs is the data processing
location. Some setups prefer to perform a preprocessing on the sensor and sends
only the related information towards the sink. Other setups send all captured in-
formation as raw data towards the sink. Both methods have their advantages and
disadvantages. The advantage of processing the data at the sensors is that less data
needs to be transmitted and therefore less energy is expended due to the trans-
mission of data. On the other hand, typical sensor nodes consist of an MCU with
limited resources. Therefore, hardware support for complex computations is beyond
the simple instructions set of such MCUs, software sequences need to complete the
complex computations. Such complex computations can require a considerable num-
ber of instructions and thereby also consume energy. The transmission of the raw
data is computationally wise trivial, however, requires a continuous transmission of
the data.

In order to have an idea of the relation between the required number of instruc-
tions (in assembler code) versus the energy, and the number of transmissions versus
the energy, an estimation of both the energy per instruction and the energy per
byte is made based upon the performance of a TelosB sensor platform, with the
MSP430F1611 as MCU and the CC2420 as radio chip. The power expenditure of
both chips is expressed in number of microAmps (µA) in combination with a certain
supplied Voltage. The unit for power is Watt and can be expressed in AmpèreVolt
(AV), but also in Joules per second. Therefore, the energy per instruction can be
calculated according to the following equation:

Joules

instructions
=

Joules/second

instructions/seconds
=

Watt

instructions/second
(5.1)

However, the datasheet does not specify the required power to execute a certain in-
struction, instead, the power to execute an instruction cycle is defined. The duration
of instructions is expressed in number of instruction cycles, that is, the number of
periods the master clock needs to progress, and can vary between one and six cycles
per instruction for the MSP430 instruction set. Therefore, the energy to execute an
instruction is expressed in this chapter as the energy to execute an instruction cycle
times the average of the number of instruction cycles per instruction.

The duration of an instruction depends on the type of instruction, i.e., does it require
none, a single or two operands, and the employed addressing mode. The MSP430

108



5.2. Design Decisions

has seven addressing modes, which determine how the instruction operand should be
interpreted by the instruction operator. The operand could specify a literal value,
a memory address, which would result in a memory fetch at the specified address,
a register, etc. Depending on the addressing mode or combination of addressing
modes, the specific instruction requires more or fewer cycles. In order to obtain an
estimate of the average number of cycles required per instruction, a disassembled
program that performs both data processing and data transmission is parsed. During
the parsing of the program, both the number of instructions and the total sum of
instruction cycles is collected. The final results enable to obtain an estimate of the
average number of cycles per instruction, which is 2.5 cycles per instruction. Note
that loops are not taken into account since it is just an estimation, but thanks to
the size of the analyzed program, the average number of cycles per instruction will
not deviate significantly when considering loops.

The calculations are based upon a master clock, that is the clock determining the
instruction cycle duration, running at 4 MHz. According to the specifications of
the MSP430, the power consumption is equal to 500 µA per MHz, which results in
a total current of 2 mA, when supplied with a voltage source of 3 V. The power
consumption is therefore 6 mW. As a result, the energy per instruction cycle (epi)
is formulated in Equation 5.2.

epi = 6mW/4MHz = 0.00375µJ/cycle (5.2)

The required energy to execute a series of instructions, in function of the number of
instructions per Byte, nI, and the number of bytes that need to be processed, nB,
can therefore be defined by Equation 5.3

expended_energy_instructions = 2.5× nI × nB × epi (5.3)

The expended current when transmitting data at the maximum transmission power
is specified to be 17.4 µA when supplied with a voltage source of 3 V. The power
consumption of transmitting data is therefore 52.2 mW. The energy expenditure of
the radio transmission is expressed in the energy per transmitted byte. Since the
CC2420 has a maximum transmission rate of 256 Kbits per second, i.e., 32 Kbytes
per second, the energy per byte (epb) is formulated in Equation 5.4.

epb = 52.2mW/32 KBytes per second = 1.63µJ/Byte (5.4)

Besides the power required to transmit the data, the number of instruction cycles
required to enable the transfer of the data from the MCU towards the radio chip
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over the SPI bus is also considered. Analysis of the code section responsible for
executing the SPI data transfer led to the conclusion that there is a section which
needs to be executed once, the size of 574 instruction cycles, and a section that
needs to be executed for each byte transfer, the size of 150 cycles. The estimated
energy consumption of the radio in function of the number of bytes that need to be
transmitted, nB, is therefore expressed as Equation 5.5.

expended_energy_radio = (574 + nB × 150)× epi+ nB × epb

= 574× epi+ (150× epi+ epb)× nB
(5.5)

In order to determine the boundary on the number of instructions that justify a
complex data processing over the raw transmission of data, it is required that the
outcome of both Equation 5.3 and Equation 5.5 is equal, the energy expenditure of
both the instruction execution and the radio transmission is equal. Such function
determines the lower boundary of the number of required instructions per byte to
account for a raw data transmission. If the number of instructions per byte is higher
than this boundary, the raw transmission of data is more effective than processing
the data. When requiring that both equations need to be equal, Equation 5.6 arises,
where the number of instructions per byte are depicted in function of the number of
bytes that either need to be processed or transmitted. Note that this equation does
not take into account the transmission of the compressed data, which will eventually
need to be transmitted, therefore, the equation is favorable for the compression of
data.

574× epi+ (150× epi+ epb)× nB = 2.5× nI × nB × epi
~

w

�

nI =
574

2.5× nB
+
(150× epi+ epb)

2.5× epi

(5.6)

Figure 5.1 depicts the number of instructions per byte in function of the number of
bytes to be processed or transmitted, where the expended energy is equal for both
cases. It is clear that sending the raw data is more efficient in terms of energy when
the number of instructions required to process a single byte exceeds 237 assembler
instructions. This statement is true for a minimum number of bytes of 50 bytes that
need to be processed. For a small amount of data, it is more efficient to process the
data and send just the result. Note that this is merely a coarse estimation and does
not take into account the expended energy of the transmission of the preprocessed
data. However, the results provide a guideline and certainly an upper bound on
the number of instructions where data processing is justified regarding the energy
efficiency.

110



5.3. Related work

 230

 235

 240

 245

 250

 255

 260

 265

 270

 0  50  100  150  200  250

N
um

be
r 

of
 A

ss
em

bl
y 

In
st

ru
ct

io
ns

 p
er

 B
yt

e

Number of Bytes

Figure 5.1: Required number of instructions to account for raw data transmission

5.3 Related work

Unlike Chapter 3, where an overview of available WSN related MAC protocols
is provided, this section discusses work that is relevant to the employed methods
in this chapter, which is not necessarily related to WSNs. The first subsection
handles research related to bandwidth and rate distribution. The Fair Scheduling
MAC protocol takes the bandwidth requirements of all nodes into account. As
a consequence, the sensor nodes need to share the available bandwidth in a fair
manner. Therefore, it is wise to take notice of the basic works regarding fair queuing,
even though the methods for fairly distributing bandwidth are not directly applicable
to the allocation of slots. Fair can have multiple definitions, certain cases require
a strict control on the expended bandwidth, where sensors are just assigned the
requested bandwidth in order to maximize the available bandwidth for other sensors.
In other cases, the fairness indicates the restriction of a single sensor to capture
the resource such a long time that other sensors are unable to send information
on time. The subsection on fair scheduling might overlap on some areas with the
second subsection, which discusses well known real-time scheduling methods and
the employment of real-time in Wireless Sensor Networks.

5.3.1 Bandwidth and Rate Distribution

A significant amount of research towards fair scheduling is performed in the years
around 1990. One has to keep in mind that the congestion withing packet switched
networks were already the focus of research for two decades at that time [125].
However, high speed networking provided challenges for the research community at
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that time regarding data traffic control [126]. One of those challenges was congestion,
which was the focus of most of the fair scheduling protocols that were conceived
around that time. Note that the high speed networks that are referred to, are wired
networks, where in most cases the congestion occurs within the router.

One of the earlier fair queuing (FQ) algorithms is proposed in [127], which focused
on the congestion problem for the infinite storage case. Previously, most works on
congestion management had been targeting buffer management in order to prevent
congestion, whereas the author of this work considers an infinite storage space and
proposes a fair queuing concept in order to make the network behave more fairly.
Note that the method was already popular in the operating system world, but is
claimed to be applied for the first time in packet switched networks. The work
proposes to ensure the fairness of a switch with multiple inputs and outputs by
providing an input queue for each possible network source and serving the queues
in a round-robin manner, instead of having just a single first-in, first-out queue.
As a result, any badly behaving node will only obtain a portion of the bandwidth
inversely proportional to the number of nodes that are actively sending packets to
the switch.

However, a downside of the protocol is that when packets of a different size are
handled, one source is assigned a higher bandwidth than other sources, since the
round-robin is done on a per packet base. Moreover, not every source in the net-
work necessarily requires the same amount of bandwidth, the successful delivery
of a packet is not determined by means of the same performance metrics for all
traffic classes. The work in [128] recognizes this, as it states that the high speed
networks are expected to be used for a wide range of traffic classes, each having its
own performance requirements. The work considers two types of connections: rate
controlled and best effort. During the connection setup phase of a rate controlled
connection, a user requests a required average service rate and jitter bound. An ac-
cepted connection is ensured of receiving its required bandwidth and jitter bounds.
The best effort connections are not guaranteed any bandwidth, but an effort is made
to provide the lowest possible delay and loss probability. Two algorithms are pro-
posed to achieve these goals: a rate-based scheduling and Hierarchical Round Robin
Scheduling. The former queues its packets for transmission in frames of fixed size,
transmits the entire queue and then proceeds to the next frame. The rate control is
achieved by queuing the arriving packets according to a specific algorithm into the
transmission frames. For each connection, four parameters are maintained, which
identify the number of packets that can be sent per frame in order to comply to the
bandwidth demand, the current frame in which packets of this connection are stored,
the number of packets that have already been stored and how many frames to skip
should the number of stored packets exceed the number of allowed packets for this
connection. As such, the scheduling of incoming packets is merely a simple summa-
tion in order to determine in which frame the packet should be queued. Should any
frame have too few packets to fill an entire frame, best effort packets are used to
complete the frame. The hierarchical round robin method also considers frames of
fixed size, but these frames are split in fixed slots. The number of slots a connection
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id receives, depends on its negotiated bandwidth. In order to differentiate between
the different rates, the HRR has a hierarchy of service lists, where the topmost list
the shortest frame length has and is therefore used to serve the highest service rate.
Interesting to note is that the requested bandwidth is partitioned between service
lists by allocating a fraction of the slots. In order to interleave the operation of
the different levels, the upper level is operating, and serving cells in a round robin
fashion, until a predefined boundary and then yields its control, such that level two
can serve its cells. This protocol could be said to show a lot of similarities, at least
conceptually, to the protocol that is discussed in this chapter. However, HRR does
not determine the order in which connections are being served, the protocol does
not clearly define how the bandwidth is split between the different service levels, the
calculation of the boundary which determines how many cells should be processed
is not specified, resulting in a protocol which is perfectly suited for rate control,
but not for slot allocation where an absolute guarantee needs to be given that no
collisions will occur, even when a connection drops or is added to the system.

Like HRR [128], is the Stop-and-Go queuing framework, proposed in [125], a non-
work-conserving rate controlled service discipline, which does not allow a connection
to send packets at a higher rate [129]. Non-work-conserving means that even if pack-
ets are available for transmission and no other work needs to be done, the scheduler
will nevertheless wait until the appropriate time to send them. The goal of the Stop-
and-Go protocol is to develop a framing strategy against congestion, that ensures
a loss-free communication, a bounded end-to-end delay and is easy to implement,
thereby reducing the required processing of the control function to a minimum. In
order to achieve this, the protocol makes use of two policies: an admission control
policy and a service discipline. Both policies make use of time frames, that are
synchronized on a global network level. The admission policy ensures that the aver-
age bandwidth allocated to a certain source, is not exceeded during a single frame.
Should any packet arrive that would violate this rule, the packet is not admitted
until the following frame starts. Instead of sending all rate limited packets immedi-
ately to the next hop nodes in a FIFO manner, which would result in the formation
of bursts, the packets are sent according to a stop-and-go queuing approach. This
basically means that packets are sent during the time frame, after the one in which
they were received. As a result, all packets coming from any given connection, expe-
rience an equal amount of delay, not taking into account a small jitter component,
provided they travel over an equal number of hops. Since the size of the frame is
the determinant factor when the total delay or required buffer size is considered,
multiple frame sizes are proposed, where the smaller ones reduce the queuing delay
and buffer size at the cost of a reduces flexibility in bandwidth allocation. Each
frame size is a multiple of the previous frame size. During connection setup, the
connection is classified and thereby associated according to one of the frame sizes,
resulting in an admission policy which takes the respective frame size into account.
The transmission of the packets is organized according to the frames, where packets
residing in a smaller frame has a higher non-preemptive priority than larger frames.
As a result, at the start of each frame, first the packets with the highest priority
are sent, until the predetermined rate has been reached, which is enforced by the
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admission policy, and then packets of a lower priority are sent.

Whereas the previous two protocols enforced a strict control on the allowed packet
rate, the protocol in [130][119], called Fair Queuing (FQ), does not agree on any
maximum rate and allows a connection to send packets as any rate, provided that
the bandwidth and buffer space is allocated in a fair manner to all available sources.
It is claimed that a queuing algorithm determines the way in which packets from
different sources interact with each other and this forms an essential component
in the congestion control [119]. Moreover, such protocol should provide sufficient
protection in the presence of maliciously behaving sources. The idea was to divide
the bandwidth between the present sources equally. However, a round robin ap-
proach, such as in [127], fails to achieve this fairness due to possible variations in
packet sizes. In order to resolve the issue, a bit-by-bit round-robin processing of
the queues is proposed, where each data flow is assigned a queue. Since such pro-
cessing is not feasible in reality, an approximation is made where complete packets
are sent. However, the selection of which packet is to be sent next is based on the
theoretical finishing time, should the bit-by-bit round-robin method have been used.
The packet that ends the earliest is the next packet to be sent. As an answer to
the diversity of networks where sources may need different bandwidths in order to
provide the required performance, the authors add in a side note a weighted ver-
sion of the FQ protocol, WFQ (Weighted Fair Queuing), that allows to adjust the
respective weight of each of the flows, such that instead of each source receiving an
equal amount of the available bandwidth, a flow is provided with a portion of the
bandwidth respective to its associated weight. Note that even though the protocol
is able to guarantee a throughput, irrespectively of the demands of the other flows,
it is dependent on the number of flows, since each flow is assigned an either equal
or proportional share of the throughput.

It is interesting to note that around the same time, at least two other protocols
were designed that show similar features as (W)FQ. The first protocol is called
VirtualClock, proposed in [126]. The target was to maintain an average transmission
rate of data flows, while enforcing the agreed upon resource allocation for multiple
priorities. On top of that, a security feature was installed to prevent malicious nodes
to capture the entire bandwidth. The concept was derived from a Time Division
Multiplexing (TDM) system, where interference could be entirely prevented thanks
to the slot allocations, but which proved to be too rigid, resulting in a waste of
bandwidth. The solution proved to be a virtual clock, which was assigned to each
flow and ticked at every packet arrival from that flow at the rate of the inverse of
the average bit rate. Each incoming packet is then timestamped with the current
value of the virtual clock and is transmitted in ascending order of timestamp values.
If packets have variable sizes, then the value used to increment the clock is set to
be proportional to the packet size. Therefore, the protocol does not allocate slots as
in a TDM system, but merely determines a transmission order. One of the major
differences with FQ, is claimed to be the explicit resource reservation, allowing the
nodes to specify the precise amount of bandwidth required for a successful operation
of the network flow.
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A second protocol that is similar to FQ and designed around the same time, is
the packet-by-packet Generalized Processor Sharing protocol (GPS) [131] [132][133].
The focus of the work lies on the congestion control, where both the flexibility of the
network and the performance guarantees are preserved. The network is supposed
to support a wide range of transmission categories, while at the same time provide
performance guarantees to real-time sessions. The work proposes the combined use
of Leaky Bucket admission control [134] and a packet service discipline based on
Generalized Processor Sharing in order to achieve this goal. The service discipline,
GPS, is expected to allow users to demand a different performance, but it should
not come at the cost of other users, so there needs to be certain fairness factor
embedded in the protocol. The GPS protocol is a flow-based multiplexing discipline,
which is work conserving and operates at a fixed rate r. If Si(τ, t) indicates the
amount of traffic from source i, that was serviced within an interval (τ, t], then
for a GPS server the following condition (Equation 5.7) is true for any session i

that is continuously backlogged in the interval[τ, t], and Φi represents a positive real
number, that indicates the relative weight towards other input streams.

Si(τ, t)

Sj(τ, t)
≥ Φi

Φj

where j = 1, 2, . . . , N (5.7)

Each session i is guaranteed a rate equal to Equation 5.8

gi =
Φi

∑

j Φj

r (5.8)

One of the interesting properties of GPS, is that it is able to provide queuing delay
guarantees when the incoming data stream is rate limited by means of leaky buckets.

Since the GPS protocol is, like the bit-by-bit round-robin method in FQ [119], a
theoretical abstraction and does not transmit packets as a whole, a packet-by-packet
Generalized Processor Sharing protocol (PGPS) [131] [132][133] is proposed , that
represents an approximation of GPS, where entire packets are sent. The concept is
identical to the one employed in [119], where the order in which packets are processed
is according to their theoretical finishing time of GPS.

An application of WFQ is described in [135], where the algorithm is used to de-
sign a new type of scheduler, the Earliest Eligible Virtual Deadline First scheduler
(EEVDF). The idea is to design a flexible and accurate algorithm to allocate re-
sources in an operating system. Every client needs to send a request, indicating the
duration it needs. Based on the associated weight of the client and on the already
allocated service time, each request is assigned an eligible time, that is, the start
time in terms of WFQ, and a deadline, i.e., the finishing time in terms of WFQ.
Both parameters are expressed in a virtual time, which is introduced to track the
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progress in an ideal fluid-flow system. A request can only be processed if it becomes
eligible, that is, its eligible time is lower than or equal to the current virtual time.
Like in WFQ, the request with the earliest deadline is next to be scheduled. The
client share, fi(t), at time t is defined in Equation 5.9, where A is the set of all
clients active at time t and wi is the weight assigned to client i.

fi(t) =
wi

∑

j∈A(t) wj

(5.9)

The time that can be used by the client in the ideal fluid-flow system, provided the
client share remains constant during a time interval [t, t + ∆t], is equal to fi(t)∆t

virtual time units. Note that the definition of the virtual time in the publication,
depicted in Equation 5.10, is also dependent on the active clients, such that each
client receives wi real time units during one virtual time unit.

V (t) =

∫ t

0

1
∑

j∈A(t) wj

dτ (5.10)

The implementation of the scheduler makes use of a time quantum, that is, the
smallest time duration the scheduler can assign to a task, such that the overhead
of the scheduling and context switching is not greater than the execution of the
task itself. In other words, instead of the fluid-flow model, a discrete time base is
used. The assignment of the allocated time to a task is therefore in units of time
quantum, which does not necessarily match with the allocated share according to
the fluid-flow model. If a client is assigned too much time, i.e., the time quantum is
larger than the required time, the client releases its allocated time quantum upon
completion in favor of some other task to be scheduled. A request can be scheduled
when the service time the client should receive in the fluid-flow model equals the
service time it actually has received. Therefore, when a client has received too much
than its fair share, it needs to wait. If a client has received fewer than its fair share,
its request can be scheduled immediately.

The contribution in [136] consists of the introduction of an ideal Fair Service Curve
link-sharing model, where all service curves are satisfied, the excess bandwidth is
fairly distributed among the service classes and a priority service is provided. A
scheduler is proposed which makes an attempt to implement this ideal model by
guaranteeing the service curves of all leaf classes, and trying to satisfy the service
curves of the other classes and fairly distribute the excess bandwidth. The model
allows to analyze the performance of link-sharing where a certain resource needs
to be shared by multiple classes. For example, the available bandwidth can be
shared between a video streaming application and an FTP transfer. While the
video streaming requires a minimum bandwidth, the most important parameter
is the delay. For the FTP application the delay is irrelevant. In the proposed

116



5.3. Related work

model, the delay can be decoupled from the bandwidth by providing a non-linear
service curve. A compromise is that not all service curves can always be guaranteed.
Therefore, the scheduler operates in two modes, if all service curves can be satisfied,
then the link-sharing algorithm is allowed to operate. Otherwise, the real-time class
takes over the operation, which schedules the packets with the lowest deadline. The
same Fair Service Curve is also used to provide a bursty best effort service in [137]
and [138]

In contrast to the previously discussed algorithms, a Hierarchical Round-Robin al-
gorithm (H-RR), proposed in [139], does not focus on a fair bandwidth distribution,
but a low latency for high-rate sessions. The protocol introduces a tree in which each
node is assigned a weight, according which a proportional rate is allocated. A leaf
node represents a session, while the other nodes are intended to share their available
bandwidth over the present children. The position of a session is selected carefully
such that its requested or required rate can be satisfied. The closer the session is
located to the root node, the higher its rate. While operating, the root node is
assigned service slots, that is, slots large enough to accommodate the transmission
of a single packet. Each of the children of the root node is assigned a service slot in
a Round-Robin manner. If the child is a leaf node, then the packet is transmitted,
otherwise, the service slot is assigned to one of the children of the node in a similar
manner as the root node assigns service slots to its children. The resulting trans-
mission schedule reflects the high rate services, which are repeated every cycle in
case they are children of the root node. The services positioned one level lower are
not handled every cycle, just a single service, which is determined in a Round-Robin
manner, is handled per cycle.

Whereas the previously discussed protocols were more focused on bandwidth and
rate allocation in a general manner, the following protocols consider the available
bandwidth as a resource that can be fragmented. One of the discussed protocols
in Chapter 3, [59], makes use of location information to determine the transmission
opportunities. When multiple nodes are located within the same area, nodes are
assigned the same slot in alternating frames, which is also a form of bandwidth
sharing.

The proposal, MRBS and MRCS, in [140], is directed to bandwidth allocation of
variable rate transmissions for a wideband CDMA systems with different traffic
patterns. The same protocol, only with the focus on a generic wireless network, is
discussed in [141]. The wideband CDMA (WCDMA) standardization from 3GPP
that is used as a reference for the discussed protocol is named Universal Mobile
Telecommunications System (UMTS). Two of the operational modes, included in
the standard, are Direct Spread (DS) CDMA, and Time Division Duplex (TDD)
CDMA. These modes are based on the UMTS Terrestrial Radio Access Frequency
Division Duplex (UTRA FDD ) and the UMTS Terrestrial Radio Access Time Di-
vision Duplex (UTRA TDD) proposal respectively. The discussion is based on both
UTRA models. The goal is to optimize the number of users within a given band-
width. All users therefore need to send a request containing an estimation of the
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required resources.

The multirate operation is a key feature in 3G wireless networks, since it enables
different types of services, i.e., different data rates. In DS-CDMA systems, the
spreading factor is kept constant. The resulting range of available data rates is
fixed, for example, the supported transmission rates in UTRA FDD are defined by
2i × 15kbps, where i = 0, 1, . . . 7. Selecting a data rate, sufficiently large to support
the requested rate can lead to a wastage of available bandwidth. A Hybrid time
division multiple access (TDMA/CDMA) technique defines different slot sizes for
different transmission rates. The low rate services are assigned short time slots,
while the high rate services are allocated large slots. While the proposal allows a
flexible bit rate assignment, it is not trivial to envisage a large number of different
slot sizes to allow for a rate that is close enough to the requested rate. Moreover,
the number of services that need to be considered might deviate from the number
of specific slot sizes. At a certain point, there might be such an amount of small
rate services such that there are not anymore sufficiently small slots.

To alleviate the previously discussed issues, the proposed algorithm, Most Regular
Binary Sequence (MRBS), makes use of equally sized slots, which it allocates to
the different services according to their demands. Bandwidth is allocated, such that
it matches as close as possible to the requested bandwidth. A request, which can
be expressed as a rational fraction of the total available bandwidth, can employ
this type of schedule. Three properties are associated to the schedule. First, the
resulting asymptotic rate is equal to the requested rate. Second, the scheduling
sequence is periodic and deterministic and third, the slots are evenly spaced over
the periodic cycle. The MRBS generating function is defined in Equation 5.11, where
n is a nonnegative integer, representing the slot index, 0 < p ≤ 1, representing the
fraction of the total bandwidth. The generated MRBS is cyclic and deterministic.

s(n) =
⌈

(n+ 1)p
⌉

−
⌈

np
⌉

(5.11)

Figure 5.2 illustrates the theoretical requested bandwidth for a request equal to one
third of the total available bandwidth, i.e., p = 1/3, represented by the solid blue
line. Both functions that constitute the MRBS generator are also depicted in the
figure, f1(n) = ⌈np⌉ represented by the green dashed line and f2(n) = ⌈(n + 1)p⌉
represented by the dotted purple line. The difference between f2(n) and f1(n) results
in a repetitive sequence {1, 0, 0}, since both functions increase by one every three
slots, but are shifted by a single slot.

The MRBS pattern is used to allocate equally sized slots to the requesting users.
A ′1′ in the sequence indicates the permission to use the specified slot. Since the
resulting pattern is directly related and closely matched to the requested rate, such
schedule assures a minimal delay and buffer occupation. While the proposed sched-
ule is elegant and provides a repetitive schedule which matches the requested band-
width as close as possible, sequences of different users may try to allocate the same

118



5.3. Related work

 0

 1

 2

 3

 0  1  2  3  4  5  6  7  8  9

f(
n)

Slot index

f1(n) = np

f2(n) = (n+1)p

Figure 5.2: f1 and f2 of MRBS with asymptotic mean equal to 1/3

slot. The protocol includes a conflict resolution algorithm, such that if a conflict
should arise, the algorithm is able to resolve it.

The work also proposes an improvement of MRBS, that is, Most Regular Code
Sequence (MRCS), which is more flexible in its use for different spreading factors
and has a smaller variance than MRBS. The generation function is depicted in
Equation 5.12, where n and p represent the slot index and the requested fraction
of the available bandwidth. The variables pU and pL are both of the form 2−i and
represent the highest value lower than p, called lower-closest code (LCC) rate, and
the lowest value higher than p, called upper-closest code (UCC) rate, respectively.
All parameters should comply to 0 ≤ pL < p ≤ pU ≤ 1. The resulting pattern allows
to switch between the LCC and UCC rate, thereby achieving a plethora of possible
combinations to match the requested bandwidth. Like the MRBS, the MRCS also
requires a contention resolution mechanism.

c(n) = (pU − pL)×
⌈

(n+ 1)p

(pU − pL)

⌉

−
⌈

np

(pU − pL)

⌉

(5.12)

While to protocol proposed in [142] is not related to Wireless Sensor Networks, the
methodology of the protocol in order to generate a collision-free centralized schedule
is sufficiently interesting to be included in this discussion. The protocol is proposed
within the context of IEEE Std 802.16, which has been formed to recommend an
interface for Fixed Broadband Wireless Access (FBWA) systems that can support
multimedia services. The wireless mesh network employs a TDMA scheme with
fixed-length time slots, where the slots for transmissions should be scheduled in a
conflict-free manner for the entire neighborhood of the sender. The standard speci-
fies that a new node, also called a subscriber station, joining the network should first
listen to transmitted mesh configuration messages, such that a coarse synchroniza-
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tion is obtained. Based on the overheard messages, a neighbor list is constructed
from which a sponsoring node is selected. A sponsoring node can be considered as the
node which relays MAC messages to and from the base station for the newly joined
node. The proposed protocol considers fairness, channel utilization and transmis-
sion delay as performance metrics. The standard defines three scheduling methods,
amongst which the centralized scheduling is used in the proposed work. The base
station gathers traffic demands from all subscriber stations, determines a schedule
such that no collisions occur and informs all nodes about the schedule. By means
of service tokens, a schedule is generated which complies to all demands. These
tokens ensure that the number of slots, which need to be allocated to a specific
node, is proportional to its traffic demand. As a result, fairness between the nodes
is guaranteed. Thanks to the direct relation between the traffic demand and the
slot scheduling, the duration of the cycle can be reduced. Such feat can be achieved
by dividing each of the traffic demands by the greatest common divisor of all traffic
demands of the nodes in the neighborhood. Based on the scheduling tree and the
set of service tokens from all nodes, a scheduling matrix can be generated by means
of an algorithm. The algorithm selects a link from the set of links and allocates
slots for the link, while marking all conflicting neighboring links as interfered. As a
result of the slot allocation, the service token of the transmitter is decreased by one
and the service token of the receiver is increased by one. The process is repeated for
other links until all service tokens of the considered nodes have decreased to zero.

A protocol designed for video conferencing, [143], discloses a method for reserving
fractionally schedulable resources. Instead of considering a resource as being ei-
ther busy or available, the resources are considered to be fractionally schedulable.
The bandwidth of a particular resource may only be partially used during the re-
served time. Therefore, a scheduling engine is proposed for fractionally scheduling
resources. The engine uses a resource usage table in order to fix the resource allo-
cation. A resource request is granted and added to the table if the resource usage
does not exceed the total capacity of the network.

Interesting to note is that most of the discussed algortihms operate on the higher
network layers, where they count on the lower network layers to resolve collisions
etc. The protocol that is being proposed and discussed in this chapter, however,
is operating on the MAC layer and is responsible for the collision avoidance and if
necessary, collision resolution.

5.3.2 Real-Time in WSN

While the previous section targeted algorithms specifically for the scheduling and
distribution of bandwidth, this section discusses protocols that schedule resources
such that a deterministic behavior with regard to transmissions can be observed,
that is, a real-time behavior.

The algorithm proposed in [144][145] investigates the delay jitter characteristics and
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bounding for real-time channels in a packet-switched store-and-forward wide-area
network with general topology. The scheme consists of three parts: an establish-
ment, a scheduling and a rate control mechanism. During the establishment phase,
clients, that request a real-time service, are required to provide traffic characteristics
and performance requirements during the channel establishment. Those criteria are
matched to the capacity of the nodes on the establishment path. Each node is re-
quired to verify whether the acceptance of the new channel does not jeopardize the
guarantees provided to previously established channels. All nodes have two types of
traffic queues, one for regular traffic and one for real-time traffic, where all traffic is
ordered according to the packet deadlines. The latter has a higher priority and is
scheduled according to a variant of the Earliest Due-Date Scheduling scheme.

The rate control regulates both packets that arrive at a higher rate than predicted
and the jitter between packet arrivals. Assuming a packet arrives at its predeter-
mined time t0, then it will be assigned a deadline equal to t0 + di,n, where di,n
represents the local delay bound to channel i in node n. The associated eligible
time, that is, the time upon which the packet becomes eligible for transmission, is
in that case equal to t0 + di,n − Ji,n, where Ji,n is the local jitter bound assigned
to channel i in node n. If a packet arrives on time, the value of Ji,n is equal to
di,n and therefore, the packet becomes eligible upon its arrival. While the difference
between the eligible time and the deadline of a packet remains constant, the eligible
time can be increased when a packet arrives faster than expected, thereby shift-
ing the first transmission opportunity for the packet. Thanks to the combination
of the employed methods, the algorithm achieves a constant delay over the whole
transmission path, with only the jitter introduced by the last hop in the path.

Since CSMA/CD might incur unpredictable message delays due to the collisions, a
specific type of channel sharing is introduced in [146]. Instead of a CSMA type of
access, the discussion targets a TDMA type of access. The hard real-time processes
are assigned a complete slot, thereby ensuring a predictable delay, without any
collisions. However, assigning a full TDMA slot to the soft real-time processes,
would result in an inefficient use of the available resources. Time slots should be
dimensioned to cope with the largest packet possible, which automatically leads
to unused bandwidth in all other cases. Moreover, if a process is inactive or its
transmission queue is empty, its associated slot remains reserved, while being unused.
Therefore, the concept of a shared channel is defined, i.e., a slot which can be used
by a set of processes. Access to such channels needs to be scheduled, such that
collisions are avoided. No specific scheduler is proposed, since a wide range of
real-time communication methods for multiple-access networks can be applied. An
example is provided how the properties of one of the access methods of IEEE Std
802.11, that is, DCF, can be used to provide such access.

The algorithm, proposed in [147], provides hard real-time guarantees in the context
of Wireless Sensor Networks. The network is organized according to cells, where
Frequency Division Multiplexing (FDM) is used to prevent conflicts among neigh-
boring cells. All nodes constituting a single cell operate at the same frequency and
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are able to communicate with all nodes in the cell. Router nodes, which are able to
communicate at two different frequencies at the same time, are introduced in order
to enable inter-cell communication. The algorithm focuses on the intra-cell commu-
nication, that is, the communication within a cell. The time is divided into slots,
that is, TDMA is used to avoid collisions. The algorithm is specifically designed for
periodic hard real-time messages, where the periodicity of the messages is exploited
to avoid conflicts. All nodes in a cell have knowledge regarding the periodicity of
the messages of the other nodes. The message transmission, and therefore also the
node selection, is based on the Earliest Deadline First (EDF) scheduling. Since all
nodes are aware of the other nodes messages and periodicity, and are synchronized,
the scheduling mechanism can be performed in a distributed manner. If a node has
no more data to be sent, it includes such information in the last packet it sends,
which is captured by the nodes in the cell. The node which is next to be scheduled
can use this extra time to already start transmitting its packets. The protocol is
not dependent upon the reception of such last packet, it is merely an optimization.

The following article [148] claims to provide a real-time MAC for Wireless Sensor
Networks, called Virtual TDMA for Sensors (VTS). The network is organized into
cells or clusters, where the number of nodes comprising a single cell determines the
superframe length of the TDMA cycle. The nodes in a cell are unaware of any
superframe, since their communication and synchronization method is based upon
S-MAC [22]. A node sends out a control packet, which is called a sync packet
in S-MAC, and then waits until NC slots have passed until sending again data.
NC represents the local variable containing the number of neighbor nodes. A new
node that is willing to join the current cell is required to contend for the slot. If
it wins the contention, it can send in the slot. Since all nodes are aware of the
messages being sent, they can keep their local variable NC up to date, ensuring
they adhere to the superframe length. It is claimed that providing a single slot
for each node is more throughput efficient and provides an upper boundary to the
latency. However, the adaptiveness of the protocol results in potential contention
issues, such as described in Section 5.1. While the protocol ensures a deterministic
delay while the network is stable, that is, there is no change in the number of nodes
in a cell, it can not be classified as being a real-time MAC. The number of slots,
and therefore also the delay, is dependent on the number of nodes per cell, which
can be deemed unpredictable due to for example connection losses, battery failures
or node mobility.

The work presented in [149], RT-link, is targeted towards real-time wireless commu-
nication in industrial control, surveillance and inventory tracking. The algorithm
employs a fixed frame duration, which is composed in a similar manner as IEEE Std
802.15.4 [150] of a number of Scheduled Slots, i.e., only nodes that are assigned such
slot are allowed to transmit, and a number of Contention Slots, where all nodes can
contend for access to the medium. The beaconing mechanism, which triggers the
synchronization mechanism, is implemented by means of an additional AM receiver
for indoor operation, where an AM transmitter periodically emits a beacon, or an
atomic clock receiver for outdoor operation. During initialization, a node tries to

122



5.3. Related work

synchronize to the beacon signal. After a successful synchronization, a node con-
tends for access in one of the randomly chosen Contention Slots by skipping the
duration of the Scheduled Slots. A HELLO message is sent in such Contention
Slot, which is then forwarded to the central gateway, whose task it is to assign a
Scheduled Slot to the node. The scheduling of a Scheduled Slot is done by means
of a method for which knowledge of the global topology is required. The neighbor
lists of all nodes are taken into account to construct a connectivity and interference
map. Based upon these data sets, the slots of the nodes can be scheduled based on
k − hop coloring, such that when two nodes are assigned the same slot, the nodes
are separated by at least k + 1 hops. On top of this coloring, a search is initiated
for a minimum delay schedule, which is similar to the distance-two graph coloring
problem. The end result is a schedule where all data coming from the leaf nodes
reaches the gateway during a single TDMA cycle. The schedule also indicates at
which rate the nodes are allowed to send, that is, it specifies whether nodes are
allowed to send every frame, every two frames, every four frames, etc. by means of
a four bit rate index. The former procedure is only valid for fixed nodes. Mobile
nodes, on the other hand, are never scheduled due to their mobility. They only use
the Contention Slots by listening to neighboring fixed nodes and synchronizing tem-
porarily by taking into account the slot number of the overheard message. In such
manner, the start of the frame can be deduced and therefore also the start of the
Contention Slots, in which the mobile nodes contend for access. The algorithm is
implemented on the Nano-RK real-time Operating System, where every slot within
the TDMA frame is scheduled as a periodic task.

A Low-power real-time MAC protocol (LPRT) is proposed in [151], which disre-
gards network topologies based on multi-hop transfer methods, due to the latency
and throughput decimation that such methods impose. Instead, a star topology is
proposed, which can be extended by introducing multiple base stations, thereby cre-
ating a clustered network. Like in the previously discussed protocol, a fixed frame
length is adhered to and the frame is split into a number of slots defining a con-
tention period (CP) and a number of slots that constitute a contention free period
(CFP). The CP is used to allow stations to associate with the base station, as well
as to forward Non-real-time asynchronous traffic. A frame starts with a beacon
transmission, initiated by the base station, which contains information regarding
resource grants (RG), acknowledgements for packet arrivals during the last period,
etc. Based upon the RG, the nodes are able to identify in which slot during the CFP
either a transmission or reception is scheduled for them. An issue with such resource
allocation mechanism can arise when the link quality starts to drop, thereby causing
the loss of some beacon packets, such as also demonstrated in [152][153], which are
both improvements of the LPRT protocol. In the latest improvement, the resource
grant mechanism is adjusted such that the grant is not limited anymore to the cur-
rent cycle, instead it is valid until mentioned otherwise. However, while the protocol
targets real-time communication, the scheduling of the slots is not disclosed, making
it hard to determine whether real-time operation is supported.

A protocol called real-time MAC [154], based upon S-MAC [22], is claimed to provide
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real-time properties. Its goal is to remove the unpredictable latencies, accumulated
due to the unpredictable channel access times by the CSMA/CA medium access
method. The proposed method provides a solution for networks in which a single
communication is present in the entire network, that is, there is only a single sink
and a single source. In order to alleviate the uncertain latency issue, real-time MAC
makes use of a feedback control packet, called Clear Channel. The packet ensures
that the two-hop neighbors are prevented to transmit data, while further located
nodes are granted access to the medium. This protocol ensures a minimum latency
pipeline, where the next packet is not transmitted until the network is ready to
accept it without risking interference to packets further up the pipeline.

A considerable number of works, such as [61][64], consider alternative wakeup sched-
ules, where the wakeup periods of all nodes from the source to destination are shifted.
Such schedule ensures a reduced packet latency thanks to the ability of a packet to
traverse the complete tree in a single cycle, instead of a single hop per cycle. Such
skewed wakeup scheduling is also applied in [155], where the observation is made
that concurrent transmission from multiple children is disregarded in the design of
a schedule which is based on the level of the children. Therefore, the proposed algo-
rithm, SPEED-MAC, includes an extra step during which a short SIGNAL message
is sent to the parent before actually sending the data. The parent is able to de-
tect whether multiple children tried to send a SIGNAL packet at the same time,
since the signal signature of a collision has a regular and consistent signal strength
higher than the normal noise level. The parent forwards a SIGNAL packet to its
parent, wherein an indication is placed whether or not a collision occurred. Since
the children are able to overhear this packet transmission, they all have an idea
whether or not a collision occurred. When only a single child tried to access the
medium, the regular slotted transmission is applied. When multiple sources tried to
access the medium, SPEED-MAC employs a variation of CSMA/CA as in S-MAC
[22]. The protocol methodology requires the number of data slots and signal slots
to be equal to the depth of the routing tree. Such demand requires a stable network
operation, where a (semi-)fixed topology is expected. On the other hand, thanks to
the stability, the packet latency can be predicted accurately in the case of a single
source. Due to the possibility of having multiple sources transmitting concurrently,
an additional uncertainty is introduced, making the protocol only suitable for soft
real-time communications.

A work that is focused on Wireless Sensor Networks in a hard real-time context is
proposed in [156]. The protocol makes use of both pipelining and data aggrega-
tion to provide a better packet latency, while at the same time reducing the energy
consumption. The assumed network topology is a tree, where all sensors collect
data and forward it towards the sink node. To reduce the required time to forward
data and prevent interfering transmissions, multi-frequency access based on parent
relationship clustering is employed. Neighboring clusters are assigned different fre-
quencies to eliminate the possibility of interference. The frequency assignment to
the nodes is performed in several steps. First, Dijkstra’s algorithm is employed to
find the shortest path from each sensor to the sink. Each parent encountered is
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assigned a different reception frequency, thereby implicitly creating clusters consist-
ing of a parent and its children. Second, the number of frequencies is reduced by
means of graph coloring, while in the third step the number of frequencies is yet
to be reduced to the number of available channels. This last step is performed by
fusing clusters of the same level. A last step introduces a TDM between the nodes
of the same cluster, where each node is assigned a different slot. The optimization
of data aggregation and pipelining is achieved by aggregating the received packets
of the children and send such aggregated information during a single slot to its own
parent. The pipelining is achieved by having a skewed sleep schedule of parent and
children, such that the reception of the parent is synchronized with the transmission
of the children. While the parent is transmitting its information to its own parent,
its children are sleeping. It is claimed that such protocol design allows to ensure a
predictable packet delivery latency from sensor to the sink and therefore provides
guarantees for a hard real-time context. Such statement can be considered to be
true for a specific network setup, which remains stable. However, the latency is a
function of the network construction, that is, the number of levels in the tree, the
number of nodes in a cluster, the number of frequencies, the number of slots, etc.

5.4 GCD slot allocation

This section proposes a novel protocol, which initiates the discussion of a protocol
which allows a fair scheduling of slots. The proposed protocol is a conceptual de-
sign where a possible method to allocate slots to a sensor node is disclosed. The
approach provides the foundation for the protocol depicted in Section 5.5. The oper-
ation of the protocol has some things in common with [142], even though the related
work does not consider a Wireless Sensor Network. Both works require the nodes
to announce their traffic demands, also called the requested bandwidth, to nodes
which are assigned to relay messages to the base station, which is called the sink in
the case of WSNs. Moreover, in both works a common factor is sought in order to
reduce the scheduling length, which is the greatest common divisor (gcd) between
all requested bandwidths. It can also be claimed that the algorithms both assign
a sufficient number of slots, such that the demand for bandwidth is supplemented
on average. However, whereas the related work is a centralized scheduling protocol,
which requires a full overview of the section of the network it is responsible of, the
protocol discussed in this section and its improvement, discussed in the following
sections, are distributed scheduling protocols. Provided the relay nodes, also called
parent nodes, have sufficient bandwidth to assign the requested bandwidth, no in-
tervention from the sink is required. It is the responsibility of the parent nodes to
verify whether sufficient unused bandwidth is available and request for more band-
width to their respective parents when required. Note that the synchronization and
joining of a node to the network is out of scope of this discussion. Similar methods
such as discussed in [142] and Section 4.8 can be utilized to perform the synchro-
nization and coordinate the joining of nodes to the network. A trivial extension of
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the network association procedure, that is, the joining of the network, allows nodes
to inform their immediate parents of their bandwidth requirements.

Unlike the related work, the requested bandwidth is converted to a fractional value
representing the number of slots, or partial slots, required per frame to fulfill the
bandwidth demand. A bandwidth requirement which is lower than the bandwidth
provided by a single slot is approximated by allocating an integer number of full
slots in n frames over a total of m frames, where n < m. For example, a bandwidth
request of 300 bytes per frame, where the slot size is equal to 400 bytes can be
achieved by assigning a full slot during three frames, while the fourth frame some
other node may use the specific slot.

One of the considerations of the protocol is the undisrupted and stable operation of
the network. As such, the protocol makes use of a bandwidth allocation notification,
which is directed specifically towards a single node. The notification contains the
slot indexes and the frames in which the node is allowed to use the slot. The slot
assignment forms a repetitive pattern and repeats itself after a number of frames,
thereby ensuring that the schedule needs to be sent only once and does not disrupt
the already allocated slots. The number of frames that form a repetitive pattern
is called a cycle. One of the challenges to this approach is the dynamic behavior
of the network, where nodes are allowed to join and leave the network. In order
to guarantee the stability of the network, this protocol utilizes a greatest common
divisor (gcd) based slot assignment mechanism. All parent nodes maintain a list of
children and their requested bandwidths, which are stored in a fractional notation.
All fractions are reduced to lowest terms by calculating the gcd between the nomi-
nator and the denominator. Since the requested bandwidth of nodes is not deemed
identical, the denominators of the fractions are most likely different. Note that a
cycle of two frames where a node only transmits during a single slot and a frame
of six frames, where the same node transmits during three slots results in the same
throughput on average. By making this observation, it is clear that nodes can be
scheduled according to their fractional bandwidth request, even when a node with
a different request joins the network. The least common multiple (lcm) between
the denominators of the fractions from all children needs to be found in order to
ensure no interruptions in the execution of the already existing schedule. When all
fractions have equal denominators, the nominator indicates the number of frames in
which a slot is used, the denominator depicts the number of frames a cycle consists
of and the integer part indicates the number of full slots are used each frame.

Unlike the protocol in Section 4.8, this approach allows to use a flexible number
of nodes, provided that the total required bandwidth is lower than the available
bandwidth. Besides the flexibility, the protocol also ensures a controlled utilization
of the allocated bandwidth, ensuring that nodes are not assigned more bandwidth
than required. If a greatest common divisor (gcd) can be found between the different
bandwidth requests, which is divisible by the size of a slot, the fair scheduling of the
requested data throughput is trivial such that the allocated slots are dispersed. This
new approach allows for the maximization of the TDMA frame structure, thereby
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reducing the control overhead caused by synchronization and other control slots at
the start of a frame. Moreover, the data slots can be enlarged, thereby reducing the
overhead of the physical layer. Note that the length of a cycle is based on the lcm
of the denominators. Such approach shows promising results when the requested
bandwidths have a low lcm. However, for larger values, the cycle tends to become
too large, thereby creating a repetitive sequence which is too long to be contained
within the restricted space in the notification message. In order to remedy the issue,
a more sophisticated approach, which makes use of a series of fractions, is proposed
in the following sections. Since the following protocol is an enhancement of the
current protocol, the performance analysis and implementation are solely related to
the following protocol.

5.5 Fractional series based slot allocation

The goal of the newly proposed protocol discussed in this section is to provide a
periodic slot allocation, such that the requested bandwidth is closely approximated.
Like in the previous section, the slot allocation algorithm is based on the fractional
representation of the requested bandwidth per frame versus the available bandwidth
per slot. However, this algorithm makes use of a more refined method to determine
the slot and frame access, thereby resolving the encountered issues of previous dis-
cussion. Note that the discussion in this section and the analysis in the following
section are based on a theoretical model, which assumes a fluid flow, that is, the
arrival of data is assumed to be continuous in function of time. Since in reality it is
not possible to for example receive half a bit, the analysis on data arrival in bursts
considers more practical data arrival flows and the implementation of the protocol
on hardware takes into account the practical constraints. A similar methodology
is used in [157], where a theoretical model is proposed which also assumes a fluid
model. Afterwards the ideal model is relaxed during the implementation where
realistic constraints are taken into account.

The algorithm, which is to determine a schedule that complies to the specified de-
mands, needs to determine a common factor on which the repetitiveness of the
schedule can be founded. The requested bandwidth is key in determining this com-
mon factor. This section first elaborates on the general methodology to find such
common factor such that a periodic cycle is guaranteed. Besides the periodic cycle,
this methodology also provides the necessary means to construct a schedule where
the slot access of nodes is diffuse in time, without risking any slot allocation conflicts,
not even when new assignments are made.

The requested bandwidth that is required to service the nodes can also be expressed
as a fraction of the available bandwidth. In other words, the number of allocated
slots is proportional to the total number of available slots according to this frac-
tion. Every bandwidth request can be assigned a portion of the bandwidth in such
manner. An unfortunate element is that the requested bandwidths are not neces-
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sarily correlated, that is, it can happen that they have no common divider, or in
other words, the gcd (greatest common divider) of those bandwidths can be equal
to one. As a result, the appraoch employed in the previous section can not be used.
It might not be possible to deduce a repetitive pattern between the different slots,
which is constrained by the number of slots within a frame. In order to force a
common factor, all fractions of the available bandwidth could be approximated by
a unit fraction with a denominator equal to a power of two. The value of the unit
fraction should represent an equal or higher slice of the bandwidth than the value it
represents. As such, a combination of the different fractions is easily achieved, while
at the same time providing the opportunity for a dispersed slot allocation, without
resulting into conflicts. New slot allocations can be fit in the remaining space within
the existing schedule without disturbing the already allocated fractions. However,
this type of approximation towards unit fractions results in an excessive quantiza-
tion error, and therefore a waste of bandwidth. In order to minimize such error,
that is, to estimate the requested bandwidth as closely as possible, the fraction is
not represented by a single unit fraction, but by the sum of distinct unit fractions.
Such sum is called an Egyptian Fraction [158][159], where for this specific case each
of the unit fractions has a denominator equal to the power of two. As an example,
a fractional bandwidth equal to 4

10 can be approximated as the Egyptian Fraction
1
4 + 1

8 + 1
32 .

Interesting about this method is the split up of the requested bandwidth into higher
and lower frequency parts. A sensor gets access to the resource at least in periodic
intervals equal to the highest frequency. By interleaving the different fractions, a
sensor is ensured access to the resource at regular intervals. Furthermore, the calcu-
lation of the approximation of the requested bandwidth needs to be performed only
once, since further bandwidth requests will not interfere with the already allocated
bandwidths. Moreover, since the unit fractions can be considered as frequencies, it
is sufficient to specify the frequency and the initial starting point in order to deduce
the remainder of the allocation pattern.

In order to clarify the concept, the following example will demonstrate a possible
allocation procedure for the fraction 1

2 +
1
4 +

1
8 +

1
16 +

1
32 . The completed allocation is

depicted in Figure 5.3, which shows the allocated slots for each of the unit fractions.
The numbers in the slots represent the slot index modulo ten in order to improve
the readability. The most restrictive fraction to fit, is the one with the highest
frequency, which is 1

2 in this case. The fraction uses the resource half the time in
an interleaving way. The starting point for the fraction can be selected from two
possible slots, slot 0 and slot 1. When converted to binary code, the slots would be
identified as slot 00000 and slot 00001. In the figure, fraction 1

2 is scheduled at slot
0, the rule is to follow the path with the lowest index, which designates an available
fraction of 1

2 at slot 1 for the other fractions.

The next most restrictive fraction is 1
4 . When no other fractions constrict its alloca-

tion, it can be scheduled with a starting point in slots 0 (00000), 1 (00001), 2 (00010)
or 3 (00011) and an interval of four slots. Since fraction 1

2 is already allocated to
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Figure 5.3: Slot allocation for 1
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slot 0 and its interval is equal to two, both slot 0 and 2 are already allocated. The
remaining slots that could provide a valid starting point for fraction 1

4 are slots 1

(00001) and 3 (00011), of which the former is selected to allocate the fraction. The
other fractions are scheduled in a similar manner, resulting in the slot assignment
scheme depicted in the figure.

Note that thanks to the unit fractions having a denominator equal to a power of
two, the starting point selection can be represented as the traversal of a binary
search tree, such as depicted in Figure 5.4. The figure has marked the starting slots
and allocated bandwidth for the previously discussed allocation example of fraction
1
2 +

1
4 +

1
8 +

1
16 +

1
32 by means of red circles and colored thick lines respectively. The

binary codes on the right of the figure represents the slot index for each possible
starting slot and can be used to trace back the followed path in the binary search
tree. The use of a binary tree ensures that any additional fraction does not interfere
with the already scheduled fractions, but it also ensures that the fractions are equally
diffused over the available resources. The scheduling problem is therefore reduced
to merely following the path in a binary search tree from left to right and checking
whether the path is still free.
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Figure 5.4: Binary search tree

While the above discussed approach is able to provide an efficient method to ensure
a dispersed slot allocation without causing conflicts to previously allocated slots,
its application is insufficient in heterogeneous networks where nodes might have a
different bandwidth requirement. The previously discussed method assumes a min-
imum bandwidth requirement equal to a single slot, while in heterogeneous sensor
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networks some nodes might only need a fraction of the provided slot bandwidth.
Therefore the following discussion handles the specific slot allocation mechanism
that is to be used in a heterogeneous WSN.

Note that the requested bandwidth can be considered a fraction of the requested
bandwidth per frame over the total available amount of resources per slot. There-
fore, the requested bandwidth can be represented by a quotient and a remainder of
this fraction, where the quotient represents the number of slots per frame and the
remainder specifies a fraction of a slot. Moreover, the number of full slots can be con-
sidered as a fraction of the total number of slots in a frame. As such, there are two
fractions that can be scheduled according to the previously disclosed methodology.
When constraining the number of slots per frame to a power of two, the application
of the method to the full slots fraction is straightforward. This single constraint
ensures the quantization error is eliminated. As a result, any slot requirement can
be expressed by an Egyptian Fraction and be scheduled accordingly, without the
need to approximate the bandwidth request. The fractional slot request, that is,
the remainder of the fraction of the bandwidth request over the available bandwidth
per slot, needs to be processed in a different manner, since the request considers less
bandwidth than a single slot provides.

As already mentioned in the introduction, dynamic slot sizes are not supported.
However, a most accurate approximation of the requested bandwidth needs to be
achieved, even while the request is lower than the available bandwidth per slot. By
storing data in a local buffer, thereby aggregating the data into a single transmission
buffer, the node is able to wait a number of frames until it has sufficient data to
use a full slot. The methodology for the fractional slot requests is similar to the
above described method. First a full slot is selected by traversing the binary search
tree of the full slots. This slot is to be used as a shared resource by the different
children. The fractional slot request is approximated by means of the previously
described Egyptian Fraction, where the lowest possible denominator is constrained
in order to prevent infinite or very long sequences. By means of a binary search
tree, such as the one described above, the starting position of each unit fraction is
determined. Whereas the starting position for the full slots indicated the slot index,
here it indicates the frame index. The frequency of the unit fraction determines the
periodicity and interval of the selected frames. Therefore, usage of the shared slot
by the specific child is determined by the starting frame and interval of each unit
fraction constituting the fractional slot request. As such, the frequency of the node
to access the medium is at least equal to the highest frequency, that is, the highest
unit fraction, of the Egyptian Fraction. On the other hand, the denominator of
the lowest unit fraction determines the length of the cycle, which is the number of
frames that form a periodic cycle. The lowest possible fraction, i.e., the precision,
can be chosen at design time, depending on the requirements, as will be discussed in
the following sections. Note that the shared slot can be used by siblings in frames
where the node does not use the specific slot.

Note that the approximation of the bandwidth, which is expressed in two series of
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unit fractions, one for the quotient and one for the approximation of the remainder,
can also be expressed as a series of n unit fractions depicting the number of required
slots to supplicate for the requested bandwidth. As such, the approximation can be
expressed as:

R

S
≈

n
∑

i=0

1

2ai

(ai ∈ Z and ai < ai+1)

or

R

S
≈

n
∑

i=0

fi (with fi =
1

2ai

and fi > fi+1)

(5.13)

The parameters R and S represent the requested bandwidth and the slot size re-
spectively. R is expressed as bytes per frame, while S is expressed as number of
bytes. Therefore, the unit of the sum of fractions is 1

frames , that is, every fraction
signifies a frequency at which slots are scheduled. The values a0 . . . an denote the
exponents of the denominators that are expressed as a power of two for each of the
fractions, whereas 1

fi
denotes the interval, expressed in number of frames, between

successive slot schedules according to fraction fi.

While the start positions of the fractions was determined previously by traversing a
binary search tree, it can also be expressed as an equation. Equation 5.14 depicts
the start position, Fposk, of a fraction fk, expressed as the offset relative to the
start position of the first fraction, f0.

Fposk =











0 (k = 0)
k−1
∑

i=0

1

2

1

fi
(k > 0)

(5.14)

The parameter fi expresses the unit fractions within the approximation, sorted
according to the denominator values in ascending order. Knowing that the unit of
fi is 1

frames , the start position, Fposk, is expressed as the number of frames, implying
that the value is a fraction of a frame if an allocated slot is not shared. The equation
denotes that the offset is equal to half the sum of all periods of previous fractions.
From this can be derived that the start position of fraction fi occurs in the middle
of the period of fraction fi−1.

The allocation of the slots, that is, the start position assignment, is designed such
that the accumulation of the remaining bandwidth does not become higher than
two times the slot size. Every fraction results in the transmission of at least part of
the data, thereby failing to transmit all accumulated data. Such failure to send all
data can also be considered as a lack in bandwidth compared to the requested band-
width. The difference between the already supplied bandwidth and the requested
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bandwidth is defined as the remaining bandwidth Ri, which is for each fraction dif-
ferent. The bandwidth is expressed as number of bytes per time unit, which can also
be considered as the rate of the incoming data that needs to be transmitted. There-
fore, the accumulated data during the interval determined by the specific fraction
fi is equal to:

Ri

1

fi

At each periodic interval of fraction fi, data the size of a full slot S is transmitted,
thereby reducing the remaining accumulated data. As a result, the remaining accu-
mulated data after each scheduled slot that is allocated according to a fraction fi
equals:

Ri

1

fi
− S

Since the fraction indicates the frequency per frame, the remaining bandwidth per
frame due to the imprecision of fraction fi is therefore equal to:

Ri+1 = fi

(

Ri

1

fi
− S

)

(5.15)

Note that in the special case of fraction f0, the remaining bandwidth R0 equals the
requested bandwidth R.

The Equation 5.15) can be simplified by eliminating its dependency on its lower
term remaining bandwidth. It is known that:

Ri+1 = fi

(

Ri

1

fi
− S

)

and Ri = fi−1

(

Ri−1
1

fi−1
− S

)

Therefore, substitution of Ri in the equation for Ri+1 leads to the following equation:

Ri+1 = fi

(

fi−1

fi

(

Ri−1

fi−1
− S

)

− S

)

Substituting all Ri, with 0 < i results in:

Ri+1 = fi

(

fi−1

fi

(

· · · f0
f1

(

R0

f0
− S

)

− S · · ·
)

− S

)

By rewriting the previous equation and taking into consideration that R0 equals to
R, the following equation can be obtained:

Ri+1 = R− fiS − fi−1S · · · − f1S − f0S = R−
i
∑

j=0

fjS (5.16)

It is claimed that the slot assignment ensures that the amount of data arriving
during the slot scheduling interval of a fraction fi at a rate of Ri, the remaining
bandwidth, is not larger than two times the slot size. That is, it is claimed that:

Ri < 2fiS or
Ri

fi
< 2S (5.17)

132



5.5. Fractional series based slot allocation

with Ri being the remaining bandwidth per frame (bytes per frame), S denotes the
slot size and fi = 1

2ai
indicates the unit fraction. The proof of this statement is

provided here.

Proof:

The statement is proven by means of induction.

Step 1:

Since the approximation consists solely of unit fractions with a denominator equal
to the power of two and the scheduling algorithm of the slots according to the in-
dividual fractions is applied to a list of unit fractions sorted in ascending order of
denominator values. Therefore, the following expression is true when ai < ai+1:

n
∑

i=1

1

2ai

<
1

2a0

(ai ∈ N and ai < ai+1) (5.18)

Note that the approximation of the requested bandwidth can be expressed as:

R

S
=

n
∑

i=0

fi (with fi =
1

2ai

and fi > fi+1) (5.19)

The combination of both equations, Equation 5.18 and Equation 5.19, gives:

R

S
− f0 < f0 (with f0 =

1

2a0

)

~

w

�

R
1

f0
< 2S (5.20)

The remaining bandwidth, R0, is equal to the requested bandwidth, R, since f0 is
the first fraction. Thereby is proven that for a fraction f0 the equation holds.

Step 2:

In this step, the proof will indicate that the Equation 5.17 holds for a fraction fk+1

if it is assumed that the equation holds for a fraction fk. It is therefore assumed
that:

Rk

fk
< 2S (5.21)

Considering the remaining bandwidth, Rk+1, of the individual fraction, the accumu-
lated data during the interval determined by the slot schedule, allocated according
to fraction fk+1 is equal to:

Rk+1

fk+1
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From the remaining bandwidth equation (Equation 5.16), it is known that:

Rk+1 = R−
k
∑

i=0

fiS

Substitution of the variable leads to the following equation:

Rk+1

fk+1
=

1

fk+1

(

R−
k
∑

i=0

fiS

)

(5.22)

From Equation (5.13), it is known that:

R

S
≈

n
∑

i=0

fi

which can also be formulated as:

R

S
−

k
∑

i=0

fi ≈
n
∑

i=k+1

fi (with 0 < k < n) (5.23)

Since fi equals to 1
2ai

, with ai < ai+1, it is known that:

fk+1 >
n
∑

i=k+2

fi (5.24)

Since the approximation of fraction R/S either ensures an exact match or an even
higher bandwidth, the combination of Equation (5.23) and Equation (5.24) provides:

R

S
−

k
∑

i=0

fi < 2fk+1

which can also be written as:

1

fk+1

(

R−
k
∑

i=0

fiS

)

< 2S (5.25)

From Equation (5.22) and Equation (5.25), it can be concluded that:

Rk+1

fk+1
< 2S

Q.E.D.

This proof shows that during the time between the scheduled slots that are allocated
according to the same fraction, the size accumulation of the received data will remain
below the threshold of the capacity of two slots. As a result, after the scheduling of
the slot, the size of the remaining data, that arrived in that interval, will be lower
than the capacity of a single slot. This statement is key to the performance of the
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protocol. The approximation is composed out of a series of unit fractions, where each
fraction supplicates part of the requested bandwidth. Each fraction, which has a
lower frequency than any of the previous fractions, is used to maintain the remaining
bandwidth within bounds, such that by scheduling slots according to lower fractions,
the requested bandwidth can be supplied. This would not be possible if the received
data during a single interval, determined by one of the fractions, would exceed this
limit of two times the capacity of a slot.

Note also that according to the start position algorithm, Equation 5.14, the position
of each subsequent fraction fi is placed in the middle of the interval determined
by the previous fraction fi−1. Hence, the accumulated amount of data arriving
according to the remaining bandwidth, Ri−1, at the moment a slot is scheduled
according to fraction fi, is half the amount of data that arrives during a period

1
fi−1

, that is:

1

2

1

fi−1
Ri−1

From Equation 5.17 it is known that this amount is smaller than the slot size S.
Hence, the scheduling of a slot according to fraction fi results in a decrease of the
buffer size.

To clarify the employed methods an example of a slot allocation is provided. In this
fictive example, a frame consists of four slots, each with a bandwidth of four bytes
per second. The requested bandwidth is equal to nine bytes per second, which is
equivalent to 9/16th of the total bandwidth. In order to obtain the required number
of slots per frame, the requested bandwidth is represented as a fraction over the
available bandwidth per slot, i.e., 9/4. The approximation of the number of slots is
therefore expressed as 2+ 1

4 . The number of full slots is represented as a fraction of
the total available number of slots, that is, 2

4 . The Egyptian Fraction representation
consists of a single unit fraction, 1

2 and according to Equation 5.14, slot 0 is available
to be used as initial slot. Based on the periodic character of the fraction, a slot is
assigned to this node every two slots according to this fraction 1

2 .

The currently scheduled bandwidth is equal to 8
16 , which is insufficient. In order to

schedule the remaining 1
16 , first a shared slot needs to be determined by traversing

the binary tree or the equation. The slot that complies to the requirements is slot
1, as 1

2
1
f0

= 1, with f0 being 1
2 . The scheduling of the fraction 1

4 requires either the
traversal of the binary fraction allocation tree, which is a different tree than the slot
allocation tree, or by means of the equation, which shows that frame index 0 is the
first allocation that can be used for this fraction. Two cycles of the final allocation
result is shown in Figure 5.5, where the frame indexes are depicted at the top of
the figure and the slot indexes at the bottom. It can be noticed that the fraction 1

2

is scheduled starting from slot 0 and then every two slots for each frame, while the
fractional slot is scheduled in slot 1 in frames 0, 4, 8, . . . which results in a perfect fit
of the requested rate of 9/16th of the total available bandwidth.

Thanks to the Egyptian Fraction notation with a denominator equal to a power
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Figure 5.5: Allocation of 9/16 in a 4 slot period

of two, the slot assignment for both the full slots and the fractional slots can be
represented by binary code in a very efficient manner. By depicting each unit fraction
in terms of the lowest unit fraction, only a few bytes are required to encode this
information. For example, if the precision of the fractions is 128 (the lowest possible
fraction is 1/128), the sum of fractions 1/4 + 1/32 + 1/164 can be expressed as
(128 ∗ 1/4) + (128 ∗ 1/32) + (128 ∗ 1/64), or simplified as 32 + 4 + 2. The binary
representation of the sum is 0010 0110. Only a single byte is required to represent the
unit fractions that are comprised in the approximation. Each fraction is associated
with an initial slot and frame index. The size of the slot id is determined by the
number of slots within a frame, while the size of the frame index is constrained
by the precision of the fractions, that is, the lowest possible unit fraction. When
considering a frame consisting of eight slots and a fraction precision of 128, A single
byte is required to represent the fractions, 3+ 7 bits per fraction for the slot id and
the frame respectively. With a precision of 128, a maximum of seven fractions can
be obtained, which means 7 ∗ 10 + 7 bits, which is equal to 77 bits, this is 10 bytes
to send a complete assignment information. A similar slot allocation encoding can
be used to inform the children about the full slot allocation schedule.

Thanks to the representation of full slots by a series of unit fractions and consid-
ering each of them as a frequency, the discussed approach managed to create a
diffuse slot assignment in a trivial manner, without causing conflicts in earlier allo-
cated schedules. By approximating the remainder of the fraction of the requested
bandwidth over the total available bandwidth per slot as an Egyptian Fraction, a
similar method could be used to determine the frames in which a shared slot can be
scheduled, such that a precise approximation is made of the requested bandwidth.
The method makes use of data aggregation in order to store the gathered sensor
information in a buffer, until the data can be sent in the allocated slot, providing
a more efficient usage of the wireless medium. Besides the diffuse slot allocation
and the elimination of need for a conflict resolution method, the employed method
also reduces the control message overhead. A slot allocation needs to be sent only
once, during setup time and is able to operate autonomously for the remainder of
its lifetime, even while the remainder of the schedule might change significantly due
to extra bandwidth requests from other nodes. Since the method requires data to
be aggregated locally, this might have an impact on both the required local stor-
age and the latency of the data transmission. The following sections analyze the
performance of the protocol in more detail with regard to both parameters.
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5.6 Theoretical Scheduling Analysis

This section performs an analysis of the performance of the proposed scheduling
protocol from a theoretical viewpoint for both latency and buffer size. The latency
is defined as the time between the arrival of the measurement data at the node and
the transmission time of the packet containing this data. The buffer size is the size
of the memory required to store the data sufficiently long to be transmitted in the
next available slot. The analysis is considered to be theoretical, since the arrival of
the sensor measurement data is assumed to be a linear function in time, similar to
the bitwise round robin and GPS abstraction in [119] and [132]. However, thanks to
the abstraction, some valuable results can be derived from the analysis, which are
placed in the right perspective in the next sections, where a realistic data arrival
pattern is considered.

In order to allow examples and numerical comparisons in the discussion, the available
bandwidth of a single node is assumed to be 19200 bits per second, i.e., 2400 bytes
per second. A single frame is assumed to have a duration of a second. The analysis
considers for different number of slots the performance of the protocol for requested
rates ranging from a single byte to 2400 bytes per second. For each of the requested
rates a slot allocation is determined, of which the performance is determined by
simulating the progress of time. The resulting buffer size and latency are determined
based on the arrival time of the sensor measurements.

As the analysis will show, depending on the requested amount compared to the
maximum capacity, there are cases that are easier to understand than others. The
more trivial cases are those where the Egyptian Fraction notation consists of only a
few unit fractions. The more unit fractions are needed to form the approximation,
the more complex the analysis becomes. The discussion will first focus on a number
of cases that are rather easy to comprehend. Later on, an extrapolation of the
findings is done towards the more complicated approximations. In order to simplify
the notation of the fractions, the bandwidth request is expressed as the number of
required slots to supplicate it. For example, when a frame is divided in eight frames,
each with a bandwidth of 300 bytes per second, the request of 77 bytes per second,
that is, a bandwidth fraction of 77/2400, can be represented as 1/4 + 1/128. The
notation implies the usage of a single slot, which is shared by the two fractions. The
first fraction makes use of the slot for 1/4th of the time, while the other employs the
slot for 1/128th of the time. To convert this notation to the requested bandwidth,
the fractions need to be divided by the total number of slots per frame.

5.6.1 fewer-term slot allocations

This section discusses initially the more trivial bandwidth requests which result in a
Egyptian Fraction of maximum two terms, which will form an exact representation
of the requested bandwidth, that is, no approximation is required. The requested
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rate fractions 77/2400 and 79/2400 are investigated which are reduced to 1
4 + 1

128

and 1
4 + 1

64 respectively. Fractions with only a single term are not considered in
detail here, since they are too trivial to include in the discussion. The scheduled
slot is periodic and provides sufficient bandwidth to service the requesting node,
hence, the measured data only needs to be accumulated during the duration of the
periodic interval and the maximum buffer size is equal to the slot size. Series with
two terms are more interesting to analyze, since a single term is insufficient to service
the bandwidth request. A second term at a lower frequency is required to send the
remaining buffered data. The simulations in this section assume a frame with eight
slots of equal size, that is, each slot has a capacity of 300 bytes and a duration of
125 ms. The approximation of the fractional slots is limited to 128, i.e., the lowest
possible unit fraction has a denominator equal to 128. As a result, the maximum
cycle is composed of 128 frames or 1024 slots.

Note that the performance of the protocol with regard to the latency and buffer size
is influenced by the remaining data that has not been transmitted yet. Instead of
sending data as soon as it is available, the approach aggregates measured data in a
single buffer and allows to use the maximum slot bandwidth in order to maximize the
transmission efficiency. At the start of the simulation, no such data is buffered yet,
providing the impression of a better performance compared to when the protocol
is already operating for a certain time. In order to portray the performance in
a realistic manner, the analysis only considers the simulation information starting
from slot 1024, that is, after the maximum cycle size has passed.

The performance analysis is based on the theoretical arrival of the measurement
results from the sensor, compared to the flow of the packet transmissions. As pre-
viously noted, the theoretical flow is a linear function of the amount of measured
data over time. In order to clarify the definitions of latency and buffer size in this
chapter, Figure 5.6 depicts an example of both the theoretical and transmission
flow. The latency is the maximum time that the incoming data needs to wait before
being processed by the protocol. In other words, the latency is defined as the time
between the theoretical and the transmission flow. The buffer size can be defined as
the amount of data that needs to be stored, before a slot becomes available to send
the data.

The operation of the protocol allows nodes to utilize the slot capacity maximally.
The first analyzed bandwidth request is 77 bytes per frame, which is reduced to
1
4 +

1
128 , taking into account the slot size of 300 bytes. The fractional representation

implies the usage of only a single slot which is shared in time. The slot, slot 0, is
used for 1/4th+1/128th of the time by this specific node. The scheduling algorithm
provides that the initial frame of fraction 1

4 is at frame zero and the initial frame
of fraction 1

128 is at frame two. Thus, the node has access to the resource accord-
ing to fraction 1

4 at frames 0, 4, 8, 12, . . . and is allowed a transmission opportunity
according to fraction 1

128 at frames 2, 130, 258, . . . Note that the scheduling of a slot
according to the first term, fraction 1/4, provides a transmission rate which is just
below the requested bandwidth. The sensor data which was not transmitted dur-
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Figure 5.6: Latency and Buffer size definitions

ing the previous transmission opportunity is scheduled for transmission for the next
slot, along with new sensor data. At every scheduled transmission according to the
first term, the remaining measured sensor data accumulates, until the slot allocated
according to the second term can be used to transmit the remaining data.

The operation of the protocol is depicted in Figure 5.7 for the requested bandwidth of
77 bytes per frame. The dotted blue line represents the theoretical linear function of
the measured data arriving at 77 bytes per second, that is, the requested bandwidth,
and the red line is the result of the data transmissions that have been scheduled at the
designated slots. The step function of the transmissions indicates the employment of
the full capacity of the slot, while the linear function of requested amount continues
to accumulate data at a faster pace than the transmissions scheduled according to
the first term. Such operation can be observed until slot 2064 (indicated in the small
figure on the top left corner of the figure), which is the first slot of the 258th frame.
This slot has been reserved for transmission according to the second term, that is,
fraction 1

128 . These results show the intended operation of the protocol, there is a
kind of periodicity in the behavior of the protocol. The cycle length of 1024 slots
can be derived from the figure, which is the maximum allowed cycle length, based
on the specified number of slots per frame and the constraint of 128 on the minimal
term.

Since the allocation pattern results in a number of transmissions where an insufficient
amount of data is transmitted, the buffer size will continue to increase until a slot
allocated according to the following term of the series is encountered. Although
it is clear from the previous discussion that the intended operation is depicted in
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the results, to deduce the performance of the buffer size from the presented figure
is not trivial. Therefore, it is depicted in Figure 5.8, which depicts the buffer size
during the allocated slots for the request of 77 bytes, scheduled as 1

4 + 1
128 . The

duration of a single frame is one second, therefore, the slot allocated according to
fraction 1

4 is scheduled every four seconds. Since the slot capacity is 300 bytes, every
four seconds a transmission of 300 bytes can be executed, provided sufficient data is
available. However, the requested bandwidth demands for an average transmission
of 77 bytes per second, that is, 308 bytes per four seconds. Therefore, the slots
allocated according to fraction 1

4 do not provide sufficient capacity in order to meet
the requirement of 77 bytes per second. Assuming the measured sensor data is being
generated at a constant rate equal to the requested bandwidth, it can be said that
more data is arriving than is being transmitted in the scheduled slots for fraction 1

4 .
This clarifies the mechanics behind the increasing buffer size until the slot allocated
according to fraction 1

128 is scheduled. The scheduling of the last term resolves the
difference between fraction 1

4 and the theoretical linear rate function. As such, the
lowest fraction determines the interval of the periodic behavior where the buffer size
increases and decreases again.

As a comparison, the buffer size accumulation of the allocated slots according to
the derived schedule for a resource request of 79 bytes per second is depicted in Fig.
5.9. The bandwidth request of 79 bytes can be approximated by 1

4 + 1
64 , indicating

the scheduling of a single slot every four frames and an extra slot allocation every
64 frames. The results that are depicted in the figure confirm the influence of the
lowest term on the periodic interval of the cycle. The interval has a period of 512
slots, which is equal to 64 times a frame of eight slots. Note that the maximum
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buffer size is smaller compared to the maximum buffer size of the 77 bytes per
second schedule.

Based on the periodic behavior and the deterministic slot allocation method, it is
possible to predict the expected buffer usage requirements. By using the example of
a bandwidth request of 77 bytes per second, a method to determine the maximum
buffer size can be derived. The request is represented as a series of fractions 1

4 +
1

128 .
The fraction 1

4 indicates the scheduling of a single slot every four seconds, that
is, a transmission of 300 bytes every four seconds. Since the requested bandwidth
relates to an average transmission of 308 bytes per four seconds, during each of the
transmissions of a slot scheduled according to fraction 1

4 the buffer size increases
with eight bytes. Within the period of fraction 1

128 , the fraction 1
4 is scheduled 32

times, of which 31 result in an increase of the buffer size (See Fig 5.8). Therefore, the
accumulated data portion that has not been transmitted yet equals to 248 bytes (8
* 31). Note that on top of the excess data also a full slot of 300 bytes is generated by
the sensor measurements during each period of fraction 1

4 . Therefore, the maximum
buffer size is determined by both factors, that is, the slot size and the excess of
generated data. As a result, the maximum buffer size is equal to 548 bytes. Note
that this maximum value can also be found in Figure 5.8. Equation 5.26 depicts a
means to determine the maximum buffer size for an approximation series with two
terms, where f0 is the frequency of the first fraction and f1 the frequency of the
second fraction, R represents the requested bandwidth in bytes per second, and S

141



Chapter 5. Fair Scheduling MAC in Wireless Sensor Networks

 250

 300

 350

 400

 450

 500

 550

 1024  1280  1536  1792  2048  2304  2560  2816  3072

B
uf

fe
r 

si
ze

 (
B

yt
es

)

Slots

Figure 5.9: Buffer size of 79 Bps with 300B slots ( 1

4
+

1

64
)

stands for the slot size.

Max_buffer = S +

(

f0
f1
− 1

)

1

f0
(R − f0S) (5.26)

By employing the equation on the example of a bandwidth request of 77 bytes per
second, where f0 equals 1

4 , f1 equals 1
128 , R equals 77 and S equals 300, the following

equation would determine the maximum buffer size:

Max_buffer = 300 +

(

128

4
− 1

)

∗ 4
(

77− 300

4

)

= 300 + 31 ∗ 4 ∗ 2
= 300 + 248

= 548

(5.27)

From the results it is clear that it is possible to calculate the maximum buffer size,
based on the following parameters: the requested amount, the amount per slot and
the Egyptian Fraction that approximates the requested amount. Note that this
equation is only applicable to an approximation with two unit fractions. If only
a single fraction is needed to approximate the requested amount, there is always
sufficient capacity to transmit all data at once and thus the maximum buffer size
is always smaller than or equal to the slot size. When more than one fraction is
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required to approximate the requested bandwidth, a more elaborate equation is
required, taking into account all fractions within the approximation. The deduction
of a more general equation to calculate the maximum bandwidth will be shown in
the following section.
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The second parameter to determine the performance of the protocol is the latency.
The latency considers the first bit that was not yet transmitted and specifies the
time it needs to be stored locally before being transmitted. The maximum latency is
therefore in direct relation to the maximum buffer size, since the maximum latency
can be considered as the time required to receive a number of bytes, equal to the
maximum buffer size, at a rate conform the requested bandwidth. The direct relation
can be noticed in Figure 5.10, which depicts the latency for each allocated slot with
a bandwidth request of 77 bytes per second. Note the same behavior and periodic
interval as the buffer size. When using the example of a bandwidth request of
77 bytes per second, the following deduction can be made to determine the maximum
latency. It was already established that the maximum buffer size for this example
is equal to 548 bytes. The time needed to receive this amount of data at a rate of
77 bytes per second is 7116,88 ms. Note the equivalence with the maximum latency
depicted in the figure. Different bandwidth requests exhibit a similar behavior, such
as for example the latency for a bandwidth request of 79 bytes per second that also
has a similar curve of its latency as the curve of its buffer size. Interesting is the
direct relation to the buffer size and the latency, since the maximum buffer size
is deterministic. As such, the maximum experienced latency is also deterministic,
resulting in an upper bound for the latency and a predictable transmission pattern.
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5.6.2 Maximum buffer size for n-term slot allocations

Whereas the performance analysis in the previous section was limited to approxima-
tions of two terms, this section poses no limits to the number of terms. The general
principle of the protocol is the periodic allocation of slots such that the resulting
bandwidth is slightly too low to service the bandwidth request. The slot allocation
according to the last frequency is capable of compensating the difference. In the
previous section, only a single unit fraction was responsible for the bandwidth that
is slightly lower than the requested bandwidth. In this section, any number of unit
fractions might be combined to provide this bandwidth. Each of the fractions is
responsible for a section of the bandwidth, resulting in a lower increase in the buffer
size compared to when only the first fraction would be used. The derived equation
for the maximum bandwidth therefore needs to be extended to a more general equa-
tion which takes into account every possible fraction within the approximation. The
analysis starts with a comparable bandwidth and approximation, as the bandwidths
discussed in the previous section, that is, a bandwidth request of 95 bytes per sec-
ond which can be approximated by the series of fractions 1

4 +
1
16 +

1
128 . Afterwards,

bandwidth requests with more terms are discussed. Like in the previous section, the
frame is assumed to be composed of eight slots, each with a capacity of 300 bytes
per second.
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The theoretical linear function of the average requested bandwidth and the step
function representing the scheduled transmissions according to the protocol for a
bandwidth request of 95 bytes per second are depicted in Figure 5.11. The figure
indicates the more complex behavior of the protocol. The slots allocated according
to the first term, i.e., unit fraction 1

4 , result in a bandwidth which is too small to
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transmit all received data. With each interval according to the first term, more
and more data is accumulated in the buffer. By the slots allocated according to the
second term, most of this excess data is transmitted. However, the second term still
does not supply sufficient bandwidth, resulting again in an accumulation of the data
in the buffer, which is emptied completely during the slot scheduled according to
the last term.
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The operation of the protocol for this approximation can be more clearly noticed in
Figure 5.12, which depicts the buffer size for each of the allocated slots according to
the approximation of the request of 95 bytes per second. The figure clearly shows
the accumulation of the data in the buffer when only the transmission in the slots
allocated according to the first term is considered. The transmission of data in
the slot scheduled according to the second term reduces some of this excess data,
however not entirely. In order to make this statement clear, a section indicated by
a blue dotted rectangle is highlighted at the top of the figure. Since the fraction
1
4 is scheduled every four seconds starting from frame 0 and a frame duration is
equal to one second, the frames at 172, 176, 180, 184, 188, 192 and 196 seconds are
those frames where the shared slot is scheduled according to this fraction in the top
figure. The slots that are allocated according to fraction 1

16 have a periodic interval
of 16 seconds, i.e., the frames at 178 and 194 seconds are selected to schedule the
shared slot according to this fraction. Note that after the transmission in slot 1424
(frame 178), which is a slot allocated according to fraction 1

16 , a decrease in buffer
size can be noticed. However, the bandwidth provided by the allocated slots of
the second fraction is still not sufficient to compensate for the whole difference.
This leads to an increase of the buffer size with a certain amount every period of
the second fraction ( 1

16 ). The last fraction ( 1
128 ) is capable of compensating this
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difference and when it is scheduled, the buffer is emptied again. It is clear that the
maximum buffer size depends on the subtle interaction between the allocated slots
according to the different unit fractions.

The larger number of terms, especially for larger bandwidth requests, makes it harder
to analyze the process of data accumulation and transmission step by step. There-
fore, in order to derive a general equation that defines the maximum buffer size, the
relation between the maximum buffer size of all bandwidth requests is investigated.
As will be demonstrated in the following paragraphs, a recurring pattern can be
discerned based on the gathered information, which enables the calculation of the
maximum buffer size for any approximation, irrelevant of its number of terms.

 0

 200

 400

 600

 800

 1000

 1200

 0  500  1000  1500  2000

M
ax

im
um

 b
uf

fe
r 

si
ze

 (
by

te
s)

Requested bandwidth (bytes per second)

Figure 5.13: Max buffer size vs bandwidth request for 300B slots

Figure 5.13 depicts the maximum buffer size for all the possible integer bandwidth
requests constrained by a maximal capacity of 2400 bytes per second. The results
are based on a frame consisting of eight slots, each having a capacity of 300 bytes
per second. The worst buffer size which might be needed is a little over four buffers,
where each buffer is capable of offering sufficient space for a single slot, that is,
300 bytes. The bandwidth request which is responsible for the worst buffer size is a
request of 1999 bytes per second, which would result in a buffer size of 1214 bytes,
i.e., 4.04 buffers of 300 bytes.

Interesting to note is that the curve of the maximum buffer size contains some sec-
tions of which the pattern seems to be repeated, albeit not with the exact same
values. The investigation of a small section of the gathered data, depicted in Figure
5.14 , where the requested rates are limited between 150 and 230 bytes per second
, sheds some light on the discerned pattern. The full red lines in the figure indicate
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Figure 5.14: Section of max buffer size vs bandwidth request for 300B slots

the maximum buffer size encountered at the respective requested bandwidths. The
dotted blue lines is the binary representation of the unit fractions that the approx-
imation of the requested amount is composed of. The top blue line is the smallest
fraction ( 1

128 ), the next blue line is the double of the fraction of the previous line
and so on, until the bottom blue line is reached, which is fraction 1

4 . Note that the
fraction 1

2 is not shown here, since all the depicted bandwidth requests have this
fraction in their approximation and would be shown as a straight line in the figure,
which would not provide significant information. The composition of the approxi-
mations, that is, of which unit fractions the approximation consists, can be derived
from these lines. For example, the requested bandwidth of 185 bytes per second is
represented as 1

2 + 1
16 + 1

32 + 1
64 + 1

128 , while a bandwidth of 186 bytes per second
is represented as 1

2 + 1
8 .

It can be noticed that the more fractions are used to approximate the requested
bandwidth, the higher the maximum buffer size is. As can be expected, sequential
bandwidth requests that can be serviced by the same approximation depict a certain
increase in the maximum buffer size. Interesting to note is that the maximum buffer
size increases in a more steep gradient if an extra fraction is added to the approx-
imation. However, the main area of interest is the area where a sudden reduction
of the maximum buffer size can be observed, which happens when a single larger
fraction is used instead of a series of smaller unit fractions. This observation can be
made for example by comparing the bandwidth request of 185 bytes (approximated
as 1

2 + 1
16 + 1

32 + 1
64 + 1

128 ) and the bandwidth request of 186 bytes (approximated
as 1

2 + 1
8 ), indicated by the dotted pink rectangle in the figure. These observations

point out that each unit fraction of the approximation adds its own surplus to the
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maximum buffer size.

Based on these observations, it is possible to deduce a more general equation for the
maximum buffer size that not only holds for approximations with a limited number
of terms, but also for the more complicated ones. Equation 5.28 is the resulting
equation that calculates the maximum buffer size that can be encountered when
scheduling the requested bandwidth by means of the depicted protocol and when
the reception of the sensor measurements is modeled as a linear function. Therefore,
the maximal buffer size can be determined based on the following parameters: the re-
quested bandwidth (R), the number of bytes per slot (S), and the Egyptian Fraction
that approximates the requested bandwidth (f0 . . . fn). The equation is constructed
by means of the same rationale as in Section 5.6.1 on which the following proof
elaborates in detail in order to demonstrate the correctness of the equation.

if n = 0 :

Max_buffer = R
1

f0
if n > 0 :

Max_buffer = R
1

f0
+

n
∑

i=1

(

fi−1

fi
− 2

)

1

fi−1



R−
i−1
∑

j=0

fjS





(5.28)

Proof:

The proof consists of three steps, during which first the statement is proven for an
approximation consisting of a single fraction. The proof for an approximation com-
posed out of two fractions is shown next, after which finally the proof for n fractions
is provided.

Step 1: a single fraction

An approximation which consists of a single fraction f0 ensures a slot allocation
which has sufficient capacity to handle the transmission of the data according to
the bandwidth requirements. Since only a single fraction is required to allocate
slots, the accumulated data, collected during the interval between two subsequent
transmissions, can be sent at once. Therefore no excess data is generated and the
amount of accumulated data is equal to the maximum buffer size, which is equal to
the duration, that is, the interval of the fraction, 1

f0
, multiplied by the requested

bandwidth, R:

Max_buffer =
1

f0
R

This shows that the Equation 5.28 holds for an approximation consisting of a single
fraction.
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Step 2: two fractions

An approximation which consists of two fractions implies that the slots of size S,
allocated according to the first fraction, f0, do not provide sufficient capacity to
comply to the bandwidth requirement, R. After each transmission within a slot
that is scheduled according to f0, the amount of buffered data has increased with
the excess amount of data, that is, the amount of accumulated data during the in-
terval of fraction f0 that has not been transmitted. The amount of remaining data
after a period of 1

f0
can be expressed as:

Diff =
1

f0
R − S (5.29)

The increase in buffer size, due to the not yet transmitted amount of data, continues
until a slot according to the next fraction is scheduled. During this period which is
determined by fraction f1, in total f0

f1
slots are scheduled, that are allocated accord-

ing to fraction f0. During f0
f1
− 1 of the intervals between those slots the amount of

accumulated data increases with Diff. The maximum buffer size is therefore equal
to:

Max_buffer =S +

(

f0
f1
− 1

)

Diff

= S +

(

f0
f1
− 1

)(

1

f0
R− S

)

= S +
f0
f1

1

f0
R− f0

f1
S − 1

f0
R + S

=
1

f0
R+

(

2− f0
f1

)

S +
1

f0

(

f0
f1
− 2

)

R

=
1

f0
R+

(

f0
f1
− 2

)

1

f0

(

R − f0S

)

(5.30)

By means of this analysis, it is proven that Equation 5.28 holds for an approximation
composed out of two fractions, f0 + f1.

Note that the maximum buffer size equation can also be formulated as follows:

Max_buffer =S +

(

f0
f1
− 1

)

Diff

= S +

(

f0
f1
− 1

)(

1

f0
R− S

)

= S +
1

f1
R− f0

f1
S − 1

f0
R+ S

=
1

f1
(R− f0S)−

1

f0
R+ 2S

It is known from Equation 5.16 that the remaining bandwidth per frame R1 equals:

R1 = R− f0S
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Therefore, the equation can be written as:

Max_buffer =
1

f1
R1 −

1

f0
R+ 2S (5.31)

Note that 1
f1
R1 equals the accumulated data due to the remaining bandwidth per

frame for a duration specified by fraction f1.

Thanks to the operation of the initial slot positioning algorithm, the slot according
to fraction f1 is scheduled in the middle of the interval between slots scheduled
according to fraction f0, which results in the reception of data according to the
remaining bandwidth for only half the time of a regular interval according to fraction
f0. This ensures a momentarily shorter interval between transmissions. The amount
of data which is received according to the remaining bandwidth during the interval
before the next transmission is scheduled is equal to:

1

2

1

f0
R

Since the received data during the interval is lower than the slot size according to
Equation 5.17, a decrease of the buffer size is experienced. Note that on both sides
of the scheduled slot such decrease is encountered thanks to the reduced data arrival.
The scheduling of the fraction f1 is said to reduce the remaining bandwidth caused
by the difference between the requested bandwidth and the bandwidth fraction f0 is
capable of providing. The reduction in buffer size can be called an effort to comply
to the requested bandwidth and can be expressed as:

effort1 = 2

(

1

2

1

f0
R− S

)

=
1

f0
R − 2S (5.32)

Based on Equation 5.31 and Equation 5.32, it can be said that the maximum buffer
size is dependent on the remaining bandwidth for the duration specified by the
fraction, and the effort required to reduce the accumulated data:

Max_buffer =
1

f1
R1 − effort (5.33)

As previously discussed, the method of approximating the requested bandwidth into
a series of unit fractions is equivalent to splitting the requested bandwidth into a
series of smaller bandwidths. Each fraction corresponds to a specific bandwidth and
by allocating slots according to these fractions, part of the bandwidth requirement
is fulfilled. When viewing the process as an elimination of bandwidth requirements,
starting from the fraction with the highest frequency, then the remaining bandwidth
after the scheduling of the slots according to a fraction, should be lower than the
allocated bandwidth by this specific fraction. If this condition is not fulfilled, the
remaining fractions, each of which allocates a lower bandwidth than its predecessor,
will not be able to comply to the bandwidth requirements.
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As a result, the remaining bandwidth, Ri, in combination with the duration of the
slot scheduling interval, determined by the fraction fi according which the slots are
allocated, dictates the amount of data that could not be transmitted by the slot
allocations according to previous fractions. A consequence of this approach is the
increase of the buffer size during part of the interval due to the remaining bandwidth,
while the other part, the effort, ensures a decrease in buffer size. Since the effort
is a result of the scheduling of a slot according to the next fraction, the maximum
buffer size is reached at the moment where data is to be transmitted by the last slot
allocated according to fraction f0 before a slot is scheduled according to fraction f1.

Step 3: n fractions

In order to calculate the maximum buffer size, the approach from the previous step
is employed, that is, each of the fractions is considered to comply partially to the
requested bandwidth. Therefore, each of the fractions is partly responsible for the
data accumulation, which is emphasized by the remaining bandwidth for a duration
of the interval according to the fraction, and the effort to reduce the remaining
bandwidth. The maximum buffer size for n fractions can therefore be expressed as:

Max_buffer =
1

fn
Rn − effort

From Equation 5.16, it is known that the remaining bandwidth per frame, Rn, can
be expressed as:

Rn = R−
n−1
∑

i=0

fiS

Substitution provides the following equation for the maximum buffer size:

Max_buffer =
1

fn

(

R −
n−1
∑

i=0

fiS

)

− effort

It is known that the effort is a result of the scheduling of a slot, according to fn,
in the middle of two slots that are scheduled according to fn−1, i.e. it is a result of
the start positions of the fractions. The effort to reduce the remaining bandwidth is
a result of the collaboration of each individual fraction and can therefore be consid-
ered as a series of efforts, a single effort for each fraction. Since the starting position
of each of the fractions is located in the middle of the interval determined by the
previous fraction, each partial effort can be considered as a function of the previ-
ous fraction, the slot size and the remaining bandwidth per frame of the previous
fraction:

efforti = 2

(

1

2

1

fi−1
Ri−1 − S

)
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Therefore the sum of all partial efforts is formulated as:

effort = 2

(

1

2

1

f0
R0 − S

)

+ 2

(

1

2

1

f1
R1 − S

)

. . .

+ 2

(

1

2

1

fn−2
Rn−2 − S

)

+ 2

(

1

2

1

fn−1
Rn−1 − S

)

By using the equation of the remaining bandwidth per frame, Equation 5.16, the
effort can be presented as:

effort = 2

(

1

2

1

f0
R− S

)

+ 2

(

1

2

1

f1
(R− f0S)− S

)

. . .

+ 2

(

1

2

1

fn−2

(

R−
n−3
∑

i=0

fiS

)

− S

)

+ 2

(

1

2

1

fn−1

(

R−
n−2
∑

i=0

fiS

)

− S

)

Substitution of the effort in the equation for the maximum buffer size for n fractions
leads to:

Max_buffer =
1

fn

(

R−
n−1
∑

i=0

fiS

)

− 2

(

1

2

1

f0
R− S

)

− 2

(

1

2

1

f1
(R− f0S)− S

)

. . .

− 2

(

1

2

1

fn−2

(

R−
n−3
∑

i=0

fiS

)

− S

)

− 2

(

1

2

1

fn−1

(

R−
n−2
∑

i=0

fiS

)

− S

)
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Simplified, this results to:

Max_buffer =
1

fn

(

R −
n−1
∑

i=0

fiS

)

+ 2S − 1

f0
R

+ 2S − 1

f1
(R− f0S)

. . .

+ 2S − 1

fn−1

(

R−
n−2
∑

i=0

fiS

)

(5.34)

Note that the equation which needs to be proven, Equation 5.28, can be expanded
as follows for n fractions:
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As can be noticed, the deduced maximum buffer size of Equation 5.34 is identical
to the derived equation here, that is, the proof has been provided that for k fraction
the equation holds.

Q.E.D.

5.6.3 Maximum latency for n-term slot allocations

As already mentioned in Section 5.6.1, the maximum latency is in direct relation to
the maximum buffer size. When analyzing the bandwidth request of 95 bytes per
second which can be approximated by the series of fractions 1

4 +
1
16 +

1
128 , a similar

behavior is detected in the increase of latency in Figure 5.15 as in the accumulated
data of Figure 5.12. Note that the results are both based on a frame consisting of
eight slots, each having a capacity of 300 bytes per second. Since each fraction is
only capable of providing part of the requested bandwidth, the latency increases with
each scheduled slot according to the first fraction f0. The slots allocated according
to fraction f1 result in a temporary decrease in the latency, but the combination of
both fractions tends to provide insufficient bandwidth, thereby resulting in a steady
increase of the latency due to the backlog of data. Only after scheduling the last
fraction, the backlog of data is completely resolved and the cycle can start over
again.
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Note that while there is a clear correspondence between the buffer size and the
latency, there is also a significant difference. The maximum buffer size increases
when increasing the requested bandwidth from 77 bytes per second to 95 bytes
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per second. However, the maximum latency of the 95 bytes per second bandwidth
request is lower than that of the 77 bytes per second bandwidth request. Therefore,
although the maximum buffer size is larger for a higher requested rate, it could be
that the maximum latency is lower. This property is more closely analyzed in this
section.

It can be expected that the latency of the small requested amounts will be higher
than the larger amounts. Requests that present a lower bandwidth than the capacity
of a single slot is scheduled such that the resource is shared with other sensors. The
access to the resource is allowed once every x frames in order to provide the sensor
to collect a sufficient amount of data to ensure an efficient transmission. While a
superficial comparison of the latency of approximations where a clear difference can
be observed is relatively easy to accomplish, a more profound comparison of the
latency where the approximation exhibits more subtle differences is more difficult.
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Figure 5.16: Max latency vs bandwidth request for 300B slots

A more detailed analysis of the latency is possible by means of interpreting Figure
5.16, which depicts the maximum latency for all the possible integer bandwidth
requests constrained by a maximal capacity of 2400 bytes per second. Unlike the
behavior of the maximum buffer size, does the maximum latency tend to decrease
with an increasing requested bandwidth. The largest maximum latency, 128000 ms
or 128 seconds, is observed when requesting a bandwidth of one or two bytes per
second, with a frame duration of one second, split up in eight slots, and a slot size
of 300 bytes. Due to the relative large slot sizes and the long frame duration, such
latency is to be expected. A single slot is scheduled every 128 frames, where a frame
has a duration of one second. Note that the algorithm employs a boundary on the
precision of the approximation, such that the lowest possible unit fraction has a
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denominator of 128.

The function which depicts the maximum latency contains a quadratic element,
showing a steep descent of the maximum latency for the lower requested bandwidths.
As a result, a relative low maximum latency is obtained rather fast for the requested
amounts. The lowest maximum latency which can be observed is 250 ms, which is
equal to the duration of two slots. Since the highest possible unit fraction within
the approximation is equal to 1/2, the highest frequency a slot is scheduled on a
regular base is equal to half the number of slots. When taking into account the slot
positioning algorithm, according to which the slots are allocated in an interleaving
manner, it is clear that the lowest possible maximum latency is equal to two times
the slot duration.

Although the maximum latency is in direct relation to the maximum buffer size,
their connection is not immediately visible from the figures. A more detailed view,
as in Figure 5.17, reveals a similar behavior as the maximum buffer size. The figure
is a section (requested bandwidths between 150 and 230 bytes per second) of the
previous figure, which depicts the maximum latency with eight slots. The full red
lines indicate the maximum latency for that request,and the dotted blue lines is the
binary representation of the partial fractions that appear in the approximation of
the requested amount. The top blue line is the smallest fraction ( 1

128 ), the next blue
line is the double of the fraction of the previous line and so on, until the bottom
blue line, which is fraction 1

4 . Note that the fraction 1
2 is not shown here, since

all the depicted bandwidth requests have this fraction in their approximation and
would be depicted as a straight line in the figure, which would not provide significant
information.
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By examining the composition of the approximations, that is, of which unit fractions
the approximation consists, it is clear that even while the maximum latency is
descending with larger requested bandwidths, it exhibits increases in the maximum
latency when adding another fraction to the approximation, while a decrease is
noticed when replacing a series of fraction with only a single fraction. Like with
the maximum buffer size, the more fractions are used to approximate the requested
bandwidth, the higher the maximum latency might become. However, the maximum
latency is proportional to the maximum buffer size and reverse proportional to the
requested bandwidth, which is a linearly increasing function. Therefore, when higher
bandwidths are requested, the maximum latency might be lower. Small inclinations
can be observed when an extra fraction is added to the approximation, however,
the requested bandwidth has a large influence on the equation. For example, the
top maximum buffer size is at the request of 1999 bytes per second (with 8 slots),
while the maximum latency is small at that instance. The high bandwidth request
ensures the low maximum latency, since the large buffer is filled at a more rapid
pace, thereby resulting in a higher frequency of slots being scheduled to transmit
a message. As a consequence, in order to determine the maximum latency, the
maximum buffer size can be calculated according to Equation 5.28, from which the
maximum latency can be derived by dividing the result by the requested bandwidth.

5.6.4 Discussion

The previous discussions and Equation 5.28 show that the maximum buffer size,
and therefore also the maximum latency, is bounded and is therefore predictable.
Moreover, the algorithm allows for considerable fine tuning of the maximum buffer
size and maximum latency. A case where the waste of bandwidth is to be minimized,
but where large latencies are not considered important, could use approximations
where the bound of the lowest possible denominator is set very high. On the other
hand, in situations where a low latency is required and bandwidth could be sacrificed,
the bound on the lowest possible denominator is very low, that is, the approximation
becomes more coarse. Besides the accuracy of the approximation, other parameters
that influence the maximum latency, such as the slot size, the number of slots, etc.
are discussed in this section.

In order to control both the buffer size and the latency, the accuracy of the approx-
imation might be adjusted. The equation and the figures indicate the impact of
each of the fractions to the total maximum buffer size. Instead of using a series of
fractions to approximate the requested bandwidth, a single fraction, higher than the
sum of all partial fractions, can be used to comply to the request by controlling the
bound on the highest possible denominator. The reduction in number of fractions
leads to a reduction in both buffer size and latency. On the other hand, this results
in a higher waste of the available resources, hence, the bandwidth usage efficiency
drops. Figure 5.18 illustrates the effect of limiting the number of fractions on the
maxima of both the buffer size and latency in otherwise identical circumstances,
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Figure 5.18: Maxima with denominator limited to 1

16

that is, a frame with a capacity of 2400 bytes per second, split up into eight slots.
The figures depict the case where the highest denominator is limited to 16 instead
of 128, which was used in the previous subsections. It is clear that such limitation
successfully controls the maximum buffer size, which was reduced from more than
four times the size of a slot to less than three times the size of a slot. Otherwise it
can be noticed that the fine granularity of the figure has diminished, resulting in a
more coarse view. The improvement on the latency is not immediately noticeable,
since the figure depicts only the latency up to 5 seconds. However, one of the most
noticeable facts is the reduction of the maximum latency to merely 16 seconds in-
stead of 128 seconds. This is an immediate result of the limitation of the lowest
possible denominator. In general, lower latencies are observed, although it is not
explicitly clear from the figure since the requested bandwidth reduces the impact of
the reduction. The lowest maximum latency has not changed, however, the num-
ber of requested bandwidth that result in the lowest maximum latency has. The
limitation of the denominator ensures that more requested bandwidths result in the
lowest maximum latency.

Besides manipulating the number of fractions that an approximation consists of, the
slot size might be adjusted to adapt to the network circumstances. Large slots have
the advantage of efficient usage of the wireless medium, since each transmission of
data incurs some overhead in the preparation of the radio, and in the transmission
of a preamble and PHY header. When the network is designed for high bandwidth
sensors, the protocol still enables the low bandwidth sensors to send their data in
an efficient manner without wasting too much bandwidth. However, if all sensors in
the network only need to transmit a single byte per second, such large slots result in
a long buffering time. If the long latency for such small bandwidth requests poses an
issue, the number of slots per frame can be increased while maintaining the frame
duration. As a result, the size of the slots will be lowered.

By using a frame that is split into 16 slots, means that the slot capacity is halved
compared to the slot capacity used in the previous subsections. The capacity of
a single slot has therefore become 150 bytes per second. Figure 5.19 depicts the
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Figure 5.19: Maxima vs bandwidth request for 150B slots

maximum for both buffer size and latency as a function of the requested bandwidth
for a frame consisting of 16 slots. Note that the gradient and the accuracy of
the approximation is maintained while the maximum buffer size has lowered. The
requested bandwidths that required previously a shared slot which is scheduled
every two frames, are now satisfied with one full slot that is scheduled every frame.
The reduction in slot size leads to a decrease in the amount of data that needs
to be buffered, thereby shrinking the maximum buffer size. Although the absolute
maximum buffer size is reduced, note that the number of buffers, that can handle the
capacity of a single slot, has been slightly elevated. For a frame consisting of 16 slots,
the absolute maximum buffer size is 650 bytes, thus 4.33 buffers of 150 bytes are
needed to host this data. Like the buffer size, the latency is also positively influenced
by the smaller slot sizes. Where a sensor needed to collect data during two frames
before being allowed to transmit the gathered data, it can now send every frame its
collected data. As a result, the latency is also much lower when compared to a slot
size of 300 bytes.

5.7 Practical Scheduling Analysis

The previous section considered an analysis of the performance of the proposed
scheduling protocol from a theoretical viewpoint for both latency and buffer size.
The analysis regards the arrival time of the sensor measurement data as a linear
function in time, whereas in reality several bytes of data might be received at the
same time. The hardware performing the measurements could buffer a series of
measurements and transfer the set of measurements in a burst to the MCU. On the
other hand, the sensor might require multiple bytes to represent a single measure-
ment. However, thanks to the abstraction of previous section which introduces some
inaccuracies, an equation has been derived to ascertain the maximum buffer size for
a specific bandwidth request, which also enables the calculation of the maximum
latency. This section places these findings in the right perspective by inspecting the
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influence of a data arrival pattern in bursts for both the latency and the buffer size.
The section considers, like the previous sections, a frame capacity of 2400 bytes per
second, with a frame duration of one second. The frame is split into eight slots, each
having a capacity of 300 bytes per second. In order to verify the influence of data
arriving in bursts, the reception is simulated for a range of one byte to 2400 byte
bursts in order to verify the influence of the bursts on the buffer size, discussed in
the first subsection, and the influence on the latency, which is considered in the
second subsection.

5.7.1 Buffer size

Instead of considering the function for the data arrival as a linear function, the data
arrival is regarded as a discrete event, where possibly multiple bytes of data arrive
at the same time. Note that the collection of sensor measurements is considered as
a periodic event, where each time an equal amount of data is generated. The data
arrival can therefore be represented by a step function. When the step size of the
data arrival is infinitesimally small, the function representing the arrival approaches
a linear function, thereby showing no effect on the previously derived equation for
maximum buffer size and latency. As the step size increases, that is, the number
of bytes per burst increases, the delicate balance between the arriving data and the
transmitted data, which ensures the predictable maximum latency, might become
disturbed. Where the theoretical analysis considered a certain amount of data to
be available based on the linear function, it might happen that due to the bursts

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

 0
 500

 1000
 1500

 2000  0
 500

 1000
 1500

 2000

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

M
ax

im
um

 b
uf

fe
r 

si
ze

 (
by

te
s)

Requested Bandwidth (bytes per second)

Packet size (bytes)

Figure 5.20: Maximum buffer size vs the requested bandwidth and the packet size
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not all data has arrived yet at the time a new slot is scheduled for transmission.
Therefore, the capacity of the slot is not entirely used and more excess data remains
in the buffer than expected. In the worst case a slot is scheduled for transmission
while no data is available yet.

The influence of the data transmission in bursts on the maximum buffer size is
depicted in Figure 5.20 for bandwidth requests ranging from 1 to 2400 byte per
second and bursts, also referred to as packet sizes, ranging from 1 to 2400 bytes.
Although the figure only depicts two percent of the available information, necessary
to make the figure readable, it is clear that the larger the packet size, the higher the
maximum buffer size becomes. A closer inspection of the data shows certain combi-
nations of packet size and bandwidth request that produce a lower maximum buffer
size compared to other combinations. The patterns produced by these combinations
is more clearly depicted in Figure 5.21, where the maximum buffer size is shown as
a function of both the packet size and the requested bandwidth. The value of the
maximum buffer size is marked with a color code, where a darker pixel represents a
lower maximum buffer size. It can be noticed that for the same packet size, a higher
requested bandwidth requires a somewhat higher maximum buffer size, however
this effect is limited. A more important observation pertains to the lower maximum
buffer size along the path of certain vertical, horizontal and diagonal lines.

The vertical minima correspond to the maximum buffer size decrease thanks to the
approximation of the requested bandwidth as a larger fraction instead of a series
of small fractions, as discussed in Section 5.6. This shows that even though the
packet size influences the buffer size, the number of fractions still matter in the
determination of the maximum buffer size. This section does not go into detail
about this process, since this topic has been discussed extensively in the previous
section.

Whereas the vertical minima are clearly visible as a dark line, the horizontal minima
are harder to notice. This implies that the difference in maximum buffer size with its
surrounding values is not that large. Moreover, the improvement on the buffer size
is not always a fact for every requested bandwidth. The improvement is a result of
the relation between the packet size and the slot size. Intuitively it can be expected
that a positive influence is experienced when the packet size equals or is a multiple of
the slot size, since this minimizes the irregularity of the excess amount of data. The
simulations in this section employ a slot size equal to 300 bytes and every 300 bytes
increase in packet size such horizontal minimum is noticeable.

Both the vertical minima and the horizontal minima are depicted in Figure 5.22,
where the maximum buffer size is shown as a function of the requested bandwidth
for two different packet sizes, 1190 bytes and 1200 bytes. The vertical minima can
be easily noticed as they are represented by the lower maximum buffer sizes in the
figure. One of the horizontal minima is depicted as the maximum buffer size function
for a packet size with 1200 bytes. It can be noticed that while the other function has
a smaller packet size, its required maximum buffer size is larger for a large part of
the bandwidth requests. Note also the similarity between the flow with a packet size
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of 1190 bytes and the flow which was discussed in the previous section, that is a flow
for a packet size of a single byte. The higher maximum buffer size values excluded,
both flows show a very similar behavior as a function of the requested bandwidth,
for which both use the same approximation. The flow of the maximum buffer size
for a packet size of 1200 bytes on the other hand shows quantization effects from the
bursts. The effect is caused by the packet size which is a multiple of the slot size.
A similar effect is present at packet sizes for which the slot size forms a multiple.

The relation between the packet size and the slot size can be examined in further
detail in Figure 5.23, which depicts the maximum buffer size as a function of the
packet size for a fixed bandwidth request equal to 9 bytes per second. It is clear that
the previously established observation about the maximum buffer size increasing
with an increasing packet size is confirmed. Interesting to note is the repetitive
character of the maximum buffer size according to the packet size. Thanks to the
relation between the packet size and the slot size such cycle is possible. Note that the
requested bandwidth of 9 bytes per second is approximated by a single fraction, 1/32,
and as such the maximum buffer size is equal to 288 bytes according to Equation
5.28. Otherwise formulated, this means that every 32 seconds a slot for transmission
is scheduled, which has a capacity equal to 300 bytes. Therefore, when a packet size
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which equals 288 bytes is used, the maximum buffer size is equal to the packet size.
Note that the packet arrival time is determined both by the requested bandwidth
and the packet size. A packet with a size of 288 bytes will therefore arrive every
32 seconds. A packet with the size of 289 bytes will arrive just too late for the first
transmission opportunity. The received data, equal to the packet size is stored in the
transmission buffer until the next transmission opportunity, which is still before the
next packet arrival. As a result a super-cycle is formed of cycles, where packet arrival
shifts with respect from the scheduled slot time, until the two overlap again. Since
each cycle is capable of transmitting the accumulated data, the maximum buffer size
is equal to the packet size. Evidently, each packet size larger than 288 bytes and
smaller than or equal to the slot size fulfills this condition. A packet size which is
lower than 288 bytes results in a packet arrival which is too soon with an insufficient
amount of data. As a result, the packet arrival shifts in the backward position
with respect to the scheduled slot times, eventually resulting in the reception of a
packet twice during a cycle even before a transmission could have been scheduled.
Therefore, the maximum buffer size is increased in this occasion. Note that slot
sizes of which a multiple can be formed which is between 288 and 300 bytes, obtain
the same maximum bandwidth as their multiple.

Such pattern can be recognized in each of the packet size cycles, which are defined
by the slot size. For each of the packet sizes that are a multiple of the slot size,
the maximum buffer size is equal to the packet size. In a similar manner as the
mechanism for packet sizes lower than the slot size, the maximum buffer size is
determined by the packet size. Instead of presenting an equation which defines the
exact maximum buffer size, a lower and upper bound for the maximum buffer size
is provided, which are depicted in the figure as fu(x) = x+288 and fl(x) = x. The
maximum buffer size determined by Equation 5.28, called theoretical buffer size, also
represents the amount of data which is expected to be transmitted at the scheduled
slot. Therefore, it also determines whether or not a packet arrives multiple times
during a single cycle, that is, whether a larger buffer size is required. As a result,
the maximum buffer size can not be higher than the theoretical buffer size increased
with the packet size, as demonstrated by function fu(x). As a result of the bursts,
it is also clear that the maximum buffer size can not be lower than the packet size,
which is shown by function fl(x).

Note that these upper and lower boundaries also hold for both higher bandwidth
requests and approximations with more fractions. Both cases are depicted in Fig-
ure 5.24, where the bandwidth request of 95 bytes per second is approximated as
1
4 + 1

16 + 1
128 and the bandwidth request of 1200 bytes is approximated as 4, indi-

cating an allocation of four slots per frame. Due to the multiple fractions in the
approximation of a bandwidth request of 95 bytes per second, the lowest possible
maximum buffer size does not equal the packet size, which is clearly not the case
with the bandwidth request of 1200 bytes per second. Moreover, the multiple frac-
tions make the recognition of the pattern in the maximum buffer size as a function
of the packet size harder, although for the lower packet size it is still feasible.
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Figure 5.24: Maximum buffer size versus the packet size

The previous discussion considered the influence of the packet size on the maximum
buffer size for both a fixed packet size and a fixed bandwidth request. However, as
could be noticed in the 3D plot, certain combinations of the bandwidth request and
packet size ensure a lower maximum buffer size than others. The source for these
anomalies needs to be found in the cyclic character of the protocol. In Section 5.6
it was found that the buffer size increases and decreases during a single cycle, of
which the duration was determined by the lowest unit fraction contained within the
approximation. Due to the data arriving in bursts, a super-cycle is created, where
the increase and decrease of the buffer spans several cycles. As already could have
been noticed in the previous analysis, when the cycle duration is divisible by the
arrival time of the packets, a lower maximum buffer size is achieved. In such case,
the super-cycle duration is equal to the cycle duration. This observation can be
made in Figure 5.25, where the buffer size is depicted in function of the allocated
slots, which are proportional to time. The figure depicts a requested bandwidth
equal to 70 bytes per second, which can be approximated as 1

8 + 1
16 + 1

32 + 1
64 ,

and a data arrival in bursts of 280 bytes. Note that although the buffer is filled
immediately to its maximum and then decreases with each scheduled transmission,
the cycle duration remains the same as with the theoretical linear arrival of the data.

Interesting is the predictability of the duration of the super-cycle, for which an
equation can be derived. In order to determine the number of cycles a super-cycle is
composed of, the common factors between the packet size P , requested bandwidth
R and the duration of the cycle D need to be determined. A popular common factor
which allows to specify a measure of divisibility is the greatest common divisor (gcd).
Between each of the parameters, the gcd can be easily determined and can be used
to express their relationship. The packet size can therefore be expressed as follows:

P = x gcd(R,P )

Note that the arrival time of the packets can be expressed in terms of the packet
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Figure 5.25: Buffer size of 70Bps with 300B slots and bursts of 280B

size and the requested bandwidth as:

arr_time =
P

R
=

x gcd(R,P )

R

The relation of the cycle duration and the packet arrival time is the topic of inter-
est, which can provide valuable information. If the cycle duration is divisible by
the arrival time, then the super-cycle consists of only a single cycle, which can be
expressed by:

modulo(D, arr_time) = 0

A different notation to represent the demand that the cycle is divisible by the arrival
time is:

D
∣

∣ arr_time

By means of substitution the following equation is obtained:

DR
∣

∣

∣x gcd
(

R,P
)

From this equation, it is known that R is divisible by gcd(R,P ) and therefore DR

is divisible by xgcd(R,P ) if DR is divisible by x. The relation between x and D

can be expressed as follows:

x = y gcd(D, x)

Therefore, the demand that the cycle is divisible by the arrival time can be expressed
as:

DR
∣

∣ y gcd
(

D, x
)

gcd
(

R,P
)
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As a result, it can be said that the scheduling period is divisible by the arrival time
if y equals to one. Even more, y represents the number of cycles the super-cycle
consists of. It is known that P and x can be represented respectively as:

P = y ∗ gcd(D, x) ∗ gcd(R,P ) and x =
P

gcd(R,P )

Therefore, in order to determine the value of y, the following equation can be derived:

y =
1

gcd

(

D,
P

gcd (R,P )

) ∗ P

gcd (R,P )
(5.35)
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Figure 5.26: Buffer size of 77Bps with 300B slots and bursts of 280B

As can be noticed, the number of cycles contained within a super-cycle depends on
the packet size, the requested bandwidth and the duration of the cycle. As a result,
the combinations of the requested bandwidth and the packet size that result in a
super-cycle containing only a single cycle, and thereby a lower maximum buffer size,
are discerned as the diagonal minima in the 3D plot. In order to show the effect of
the number of cycles within a super-cycle on the buffer size, it is depicted in Figures
5.25 and 5.26 for requested bandwidths respectively equal to 70 and 77 bytes per
second and a packet size of 280 bytes for both simulations. The bandwidth request of
70 bytes is approximated as the series of fractions 1

8+
1
16+

1
32+

1
64 , while the request of

77 bytes per second is approximated as 1
4 +

1
128 . The approximations for a requested

bandwidth of 70 bytes per seconds and 77 bytes per second have a cycle duration of
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64 seconds and 128 seconds respectively. According to Equation 5.35, the number of
cycles within the super-cycle for the requested bandwidth of 70 bytes per second is
equal to one, since gcd(R,P ) = gcd(70, 280) = 70, P/gcd(R,P ) = 280/70 = 4 and
gcd(D,P/gcd(R,P )) = gcd(64, 4) = 4, resulting therefore in the number of cycles
within the super-cycle equal to 4/4 = 1. This is evident from Figure 5.25, where
all 280 bytes are transmitted within a single cycle. On the other hand, for the
requested buffer size of 77 bytes per second, the number of cycles within a super-
cycle is equal to five. The gcd(R,P ) = gcd(77, 280) = 7, P/gcd(R,P ) = 280/7 = 40

and gcd(D,P/gcd(R,P )) = gcd(128, 40) = 8, thereby resulting in a number of cycles
equal to 40/8 = 5. In Figure 5.26 it is clear that while the cycle duration is 1024
slots, determined by the lowest unit fraction, the super-cycle has a duration of 5120
slots, which is five times the cycle duration. It can also be noticed that due to the
increased duration of the periodic cycle, the maximum buffer size increases. The
arrival timings of the data does not match with the scheduled transmission slots
according to the unit fractions of the approximations. As a result, the packet arrival
might occur two times during one of the cycles, generating an excess of data, which
otherwise would have been transmitted in a regular pace.

5.7.2 Latency

The previous subsection showed an extensive analysis of the maximum buffer size
in an environment where the data arrives in bursts. Because of the direct relation
between the maximum buffer size and the maximum latency, which was already
established in Section 5.6, the analysis of the influence of the packet size on the
maximum latency remains limited. The analysis in this subsection is also performed
with a frame capacity of 2400 bytes per second, eight slots per frame and packet
sizes ranging from one byte to 2400 bytes. An all encompassing result can be seen in
Figure 5.27, which depicts the logarithmic function of the maximum latency over the
requested bandwidth and the packet size. The maximum latency is represented in a
logarithmic scale in order to highlight the details of the upper bandwidth requests.
Note that the figure includes only 2% of the available information in order to increase
the readability.

It can be observed that irrespective of the packet size, a lower bandwidth request
results in a higher maximum latency due to the long duration of the cycle. Moreover,
as with the maximum buffer size, does an increasing packet size negatively influence
the maximum latency. However, the impact of the packet size is more pronounced in
the maximum latency for lower bandwidth requests. The same packet size results in
a larger increase for low bandwidth requests. Besides the most obvious observations,
it can also be noticed that the maximum latency exhibits similar paths representing
minima in the horizontal, vertical and diagonal direction, as with the maximum
buffer size.

The vertical minima are a result of the reduction of the number of fractions used to
approximate the requested bandwidth. The maximum latency in function of the re-
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Figure 5.27: Maximum latency vs the requested bandwidth and the packet size
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quested bandwidth is depicted in Figure 5.28, where the maximum latency is shown
for two fixed packet sizes, 300 bytes and 1200 bytes. Although the packet size in-
fluences the maximum latency, the composition of the approximation is controlling
the relative maximum latency values. Note also that the packet size is having a
larger impact on the maximum latency for lower bandwidth requests. The maxi-
mum latency can be derived from the maximum buffer size by means of a division
by the bandwidth request. Since the maximum buffer size does not experience a
large difference between low bandwidth requests and high bandwidth requests, irre-
spectively from the packet size, the maximum latency for higher bandwidth requests
experiences a lower increase due to the packet size.
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Figure 5.29: Maximum latency vs the packet size, 600Bps and 1200Bps bandwidth

The horizontal paths that represent packet sizes for which the maximum latency
is lower than in its surrounding packet sizes are a consequence of the divisibility
of the packet size by the slot size. The minima are shown clearly in Figure 5.29,
which depicts the maximum latency in function of the packet size for two different
bandwidth requests, 600 bytes per second and 1200 bytes per second. The minima
are visible when the packet size is a multiple of the slot size. Since the arrival time
of the packet size matches with the scheduled slot time according to the theoretical
linear arrival function, no excess data is generated and therefore also no extra delays.
A similar reasoning can be followed when considering packet sizes for which the slot
size is a multiple, which is also clearly depicted in the figure. Note that the maximum
latency of the different bandwidth requests follow a different gradient, indicating the
influence of the bandwidth request in the impact of the packet size.

The diagonal minima, are like in the maximum buffer size case, a consequence of
certain combination according to which a minimum is reached. The combinations
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which ensure a super-cycle consisting of only a single cycle lead to the lowest maxi-
mum latencies. The Equation 5.35 can be used to determine these combinations.

5.8 Networked Scheduling Analysis

The previous sections brought an analysis of the performance of the allocated slot
schedule according to the protocol for both a theoretical linear data arrival and a
data arrival in bursts. However, the analysis remained limited to the specific sensor
node, even though the protocol is specifically designed to operate in a networked en-
vironment, thereby reducing the amount of overhead, taking into account the lossy
character of the wireless medium, etc. By ensuring that nodes need to be informed
about their slot allocation only once, the protocol creates an environment where the
new nodes do not interfere with the existing schedule and the established schedule
does not need to be modified to accomplish the allocation for newer nodes. More-
over, the schedule allows both high throughput sensor nodes and low throughput
sensor nodes to coexist in a fair manner in the same network, without affecting
the efficiency or network performance. This section investigates the fairness of the
protocol between different sensor nodes by simulating a network environment. Note
that the analysis of the performance of the scheduling protocol in a network environ-
ment remains on a superficial level. A simulation environment is created according
to a model representing the real life situation. However, the model often intro-
duces some abstraction, simplification or assumption such that the results do not
perfectly match with the reality, although a general idea can be derived from the re-
sults. Since the following section discusses the implementation and experimentation
of the scheduling protocol on sensor devices, this section is limited to a rudimentary
discussion.
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7 8 9 10 11 12 13 14

Figure 5.30: The network topology and node numbering

The created simulation setup considers a tree based slotted network, such as depicted
in Figure 5.30, where the slot allocation is grouped into frames, which are equally
sized. In order to approximate the reality as closely as possible, the arrival, and
therefore also the bandwidth request, of new nodes is included in the simulation. The
joining of a sensor is established by informing its closest neighbor of the requested
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bandwidth. The neighboring node, which will act as the future parent of the joining
node, determines whether it requires more bandwidth, or is capable of supplying the
requested bandwidth by the already available resources. Either way, the parent node
informs its own parent of the additional bandwidth it will need to transmit, along
with any possible additional resource request to supplicate its recently acquired
child. All nodes contact their respective parent, until the root node receives the
update on the bandwidth usage of its own child. Note that the root is not aware of
all individual bandwidth requests, just the required bandwidth its child needs. The
root node determines the slot allocation according to the newly requested bandwidth
and forwards the information to its child, which allocates half of the slots for itself
and half for its child. This process continues until the recently joined sensor node
has received a slot allocation schedule. Note that if a parent node is capable of
supplying sufficient bandwidth to the child, it determines the slot allocation based
on its available resources without the assistance of the root node. Interesting about
this protocol is the amount of data that is required to inform the sensors about the
slot assignment. The slot index and frame index of the first to be scheduled slot
suffices if the periodicity of the slot allocation is known. Therefore, for each fraction,
the frame and slot index of the first scheduled slot needs to be provided such that
nodes are capable of determining the slot allocation based on the local information.
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Figure 5.31: Received data originating from node 7 at a rate of 70Bps

The simulations in this section assume a physical throughput of maximum 19200 bits
per second, that is 2400 bytes per second. A frame is considered to have a duration
of one second and is split up into a total of 32 slots, each therefore having a capacity
of 75 bytes per second. In the depicted setup, all eight leaf sensor nodes generate
data at an equal data rate, which ranges from one byte per second to 75 bytes
per second. This section is focused solely on the theoretical performance of the
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scheduling protocol in a network and therefore assumes that all data from children
can be aggregated. The aggregation respects the size of the received data, however,
it disregards any possible additional header information which is required to discern
the data from the different nodes. The practical issues regarding the aggregation are
for the moment ignored. The following section will consider an alternative approach,
thereby taking into account the practical limitations.

The analysis of the influence of the network operation on the performance of the
protocol consists of the verification of the data reception pattern on the one hand
and the study of the latency on the other hand. The data reception pattern of the
analysis is depicted in Figure 5.31, which shows the arrival times of the data for
all sensor nodes on the path from sensor node 7 (n7) to the root node (n0) for a
data source generating information at a rate of 70 bytes per second. The step events
indicate the time at which the first byte is received. Since the node 7 needs to gather
the data in a steady pace, the plot shows a certain duration before the packet is
received at the parent node. Thanks to the equal distribution of the allocation to
slots, also among different levels in the tree, a gradual and reliable reception of the
data is ensured, which follows the slot allocation schedule.
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Figure 5.32: The received data from the perspective of nodes 3 and 0

Note that the former figure considered only the data which originated from node 7.
The Figure 5.32 shows the scheduling of the data at node 3, which receives data
from only two children, and the data at the root node, which receives all data. The
first subfigure depicts the transmitted data from both node 7 and node 8, for which
node 3 acts as parent. It is clear that both sensors transmit their data around the
same time with respect to the duration of the cycle. While both nodes are assigned
an equal number of slots, the offset of both schedules, that is, the offset of the
initial slot, is equal to half the period. As a result, the data from node 7 arrives
at first earlier than the data from node 8 and after half the period, this relation is
switched, where the data from node 8 is arriving earlier. On average, both nodes
are considered to transmit an equal amount of data during a certain time interval.
The right subfigure of Figure 5.32 depicts all transmitted data being received at
the root node. Note that even though more data is available, the resulting schedule
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maintains the fairness and when data is at first arriving sooner than other data, the
order in which data is received rotates, such that in the end the root has received
an equal amount of data from all nodes.

The influence of the network operation on the latency is analyzed in Figure 5.33,
where the maximum latency of the data originating from sensor node 7 is depicted
in the left figure and the maximum latency from all data on the right figure. A
distinction is made in the type of latency based on its cause. The scheduling latency
is the maximum latency introduced by the operation of the protocol, previously
discussed in 5.6. The network latency is the maximum latency experienced due to
the transfer of the data from the originating node to the root node, and the total
latency is considered the sum of both latencies. Note that when comparing the
actually obtained scheduling latency with the theoretical maximum latency for a
frame consisting of 32 slots, a large resemblance can be found. The network latency
is a result of subtracting the scheduling latency from the total measured latency.
Note that the impact of the network latency decreases with an increasing requested
bandwidth, like the scheduling latency. When deriving the network latency from all
data flows received at the root node, depicted at the right of the figure, it can be
noticed that the network latency for all data flows exhibits a rather similar behavior.
Therefore, it can be said that the network latency can vary, but on average, is deemed
to follow a similar behavior.
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Figure 5.33: Maximum latency vs the bandwidth request

5.9 Realistic Scheduling Analysis

The previous sections focused on the description and analysis of the slot allocation
protocol, where the analysis consisted of simulations where certain assumptions
or abstractions were made in order the maintain the focus on the performance of
the protocol, and therefore do not represent an exact model of the reality. As
such, the simulated network did not consider any overhead due to the required
synchronization, and did not include the overhead of preambles, message headers
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or switching times. The available bandwidth was entirely used for the transmission
of data. This section will discuss not only a realistic implementation of the slot
scheduling protocol, but will incorporate it into a complete system, which ensures
synchronization, provides methods for joining and leaving nodes, and ensures an
autonomous operation, including the self-sufficient construction of the spanning tree.

The entire TDMA protocol is designed for and executed on TelosB sensor nodes
[160], which are already extensively discussed in Section 4.5.2 within the context
of time synchronization. The implementation is constructed within TinyOS [161],
which is a set of modules, comprised of a work scheduler and a collection of drivers
for several commonly used sensor platforms. The entire code base is written in
nesC, a dialect of C. More information about TinyOS can be found on the Wiki
page. This section will not disclose the details of the implementation in TinyOS,
since this would be out of the scope of this chapter, while the added value remains
questionable. However, a global overview of the implementation and the operation
of the protocol on a hardware platform will be provided, especially when the design
choices are related to the adjustment of the protocol to the real life conditions.

Note that the previous section assumed aggregation of the data, where the amount
of data was respected but no overhead was introduced. In reality, the aggregation
of the data leads to some negative effects. A trivial downside of the combination
of the data from two sources into a single packet is the required overhead to be
able to discern the amount of data and source of the data at reception at the root
node. Since the bandwidth request is approximated as precisely as possible in the
slot allocation, no or little room remains available to safeguard the operation of
the protocol while providing bandwidth for the overhead. The aggregated data
and the additional overhead could result in a total amount of data which is too
large to be comprised within a single packet, thereby requiring the fragmentation
of the packets and thus an additional overhead with regards to the data header.
Such operation would lead to higher latencies, thereby impairing the determinism
of the slot allocation protocol. Additionally, the overhead might accumulate over
the different levels of the tree, by the aggregation of aggregated packets. With each
level, the number of bytes that can be effectively used for data is reduced due to the
aggregation overhead. A second disadvantage of the aggregation is the transmission
time. The scheduling protocol is deterministic, such that a node is aware of the
scheduled receptions. Therefore, even before the packet has been received, the
sensor node is capable of preparing a transmission which needs to be scheduled
in the future. Even if the transmission slot is right after the reception slot, such
operation is feasible. On the other hand, when aggregation is being employed, the
data needs to be copied in the corresponding transmit buffer, the header needs to be
adjusted, etc. As a result, aggregation would diminish the efficiency of the system
in terms of latency. Therefore, the implementation relinquishes aggregation and
transmits every packet as it was received at the cost of a less efficient bandwidth
usage. The data of two children requesting half a slot per frame could be transmitted
in a single slot per frame in theory, but due to the previously discussed issues, the
parent node requires a slot per frame for each of the children. This design easily
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leads to a waste of bandwidth when having a tree with a huge number of levels.
Therefore, the experimentation in this section only considers a specific type of tree,
that is, a star topology, even though the design is not limited to such constraints.

In the remainder of this section first the design of the protocol is discussed, which
includes the synchronization, the identification of messages and the autonomous net-
work operation. Afterwards, the performance section elaborates on the experiments
and the obtained results.

5.9.1 The design

The TDMA protocol should provide a means to synchronize the nodes, construct
the spanning tree such that the most suitable neighbors are selected as parent nodes,
ensure the allocation of slots according to the slot allocation algorithm while taking
into account the required switching time between TX,RX and idle states, the trans-
mission preamble and the data headers, etc. The control functions of the TDMA
protocol is partly based on the functionality which was discussed in 4.8, where the
implementation was based on the Magnetic Induction Radio ASIC (MIRA). Whereas
the MIRA provided an internal task scheduler and related superframe counter, the
TelosB platform does not support these functionalities in hardware. Therefore, a
TDMA scheduler module is designed in software alongside a superframe counter in
order to support the accurate scheduling of tasks such as a transmission or receive
order. Each task is associated with a start time, relative to the superframe counter,
a duration and task specific information. Since the precision of the scheduling of
the transmission and reception is critical for a reliable operation, the incremental
operation of the superframe counter needs to be as precise as possible. Therefore,
instead of using the internal clock with a higher resolution, the more stable external
32 kHz crystal is used as clock source, which provides an accuracy that is near to
the time required to transmit a single byte. By means of this clock source, only a
small synchronization correction is required every four seconds.

The synchronization mechanism used in this implementation was already discussed
in 4.8 for the Magnetic Induction Radio ASIC. For the TelosB platform, the syn-
chronization would induce the synchronization of the superframe counters of both
nodes. Basically, the transmission opportunity is fragmented in slots, of which a
certain number of slots are dedicated to the synchronization. A synchronization
message consist of, amongst others, the index of the synchronization slot in which
it will be sent. Even though the TelosB platform is composed out of two chips,
the microprocessor and the radio chip, the design allows the radio chip to signal
the microprocessor of the arrival time of a packet. Upon the detection of the Start
of Frame Delimiter (SFD) of the packet, which is added during the transmission
of the packet by the hardware, the radio sends an interrupt to the microprocessor.
The interrupt triggers a specific functionality of the internal timer module of the
microprocessor, such that at the time of the arrival of the SFD, the current value
of the timer is stored in a separate register. Since this timer is configured as the
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superframe counter, a precise time indication is provided for the arrival of the SFD
marker. Knowledge about the length of the preamble allows to deduce the start of
the slot. Since the offset of the synchronization slot towards the start of the frame is
fixed at design time and therefore known by all nodes, the timestamp of the reception
of the synchronization message can be used in combination with the synchronization
slot index to determine the exact frame start of the transmitter. After the initial
synchronization, the synchronization message is used for minor adjustments to the
superframe counter to compensate for the drift between the different clocks. The
compensation includes a single increment or decrement of the counter such that it
does not result in any loss of packets.

In order to support the dynamic joining and leaving of nodes, a second type of slots
is defined as identification slots. A node attempting to join the network listens for a
number of frames to gather statistics about the received synchronization messages.
Since the node has no notion regarding the start of the frame yet, it listens for a
long duration to the wireless medium until a message is detected. Detected messages
which do not comply to the format of a synchronization message are not considered
during this stage of the process. The node with the strongest signal is selected to
act as the parent of the joining node by synchronizing to the received messages.
Only after the sensor has verified its synchronization is successful by listening for
a subsequent synchronization message of the same node at the expected time, the
sensor is allowed to start sending messages.

During the identification slots the joining node announces its presence to the parent
node by sending it a message containing the ids from both nodes and the requested
bandwidth. Since multiple nodes might attempt to announce themselves at the same
time, a simple random backoff mechanism is employed based on the uptime of the
sensor. The least significant bits of the uptime are used to determine a backoff time,
which can be expected to be different from other nodes. The node receiving such
identification message needs to allocate sufficient bandwidth to allow the reception
of the data of the joining child. If the node has no or insufficient bandwidth available
to support any children, it needs to request extra slots to its own parent, along with
an update considering the required bandwidth, since the extra bandwidth of the
child is added to the bandwidth already reserved by the parent node. Note that
the extra bandwidth of the child is not to be just added to the already consumed
bandwidth, since aggregation is only supported for data coming from the same
source, not from different sources. As a result, even if the extra bandwidth might
be supplied by the already allocated bandwidth by combining the data sources, the
node will need to ask for a new slot due to the prohibition of aggregation. The
additional requested bandwidth traverses all parent nodes of the respective nodes,
each specifying the required bandwidth to service the request, until the request
reaches the root node. The root node approximates the bandwidth request as an
Egyptian Fraction and selects the slot and frame index which indicate the initial
slots for each individual unit fraction comprised within the approximation. Note
that the root node has no information about the bandwidth consumption of each
individual sensor in the network, it only knows the required bandwidth for each
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of its children. The newly allocated slot information is included in the following
synchronization message that is to be scheduled. The node to which the allocation
information is directed updates its available bandwidth information and distributes
according to the same principle as the root node the requested bandwidth to its own
children. The difference is that the root node has an unconstrained repository of slots
within the boundaries of the frame duration and available bandwidth. The regular
parent nodes only have a limited set of slots to their disposal to allocate bandwidth
to their children. The process of slot distribution occurs until the joining node is
provided with sufficient slots to supplicate its requested bandwidth, after which it
can start sending data in the slots dedicated for data transmissions, according to
the received transmission schedule. The association procedure requires a number of
cycles, depending on its depth within the tree and whether or not the transmission
slot of the parent is located after the reception slot. During tests, it was observed
that the synchronization and association phase of a shallow tree took no more than
3 cycles before new nodes could start transmitting their data. However, there are
a lot of parameters that could influence this behavior, such as the interference to
noise ratio, the number of hops a node requires to reach the root node, the position
of the association slots, etc. The design focused deliberately on a possibly slower
association procedure, while still not being inefficient, for the benefit of stability of
the network in general.

Note that during the process of the slot allocation, the joining node might have
retransmitted its bandwidth request to its parent. This message leads to retrans-
mission of the requests until a node is reached which has been already assigned the
required slots and will respond with either sending the slot allocation for the first
time, or a retransmission of the slot allocation. The repetition of the bandwidth
request will therefore not result in a bandwidth allocation of twice the requested
bandwidth.

While the bandwidth request procedure might seem elaborate, it should be noted
that the entire bandwidth request and allocation method needs to be performed only
once, before the actual data transmission of the sensor even starts. Moreover, the
procedure does not interfere with the already scheduled slots. The control messages
are passed to parent or child though dedicated control messages and the newly
created schedule does not interfere with the existing schedule thanks to the slot
allocation algorithm.

While the implementation could have used the regular message passing mechanism
of TinyOS, a different approach was followed in favor of the efficiency. The origi-
nal message passing forces numerous memory copy operations and defines a fixed
message size, which needs to be designed such that it can accommodate the largest
possible packet. As such, the approach results in an inefficient usage of both memory
and CPU resources. As an alternative, this implementation makes use of a memory
heap in which a series of circular buffers can be defined. Each buffer is identified
according to its index and is associated with parameters that indicate the specific
number of buffers and size of each buffer. The TDMA scheduler allocates a specific

179



Chapter 5. Fair Scheduling MAC in Wireless Sensor Networks

buffer of the right type to a scheduled task, which can be used to either transfer
data from or to the buffer, depending on whether the task involves a transmit or
receive operation. The ring buffer method ensures that several tasks with pointers
to different buffers can be placed in the task queue without resulting in memory
corruption. The processing of the received packets can therefore also happen in the
background and does not need to be processed immediately to free the used memory.
Moreover, since there is an inverse relation between the number of data slots and
the size of the data slots, the slot allocation schedule is also contained within the
heap containing the ring buffers. As the number of slots increases, the slot allocation
schedule increases and the ring buffer of the data slots decreases. Therefore, both
memory constructions provide an equilibrium in the amount of required memory.
As a result of the ring buffer, no unnecessary memory copy operations are required,
nor is the memory wasted to unused memory allocations.

5.9.2 Performance evaluation

The performance analysis is executed on a network of TelosB sensor nodes, forced
into a star topology by only allowing the root node to broadcast synchronization
packets. In order to make a well-founded comparison with the simulation section,
the data is generated at a pace of one byte at a time at the sensor side according to
the requested bandwidth. In order to eliminate possible rounding errors by perform-
ing floating point calculations on an embedded device, the requested bandwidth is
depicted as the number of bytes per frame, instead of byte per second. The con-
version needs to be performed at compile time. The experiment does not consider
the entire range of possible bandwidth within the boundaries of the available band-
width, only a set of bandwidths that are interesting are selected. While the slot size
of the simulations was dictated by the frame size and the number of slots per frame,
the hardware specifications pose constraints on the maximum slot size and the extra
control slots and switching overhead require a frame size which is larger than the
sum of the data slot sizes. The data slot size is determined to be the maximum slot
size allowed by the hardware, that is, 127 bytes. Note that this amount of bytes
needs to be used to accommodate a two-byte CRC and a data header of nine bytes
alongside the actual data. The header includes information required for the perfor-
mance analysis such as the buffer size, the frame number and the value of the frame
counter at the time of transmission. Taking into account the synchronization slots,
the information exchange overhead, the transmission preamble and switching time
per packet and the size of the data slots, the frame duration, and therefore also the
superframe counter, is specified as 4242 timer tics, that is, 132.6 ms.

The few results that will be discussed denote the measured parameters according to
only a single source in order to make the comparison with the simulation section.
The first result is shown in Figure 5.34, which depicts the cumulative amount of re-
ceived data at the root node (left y-axis) and the buffer size at the sensor node (right
y-axis) for a requested bandwidth of 16 bytes per frame. The requested bandwidth
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Figure 5.34: Data arrival and buffer size at a bandwidth of 16 bytes per frame

is approximated as a series of unit fractions 1
8 +

1
64 . The periodicity of the buffer size

is a direct result of the scheduling protocol. The bandwidth is approximated as one
fraction, which is too small, and a second fraction that compensates the difference
between the requested bandwidth and the allocated bandwidth by the first fraction.
This leads to a situation where the data buffer slowly accumulates until the slot,
which is allocated according to the second fraction, is scheduled for transmission.
The maximum buffer size that was measured is 200 bytes. When comparing the
result with the equation to determine the maximum buffer size, Equation 5.28, with
the given parameters, S = 116, bw = 16, f0 = 1

8 and f1 = 1
64 , the maximum buffer

size is determined to be 200 bytes. As can be noticed, even though the experimenta-
tion considers realistic switching times, overhead due to preamble, synchronization,
etc. , the measured maximum buffer size can still be determined by the equation
derived by means of simulations.

Since the protocol requires the aggregation of the data to use the wireless medium as
efficiently as possible, the latency of the data increases. This is also shown in Figure
5.35, which depicts the latency of the data received at the sink, for a requested
bandwidth of 16 bytes per frame. The resulting latency is measured by calculating
the difference between the time of arrival of the data at the sink and the time the
data was generated at the sensor by means of the information which was embedded
in the data header. It can be noticed that the latency exhibits a similar behavior as
the buffer size for the same requested bandwidth. The maximum measured latency
is equal to 12.5 frames, which can also be derived from the maximum buffer size, by
using the same methodology as with the simulation results. The maximum latency
is deemed the time required to fill a buffer of the maximum buffer size, that is,
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Figure 5.35: Latency at a bandwidth of 16 bytes per frame

200 bytes, according to the specified bandwidth, that is, 16 bytes per frame. The
calculated maximum latency is 12.5 frames, which is an exact match to the maximum
measured latency.

In order to be able to make the comparison with a more complex approximation,
that is, an approximation consisting of more than two unit fractions, the results
for a requested bandwidth of 45 bytes per frame are depicted in Figure 5.36. The
results depict the cumulated amount of data that arrived at the sink (left axis)
and the buffer size at the sensor node (right axis). The requested bandwidth is
approximated as a series of fractions 1

4 + 1
8 + 1

64 . Note that a similar accumulation
of data occurs as discussed in the simulation section. The bandwidth provided by the
allocated slots according to the first fraction is insufficient to comply to the requested
bandwidth. The remaining bandwidth, that is, the difference between the requested
bandwidth and the bandwidth provided by the slot allocations according to the first
fraction, in combination with the slot scheduling frequency of the second fraction
results even in an excess of data, thereby requiring a third fraction to schedule slots
in order to provide sufficient bandwidth. The scheduling of the last fraction is more
clearly depicted in the zoomed in section of the figure at the top of the figure. The
maximum bandwidth measured during the experiment is equal to 252 bytes, which
also matches the maximum bandwidth calculated according to Equation 5.28.

The latency of the experiment with a bandwidth request equal to 45 bytes per frame
again shows a similar behavior as the buffer size and the maximum latency measured
during the experiment is equal to 5.6 frames. When deriving the maximum latency
from the maximum buffer size by using the same method as in the simulation section,
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Figure 5.36: Data arrival and buffer size at a bandwidth of 45 bytes per frame

the maximum latency is determined to be 5.6 frames, thereby matching the obtained
result.

Such measurements have been performed for every possible requested bandwidth,
lower then the bandwidth provided by a single slot. Those results lead to the same
conclusion, the measured maximum buffer size and maximum latency match the
respectively calculated values, provided that the requested bandwidth requires at
most a single slot per frame. When the requested bandwidth requires more than one
slot per frame, even when one slot is a slot shared with other nodes, an increased
maximum buffer size and maximum latency can be observed. Analysis of the results
showed that due to the synchronization and identification slots at the start of the
frame, there is an unequal distribution of the data slots. As a result, the time
between the scheduled data slots might differ, since two slots scheduled in the same
frame have a different interval than two slots scheduled in subsequent frames. Since
the protocol maintains such a careful slot allocation, this disturbance in the balance
results in an accumulation of the data during the initial slots that are dedicated
to the synchronization and network joining methods. The higher the requested
bandwidth, the more clearly noticeable this phenomenon is.

These results show that the protocol relies heavily on the balanced distribution of the
data slots. A countermeasure that can be taken in order to ensure a correct behavior,
is to place the synchronization and identification slots between the data slots, such
that all data slots are equally distributed within a frame. The data transmission
mechanism would consider the extra evenly distributed slots as no more than either
a longer switching time or preamble tranmission time. However, it will have an
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impact on the maximum buffer size and maximum delay, since the bandwidth of a
slot relative to the frame size decreases, when compared to the ideal case where no
switching times or synchronization slots are used. But this is covered by calculating
the new approximation, which will determine the new maximum buffer size and
maximum delay for this fraction. In other words, the approximation will behave as
predicted.

5.10 Conclusion

As could be noticed in Chapter 3, a significant number of related works, that consider
a TDMA schedule, considers only a homogeneous network, that is, a network where
all sensor nodes have an equal bandwidth to send their data. They allocate only
a single slot per frame to any sensor node. However, in cases where both high
throughput sensor nodes, such as an ECG sensor, and low throughput sensors,
such as a temperature or accelerometer sensor, are present in the network, either
the slot sizes become too large for the low throughput sensors or the data of the
high throughput sensor becomes too fragmented to be transmitted in an efficient
manner. Both methods result in an inefficient usage of the wireless medium, the
former obstructing access to the medium while no data is being transmitted, the
latter creating a relatively large overhead per data unit and as such reducing the
effective throughput due to the extra overhead. Besides the heterogeneous character
of the network, a slot allocation protocol should also attempt to keep the changes to
the schedule to a minimum. Any change that needs to be propagated to the entire
network results in a considerable overhead and could even result in medium access
conflicts when not all nodes have noticed the updated schedule.

In the 1990’s a lot of interesting network scheduling protocols were conceived, such
as FQ, PGPS, Stop-and-Go queuing, etc. However, the focus of those protocols
was on an entirely different problem statement, that is, a contention resolution that
existed in a router or switch of a wired network. Those protocols could not dictate
the behavior of their sources, they were often forced to deal with the received input
and needed to ensure that all input flow received a fair portion of the bandwidth.
Some of them designed the fairness in such manner, that real-time or high priority
flows were assigned a certain guaranteed bandwidth, whereas best effort traffic was
scheduled inbetween the real-time traffic. None of those protocols were concerned
with, or could even influence, the slot allocation of the source, in order to prevent
collisions. That being said, certain concepts are certainly worth considering, as
well as certain slot allocation methods in other related work, provided that the
information is modified for a suitable use in Wireless Sensor Networks.

This chapter discussed briefly a slot allocation method based on the greatest common
divisor (gcd). The nodes are assigned a fraction of the available bandwidth, respec-
tive to the proportion of requested bandwidth to the total available bandwidth.
By determining the lowest common multiple (lcm) between the denominators of all
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fractions, all nodes are ensured a sufficient bandwidth, independent of the other
requests. The algorithm ensures that any update of the schedule does not interfere
with the already existing schedule. While the protocol shows some promising results
when the lcm of the requested bandwidths is near the requested bandwidths, it has
the potential hazard of creating very large cycles when the gcd is low.

Based on the experience and results of the previously discussed protocol, an im-
proved algorithm is derived which makes use of Egyptian Fractions. The protocol
is designed for fairness, even when the network is crowded with high bandwidth
sensors, the low bandwidth sensor should still be able to send their data. The basic
idea is to allow all nodes to use the whole bandwidth provided by a single slot, but
then spread out in time, such that the requested bandwidth is approximated. It is
better to use the wireless medium for a small unit of time at the full bandwidth,
than sending each time just a bit of data. This is also more efficient concerning
overhead. The more data that is being sent at a time, the smaller the header is rela-
tive to the amount of data. In order to achieve such efficient allocation of the slots,
each sensor node is expected to notify its parent of its requested bandwidth. The
bandwidth request is considered as a fraction of the total available bandwidth and
can be approximated by means of a series of unit fractions, consisting of only unit
fractions with a denominator equal to a power of two. Such series of unit fractions
is called an Egyptian Fraction. Since each unit fraction represents the frequency
with which a slot is scheduled, it is sufficient to determine an initial slot and frame
index to define a complete slot schedule. Note that the allocation of the slots is done
for each unit fraction, starting from the unit fraction with the highest frequency.
The initial slot is determined by means of the traversal of a binary tree, which can
also expressed as an equation denoting that each initial slot position is situated
in the middle of the periodic interval of the previous allocated fraction. Thanks
to the binary tree traversal and the unit fractions consisting of denominators of a
power of two, the method is straightforward, while at the same time conflicting slot
allocations are avoided. Note that the heterogeneous character of the network is
supported by allowing the sharing of a single slot over multiple frames. A sensor
node which requires only a fraction of a slot per frame, is allowed to use the slot
at its full capacity once every x frames, determined according to the unit fractions
contained within the approximation, such that its requested bandwidth is suppli-
cated. The resulting allocation indicates in which frame the slot may be used. This
scheme leads to a schedule that is cyclic, determined by the lowest fraction in the
approximations. As can be noticed, this protocol is not work conserving, it is also
not supposed to do so. The time that no slots are scheduled, can be used to put the
sensors to sleep.

On top of the already interesting properties, the protocol is also designed keeping
in mind possible hardware and wireless medium constraints, thereby reducing the
amount of overhead, taking into account the lossy character of the wireless medium,
etc. The merging of slot allocations of different nodes occurs automatically by the
slot allocation method, which prevents any allocation conflicts. Therefore, the ex-
isting slot allocation schedule is not disturbed by any node joining the network or
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nodes requesting extra bandwidth. Moreover, thanks to representation of the slot
allocation in terms of fractions and their initial slot and frame index, the design
results in a periodic schedule, allowing to sent the slot allocation scheme only once
for the duration of the network. This not only reduces the overhead significantly,
but also alleviates any possible scheduling conflicts due to missed schedule updates.
Moreover, the schedule allows both high throughput sensor nodes and low through-
put sensor nodes to coexist in a fair manner in the same network, without affecting
the efficiency or network performance. An extra benefit of the fractional and bi-
nary representation is the minimal required size to represent such slot allocation,
thereby reducing the overhead to send the schedule, even though it is only a one-time
overhead.

The performance of the protocol is analyzed in detail by means of simulations and an
implementation. First, the protocol is analyzed while considering a theoretical linear
arrival rate of the data for both trivial cases and more complex approximation com-
positions. One of the findings that resulted from these simulations is the knowledge
that the maximum buffer size is deterministic and can be calculated by means of
the fractions contained within the approximation, the requested bandwidth and the
slot size. Since the maximum latency is directly related to the maximum buffer size,
it can also be considered as deterministic. However, note that while the maximum
buffer size depends mostly on the number of fractions within the approximation,
the maximum latency experiences a large impact from the requested bandwidth. As
such, the maximum latency of low bandwidth requests is significantly higher than
the latency of high bandwidth requests. The obtained knowledge about the maxi-
mum latency of the protocol allows to control the specific parameters, such as the
approximation accuracy by bounding the maximum possible denominator within
the approximation, in order to provide either a more accurate bandwidth usage, or
an improved latency. Note that this control can be enforced on a per node level,
allowing a single node to have a high precision in the approximation, while allowing
a different node to have an excellent latency.

Since the simulation was based on a linear arrival pattern of the data, the following
analysis considered the data arrival in bursts. The results obtained from the sim-
ulations indicate that a higher packet size leads to a higher maximum buffer size.
As can be expected, a packet size for which the slot size is a multiple provides a
lower maximum buffer size. The lower maximum buffer size experienced because of
an approximation with a limited number of fractions can be found for all possible
packet sizes. Interesting to note is that the arrival of data in bursts results in a
periodic super-cycle in which at least one regular cycle according to the protocol
is contained. The number of cycles is determined by the packet size, the duration
of the cycle and the requested bandwidth. When the super-cycle consists of only a
single cycle, a lower maximum buffer size is achieved. As such, certain combination
of the packet size and the requested bandwidth also ensure a lower maximum buffer
size.

A last simulation analysis determined the performance of the protocol within a
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networked environment. The fairness of the data arrival of different nodes is studied
in terms of bandwidth and latency. The results showed that the protocol results in
a fair bandwidth allocation, ensuring an equal distribution of the buffer size. The
fairness is also reflected in the experienced latency, where it is clear that the data
from all nodes experience a similar latency for a specific requested bandwidth.

While the simulations provide essential information which would otherwise be hard
to obtain or take a long time to obtain, they are still only based on a model which
only attempts to approach the reality as close as possible. None of the radio switch-
ing times, preamble overhead, etc. is considered during the simulations. Moreover,
the network synchronization and association overhead was not taken into account.
Therefore, the discussed protocol was implemented on a sensor platform in order to
verify its operation in reality. Although the simulation network assumptions ignored
the synchronization overhead, time required to transmit the preamble, switching
times, etc., the measured latency and buffer size show a perfect match to the maxi-
mum buffer size calculations based on the equation obtained from the simulations,
provided that only a single slot is scheduled per frame. Due to the unequal distribu-
tion of the data slots as a result of the synchronization and identification slots at the
start of each frame, the measured values for the maximum buffer size and the max-
imum latency are larger that the calculated values. The flaw can be easily resolved
by evenly distributing the data slots by distributing the synchronization slots and
identification slots between the data slots, such that all data slots are evenly spaced,
provided that the diminished slot capacity is taken into account when calculating
the approximation.
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CHAPTER 6

Non-standardized operation on IEEE Std 802.11

hardware

6.1 Introduction

Since the conception of IEEE Std 802.11, research has been dedicated to use Com-
mercial Off-The-Shelf (COTS) IEEE 802.11 hardware in a non-standardized man-
ner. The main drive behind this research has been the lack of certain features in
the standard, due to which its default operation resulted in suboptimal performance
in certain application domains. Some of the encountered issues, discussed in the
following paragraphs, include idle listening, no QoS guarantee, that is, no real-time
capabilities support, and suboptimal multicast transmissions.

The standard does provide a Power-Save Mode (PSM) to allow idle clients enter a
low power mode, only waking up at certain intervals to receive the beacons of the
Access Point (AP). Should the Traffic Indication Map (TIM), which is embedded in
the beacon packet, announce the availability of buffered data for the client at the
AP, the client needs to wake from its low power state to receive the data, addressed
to the client, from the Access Point (AP). While such method prevents idle listening
for idle clients, the busy clients are required to keep their radio active in order
to contend for the channel, which could prove to be disastrous in power critical
situations [162]. A TDMA type of operational mode would prevent idle listening
and requires stations to be active solely when actually transmitting or receiving
data.
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WiFi is, besides its common employment in Wireless Local Area Networks (WLANs),
also exploited in long-distance networks thanks to its cost-effectiveness [163]. An
imperative capability of such network should be the support of a guaranteed QoS,
such that real-time video conferencing would become feasible. To support such feat,
a delay-bounded scheduling could be employed, that is, a TDMA type of modus
operandi. Note that for long-distance networks TDMA is also required to alleviate
issues during normal operation, such as the round trip time of the acknowledgement,
the carrier sensing which might not detect the transmission of farther located nodes,
etc. A second application environment in which real-time capabilities are required,
is where industrial communication environments make the effort of migrating from
wired to wireless applications. Whereas the coexistence of real-time controlled sta-
tions with regular stations was made possible by imposing traffic smoothing on the
regular stations, such strategy is not possible with a wireless network, since the
wireless medium is an open medium. A TDMA based approach, on the other hand,
would support real-time communication services with CSMA-based networks [164].

While the IEEE Std 802.11 provides plenty of support and optimizations for unicast
messaging, applications that require multicast messaging need to be satisfied with
the bare minimum. The standard does not define an ACK mechanism for multicast
transmissions, which reduces the possible support for multicast packets drastically.
Lost multicast packets are not retransmitted due to the lack of information whether
or not the packet was received successfully. Moreover, due to the lack of information
whether or not a packet may have collided with another frame, the contention win-
dow (CW) is kept fixed, which is the minimum CW. Such behavior can be considered
to be unfair towards other transmissions, where the CW is adjusted according to
Binary Exponential Backoff algorithm. The transmission rate of multicast packets
is typically fixed to a low basic rate, which not only limits the achievable throughput
for multicast packets, but also results in a relatively long occupation of the wireless
medium. In order to employ multicast packets in a multimedia streaming use case,
either a workaround solution needs to be employed, such as the ’leader-based’ mul-
ticast [165], or the operation of the MAC protocol needs to be adjusted, such that
it works in a non-standardized manner.

Note that most related work focuses on either the station and/or access point func-
tionality, whereas the ad hoc and Mesh mode operation are not considered in these
types of work. For this reason, is the discussion in this chapter and the following
chapter also limited to the station and access point functionality.

Thanks to the open source character of the Linux kernel and the SoftMAC approach
of most drivers (see Section 6.4.4 for a detailed description), the Linux kernel is a
quite natural choice to proceed with. A significant amount of the MAC functionality
can be adjusted, thereby opening the possibility to use COTS hardware in a non-
standardized manner. The towards this concept most relevant sections of the Linux
kernel are discussed in Section 6.4. Before going into detail on the Linux kernel
internals, the following section depicts some basic facts and procedures of the IEEE
Std 802.11, specifically for a Basic Service Set (BSS) type of operation. Section 6.3
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enumerates research where a non-standardized operation of the IEEE Std 802.11
standard has been investigated. Since certain operations require a strict timing, a
description of the operation of some real-time operating systems is also provided in
the last section. Note that this chapter does not contain new results. This chapter
ensures that sufficient information is given such that the issues and the potential
within this research can be understood. This chapter also shows some related work,
indicating certain application domains of the research.

6.2 IEEE Std 802.11

The IEEE Std 802.11 defines a single Medium Access Control (MAC) and several
physical layer (PHY) specifications for wireless connectivity within a local area [12].
A node comprising an IEEE Std 802.11 compatible radio can operate in a multi-
tude of modes, often dependent on the type of network architecture the nodes are
organized in. A Wireless Local Area Network (WLAN) is usually organized in a
Basic Service Set (BSS). The standard defines several types of BSS, such as the
infrastructure BSS, the Mesh BSS and the Independent BSS (IBSS), sometimes also
referred to as an ad hoc network. A set of possible operational modes are defined
to be used within each BSS type, such as Access Point (AP) or station mode in an
infrastructure BSS. Note that the standard also defines operational modes that are
to be used outside the context of a BSS.

The success of the IEEE Std 802.11 lies partially in its compatibility with the wired
IEEE 802 LAN. Therefore, it is paramount to maintain this compatibility, the wire-
less device should appear to the Logical Link Control (LLC) as a wired IEEE 802
LAN. In order to achieve such feat, the MAC layer of an IEEE Std 802.11 compati-
ble device needs to incorporate a significant number of functions. As a result of this
vast functionality, augmented by the different supported modes, technologies and
high throughput mechanism, the standard covers a substantial number of topics.
Therefore, this section will not cover all specified functionality, the discussion will
be limited to the infrastructure BSS context and will consider solely functional de-
scriptions relevant to modifying the transmission behavior of the MAC into a more
deterministic transmission pattern. The content of this section is derived from IEEE
Std 802.11TM-2012 [12].

Besides the DCF, two other coordination functions are defined: Point Coordination
Function (PCF) and Hybrid Coordination Function (HCF). The PCF will not be
discussed since, although it is specified in the IEEE Std 802.11, almost none of the
major hardware manufacturers have provided support for this optional functionality.
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Figure 6.1: IEEE Std 802.11-2012 Interframe space. (Ref: Adapted from IEEE Std 802.11TM-

2012, Figure 9-3, page 826.)

6.2.1 Distributed Coordination Function (DCF)

The sharing of the wireless medium is made possible by the Distributed Coordination
Function (DCF) through the use of CSMA/CA (Carrier Sense Multiple Access with
Collision Avoidance). In order to assert whether the medium is idle, the CSMA/CA
protocol makes use of Clear Channel Assessment (CCA), which includes Carrier
Sensing (CS) and energy detection (ED). Besides the collision avoidance, DCF,
amongst others, also ensures that individually addressed traffic is immediately ac-
knowledged by means of an ACK frame. Failure to receive this ACK frame leads to
the retransmission of the data.

The standard defines a number of interframe space periods, which define the required
time that needs to be considered between subsequent actions in order to be compliant
with the standard. One of such interframe spaces is the DCF interframe space
(DIFS), which is commonly used when STAs are attempting to access the wireless
medium. A Short interframe space (SIFS) is an interframe space smaller than DIFS
and is usually used in cases where the sequence of transmissions should not be
interrupted by possible colliding transmissions of other stations, such as in the case
of a second or subsequent MAC Protocol Data Unit (MPDU) in a fragment burst.
Note that not all interframe space intervals that are specified in the standard are
discussed here. The discussion is constrained to the most relevant ones.

The contention avoidance mechanism is focused around the most critical point in
time, that is, after a busy period where stations attempt to resume their transmis-
sions. In general are stations required to wait for at least a DCF interframe space
(DIFS) period during which the medium is considered idle, as depicted in Figure
6.1. Note that after the reception of a frame, not destined to this STA, for which a
reception error was detected or which contained a false MAC Frame Check Sequence
(FCS) value, an Extended Interframe Space (EIFS) period is used instead of a DIFS
period, in order to provide sufficient time to the destination to send an acknowl-
edgement in case it received the frame correctly. After the DIFS period, or EIFS
period, stations enter the backoff stage, select a Contention Window (CW) value at
random between the minimum CW and maximum CW values and initialize their
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backoff counter with the CW value. At each backoff slot boundary, this counter is
decreased if the medium is considered to be idle, determined by means of the CS,
and a station is allowed to start transmission if the counter reaches zero. Should
the medium be considered busy during a backoff slot, then the backoff procedure
is suspended. Only after an idle medium for the duration of a DIFS period, or an
EIFS period in the appropriate case, was detected, is the backoff procedure allowed
to resume its operation.

In case a data frame is not received correctly, or the acknowledgement was not
received correctly or timely, the sending station will increase its maximum CW value
by means of the Binary Exponential Backoff (BEB) algorithm. When the maximum
CW value has been reached, the CW value shall remain at this maximum value, until
the CW shall be reset to the minimum CW value. The CW value is reset to the
minimum CW value upon the sucessfull transmission of a frame. Besides increasing
the CW upon a failed transmission, is either the Short Retry Counter (SRC) or the
Long Retry Counter (LRC) incremented, in case the transmitted frame contained
an MAC Protocol Data Unit (MPDU) of type Data or MAC Management Protocol
Data Unit (MMPDU). The selection of which counter is incremented is determined
by verifying whether the length of the data frame is above a certain predefined
threshhold, which, as will be discussed later in this section, will also be used to
determine whether or not a Request-to-Send/Clear-to-Send (RTS/CTS) message
exchange is to be used for the frame. If the SRC becomes equal to the short retry
limit or the LRC becomes equal to the long retry limit, the retransmissions stop
and the packet is dropped, unless multiple rates are possible for transmitting the
packet. In the latter case, the packet is retransmitted at a lower rate, until the retry
threshold is reached, after which the next rate may be tried, until no more rates are
specified.

Every STA shall also maintain an STA Short Retry Count (SSRC) and an STA Long
Retry Count (SLRC). The SSRC and SLRC counters are incremented if an MPDU
with type Data results in the incrementation of the SRC and LRC respectively.
When either of these counters reaches their respective retry limit, the Contention
Window is also reset to the minimum CW. The SSRC and SLRC are reset upon
the succesful reception of specific frames, such as amongst others, a CTS frame in
response of an RTS frame in the case of the SSRC, or the reception of an ACK
frame in response to the transmission of a frame consisting of at least part of a
MAC Service Data Unit (MSDU) or MMPDU for SLRC.

In case the medium was already idle for a duration longer than DIFS or AIFSn in the
case of a QoS station, the station may attempt to transmit immediately. After the
end of each transmission, where no more frames of the same MSDU or MMPDU are
expected to follow, for either Data, Management or PS_POLL Control frames, an
additional backoff procedure is initiated, even when no more frames are scheduled
for transmission.

It is clear from above description of the backoff algorithm that the CCA mechanism,
which constitutes of CS and ED, plays a vital role in the DCF. Both physical as

195



Chapter 6. Non-standardized operation on IEEE Std 802.11 hardware

SIFS 

DIFS 

Source  

Destination  

Other  

RTS 

CTS 
SIFS 

Data 

SIFS 
ACK 

NAV (RTS) 

NAV (CTS) 

DIFS 

Contention Window 

Defer Access 

Figure 6.2: IEEE Std 802.11 RTS/CTS/data procedure. (Ref: Adapted from IEEE Std

802.11TM-2012, Figure 9-4, page 829.)

virtual CS functions are used to determine the state of the medium. The physical CS
is implemented on the NIC, while the virtual CS is provided by the MAC. Basically,
virtual CS, also referred to as the Network Allocation Vector (NAV), makes use of the
announcements regarding the impending use of the medium. The NAV maintains
an estimation of the duration the medium is busy, based on received messages that
are destined for other stations. Even when the physical CS asserts the medium is
idle, no packet is transmitted when the NAV indicates a transmission is ongoing.
A first method to inform stations about the duration of the current transmission
is the Duration/ID field in unicast packets, where the data can be immediately
transmitted after having followed the DCF procedure. Another method that can
be used to perform virtual carrier sensing is the exchange of RTS and CTS frames
prior to the actual data transmission, as depicted in Figure 6.2. Note that the
interframe space between RTS and CTS, CTS and data, and between data and the
immediate ACK is a SIFS, which is lower than the DIFS period, thereby preventing
other stations to be able to interfere with the transmission of the next frame. Both
the RTS and CTS frames include a duration field, which indicates for how long
the medium will be busy. While the RTS/CTS exchange can relatively fast detect
whether no other stations attempt a transmission at the exact same time, it also
involves a certain overhead to the data transmission, as can be noticed from the
figure. Moreover, the RTS/CTS mechanism can not be used in a multicast packet
transmission, since there are multiple recipients for the RTS and therefore potentially
concurrent senders of the CTS in response. Since the considerable overhead the
RTS/CTS messages exchange introduces, not all data packets are preceded by an
RTS/CTS message exchange. Packets whose length is lower than a certain defined
threshold are transmitted directly, while larger packets are accompanied by the RTS
and CTS frames.
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6.2.2 Quality of Service

The IEEE Std 802.11e amendment introduces methods to support applications that
require QoS. Within the amendment, the Hybrid Coordination Function (HCF) is
specified, which can operate both in a contention-based channel access (EDCA) and
by means of a centralized coordinator (HCCA). The latter, HCF Controlled Channel
Access (HCCA), will not be discussed in this section, since no major hardware
supplier provides support for the method. Note that this section covers the QoS
provisioning in the IEEE Std 802.11 only partially, sketching only the ’Big Picture’,
since only certain parts are relevant to the remainder of this work.

The channel access procedure of Enhanced Distributed Channel Access (EDCA) is
derived from DCF. Instead of waiting DIFS time for the medium to be idle before
starting the backoff counter, the nodes wait an Arbitration Interframe Space (AIFS)
time of the specific packet Access Category (AC), depicted as AIFS[AC] time.
EDCA defines four categories which are enumerated here from low to high priority:
Background traffic (BK), Best Effort traffic (BE), Video traffic (VI) and Voice traffic
(VO). Each of those categories has its own specific AIFS, minimum CW, maximum
CW and Transmission Opportunity (TXOP) value. The higher the priority of the
class, the shorter the time to wait, with a minimum wait period equal to DIFS.
When a node has won access to the channel after contending for it, it obtains a
TXOP, that is, the TXOP specifies a maximum transmission duration. During such
Transmission Opportunity, the node is allowed to send multiple packets within the
assigned time period. If the TXOP value is equal to zero, the node is allowed to
just send a single packet.

The different Access Categories are each controlled by their own Enhanced DCF,
EDCAF, where an internal collision between the categories might occur within a
node if multiple categories are queuing data at the same time. Such event is resolved
by assigning the TXOP to data frames of a higher priority, while data frames of a
lower priority behave as if there were an external collision on the wireless medium.

Since multiple packets are allowed to be transmitted during a single TXOP, the
amendment introduces the Block Ack mechanism to optimize the acknowledgement
mechanism by aggregating multiple acknowledgements into a single frame. The BA
mechanism is initiated by exchanging ADDBA Request and Response frames, as
depicted in Figure 6.3. During the message exchange, if the BA is accepted, the
type of Block Ack, Immediate or Delayed, is determined alongside the maximum
buffer size, which limits the number of frames that can be sent in a single block. If
the BA setup was successful, the originator can send a series of frames, separated
by a SIFS, after having obtained access to the medium, provided that the number
of frames do not exceed the maximum buffer size. The recipient maintains a record
of the received frames and informs the originator after it has sent the BlockAckReq
frame. The originator verifies whether all frames have been received and initiates
a retransmission for any frames that were not received correctly, either in another
block, or individually.
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ADDBA Request

ADDBA Response

ACK

ACK

QoS Data MPDU

BlockAckReq

BlockAck

(a) Setup

(b) Data & Block Ack

Figure 6.3: IEEE Std 802.11 Block Ack mechanism. (Ref: Adapted from IEEE Std 802.11TM-

2012, Figure 9-25, page 904.)

For QoS stations, the procedure is similar, but instead of waiting for DIFS time
before entering the backoff stage, they wait for an AIFSn time, that is, Arbitration
Interframe Space, which is dependent on the QoS class of the transmitted packet.
The higher the priority of the class, the shorter the time to wait, with a minimum
wait period equal to DIFS. A Short interframe space (SIFS) is an interframe space
smaller than DIFS and is usually used in cases where the sequence of transmissions
should not be interrupted by possible colliding transmissions of other stations, such
as in the case of a second or subsequent MAC Protocol Data Unit (MPDU) in a
fragment burst. Note that not all interframe space intervals that are specified in
the standard are discussed here. The discussion is constrained to the most relevant
ones.

6.2.3 Aggregation

Two types of aggregation are supported in the IEEE Std 802.11n amendment, which
is part of the IEEE Std 802.11TM-2012, that is, Aggregate MAC Service Data Unit
(A-MSDU) and Aggregate MAC Protocol Data Unit (A-MPDU). An A-MSDU is
an aggregation of frames at the MAC layer, such that the aggregation forms a single
MPDU and therefore has also a single MAC header. The mechanism makes use
of the property that the upper network stacks consider IEEE Std 802.11 frames
as Ethernet frames, thanks to the compatibility with wired IEEE Std 802.3, which
is accomplished by the IEEE Std 802.11 MAC as already mentioned in the intro-
duction of the current section (Section 6.2). Since Ethernet headers are smaller
than IEEE Std 802.11 MAC headers, the resulting MPDU will be smaller. Since the
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frames are aggregated within a single MAC frame, a number of conditions are placed
on the frames that can be embedded within the aggregation. Such constraints in-
clude for example the requirement that DA and SA, Destination and Source address
respectively, need to map to the same RA and TA, Receive and Transmit Address
respectively. Moreover, all frames should have the same priority, that is, they should
all map to the same QoS Access Category. Whether or not the A-MSDU can be
carried in a QoS data MPDU under a Block Ack agreement is determined per Block
Ack agreement. The agreement needs to indicate support for A-MSDU, otherwise
no Block Ack is possible.

A-MPDU aggregation on the other hand is performed at a lower level in the network-
ing stack, where MAC frames, that is, MPDUs, are aggregated within a single PHY
frame. Each of the MPDUs is preceded by a descriptor and followed by padding bits.
All MPDUs need to addressed to the same RA and there are also certain require-
ments involving QoS data frames. An A-MPDU needs to be transmitted within a
Block Ack context or a No Ack context, since each individual MPDU needs to be
acknowledged. The A-MPDU is less efficient than the A-MSDU, due to the extra
overhead of each individual MAC header. However, each MPDU is accompanied by
its CRC, so in the event of the reception of a corrupted frame, the MPDUs that were
successfully received do not need to be retransmitted. The Block Ack mechanism
ensures the sender is able to identify the frames that require retransmission.

6.2.4 Power Save Mode

As already mentioned in the introduction of this chapter, IEEE Std 802.11 specifies
several ways to reduce the power consumption of a node in an Infrastructure BSS
context by allowing it to enter power down mode if the network interface is idle.
A non-AP station can enter Power Save Mode (PSM) by transmitting a nullfunc
packet with the PM bit set to notify the AP that the station enters Power Save
Mode. After sending the notification to the AP, the stations enters PSM and only
wakes up at regular intervals to receive beacons originating from the AP. The AP
will buffer both data frames destined to this node and broadcast frames, constrained
by a certain maximum buffer size. If data is available for the station in PSM, the
AP indicates in the Traffic Indication Map (TIM) field of the beacon that data is
available for the station. The station is then required to wakeup and wait for the
buffered data sent by the AP.

Unscheduled Automatic Power Save Delivery (U-APSD) is an enhancement of the
original PSM, where in case the station send a frame of a specific Access Category,
a service period is triggered and the AP can send the buffered data during that
period. This discussion does not go into the details of the operation, since it is not
relevant to the remainder of this work. Important is to realize the impact of such
sleep cycles on the determinism of the transmission cycle.
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6.2.5 Association

In a WLAN network within an Infrastructure BSS context, stations need to associate
to the Access Point (AP) to be able to participate in the network. The AP does not
send individually addressed packets to a station that is not listed in its associated
stations list. The association procedure consists of three stages, depicted in Figure
6.4. All requests are initiated from the station that wishes to become associated.
The probe request is to discover possible Access Points in its proximity, to advertise
the supported rates and capabilities of the stations. An AP that receives such probe
request will respond with a probe response message, indicating its SSID, supported
rates, encryption types and capability information of the AP. Note that the station
is not required to send probe request, in some cases it is even prohibited, the station
can also wait and listen for the beacons that the APs periodically broadcast.

The goal of the authentication phase is to establish the identity of the station. Two
types of authentication mechanism are supported, that is, open authentication and
shared key authentication. Open authentication does not involve any significant
actions, the station sends an authentication request and the AP responds. The
shared key authentication involves the AP sending a challenge text, which needs to
be sent back encrypted to the AP by the station.

Probe Request

Probe Response

Authentication Request

Association Request

Association Response

Station Access Point

Authentication Response

Figure 6.4: IEEE Std 802.11 Infrastructure BSS association procedure

Based on whether the encryption was performed with the right key, the AP grants
access to the network and send an authentication response. This shared encryption
key is confirmed to be vulnerable to attacks and it is therefore also dissuaded to made
use of. Whereas WEP is known for its vulnerability, WPA2 is known for its secure
operation and is made use of in most WLAN deployments. The authentication
phase is performed by means of the open authentication method and only after
the association is complete, the security authentication is triggered and a 802.1x
authentication takes place, where the WPA2 authentication takes place. A more
detailed description regarding authentication mechanisms is not considered, since
they are beyond the scope of this work.
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The last phase in the association establishment is the association phase, where the
station states its requested capabilities, encryption method, etc. If those capabilities
match with the AP, the AP responds with a positive acknowledgement and the
station becomes associated to the AP.

6.3 Related work

As mentioned in the introduction, non-standardized operation of IEEE Std 802.11
compliant COTS hardware has become a popular research area. The specifics of
the targeted deployment areas require a non-standardized operation, since either
the standard does not support it, or is inefficient in this specific environment. The
related work can be categorized according to their application and target speci-
fication. First the deployment of COTS hardware in WiFi-based Long-Distance
(WILD) networks will be discussed, where WiFi based hardware is used to enable
Internet access in remote rural areas. A second area in which a modified operation
of such hardware is deemed indispensable, is where a guaranteed QoS provisioning
is required. Examples of such area include VoIP, but also real-time traffic. Due
to energy efficiency, the adaptation of the MAC is required in resource constrained
environments, which is the area of the third category. The final category targets
research that is focused on the exploration of how far beyond the boundaries of
the specification of the standard it is possible to construct a reliable network. This
research is mostly done in an academic context for basic research.

Since the non-standardized operation often involves a precise timing, the last section
within the related work considers research in which either high resolution timers or
kernel performance measurements are discussed.

6.3.1 WiFi-based Long-Distance networks

Thanks to the low cost, flexibility and ease of deployment, IEEE Std 802.11 based
hardware in combination with directional antennas is popular to provide long-
distance connectivity in rural areas. However, due to the specific application area,
the standard operation is deficient. The propagation time of ACK messages can
become thus long that the ACK timeout already expires before the message has
been received. In a similar manner is the DCF mechanism lacking, since the carrier
sensing might not be able to notice the ongoing transmission. Since the application
field provides such challenging properties, considerable interest has been generated
for it. The most interesting works are described below.

In the Digital Gangetic Plains (DGP) project, the feasibility of such WiFi-based
Long-Distance network is explored [166]. The research exposed, besides the physical
layer issues that needed resolving, several MAC layer issues. The IEEE Std 802.11 is
designed to operate in a local area, while the considered distances in this application
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domain are in the range of 10 km to 100 km. As a consequence, the timeouts specified
within the standard are insufficient for this application domain. The propagation
delay of packets is much larger than those which are considered in the standard. As
such, the ACK timeout is too small and the contention window slot time needs to
be reconsidered. It was found that the most appropriate method to ensure a proper
operation of the long-range testbed is a TDMA based approach. Such strategy was
also implemented on the testbed, by making use of COTS hardware.

A work in which the inefficiencies of the CSMA/CA MAC of IEEE Std 802.11, such
as ACK timeouts on long-distance links and unnecessary contention resolution in a
point-to-point link, also led to the design of a TDMA MAC on top of COTS IEEE
Std 802.11 hardware is presented in [167]. By manipulating the functionality of
the CSMA/CA based hardware, a more reliable and deterministic MAC protocol is
achieved. The entire system is configured to use IBSS mode, with a unique SSID
for each link. To eliminate the early ACK timeout, unicast packets are converted
into broadcast packets, while the reverse is done at the receiver side. While this
action removes the hardware acknowledgement mechanism, it does not prevent the
implementation of an ACK mechanism in software, which could take into account
the long-distance characteristics and therefore decide on a block acknowledgement
mechanism instead of a packet per packet acknowledgement mechanism. In order to
ensure a timely transmission, a specific hardware feature was employed to disable
carrier sensing and therefore backoff. When scheduling a transmission, the receive
chain is configured to use an unconnected antenna connector, which therefore only
measures noise. While receiving, the receive chain is reconfigured to the connected
antenna. The protocol is designed for the nodes in a single link to send data until
a certain quota has been reached or no more data is available, after which the role
of sender and receiver is reversed. The sender transmits a marker packet upon
switching its role. When the marker packet was not received at the receiver side,
due to interference or other environmental occurrences, the receiver switches into
the transmitter role after a timeout.

A protocol, based on the previously discussed protocol, can be found in [168], where
the performance of WiFi-based Long-Distance (WiLD) networks is found to be lack-
ing. The IEEE Std 802.11 protocol was not designed to operate in such environments
and therefore shows shortcomings for this application domain. The issues involve a
low bandwidth utilization due to the IEEE Std 802.11 link-level recovery mechanism,
inappropriateness of CSMA/CA over long distances, due to the carrier sensing, and
inter-link interference. By introducing bulk packet acknowledgements, the link uti-
lization is improved, since a sender is not required to wait for the ACK packet to
arrive for each individual packet. Due to the specified Distributed Interframe Space
(DIFS) in the IEEE Std 802.11, the range for which the CSMA/CA method can be
used efficiently is limited. Nodes would start transmitting packets, unaware of the
packets being sent from a remote node. A TDMA type of medium access is proposed
to eliminate the carrier sensing issues and to synchronize the packet transmissions
and as such prevent inter-link interference. A loose synchronization approach, simi-
lar to the basic linear time synchronization protocol NTP, is chosen to evade issues
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that can arise in lossy environments. The adaptations were implemented on top of
the driver by means of the Click modular router, which unfortunately also results
in a less precise time synchronization. Besides the previous modifications, the Link
Layer association is disabled by using the Atheros chipset in ad hoc demo mode,
the automatic ACK transmission is disabled by using QoS frames with WMM ex-
tensions and setting the no-ACK policy and the Clear Channel Assessment (CCA)
is disabled in the driver. The proposed solution led to a performance improvement
in TCP throughput of 2.5 when compared to a conventional MAC.

Starting from the conjecture that CSMA/CA is insufficient in WiFi based long-
distance mesh networks, the construction of a TDMA protocol is described in [169].
The MadWiFi driver has been utilized in monitor mode, such that all packets can
be captured, while disabling automatic acknowledgements and RTS/CTS. Instead
of using the default IEEE Std 802.11 frame format, a custom MAC header has been
designed, while still maintaining compatibility with the standard frame as regards
to NAV. The protocol defines a modus operandi for two types of packets; data and
control packets. While the data packets traverse the complete networking stack,
control packets are generated locally in the MadWiFi driver. Each control packet
is assigned a timestamp to enable network-wide synchronization. The timestamp-
ing in software results in inaccuracies since the time the hardware requires to send
the packet is uncertain and variable. Therefore, each control packet is assigned a
timestamp by the hardware by setting a certain flag associated with this packet.
The protocol exerts a precise control of the transmission times of data packets by
buffering all packets that need to be transmitted, which are dequeued and processed
by the regular packet transmission routine as usual during the TDMA transmission
opportunity. In order to control the packet transmission opportunity, a timer func-
tion is required. The employed Atheros chipset AR5212 provides two sets of timers,
which operate in a very precise manner with RX interrupts disabled, however, the
performance deteriorates quickly with an increasing number of RX interrupts. The
Linux software timer on the other hand has a sufficient performance in both low and
high load conditions.

All previous works were in some way making use of the MadWiFi driver, which is a
driver for the older generation of IEEE Std 802.11 compliant cards, i.e. IEEE Std
802.11n is not supported. The implementation of JaldiMAC, described in [170][171],
refers to a WiFi-based Long-Distance network, based on IEEE Std 802.11n enabled
WiFi cards, thereby opening the possibilities to use high throughput hardware. The
protocol is partitioned in two parts, a click module, which resides in userspace and
a kernel driver for the specific hardware. The available ath9k driver is claimed to
be unstable and therefore a custom driver was developed. The precise timing is
done in the kernel module, while a more crude, relative timing is defined in the click
module, thereby making sure that the timing is in relative values and not in absolute
timestamps in order to cope with timer jitter or unexpected transmit latencies.
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6.3.2 Guaranteed QoS

A contention avoidance algorithm such as CSMA/CA as defined in IEEE Std 802.11
is not capable of providing QoS guarantees for real-time voice and video conferenc-
ing [172]. Therefore, the design of LiT MAC, a TDMA MAC, is proposed, which
operates on COTS hardware. The protocol is implemented by modifying the Mad-
WiFi driver. While the beacon transmissions are disabled, the protocol makes use of
the hardware timestamping and synchronization functionalities at transmitter and
receiver side respectively as regards control packets. As such, pairwise synchroniza-
tion between nodes is made possible. The packet transmission control is performed
by using the Linux software timer, which is more precise than the hardware timers,
especially under heavy load conditions. Upon the timer trigger, the packet is placed
in the transmit queue and a signal is given to the hardware to send the packet im-
mediately. In order for the hardware to send the packet without further delay, the
CCA and backoff are disabled.

The work in [173] shows that Voice over IP (VoIP) introduces a considerable capac-
ity decrease of an IEEE Std 802.11b hotspot when six to eight VoIP stations share
the medium. Neither the IEEE Std 802.11a/g nor the IEEE Std 802.11e amend-
ment seems to resolve the issues. To remediate the problems, a software extension
is proposed, which allows VoIP traffic to share the channel in a TDMA manner.
This extension allows VoIP traffic to be sent without channel backoff while sensing
the medium for a shorter time, thereby providing a statistically higher probabil-
ity for VoIP traffic to be sent over the medium. This is achieved by manipulation
of the interframe space and backoff. Since VoIP traffic can still collide with other
VoIP traffic, it is scheduled in a TDMA manner, where the clients are synchronized
coarsely.

A similar approach as [173] has been taken in [174], where the problem definition
does not consider VoIP packets specifically, but targets real-time traffic in general.
In case a real-time node is contending for the medium with standard nodes, then the
real-time node should obtain the medium access. By manipulating the arbitration
interframe space (AIFS) and Contention Window (CW) parameters, such feat can
be achieved. Real-time traffic will use the highest priority level, that is, it will use the
same AIFS values as the voice category. On the other hand, backoff is disabled for
real-time traffic by setting the minimum and maximum CW to zero. Since multiple
real-time nodes can still contend for the medium, thereby causing contentions, an
extra upper layer is added, which serializes the transmission of real-time nodes in
time. Interesting to note is that the same solution was already described in [164],
in which the real-time nodes are scheduled according to a TDMA schedule in order
to evade contention between real-time nodes. Within the allocated time slot, the
real-time nodes still need to contend for the medium with regular nodes. By not
allowing the real-time nodes to backoff, they will obtain precedence in accessing the
wireless medium.
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6.3.3 Academic and commercial targets

This section covers research with no immediate application domain, besides the
exploring of opportunities. The targeted areas include TDMA type of medium
access protocol, but also cooperative networks, increasing the modularity of the
MAC, providing a flexible test platform for CSMA based MACs, and increasing the
determinism of packet transmissions.

One of the works that formed an inspiration to many others, is SoftMAC [175], where
the properties of IEEE Std 802.11 that should be disabled were clearly identified
when working with commodity hardware in order to create a precise control over
the timing of the wireless transmissions and receptions.

MadMAC [176] is a protocol that is entirely implemented in the kernel and operates
on top of the MadWiFi driver. The goal is to obtain a configurable MAC which
transmits packets at a configurable time without triggering the CSMA functionality
of the hardware, such that the packet transmissions do not experience delays from
neither contention nor backoff. In order to disable some of the CSMA functionality,
the hardware is placed in monitor mode. It is not clear how the timing is realized,
nor is the precision of these timings specified. FreeMAC [177] can be deemed as an
extension to MadMAC, where FreeMAC focuses not only on TDMA, but also other
MAC protocols that require strict control over the timing. Moreover, it extends
its applicability to multichannel MAC protocols by providing the ability to switch
between different frequency channels. The protocol makes use of the timer which is
embedded in the WiFi card.

Instead of implementing a TDMA MAC on COTS hardware, the research in [178]
was focused on defining a flexible MAC architecture where the testing of CSMA
MACs would be facilitated. The implementation was performed on top of the Mad-
WiFi driver. The transmission control allows only a single packet in the hard-
ware queue, hence the buffering of incoming packets from the kernel in the frame-
work. The frame scheduler is responsible for delivering the designated packets to
the hardware, based on the schedule of transmissions. Instead of employing the
Linux scheduler, a tasklet is recursively scheduled which reads and compares the
current timestamp value of the NIC. In such manner a precise timing control should
be obtained. According to the results, the performance of FlexMAC is very close to
that of hardware implementations.

Soft-TDMAC [179][180] is a protocol, where all pairs of network clocks are said to
be synchronized to within microseconds of each other. By considering the network
as a collection of pairs, they achieve a network wide synchronization. The protocol
consists of three parts, a small kernel module, a userspace library and a userspace
application. The kernel module mainly forwards incoming and outgoing packets to
and from the userspace library and configures the physical network card to abandon
its default CSMA/CA behavior by relying in the IEEE Std 802.11 QoS features of the
driver. All MAC relevant functionality is contained in the Soft-TDMAC application,
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which is linked to the user-space library. The library itself is responsible for the
starting of timers and the triggering of Soft-TDMAC upon the elapse of such timer.
One of the arguments for this split functionality is the avoidance of difficult kernel
programming, since most lies in userspace. However, since most of the functionality
lies in userspace, means also that it is susceptible to all kernel functionality, since it
has a higher priority over all userspace functionality. Such design could deteriorate
easily when the load of the system increases. To avoid such issues, the authors
decided to use the Linux RT patch, which allows to tweak the real-time priorities of
the running processes, including kernel processes.

As the research in [181] shows, the Linux kernel provides multiple possibilities to
modify the MAC behavior of COTS hardware. Unlike previously discussed work,
which adjusted the MadWiFi and other drivers, which are hardware specific drivers,
this work implements cooperative retransmission functionality in the SoftMAC,
which is the mac80211 kernel module (see Section 6.4.4) that implements a sig-
nificant amount of IEEE Std 802.11 MAC functionality and is used by a multitude
of hardware specific drivers. The design of the protocol has been implemented in
the kernel module, based on the Linux kernel version 2.6.32. The added function-
ality places unicast data or management frames, that is not directed to the current
node, into a buffer. At the time of storing the packet, a timer is scheduled for the
duration of ACK timeouts. Upon overhearing an ACK message for the buffered
packet, the packet is dropped and the timer is canceled. However, if no ACK has
been overheard for the buffered packet upon the elapse of the timer, the node sends
the buffered frame on behalf of the original sender node. Broadcast and multicast
frames are ignored by the added functionality and passed on to the upper layers,
thereby allowing the relay node to operate the same as a regular node and become
associated. The precise timing of the ACK timeout is achieved by employing the
high-resolution timers, hrtimers.

Like in the previously discussed work, the work in [182] also modifies the Linux
kernel mac80211 module, that is, the SoftMAC. The work claims to improve the
modularity, flexibility and virtualization of the IEEE Std 802.11 MAC functionality
in the Linux kernel. The mac80211 kernel module is a monolithic block, which
supports a significant number of functionalities, such as high-throughput (HT) and
MAC Layer Management Entity (MLME). Both these functionalities are modified
in a similar manner as the rate control algorithm, which depend on the mac80211,
but can be build separately as a kernel module. Two auxiliary kernel modules are
added to the MAC functionality, the Service Scheduler and the Function Handler,
which allow for the scheduling and registration of the new services. The execution
of those new services can be triggered by certain events, such as packet reception,
packet transmission, channel switching, etc.

The following invention [183] specifies a method for a communication technique
which facilitates the transmission of data packets in IEEE Std 802.11 frames by
means of an IEEE Std 802.11 compliant chipset using TDMA. Instead of forward-
ing packets directly to the Network Interface Card (NIC), packets are queued in a

206



6.3. Related work

software queue. The data packet is forwarded to the hardware queue, where the
transmission of the packet is triggered by time-slot control information. The control
information can include a count value for a timer or a timing signal generated by
a software timer. In order to ensure a timely transmission of the scheduled packet,
contention avoidance may be disabled or the hardware may be configured to transmit
only a single packet at a time.

The authors of [184] developed a protocol, RT-WiFi, where the IEEE Std 802.11
MAC and network card driver is replaced by their own implementation of a MAC.
By using a timer as a reference for the link scheduler, tasks and data can be reliably
scheduled. While the protocol seems to work fine in an isolated area, the authors
noticed that there is an issue when operating in a non isolated area, where other
WiFi devices are available, which is an issue that is not discussed in any of the
other papers, whereas it jeopardizes for example the synchronization of the entire
network.

The framework proposed in [185] is not limited to the modification of a Linux driver
or the mac80211 module, it replaces the complete MAC mechanism. The frame-
work allows the dynamic and flexible configuration of a MAC protocol, either being
TDMA or CSMA based. The firmware of commodity hardware is rewritten by means
of the open firmware source code and accepts new MAC configurations, which are
then executed. Such method is only applicable to hardware where the firmware is
allowed to be replaced, i.e. it depends whether the method is public knowledge.
However, although such an implementation would require a significant amount of
work, the results would be very accurate since there is no dependency on the timings
of the host system.

6.3.4 Power Efficiency

Use cases such as compressed video transmissions on resource and power constrained
devices need special attention [162]. While a significant amount of effort has been
invested to reduce the power consumption of the compression algorithm of the video,
merely transmitting this video stream comprised already one third of the total power
consumption. Even while IEEE Std 802.11 proposes a power save mode (PSM),
where the power consumption of idle nodes is greatly reduced, it proves to be in-
sufficient for busy nodes. Therefore, the discussed paper proposes a TDMA type
of medium access, where the Access Point (AP) transmits a schedule within the
beacon message, indicating the slots of the clients. Clients can only send or receive
packets during their allocated time slot, allowing them to power down during the
other periods of time. In this work three different methods have been considered to
implement such TDMA mode, a user level application, a traffic shaper and direct
manipulation of the network driver. The first method consists of a client applica-
tion, which verifies when the node is allowed to transmit data before writing to its
socket. Due to the buffering at different layers in the network stack, this method fails
to provide a precise accuracy. The second approach makes use of a traffic shaper,
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switching the allowed throughput back and forth between zero and infinity. Due to
the slow responsiveness of the traffic shaper, this solution was not workable. The
third method consisted of modifying the network driver directly and implementing
a flag which could be set and reset by means of a system call, indicating whether
it is allowed to send or not. The performance was esteemed to be similar to the
application layer performance. It is believed that the buffering of packets is the root
cause of this issue. In all three cases, the accuracy of the system timer was an issue.
The Linux kernel version 2.4 supported only a tick timer of 10 ms, thereby providing
a very coarse timer resolution.

6.3.5 Kernel performance analysis

The work that forms the base of the present timer structure, that is, the hrtimer, in
the Linux kernel is [186]. The work discusses besides the structure of the hrtimer,
also the structure of the clockevents and clocksources. Clockevents and clocksources
provide a general abstraction of the timer hardware, enabling system timers, such
as the hrtimer, to make use of the hardware timers. A performance section indicates
what latencies can be expected.

In order to discover problems regarding the latency of the high resolution timer
of Linux, the KTAS methodology is proposed in [187], which allows developers to
determine the cause of timer latencies. An example analysis is provided throughout
the paper, analyzing the performance of the hrtimer in terms of latency. It is
claimed that the most prominent cause for timer latencies is the softirqs caused
by the processing of network packets. By reversing the priorities of those softirqs
with the priority of the timer softirq, a considerate amount of problems should be
solved. Tools such as KTAS can be helpful in determining issues and improving the
performance of the high resolution timers when required.

The work in [188] considers analyzing the interrupt latencies, specific to a Digital
Signal Processing application. The interrupt handling latency is a conglomeration
of seven components, such as the interrupt checking latency, the maskable interrupt
latency, the Programmable Interrupt Controller (PIC) queue latency, etc. By placing
time markers in specific locations in the kernel code, the latency of the specific
routines can be deduced. A data structure is created to store the time markers
and two system calls are defined which start and end a series of measurements
respectively. At the end of a measurement, the kernel data structure is transfered
from kernel-space to user-space, where the management process can process the
information.
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6.4 Linux kernel

The Linux kernel forms in combination with a library, usually the GNU C Library,
and a set of user programs, in most cases GNU programs, the GNU/Linux Operat-
ing System, later referred to as the Linux system. What makes the Linux system
interesting is in the first place the open source policy. It enables research where
other OSs block out all access to the source code. Thanks to the vast Linux commu-
nity, the code has reached a considerable level of quality and reliability. Moreover,
significant effort has been invested and is still being performed to include support for
a wide range of hardware devices. All those characteristics make the Linux system
an ideal system for a performing research towards a non-standardized operation on
IEEE Std 802.11 compatible COTS hardware.

The Linux kernel is known to be monolithic, although it supports loadable kernel
modules, that is, sections of kernel code that can be included and removed while
the kernel is running. Such loadable module support makes debugging an easier
task, since the faulty module can be unloaded and replaced with a newer version.
On the other hand, it ensures support for a huge number of hardware devices, in
the form of drivers, while still maintaining a rather small kernel core. The spe-
cific driver modules only need to be loaded when the specific hardware is available.
Besides the hardware support, the kernel also incorporates a rather extensive net-
working stack with support for a multitude of network protocols, ranging from well
known network protocols such as TCP/IP and Ethernet to amateur radio networks.
Some basic functionalities such as a virtual filesystem, timer functionality, mem-
ory management, processes and process scheduling, and interrupt handling are also
provisioned in the kernel.

This section discusses in more detail the process management, more specifically in
the context of the interaction with interrupts and tasklets, the kernel timer function-
ality and the structure of the WiFi networking stack, specifically oriented towards
the cooperation with the ath9k driver. This section only provides the basic required
knowledge to understand the subtle differences in performance of the different cases.
A more thorough discussion can be found in [189],[190] and [191], which were used
as a reference to compose this section. However, the most accurate and up-to-date
information can be found in [192].

The Linux kernel discussion is based on the latest kernel version used in this work,
that is, 3.13.9. Where appropriate, a reference is made to the specific operating
functionality of earlier kernel versions.

6.4.1 Process management

One of the key tasks of the Linux kernel is to schedule the runnable processes. A
process is an instance of a program in execution but is not limited to the executing
code. It consists of the set of resources that are being used, such as file descriptors, an
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address space, global variables, etc. All processes have a similar view of the memory
and CPU(s) thanks to the virtualization of both, which allows them to think they
are the sole owners of those resources. It is possible for a process to contain more
than a single thread, where each thread contains its own program counter, process
stack and set of processor registers, but share the same address space. Threads are
used to allow programs or sections of programs to perform work in parallel from the
viewpoint of the user, while in reality the execution of the threads is intermingled
with each other. The interesting approach the Linux kernel has opted for, is the
lack of differentiation between a process and a thread. To the kernel, both appear
as a normal process.

A process is described in the kernel by a process descriptor, of type struct task_struct,
and is stored in a circular doubly linked list, called the task list. When a process
executes a system call, it enters kernel space. The kernel executes the requested
section of code on behalf of the user process. While executing in kernel space, the
stack pointer is rearranged such that it points to the kernel stack of the process,
which is a different memory region than the user space stack.

Stack

struct thread_info
task

process
descriptor

Figure 6.5: Allocated kernel memory for a process. (Ref: Adapted from Linux Kernel Devel-

opment, 3rd Edition, R. Love, Addison-Wesley, 2010 [113], Figure 3.2, page 26.)

The execution in the kernel does not require too much stack memory, which justifies
a limited memory allocation. The allocated kernel memory, depicted in Figure 6.5,
serves both as stack memory and a small struct called thread_info, which is located
at the beginning of the stack memory. This structure contains limited info regarding
the process and points to the process descriptor. The positioning of the structure is
interesting, since the kernel is able to deduce the address of thread_info struct, and
therefore indirectly also of the process descriptor, by masking a number of lowest
significant bits of the current stack pointer when operating in the process context.
Such mechanism allows the kernel to make a reference to the current process, i.e,
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the process that is currently being executed.

One of the services of the kernel is to provide an abstraction towards the processes,
such that from the view point of the process, it is the sole running process in the
system. The process scheduler portrays a vital role in providing this service. It
enables processes to run seemingly simultaneous, while in reality they are each
scheduled sequentially during a certain time. The scheduler in Linux is preemption
based, that is, when appropriate, the currently running process can be preempted in
favor of another process. The algorithm to determine whether or not a process needs
to be preempted takes several parameters into account. One of those parameters is
the priority of the process. Each process is assigned a certain static priority, which
can be either a ’nice value’ or a real-time priority. A nice value ranges from -20
to + 19, and the real-time priority ranges from 0 to 99. The nice value defines a
proportional priority between normal processes, while any real-time priority exceeds
the priority of normal processes.

During the 2.5 kernel development versions the O(1) scheduler was introduced, which
was designed to enable the scheduling of processes in a time that is irrespective of
the number of processes. The scheduler resolved an important issue of the previous
scheduler, that is, it ensured that the scheduler was not required to iterate through
the entire task ist in order to identify the next task that is eligible to be activated.
Key to its operation is the employment of runqueues per processor. It contains
two priority arrays, that each provide a single queue of runnable processes for every
possible process priority. One of those arrays is designated as the active array, while
the other one is the expired array. Runnable processes reside in the active priority
list, unless their time slice has been exhausted. A process can be comprised in
only a single runqueue, that is, the runqueue of the CPU on which the process is
scheduled. The scheduling algorithm selects the highest priority process to run next
until it either exhausts its time slice, the time slice counter is decreased at every
clock tick, or yields the processor. If a process exhausts its allocated time slice, it is
transferred to the expired priority array and is not allowed to become active again
until all other processes have exhausted their time slice. Eventually all processes
will become expired and the expired array can become the active array. Note that
processes with a real-time priority are never placed in the expired array. The kernel
provides mechanisms such that processes in the expired array do not become starved
in case processes with a real-time priority are present.

The allocation of the time slices and dynamic priority ensures a careful balance
between I/O bound processes that do not run a lot, but require a fast response time,
and CPU bound processes that prefer to run for a long time. Processes that require a
fast response time are allocated a higher dynamic priority and a larger time slice than
processes that are CPU bound. The size of the time slice is determined by the static
priority of a process, higher priorities are assigned a larger time slice. The dynamic
priority of a process is determined by its static priority and a bonus value, ranging
from−5 to +5, the scheduler assigns to the process based upon its previous behavior.
Processes that exhibit a highly interactive behavior are ’rewarded’ by increasing their
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dynamic priority, while CPU bound processes obtain a lower priority. The amount
of interactivity of a process is determined by the amount of time it spent sleeping.
This time is contained in a field of the task_struct, which is incremented by the
time it slept each time the process becomes runnable again and decremented each
jiffie while running. A special case is a process with a real-time priority, which can
be scheduled according to two types of classes, SCHED_FIFO and SCHED_RR.
The former does not keep track of its consumed time slice, it keeps running until it
yields voluntarily the CPU or it is preempted by a process with a higher real-time
priority. A process that is scheduled according to SCHED_RR is scheduled Round-
Robin with processes of the same real-time priority, where the scheduling interval
is determined by their time slices. However, it can also be preempted only by a
process with a higher real-time priority.

The preemption mechanism itself is based on the dynamic behavior of the kernel and
system calls. The kernel verifies at specific places in its code whether a reschedule
is required, such as when the time slice of the currently running process becomes
exhausted. For example, every scheduler tick, that is, every jiffie, the kernel checks
whether the conditions comply to validate such action. If a reschedule is required,
the flag need_resched is set. Upon returning from interrupt context or returning to
user-space, this flag is checked and if needed the schedule function is called. Note
that even a kernel process can be preempted, provided that it is safe to reschedule.
This condition is satisfied if the kernel does not hold any locks. Therefore, each
process maintains a preempt_count variable in the thread_info structure, which
denotes the number of locks being held. If this counter equals zero, the kernel
process can be preempted.

Although the O(1) scheduler performed very well and was used on systems with
a multitude of processors, certain flaws became clear regarding the scheduling of
latency-sensitive applications, also called interactive processes, where user interac-
tion was required [191][193]. One of the issues with the O(1) is the concept of nice
values and their direct relation to a certain timeslice. Low priority tasks are as-
signed a small timeslice, while higher priority tasks are assigned a large timeslice.
As a result, if there are only low priority tasks in the system, the scheduler is forced
to switch frequently from one tasks to another, whereas in the other case, the sched-
uler is switching very rarely to the higher priority tasks. Moreover, the difference
in timeslices between two nice values is fixed, resulting in a huge relative difference
between two high priority tasks and two low priority tasks, due to the fact that the
difference is relatively considered a lot smaller to the timeslice of a high priority task
than the one of a low priority task. Due to a suboptimal performance of the O(1)
scheduler concerning latency sensitive applications, a new type of scheduler is intro-
duced since kernel version 2.6.23. The new scheduler is called CFS (Completely Fair
Scheduler) and employs principles from the fair queuing theory. The CFS scheduler
is applicable solely to processes with a regular priority. The operation as previously
described for processes with a real-time priority remains the same. The principle of
CFS is based on the assumption that each process should obtain an equal amount of
the CPU at the same time. Since in practice, such feat is not possible, CFS serializes

212



6.4. Linux kernel

the execution of processes. Unlike in the O(1) scheduler, which defines time slices
based upon their static priority, CFS defines a targeted latency and allows the static
priority, which determines its weight, to determine a proportional relation between
the processes execution time. The amount of time a process can run is the targeted
latency divided by the number of active processes.

This time is weighted by the relative difference between the nice values of the pro-
cesses. The order in which the processes are scheduled is dependent on the amount
of time they have been running. The process that has run the least, modified by its
weight, is executed first. Therefore, CFS makes use of a Red-Black tree, instead of
a runqueue, ordered according to the vruntime (virtual runtime) of a process. The
virtual runtime of a process represents the actual runtime of a process, expressed in
nanoseconds, normalized by the total weight of the number of runnable processes.

6.4.2 Interrupt handling

The peripheral hardware occasionally needs to inform the CPU of certain events.
The implementation in hardware of such interrupt signals is by pulling a hardware
line, which is usually connected to an interrupt controller, up or down. The CPU
needs to process the interrupt by signaling the OS, which runs the respective inter-
rupt handler. The advantage of this mechanism is the elimination of the processor
needing to constantly poll the peripherals to check whether an event has occurred,
thereby making more efficient usage of the CPU. Moreover, if a time critical event
occurs, the processor is able to handle the event immediately.

In the Linux kernel, the device interrupt handlers reside usually in the device drivers,
which are discussed in detail in [194]. The hardware interrupts are usually asyn-
chronous with respect to the CPU clock, and can therefore interrupt the currently
running process at any time. The execution of the interrupt handler takes prece-
dence over all other kernel tasks, unless interrupts are disabled, such as in certain
critical sections. Note that the interrupt handler is not associated to some process
and therefore runs in interrupt context. As a consequence, a single interrupt stack
is provided per CPU, they are not allowed to go to sleep, which also prevents them
from using regular semaphores to identify critical sections that need to be locked.
The kernel defines special types of locks that can be used in interrupt context, such
as spin locks [191].

During the execution of the interrupt handler, the corresponding interrupt line is
masked out on all processors. Therefore, interrupt handlers should execute as fast as
possible and usually have a split functionality, a top half and a bottom half. The top
half, that is, the interrupt handler, should only perform the most time critical tasks.
The bottom half can run at a later time, when more appropriate, and performs the
remaining tasks of the interrupt handler. The Linux kernel defines three methods
to implement a bottom handler: softirq, tasklet and workqueue.
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A softirq is a static method that needs to be defined at compilation time. Dynamic
allocation and destruction of such object is not possible. The structure that holds
the softirq handlers is a statically defined array containing function pointers. In
the kernel version 3.13.9, ten different softirqs are defined, amongst others for the
networking and timer subsystem. Two softirqs are reserved for tasklet activation,
which are discussed in the next paragraph. When a softirq needs to be scheduled, a
flag is set, indicating the availability of a scheduled softirq. Upon checking this flag,
such as when returning from an interrupt, the CPU handles all scheduled softirqs
in order of priority. Softirqs are not associated to some process and are therefore
executed in interrupt context.

Whereas the same softirq can be run on multiple processors at once, if scheduled
multiple times, only a single instance of the same tasklet is runnable at the same
time. Such simplification avoids the need to provide locks to protect shared data.
Tasklets can also be allocated dynamically and destroyed at run-time. Two lists of
scheduled tasklets, a high priority and a normal priority tasklet list, is maintained
in per-cpu data, which is traversed by the corresponding softirq handler. As a
consequence, a tasklet is always executed on the CPU upon which it was scheduled.

The kernel also defines workqueues, where work can be deferred towards a bottom
half running in process context, allowing it to sleep. The deferred work is executed
in a kernel thread, which can be either a custom thread, or a default kernel thread.

6.4.3 Timers

Section 6.4.1 already indicated that the scheduler tick is a significant tool for most
process accounting. The scheduler tick is one of the functions the Linux kernel
performs every timer tick, which is used as a time reference for the whole system
[194][190][191]. One tick of the system clock has a duration of one jiffy, which is
1/HZ seconds, with HZ being a kernel configuration parameter that can be set to
100, 250, 300 or 1000 in kernel version 3.13.9. The kernel is programmed to activate
a software timer that fires every 1/HZ seconds to update the tick count and the wall
clock time, perform process accounting, check whether there are timers that have
expired or are about to expire, call the scheduler tick function and make sure the
required POSIX timers are triggered. A more detailed discussion regarding those
actions follows later in this section.

The static generation of ticks every 1/HZ seconds results in a certain overhead that
needs to be handled by the CPU, especially when it is considered idle, that is, it
has no process to execute. In order to prevent an idle CPU to wakeup each time
a tick needs to be handled, dynamic ticks were introduced in kernel version 2.6.21
[195][196]. Such a provision allows CPUs to keep sleeping until woken up by the
next timer interrupt that is not a tick. Upon leaving the idle state, the periodic tick
is resumed and the number of elapsed jiffies during the idle time is updated. This
ensures a better and more efficient energy usage.
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Before considering the possible software timer structures in the Linux kernel, clock-
sources and clockevents need to be discussed, which form the interface between the
hardware timers and the software timers. Depending on the type of hardware plat-
form, a wide variety of hardware timers is available, such as acpi_pm, hpet and tsc
on a standard x86 platform. Some of these hardware timers are simple counters that
do not generate any interrupts, such as the tsc (Timestamp Counter). Others are
more sophisticated and can be programmed to trigger an interrupt at the required
time, such as the hpet (High Precision Event Timer). The Linux kernel provides
an abstraction of all timers by means of clocksources and clockevents. A hardware
timer that is configured to operate as a clocksource is a free running timer that does
not generate any interrupts. Its current value is read out at regular times and is
used to provide a reference for the system time. Clockevents on the other hand are
suitable only for hardware timers that can be programmed and trigger an interrupt
upon elapsing.

The selection of available clocksources and clockevents is done at boot time, where
each code section, that is responsible to interface to the respective hardware timers,
registers its corresponding timer as a possible clocksource or clockevent. The kernel
orders the possible clocksources according to their stability and rating, and selects
the most suitable timer as the clocksource for the entire system. Whereas there is
only a single clocksource, each CPU is assigned a clockevent, taking into account
CPU affinity, resolution and stability. A single processor system therefore only uses
a single clocksource and a single clockevent. The clocksource is used as a reference
and the clockevent is used to schedule a timer interrupt at specific times.

The updating of the wall time, which is done every periodic tick, is based on the
operation of the clocksource. The difference between the value of the clocksource
during the last update and the current value is used to determine the current value
of the wall time. Likewise is the current system time calculated by taking the wall
clock time, which represents the actual time of the day up until the last update, and
adding the difference between the value of the clocksource during the last wall clock
time update and its current value.

Part of the timer functionality, such as the timer wheel, also depends on the periodic
tick count in order to detect whether timer handlers need to be run. The timer wheel,
which is already available since the early versions of the Linux kernel, triggers timer
handlers based on their expiry time in jiffies [197]. The timer wheel consists of five
categories in which future timer expiries are placed. Each of the categories represents
256 ∗ 64n jiffies, with n = 0 . . . 4, where n is the category index. The lowest category
represents the earliest 256 jiffies, all sorted, while each of the following categories is
subdivided in 64 buckets, which are coarsely sorted. A new timer expiry is placed
into the associated bucket, based upon its expiry time. Each tick, the lowest category
is checked for possible timers that should be triggered. After the elapsing of the time
of a lower category, the next bucket of the higher category is cascaded down into the
lower category. This approach results in a high processing overhead when timers are
cascaded to the lower category [198]. If the timers are removed from the timer wheel
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before expiry, however, the processing overhead of cascading the timer is removed.
Therefore, this type of structure is useful for timers that are needed for some kind
of deadline, in case an unexpected event occurred.

Note that no hardware timer source is referenced to, since the timer wheel’s oper-
ation depends on the tick rate. As previously mentioned, one of the tasks that is
performed every 1/HZ seconds, that is, every tick, is the timer wheel function. This
function checks whether any deadlines of the timers in the timer wheel have expired
and need their handlers to be executed. Therefore, the resolution of the timer is
limited by the HZ configuration at kernel compile time.

The Linux kernel provides two types of software timers, the timer wheel and the
hrtimer. The hrtimer (High Resolution Timer) [186] originates from the high res-
olution patch [199], which was part of the RT patch [200], and was merged into
the 2.6.16 kernel [196]. Unlike the timer wheel, the resolution of the hrtimer is not
limited to jiffies. It handles the timer interrupt of the selected clockevent directly,
enabling a far higher resolution. The internal structure of the timer consists of a Red-
Black Tree in which all scheduled timers are sorted according to their expiry time.
There exists several such Red-Black trees per CPU, one for each time base. The time
base determines which system time is used as a reference to determine whether the
timer has already elapsed. The best known time bases are CLOCK_REALTIME
and CLOCK_MONOTONIC. The former time base represents the time-of-day time,
which can jump back and forth as the system time-of-day clock is changed, includ-
ing by NTP. The latter represents the wall clock time, which is the elapsed time
since some point in time, which is usually the system boot time unless some persis-
tent battery backed up clock is available. The CLOCK_MONOTONIC time base
is unaffected by the system clock changes and is therefore best suited to use for a
performance analysis.

The high resolution of the hrtimer is assured by its methodology. The deadline of
the timer that is to expire next is programmed into the clockevent that is assigned to
the current CPU. Since most hardware timers generate an interrupt upon overflow,
the difference between the deadline and the current time is subtracted from the
maximum hardware timer value, and is programmed into the clockevent. As a result,
the specific hardware timer generates a hardware interrupt at exactly the expiry time
of the scheduled timer, which is directly handled by the hrtimer interrupt handler in
interrupt context. The timer handler function is directly called from the interrupt
handler and therefore executes also in interrupt context. In order to optimize the
performance, the timer expiry can be specified as a time range during which the
expiration might occur. The timer is always scheduled according to the latest expiry
time, however, the hrtimer interrupt routine and the hrtimer softirq routine iterates
over the list of timers and check whether their soft expiry time has already elapsed
and run the timer handler when appropriate.

When the hrtimer is configured into the kernel during compilation time and is op-
erating in high resolution mode, the tick timer is just one of the many timers the
hrtimer structure needs to handle. Upon expiration of the tick timer, its periodic
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tasks are executed, such as process accounting and checking the timer wheel timers.
If the hrtimer is not configured into the kernel or when the hrtimer is operating in a
low resolution mode, such as upon boot time, the tick timer is either triggered from
the periodic tick timer or from the dynamic tick functionality, depending whether
the hardware timer supports one-shot functionality or can only operate in a peri-
odic manner. The timers of the hrtimer in low resolution mode are then checked for
expiration every jiffie like the timers in the timer wheel.

It is important to consider that all time related functions of the system are scheduled
onto a select group of hardware timers, even just a single hardware timer in the case
of a single CPU system. Note that time related functions of the system also includes
every delayed task, user-space timers, wait queues, etc.

6.4.4 Networking architecture

The Linux kernel is noted for its secure and reliable networking operation. Key to
this reputation is its network architecture, which will be discussed in some detail
here. Since the networking subsystem contains a wide variety of protocols, its code
repository has expanded to around 660000 lines of code in Linux kernel version
3.13.9, even without taking into account all the drivers for the specific devices. In
order to keep the discussion within reasonable boundaries, this section is focused
solely to the L2 layer of the wireless subsystem, and more specifically the AP and
station mode operation. To keep the discussion tangible, the specifically considered
use case makes use of a wireless card with an Atheros chipset AR9220, which is con-
trolled by the ath9k kernel driver. Although this section is focused on the operation
of WiFi network cards, the core networking operation also applies to other types of
networks and some of them will be included briefly in the discussion to highlight the
differences.

The Linux networking subsystem is a vast and complex matter , which is a rapidly
evolving subsystem on top of that. While some references provide certain basic
information regarding device drivers and partially about the networking subsys-
tem [194][201], the provided information remains too superficial to actually matter.
The available works that focus solely on the networking subsystem on the other
hand[202][203], can go into more detail regarding the general architecture of the
networking subsystem. However, even those specialized works only superficially
consider the wireless networking subsystem; most discussions are concentrated on
the L3 layer, more specifically IPv4 and IPv6. Therefore, due to the complexity and
rapidly evolving nature of the wireless subsystem, the only real source of information
is the kernel source [192] and the wireless subsystem Wiki [204]. The discussion in
this section is based on the source of kernel version 3.13.9.

The Linux kernel networking subsystem provides support for layer L2, L3 and L4
of the network stack. An abstraction is provided for both the L2 and L3 layer; the
networking core maintains a list or hash of all available L2 devices and L3 protocols.
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Note that a virtual interface, such as an IPv4 tunnel interface can also be considered
as an L2 device. All such L2 devices, both real and virtual, are represented by a
struct net_device, which represent the devices that can be detected by userspace
tools such as ifconfig. The device driver allocates and registers such network device,
specifying at the same time which driver functions correspond to some predefined
operations, such as ndo_open, that can be called when the networking core is oper-
ating on such network device. There are some exceptions, that is, devices that are
not represented by a struct net_device structure, such as the Bluetooth device. The
lower layers of the Bluetooth stack, that is, the HCI layer, provide an abstraction
by means of an ’hci device’, which is then directed towards the specific interface to-
wards the hardware. Only when the Bluetooth BNEP protocol (Bluetooth Network
Encapsulation Protocol), which allows the transportation of common networking
protocols over Bluetooth [205], is used, such as for example by the Personal Area
Networking Profile (PAN), a struct net_device is registered to the networking core.

The differentiation between L3 and L4 is not so clear in the kernel networking subsys-
tem, since the transport layers are affixed to only specific L3 layers. For example, the
UDP and TCP transport protocols are registered only by the IPv4 protocol, while
a different UDP and TCP protocol, which have been adjusted to operate specifi-
cally with IPv6, are registered to the IPv6 protocol. Thanks to the flexibility of
the networking subsystem, it is possible to address any of the layers from userspace.
Such interface is formed by means of sockets, which provide a certain interface to a
specific protocol based upon the type of the socket. The operating parameters of the
network and transport protocols can be adjusted by means of ioctl calls through the
associated sockets. Obtaining and manipulating information, either device specific
or general information, such as available network devices or protocols, is also done
by means of ioctl calls. If the state of a device changes by executing the command
associated with the ioctl call, then the networking core notifies all interested parties
by means of notification chains, specific to the netdevice. In this manner, the rout-
ing layer is for example informed of a device that is disabled, such that its routing
table can be adjusted.

The above depicted structure allows for abstractions at the different layers, thereby
ensuring the independent operation of the layers, that is, the higher layers do not
require knowledge of the physical layer and vice versa. The current and next para-
graph highlight the interactions between different layers while either transmitting
or receiving a packet. The transmission of packets from userspace applications is
performed by executing a system call, with at least the socket file descriptor and
the data as parameters. The specific protocol layer, to which the socket is associ-
ated, will process the packet and perform a lookup of the network device (struct

net_device) through which the packet needs to be sent. One of the exported op-
erations towards the network device is ndo_start_xmit, which calls the respective
transmit function of the specific driver. The reception of packets is enabled by the
upper layers to register callback functions for the specific packet types they can han-
dle. The drivers signal the networking core that one or more packets are available,
which are forwarded towards the respective handlers according to packet type. After
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the processing of the specific layer, the packet is placed in a buffer of the specific
socket, where it waits until the userspace application performs a read operation on
the socket.

Note that previous description of both transmission and reception is a simplified
description of the path a packet traverses through the different networking layers to
keep the discussion within certain boundaries. Amongst others, Qdisc, the NAPI
interface, polling, backlog processing and softirq processing is intentionally left out
of the discussion, since, although it is interesting information, it is out of scope of this
section. Interesting is also that a packet is represented by a struct sk_buff, which
is passed through the whole kernel networking subsystem. All passing is therefore
done on a per packet base, or a list of packets.

The above description covers all types of network interfaces up to a certain level.
Ethernet drivers allocate a struct net_device, associate their personal operations
with the network device and register the device. Most communication between the
network device specific operators and the device drivers happens through the reg-
istered operation functions. There is a one to one mapping between the network
device and the device driver. The network structure for wireless devices is signif-
icantly more complex and requires also the assistance of a number of additional
kernel modules, such as cfg80211 and possibly mac80211.

A diagram of the network blocks, that are relevant to the wireless operation, is shown
in Figure 6.6. Note that the representation is extremely simplified as, for example,
the link between IPv4 and mac80211 represents the complete packet processing of
the networking core. The depicted network structure represents both a SoftMAC
(Figure 6.6(a)) and a FullMAC (Figure 6.6(b)) type of architecture. Concepts such
as SoftMAC and FullMAC are common in the wireless kernel developer community
and have a significant impact on the operation of the wireless driver. The SoftMAC
refers to the mac80211 module, where all the MAC functionality of IEEE Std 802.11
is provided. From the viewpoint of the networking core, the mac80211 module is
considered to be a driver and is also treated as such. The device specific drivers
that make use of the SoftMAC, such as ath9k, register themselves at the mac80211
and allow it to perform the MAC specific operations. Device drivers that adhere to
the FullMAC principle do not link to the mac80211, since the device specific IEEE
Std 802.11 MAC implementation is often provided in the firmware or even in the
hardware, thereby making the mac80211 functionality redundant. In the remainder
of this section the usage of the mac80211 module is assumed as the operational
functionality of the IEEE Std 802.11 MAC.

Irrespectively of which concept, SoftMAC or FullMAC, is employed, a link towards
the cfg80211 module is required, either from the driver itself or from the mac80211
module. The cfg80211 module provides an interface between userspace and the IEEE
Std 802.11 MAC, besides the commonly employed socket interface of the networking
core. The link towards userspace is implemented by means of the netlink protocol,
which is a mechanism to transfer information between kernel and userspace [206].
The netlink protocol allows userspace applications to send data packets, contain-
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Figure 6.6: SoftMAC and fullMAC concepts

ing configuration information which needs to be formatted in a specific manner,
towards kernel subsystems through the AF_NETLINK socket. Kernel modules can
send messages to userspace in an asynchronous manner by means of the internal
kernel API. Kernel subsystems can register themselves as listeners for a specific
netlink family. The cfg80211 module is registered as such a listener and is able to
parse the messages that contain requests or commands for the wireless subsystem.
The interface towards the MAC is provided by a struct cfg80211_registered_device,
which will be discussed later in detail. The cfg80211 module has a wide range of
responsibilities. First, it provides the notification of MAC Layer Management En-
tity actions, such as authentication, deauthentication, etc., as well as the passing of
received management packets by means of the netlink protocol. Second, cfg80211
provides support for regulatory infrastructure, that is, it specifies the boundaries
that should be adhered to according to the country regulations. Third, the scanning
of the wireless medium is a task performed by the MAC, however, the list of found
Basic Service Sets (BSSs) is maintained by the cfg80211 and can also be exported to
userspace. Fourth, cfg80211 maintains the state information for the Station Man-
agement Entity (SME). The decision to proceed to the next step in the association
phase is considered in this module, but it requires all its information from the MAC.
Other tasks include the parsing and composing of the netlink messages, verification
of channel information, providing an interface for ethtool, parsing of radiotap head-
ers of injected packets, etc. Note that the discussed functionality applies solely to
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either stations or Access Points; devices operating in ad hoc or Mesh mode are not
discussed.
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Figure 6.7: Physical interface representation

The mac80211 module is considered as a device driver from the viewpoint of both
the networking core and the cfg80211 module. The complexity is substantiated by
the required number of data structures for a single wireless device, which is in the
order of several dozens, of which eight are large core structures. Most of these
data structures are used in the mac80211 and cfg80211 modules. The set of data
structures is required for the complete IEEE Std 802.11 MAC operation, in different
operating modes and states.

A physical wireless device is represented by a subset of these data structures, de-
picted in Figure 6.7, which contain mostly hardware related information, a shared
data structure with the wireless driver and a structure the cfg80211 module oper-
ators can manipulate. The wireless driver initiates the construction of the relevant
structures that represent a physical wireless device. When assuming that the net-
work card is connected to the CPU through a PCI type of bus (PCI, Mini PCI or PCI
Express), the driver passes a set of operators and information to the PCI subsystem
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while registering itself as PCI driver. One of these operators, a probe function, is
called when a matching PCI id has been found by the PCI subsystem. As a result of
calling this probe function, the data structure of Figure 6.7 is created, representing
the physical wireless device. During the operation, the wireless driver registers itself
at the mac80211, providing possible operators of the wireless device driver to the
mac80211 in the form of struct ieee80211_ops. Similarly, the mac80211 registers
itself to the cfg80211, by creating a struct cfg80211_registered_device, while at the
same time providing a set of operators in the form of struct cfg80211_ops.

As depicted in Figure 6.8, for each physical wireless device, a list of virtual interfaces
is maintained, of which each is represented by another subset of data structures,
amongst which a struct net_device. Therefore, a wireless device can be represented
by multiple network devices, of which each can function in a different operational
mode. In order not to elaborate too much on the specific implementation details,
the individual data structures are not discussed in detail. A general description of
the operation is provided in the following paragraphs.

priv

struct 
wireless_dev

wiphy

priv

struct 
wireless_dev

wiphy

struct 
cfg80211_registered_device

struct 
ieee80211_local

interfaces

struct wiphy

struct 
ieee80211_sub_if_data

struct 
net_device

wdev_list

priv

struct 
wireless_dev

wiphy

wdev

dev

netdev

Figure 6.8: Virtual interface representation

The mac80211 provides the IEEE Std 802.11 MAC functionality for station, AP,
mesh and ad hoc (IBSS) mode. Besides those operating modes also vlans, monitor
mode, P2P and WDS mode are supported amongst others. One of the main re-
sponsibilities of the mac80211 is evidently the transmission and reception of packets
to and from the device driver. During packet transmission and reception, a series
of packet handlers are invoked to manipulate the packet. The transmission path
for example checks for interfaces in station mode whether dynamic power saving
(U-APSD) is enabled. If it is enabled and the specific QoS class (WMM, also known
as WME, a subset of IEEE Std 802.11e), to which the packet is classified to, is con-
figured to support U-APSD, the packet is passed on to the next handler. For any
other case, if the interface is operating in station mode and is currently in power
saving mode, the power saving mode is disabled when the corresponding queued
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work structure is processed. Other handlers address whether or not the station is
associated or the Access Point has associated stations, select the appropriate en-
cryption key, allow the rate control algorithm to determine the most optimal rates,
allocate sequence numbers, fragment the packets if needed and encrypt the frag-
mented packets. Each of the handlers has the option to drop the packet in case
certain condition are not fulfilled, such as when the device is operating in AP mode,
while no associated stations are known, the packet is dropped.

The reception of a packet is structured in a similar manner, first duplicate packets
are dropped, check whether the device is associated, notify the MLME section of
mac80211 of the arrival of a new packet, such that its connection monitor, whose
operation is similar to a watchdog, can be reset. Other handlers drop nullfunc mes-
sages, whose sole purpose is to notify about power saving mode, after checking the
power management bit. The packets are consequently decrypted and defragmented,
after which each handler provides specific handling for certain packet types. For
example, packets that are aggregated in an A-MSDU packet are processed and sent
to the higher layers one by one. Similarly, management packets are sent to the re-
spective management handler, for each of the possible operating modes. In the case
where the interface is operating in AP mode, no specific handler functions are pro-
vided, unlike modes such as station, IBSS or mesh. In such case, the management
packets are, like with all data packets or management packets that have not been
handled, sent to the monitor interface when available, which forwards them to any
userspace application listening to a monitor interface.

Other than the transmission and reception of packets, the mac80211 has a wide
range of responsibilities. As already briefly mentioned, the MLME packet handling
of interfaces in station, IBSS or mesh mode is supported by the mac80211, that is, the
packets are parsed, the appropriate timeouts are enforced and the necessary actions
are taken. In the case of station mode, notifications are sent from the mac80211
towards the MLME section of the cfg80211 module, which is mainly intended to
notify the respective listeners of the changes, such as the SME section of cfg80211.
The latter provides the station state transition logic, which passes commands back
to the mac80211. The AP mode management packet handling is not provided by
the mac80211, or elsewhere in the kernel. For this, a userspace application, such as
hostapd is required, which will be discussed in a later section.

The mac80211 is also responsible for the creation and removal of virtual interfaces
and opens them on command of cfg80211. When opening a virtual interface, the
device driver is activated if this has not been done already while opening other virtual
interfaces on the same hardware. For a correct network operation, the mac80211
maintains a record of associated stations, in AP, IBSS or mesh mode, and uses the
same structure for a client to maintain information regarding its AP. Other tasks
include performing scan operations, rate control and encryption if the hardware does
not support it, block negotiation and evidently providing an interface to cfg80211.
Note that the accepting of packets from the higher layers is not performed through
the cfg80211 interface, but through the interface with struct net_device on a virtual
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interface base.

The mac80211 is a very flexible module and a considerable number of parameters
and settings are determined by the functionality the device driver and the hardware
itself provide. For example, if a device in AP mode encounters a broadcast packet
in its transmission queue, while some of its stations are in power save mode, it
buffers the packets in one of its queues. Such case is under the assumption that
the hardware does not support power save buffering. If the hardware supports the
functionality, the task is left to the hardware to execute. Likewise, the mac80211 is
capable of performing some of the encryption and decryption algorithms in software,
if the hardware does not support those encryption methods.

Device drivers, such as ath9k, register themselves at the mac80211, as already men-
tioned before. The operation of the ath9k driver is not discussed in this section,
since its operation relies heavily upon the hardware it needs to control. In a later
section, when discussing the modifications made to enable a reliable transmission
scheme, an elaboration regarding its operation and its corresponding hardware is
provided.

6.5 Real-Time Systems

A real-time system is a system whose correctness depends not only on the logical
results of the computations, but also on the time at which the results are produced
[44] [207]. In other words, the result might be logically correct, but if it is not
produced on time, the result is useless or even dangerous. A distinction can be made
between soft and hard real-time systems, based on the consequences of missing a
deadline. Whereas missing a deadline can have catastrophic consequences in a hard
real-time system, it would merely provide some inconvenience in a soft real-time
system. An example of a hard real-time system would be paper cutting control
system that verifies whether or not obstacles, such as hands, prevent the knife from
cutting the paper. Should such system come too late to the decision that the cutter
should be stopped, that could have severe consequences. An example of a soft real-
time system could be a video conferencing system, where no buffering is used. In
case one frame of the video stream arrives too late, then either one frame is skipped,
or it is shown anyway. The user could detect a short blimp, which could cause some
annoyance, but he will not experience any severe or lasting dammage because of it.

Although the timeliness is of utmost importance for an RTOS, the system is not
required to have a fast response time [208]. Important is that deadlines are met,
irrespective of the size of the time frame, which is dependent on the type of envi-
ronment. The predictability of the system is the most important property, that is,
the system should provide guarantees that all timing constraints are met. Unfortu-
nately, several methods and features that are introduced to improve the efficiency
and average performance of a system, such as Direct Memory Access (DMA) and
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memory cache, also form a source of nondeterminism [207]. The goal of DMA is
to take over the control of the I/O tranfer from the CPU and thereby relieving the
CPU. However, the I/O device and CPU share the same bus towards the memory.
As a result, the CPU needs to be blocked while the DMA transfer is ongoing. This
is often by means of cycle stealing, where the DMA steals CPU memory cycles in
order to execute a transfer. Since the program execution at the CPU is running in
parallel with the DMA transfer, it could happen that the CPU requires the memory
bus, which is at that moment occupied by the DMA transfer. Therefore, such an
improvement causes a certain indetermination in the system, since it can not be
predeicted how many times or when the CPU will have to wait for the completion of
a DMA transfer [207]. The cache memory is also introduced to improve the overall
system performance, but like DMA, it introduces a certain degree of indeterminism.
The system is responding fast when the requested data can be found in the cache,
but when it is not found, an extra operation, that is, the retrrieval of the data from
memory, needs to be executed in order to obtain the requested data. Even though
the operation is the same from the point of view of the program, the duration of the
operation might be different. In order to take this into account, one would need to
assume that a cache miss occurs for every lookup, which is why it is more efficient
to disable the cache for such real-time systems [207]. Likewise, while interrupts im-
prove the overall system response time, since interrupt handlers are usually executed
with the highest priority, they introduce nondeterminism due to their asynchronous
character. Even real-time processes are subjected to the interrupts of possibly irrel-
evant devices. Therefore, the design of an RTOS needs to take into account amongst
others scheduling algorithms, memory allocation, interrupt handling etc.

It is common knowledge that the Linux OS (GNU/Linux OS) is not a hard Real-
Time OS (RTOS). It is said by some people that Linux does exhibit soft real-time
properties [209]. However, the system does not provide real-time guarantees, even
while stringent timing requirements can be achieved. Some issues that introduce
nondeterminism are mentioned in [208], such as non-preemptable critical sections
with non-predictable duration during which interrupts are possibly disabled, such as
in the printk call. The Linux system is designed as a general purpose OS (GPOS),
which attempts to schedule all processes in a fair manner (Section 6.4.1).

Notwithstanding the GPOS character of Linux, it became popular to modify the
Linux system into a real-time OS. Two different methodologies are employed to
ensure real-time operation. The first method modifies the Linux kernel in order to
introduce real-time characteristics, such as the CONFIG_PREEMPT_RT patch
project [200].

The CONFIG_PREEMPT_RT patch is not intended to provide hard real-time
guarantees towards the users. Instead, its goal is to improve the user’s experience
[210]. Since the interrupt handlers and interrupt disabling during critical sections
results in unpredictable latencies, a major remodeling of the interrupt handling and
locking is performed. Most interrupt handlers, both hardware IRQ handlers as
softirqs (including tasklets), are transformed in kernel threads. A small interrupt
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handler catches and acknowledges the interrupt and schedules the respective inter-
rupt thread. Since all interrupt handlers run in process context instead of interrupt
context, priorities can be assigned to each individual thread. One of the exceptions
is the hrtimer interrupt, which is directly handled by the hrtimer.

Since most interrupt handlers are running in process context, there is also no
need to disable interrupts in a significant number of critical sections. The tra-
ditional spin_lock_irqsave and all its variants are therefore modified to use the
new rt-mutex, which supports priority inheritance, while only some critical sec-
tions use the raw_spin_lock_irqsave, which implements the original behavior of
spin_lock_irqsave. This information is based on patch-3.2.44-rt64.

The second method to employ the Linux system in a real-time environment is to
introduce a second micro real-time kernel, such as in the Xenomai project [211].
This discussion targets Xenomai 2 and adds a little side note concerning the newer
Xenomai 3. The Xenomai real-time system is available as a patch to the Linux
kernel and provides a small co-kernel running side-by-side with Linux [210]. In
order to maintain close control over the interrupt processing, a layer, an interrupt
pipeline, is introduced between the hardware and both Xenomai and Linux. This
interrupt pipeline, also called I-Pipe, is derived from the interrupt pipeline contained
within the Adeos project[212], whose purpose was to enable the sharing of hardware
between multiple operating systems [213]. The interrupt pipeline allows different
systems to be connected by a software pipeline by organizing them into domains. For
each domain a virtual interrupt mask is available, which allows the domain to stall
interrupts when for example entering a critical section. The Xenomai core is running
at the highest domain priority, which is the first domain to receive interrupt signals.
Xenomai has the possibility to accept, ignore, discard or terminate interrupts [213].
When accepting the interrupt, the interrupt can still be passed on to the next
domain. Discarding an interrupt makes the I-pipe to skip the specific domain and
offer the interrupt to the following domain, while terminating an interrupt means
the interrupt will not be presented to any of the following domains.

In order to facilitate the porting of different RTOS applications towards Xenomai,
different skins are implemented, which provide an API for the specific RTOS appli-
cations. Each skin is contained within a single loadable Linux kernel module and
interacts with the Xenomai nucleus, where all basic building blocks are maintained.
One of the skins, Real-Time Driver Model (RTDM) is to be employed specifically
by real-time drivers. Real-time applications are scheduled by the Xenomai real-
time scheduler, which is a fixed-priority preemptive scheduler. They start as regular
Linux processes and declare themselves as real-time applications after initialization
by calling one of the calls defined by the specific skin. This places the process in
primary mode, that is, the process is now being scheduled by the Xenomai scheduler
instead of the Linux scheduler. When accessing any Linux specific service, such as
a system call, they are placed back into secondary mode, where the Linux kernel
performs the scheduling[214].

Besides all previously discussed features, Xenomai also provides its own synchroniza-
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tion methods to allow thread blocking with support for timeouts, priority inheritance
and priority-based or FIFO queuing order. A memory allocator with predictable la-
tencies, a generic interrupt handler and timer management are also provided by
Xenomai.

In Xenomai 3, support has been added for native Linux configurations besides the
dual kernel approach. The Xenomai 2 kernel is redesigned into the Cobalt core,
where only the RTDM skin remains available for kernel processes and a Copperplate,
which provides the interface between the real-time application and the real-time
kernel. In case of the native Linux configuration, where a Linux patched with the
PREEMPT_RT patch is used to be able to meet stricter timing requirements, the
Cobalt core is not used anymore. Only a standalone implementation of the RTDM
specification is required for the real-time drivers, while the real-time application
interfaces to Linux by means of the Copperplate.

While the two previously discussed real-time approaches are Linux based, the fol-
lowing RTOS to be discussed is developed independently of any other OS. eCos [215]
is an RTOS developed to provide a cost-effective, high-quality embedded software
solution. This discussion considers the operating system only superficially. A more
profound analysis can be found in [216], which proved to be the main source for this
discussion.

Since one of the goals of eCos was to provide a minimum resource footprint, the
OS was designed to be highly configurable. All functionality is contained within a
framework of reusable software components, each of them configurable. Embedded
software often includes generic support functionality which is not required for the
application to run. This extra code makes the software unnecessarily more complex.
eCos allows to exclude unneeded functionality from the build, allowing the build
to scale from a few hundred bytes up to hundreds of kilobytes, depending on the
included functionality. The software component control is performed at compile
time, ensuring best results in terms of code size.

The core components of eCos include the kernel, the hardware abstraction layer
(HAL) and device drivers. The kernel considers interrupt handling, support for
threads, two different real-time schedulers and a timer mechanism. Note that de-
vice drivers are not part of the kernel to facilitate the exclusion of unnecessary
functionality. The interrupt handling scheme is designed to reduce the interrupt
latency and be deterministic; a split interrupt handling scheme is employed. The
interrupt is directly serviced by the Interrupt Service Routine (ISR), which per-
forms only the most critical tasks, while further interrupt processing is deferred to
the Deferred Service Routine (DSR). An ISR has the highest priority and a DSR
has a higher priority than threads, however, if a thread has locked the scheduler,
the DSR is delayed until the thread unlocks it. Note the similarity with the Linux
interrupt handling. In order to prevent recurring interrupts, eCos forces the ISR to
mask the current interrupt, whereas the DSR needs to unmask the current interrupt
after it has been serviced. The timer mechanism of eCos includes Counters, Clocks
and Alarms. A Counter maintains a continuously increasing value that is driven by
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a source of ticks. Depending on the number of required Counters, either a simple
list can be used or a more sophisticated structure for the Counters. A Clock is also
a Counter, but has an associated resolution, which is driven by a regular source of
ticks. The default system clock is the Real-Time Clock (RTC). An Alarm is associ-
ated to a Counter and signals an event based upon the value of the Counter. This
handler needs to comply to the requirements that DSRs need to comply to.

6.6 Conclusion

The employment of IEEE Std 802.11 COTS hardware in a non-standardized man-
ner has been and still is a popular research topic. Thanks to the low cost and
the world wide integration of the devices, they are considered interesting to work
with. Unfortunately, the standard seems to lack some features or causes a subop-
timal performance for certain use cases. The discussed related work included WiFi
deployments in rural areas, guaranteed QoS provisioning, power efficiency and the
more academic interests where research is being performed to extend the function-
ality as far as possible beyond the specifications of the standard.

The long-distance deployment in rural areas encountered issues regarding the default
timings of the standard, which have an impact on carrier sensing and acknowledge-
ments. Most of these works therefore proposed to use a TDMA scheme on top of
the COTS hardware by means of the MadWiFi driver. The transmission of real-
time voice and video streaming requires a guaranteed QoS from the network. Some
works ensure this by implementing a TDMA MAC in the MadWiFi driver. The
MAC employs the Linux software timer, since it is said to be more reliable than the
hardware timer. Other works manipulate the IFS or AIFS timing and the minimum
and maximum backoff contention window, such that VoIP packets are allowed to
access the medium earlier than any other type of packets. In order to prevent colli-
sions between VoIP transmissions, they are distributed in time. The more academic
research made advantage of the open source character of the Linux kernel and its
drivers in order to pursue a wide variety of goals. Some of these goals are purely
academic, such as the modularization of the HT and MLME functionality, while oth-
ers are more targeted towards a specific goal. Either the MadWiFi or more recent
drivers, including the mac80211 Linux kernel module, are employed to achieve these
goals. Some works consider the power efficiency of the network by eliminating idle
listening. The considered work achieved this by means of a TDMA MAC protocol.

Since the employment of COTS hardware in a non-standardized manner is only
made possible thanks to the open source character of the Linux kernel, the related
work also includes some works regarding the performance evaluation of certain kernel
subsystems.

As the goal in the following chapter is the transmission control of COTS hardware,
a clear understanding of the basics of the IEEE Std 802.11 standard is provided in
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this chapter regarding functionality which could influence the transmission timings.
Most of the functionality is discussed within the context of a BSS. One of the most
prominent factors which could influence the transmission timing is the DCF, where
the different interframe spaces are discussed, such as DIFS, SIFS, AIFS, etc. The
minimum and maximum contention window, RTS and CTS, and retry counters
are also considered in the discussion. Since the hardware and Linux kernel have
built-in support, which are by default enabled, for the QoS provisions defined in
the standard, the HCF, EDCA, TXOP and the different access categories are also
considered in this chapter. Other discussed topics include the Block Ack method and
its negotiation, which have a significant impact on the performance of the network,
as well as both service and protocol aggregation, and power save mode. One last
essential piece of information about the standard is delivered in this chapter while
discussing the association procedure.

Since the open source character is paramount for the success of the non-standardized
operation of IEEE Std 802.11 COTS hardware, some of the relevant internals of the
kernel are discussed in this chapter. The depicted functionality includes the pro-
cess scheduling, interrupt processing, software timers and evidently the networking
subsystem, where the focus of the discussion was on the SoftMAC method. The
specific driver internals are not discussed, since this is implementation and hard-
ware dependent, while an attempt is made to maintain this discussion as general as
possible.

The last section superficially discusses two methods to either approach the real-
time functionality or exhibition of actual real-time functionality of the Linux kernel.
As a comparison, a dedicated RTOS is also discussed. The real-time operating
systems are relevant since the scheduling of the transmission process is very critical.
Therefore, having an OS where deadline guarantees are provided could prove to be
beneficial to the performance.
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CHAPTER 7

Transmission control on a IEEE Std 802.11n compliant

Network Interface Card

7.1 Introduction

This Chapter depicts the analysis of timer sources in the Linux kernel in Section
7.3 and the implementation details of how to implement a reliable transmission on
COTS hardware in Section 7.4 The ever increasing bandwidth, low cost and rela-
tive ease of deployment make IEEE Std 802.11 compliant hardware an interesting
means to realize setups for real-time multimedia applications. Such application can
constitute an audio-visual communication and data collaboration in a network con-
ference environment, such as in [217]. The proposed method comprises a central
server which runs an audio/video (AV) server, alongside a data server. The local
or remote client run an AV client and/or a data client. The AV server-client con-
nection allows for a real-time communication means between the central server and
each of the clients, while the data client-server connection allows the exchange of
additional information, such as presentation slides. The scenario allows for bidi-
rectional communication between the server and each of the clients. Note that the
transferred AV stream contains time sensitive information whose arrival is subjected
to jitter and delay boundaries. Although the high throughput specification of the
IEEE Std 802.11 provides sufficient capacity to implement such scheme, the said rate
improvement is an insufficient measure when not accommodated with QoS guaran-
tees. Whereas the standard does provide control of the QoS parameters, it does not
enforce guarantees. Neither does IEEE Std. 802.11e provide any QoS guarantees,
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where high priority traffic is concerned. The improvement ensures that the packet
has a higher probablity of being sent first, but does not provide any guarantees.

Each data transmission should be precisely timed in order to guarantee the timeli-
ness, even in environments where a large number of electronic devices are present,
which are potential interferers, sending probe requests to the Access Point (AP),
trying to perform an association. While manufacturing a chip that is able to op-
erate in TDMA access mode would prove to be a very efficient solution, it would
require an extensive outlet due to the high development cost. The operation of
the IEEE Std 802.11 compliant hardware in TDMA access mode would provide a
solution for this issue. The open source character of the Linux kernel,the SoftMAC
principle and the configuration interface of the COTS hardware, made available to
the device driver, allow the adaptation of the Linux kernel wireless subsystem such
that TDMA access mode is made possible. The previous chapter indicated already
the large number of works that has focused on devising a method where TDMA
access mode can be used in combination with commodity WiFi cards. Most of these
works are based on the older IEEE Std 802.11b/g specification, thereby not taking
into account possible aggregation or Block Ack mechanisms. Moreover, due to the
older hardware, the higher speeds of for example IEEE Std 802.11n are not possible.
Whereas some works provide a precise description how to circumvent the CSMA/CA
operation of the hardware, other works maintain rather superfluous as regards their
method. Although most of the related work does not elaborate on it, additional care
should be taken in the avoidance of inadvertent receptions, such as probe requests
from regular devices outside of the network, since they could jeopardize the timing
schedule of the transmissions.

The success of the TDMA algorithm depends on a number of critical factors, which
determine an upper bound on the performance. One of those factors is rarely dis-
cussed in the related work, that is, the precision of the timer source. The TDMA
algorithm requires a precise timer source in order to determine the respective slot
boundaries. Some works clarify the reasons for choosing the specific timer source,
however, neither an extensive performance analysis nor an analysis of the timer code
has been performed to compare the available timer sources. When considering how
precise such timer source really should be, the maximum available throughput of
the employed technology needs to be taken into account. This chapter discussed
the IEEE Std. 802.11n standard, where the maximum rate, when using a single
spatial stream, a 40 MHz channel, a short Guard Interval and MCS 7, would be 150
Mbps. This results in the transmission of a single bit around every 7 ns and the
transmission of a single byte around every 56 ns. That would signify that around
every 80 µs a packet needs to be transmitted in order to achieve this throughput.
The precision of a suitable timer would therefore need to be lie within the µs range
or lower, to prevent too much jitter on the packet transmissions and as a result of
the jitter, the ineffective use of the available time.

This chapter studies in the first place the stability and performance of available
timer sources. This is performed both by analyzing the timer code and by means
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of a performance analysis. Different kernel versions have been compared as regards
the timer performance. The influence of preemptiveness, HZ configuration (which is
a kernel compile-time constant that specifies the time interval between subsequent
system ticks [218]) is verified by completing the analysis for different configurations
of the respective parameters. Since the timer precision is a critical factor to the
success of the TDMA algorithm, a Linux kernel enhanced with the RT-patch, a
Linux kernel patched with the Xenomai real-time extension as well as a real-time
Operating System (RTOS), such as eCos, is used in the comparison. All comparisons
are performed in a regular situation, as well as in a high load situation, which can
comprise either timers running in parallel or high throughput network operation.
Since the hardware platform determines the performance and precision of the clock
system, two different hardware platforms are considered for the performance tests.

In the second place, the required adaptations to the Linux kernel wireless subsystem,
to enable a reliable TDMA access mode, is discussed. The chapter elaborates on
achieving a slotted packet transmission with a resolution of a single packet every
256 µs, where the jitter should be constrained to 10 µs. The focus of this chapter lies
on the accuracy of the scheduled transmission, not on the actual TDMA scheme. The
manipulation of the Linux kernel wireless subsystem, such that TDMA operation is
made possible, poses several challenges, for which a solution is proposed, even when
working in a noisy environment.

The work in this chapter is based on different kernel versions, ranging from 2.6.38
to 3.13.9. The wireless Mini PCI network card is based on Atheros AR9220, an
IEEE Std 802.11n compliant chipset. Therefore, most, if not all, discussions in this
chapter refer to the IEEE Std. 802.11n standard, especially since this standard is
being used as the reference for the Linux kernel code and NIC hardware architecture.
The hardware development platforms that were employed include a regular PC
architecture with AMD SempronTM 2400+, an SBC architecture ALIX3D3 500 MHz
with AMD Geode LX800, and an IGEPv2 board with a 1 GHz ARM CortexA8
processor.

The next section identifies the possible timer sources and exposes the methodol-
ogy to analyze the performance of the timers. Section 7.3 discusses the obtained
performance results of the different timer sources. Several concepts that should be
considered when making the required adjustments are explained in Section 7.4. The
implementation for the controlled slotted transmission is discussed in Section 7.5.
The last section concludes this chapter.

7.2 Timer source analysis

It is commonly known that the Linux kernel does not provide real-time support,
hence the several real-time Linux OS versions or kernel extensions that should
provide real-time behavior to the kernel. This and the following section analyzes
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whether the performance of any of the available timer sources is sufficient to support
a precisely controlled transmission scheme. This section focuses on the identification
of timer sources, what can be considered as a timer source, and the measurement
methodology. The discussed timer sources are timers, available at kernel level, since
the timer would need to trigger a routine in one of the kernel drivers. The following
section discusses the measurement results and deliberates on the comparison be-
tween the timer performances of both kernels with different parameters as well as
real-time systems.

7.2.1 Timer source identification

The number and type of timer sources are dependent on the hardware development
platform. In order to maintain a certain abstraction towards the hardware and re-
main hardware independent, that is, no additional specific hardware is required for
the said timer source, only Linux software timers are taken under consideration.
An exception to this rule is the timer source available within the wireless Network
Interface Card (NIC), which is an essential component of the wireless system. Note
that even though solely considering timers that are usually available on contempo-
rary platforms, the type and resolution of the timers can change when migrating to
a different hardware platform.

The identified timer sources that are considered as potential trigger inputs for the
slotted transmission consist of the General Purpose timers of AR9220, which also
includes the Software Beacon Alert timer, the Linux timer wheel, Linux hrtimer
and a proprietary high priority timer. The first timer is embedded in the Atheros
hardware, while the last three timers are Linux software timers.

The Software Beacon Alert (SWBA, later also referred to as bcntimer) is one of the
eight timers that constitute the General Purpose timers of the AR9220 chipset. The
timer is usually used to notify the station about an immanent elapse of the beacon
interval. The notification is expressed as an interrupt on the PCI bus, which needs
to be handled by the device driver which communicates to the hardware device.
Stations that need to send beacons, such as an Access Point (AP), are required to
prepare a beacon packet and place it in the hardware transmission queue. According
to [169] and [172], the timer is performing well under idle conditions, however,
degrades fast with an increasing network flow.

In order to verify the performance of the SWBA, the interrupt handler, which sched-
ules the beacon handler tasklet upon noticing the SWBA interrupt bit, is modified,
such that upon reception of the interrupt, the timer performance monitoring func-

tion is called instead, which is defined in Section 7.2.3. Since the SWBA timer is
part of the same hardware core as the other timers, analyzing the performance of
the said timer is sufficient. The performance of this timer, compared to other timers
that are being discussed here, can be found in Section 7.3.
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The Linux kernel timer wheel is a basic software structure in the kernel (See Section
6.4.3), often used to specify timeout handlers. Due to the low resolution and depen-
dency on another software timer, this timer is not considered in the performance
analysis.

The hrtimer on the other hand is a high resolution Linux software timer, where all
timers are organized in a Red-Black Tree per processor (See Section 6.4.3). Upon
expiry of the scheduled hrtimer, the hrtimer_interrupt function is called, which
calls the handler function of the timer. During initialization of the performance
measurement timer, its handler function was configured as the timer performance

monitoring function, which resides in the kernel module responsible for the perfor-
mance measurement.

From a code analysis, it is clear that most time critical operations are done within
interrupt context, either within an interrupt handler or a softirq. Since the execution
within those contexts takes priority over almost anything else, the triggering of the
timer handler is meant to be very precise. As regards kernel configuration, not
many configuration options, such as HZ value, preemptiveness and dynamic ticks,
are expected to exhibit any significant difference in timer performance. The HZ value
defines the tick interval, that is, the periodical timer interval which updates the tick
count, performs process accounting, etc. Its influence to the hrtimer is limited to
the scheduling of a single timer at a maximum timer interval of 1 ms (HZ = 1000)
The type of preemption is a significant factor within the process scheduling context,
however, in interrupt context this parameter should not manifest any influence on the
performance. Likewise is the expected influence of the dynamic tick configuration on
the performance of the hrtimer nondescript. The tick counter can be considered as
just one of the timers that make use of the hrtimer structure. Moreover, the dynamic
tick configuration is only applicable when the CPU enters idle mode and the idle
time is longer than the configured tick rate. The performance measurements have a
time interval which is generally smaller than the tick rate, thereby not allowing the
use of dynamic ticks.

Since previous statements are deduced from code analysis, a performance measure-
ment has been done with a variation of all parameters to verify former statements.
The HZ parameter takes values of either 100 or 1000 in the performance measure-
ments, the preemptiveness is either a preemptible kernel (Preemptible Kernel, Low-
Latency Desktop (CONFIG_PREEMPT)) or a non-preemptible kernel (No Forced
Preemption, Server (CONFIG_PREEMPT_NONE)), and the dynamic ticks are
either enabled or disabled. Preemption of a process signifies that the scheduler is
stopping the process in favor of the actiovation of another process, which might have
a higher priority, or has not been running for a long time, etc. After that process
has been executed, or preempted, the scheduler can decide whether or not to resume
with the preempted process. The Linux kernel is also one of the processes that needs
to run, alongside all other processes. In the past, the kernel was not preembtible
and it would need to relinquish control, before the scheduler could activate another
process instead. A fully preemptible kernel allows low priority kernel processes to be
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preempted, even when they did not relinquish control of the CPU, provided that it
is safe to do so. The goal of this configuration option is to reduce the kernel latency.

Note that only a single Red-Black Tree represents the hrtimer structure per CPU
and only a single clockevent is attached to the hrtimer structure. Therefore, in a
system with only a single CPU, all high precision timers are scheduled on the same
timer structure. It is therefore imaginable that the deadlines of two timers are thus
close to each other that the time to start the hardware timer is too short in order for
the timer to fire in time. The Linux kernel solves this issue by reiterating over the
elapsed timers with a new base timestamp to which the timer deadline is compared
to. If the base timestamp is past the timer deadline, the timer is executed. In order
to increase the efficiency of the hrtimer interrupt processing, a certain soft timer
deadline is introduced, which indicates at which point in time before the actual
deadline it is acceptable to trigger the execution of the timer handler.

Since the goal is to have a precise time reference, which does not execute too soon,
nor too late, a proprietary timer structure is designed. Since the Linux kernel only
creates sufficient clockevents for its own use, several hardware timers remain unused.
The idea is to employ one of the free hardware timers and make them a dedicated
timer for the proprietary high priority timer structure. Such timer functionality,
called hptimer, is at its core based upon the hrtimer functionality, but otherwise
differs significantly.

Upon boot time, the hptimer functionality makes an attempt to allocate the best
possible clockevent, different from the clockevent already allocated to the hrtimer.
When a hptimer is created, it is assumed that the timer is a periodic timer, unless
otherwise stated. Unlike the hrtimer, the hptimer functionality is responsible of the
repeated rescheduling of the timer. The timer storage structure could be a Red-
Black Tree or even a simple list, since the expectation is that not a huge amount
of timers is going to use this structure. The targeted timers are timers with the
highest priority for which it is of the utmost importance that they provide a precise
timer interrupt.

Upon the creation of such hptimer, the hptimer functionality checks whether the
timer is divergent with all other timers that are already stored, based on its pe-
riodicity and start time. If this condition is not being fulfilled, the timer will try
again at a different CPU, until either a fit CPU has been found or not found at
all. This procedure will make sure that no timer expiry will collide with another
timer. Moreover, the mechanism ensures there is sufficient time to program the
clockevent for firing the next deadline. The actual timer interrupt routine is kept as
short as possible and at every interrupt a pointer is made to the next deadline, to
minimize the time required to update the hardware timer when required. A tasklet
will update the timer structure in the background.
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7.2.2 Real-Time Operating Systems

Due to the required precision of the timers, it is imperative to make a comparison
with kernels that are enhanced with real-time patches and a real-time OS. Note that
interrupts are not always welcomed by an RTOS, they disrupt the regular, that is,
deterministic, operation of the system. However, timer interrupts usually are an
exception to this rule. Performance measurements have been performed with two
kernel patches and a single RTOS.

The most straightforward comparison is to enhance the Linux kernel with the RT-
patch, which ensures that the kernel behaves in a more real-time manner, however,
does not provide hard real-time properties. The performance measurement module
is the same as in a regular kernel.

A kernel enhanced with the Xenomai real-time patch, ensures that a real-time mi-
crokernel is running underneath the Linux kernel. By means of the Adeos pipe
interrupts are first addressed to the real-time kernel and afterwards to the Linux
kernel, provided the real-time kernel decides to forward the interrupts. The real-time
kernel also provides a software timer, which is used in this performance measure-
ment. In order to employ such timer, a real-time kernel module needs to be created,
which makes use of real-time callback routines. Beyond the real-time calls and the
different timer, the performance measurement remains the same as with a regular
kernel.

The last performance measurement is done with an eCos kernel. Since the eCos sys-
tem is not compatible with Linux modules, a new measurement method is designed.
A thread is started where a timer is configured to interrupt each interval. During
the interrupt routine, the current time is stored. After a configurable period of time,
the timer stops and prints out all stored measurement values, which can be stored
on a Linux PC for further processing.

7.2.3 Timer analysis methodology

The capturing of timer interrupt trigger information is similar the procedure pro-
posed in [188]. The use case is simpler for the timer analysis, since the related work
needed to adjust several routines in the kernel code, whereas for the timer analysis,
a kernel module can be created in which a timer is started and upon the timer in-
terrupts the time is captured. However, in order to minimize the analysis overhead,
a data structure is created, where the captured timestamps are stored and when
the test has completed, this structure is transfered to user-space like in the related
work.

In order to capture time information of the timer interrupt, a procedure is defined,
called the timer performance monitoring function, which stores the current time,
obtained by ktime_get, as raw data in the analysis data structure at every timer
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interrupt. When the requested number of measurements is reached the measurement
stops and the buffer with the stored timing data is converted to a string buffer,
which is used as a source for a debugfs file, which is available to user-space. The
processing and analysis of the timer information is performed in user-space. The
method is designed such that as little as possible measurement artifacts are possible
by reducing the time in the interrupt routine to a bare minimum. Therefore, no
string conversion functions or printk can be employed in the interrupt routine. The
usage of printk during the whole measurement is inhibited since printk locks the
cpu where it is running on and disables interrupts until it has finished its job. Since
the timer is scheduled on a specific CPU, this could possibly prevent the system,
both in SMP and single CPU system, from processing timer interrupts until printk
has finished. The duration of such a printk operation depends on the length of the
string and the speed of the CPU, but on an Alix board, a printk operation of normal
length would take around 5 ms, that is, 5 ms during which no interrupts are being
processed.

The goal of the analysis is not only to verify the timer performance in regular cir-
cumstances, but also to identify its weaknesses. The timer should be able to operate
in a precise and stable manner, even when stressed. Since the timing critical sec-
tions of the software timers operate in interrupt context, their performance is largely
defined by the interrupt handling speed and the efficiency of the timer deadline stor-
age facility, which is inherent to the structure of the software timer. The interrupt
handling is always an immediate action, unless some other process or interrupt has
disabled interrupts, such as when entering some critical sections. As a consequence,
an increase in system load, that is, a higher number of processes running in parallel,
will not result in any deterioration of the timers, unless the higher load also leads
to a significant increase in the number of interrupts or number of critical sections
where interrupts are disabled. The Atheros timers, however, can also degrade due
to excessive communication on the PCI bus.

In order to stress the interrupt handling system, not only measurements have been
performed with only the timer under test, but also with other timers at different rates
running in parallel, by using a userlevel program called cyclictest [219]. Placing such
stress to the timer system allows the investigation of both the storing of multiple
timers in the same software structure, and increasing the possibility of having two
timer deadlines that collide at some point in time, and at the same time increasing
the interrupt processing load.

In order to grasp the full picture of the timer performance, performance measure-
ments have been performed on two different platforms with a different architecture.
The first platform contains a x86 compatible processor, ALIX3D3, 500MHz AMD
Geode LX800 cpu, miniPCI slot. The second platform is an IGEPv2 board with a
1 GHz ARM CortexA8 processor. The parallel timers, that ensure a stress on both
the interrupt processing as well as on the timer structure, consist of ten timers, of
which the timer interval increases with 100 µs for every timer, of the interfering
timers which start with an interval of 100 µs. The timer interval of the interfer-
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ing timers which start with an interval of 1000 µs stays fixed. Every measurement
run collects timestamps from at least half a million measurements and the test is
repeated ten times, after which a statistical analysis is performed on the results.

7.3 Timer analysis results

This section discusses the obtained measurement results regarding timer perfor-
mance. The results are based on the raw timestamps, at which time the timer inter-
rupt handlers were triggered. A post process analysis determines the inter-arrival
times of the timer triggers and performs a statistical analysis on those data. In order
to analyze the behavior of the timers in a thorough manner, several comparisons
have been made, each showing a different aspect of the performance or eliminating a
possible source of interference. First, the performance of the hrtimer is depicted for
kernel 3.13.9. The different test scenarios include a variation on the preemptiveness,
such as non-preemptive(server model) and preemptive(desktop model), and on the
HZ values, such as 100 HZ and 1000 HZ. Second, a comparison is made between
Linux kernel version 3.2 and 3.13.9 on the one hand and the hrtimer and the bc-
ntimer (Atheros Software beacon alert (SWBA) timer) on the other hand. Third,
the influence of dynticks and an active network transfer is investigated. Fourth, a
proprietary timer construction, where the timer is assigned a dedicated hardware
timer, is compared to the hrtimer. Last, the effect of employing one of the real-time
patches and the eCos real-time OS is considered.

The results are represented by candlebar figures, which indicate the average inter-
arrival time, marked by a dot, and the 95% confidence interval, which is illustrated by
the top and bottom values of the bar. The different measurement scenarios regarding
interfering timers are depicted at the x-axis, where nonoise is the case where no
interfering timers are employed. The other cases relate to the interfering timer
characteristics, where the first number indicates the requested starting interrupt
interval and the second number indicates the real-time priority. In the case of eCos
there is no priority for the interfering timers and therefore, only a single number
identifies the interfering timers and the interval. Unless otherwise mentioned, the
measurements are performed on the Alix platform while using the timestamp counter
(tsc) as clocksource.

7.3.1 The hrtimer performance

The first analysis pertains to analyzing the hrtimer of the Linux kernel for kernel
version 3.13.9. The Figures 7.1 and 7.2 depict the obtained measurement results for
a 1000 µs and 250 µs interval respectively with different preemptiveness configura-
tions and HZ configurations. The average value is in every case almost exactly the
requested timer interval with a fixed deviation in the order of nanoseconds. It can
be noticed that an increase in the number of timers running in parallel increases the
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jitter, that is, the deviation from the average value. The maximum deviation that
can be observed now and then is limited to 40 µs for a 1000 µs interval and 45 µs for
a 250 µs interval. Note that a deviation of more than 2 µs from the average value
is observed only seven times in half a million samples. However, for both test runs
a single outlier was detected while measuring with timers running in parallel at an
interval of 100 µs, thereby blocking interrupts during three to four ms.
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Figure 7.1: 3.13.9 hrtimer, variation of preemption and HZ, 1000 µs interval

As can be noticed, there is no noticeable influence from the HZ configuration nor
from the preemptiveness configuration. In one case the kernel with no preemption
shows a better performance than a kernel with preemption, while in another case
this might be reversed. The same goes for the HZ configuration. This result is to be
expected, since the preemptiveness reflects itself on the process management level,
while the HZ configuration is dependent on the hrtimer and can be considered as
an extra timer running in parallel. On the other hand, the hrtimer is a low level
timer, which is mostly influenced by the interrupt handling delay and the structure
of the hrtimer that determines the speed with which the next timer deadline can be
programmed. None of those things are influenced by the preemptiveness or the HZ
configuration.

Another observation that can be made is that the priority of the interfering timers
has no influence. It can be noticed that there is no direct relation between the
timer priority and the jitter. This is to be expected, since the timer priority is the
priority assigned to the user-space process, cyclictest, which processes timer events.
Since the priority is related to the process context, it should not influence the basic
behavior of the kernel timers on a regular Linux kernel, which operate in interrupt
context.

Since from the previous paragraph could be deduced that neither the preemptiveness
nor the HZ configuration deemed to have any influence on the results, the remainder
of this section is limited to the results considering preemption (Desktop model) and
a HZ value equal to 1000. In order to show the relation between the different
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Figure 7.2: 3.13.9 hrtimer, variation of preemption and HZ, 250 µs interval

results, the comparison will always include the hrtimer of kernel version 3.13.9, with
preemption enabled (desktop model) and a HZ value of 1000.

7.3.2 The hrtimer in different kernels and the SWBA timer

The comparison of the SWBA timer (bcntimer) and the hrtimer is depicted in Fig-
ures 7.3 and 7.4 for a 1000 µs and 250 µs interval respectively. The measurements
were performed at an earlier date and therefore also an older kernel version. The dif-
ference in kernel version has in general no effect on the bcntimer, which is embedded
in the Atheros hardware. Modifications to the PCI core or the interrupt processing
system of the Linux kernel might alter the behavior slightly, but this difference is
insignificant. To demonstrate this statement, the figures include a comparison of
the hrtimer with both kernel version 3.2 and kernel version 3.13.9.
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Figure 7.3: SWBA timer vs 3.2 and 3.13.9 hrtimer, 1000 µs interval
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The figures indicate that the performance of the hrtimer of kernel 3.2 and kernel
3.13.9 is very similar, which can be expected since no structural changes occurred
between the two kernel versions. The average inter-arrival time of the hrtimer
depicts an excellent precision for both kernel versions. It is almost equal to the
requested timer interval. The fixed deviation is in the order of merely nanoseconds.
The SWBA timer on the other hand exhibits a less precise average timer interval
where the fixed deviation towards the requested timer interval is found in the order
of microseconds. This can be partially attributed to the coarser granularity of the
bcntimer. From the figures can also be observed that the jitter is larger when using
the bcntimer compared to the hrtimer. The absolute maximum jitter of the hrtimer
is around 32 µs for the hrtimer at an interval of 1000 µs, and between 32 µs and 46 µs
for the hrtimer at an interval of 250 µs (for both kernel versions 3.2 and 3.13.9). The
bcntimer on the other hand exhibits an absolute maximum jitter around 77 µs and
79 µs for an interval of 1000 µs and 250 µs respectively. The maximum jitter value
excludes the single case where during three to four ms no interrupt was handled and
therefore resulted in an outlier. Those outliers occur once or twice during a complete
test run, that is once every 5 million samples, especially when the interrupts are
heavily pressed by running several high rate timers in parallel. The occurrence of
these outliers is indifferent of which timer is being monitored and can be therefore
attributed to the system and not some artifact of one of the timers.
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Figure 7.4: SWBA timer vs 3.2 and 3.13.9 hrtimer, 250 µs interval

Note also that the activation of extra timers running in parallel stresses the perfor-
mance for both the hrtimer and bcntimer, even though their physiology is completely
different. The performance of the bcntimer is mainly determined by the PCI bus
and the interrupt system in the kernel, since the remainder of the timer interrupt
is embedded in hardware in the Atheros network card and its delay is insignificant
to the delays experienced by the software. The interference of the parallel timers
does not reside in the timer software construction and scheduling, however in the
interrupt handling of the timers. This gives an indication that the stress factor lies
with the interrupt processing and not within the timer structure. Since only the
influence of parallel timers is verified, further performance degradation could result
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from a heavily loaded PCI bus and interrupts.

7.3.3 The hrtimer performance and dynticks or network trans-
fers

The following comparison constitutes of the hrtimer with and without network load.
The SWBA timer is not included in the comparison, since it has already been shown
that its portrayed precision is lower than the precision of the hrtimer. In order to
make the comparison complete, the results of a test run with dynamic ticks is added
to the comparison. Figures 7.5 and 7.6 show the results for a 1000 µs and 250 µs
timer interval respectively.
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Figure 7.5: 3.13.9 hrtimer vs dynticks and network operation, 1000 µs interval
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Figure 7.6: 3.13.9 hrtimer vs dynticks and network operation, 250 µs interval

As expected, the figure clearly highlights the similarity between the hrtimer perfor-
mance with periodic tick configuration and with dynamic tick configuration. As was
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mentioned before, the dynamic tick rate is not expected to influence the operation
of the hrtimer and this figure shows that indeed it does not.

In order to verify the performance of the hrtimer in combination with a significant
network load, which was said to be the main cause for timer latencies in [187] due
to the softirqs, data was being sent as fast as possible over a wireless link during the
timer analysis. The average transmission speed resulted to be between 45 Mbps and
98 Mbps. In both figures it can be noticed that there is indeed a negative influence
from the network load compared to the results without network load, while there
are no timers running in parallel. However, when activating the interfering timers,
the effect from the network load is not noticeable anymore when comparing to the
situation where no network transfer is present.
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Figure 7.7: inter-arrival time 3.13.9 hrtimer and network load, 1000 µs interval

A different view on the inter-arrival time is shown in Figure 7.7, which depicts
the inter-arrival times of the timers for each interrupt. The projected results are
obtained from the performance analysis of hrtimer for kernel 3.13.9 without network
load in the upper two figures for both nonoise and noise. The interfering timers
consist of ten timers running in parallel with a start interval time of 100 µs. The
bottom two figures depict the hrtimer with network load for both no noise and
noise with timers at intervals of 100 µs. From the figures where there are timers in
parallel, the distinction is not so clear. However, when comparing the figures where
no timers are running in parallel, there is a clear difference between the case where
there is no network load and the case where there is heavy network load.
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Although a degradation of the timer performance is noticeable when increasing the
system load by flooding the wireless interface, it does not automatically signify that
the problem is caused by the employed softirq routine as claimed in [187]. In fact,
this is rather questionable. The hrtimer softirq is one of the lowest priority softirqs
and is therefore executed after all other softirqs, such as the net receive softirq, have
completed. However, the hrtimer softirq is only used as an optimization, which
checks whether timers are available to be triggered upon scheduling a new timer.
Moreover, if the softirq is to blame the loss of precision, then the sum of all tasklets
that are scheduled would need to trigger the same loss, since the softirq it employs
also has a higher priority than the hrtimer softirq. The analysis of the actual cause
of the performance drop is out of scope of this work, however, when receiving this
much data, the wireless network card is generating quite a lot of interrupts over the
PCI bus, around 8000 per second when no aggregation is used. This is equivalent to
a timer running at an interval of 125 µs. Therefore, it is not necessarily the cause of
softirqs that a degradation can be observed. However, it is clear that heavy network
operation does influence the timer performance, if not in such a high order as timers
that are running in parallel.

7.3.4 Proprietary real-time timer analysis

The following paragraph is focused in verifying the hypotheses that the scheduled
timers can interfere with each other when having similar deadlines. In order to verify
this, a proprietary timer structure is designed and implemented. Since more unused
hardware timers are available on the IGEPv2 ARM platform, compared to the Alix
platform, the OMAP2 architecture specific code was modified to support an extra
clockevent, which can be utilized by the customized hptimer functionality. The
hptimer functionality incorporates several mechanisms such that timers, scheduled
on the same timer structure or even hrtimers, do not interfere with each other. First,
in order to prevent concurrent use of the hardware timer between the hrtimer and
hptimer, the hptimer is assigned a dedicated hardware timer per CPU. Second, the
hptimer includes an acceptance check before scheduling new timers. The periodic
timer is required to diverge from the already scheduled and established timers. This
acceptance verification is based both on the timers periodicity and start time. If the
check fails, the timer is rejected for scheduling on the current CPU and an effort is
made to schedule it on a different CPU. If none of the CPUs allow the timer, the
request to schedule the timer is rejected. Since the hptimer functionality is intended
for a small number of timers that require a high precision, this restriction is not
expected to cause issues.

The Figures 7.8 and 7.9 depict the comparison between the regular hrtimer and
the custom made high priority hptimer for kernel version 3.2. The ARM platform
provides two types of hardware timers, the gp timer and the more stable, but with a
lower resolution, 32k timer. Measurements have been performed with both hardware
timers. The hrtimer and hptimer results with prefix ARM indicate the usage of the
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Figure 7.8: Hrtimer and hptimer on ARM-Cortex A8, 1000 µs interval
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Figure 7.9: Hrtimer and hptimer on ARM-Cortex A8, 250 µs interval

higher resolution gp timer, while the results with as prefix ARM_32k employed the
32k hardware timer. For the timer tests with a 250 µs interval, the results for the
32k timer are not depicted, since it is not sufficiently precise to give any meaningful
information regarding precision.

From the figures it can be seen that the performance of the hrtimer and hptimer are
very similar. There are some variations, the one time the hrtimer shows a better
performance, the other time is the hptimer better, however, this is due to random
events upon which no control can be excised. When using the 32k hardware timer, it
seems that the hptimer is performing slightly better than an hrtimer with the same
clock source. However, the performance improvement is marginal compared to the
performance of the hrtimer and not worth the effort of implementing another type
of timer functionality in the kernel. These results indicate that in a regular system
with a single CPU, there are no grounds for the hypotheses that the multitude of
scheduled timers can deteriorate the timer performance.
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7.3.5 Real-time Operating System timers

From the former results can be concluded that the hrtimer is regular and does not
experience an extremely large jitter, even when other timers are stressing the system.
However, it could happen that there is an outlier, which results in the missing of
one or several timer triggers. A real-time operating system would provide strict
deadline boundaries, thereby eliminating the outliers. The following measurement
results depict the performance of the hrtimer in a Linux kernel patched with the
RT-patch, the performance of the real-time core timer in a Linux kernel patched
with the Xenomai real-time extension and the performance of a timer within an
eCos RTOS.

The RT-patch [200], also called PREEMPT_RT, is a Linux project that focuses on
providing patches for the kernel in order to enhance the real-time behavior. The
enhanced kernel does not provide a hard real-time Linux system, however, aims to
improve the performance of certain tasks that have a higher real-time priority. One
of the changes that the patch employs is to convert most interrupt handlers into pre-
emptible kernel threads, that is, the interrupt handlers have become processes that
can be scheduled. A minimal interrupt handler processes the incoming interrupts
and triggers the corresponding kernel interrupt thread. Thanks to the conversion,
some locking mechanism that did require the disabling of interrupts can now use
regular locking mechanism. In such manner, the time spent in interrupt context is
shorter, allowing a faster IRQ handling. Since the hrtimer interrupt handling is not
converted to a kernel thread and thanks to the reduction of the number of times
interrupts are disabled, the hrtimer could exhibit an improved performance.
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Figure 7.10: Hrtimer interrupt interval time, RT-patch, 1000 µs interval

However, note that the term real-time Linux is often used in the context of improv-
ing the responsiveness of user-space applications. Not only placing the interrupt
handlers in kernel threads, but also the accompanied manipulation of spin_locks,
the addition of priority inheritance and other real-time mechanisms ensures a com-
pletely different behavior of the system. This is also noticeable in the results (Fig.
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7.10), where it is clear that the system modifications result in extreme jitter experi-
enced when high rate timers are running in parallel. No performance measurements
were executed with an interval of 250 µs, since the performance with 1000 µs already
indicated a significant degradation compared to the original kernel.

Whereas the RT-patch is focused on improving the real-time behavior of the Linux
kernel, the Xenomai real-time patch introduces a micro real-time kernel next to
the Linux kernel. Thanks to the Adeos pipeline, the real-time core is the first to
accept interrupts and can determine which interrupts the Linux kernel is allowed to
receive. Instead of measuring the performance of the Linux kernel hrtimer, the timer
embedded within the real-time core is monitored. The Xenomai patch was applied
to Linux kernel version 3.10.32, which was the most recent patch available at the
time of executing the performance measurements. The real-time timer is compared
to the hrtimer of kernel version 3.13.9.
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Figure 7.11: Xenomai timer interrupt interval time, 1000 µs interval
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Figure 7.12: Xenomai timer interrupt interval time, 250 µs interval

Figures 7.11 and 7.12 depict the measured performance of the specified timers with
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a timer interval of 1000 µs and 250 µs respectively. The contents of the figures de-
viate from previous figures, such that the most relevant results are depicted. While
the average timer interval and the 95% confidence interval are depicted in a similar
manner as in the previous figures, the maximum deviation is added to the figure, as
a straight red line, which forms the outer boundaries of the bar. The results con-
cerning the average value and 95% confidence interval show a slight improvement in
the jitter of the timer interrupt intervals. However, the major difference is the elim-
ination of outliers when measuring the Xenomai real-time core timer performance.
It can be noticed that the maximum interrupt interval of the hrtimer, running at a
requested timer interval of 1000 µs, while having interfering timers running with a
timer interval of 100 µs, exceeds the other maximum values. The exact values are
not shown here for the clarity of the figure, but the maximum interrupt interval is
4716 µs and 4363 µs for interfering timers with priority 10 and priority 80 respec-
tively. Likewise, does Figure 7.12 show that the maximum inter-arrival time of the
hrtimer exceeds the posed boundaries when interfering timers are scheduled concur-
rently at a timer interval of 100 µs. The excessive interrupt interval has a value of
4460 µs. None of the timer measurements of the Xenomai real-time core exhibited
such excessive behavior, even when performing a test for a longer duration.
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Figure 7.13: Ecos interrupt interval time, 1000 µs interval

All previous results were based, in one way or another, on the Linux kernel. The
following measurement results give an indication of the timer performance within
the eCos RTOS. The system is focused on running a single real-time application,
possibly consisting of multiple threads, instead of providing multi-user support such
as in Linux. Figure 7.13 depicts the results of a timer test that has been run on eCos,
both for a 1000 µs and 200 µs timer interval. Since there are no real-time priorities
associated to the interfering timers, only the timer interval of interfering timers is
indicated at the x-axis. Note that the timer system of eCos is tightly bound to the
operating frequency of the remainder of the system. Therefore, the lowest possible
timer interval with the default system configuration is 10000 µs. In a first phase,
the global system clock was decimated, such that timer intervals of 1000 µs were
possible, hence the relative high timer interval value of the interfering timers. In or-
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der to retrieve measurement data of higher rate timers, the global system clock was
again decimated, such that a timer interval of 100 µs was possible. This also allowed
to test with a lower interrupt interval for the interfering timers. From the results,
it is clear that the performance of an actual RTOS can significantly outperform
that of the hrtimer performance within the Linux kernel, even in the most stressed
situations. The maximum deviation within the 95% confidence interval ranges from
400 ns to 2.5 µs. Note that, since eCos does not provide such extensive hardware
support, a different hardware timer has been selected to provide the test results,
which has a worse performance compared with the timer that was used with the
Linux kernel performance evaluations. Although the difference between the results
is significant, they need to be placed in the right perspective. The Linux system
provides interactive multi-user, multi-threaded support, running usually around 100
processes, while eCos is a single application OS, where in the current test appli-
cation only ten parallel threads were running. The goals of the operating systems
are different, where Linux tries to support everything that is required and more,
while eCos lacks a lot of that support and requires some extra work to enable some
functionality.

7.3.6 Conclusion

To conclude this timer performance analysis, it is clear that the beacon timer of the
Atheros card itself is less precise, compared to the hrtimer of the Linux kernel, but it
is hard to say whether this is a result of the accuracy of the hardware or the variable
delays that occur during the signaling of the interrupt over the PCI bus. Also the
coarser granularity of the timer might have an influence. As regards the hrtimer of
the Linux kernel, neither the preemptiveness, the HZ configuration, nor the dynamic
tick configuration have a significant influence on the performance of the timers, as
was expected. The influence of a heavy network load degrades the performance of
the hrtimer, however, several high speed timers running in parallel cause a much
larger degradation in the performance. Furthermore, it can be said that the Linux
hrtimer can be deemed efficient, even although all system timers make use of the
same timer structure. When compared with an isolated timer structure, specifically
designed for high priority timers where measures are taken to prevent coincidental
timer deadlines, the performance of the hrtimer is similar.

Despite the excellent average performance of the hrtimer, the timer happens to lack
hard real-time constraints. As regards timer expirations, this translates into an
average interval almost equal to the requested timer interval, however, occasionally
the timer interval can exceed even twice the requested interval time. Attempting
to resolve the issue by means of the rt-patch shows that the patch transforms the
system drastically, resulting in timer performances that are not comparable to the
original kernel. On the other hand, the Xenomai real-time Linux kernel extension
does provide a reliable timer, which does not exhibit the excessive interrupt intervals
that represent the outliers. A dedicated real-time OS, such as eCos, outperforms
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significantly the Linux kernel timers. However, unfortunately, hardware support is
limited and Atheros wireless devices are not supported within eCos.

Note that these results are related to the system on which they were performed. An
SMP machine will for example exhibit a better performance, since timers can be
spread out over all the processors. However, in order to do a performance analysis
of the timer itself and not of the combined system, a single processor system should
be selected, as has been done in this section.

7.4 Reliable TX on IEEE Std 802.11n hardware

The previous sections discussed the stability and performance of the identified timer
sources, which is a prerequisite for the remainder of this chapter. The required
adaptations to the Linux kernel wireless subsystem are discussed in the remainder
of this chapter, such that a reliable and precise slotted transmission arrangement
with commodity hardware is made possible. Before describing the required changes
in the Linux kernel to ensure a reliable transmission on standard hardware, this
section provides some essential background on both the hardware and the method.
First a description of the hardware, the relevant Linux kernel components and their
interaction is provided. Afterwards a number of common misconceptions are dis-
cussed. Such misconceptions, such as the sole consideration of WMM in order to
provide a reliably timed transmission, result in only partial or flawed designs. The
last two sections deliberate on the methodology to ensure such precisely controlled
transmission schedule on COTS hardware.

7.4.1 System description

At the time of conceiving this implementation, Linux 2.6.38.2 is the most recent
stable kernel version and AR9220 is one of the IEEE Std 802.11n compliant chipsets
that are commercially available on wireless cards. The Atheros AR9220 chipset is a
member of the AR9002 family. Only a couple members of the family are discussed,
which are all related to the same wireless core, but provide different interfaces to-
wards the Linux kernel. The Linux kernel driver for these cards is either ath9k
for a Mini PCI or PCIe interfaces type, or ath9k_htc for a USB interface type.
Both drivers make use of the Linux kernel SoftMAC principle, that is, they register
the detected network card to the mac80211 module (See Section 6.4.4). Since the
considered use case consists of a network conferencing in which a central server is
to distribute content to the clients, the approach focuses on an Infrastructure BSS
(AP mode) type of network. Note that the traditional Linux kernel wireless subsys-
tem does not provide support for AP MLME handlers. A user-space application,
such as hostapd, is responsible for processing and responding to the corresponding
management messages. The remainder of this section will elucidate the hardware
specification and operation of the system in so far as this has not been done already
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Figure 7.14: Atheros AR9002U (AR7010 + AR9280) block diagram. (Ref: Adapted from

Atheros AR9002U (AR7010 + AR9280) Product Brief, 2007 [221].)

in Section 6.4.4.

Atheros chipsets such as AR9220, AR9280 and AR9002U are all part of the same
product family. The core wireless functionality of all these devices is precisely the
same. The difference between the chipsets is situated in the interface towards the
controlling system, such as a Linux operated PC. Both the AR9220 and AR9280
provide a user interface over the PCI bus, although the form factor varies; the
AR9220 offers a Mini PCI bus, while the AR9280 offers a PCIe interface [220]. The
AR9002U provides a USB interface to control the chipset [221]. Interesting to note
is that the AR9002U is internally constructed out of the AR7010, which is mostly
a general purpose CPU, and the AR9280. The AR7010 communicates with the
AR9280 over the internal PCIe bus and provides a translation of the commands
that are received over the USB bus into read and write operations over the PCIe
bus. The block diagram of the internal structure of both the AR9280 and AR9002U
is depicted in Figure 7.14.

The AR9220 and AR9280 provide access through the PCI bus to a section of mem-
ory where parameters are stored that control and provide feedback on the MAC
operation. Even the transmission and reception of packets is performed by setting
the configuration registers. A pointer to the memory address of the descriptor of the
first packet in a queue is written in the configuration. After the chipset has received
the signal to start the transmission, it fetches or writes that data from/to the pro-
vided memory address by means of a DMA transfer. Due to the different approach
of communication with the devices, the AR9220 and AR9280 chipsets are controlled
by means of the ath9k Linux kernel driver, while the AR9002U is controlled by the
ath9k_htc Linux kernel driver. Whereas the ath9k driver has direct access to all
configuration registers and provides the possibility of using the chipset in a non-
standardized manner, the ath9k_htc driver mostly provides a command interface
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Figure 7.16: Queue structure of AR9220. (Ref: Adapted from Atheros AR9280 Single-Chip

2x2 MIMO MAC/BB/Radio datasheet, 2009 [222], Figure 3.1, page 14.)

to the USB commands that the integrated AR7010 is able to understand. The cus-
tomization is therefore limited when working with the AR9002U. The ath9k_htc is
required to load firmware into the AR9002U, that is, binary code that the AR7010 is
able to understand. At the time of conceiving the idea of customizing the transmis-
sion operation of wireless devices, this firmware was closed source proprietary code,
which performed similar actions as the open source ath9k driver did in the Linux ker-
nel. Therefore, it was not possible to conduct experiments with this chipset and was
therefore excluded from this work. However, recent developments persuaded Qual-
comm/Atheros to make the firmware code open source, allowing the customization
of the AR9002U operation. This creates opportunities for future research, since the
firmware running on the internal CPU of the chipset is not interfered by processes
or interrupts that are not considered relevant to the network operation.

In the remainder of this work, only the AR9220 will be considered, since the em-
ployed development platform provided a Mini PCI interface and not a PCIe interface.
The internal operation of the AR9220 chipset, more specifically, the transmission
and reception architecture is depicted in Figure 7.16. As specified earlier, both the
transmission and reception mechanism need a pointer towards a section of reserved
memory in the DMA memory range of the system. Both the DMA Receive Unit
(DRU) and Queue Control Unit (QCU) components make use of this pointer to
transfer to and from the host system by means of DMA. The DRU (DMA Receive
Unit) is the module responsible for the transfer and signaling of received packets.
The unit triggers a PCI interrupt upon completion of the reception of the packet.
The ath9k driver should handle the interrupt and initialize a new pointer to memory
in the DMA range.

The transmission queue system is somewhat more complex due to the provision of
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QoS. There are 10 QCUs (Queue Control Unit) of which each is linked to its own
specific single DCU (Distributed Coordination Function(DCF) Control Unit). The
QCUs are assigned priorities, of which QCU 9 has the highest priority. Each QCU
has a pointer to a TX descriptor, which is the first element of a linked list. The TX
descriptor contains a pointer to the data (the actual packet that is being sent) and
additional MAC control information. When a TX descriptor is written to a QCU
and the conditions of the scheduling policy are fulfilled (the queue is triggered if
necessary), the QCU transfers the frame to its associated DCU. The QCU provides
several possible scheduling policies, that is, event-based, time-based or ASAP. In the
case a trigger or timer is required, it needs to come from the chipset itself, external
triggers are not considered valid sources.

The DCU (Distributed Coordination Function Control Unit) provides the DCF func-
tionality (Distributed Coordination Function), such as backoff, waiting for an idle
channel, etc. When a packet is ready to be transmitted, the DCU signals the DCU
arbiter that a packet is waiting to be transmitted. The DCU arbiter decides which
DCU is allowed to send its packet to the PCU (Protocol Control Unit), according
amongst others their respective priority. After the actual transmission, the DCU
writes the status in the TX descriptor, which is a pointer to the host memory. The
PCU is responsible for buffering TX and RX frames, automatic acknowledgement
transmission, RTS, CTS, carrier sensing, etc. An interesting feature the AR9220
chipset provides is the diagnostic register memory area. This configuration register
allows to manipulate certain parts of the PCU functionality, such as disabling the
transmission of acknowledgements, forcing a clear channel assessment, etc.

The driver that implements the control of the AR9220 chipset is ath9k in the Linux
kernel. This driver controls the wireless card by writing to its registers which are
accessible through the mini-PCI bus. In a most simplified manner, it could be said
that the driver accepts packets, arranges them in a linked list, passes the address of
the first element of that list to the appropriate QCU and signals the hardware that
new packet information has been written. Data is sent according to its QoS type in
QCU 0 to 4, which are configured to send as soon as data is available. Note that
we are working with IEEE Std. 802.11n compliant hardware and the Linux kernel
code follows the latest version of the standard, which is the reason that IEEE Std.
802.11e is already incorporated in both. In reality, there is a lot of configuration
and preparation to be done by the ath9k driver, such as allocating memory, manip-
ulation of several linked lists, combining packets that should be aggregated by the
hardware, calculating the background noise, storing physical parameters that are
measured during transmission and reception for diagnostic purposes, manipulation
of encryption keys, etc. The ath9k driver also accepts configuration values from the
upper layers, that is, the mac80211 module, where global configuration is performed
through the ieee80211 API, while per packet parameters can be set in the skb call-
back and information section, which is part of the packet coming from the mac80211
module.

While one of the tasks of the ath9k is to configure the hardware, another major
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task is to capture any interrupts that are triggered by the hardware and handle
them accordingly. Interrupts could signal the transmission or reception of a packet,
accompanied with its error codes, but it could also signal other events. For example,
in AP mode the hardware signals an interrupt at the expiry of the SWBA (SW
Beacon Alert) timer, upon which the ath9k driver prepares the next beacon packet
and places it into the beacon queue, which is QCU 9. This queue is configured
such that when a packet is ready to be sent, it blocks all lower priority queues
from entering new packets. Since Queue 9 has the highest priority, all queues are
blocked until the beacon packet has been sent. The beacon queue is timer triggered
and waits for the occurrence of the DBA timer (DMA Beacon Alert), which is an
internal timer of the AR9220 chipset, upon which the DCU will try to send the
beacon.

The remainder of the Linux kernel wireless subsystem has already been discussed
in Section 6.4.4. Note that since the mac80211 module does not provide any man-
agement handlers for the Access Point, a user-space application is required, named
hostapd. It provides methods to configure the network interface in Infrastructure
BSS mode, provides management handlers for this mode, as well as encryption,
association, authentication and timings. The program is used at the node that is
acting as AP and configures the respective layers by means of netlink and ioctl calls.
Note that, at the time of implementing the slotted transmission mechanism, the
transformation from ioctl to netlink calls had not yet been completed. Hostapd also
provides other types of interfaces for operation in various environments, however,
this is considered to be out of the scope of this work.

The management packets are received through a monitor interface, which is setup
during initialization. The transmission of management response packets is also
performed through the same monitor interface. Hostapd keeps a strict control on
the timing of incoming responses and discards any responses that are too late.

7.4.2 Common issues and misconceptions

It is common in the related works that either it is assumed possible to disable the
CSMA/CA functionality of commodity hardware, the modus operandi is left to the
imagination of the reader or they claim to be able to exert TDMA access mode
by relying solely on the manipulation of QoS parameters. Unfortunately, the IEEE
Std 802.11 commodity hardware is specifically designed for CSMA/CA operation
and does not provide, until so far, a switch that could disable this mode and only
manipulating the QoS parameters does not suffice. However, it is possible to reduce
the influence of the standard behavior of the commodity hardware. Some of the
actions that are required to reduce the influence of the CSMA/CA mechanism is
listed in [175]:

1. Eliminate automatic ACK and retransmission
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2. Eliminate RTS/CTS exchange

3. Eliminate virtual carrier sense (NAV)

4. Control PHY Clear Channel Assessment (CCA)

5. Control transmission backoff

The previously mentioned related work resolves the first two action points by using
the hardware in monitor mode, while the other actions are handled by register ma-
nipulation. Because the paper refers to IEEE Std 802.11b/g hardware, or because
the authors work with monitor mode, there was no need yet to enumerate certain
other actions that need to be taken when discussing IEEE Std 802.11n hardware or
when working in AP mode. Some of these actions are the disabling of Block Acks,
disabling of rate control, manipulating the beacon queue properties, etc. However,
a most important issue is the need to disable receptions when no receptions are
expected. This is an issue that none of the related work discusses, except in [184],
where it was noted that the protocol exhibits a decreased performance in an en-
vironment with other WiFi devices, although it is performing as expected in an
isolated environment. The issues experienced in an environment with other active
WiFi devices does not come from the availability of foreign data transmissions, the
problem is rather caused by the multiple probe requests that are broadcast. Probe
requests are low rate transmissions and therefore have a longer duration. When the
AR9220 is receiving such a message, all scheduled transmissions have to wait upon
the reception of the packet.

7.4.3 Hardware controlled operation

One of the options that the Atheros AR9220 hardware provides is the usage of
the QCU’s scheduling policies, where by means of the time triggered scheduling
policy packets can be sent out at a regular interval through the use of the DMA
beacon alert (DBA) timer. The DBA timer is a timer with a precision of 128 µs
and therefore has a sufficiently precise resolution for the specified use case. The
timer triggers the queue system such that available packets are marked ready to
transmit and the transmission continues until the end of the queue is detected. In
combination with a ReadyTime limit, slots can be defined in which transmissions
are allowed. Such method is employed in [223], where the detail of control is even
extended towards the application layer such that by opening an interface in TDMA
mode, all packets sent through that interface are using this configuration. Although
the timer provides a means to slotted operation, there is no control regarding the
slot allocations, neither is it possible to know where the slot boundaries are located.
The method allows to send packets in a CSMA manner during specific time slots,
which is fine for some applications. However, for some protocols, such control is too
limited and therefore require an additional control mechanism that enqueues packets
at regular intervals if management and data packets are to be sent in specific slots.
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This would require some extra timer source and thus redundant functionality. Note
that no performance analysis was performed on this timer in Section 7.3, since this
timer is located internal in the Atheros hardware, without any interface towards the
host system. As such, the methodology used to compare the other timers is not be
applicable to this timer.

7.4.4 Software controlled operation

Depending on the operational mode that the network device is working in, different
modifications are in order to implement a controlled slotted transmission scheme.
Since the targeted environment is infrastructure based, it is more convenient to mod-
ify the AP mode than any other mode, since it already provides a lot of functionality
that is required, but which in some cases needs to be modified.

The goal is to control the transmissions as much as possible with an IEEE Std
802.11n compliant device. Since the DCF functionality is embedded in the wireless
network device, it is required to provide a reliable time triggered packet transmission
towards the wireless network device by buffering packets coming from the upper
layers and forwarding them one at a time to the hardware when triggered by a timer
source, such as the works in [172] and [183] indicate. At the time of conceiving
this implementation, Linux 2.6.38.2 is the most recent stable kernel, of which a
superficial timer analysis indicated the suitability of the hrtimer for the targeted use
case. The analysis consisted of a comparison of the hrtimer and the SWBA timer
on a regular PC with an SMP architecture for all possible configurations regarding
preemptiveness or HZ value, however a detailed comparison with a custom timer
functionality, on different (single CPU) platforms, with different improvements to
achieve real-time etc. was done only for kernels 3.2 and 3.13.9, which is discussed in
Section 7.2. Based upon those first impressions, the hrtimer was selected as timer
source.

Due to the integrated functionality of the network device, the jitter exhibited by the
timer source will be augmented by the default network functionality of the device
when transmitting. To elevate the effects of the functionality of the chipset, some
of this functionality needs to be bridged by disabling certain features such as the
automatic acknowledgement transmission, the carrier sensing, RTS/CTS handshak-
ing, minimizing backoff before transmissions, etc. The disabling of power saving and
Block Acks also enhances the precision of the packet transmission, by eliminating
variable factors. Automatic rate control is also of course out of the question when
predictability is required.

The keyword of the system is reliability. Therefore, management packets also should
need to be sent in a controlled way. Most management handlers for AP mode
are located in the hostapd user program. The management handlers provide the
functionality for the association procedure. For the targeted use case, which is
to validate the manageability of a slotted transmission over commodity hardware,
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there are no stringent requirements on the association procedure, since it can be
considered as the initialization phase of the system. A system beyond this use case
needs to make sure that the stations first listen for the beacons sent by the AP,
instead of immediately starting to send probe requests, since the stations should
follow the slot allocations of the system. Since this work focuses on the development
of a new type of protocol, where such an extensive information exchange during the
association is not required, the association procedure itself as well as the contents
of the management packets can be simplified.

7.5 Implementation of controlled transmissions

It has already been mentioned before that a controlled slotted transmission is not
supported in the ath9k driver. Moreover, the Atheros AR9220 wireless network card
only supports IEEE Std 802.11n compliant medium contention access. Therefore, it
is required to optimize the network card for a low latency transmission and perform
most of the packet transmission triggering in software. Since most data is originating
from the AP in this case study, the current validation procedure allows the AP to
transmit in a slotted manner, while the STA simply listens. In a further stage, this
needs to be extended to a full TDMA algorithm, where the stations also send their
own data back. This implies that most changes need to be done at AP side and just
a few at the station side.

Due to the stringent timing requirements that hostapd enforces, association with
the modified slotted transmission ath9k driver is hard or even impossible in the
5 GHz band under certain circumstances. Due to the slotted transmission, sys-
tem delays and the manner in which hostapd handles notifications, the association
procedure is able to complete successfully, however, due to a timeout notification
a disassociation message is sent nevertheless by hostapd even after the association
has been completed. Therefore, the first step into the direction of a custom associ-
ation procedure is required. Moreover, due to the fact that hostapd is a user-space
application, it needs to use a variety of interfaces towards the kernel in order to
provide the required functionality. All these facts combined led to the decision to
create a simplified kernel module that provides sufficient functionality such that it
can replace hostapd. The next subsection clarifies the migration of the hostapd user
program towards the AP kernel module, while the following subsection goes into de-
tail regarding the modifications to the ath9k driver. The final subsection discusses
the obtained results from the implementation.

7.5.1 hostapd

Since the Linux kernel mac80211 module does not provide MLME message handling
for AP mode, a user-space application such a hostapd is required to enable nodes
to operate in AP mode. Since the application resides in user-space, while requiring
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Figure 7.17: Migration from hostapd application to AP kernel module

packet arrival information from the mac80211, a rather complex interface towards
the kernel is provided. The standard messaging and interface structure of the kernel
that hostapd needs is depicted on the left side of Figure 7.17. Note that this block
diagram is a simplified diagram, not showing irrelevant components, such as the
L2 packet socket interface, through which monitor packets are transferred to user-
space. The diagram is based on the composition of the hostapd application during
the development of the slotted transmission algorithm. While the diagram shows
the requirement of using ioctl calls and a monitor interface, both are not required
anymore with the newer versions, provided that the Linux kernel wireless subsystem
assures the required functionalities. Instead of listening to the monitor interface for
incoming messages, the hostapd application registers itself as listener for a certain
class of netlink family events. The monitor interface can still be used as a backup
solution if not sufficient functionality is provided.

The simplified kernel module, the AP kernel module, depicted on the right side of
Figure 7.17, performs the basic functionality that such module should provide. Such
actions include the initialization of the NIC into AP mode, based upon parameters
passed on from user-space to allow for easy configuration, and the handling of in-
coming management requests. The module provides a filesystem through which ioctl
calls can be made from a user application. Through the supported ioctl calls, the
AP can be started with the passed parameters and stopped. Note that the AP mod-
ule interacts directly with the network device and the cfg80211_registered_device
structure , thereby limiting the function call stack. Neither encryption nor authen-
tication are supported within the AP kernel module in order to provide solely the
most basic functionality.

259



Chapter 7. Transmission control on a IEEE Std 802.11n compliant NIC

The initialization phase includes the configuration of the network device, the deau-
thentication of previously authenticated nodes, the verification whether the parame-
ters that were provided from user space match with the capabilities of the hardware,
and the construction of a beacon message containing all capabilities and configura-
tion settings of the AP and writing this beacon message to the hardware. The con-
figuration of the device entails AP mode operation, frequency settings, basic rates,
SGI, Short Preamble, RTS threshold, fragmentation threshold, QoS parameters per
queue, such as TXOP, CWmin, CWmax, AIFS, etc. An additional functionality that
has been added to the ath9k driver while implementing the controlled transmission,
is a MAC filer. The MAC filter checks upon arrival of a packet whether the MAC
address is one of the expected MAC addresses, otherwise the packet is dropped. The
addresses that are supported is also configured during the initialization phase of the
AP kernel module.

The handling of management packets is supported by placing hooks in the mac80211
module, not unlike the monitor mode hooks. Since the AP kernel module is con-
structed to be a loadable module, a global method is provided where the function
reference that the hook calls can be set and reset. Upon module initialization, it
registers its own message handler function as being the function the hook calls.
Through the use of those hooks, the AP module receives the management packets
that were either not handled or passed on to the monitor interface anyway by the
mac80211 module, as well as transmission acknowledgements. The packet handlers
that are supported within the AP kernel module are probe, association and au-
thentication related messages, and action and beacon packets. The management
packets currently have the same format and functionality as the standard IEEE Std
802.11n management packets in order to be able to test with standard stations. In
a later stage, the management format and the number of management packets can
be modified to support a more simplistic association procedure.

7.5.2 ath9k

Whereas the previous section discussed changes to the association functionality,
the core modifications that allow reliable and deterministic transmissions are dis-
cussed here. The ath9k adaptations comprise of the resolving of a number of issues.
Such solutions include the methodology and parameter transmission queue adjust-
ment, association method and reception period adjustment, and the manipulation
of several mechanisms, such as Block Acks, unicast acknowledgements, RTS/CTS
transmissions, Carrier Sensing, rate control, etc.

As already depicted in Section 7.4.1, the AR9220 provides several queues to support
Enhanced Distributed Channel Access (EDCA). The ath9k driver provides support
for the enqueuing of a packet based on its QoS class. A packet that is received from
the upper layers is first processed for its meta-data and a transmission descriptor
is created for the packet. Based on the Access Class of the packet, the packet is
enqueued in the appropriate hardware queue and the hardware is notified of the
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presence of new data.

The modified implementation, which allows a controlled transmission scheme, allows
the preprocessing of the packet, the construction of the transmission descriptor, etc.
to be performed after which the packet is temporarily stored in a buffer instead of
enqueuing it in a hardware queue. The packets are placed in the hardware queue
according to a fixed rate, that is, the action is performed as a response to a timer
trigger. The trigger is a result of the scheduling of a hrtimer with a timer interval
of 256 µs. When packets of 1500 bytes are being sent by the application layer, the
theoretically available throughput would reach ∼46.8 Mbps.

Note that the adjustments ignore the specified Access Class (AC) of the packet.
All packets are placed in a single hardware queue. As a result the modified system
does not experience transmission queue switching delays, prevents internal collisions
between different ACs, and the packet transmission is made more deterministic. All
transmissions exhibit the same transmission properties as a result of the same queue
properties, such as CWmin, CWmac, AIFS, TXOP, etc. Such parameters, as well
as the channel configuration and HT parameters, are passed on by the AP kernel
module during configuration time. All control regarding QoS can be performed in
software by first allocating slots for higher priority transmissions. However, QoS
control is implementation dependent of the TDMA algorithm, which is considered
future work.

Note that the beacon transmission mechanism in the original ath9k driver results in
the blocking of data transmissions during around 3 ms before the beacon transmis-
sion. The SWBA timer interrupt triggers the final preparation of the beacon packet
and the placement of the beacon packet in the beacon queue. Beacons are sent in
the highest priority queue, which is configured to block all lower priority queues.
The SWBA timer is configured to fire around 3 ms before the internal DMA bea-
con alert (DBA) timer is configured to fire, hence the 3 ms blocking of all data
transmissions. In order to prevent the blocking action when sending beacons, The
scheduling of beacons is integrated in the packet scheduling. Beacons are scheduled
to be transmitted in the same queue as data and a slot is allocated every 400 timer
interrupts to send a beacon packet instead of a data packet, resulting in a beacon
interval time of 102.4 ms.

As already mentioned in the previous section, the association procedure is main-
tained, since the focus of this work is on the controlled transmission. Keeping a
similar association procedure allows to employ almost IEEE Std 802.11n compliant
stations. The difference with the original Linux system is the replacement of hostapd
by the AP kernel module. However, the ath9k driver is ignorant of the actions that
are performed on higher layers. This implies that all management packets are con-
sidered as regular data packets and thus sent out according to the timer interrupts.
The management packets are therefore interleaved with the data and occupy slots
that would otherwise have been used for data packets. Since the current setup uses
a single AP and a single station, all management packets are sent during the asso-
ciation procedure, which is the first phase, after which data can be sent during the
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second phase. In a later stage, this should be modified and management packets
should be allocated in specific management slots and thus not interfere with the
data transmissions.

Thanks to the different phases, the reception of packets can be shut down after the
association phase. Since the medium is free to be used by any wireless node, following
the medium access rules, a lot of traffic can be expected. Each reception prevents
the hardware from transmitting, thereby causing considerable indeterminism in the
transmission pattern. Since this work focuses on the reliable and deterministic
transmission of packets, the reception of packets is disabled after the association has
completed. In future work, this can be done in a more flexible manner and either a
series of slots need to be considered as a transmission period where reception is not
allowed, or the reception needs to be turned off (and cut off in case a reception is
ongoing) each time a transmission needs to be scheduled. The work in [167] makes
use of an interesting method, which can prove to be useful for this use case.

In order to enhance the timing control, certain features of the IEEE Std 802.11n
protocol are disabled, such as Block Acks, power saving capability, aggregation,
etc. The rate adaptation protocol of the mac80211 is completely ignored and the
rate information is set to a fixed value of MCS 5 while creating the transmission
descriptor. A variable rate would induce indeterminism, which is counteracting the
targeted result. Note, even beacon packets are transmitted at MCS 5, otherwise
it would take longer than 256 µs to transmit a beacon at the basic rate. Of the
range of possible (re)transmission rates, only a single rate is specified, preventing
the automatic retransmission with a lower rate. Even more, retransmissions of the
initial rate are disabled by manipulating the retransmit count. The RTS/CTS bit
is set such that no RTS/CTS is required, indifferent from the RTS threshold, and
QoS data packets are sent with the No Ack bit set.

Although each of the previously discussed modifications provide an essential modi-
fication, the sum of all modifications is still insufficient to guarantee a deterministic
transmission scheme. The internal registers of the AR9220 allow modifications on
a more basic level of the MAC operation. The PCU diagnostic register allows to
specify non standardized operation, such as prevention of automatic ACK transmis-
sions and the disabling of virtual carrier sensing. Since the duration field of each
packet, not destined to the current node updates the Network Allocation Vector
(NAV), which determines whether or not a transmission is allowed, the disabling of
the virtual carrier sensing is crucial. Another crucial parameter allows the device
to assume the medium is clear, that is, Clear Channel Assessment (CCA) is not
supported when this parameter is set. In order to ensure a timely transmission, the
usage of this parameter is necessary. An implication to using this parameter is the
loss of packets due to collisions on a busy medium, since carrier sensing is not being
considered.

Since most changes occurred at the AP side, there are but a few modifications done
at the STA side. Some of these modifications are vital, since the capability of a
node to provide some features could influence the transmission pattern at the AP
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side. The functionality that needs to be disabled is amongst others, power saving
capability, Block Acks and aggregation.

Since the reception procedure of the ath9k driver sets the timestamp to the system
time at which the packet was processed in the driver, tcpdump is not able to see
the actual time the packet was received. Therefore the actual mac timestamp at
the reception is placed in the packet data in order to be able to analyze the packet
arrival times, however, this is just for validation purposes and has no effect on the
operation itself.

7.5.3 Reliable TX Performance Results

In order to make a performance analysis of the modified Linux kernel, a pair of nodes
is used where one is configured as AP, while the other node is in station mode. Both
nodes comprise an AMD Sempron(TM) 2400+ CPU, the necessary memory and
a Mini PCI wireless Network Interface Card (NIC), containing an Atheros AR9220
chipset. As has been mentioned in the previous section, the operation of the wireless
communication system is comprised of two phases. The first phase is the association
phase where the AP kernel module is loaded and the application to start the AP
mode is executed at the AP side, whereas the node that operates in station mode
performs a regular association to the available AP. The second phase constitutes to
the transfer of data. After the association phase a tcpdump application is started
at the station side and a proprietary application, which allows the transmission
of data at the fastest possible rate towards a MAC address, is started at the AP
side. The packet is sent directly to the MAC layer. As such, the entire IP layer is
bypassed in this manner and therefore also the ARP mechanism, which only adds
to the complexity of the system, making it harder to determine the performance of
the section that is under test. The received data is captured at the receiver side and
stored for processing, where the inter-arrival times are determined by analyzing the
receive times embedded within the received data packet.

Two different environments were defined to test the modified Linux kernel, the
2.4 GHz band and the 5 GHz band. The behavior in the two bands is so differ-
ent due to the multitude of networks operating at the 2.4 GHz band at the test
location, while at the most only a few interferers were present in the 5 GHz band.
While most performance evaluations were based on longer duration measurements,
also some short measurement intervals were defined. All tests have been performed
with HT+, MCS 5 and the application transmits packets of 1500 bytes each.

The performance evaluations showed similar results in identical situations. Therefore
only the three most interesting cases have been depicted in this section. The first
two test are preformed in the 5 GHz band (channel 36) and the duration of the
two tests was one hour and one minute respectively. The evaluation of the first
test resulted in a total of 14027005 received packets and 517 missed packets, which
amounts to a loss of 0.003%. A missed packet is defined as a packet that has been
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Deviation range (µs) Number of deviations
[1, 2[ 0
[2, 4[ 1486019
[4, 6[ 23279
[6, 8[ 2408
[8, 10[ 1046
[10, 20[ 4901
[20, 30[ 7010
[30, 40[ 502
[40, 50[ 40
[50, 100[ 113
[100, 150[ 0
[150, 200[ 0
[200, 300[ 1

Table 7.1: Deviations larger than 1 µs for the first test

transmitted, but has not been received by the receiver. The average arrival time
between two packets is measured to be 255.995 µs. Note the precise reception at the
station side, since the interrupt interval of the hrtimer at the AP side is configured
to 256 µs. The minimum time between two packets is 194 µs and the maximum
time between two packets is 535 µs. The standard deviation of the time between
two packet arrivals is equal to 1.19356 µs and therefore 99.7% of the samples fall
within the mean value +/- 3.6 µs. Of those that have a deviation higher than 4 µs,
most of them exhibit a value lower than 30 µs. All deviations larger than a µs
can be found in text form in Table 7.1. The first column indicates intervals of the
deviation from the average inter-arrival time in µs, while the second column depicts
the number of measurement values that fall within the category. In total there are
12186 packets that exhibit a deviation which differs more than 10 µs compared to
the average arrival time, which amounts to 0.087% of the total number of received
packets.

The results of the second performance evaluation are measured with the same pa-
rameters as the previous test, except, instead of running the test for an hour, the
measurement lasted only for a minute. Such measurement also provides information
whether the performance of the modified kernel is equal, even over short periods of
time. The measurement results indicate in total 233938 received packets and only 17
missed packets, amounting to a packet loss of 0.007%. Like in the previous test re-
sults, the average inter-arrival time of the packets is equal to 255.995 µs. Therefore,
even during short periods of time, the hrtimer exhibits an excellent performance,
showing no signs of startup discrepancies. The minimum measured arrival time is
203 µs and the maximum is 307 µs. The standard deviation of the time between
two packet arrivals is equal to 1.28414 µs and therefore 99.7% of the samples fall
within the mean value +/- 3.85 µs. Table 7.2 depicts a textual representation of
deviation intervals towards the average inter-arrival time and the number of mea-
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Deviation range (µs) Number of deviations
[1, 2[ 0
[2, 4[ 39847
[4, 6[ 1427
[6, 8[ 22
[8, 10[ 9
[10, 20[ 134
[20, 30[ 23
[30, 40[ 2
[40, 50[ 0
[50, 100[ 2

Table 7.2: Deviations larger than 1 µs for the second test

surements that are contained within the respective deviation intervals. In total there
are 137 packets that exhibit a deviation which differs more than 10 µs compared to
the average arrival time, which amounts to 0.059% of the total number of received
packets.

Although the final test result depicted in this section considers a test of only five
seconds, the information contained within these five seconds is very useful. The test
was performed in the 2.4 GHz band (channel 6), where the test system was subjected
to a vast amount of external interference, that is, transmissions from other systems
that are not controlled by the test system. Like in the previous two tests, HT+
mode, MCS 5 and a packet transmission of 1500 bytes was employed. In total 17019
received packets were measured and 2632 lost packets were detected. The total loss
amounts to 15.5% of the received packets. The average inter-arrival time of the
packets was measured to be 255.997 µs, whereas the minimum inter-arrival time is
228 µs and the maximum is 283 µs. The standard deviation was determined to be
1.16553 µs.

As can be noticed by the results, using the slotted transmission scheme in an en-
vironment with a lot of interference results in a vast amount of missed packets.
However, the stability of the inter-arrival time of the packets is quite satisfactory,
the standard deviation is around 1.2 µs, hence 99.7% of all inter-arrival times are
within a deviation of 3.6 µs. Even of the remaining 0.3%, most of them are posi-
tioned within a deviation of less than 30 µs. Since the transmission duration of a
data packet of 1500 bytes at MCS 5, HT+ is around 180 µs and the available slot
time is 256 µs, this is still within acceptable boundaries.

7.6 Conclusion

This chapter focused on the transmission control on IEEE Std 802.11n compliant
COTS hardware, that is, a non-standardized operation of the COTS hardware.
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More specifically, the chapter was focused on the challenge to create a reliable and
deterministic slotted transmission scheme in an Infrastructure BSS type of network.
Two tasks were identified in order to achieve such feat. The first task was the
analysis of the performance of the available timers in the Linux kernel and NIC
hardware. The analysis was intended to determine which timer is sufficiently precise
to guarantee a precise transmission. The second task was to modify the relevant
parts of the Linux kernel wireless subsystem such that a deterministic transmission
is made possible.

The results of the timer performance analysis section demonstrated the impressive
deterministic behavior of the Linux kernel hrtimer. Even when multiple timers are
running concurrently, thereby stressing the interrupt system, the timer shows an
acceptable performance deviation. The fact that multiple system timers make use
of the hrtimer structure does not deteriorate its performance, since a timer structure
that is dedicated to only some high priority timers, and is scheduled on a different
hardware timer, shows a similar performance as the hrtimer. The impact of a heavy
network load results in a deterioration of the performance of the hrtimer, however
its influence is limited in comparison to the timers running in parallel.

When compared to the embedded timer, SWBA, of the Atheros hardware, it can be
noted that the hrtimer outperforms the SWBA timer in terms of precision. Should
it be possible to adjust the firmware of the Atheros chips, then it could be that the
SWBA timers could be more precise, since it would be able to trigger the interrupt
routine directly. However, it might be that the coarser granularity of the bcntimer
will keep providing issues regarding the performance. Kernel configurations such as
dynticks, HZ, or preemption do not influence the performance of the hrtimer in a
significant way. It needs to be stressed however that a Linux system is not a hard
real time system and there are no guarantees that a timer interrupt will occur in
time, as can be seen from the results, where once every 5 million times a couple of
timer interrupts are skipped, due to some yet undetermined system activity.

Since the lack of support for hard real-time deadlines in the Linux kernel, the avail-
able timers of a number of real-time extensions or real-time operating systems is
investigated. The RT-patch Linux kernel extension does not ensure a real-time
operating systems, although it attempts to add real-time properties to the Linux
kernel. The modifications of the patch ensure a completely different behavior of
the Linux system, which also showed in the performance results, that indicated a
worse hrtimer performance during a considerable load due to concurrent timers.
The Xenomai real-time Linux kernel patch ensures real-time behavior for the appli-
cations and kernel modules that make use of the Xenomai real-time core interfaces.
A performance evaluation of the real-time timer showed results even better than
the hrtimer. However, the most interesting property of the Xenomai real-time timer
is its determinism. This timer does not show any outlier measurement values, un-
like the Linux kernel hrtimer. A third system was investigated, eCos, which is a
dedicated RTOS. The performance of the eCos timer approaches the hardware lim-
itations, showing an incredible performance. Note that the eCos system does not
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provide support for wireless NICs and comprises only a single application, targeted
to a single purpose, while the Linux system is a multi-user, multi-threaded and
multi-application system.

The second task of this chapter was to create a reliable slotted transmission mech-
anism based on IEEE Std 802.11n compliant COTS hardware. The hostapd ap-
plication was transformed into a kernel module to eliminate any possible timing
limitations on the association method. The ath9k driver was adjusted such that
packets from higher layers are buffered until the timer source provides a trigger.
The transmission of those packets is triggered by the scheduled timer by processing
the packets in a FIFO manner. A considerable amount of the standard IEEE Std
802.11 operational functionality was disabled or circumvented, such as the disabling
of Block Acks, power saving, ACKs, carrier sense, etc. The backoff window was
minimized, all data and control packets use a single queue, the reception of packets
was disabled after the association phase, etc. With all these measures in place, the
test setup generated data packets as fast as possible, while network dumps were
taken at the receiving side. From those dump files could be deduced that a quite
reliable slotted transmission system was achieved, where only 0.09% of the received
packets exhibit a deviation larger than 10 µs from the expected arrival time. Even
in a high contention medium, the deviation remains bounded. However, there is no
guarantee, since there are occasions where the data was received a whole slot too
late.

In general, the results seem to be satisfying, a reliable TDMA system can be worked
out on commodity hardware, however, care should be taken to construct a flexible
protocol, where the slot boundaries are flexible and which is able to cope with data
that is sent a slot too late. There are no hard guarantees that data will arrive on
time.
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Cognitive Radio Networks
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CHAPTER 8

Rendezvous in Cognitive Radio Networks

8.1 Introduction

One of the primary drivers of Cognitive Radio (CR) research was the observation
that the wireless spectrum is underutilized. The focus of CR research was already
from the early start directed towards dynamic spectrum access and secondary use of
the spectrum [224]. Note that CR is broader than just spectrum access, according
to Mitola [225] CR is about having a flexible physical layer, a software defined radio,
which is controlled by model-based reasoning. Others have another definition for
CR, where the focus is placed on the flexibility of the transmission parameters based
on the perceptions of the environment. A common element which most agree upon
is the need to be flexible, that is, reconfigurable, and the radio should be sufficiently
intelligent to deduce the need to reconfigure itself, that is, it should be able to learn
and not just follow some algorithm. This is called the cognition cycle, which is an
important aspect of CR, since it elevates CR from just an intelligent device. The
cognition cycle incorporates the capturing of sensory stimuli and radio spectrum
measurements, the analysis of these inputs, the learning and interpreting of those
results and the acting upon those results.

The concept in which a Cognitive Radio Network (CRN) is situated used in this
and the following chapter consists of the notion that a primary user (PU), which has
been assigned a band of frequencies to be used during a certain time period, does not
require the full set of frequencies 100 percent of the time. Therefore, secondary users
(SUs) may try to access the medium through the usage of the unused frequency band,
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i.e. they have opportunistic access to these bands. Note that upon the appearance
of the PU, a certain action needs to be undertaken, based upon the field of Cognitive
Radio that is applicable. Some fields require the SUs to vacate the band immediately
in order not to disturb the PU’s communication, while others find it satisfactory if
the SUs use a reduced power scheme such that the possibility to disturb the PU is
minimized. Such type of network is characterized by a spectrum availability which
changes over time and location. Secondary users therefore need to be agile and able
to adapt themselves to changing spectrum opportunities. As such, The SUs are
required to regularly sense the medium to capture an image of possible PU activity,
possibly aided by information that is available from Radio Environmental Maps
(REM). Due to the dynamic nature of the network, central coordination of the SUs
is avoided, demanding of the nodes to exchange information in a distributed manner
[226]. Note that centralized coordination is proposed in for example the IEEE Std
802.22 [227]. However, this centralized access includes coordination of the spectrum
of the Primary User and therefore requires the assistance of the PU network.

Since cognitive radio is inherently a multi-channel network, specific MAC protocols
are required. The multi-channel MAC protocols can be cataloged into several differ-
ent approaches, upon which most related works have a similar view [228][229][230]:
Dedicated Common Control Channel (CCC), Common Hopping, Split phase and
Parallel Rendezvous.

The Dedicated Common Control Channel requires cognitive radio nodes to occupy
at least two radio interfaces. One of those interfaces is used to exchange control mes-
sages over a dedicated channel, hence termed Dedicated Common Control Channel.
The other radio interface is applied to exchange data over any channel. Such ap-
proach is beneficial since all nodes can overhear all control information of other
nodes, thereby ensuring either a local or global coordination. In an opportunistic
network, such as a Cognitive Radio Network (CRN), the allocation of such CCC
might be an issue. The PU might appear at the channel used for control messages,
requiring all SUs to maintain radio silence over this channel. Since the control chan-
nel is out of limits for the SUs, no agreement regarding a new control channel is
possible.

The Split Phase approach is a variation of the CCC approach where nodes only
have a single radio interface. The time is split into a control phase and a data
phase. During the control phase, messages are exchanged over the common control
channel, while data is exchanged over the assigned channels during the data phase.
The improvement over CCC is the elimination of the requirement of two radio inter-
faces. However, the issue regarding the dedicated control channel remains and the
approach results in a reduction of available time to transmit data. Moreover, time
synchronization is required for the control slots and data slots to overlap between
nodes.

A common channel hopping sequence is defined in the Common Hopping approach,
according to which all nodes hop. The nodes only need a single radio interface
which regularly switches to the next channel in the hopping sequence. Nodes that
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are willing to exchange data stay on the current channel and rejoin the hopping
sequence when the data exchange is finalized. Unfortunately, this approach requires
a strict synchronization between the nodes.

The Parallel RDV approach also requires just a single radio interface and is also
based on a channel hopping sequence. The main difference is that this approach
allows agreements between multiple nodes on distinct channels, thereby alleviating
the stress on the single channel. A possible methodology to achieve this is for each
idle node to follow a specific hopping sequence, while a possible transmitter is waiting
on a certain channel. When applied correctly, that is, when no synchronization is
required, this approach shows promising possibilities, as will be discussed later on.
The search for the most optimal method has formed itself into an area of Cognitive
Radio Network research, which is called Neighborhood Discovery (ND) or rendezvous
and is focused on the search for an available channel through which two SUs can
communicate.

This chapter and the next discusses Neighborhood discovery algorithms and their
performance. Since some of the related work makes use of interdisciplinary concepts,
the next sections go into detail of the definitions and methods. The related work is
described in Section 8.4. Note that this chapter does not contain new results, it is
included in order to understand the problem regarding a SU accessing the spectrum
in a CRN. Moreover does it serve as an overview of existing approaches.

8.2 Channel Hopping based Rendezvous

There are multiple examples of channel hopping based rendezvous, of which just a
limited subset is discussed in this section. The first example is Blind RDV, where
the next channel is randomly selected by each node individually. Such channel
assignment does not provide any form of guarantee, it is not even possible to give
an indication of an absolute maximum for the time to rendezvous.

The Slotted Seeded Channel Hopping (SSCH) [231] is given as the next example.
Each node makes use of a channel-seed pair to determine the channel sequence.
N − 1 seeds are available for N channels. Nodes with the same seed are guaranteed
to have a rendezvous. The issue with this system is the requirement of having a
synchronized subsystem. All slot boundaries need to be synchronized in order for
the system to achieve rendezvous.

One of the most well known protocols that employs frequency hopping in order to
achieve neighborhood discovery is Bluetooth, where each device, part of a piconet,
makes use of a hopping sequence based upon the Bluetooth device address and clock
of the master. The connection establishment procedure, paging, is initiated by the
master by repeatedly transmitting the paging message in different hop channels.
Since the Bluetooth clocks of the master and the slave are not synchronized, the
master does not know exactly when the slave wakes up and on which hop frequency.
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Therefore, it transmits a train of identical page scan messages at different hop
frequencies and listens in between the transmit intervals until it receives a response
from the slave. Since the paging message is a very short packet, the hop rate is 3200
hops/s. A device that is prepared to accept connections listens for page requests on
the page physical channel, which follows a slower hopping pattern than the basic
piconet physical channel and is a short pseudo-random hopping sequence through
the RF channels. By having the master hop over different channels, according to a
channel hopping sequence based upon the destination Bluetooth address, at a faster
pace than the channel hopping of the destination, it will eventually accept a valid
page message from the master.

In recent works, such as [232], [233], [234], [235] and [236], a new method has been
designed to construct hopping sequences that provide a guaranteed rendezvous, even
in an asynchronous environment. Such works make use of designs with specific
mathematical properties, of which the next section lists some necessary definitions
to elaborate on the related works.

8.3 Definitions

8.3.1 Quorum Systems

A Quorum was originally defined and used for a majority voting scheme in a dis-
tributed computing environment [237]. However, they also became common in areas
such as replication protocols, operating systems, distributed mutual exclusion, power
saving and other applications.

A common agreed upon definition can be found in [238], which defines a Quorum
System as follows:

Definition 8.1 (Quorum System). : Given a finite universal set U = {0, 1, . . . , n−1}
with n ≥ 1, a Quorum System Q under U is a collection of non-empty subsets of U ,
called quorums, satisfying the intersection property:
∀A,B ∈ Q : A ∩B 6= ∅

Note that the Intersection Property is valid only for cycle and slot aligned systems,
that is, the slots should be synchronized. Therefore, the QS Intersection Property
is not sufficient in an asynchronous environment. In order to have a RDV guarantee
in such case, a quorum must satisfy the Rotation Closure Property (RCP), which is
defined as follows:

Definition 8.2 (Rotation Closure Property). : For a quorum R in a quorum system
Q under an universal set U = {0, ..., N−1} and i ∈ {1, 2, ..., N−1}, there is defined:
rotate(R, i) = (x + i) mod N |x ∈ R. A quorum system Q has the Rotation Closure
Property if and only if
∀R′, R ∈ Q,R′ ∩ rotate(R, i) 6= ∅ for all i ∈ {1, 2, ..., N − 1}.
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Quorum Systems is a common denominator for several different types of quorums.
Two of those types, a Grid Quorum System and a Torus Quorum System, are de-
picted in the next subsection, since they are used in the related work that needs to
be discussed.

Grid Quorum System

In [239], a Quorum System was used to solve a mutual exclusion problem. All
processes that have access to a shared resource need to ask permission to a subset
of those processes, a quorum. If all processes in the quorum grant access, the
resource is temporarily assigned to the requesting process. In order to achieve such
feat, a new type of quorum was proposed, that is, a Grid Quorum System. Grid
Quorum Systems are very popular Quorum Systems in amongst others power-saving
protocols.

A Grid Quorum System is constructed by means of a square matrix, also called a
grid. The number of elements contained by the grid is equal to |S| = k×k, for some
integer k. The set of subsets Qi,j of S forms the Quorum System over S, where each
Qi,j contains all elements from row i and column j, with 1 ≤ i ≤ k and 1 ≤ j ≤ k.

From the construction method can be deduced that such a quorum system has
k2 = N quorums, each of size 2k − 1. For the mutual exclusion problem, such a
Quorum System provides an efficient solution, since only

√
N processes or nodes

need to grant access for the requesting process or node to have exclusive access to
the shared resource. In terms of Neighborhood Discovery, an interesting property is
that every quorum intersects with every other quorum in at least 2 elements.

Moreover, the Rotation Closure Property is valid for Grid Quorum Systems, under
the condition that the grid arrangement is constructed according to certain rules.
Such grid allocation rules have been defined in [240], where a formal grid is formed. A
quorum system, which satisfies the Rotation Closure Property (RCP), ensures that
every quorum intersects at least once with every other quorum in an asynchronous
operation.

Torus Quorum System

The Torus Quorum System has been designed by [241], based upon the Grid Quorum
System. Instead of arranging nodes according a grid, nodes are arranged according
to a rectangular array (wraparound mesh), called a torus. The last row (column)
is followed by the first row (column) in a wraparound manner. The number of
elements (N) that the array is composed of is determined by the height of the array
(r), that is, the number of rows, and the width of the array (s), that is, the number
of columns, where N = r × s, with the constraint that s ≥ r ≥ 1.

A Torus Quorum System is composed of the set of quorums that are constructed
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according to some predefined constraints. Each quorum is of equal length and is
composed of r+⌊ s2⌋ elements. From a r×s torus array, a column cj (j = 1 . . . s) of r
elements is included into the quorum. The remaining quorum elements are selected
by picking one element from each of the ⌊ s2⌋ succeeding columns. The selection of
a single element from the columns is done in a wraparound manner. The group of
elements that constitutes the single column cj is called the quorum’s head. The
remainder of the elements form the tail of the quorum.

A more flexible construction method is proposed in [236], where a mirror torus
extension constructs the tail of a Torus Quorum by selecting in total ⌊ s2⌋ elements
in a wraparound manner, on element from each column cj+ki∗i, where ki ∈ {1,−1}
and i = 1..⌊ s2⌋. Toruses of the same Torus Quorum System are required to select
the elements from the same columns.

When employed in the context of distributed mutual exclusion and agreement pro-
tocols, the usage of a Torus Quorum System allows processes or nodes to reach an
agreement with fewer required grants than the Grid Quorum System. The quo-
rum of a Torus Quorum System in its most optimized configuration is of size

√
2N ,

whereas the size of a quorum in a Grid Quorum System is
√
N .

Like the Grid Quorum System, does the Torus Quorum System satisfy the Rotation
Closure Property (RCP) requirements and can therefore be used in an asynchronous
environment while still maintaining the intersection guarantee.

8.3.2 Cyclic Difference Set

The Cyclic Difference Set (CDS) [242] is closely related to a Quorum System, since
the Cyclic Quorum System, proposed in [243], is based upon it. Moreover, the
CDS satisfies the RCP condition and can therefore be employed in asynchronous
environments. Other than in the Cyclic Quorum System, the CDS is very popular
in power saving algorithms. The formal definition of a CDS is as follows:

Definition 8.3 (Cyclic Difference Set (CDS)). : A set D: {a1, . . . ak} moduloN ,
with ai ∈ 0, . . .N − 1, is called a cyclic (N, k, λ)-difference set if for every d 6=
0(modN) there are exactly λ ordered pairs (ai, aj), ai, aj ∈ D such that ai − aj ≡
d(modN).

As an example, the set {0,1,2,4,5,8,10} modulo 15 is a cyclic (15,7,3)-difference set.
Besides the strict CDS definition, there exists also a relaxed CDS, where not exactly
λ ordered pairs need to be found. Just a single ordered pair is already sufficient.
The definition of the relaxed CDS is as follows:

Definition 8.4 (Relaxed Cyclic Difference Set). : A set D: {a1, . . . ak} modulo
N, ai ∈ 0, . . .N − 1, is called a relaxed (cyclic) (N, k)-difference set if for every
d 6= 0(modN) there exists at least one ordered pair (ai, aj), ai, aj ∈ D such that
ai − aj ≡ d(modN).
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8.3.3 Latin Square

Latin Squares were introduced in 1783 by L. Euler as a "nouveau espèce de carrés
magiques", a new kind of magic squares [244]. He pondered on the feasibility of
arranging 36 officers. The officers were equally distributed between six different
ranks and six different regiments. The arrangement of the officers should be in a
square formation 6 by 6, such that there is only a single officer from each rank and
regiment in each row and each column. A Latin Square of order n is therefore an
n×n array of n symbols in which every symbol occurs exactly once in each row and
column of the array.

Those contemplations led to the development of a branch of mathematics, which has
become applicable into several fields, such as experimental designs (BIB - balanced
incomplete block - designs), scheduling round-robin tournaments, Graph Theory,
job assignment and processor scheduling for massive parallel computer systems.

8.3.4 Identical Row Square

Identical-Row Square (IRS) is an array which complies to the following definition
according to [245]:

Definition 8.5 (Identical-Row Square (IRS)). : An Identical-Row Square (IRS) is
an n× n table filled with n different numbers in such a way that each row consists
of a permutation of integers in Zn and all rows are identical.

8.4 Related Neighborhood Discovery Protocols

This section targets the related work regarding Neighborhood Discovery, also called
Rendezvous, protocols in Cognitive Radio Networks. The related work is limited to
Rendezvous protocols that make use of frequency hopping techniques. Works that
rely on the functionality of a common control channel are not considered due to
their weaknesses, such as single point of failure and low scalability.

There exists a wide variety of Neighborhood Discovery protocols, which can be differ-
entiated by either their targeted environment or their methodology. Environments
can amongst others be divided by the role the nodes assume; for example one node
has a sender role, while the other nodes are receivers [245]. Another criterion which
characterizes environments is synchronism, whether the protocol requires that all
nodes are clock synchronized [246] or the protocol is designed for an asynchronous
operation [246][247]. The available number of channels to all nodes can vary; some
protocols take into account that due to external factors some nodes may experience
a different view on the available channels. This is usually called an asymmetrical
channel view [248][249]. Related to such view is the channel quality; nodes may
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experience a different channel quality, which may include detected PU activity, sig-
nal to noise interference, number of lost packets, etc. Some protocols take this into
account by assigning a certain channel priority [250][251].

Classification based upon the targeted environment is a non trivial assignment, since
protocols are often not focused on a single environment parameter, but to a whole
set, which makes the differentiation difficult. The classification based upon the
employed methodology is more straightforward, it ranges from a (pseudo-)random
method to most deterministic algorithms that employ techniques such as Quorum
Systems, Difference Sets or Latin Squares.

Some of the Rendezvous protocols assume an environment in which all nodes are
synchronized, such as [252, 253, 254, 255, 256, 231, 257]. Note that the term synchro-
nization is used in different contexts. The one time, slot synchronization is required,
such that the slot boundaries of the nodes match, while in other proposals a complete
frame synchronization is required, where slot x of node A is required to overlap with
slot x’ of node B. However, for nodes to become synchronized and maintain their
synchronization in a multi-channel operation, the synchronization protocol should
determine a rendezvous between the different nodes at a certain channel in order
to exchange synchronization information. Hence, the Rendezvous protocol that as-
sumes a frame synchronized network is reduced to a scheduling problem, since the
rendezvous has already been achieved by the synchronization protocol.

The following subsections make a distinction between the different Neighborhood
Discovery protocols, based upon the employed methodology. Note that protocols
that are designed for multi-channel networks are not necessarily suitable for oppor-
tunistic networks. An excellent example is the protocol proposed in [258] and [259],
where a MAC protocol is designed to operate in a multi-channel environment based
upon IEEE Std 802.11 technology. While the protocol employs cyclic quorums to
ensure the Rendezvous, it still requires for all nodes to have knowledge of the iden-
tification codes of its one hop neighbors. Such information is usually not available
in an opportunistic network.

8.4.1 Random based Rendezvous

Rendezvous protocols that make use of random frequency hopping sequences ensure
that there is an equal probability to achieve a rendezvous for each channel. More-
over, the methodology is straightforward, which makes it easy to incorporate into
MAC protocols. A more advanced algorithm, AMRCC, which makes use of random
hopping sequences is proposed in [260][261]. The protocol performs periodic spec-
trum sensing in order to detect the presence of PUs. Since the spectral signature of
a PU is indistinguishable from other SUs, a simple energy detection is not deemed
sufficient, a feature detection is assumed to be present. Based upon this informa-
tion, a channel ranking table is built, considering the probability of interference
with PUs. The pseudo-random hopping sequence is constructed such that higher
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priority channels obtain more opportunities than low priority channels by taking
the channel ranking table into account. The decrease in RDV opportunity can be
either a linear function or a parabolic function. The design of this algorithm allows
a higher probability to achieve rendezvous on a channel with low PU activity.

Unfortunately, although this type of algorithm does provide a statistical probability
of having a rendezvous within a certain time, the Time To Rendezvous (TTR), and
lowers the probability of encountering a PU transmission, it can not ensure any
absolute upper boundary of the to be expected TTR. The protocols discussed in
this section employ in some manner a certain randomness, while considering the
predictability of the algorithm, such as providing an upper bound to the TTR.

The algorithm described in [253] is comprised of five different channel hopping se-
quence selections, ranging from a single sequence to a more intelligent selection such
that an upper bound on the TTR can be provided. The protocol assumes that all
SUs are synchronized by means of a common time reference, for which a GPS de-
vice is provided as an example. In such manner, all nodes follow the same hopping
sequence in a time synchronized manner in case of the single hopping sequence.
A more intelligent channel hopping sequence selection is also proposed, where the
transmission pattern is selected randomly, while the receiver first performs energy
detection after which it performs the decoding of the received frames. Such scheme
can provide an upper bound to the TTR.

The algorithm proposed in [262] does not randomly select channels, however, a
permutation of the N channels is randomly selected. the selected permutation is then
repeated N times, with a single permutation interspersed between the repetitions.
Such design allows for a periodic and fair protocol, that is, all channels have an
equal opportunity to rendezvous. Moreover, thanks to the specific design, an upper
bound on the TTR is defined, even while working in an asynchronous environment.

A protocol that is partially situated in this section and partially in the next section
was designed in [263], where the Modular Clock (MC) and Modified Modular Clock
(MMC) algorithm were proposed. Both algorithms are based upon prime number
modular arithmetic. In MC, all nodes compose a list with the observed channels.
The lowest prime number (p) greater than the number of observed channels (m)
is determined by each of the SUs. The first channel is chosen randomly from the
observed channel list. A rate, or step size, r is randomly selected and determines
the following selected channels, by increasing the channel index by r modulo p. If
after an interval of 2p time slots no rendezvous has been achieved, a different r

value is randomly selected. An issue with this protocol is the lack of a guaranteed
rendezvous when SUs have selected the same prime number, which is for example
the case when both SUs have an equal amount of observed channels. Therefore, the
improved MMC protocol allows the random selection of a prime number between m

and 2m.
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8.4.2 Number Theory based Rendezvous

Number theory is a research area within mathematics, specifically focused on the
study of integers in the first place. The study of prime numbers and their charac-
teristics can be categorized within this research area. Some interesting properties
have been discovered when working with prime and co-prime numbers, which are
employed in some of the following works. Note that the Modular Clock algorithm
in [263] also used these properties, albeit the algorithm could not guarantee a ren-
dezvous due to identical prime selection.

A similar approach has been taken to design the protocol described in [264]. In a
system with N available channels, N channel hopping sequences are defined, which
are used at random by the SUs. Each hopping sequence is of different length Lk,
which should be greater than or equal to N and should be a prime number or a
power of a prime number. This ensures that the length of two different sequences
are co-prime and therefore guarantees rendezvous between any two SUs that select
a different hopping sequence. In order to ensure rendezvous when the same hopping
sequence is selected, a single channel k is arranged according to a quorum based
algorithm in sequence Sk. The not yet allocated slots are assigned to the remainder
of the channels. The approach allows for asynchronous rendezvous.

Two protocols are proposed in [265][246], a synchronous protocol and an asyn-
chronous one, of which only the last is considered in this and the next chapter.
The algorithm, ETCH, exploits characteristics of number theory based on prime
numbers by applying addition modulo the prime number. A requirement is that the
available number of channels (N) is prime. In total N−1 channel hopping sequences
are generated, that are composed out of N frames. A frame consists of a pilot slot
and a pair of subsequences that are derived by means of addition modulo N , where
the subsequence index determines the channel step size. The combination of all pilot
slot together forms the specific subsequence in the same order. Rendezvous is guar-
anteed in at least a single slot when SUs select the same channel hopping sequence
and in N slots when different hopping sequences are selected. A disadvantage of the
protocol is that it can only be used for a number of channels N that is prime. It
could be argued [247] that the protocol could be extended to select channels in the
same manner as in [263] and [266], such that it can be used for all possible number
of channels. If N is not prime, the smallest prime P larger than N is chosen and a
random channel from the available channel list is selected when the channel index
is larger than N . Such modification, referred to as mod_etch in the next chapter,
allows the usage of any number of channels at the cost of a decreased performance
of the non-prime number of channels compared to the prime number of channels.

A notable algorithm that is partially based on Number Theory and partially on a
jump-stay pattern is called JS [267][268]. The algorithm defines a single channel
hopping sequence that consists of P frames composed out of three patterns of size
P , with P being the smallest prime number greater than the number of channels
N . Two of them are jump patterns during which the subsequent channel is selected
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based upon the index i and the step length r. The third pattern is a stay pattern,
during which the SU stays on the same channel. During the jump pattern, the
channel selection starts with index i and determines the next channel by means
of step length r and modulo P operations. Every frame, that is, every 3P slots,
the step length r is incremented by one while applying modulo N to it. Every N

frames, that is, every 3NP time slots, the index i is incremented by one, while
applying modulo P to it. The maximum TTR (MTTR) is proven to be 3P in the
symmetric model, referred to as js_sym in the next chapter, where a homogeneous
channel availability is assumed. The algorithm guarantees rendezvous even in an
asynchronous environment.

An improved version of JS can be found in [249], where EJS is proposed. While
JS supports a heterogeneous channel view, that is, every node can view a different
number of available channels, both the size of the hopping cycle and the maximum
TTR (MTTR) became very large for such environment. Compared with JS, the
enhanced JS (EJS) lowers the upper-bounds of both the MTTR and the expected
TTR from O(P 3) to O(P 2) under the asymmetric model, while keeping the same
order O(P ) of upper-bounds of MTTR and E(TTR) under the symmetric mode.

The class of algorithms, Coordinated Channel Hopping (CCH), proposed in [269]
acquired its inspiration from the JS protocol, although the protocol is focused on an
asymmetric channel view, that is, every SU can observe a different list of available
channels. Like the JS protocol, this algorithm makes use of a jump stage and a
stay stage. The length of those stages is determined by a prime number P , which
is the smallest prime number greater than the total number of available channels
in the system, N . The length of the jump stage is 2P 2 slots and the length of the
stay stage is 2P slots. This cycle is repeated P times, during which the cycle index
r, which determines the channel on which the stay stage is based, is incremented.
In order to generate the channel hopping sequence during the jump stage, two lists
are defined, an LA list, which is the list of available channels for this SU, and an
LB list, which is a randomly ordered list containing values between 0 and P − 1.
The jump stage is subdivided in P sub-stages, each of 2P slots length, where the
channel selection is based upon the value of LB at index i, the slot position within
the sub-stage and the cycle index r. In order to match the channel indexes to the
available channels, the obtained channel indexes from both the stay stage and the
jump stage are matched to the channels within the list LA. If the channel is present,
the current slot is assigned to the specified channel, otherwise a channel is chosen
randomly from the list LA. The multi-user scenario makes use of the above described
method, which is specifically targeted for a pair of SUs, while reducing the list of
available channels to the common channels list with other SUs upon each RDV. It
is claimed that this solution reduces the TTR with 80% in an environment with an
heterogeneous channel view.
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8.4.3 Logic Contemplation based Rendezvous

The protocols discussed in this section make use of pure logic into their design. For
example, when two cars are driving in the opposite direction at the same circular
lane, then they are bound to collide somewhere.

A well known protocol, ring-walk, with a logical design background is proposed in
[270]. Each channel is represented by a vertex in a ring, such that generating a
channel sequence is equivalent to visiting vertices in the ring. Each SU walks on
the ring by visiting vertices with a certain velocity, determined by the unique ID of
the SU, in the same direction as all other SUs. This can be either in a clockwise
or counterclockwise direction. The speed of the SU determines which channel is the
following channel in its channel hopping sequence. Since all channels are arranged
in a ring, the SUs are eventually bound to meet each other. Unfortunately, since all
users need to have a different speed, the TTR between SUs can vary and the number
of users is bounded by the number of available channels. If the number of users is
equal to the number of channels plus one, then user1 and userN+1 are hopping at
the same relative speed modulo the number of channels and will therefore either
always meet or never meet.

A protocol, QRCH, where also the rendezvous is guaranteed also by means of slower
and faster hopping is defined in [233]. The channel assignment to slots is performed
according to a Quorum System, however, the design defines a different hopping
sequence for the sender and the receiver. The receiver is hopping at a lower rate
than the sender. SUs are not assigned a specific role, both sequences are generated
for a single node. If data needs to be transmitted, the transmission sequence is
employed, the receiver sequence otherwise. While the methodology also employs
a faster and slower hopping sequence, it alleviates all the disadvantages of [270].
Note that the distinction between transmission and reception could lead to a lower
efficiency, compared to protocols that define a single hopping sequence for all states.

A notable protocol that also makes the distinction between sender and receiver,
A-MOCH, is proposed in [245]. A-MOCH is an algorithm based on Latin Square
(transmitter) and Identical Row Square (receiver) maps. The specific construction
of the protocol results in a sender which hops on every channel during a single sub-
cycle, while the receiver stays on a specific channel during a single sub-cycle, thereby
giving the impression of a faster and slower hopping sequence. It is shown that with
these two CH sequences in A-MOCH, the degree of overlapping is N in a cycle of
N2, that is, a single RDV on each channel per cycle. The maximum TTR is claimed
to be equal to N2 − N + 1. On the one hand, A-MOCH is very easy to construct,
however, on the other hand, the biggest shortcoming of the protocol is the need of
two different sequences (sender and receiver sequence) in order to ensure guaranteed
RDV on all channels.

Like in the example given above, the observation was made in [271] that if two nodes
rotate in different directions, the first clockwise and the other counterclockwise, they
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are guaranteed to meet. Based on this observation the protocol SARCH is developed,
which is an asynchronous protocol. A sequence of channels in decreasing (N slots)
and increasing (N slots) order is generated plus an additional slot on a specific
channel, which is then repeated in a rotated manner 2× (2N +1) times, where N is
the number of channels. The cycle size is equal to 2× (2N +1)2 and the MTTR the
protocol enforces according to the authors is equal to 4N + 2. A limitation of the
protocol is that 2N + 1 should be prime and therefore the protocol is not suitable
for every N . Moreover, the construction of the protocol results in a rather large
cycle size.

8.4.4 Guarantee System based Rendezvous

This section covers related work where the design aims at employing methods such
as Quorum Systems, Difference Sets or Balanced Incomplete Block Design, which
all guarantee RDV. Both the type of system as well as the manner of adoption can
vary in the discussed protocols.

A Cyclic Quorum System is used in the design of QCH [232], where as many channel
hopping sequences are generated as there are quorums in the Quorum System. A
single channel hopping sequence consists of N frames, with N being the number
of available channels. Each frame selects at random a channel from the available
channel list and allocates the slots according to the quorum to this channel. The
remainder of slots are allocated randomly to other channels. Since the Cyclic Quo-
rum System satisfies the Rotation Closure Property (RCP), this algorithm is also
suitable for an asynchronous environment.

A concept from Combinatorial Theory is used in [234] to guarantee rendezvous
between SUs. Balanced Incomplete Block Design (BIBD), is defined as follows in
the protocol description: a BIBD is an arrangement of v distinct objects into b

blocks, such that each block contains exactly k distinct objects, with k < v. On the
other hand, each object occurs in exactly r different blocks, and every pair of distinct
objects ai, aj occurs together in exactly λ blocks. A property of BIBD guarantees
the overlap between any two active blocks, that is, blocks that contain an object.
By using this property, the Rendezvous protocol requires no synchronization, while
still guaranteeing a rendezvous.

In [272] a protocol, ACH, is proposed that tries to minimize the risk of having a RDV
failure due to the appearance of a PU. To achieve such feat, the number of RDV
channels is maximized, a rendezvous on all available channels should be targeted
within a single period. The protocol design makes use of an N × N array-based
quorum, where sender and receiver obtain a different hopping sequence. While the
construction allows for a RDV on all available channels, it requires a differentiation
in the role of the SUs.

An improvement of the previous protocols is presented in [273], where also a sym-
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metric algorithm, symmetric ACH, is proposed, that is, an algorithm that does not
assume a sender or receiver role. The asymmetric channel hopping sequence design
is based on an M ×N array, where the one role makes use of columns and the other
of rows. Such design ensures a larger number of distinct channel hopping sequences,
compared to an N × N array. The symmetrical solution, where there is no sender
or receiver role, is constructed by the concatenation of either the sender sequence
or the receiver sequence, based upon the bit value within the unique ID, where each
bit represents an asymmetric channel hopping sequence. The resulting cycle does
still guarantee N rendezvous per cycle, however, the cycle is considerably larger
compared to the asymmetrical case, thereby reducing the number of rendezvous per
time unit.

In DSMMAC (Difference-Set-based asynchronous Multichannel MAC) [274] a single
hopping sequence is defined for all SUs, based upon the concept of Difference Sets.
The process of the forming of channel hopping sequences is not trivial; the (v, k, λ)
Difference Sets [242] need to be selected in a very careful manner in order to ensure
a high RDV probability. In DSMMAC, each channel is not necessarily mapped to
the same number of slots, e.g., with 8 channels Channel 1 gets an extra slot, since
all Difference Sets are chosen from a period of 73 slots, having 9 elements in a set.
The remaining slot (slot 0) is assigned to Channel 1, and therefore SUs experience
twice as much RDV on Channel 1 in a period.

MtQS-DSrdv (Mirror torus Quorum System and Difference Sets based rendezvous
protocol) [275] is based on mirror torus QS and Difference Set concepts [236]. An
equal distribution of the channels is targeted, that is, each channel is assigned an
equal number of slots. Each CR determines its own hopping sequence which is
constructed based partially upon a Mirror Torus Quorum System (r × s, where r

is number of rows/channels, and s the number of columns) and partially upon a
more difficult to be constructed Difference Set. The protocol includes two different
concepts in the construction of channel maps, thereby reducing the difficult Differ-
ence Set construction to a minimum. Both homogeneous and heterogeneous channel
availability are considered, ensuring RDV on all channels in the former case, and on
almost all channels in the latter case during a single cycle.

A protocol based upon a Mirror Torus Quorum System, mT-GQS, is proposed in
[276]. The torus quorum is used in a different manner, since the torus quorum is
selected from a grid array. The selection favors better quality channels by allocating
more slots to them compared to worse quality channels.

The concept of Relaxed Difference Sets is employed in DRDS [266]. A hopping
sequence is built based on Disjoint Relaxed Difference Sets (DRDS) guaranteeing
RDV on each available channel in a single cycle. It is claimed that a maximum TTR
of 3P can be achieved in the symmetric model, with P being a prime number greater
than N , the number of channels. However, the reader must note that it is assumed
that one SU is already in the network and another one joins the network. Before
starting the Difference Set based hopping sequence, the just started node occupies
for 2P slots on the available channel with the smallest index (e.g., Channel 1 with
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3 channels). In this case, the MTTR estimation is correct. However, in the case
that nodes have already started their hopping sequence and would like to meet other
nodes, this estimation is false.

8.5 Conclusion

This chapter considered the opportunistic spectrum access of secondary users (SUs)
in a cognitive radio network. Due to the dynamic properties of the network (CRN),
the coordination of the SUs needs to be flexible and should not exhibit a single
point of failure. Several methods are discussed, such as Dedicated Common Control
Channel (CCC), Common Hopping, Split phase and Parallel Rendezvous. The first
three methods exhibit considerable disadvantages, such as the requirement of having
multiple radio interfaces, the need for synchronization, having a single point of
failure, etc. On the other hand, the Parallel Rendezvous has interesting properties
which can be exploited in the context of a CRN. One such characteristic is channel
hopping, which alleviates the single point of failure problem, since the method does
not depend on a single channel.

In order to understand the related work and its implications, some definitions and
concepts, such as Quorum Systems, Cyclic Difference Sets, Latin Square, etc. are
considered before discussing the related work. The related work can be categorized
according to four classes upon which the Rendezvous is based: random, number
theory, logic contemplation and guarantee system. The random based RDV schemes
either provide an equal probability of having a RDV on a certain channel, or employ
a channel ranking to ensure that a RDV is more likely to happen on high priority
channels. Some of the methods also consider asynchronous environments. The RDV
methods based on number theory is mostly based on the characteristics of prime
and co-prime numbers. As such a RDV is guaranteed, however, the construction
methods often need the number of channels to comply to certain requirements.
Therefore, these methods are not suited for all possible number of channels. Logic
contemplation is used when designing RDV methods that work according to the
clockwise and counterclockwise method. It is logical that at some point in time the
two will meet. The last class of protocols employ a system which guarantees a RDV,
such as a quorum system. All those protocol guarantee a RDV on at least a single
channel, possibly on multiple channels.
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CHAPTER 9

Asynchronous operation in Cognitive Radio Networks

9.1 Introduction

This chapter covers joint work with Dr. S.A. Romaszko, where she devised the
largest part of the Neighborhood Discovery protocol details, while our work was
focused on the implementation and evaluation of the asynchronism, which can be
found in Sections 9.2.2, 9.2.3 and 9.3.2. An improvement of the asymetric asyn-
chronous extension is also a contribution of this work, depicted in Section 9.4. The
focus is placed on SUs in the presence of PUs, where no central spectrum allo-
cation management is available. Each CR user is equipped with a single tunable
half-duplex radio transceiver which can switch between N different channels. A
neighborhood discovery phase relates to a rendezvous on the same channel within
a certain minimum duration between two SUs that consider a channel hopping se-
quence in order to establish a communication. In this chapter it is assumed that
SUs are viable to procure a list of available channels. The spectrum holes, which
an SU should identify, can vary in time and space. Based on a spectrum detection
approach (sensing, database) each user recognizes a list of spectrum holes that can
be used while respecting the PU’s activity. It is assumed that channels are slowly
time-varying, the system is slowly dynamic.

As already mentioned in the previous chapter, the assumption of synchronization
in a CRN is similar to requiring the synchronization protocol to perform its own
Neighborhood Discovery. Such practice is inefficient due to the double rendezvous
requirement and reduces the following Rendezvous protocol to a mere scheduling
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problem. Therefore, this chapter assumes that nodes are working in an asynchronous
manner in a distributed CRN. In a few works it has been claimed and verified that
the asynchronous environment can even increase the performance of the Rendezvous
protocol. An asynchronous comparison between the algorithms described in [263]
and [253] is performed in [277], by implementing both on a testbed using Universal
Software Radio Peripheral (USRP). The comparison showed that the experienced
asynchronism reduced the Time to Rendezvous (TTR).

It should be noted that an asynchronous environment is the natural state in which
the network is situated. In order to enforce a synchronous behavior, actions need
to be taken, such that nodes operate in a synchronized manner. Making use of the
natural state of a network provides already certain benefits compared to an enforced
state. Moreover, in an asynchronous environment, two nodes might meet each other
sooner, i.e., the Time to Rendezvous is shorter, thanks to the partial slot overlap
with two slots of the second node, whereas in a synchronized environment, the slots
overlap only with a single slot of the second node. However, a thorough analysis is
required, in order to determine whether the slot overlap is sufficient in order for a
node to contact its neighbors, or to determine whether the slot overlap is too low
for any viable communication transmission.

Some of the discussed protocols in Chapter 7 do not take into account the asyn-
chronous character of a CRN or propose a trivial addendum which, though it guar-
antees a RDV, has a very low efficiency. Most of the discussed protocols do con-
sider the asynchronism and provide theoretical contemplations mostly regarding the
maximum TTR, however the effect of the asynchronism is rarely studied. Often
the medium is assumed to be perfect, since the RDV is expected to happen at the
first possible occurrence, that is, when one SU is already hopping according to its
hopping sequence, while the second SU starts its hopping sequence. This is a faulty
assumption since, amongst others, interference can cause the loss of a packet or the
false reception of a few bits can cause the complete packet to be discarded due to
a false CRC checksum. Therefore, the RDV does not need to occur at the first
opportunity, it could happen that both SUs are hopping according to their hopping
sequence and find each other at some other moment. This chapter therefore evalu-
ates the specific protocols for each possible asynchronous offset, which is expressed
in percentage of a slot when all slots are of equal size. When a protocol employs slots
of different sizes, the asynchronous offset is expressed in percentage of the largest
slot. A more realistic view can be shed upon the performance of the protocols by
evaluating them for every possible offset and calculating the minimum, maximum,
average and standard deviation of the measured parameters.

Few papers include the rendezvous method, that is, how CRs establish a communi-
cation with other SUs. Commonly used methods include transmission and reception
of an RTS/CTS sequence and the broadcasting of beacons. When considering the
RDV, none of the protocols consider the required time to facilitate this message
exchange. It is often assumed that the overlap time, that is, the time two SUs are
present at the same time at the same channel, is long enough to supply two message
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exchanges. Since the available time to rendezvous, the overlap time, is a critical fac-
tor to determine whether a rendezvous could succeed, the asynchronous threshold
is defined in this chapter, which indicates the minimum percentage of slot overlap
is required to enable a RDV. This parameter in combination with the asynchronous
offset allows to study the asynchronous behavior of the RDV protocols in more detail
and study the effects of the asynchronism.

The remainder of this chapter discusses a symmetric slot assignment on the one
hand and an asymmetric slot assignment on the other hand. Section 9.2 covers
the asynchronous analysis of a protocol developed by Dr. S.A. Romaszko and the
comparison with related work in a symmetric slot assignment, that is, where the
slots sizes remain constant. An asymmetric slot assignment does not necessarily
assign an equal amount of time to each slot, depending on the allocated channel.
The remainder of the sections discusses an asymmetric slot assignment. Section
9.3 discusses the asynchronous analysis of such a protocol, ARE, with an asym-
metric slot assignment. Section 9.4 contemplates on the improvement of the ARE
protocol, where new methods to engender asynchronism are defined, which are, in
combination with EAND, compared to ARE and other related protocols. Both the
asynchronous RDV extension (ARE) (Section 9.3.1), which results in an induced
asynchronism when applied to known RDV protocols and the Asynchronous Neigh-
borhood Discovery protocol (AND) (Section 9.4.1), specifically designed to be used
in combination with the asynchronous extension, are developed by Dr. S.A. Ro-
maszko.

9.2 Symmetric Asynchronous RDV Analysis

This section discusses the analysis of the asynchronous behavior of a protocol that
ensures RDV by allocating equally sized slots to channels. The protocol takes into
account the possibility of having a different channel view between SUs, that is, it
considers a heterogeneous channel view. Moreover, the probability of having a RDV
is dependent on the channel ranking, higher quality channels have a higher prob-
ability than lower quality channels. Therefore, each SU is responsible for creating
its channel hopping sequence according to the rules specified in the next subsection.
This process of building a hopping sequence is a fully distributed process where no
knowledge from other SUs is required.

The proposed protocol makes use of the properties of a torus QS. A torus QS (tQS)
adopts a rectangular array structure called torus, where the last row (column) is
followed by the first row (column) in a wrap-around manner. The height of the
torus is specified as r (number of rows) and the width of the torus is specified as s

(number of columns), where N = r × s and s ≥ r ≥ 1. A torus quorum consists of
r+⌊ s2⌋ elements, where r elements are determined by selecting a column. That group
of elements is called the head of the torus quorum. The remainder of the elements
is chosen from the ⌊ s2⌋ succeeding columns. That group of elements is called the

289



Chapter 9. Asynchronous operation in Cognitive Radio Networks

tail of the torus quorum. The discussed protocol employs a different approach for
selecting the tail elements, such as proposed in [278]. A special adjustment is made
to this protocol such that a different element arrangement is used from which both
the head and tail elements are selected.

After discussing the protocol specifics, the asynchronous verification procedure is
examined, where the distinction is made between different cases that are differen-
tiated by the combination of asynchronous offset and threshold. Thereupon based,
the performance of the discussed protocol is measured and compared to a related
protocol without the special adjustments, as well as to a random channel allocation
method.

9.2.1 Mirror Torus-in-Grid quorum system (mT-Gqs)

The mT-Gqs algorithm is based upon a torus Quorum System where the tail selec-
tion is done according to the mirror torus extension [278]. The extension allows to
construct the tail in a more flexible manner, which therefore introduces a random-
ization factor. The mirror torus extension constructs a tail by selecting its elements
in a wraparound manner from column cj + ki × i with cj being the column of the
head, i ∈ {1 . . . ⌊ s2⌋} and ki ∈ {−1, 1}. The elements are selected from either a
forward column or a backward column, a single element per column and the quo-
rums of the same Quorum System should all adhere to the same directions, that is,
∀i ∈ {1 . . . ⌊ s2⌋} : ki = k′i.

Specific to the mT-Gqs algorithm is the employment of a torus quorum construction,
not from an r× s array, but from an N ×N grid array, with N being the number of
available channels. The rows and columns are matched to the channel indexes, that
is, the elements for Channel 1 (C1) are primarily selected from Column 1 and Row 1.
The channels are assigned in function of their relative quality. The best channel is
assigned the most slots, the worst channel the fewest slots. In order to achieve this,
the highest priority channel, i.e., the channels with the best quality, first selects the
complete row that matches with its channel index. Those elements form the head of
the quorum. From the column that matches the index of the channel are the ⌊N2 ⌋ tail
elements selected according to the mirror torus extension in the vertical direction.
The remaining elements from that column is assigned to the worst channels in such
manner that no more slots are allocated to a lower priority channel in comparison
with a higher priority channel.

The formerly discussed procedure allows the creation of the torus in grid quorum
for the highest priority channel. SUs that have a similar channel view, i.e., they
have the same channel with the best quality, will always meet thanks to the quorum
intersection property. The slot assignment of the remaining channels is performed
in a similar manner, however, the set of slots do not form a quorum. The following
channel, according to the list ordered by channel quality, allocates the elements from
the row that matches its index that are not already selected by a higher priority
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channel. The number of tail elements are calculated from the size of grid (N) minus
the number of already processed channels (n). The ⌊N−n

2 ⌋ tail elements are selected
in a mirror torus extension manner from the column that matches the channel index.
The remaining elements from that row are assigned to the worst channels, such that
no more slots are assigned to lower priority channels in comparison with higher
priority channels. This procedure continues until a 2 × 2 array of unassigned slots
remains, which is assigned in a diagonal manner to the second lowest priority channel
and the lowest priority channel.

C1

C2

C3

C4

C5

C5

C4

C3

C2

C1

A: Channel ranking: C1 C2 C3 C4 C5 B: Channel ranking: C5 C4 C3 C2 C1

0 10 15 205

17 2 7 1222

21 6 11 161

13 23 3 818

9 19 24 414

0 10 15 205

17 2 7 1222

21 6 11 161

13 23 3 818

9 19 24 414

Figure 9.1: mT-Gqs channel mapping

Figure 9.1 depicts two examples of a slot assignment for five channels according to
the algorithm. The slot assignment is shown for two channel orders, the second
(B) being the reverse order of the first (A). The grid is constructed such that the
diagonal distribution [236] of elements in an array is used. The slot numbers are
allocated according to the positive diagonal rule, i.e., elements are ordered according
to:

f(x, y) = ((y × r)− ((r − 1)× x))modulo(r × r) (9.1)

where x = 0, ..., N − 1, y = 0, ..., N − 1, and r =
√
N . Such grid is proven to

guarantee a RDV, even in an asynchronous environment, since the quorum complies
to the RCP. A different method of allocating the slot numbers is the standard
distribution, which assigns consecutive elements, row after row. Both methods are
analyzed in the performance section.

9.2.2 Asynchronous analysis

The channel hopping sequence is considered to be periodic, of which the repetition
rate is determined by the length of the sequence, and can therefore be analyzed by
marking every slot that is assigned a matching channel in a synchronous analysis.
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Figure 9.2: asynchronous offset cases

Two hopping sequences, where one is shifted with an offset x number of slots com-
pared to the other, are compared to each other during a couple of periods and this
for every x ∈ 0 . . .M , where M equals the length of the channel hopping sequence.
From the gathered coincidence information, the TTR, MTTR, number of RDVs,
etc., can be derived, as well as their distribution over the complete range of offsets.

The analysis for an asynchronous environment is more challenging, since the slot
boundaries do not necessarily match. This section proposes a method which allows
the asynchronous analysis of a RDV protocol in a manner as trivial as the syn-
chronous analysis. To produce such method, the asynchronous offset Ao and the
asynchronous threshold At is introduced. The former defines the deviation of the
slot boundary compared to a synchronous slot boundary and is expressed as a frac-
tion of a slot with −99×S

100 ≤ Ao ≤ 99×S
100 , where S is the slot size. The asynchronous

threshold defines the minimum fraction of a slot, expressed in percentage of a slot,
that is required to consider the coincidence as a RDV. By including the asynchronous
offset in the synchronous analysis and checking at every slot boundary from both
sequences, the same method can be used to analyze the asynchronous behavior of a
RDV protocol.

In order to prevent the need to repeat such comparison for every possible asyn-
chronous offset, which is dependent on the required granularity of the measurement,
the different possible positions of the asynchronous offsets are considered to reduce
the needed effort. As a result of this analysis, six different cases can be discerned,
which are depicted in Figure 9.2. Since all slots are of equal size, a slot of hopping
sequence A can overlap with maximally two slots of hopping sequence B. The six
cases that are depicted in the figure can be easily expressed by means of Equation
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9.2 and Equation 9.3, where Oh is the highest offset, Ol is the lowest offset.

olapil = (Oh −Ol)mod(100)

slotil = i− (⌊(Oh − Ol)/100⌋+ 1)
(9.2)

olapih = 100− (Oh −Ol)mod(100)

slotih = i− ⌊(Oh −Ol)/100⌋
(9.3)

The equations formulate the corresponding slot indexes of the second sequence (slotil
and slotih) that have an overlap with sloti of the first sequence. The respective
overlap sizes are formulated by olapil and olapil. Based upon this information, nearly
the same procedure as in the synchronous analysis needs to be performed only once
for each possible offset x, that is, for every x ∈ 0 . . .M , where M equals the length
of the channel hopping sequence. The procedure deviates by the requirement to
perform an analysis on both the slot boundaries of sequence A and sequence B, since
both can occur at different instances. The asynchronism is verified by means of both
equations, which are employed at every slot boundary. If one of the overlap values
is greater than the predefined asynchronous threshold, At, a RDV is considered to
be possible and therefore the coincidence between the two slots will be taken into
account.

Note that in a synchronous analysis, the metric RDV is conceived as the number of
slots a RDV opportunity is possible per cycle. Since asynchronism is considered in
the performance analysis, care needs to be taken not to disregard the possibility of
having the same channel in succeeding slots. Such occurrence would not result in
a RDV in two different slots, but in a single RDV with a larger overlap time. To
make the distinction, the term RDV opportunity, i.e., the number of rendezvous on
sequentially distinct channels, is used in the performance section.

9.2.3 Performance evaluation

The mT-Gqs algorithm is compared with the slot allocation algorithm designed in
[248], and a pseudo random method. The former maps channels to slots using a
standard torus in grid QS, i.e., a tail is selected from succeeding columns in the
same direction. This protocol is referred to as ’forward mapping’ in this section,
while mT-Gqs is referred to as ’mirror mapping’. The pseudo random method
allocates slots in a random manner to channels, with the constraint of having the
same channel distribution as mT-Gqs, i.e., the same number of slots are assigned to
a certain channel priority. As a surplus, the diagonal (diag) and standard (std) slot
arrangement in a grid is analyzed for both forward and mirror mapping.

The performance evaluation depicts both the best and worst case, that is, sequences
that have the same channel priority list and the reverse channel priority list re-
spectively. Under those circumstances the protocols are compared for 5, 10 and
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20 channels. As already discussed in the previous sections, the measurements are
performed for every slot offset within a cycle. The asynchronous threshold is always
30%, the asynchronous offset of sequence A is always equal to 0 and the asynchronous
offset of sequence B complies to Ao ∈ {0%, 30%, 50%, 70%, 90%}. The evaluation
based on these parameters provides a complete overview of the performance of all
three protocols for every possible offset, both synchronous and asynchronous.

Since the mt-Gqs algorithm and the pseudo random algorithm are composed of
some random elements, the simulations have been run 1000 times for every possible
configuration, resulting in a minimum, average, maximum and standard deviation
for each metric.

The next subsection discussed the performance in a homogeneous environment, that
is, all SUs experience a channel view with the same channels. Although all SUs
have the same number of channels available, the channel ranking list might still
be in a different order. The subsection after that discusses the performance in an
environment where not all SUs have knowledge of the same list of available channels.

Homogeneous channel availability

This section targets the comparison between the forward and mirror mapping meth-
ods, where SUs are considered to have the same channels list. The performance is
measured for both the diag and std grid distribution, in both the same and reverse
channel order. The analyzed performance metrics include the Time To Rendezvous
(TTR), the number of rendezvous opportunities, which denominate the number of
rendezvous on sequentially distinct channels, and the total sum of the overlapping
regions. The last metric is interesting in combination with the results from the RDV
opportunity. Although the asynchronous environment is likely to have a lower total
overlap time, it does not need to signify that the RDV opportunity is also lower.
The asynchronism can result in more but smaller RDV opportunities. All figures
depict the results by showing the 95% confidence interval for all slot offsets with the
boxes, while the minimum and maximum value are shown by the lower end and up-
per end of the lines. Since the mirror mapping method includes some randomness in
the protocol design, two boxes are shown that depict the maximum 95% confidence
interval and the minimum 95% confidence interval. The black lines, shown within
the boxes, depict the average value.

Figure 9.3 depicts the RDV opportunity for both forward and mirror mapping meth-
ods, with a grid distribution according to diag and std. The maximum value is not
always shown to emphasize the more interesting values, since it is determined by
the grid size, which is in direct relation to the number of channels, and is therefore
a constant value per sub-figure.

The results clearly show the improvement of the RDV opportunity in the asyn-
chronous environment over the synchronous environment. The asynchronous envi-
ronment is represented by the asynchronous offsets 30, 50 and 70 percent, since the
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Figure 9.3: RDV opportunity for forward and mirror in the same channel order

asynchronous threshold is equal to 30%. Therefore, when an asynchronous offset
(Ao) of 90% is verified, one of the overlaps is insufficient to support a RDV and
provides therefore as much RDV opportunities as in the synchronous case (Ao =
0%), although each overlap provides fewer time to perform the RDV.

Such behavior can also be found in the average overlap sum, depicted in Figure 9.4,
where the statistics regarding the sum of the overlap are shown for the same measure-
ment analysis. While, as expected, the 95% confidence interval of the synchronous
measurement is larger than that of the asynchronous environment, is interesting to
note that the average overlap per cycle of the asynchronous case is equal or nearly
the same as the average overlap in the synchronous case. Nevertheless, even while
the synchronous measurements has a larger 95% confidence interval, which suggests
that more values are situated in the upper region, the difference between the overlap
per cycle is small, although there is a significant difference in the RDV opportunities.

A similar behavior as the RDV opportunities can be found in Figure 9.5, which
depicts the TTR (expressed in the number of slots) for a channel priority list in the
same order. This supports the theory that an asynchronous environment results in
more but smaller RDV opportunities, even while according to the total overlap sum,
the total available Time To RDV decreases only a little.

When studying the different protocols and the grid distributions, it is also clear that
the mirror mapping method provides some improvements over the forward mapping
method. The randomness in the allocation of slots for the mirror mapping can
be found back in the figures, where it is shown to exhibit a somewhat lower RDV
opportunity. However, the average RDV values remain similar and the maximum
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Figure 9.4: Overlap sum for forward and mirror maps in the same channel order

confidence intervals of TTR are lowered with a reasonable margin.

It is also clear that the use of a diagonal distribution results in a better RDV
opportunity performance compared to the standard distribution for both mapping
methods, and a better TTR performance with the mirror mapping. While applying
diag with forward mapping the TTR averages are still better than that with std,
however, the maximum confidence interval of TTR is worse.

All formerly discussed results are performed under the assumption that the channel
ordering is the same, i.e., the best possible case. The worst possible case is when
the highest priority channel of one SU is the lowest priority channel of the other SU.
In such setup, the number of RDV opportunities are expected to drop, which is also
the case, the average number of RDV opportunities drops from ∼ 10 to ∼ 7.5 for
the mirror mapping method with a diagonal grid distribution. However, the relative
values between the compared protocols and distributions are similar as in the same
channel ordering, which is also the reason these results are not shown here. Instead,
the TTR results are shown in Figure 9.6, where a clear distinction can be made
between the different cases.

The benefit of using the asynchronous characteristics is clearly present in the fig-
ure for all cases. Likewise, the diag grid distribution provides better TTR results
compared to the std distribution for both mapping methods. Like in the case with
the same channel ordering, there is no significant difference between the forward
and mirror mapping method, except that the mirror mapping method allows for
some randomness and could therefore provide a lower maximum confidence interval
compared to the forward mapping method.
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Figure 9.5: TTR for forward and mirror maps in the same channel order

Heterogeneous channel availability

This section discusses the comparison between mT-Gqs and the pseudo random
method, where SUs are considered to have a deviating channel view. Both the
similar channel order and the reverse channel order are considered while performing
the analysis. Since the SUs have a different channel view, the same channel order
is not possible, therefore a similar channel order is considered, where the common
channels maintain the same order. The performance is measured in terms of RDV
and TTR.

In the first considered case SU A has five channels, while SU B has seven channels. In
the second case SU A has ten channels, while SU B has five channels. The obtained
results are shown in Table 9.1, where the following metrics are depicted: minimum
number of RDVs (minRDV), RDV opportunity (RDVopp), average TTR (TTR) and
maximum TTR (MTTR). The channel ordering is specified by either being similar
or reverse. The ’Asyn’ column specifies whether the analysis was performed based
on a synchronous or asynchronous environment.

From the results it is clear that in both synchronous and asynchronous environments
mT-Gqs outperforms the random method. The minimum RDV values of mT-Gqs
are much higher, while the maximum TTR values are significantly lower. The results
justify the usage of a systematic approach over a random one.

Figure 9.7 shows in more detail the RDV opportunity for the 5-7 channels combina-
tion, with a 30% asynchronous threshold. The average values when using mT-Gqs
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Figure 9.6: TTR for forward and mirror maps in the reverse channel order

Table 9.1: asynchronous evaluation in a heterogeneous network

Alg Ch order Chnls Asyn RDVopp minRDV TTR MTTR
mT-Gqs similar 5-7 SYN 8.28 4 5.92 35
random similar 5-7 SYN 8.28 0 5.92 65
mT-Gqs reverse 5-7 SYN 7.32 3 6.69 41
random reverse 5-7 SYN 7.32 0 6.96 71
mT-Gqs similar 5-7 ASYN 15.68 10 3.13 17
random similar 5-7 ASYN 14.11 3 3.48 38
mT-Gqs reverse 5-7 ASYN 13.60 9 3.60 18
random reverse 5-7 ASYN 12.65 1 3.88 39

mT-Gqs similar 10-5 ASYN 25.52 13 3.92 43
random similar 10-5 ASYN 23.18 10 4.32 50
mT-Gqs reverse 10-5 ASYN 23.52 14 4.25 35
random reverse 10-5 ASYN 21.95 10 4.56 53

are clearly higher when compared with a random distribution for channels with a
similar channel order when operating in an asynchronous manner. The synchronous
operation leads to a similar average number of RDV opportunities for both mT-Gqs
and the random distribution, which can be explained because of the averaging of
the RDV results for every slot offset, combined with the usage of a random distri-
bution with as many channels per priority as mT-Gqs and which is mapped alike.
However, the maximum number of RDV opportunities is almost twice as much on
the highest priority channel when using mT-Gqs, compared to random (respectively
15 slots and 8 slots), while on the lowest priority channel there still is a considerable
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Figure 9.7: RDV for mirror and random with asymmetric channel view

difference (respectively 6 slots and 4 slots).

It is also clear that the standard deviation, or the variation on the standard deviation
(the difference between the red and blue boxes), of the random distribution is far
greater than that of mT-Gqs. This indicates that the random distribution is not
as stable as mT-Gqs, which is to be expected. Moreover, the proposed protocol
guarantees a RDV in every cycle, while the random distribution can result into
cycles without any RDV. Similar results can be seen when both maps use the reverse
channel order.

To summarize, this section discussed a method to analyze Rendezvous protocols with
fixed slot sizes in an asynchronous manner without generating too much overhead.
The method makes use of an asynchronous offset and an asynchronous threshold.
The method is employed to analyze the behavior of a newly devised protocol that
is based upon torus in grid quorums. The results highlight the already expected
performance improvement thanks to the asynchronism. The RDV opportunity in-
creases and the TTR decreases significantly when the asynchronous environment is
compared with the synchronous environment. It is also shown that the proposed
algorithm is not only much more stable compared to the random method, but it
also improves the minimum RDV and maximum TTR performances.
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9.3 Asymmetric Asynchronous RDV Analysis

The previous section discussed the asynchronous analysis of protocols with an equal
distribution of the size of slots, that is, all slot were of equal size. This and the next
sections contemplate on the asynchronous analysis of protocols where the size of the
slot is considered to be variable. All nodes are assumed to be capable of identifying
the available spectrum holes and composing a list of available channels, ordered
according to their QoS. The quality of the channels, which determines the priority
of the channels, can be measured by means of several parameters, for example the
number of occurrences of a PU. The slot size varies with the priority of the assigned
channel, where higher priority channels obtain a higher probability of having a RDV,
since they have a larger slot and therefore more time to have a RDV.

Since the slot sizes are variable, there is no trivial rule to determine the asynchronous
overlap between two sequences at a certain offset. In order to define both the slot
size and the overlap with a certain precision, the slot size is divided into microslots.
Each microslot has the size of one percent of the maximum slot size. A full slot,
also referred to as a slot of maximum slot size, is therefore composed out of 100
microslots. Therefore, the slot size, and also the overlap, can be expressed in percents
of the maximum slot, e.g. a slot can have a size of 70% of the maximum slot size.
Since the size of a microslot is in direct relation to its duration, a discrete time
line is created with a maximum resolution of one percent. By verifying the channel
of both sequences at every slot boundary from both sequences, RDV and timing
information can be gathered and analyzed to construct statistical results. Like in
the previous section, the asynchronous threshold is also defined to be a percentage
of a slot, more specifically, a percentage of the maximum slot.

Unlike in most works, the goal of the performance analysis is to construct a complete
statistical analysis of the protocol, both for TTR and RDV metrics. Therefore, every
asynchronous analysis of two sequences is performed for every possible offset. Since
the slots have a different size, an asynchronous offset needs to be considered, which
is defined according to Equation 9.4, where t is the interval in number of microslots
for every offset. The interval determines the number of iterations and the step size
of the offset.

offi = i× t with i = 0 . . .

⌈

cycle size

t

⌉

− 1 (9.4)

9.3.1 Asynchronous Rendezvous Extension

The benefits of an asynchronous system became clear in the previous section. The
asynchronous behavior is a natural state thanks to entropy, the universal tendency
towards disorder. However, this does not exclude the possibility of having two
sequences that happen to be slot synchronized. The Asynchronous Rendezvous
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Extension (ARE) is designed to instigate the asynchronism, even when SUs are
slot synchronized. It is an extension to Rendezvous protocols that comply to some
requirements, such that the slot size depends on the priority of the allocated chan-
nel. Therefore, even in a slot synchronized case, the sequences would operate in
an asynchronous manner, except when the two sequences are completely frame syn-
chronized. The opportunity for such occurrence is very small, depending on the
length of the sequence, since it requires the two sequences to follow the exact same
hopping sequence of equal length, while their periods start at the same instant.

The type of RDV protocols that are recommended for the Asynchronous Rendezvous
Extension needs to meet some requirements. Since it is favorable that SUs ren-
dezvous with each other as soon as possible, i.e., the Time-To-Rendezvous should be
small and bounded, a guaranteed rendezvous on multiple channels is recommended.
In such manner, the TTR decreases, since more RDV opportunities present them-
selves, while not relying on a single point of failure in case a PU should appear.
Moreover, the activation of ARE results in a selective preference for the best chan-
nel, according to the channel order in the available channel list. Therefore, it is
discouraged to use a RDV protocol that already provides preference to the best
channel, since using both protocols could result in a deterioration of the perfor-
mance.

The methodology of ARE is straightforward, the channel hopping sequence is con-
structed according to the RDV protocol it extends. The slot sizes, expressed in
microslots, are determined by means of a channel ranking list and Equation 9.5,
where ch_priority ranges from 0 to N − 1, with 0 being the highest priority and
N being the number of channels. The slot size variation (ssv) is a parameter that
allows to adjust the amount of influence the extension has on the channel priority.
When the ssv parameter is reduced to a value equal to 0, the protocol extension is
disabled and the original RDV protocol behavior is enforced.

slot_size = 100− ssv ∗ ch_priority (9.5)

This trivial equation is designed such that it allows for an approximately uniform
decrease in slot size respecting a particular channel priority, while maintaining its
flexibility by adjusting the asynchronous influence thanks to the ssv parameter. As
a result of this extension, certain channels are assigned longer slots than others,
where the largest slot always has a size equal to 100 microslots, i.e., 100% of the
maximum slot size.

The influence of ssv, and therefore also ARE, is depicted in Figure 9.8, where one of
the analyzed protocols (A-MOCH [245]) is analyzed in terms of the channel usage,
that is, the RDV opportunity per cycle expressed in microslots. The ssv ranges
from 0, i.e., the original protocol behavior, and 10, while the number of channels is
equal to eight. Figure 9.8 clearly shows the intended purpose of the extension, that
is, allowing more RDV time on the most significant channel, which is in this case
"ch1", and gradually less RDV time on the worse channels, "ch2-8".
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Figure 9.8: Channel usage of a RDV protocol with ARE

9.3.2 Performance evaluation

Since the asynchronous rendezvous extension (ARE) is designed for a rendezvous
protocols that comply to specific requirements, the extension is evaluated in com-
bination with three carefully selected RDV protocols. The specific protocols are
MtQS-DSrdv [275], AMOCH [245], and DSMMAC [274] that assure a rendezvous
at each channel in a cycle and do not support channel priorities. The latter is al-
ready induced by ARE, which can support a channel ranking in any rendezvous
protocol. The performance is measured by the statistical analysis that is applied to
the collected metrics, such as TTR, normalized number of rendezvous, and efficiency.

Like in the previous section, the case where a RDV occurs with two neighboring
slots that happen to be allocated the same channel needs to be considered in the
asynchronous case. Therefore the RDV opportunity, is defined as the number of
rendezvous on sequentially distinct channels. Since the number of RDV opportuni-
ties per cycle is relative to the cycle size, which is often different for each protocol,
it becomes an unsuitable metric to compare different protocols. Therefore, the nor-
malized RDV, which is calculated according to Equation 9.6, is introduced in order
to compare the protocols.

Normalized RDV =
RDV

cycle_time
∗ 100 (9.6)

Note that RDV in the equation stands for RDV opportunity and the cycle_time

is the cycle duration expressed in microslots. In a channel hopping sequence where
slots are equally sized, this metric would denote the number of RDV opportunities
per slot. Later in this section, the normalized RDV performance is referred to when
discussing the performance of the number of RDVs while comparing the studied
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protocols.

The most common discussed metrics for RDV protocols in CRNs are Time-To-
Rendezvous (TTR), the time interval between two consecutive RDVs, which should
be bounded and small, and the number of RDVs, which should be large. The
performance discussion of this section includes a third metric, that is, the efficiency.
It is defined according to Equation 9.7 and expresses the percentage of a cycle that
is available for the sum of all RDVs (tsumRDV ).

Efficiency =
tsumRDV

cycle_time
(9.7)

It should be noted that the performance analysis of ARE has been restricted to a
single number of channels, that is, eight channels, since the construction of some of
the selected protocol is a complex matter and proves to be a time-consuming task.
The analyzed results for a series of number of channels of the protocols that allow
for a less complex channel hopping sequence construction show that the behavior of
the extension remains similar when compared with eight channels. Those results are
omitted since the next section discusses the performance of the enhanced version of
ARE in detail for a wide range of both protocols and number of channels.

Since ARE induces not only asynchronism, but also channel ranking, the perfor-
mance is analyzed for two extreme channel ranking cases. The best case, later on
referred to as ’same channel order’, is where SUs observe similar channel qualities,
resulting in a equally ordered channel lists. The worst case, also referred to as ’re-
verse channel order’, is when one SU has a channel list in ascending order, while the
other SU has a list in descending order.

All protocols are analyzed according to the discussed metrics by means of a custom
simulation program, implemented in the C programming language. All simulations
have been performed with the maximum asynchronous resolution, that is, for every
possible offset lower than the cycle size, in steps of one microslot (t = 1, the finest
granularity). The performance evaluation is executed for the tuned slot size variation
parameter ranging from 0 to 10, and asynchronous thresholds ranging from 0 to 50.
The ssv parameter equal to 0 signifies that the regular original protocol behavior is
enforced. An asynchronous threshold (At) of 0 means that no matter the length of
the RDV expressed in microslots, it is regarded as a valid RDV (i.e. overlap > 0).
The synchronous analysis of an original protocol is equivalent to the analysis of the
protocol with the ssv parameter equal to zero and the asynchronous threshold equal
to 100.

The following subsections discuss the results from different angles. The first subsec-
tion presents the resulting TTR values in function of the slot size variation, while
employing a static asynchronous threshold equal to 30 microslots. The following
subsection discusses the results of TTR, efficiency and RDV in function of both the
slot size variation and the asynchronous threshold, while the last subsection shows
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all three metrics for all three protocols for the lowest and largest slot size variation
in function of the asynchronous threshold.

TTR versus slot size variation

This subsection examines the influence of the slot size variation on the TTR of
all three protocols with an asynchronous threshold equal to 30 microslots. Figure
9.9 depicts the statistical analysis of all three protocols in the same channel order
according to the resulting TTR values: minimum, maximum, average and 95% con-
fidence interval. The red boxes indicate the 95% confidence interval of all measured
values for all offsets. The red line within those boxes indicates the average TTR
value and the blue lines extend toward the minimum and maximum values. The
average values are highlighted in the zoomed figure at the top of the figure, in order
to clearly depict the behavior of the average TTR of all three protocols.
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Figure 9.9: TTR vs ssv in the same channel order

It can be noted that both the maximum values of the confidence interval and the
average TTR decreases for all three protocols with an increasing ssv, i.e., the more
ARE is activated, the larger the improvement. The maximum values show the same
decrease, but are cropped for the clarity of the more significant values. Although
all protocols experience an improvement, the slope of the improvement is clearly
different for each of the protocols. The difference between protocols will be discussed
in more detail later.

The reverse channel order, which is the worst case situation, is depicted in Figure
9.10, where also the minimum, average, maximum and 95% confidence interval are
shown. The DSMMAC protocol has been omitted from the reverse channel order
analysis, since the protocol has an asymmetric number of slots per channel, i.e.,
not all slots are assigned an equal number of slots. By changing the channel order
and applying ARE to the protocol, a different cycle length could be obtained. Such
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type of case requires analyzing the channel hopping sequences for a duration of the
lowest common multiple of both sequences, instead of a single cycle. When analyzing
the performance for every possible asynchronous offset, which is one microslot, the
process would be time-consuming while no additional valuable results are obtained.
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Figure 9.10: TTR vs ssv in the reverse channel order

As the figure indicates, even in the worst case scenario the TTR can be improved
compared to the original protocol behavior (slot size variation equal to zero). The
improvement of the TTR is a fraction smaller compared with the case where both
nodes have channels in the same order, which is to be expected. The results of both
cases, the same channel order and reverse channel order, are remarkably similar,
indicating the effectiveness of ARE at an asynchronous threshold of 30 microslots.

Efficiency, RDV and TTR versus slot size variation and asynchronous

threshold

Although the results of the previous subsection were positive, the ssv was only
compared with a single asynchronous threshold. To obtain an overview of the in-
tricacies of ARE and its behavior, simulations have been performed for all possible
asynchronous thresholds between 0 and 50 microslots. The measured metrics are
the RDV, TTR and efficiency. The simulations have been performed for all three
protocols, of which only the results for MtQS-DSrdv are shown since the behavior
of all three protocols is similar. An analysis based upon extremities of all three
protocols can be found in Section 9.3.2.

Figure 9.11 depicts the influence of the slot size variation (ssv) and the asynchronous
threshold (At) on the number of RDVs, i.e., the normalized RDV opportunities, of
the enhanced RDV protocol for eight channels in the same channel order. The
original protocol, that is, without an active ARE extension, is represented by a slot
size variation of 0. From the results it is clear that there is an improvement in the
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number of RDVs, provided the asynchronous threshold is not too high.
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Figure 9.11: RDV of MtQS-DSrdv vs ssv and At in the same channel order

The operation of ARE is such that the highest priority channel maintains its slot size,
that is, the maximum slot size, while all other channels obtain smaller slot sizes. This
ensures that the total cycle time decreases in comparison to the original protocol.
If the amount of time available for a rendezvous remains fixed, this results in an
increase in the performance of the normalized RDV opportunity. The numerical
results show that the amount of time available for RDVs is not the same, it is
smaller, however, the decrease in cycle time is larger than the decrease in RDV time
and results therefore in a performance improvement.

Note that the improvement decreases with a decreasing ssv and an increasing thresh-
old. The former is related to the amount of adoption of ARE, while the latter is
trivial; a larger threshold reduces the number of overlaps to comply to the threshold
requirement. At a certain point, with a rising threshold, the application of ARE
results even in a degradation of the RDV performance. This tipping point of the
asynchronous threshold is situated around 50 microslots for MtQS-DSrdv for the
RDV parameter. Note that the tipping point for each indivual protocol is studied
into more detail in the following section.

By considering the performance improvement on the RDV opportunities, the Tim-
To-Rendezvous (TTR) is also expected to improve by employing ARE. The influence
of the ssv and the asynchronous threshold (At) on the TTR of MtQS-DSrdv in
combination with ARE is depicted in Figure 9.12. As expected, the performance of
the TTR increases, i.e., the TTR decreases, by applying ARE to the RDV protocol.
The asynchronous RDV Extension (ARE) manipulates the slot sizes of low priority
channels. Since the slots become smaller, a RDV is achieved faster when measured
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in absolute time and therefore the performance of the TTR increases.
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Figure 9.12: TTR of MtQS-DSrdv vs ssv and At in the same channel order

Like with the RDV performance, the magnitude of the performance improvement
of the TTR is influenced by the ssv and asynchronous threshold. The amount of
improvement is maximized when the ARE is maximally applied, while requiring
a small asynchronous threshold. The improvement decreases with an increasing
asynchronous threshold and after a tipping point, which is specified around 50 mi-
croslots for the TTR parameter of MtQS-DSrdv, the performance gain transforms
into a performance loss when compared to the original protocol.

The third parameter that has been measured is the efficiency of the combination of
protocols, defined as the percentage of time of the cycle duration that is available
for the sum of all RDVs. It is necessary to verify this metric, since the protocol
extension reduces the slot size of low priority channels and therefore changes the
cycle length. It gives an idea whether the relative time available for RDVs exceeds,
equals or is lower than the relative time available for RDVs of the original protocol.
The efficiency of the combination of protocols is depicted in Figure 9.13, in function
of the dependence on the slot size variation (ssv) and the asynchronous threshold
(At). Since the original protocol is represented by the slot size variation equal to
0, it is clear that although ARE reduces the slot sizes, the relative amount of time
available for RDVs is larger thanks to the application of the protocol. The protocol
extension allows for a higher channel usage, when a rendezvous takes place, for high
priority channels. Those high priority channels have larger slot sizes, therefore, the
proportion of total overlap versus the total unused time becomes larger, leading to
an increase in the efficiency.

Like with the RDV and TTR performance, such improvement is only valid for a
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Figure 9.13: Efficiency of MtQS-DSrdv vs ssv and At in the same channel order

bounded asynchronous threshold. The tipping point where the improvement in per-
formance becomes a degradation for the efficiency in combination with MtQS-DSrdv
is situated around 35 microslots. Note that the tipping point of the efficiency is lower
than the tipping point of both the TTR and RDV. An analysis regarding these tip-
ping points is discussed in the following section for each inidivual protocol. Since
the slots of the lower priority channels become smaller, the RDVs at those chan-
nels are reduced in time, thereby reducing the total time available for the sum the
RDVs. Such behavior makes the efficiency metric more sensitive to the asynchronous
threshold.

The observation of the performance of the three discussed metrics leads to the con-
clusion that the performance of the original protocol improves concerning all three
metrics when applying the Asynchronous RDV Extension (ARE). The higher the
slot size variation, i.e., the more ARE is applied, the higher the gain in performance.
However, the asynchronous threshold needs to be bounded, since the performance
deteriorates when the asynchronous threshold exceeds a certain tipping point, which
is different for each of the metrics and each of the protocols. Since this parameter
determines whether ARE signifies an improvement or deterioration, the next sub-
section studies in detail the tipping point for each of the protocols and each of the
metrics.

Efficiency, RDV and TTR versus asynchronous threshold

Because of the significance of the asynchronous threshold regarding the performance,
this subsection is dedicated to the comparison of the original protocol and the en-
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hanced protocol with both an intermediate ssv and the maximum ssv parameter,
that is, an ssv equal to 5 and 10. The depicted analysis will provide a deeper under-
standing of the asynchronous threshold tipping points of the different protocols and
metrics. Provided the chosen threshold maintains beneath this tipping point, the
Asynchronous Rendezvous Extension (ARE) results in an improved performance.
The analysis is performed for both the same channel and reverse channel order.
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Figure 9.14: Asynchronous threshold tipping point for RDV

The normalized RDV opportunity analysis is depicted in Figure 9.14 for both the
same channel order (a) as the reverse channel order (b). The original behavior of the
protocol is represented by the solid blue line, while the dashed green line represents
the protocol with an enhancement of ssv equal to 5. The maximum enhancement,
ssv equal to 10, is represented by the dotted red line. From the same channel order-
ing, figure on the left (a), it is clear that the tipping point for both MtQS-DSrdv and
DSMMAC for RDV is positioned around 50 microslots. While the performance of
A-MOCH is in general higher, its tipping point comes earlier, therefore allowing only
for lower asynchronous thresholds. When comparing the same channel order with
the reverse channel order, right figure(b), two characteristics stand out. The tipping
point of the enhanced protocol with an ssv equal to 10 is lower compared to the
tipping point in the same channel order. However, while the asynchronous thresh-
old results show already a degradation in performance for the maximum enhanced
protocol, it still ensures a performance improvement for the enhanced protocol with
an ssv equal to 5.
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Figure 9.15: Asynchronous threshold tipping point for TTR and efficiency

Figure 9.15 shows the performance analysis for both the TTR and efficiency in the
same channel order. The tipping point of the TTR metric is similar for all proto-
cols to the tipping point on the RDV metric, that is around 50 microslots for both
MtQS-DSrdv and DSMMAC, and around 42 microslots for A-MOCH. The efficiency
diagram (right side of the figure (b)), shows that the tipping point for all protocols
is lower than their respective tipping point for the RDV or TTR. Therefore, it is
possible to improve both the TTR and the RDV, while the efficiency is already de-
grading. As a consequence, there is relatively fewer total time available to achieve a
RDV with the enhanced protocol when compared to the original protocol. However,
the available time to rendezvous is more evenly distributed over the complete cycle,
thereby increasing the number of RDVs and decreasing the TTR.

In the most extreme case, i.e., in a reverse channel order, the efficiency of all three
protocols is worse for the enhanced protocol, when compared to the original protocol.
From the start, the efficiency is worse, although both the RDV (depicted in Figure
9.14(b)) and TTR show a clear improvement until a certain asynchronous threshold.
Even though the efficiency of the enhanced protocol is lower than the efficiency of
the original protocol, improvement regarding RDV and TTR are achievable. More-
over, for each of the considered RDV opportunities, sufficient time is available to
accomplish a RDV.

From the previous discussion, it can be concluded that the Asynchronous Ren-
dezvous Extension (ARE) induces asynchronism to protocols with an equal channel
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opportunity per cycle by manipulating the slot size according to the channel rank-
ing. The higher the priority of the channel, the larger the slot size. The protocol
extension allows for a significant improvement in both RDV and TTR for all three
considered protocols. While the efficiency of the protocols is worse in a reverse
channel order, which is the worst case environment, both the RDV and TTR are
able to achieve an improved performance, provided the asynchronous threshold is
bounded. The more extensively ARE is used (the higher the ssv parameter), the
larger the performance improvement. The higher the asynchronous threshold, i.e.,
the more time is required to have a RDV, the lower the performance improvement
and can even lead to a degradation in performance when the asynchronous threshold
becomes too high.

9.4 Enhanced Asynchronous Rendezvous Extensions

9.4.1 EAND hopping sequence

The Asynchronous Rendezvous Extension (ARE) was, besides the previously dis-
cussed three enhanced protocols, also evaluated in combination with a RDV protocol,
named AND, specifically designed to work in cooperation with ARE in [251]. The
RDV protocol (AND), designed by Dr. S.A. Romaszko, was a result of a thorough
study of the performance of JS [267], SARCH [271] and Latin square (LS) based
algorithms. The combination of the protocols and the extension showed that a per-
formance could be achieved that exceeds the performance of most related work in
its original state. However, AND is not optimal since it shows a certain preference
towards an even number of channels. Therefore, in this section the improved version
of AND, Enhanced Asynchronous Neighborhood Discovery (EAND), which is also
designed by Dr. S.A. Romaszko, is concisely discussed where these shortcomings are
largely removed. Note that this dissertation does not mention any contribution to-
wards the development of EAND, since the contribution lies within the development
of the Enhanced ARE protocol (discussed in the following section) and the perfor-
mance analysis of the combination of Enhanced ARE and EAND. The combination
of both protocols is discussed later in this chapter to determine the performance
gain compared with related work.

EAND is guaranteed to have a RDV every cycle thanks to the combination of clock-
wise and counterclockwise channel sequences for every possible rotation. Moreover,
an extra sequence, which is equal to half the number of channels, is introduced after
every rotation section in order to provide a better coverage of the RDVs. Since
the goal of this protocol is to be used in combination with the EARE, and thereby
forming the E2AND protocol, it is important that the channels are uniformly dis-
tributed. At the end of the total sequence, a counterclockwise channel sequence is
added to provide an even better channel distribution.

The pseudo-code of EAND can be found in Algorithm 1.
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Algorithm 1 Enhanced Asynchronous ND

Require: List of available channels C0 . . . CN−1

Ensure: Channel sequence S
1: procedure EAND

2: S ← ∅

3: ppow = prime_power(N)

4: lprim = lower_prime(N)

5: half_num = ⌊N2 ⌋
6: for i = 0 to N − 1 do

7: r = i

8: for n = 0 to N − 1 do

9: idx = (r + 1) mod N

10: S ← S ∪Cidx

11: if iseven(N) then

12: r = (r + lprim) mod N

13: else

14: r = (r + ppow + 1) mod N

15: end if

16: end for

17: for n = 0 to N − 1 do

18: idx = (r + 1) mod N

19: S ← S ∪Cidx

20: if iseven(N) then

21: r = (r + ppow) mod N

22: else

23: r = (r + lprim+ 1) mod N

24: end if

25: end for

26: for n = 0 to half_num− 1 do

27: if iseven(N) then

28: idx = ((n× i)− r) mod N

29: else

30: idx = ((n× i)− r + 1) mod N

31: end if

32: S ← S ∪Cidx

33: end for

34: idx = (r × i) mod N

35: S ← S ∪ Cidx

36: end for

37: for i = 0 to N − 1 do

38: idx = (i− 1) mod N

39: S ← S ∪ Cidx

40: end for

41: end procedure
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9.4.2 Enhanced Asynchronous Rendezvous Extensions

The Asynchronous Rendezvous Extension (ARE), which was extensively analyzed
and discussed in Section 9.3.1, allows to introduce asynchronism where otherwise
slot synchronized cases could occur. Since the benefit of exploiting the asynchronous
character is already extensively discussed in this chapter, it is clear that such ex-
tension is able to provide a significant performance improvement. However, due to
the trivial approach of manipulating the slot sizes, the extension is suboptimal. The
distribution of the slots sizes is done according to Equation 9.8, where ch_priority

ranges from 0 to N−1, where 0 stands for the highest priority, and N is the number
of channels. The slot size variation (ssv) is a parameter that allows to tune the
amount of influence the extension has on the channel priority. The highest rank-
ing channel is therefore assigned a slot of 100 microslots, while the lower ranking
channels are assigned a slot size depending on their level below the highest ranking
channel and the ssv parameter.

slot_size = 100− ssv ∗ ch_priority (9.8)

Note that the slot size depends on the number of levels below the highest ranking
channel, i.e., in the extreme case of the lowest ranking channel, the slot size depends
on the number of channels. However, the number of channels is not taken into ac-
count in Equation 9.8 to determine a lower bound. Therefore, the comparison of
a protocol in combination with the extension for a series of number of channels is
hard to accomplish. Either the ssv needs to be adjusted such that the configuration
with the largest number of channels still has a positive slot size value for the lowest
ranking channel, or the ssv parameter needs to be adjusted to the number of chan-
nels for each configuration. The former solution results in a suboptimal behavior for
the protocol with the lower number of channels, which could achieve a better per-
formance by increasing the ssv parameter. The latter results in an optimal setting
for the complete series of number of channels, however proves hard to compare to
each other due to the different ssv values.

In order to resolve this issue, three new rules to determine the slot size based upon
the channel ranking are suggested in this section. All three methods take the number
of channels into account and provide an absolute lower bound for the lowest ranking
channel. While the highest ranking channels maintain a slot size of 100 microslots,
all intermediary channels are assigned a slot size between the highest slot size and
the lowest slot size, according to a certain distribution, relative to their channel
ranking. The three proposed methods follow respectively a linear, exponential and
logarithmic distribution.

The linear method (Equation 9.9), allows for a uniform decrease in slot size re-
specting a particular channel priority, that is, the maximum slot size difference
(100−mss) divided by the number of available channels minus one. The minimum
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slot size (mss) is a parameter that can be tuned to optimize the performance and
represents the minimum slot size that is allowed for the lowest priority channel.
This method is very similar to ARE, both distributions are linear, but very different
because of its methodology of determining the slot size inter-spacing based upon the
minimum slot size.

slot_size = 100− ch_priority × 100−mss

N − 1
(9.9)

The logarithmic method (Equation 9.10), provides longer slot size differences for a
small number of high priority channels and smaller slot size differences for a large
number of low priority channels, when compared to the linear method. This method
ensures that only a few channels have a large slot size. As a consequence, the cycle
size will be lower than the cycle size of the linear method, since there are more
channels with a small slot assignment, while this is evenly distributed by the linear
method. When assuming the number of RDVs remain the same, the reduction of
slot size and cycle size also leads to a lower TTR. However, due to the fast decreasing
slot size of the high ranking channels, the opportunity of effectually having a RDV
could be reduced.

slot_size = 100− ln(ch_priority)

ln(N)
× (100−mss) (9.10)

The last method, an exponential method (Equation 9.11), provides longer slot size
differences for a large number of high priority channels and smaller slot size differ-
ences for a small number of low priority channels, compared to the linear method.
Note that the factor of 1.15 has been experimentally determined such that it pro-
vides a graph where the difference between ssv parameters is inversely proportional
to the difference between ssv parameters in the logarithmic method, i.e., when there
is a small difference between two channels in the exponential method, there is a
large difference in the logarithmic method. The method results in a larger number
of channels obtaining a large slot size. This method ensures a larger cycle, compared
to the cycle of the linear method. However, because of the larger number of channels
with a large slot assigned to, the opportunity to have RDV on one of those high
ranking channels is increased. By having more RDVs, preferable distributed over
the complete cycle, the TTR could be reduced even though the slot and cycle sizes
are increased.

slot_size = 100− 1.15ch_priority − 1

1.15N−1 − 1
× (100−mss) (9.11)

An overview and the respective effect on the slot size decrease of all three methods is
shown in Figure 9.16, where the slot size decrease is depicted up to 20 channels and
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Figure 9.16: EARE methods: slot size decrease for an mss value of 30

an mssv value of 30. The resulting slot size is determined by subtracting this slot
size decrease from the maximum slot size, that is, 100 microslots. The logarithmic
method rapidly increases at first and stagnates later on, thereby leading to fewer
channels with large slot sizes. On the other side, the exponential method results in
a slow increase at first and a more rapid increase later on, resulting in more channels
with large slot sizes. Finally, the linear method results in a linear decrease of the
slot size.

9.4.3 Performance Evaluation

Like in the previous sections, the performance analysis makes use of microslots, that
is, a subsection of a slot, where a single microslot is equal to 1/100 of a full slot.
This allows to specify different slot sizes and to measure the number of microslots
available for a RDV opportunity, that is, the number of rendezvous on sequentially
distinct channels. The asynchronous threshold, which determines whether a RDV
can be achieved during the overlap between two channel hopping sequences, is also
expressed in number of microslots. The whole performance section assumes an
asynchronous threshold of 30, unless otherwise specified. Since the different cycle
sizes of all compared protocols make it hard to compare the RDVs, the concept of
normalized RDV is employed. Normalized RDV is defined here as the number of
RDV opportunities divided by the length of a cycle, expressed in microslots. All
measurement results are subjected to a full statistical analysis for all possible map
offsets with a resolution of one microslot.

The performance of the Enhanced Asynchronous Rendezvous Extension (EARE)
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is evaluated in combination with the EAND protocol, the combination of which
is referred to as E2AND or eeand in the figures. Two types of evaluations are
performed. In the following section, the three EARE methods are compared to each
other and ARE in terms of normalized RDV, TTR and cycle size with different
minimum slot sizes (mss). The outcome of this analysis will show the most suitable
method to optimize the improvement of both RDV and TTR.

In Section 9.4.3 the best method from the previous analysis is compared to the
performance of related work in terms of normalized RDV, TTR and cycle size. In
order to evaluate the proposed solution in comparison with different ND approaches,
rendezvous protocols are selected without a need of synchronization and distinctly
outstanding among other related work in either having a better TTR, providing a
guarantee on each channel in a single cycle, or considering the asynchronous char-
acter of CRNs. The selected protocols are already described in 8.4 and therefore
will not be discussed here. The selected protocols to which the proposed solution
is compared to are: JS [267][268], EJS [249], SARCH [271], DRDS [266], ETCH
[265] and a variation of the protocol called mod_etch, such that all channels can
be used, and A-MOCH [245]. Note that neither DSMMAC [274] nor MtQS-DSrdv
[275] are included in the performance analysis due to their complex construction
methodology.

Enhanced AREs performance

In this section, each of the EARE variants are evaluated in combination with the
EAND Neighborhood Discovery (ND) protocol, as well as ARE in combination with
EAND. Both protocol combinations are denominated as ’eeand ’ in the figures. Each
of the asynchronous extensions is named according to its distribution, the linear
extension is called linae, the logarithmic extension logae, the exponential expae and
ARE is just called ae. In order to discern the different protocol combinations, a
concatenation is made of the ND protocol, the (E)ARE variant and the selected ssv

or mss parameter.

All analyses have been performed for the number of channels ranging between 3 and
20. ARE is verified with an ssv of 5, which proves to have the best performance,
while keeping within the boundaries dictated by the maximum number of channels.
The three enhanced ARE variants are verified with an mss ranging from 5 to 30,
signifying that the smallest slot for the lowest priority channel is at least 5 microslots
when mss is equal to 5.

At first, the influence of the mss parameter on the performance regarding both
normalized RDV and TTR is investigated for all three EARE variants in order to
be able to make use of the best possible enhancement. Figure 9.17 depicts the RDV
performance of the EAND protocol, enhanced with the logae with different values
for the mss. It can be noticed that an mss value of 5 gives the best performance
for all channels. The larger the parameter is, the lower the improvement becomes.
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Figure 9.17: The RDV of EAND with logae, with mss 5 till 30

Since a lower mss parameter signifies a smaller minimum slot size, it is also related
to a lower cycle size, since a lot of channels have a slot size in the neighborhood
of the lowest slot size. When assuming a similar absolute number of RDVs, while
the cycle is reduced, the normalized RDV is increased. The other EARE variants
show similar results and are therefore omitted. Since the lower the mss parameter,
the higher the performance, an mss parameter equal to 5 is selected to perform
the rest of the performance comparisons. A minimum value of 5 is chosen, since
an mss equal to 0 would eliminate the channel with the lowest ranking from the
performance results.
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Figure 9.18: The normalized RDV of EAND with (E)AREs

The normalized RDV for all four asynchronous extensions is depicted in Figure 9.18.
ARE is verified with ssv equal to 5, while the mss parameter is also chosen to be
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5. Both the average value (point at the center) and the 95% confidence interval of
the measured values are depicted in the figure. Since the ssv parameter of ARE
is optimized for the largest number of channels, its performance is suboptimal. It
exhibits the lowest performance of all, except for the largest number of channels,
where it is better than the linear distribution. Interesting to note is the difference in
performance between the linear and the exponential extension. The extension with
the best performance of the RDV between both of them is continuously alternating.
The extension with clearly the best performance regarding the normalized RDV
is the logarithmic extension, when compared with all other extensions. Both its
average number of RDVs and its maximum 95% confidence interval is higher than
all other protocols.

As a result of decreasing the slot sizes according to the channel ranking, the total
cycle size decreases as well. A comparison of the cycle sizes of all four extensions
in combination with the EAND ND protocol is depicted in Figure 9.19. It can be
noticed that the logarithmic extension provides the smallest cycle sizes, whereas
ARE exhibits the largest cycle sizes, except for the largest number of channels,
where the linear and exponential extensions have a larger cycle size. This is once
more a result of the suboptimal behavior of ARE for all possible number of channels
with an ssv equal to 5.
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Figure 9.19: The cycle size of EAND with (E)AREs

Since the EAND protocol was designed such that all channels should have an equal
amount of RDVs and the logarithmic extension allows only a few channels to have a
large slot size and allows more channels to have smaller slot sizes where the relative
difference is small, the cycle size is the smallest of all four extensions. Thanks to such
reduction in cycle size and the asynchronous characteristics, the normalized RDV
improves. Even when maintaining the time available for RDVs, while decreasing the
cycle time, the resulting normalized RDV increases.

The Time-To-Rendezvous, depicted in Figure 9.20, shows that these improvements
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also count for the TTR, meaning that the TTR is the smallest with the logarithmic
extension. Note that there is a reduction in improvement around 8 and 16 channels.
This can be attributed to the ND protocol, EAND, which exhibits an imperfect
distributed performance over all possible channels.
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Figure 9.20: The TTR of the EAND with (E)ARE

From all analyzed material, it can be concluded that the EARE with a logarithmic
distribution and an mss parameter equal to 5 gives the best performance. The fast
decreasing slot size provides more RDV opportunity on the high ranking channels,
while at the same time decreasing the Time-To-Rendezvous and the cycle size. As a
result, the performance of both metrics is improved. While the larger number of big
slots for high ranking channels with the exponential extension does provide a fair
performance improvement in both RDV and TTR, its performance does not exceed
the performance of the linear extension. Depending on the number of channels, the
linear extension is better than the exponential extension or reverse.

Enhanced Asynchronous ND performance

This subsection is dedicated to the analysis of the EAND protocol in combina-
tion with the best asynchronous extension from the previous section, that is, the
logarithmic extension. The combination of both protocols is called E2AND. The
asynchronous extension is verified with the mss parameter equal to 5 and is referred
to as eeand in the figures. All protocols are verified as in previous comparisons,
that is, a statistical analysis is performed for every offset between two maps with
a granularity of a single microslot. Since some of the protocols, such as Jump-Stay
[267][268], ETCH [265], DRDS [266], SARCH [271], etc. include some randomness
in their protocols, all performance analyses are repeated with the same parame-
ters a 1000 times. The obtained results of each simulation run is considered in the
statistical analysis. In order to be able to cope with the significant number of simu-
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lation runs, the simulations were performed on the w-iLab.t testbed in Zwijnaarde,
Belgium.
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Figure 9.21: RDV of E2AND with logae and mss 5 and related work

The normalized RDV of all protocols can be seen in Figure 9.21, where it is explicit
that the performance of E2AND significantly outperforms the other protocols. Even
the average number of RDVs of the E2AND protocol almost always outperforms
the upper bound of the 95% probability interval of the other protocols. Some of
the evaluated protocols do not have values for certain channels because they pose
restriction on the number of channels that can be used, such as ETCH that requires
the number of channels is prime or SARCH that requires 2N + 1 is prime, where
N is the number of channels. The depicted results provide interesting insights , for
example, while the protocol with the most absolute RDVs is SARCH, its normalized
RDV is similar to the lowest performing protocols. The protocol with the lowest
absolute RDVs is A-MOCH [245], while its normalized RDV is similar to the better
performing protocols.
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Figure 9.22: Cycle size of E2AND with logae and mss 5 and related work

As already mentioned before, the number of RDV is not a sufficient metric while
comparing protocols with a different cycle size. Having a massive number of RDVs
in a huge cycle does not necessarily mean that its performance in RDV is better,
when compared to a protocol with a small cycle and a smaller number of RDVs per
cycle. When following the hopping sequence of the small cycle during a number of
cycles, such that the total simulation run equals the cycle length of the protocol
with the largest cycle, the protocol with the smaller cycle could have achieved more
RDVs than the protocol with the larger cycle. Such theory is also proven here, the
cycle size of SARCH (Figure 9.22) is thus large in comparison to the cycle size of
the other protocols, such that the normalized RDV of SARCH is situated around
the same level as the other protocols. The cycle size of A-MOCH on the other
hand is smaller, almost as small as the cycle size of E2AND, and therefore shows
a better normalized RDV. Although the cycle size of A-MOCH and E2AND are
nearly the same, the normalized RDV performance of E2AND is much higher than
that of A-MOCH, indicating the performance improvement thanks to the induced
asynchronism. Note that size does not always matter, as shown by EJS [249], where
there is also a slight performance improvement regarding the normalized RDV of
EJS when compared to JS, notwithstanding the larger cycle size of EJS.

The performance of the TTR (Figure 9.23) shows the same improvements. The TTR
is far lower when using E2AND when compared to the other protocols. These results
also prove the necessity of having a well designed ND protocol in combination with
a low cycle size. Despite the low cycle size of A-MOCH, it exhibits a worse TTR
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Figure 9.23: TTR of E2AND with logae and mss 5 and related work

than E2AND and especially its maximum 95% confidence interval is far higher than
all protocols. The remainder of the protocol show an almost similar average TTR
performance, while the maximum 95% confidence interval can deviate. Although
it is not shown in the figure, interesting to note is that, while the Maximum TTR
(MTTR) of JS, which is known for its very low MTTR, is superior to the MTTR
of EAND, the MTTR of E2AND is similar or in some cases even better than the
MTTR of JS.

The enhanced version of the protocol discussed in the previous section clearly por-
trays an improved performance. This section showed how to profit from added asyn-
chronism in ND protocols. Thanks to induced asynchronism, the ranking of channels
is introduced, allowing nodes to stay longer on better quality channels. The analysis
of the behavior of different RDV protocols in terms of normalized RDV and TTR
showed that the E2AND exhibits a significantly higher performance than any of the
well known and discussed related work. As a result of the asynchronous extension
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was the cycle size significantly reduced, since less time was assigned to lower quality
channels. This resulted in a significantly higher performance, since the number of
RDVs was maintained.

9.5 Conclusion

Although only few works consider the asynchronous character of the nodes with a
CRN, the discussed RDV protocols and extensions in this chapter show the possible
improvements when it is taken into consideration. Note that the related work usually
does not consider the time required to allow an effective message exchange. This
might be justified if only synchronized slot arrangements are considered. However,
when considering an asynchronous environment, the overlap between different slots
needs to be taken into account. Three different approaches have been discussed
and all three of them consider a certain asynchronous threshold, that is, the lower
bound on the duration of the overlap which still guarantees sufficient time to make
an effective message exchange.

The first approach discussed a method to analyze Rendezvous protocols in an asyn-
chronous manner. The section does not consider protocols especially designed for
asynchronous operation, it just indicates the performance improvement, especially
in terms of TTR and RDV opportunity, when any protocol is not forced into a
synchronous operation.

The second approach discusses the performance of certain RDV protocols which are
enhanced by means of the proposed Asynchronous Rendezvous Extensions (ARE).
Instead of defining a fixed slot size for all channels, each channel is assigned a
dynamic slot size proportional to its relative priority. As such, channels with a
higher priority are assigned a larger slot size. It can be noticed that the extension
improves the performance of both RDV and TTR, provided that the asynchronous
threshold is bounded.

A third protocol is a combination of a previously constructed protocol and an im-
provement of ARE. While ARE showed an improvement in both RDV and TTR,
its application was limited by the number of channels. The same amount of im-
provement could not be applied to all possible channels. The improvement of ARE
applies a logarithmic distribution in order to ensure its applicability for an entire
range of channels. The protocol ensures an improved performance, since less time
is granted to most lower priority channels, while only a few high priority channels
are allocated a large slot size.

Note that none of the three works did assume the RDV to occur at the start of the
hopping sequence, as some works do. A complete analysis is performed for every
possible asynchronous offset in order to determine the actual maximum TTR and
RDV for the protocols.
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CHAPTER 10

Conclusions and Perspectives

This works focuses on the importance of timeliness and time in general in wireless
networks. In order to demonstrate that its importance is not an isolated case, which
is only applicable to a single type of network, is this work split up in three Parts, the
first Part targeting Wireless Sensor Networks (WSNs), the second Part discussing
Wireless Local Arera Networks (WLANs) and the third Part elaborating on the
Time to Rendezvous (TTR) during the Neighborhood Discovery phase in Cognitive
Radio Networks (CRNs). Each Part is introduced by an overview of the relevant
state of the art and provides if necessary the necessary background to understand
the context in which this work has been performed.

The Part about Wireless Sensor Networks is introduced by an overview of existing
Wireless Sensor Network protocols, showing that a lot of diversity exists between the
protocols. Both CSMA and TDMA based protocols are discussed, as well as some
hybrid protocols that employ a combination of both. It is interesting to note that
some protocols require the construction of a routing tree, while others prefer to use
a two-hop neighborhood map in order to coordinate the access to the medium. The
slot assignment of TDMA protocols can be either centralized or distributed. Some
protocols try to minimize the time it takes to send a packet over multiple hops, by
aligning the wake-up times of the next hop neighbors. And like that, there are a large
number of protocols that use a somewhat different approach or have a different goal.
Note that the list of described protocols is certainly not exhaustive, the discussed
protocols provide an idea of possible MAC protocols, interesting and/or similar
ideas as the concepts used to design the MAC protocol which is described in the
third chapter of this Part on Wireless Sensor Networks, show an alternative way of
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achieving similar goals or take similar approaches.

The two issues that are being addressed in the Part about Wireless Sensor Networks
are: efficient synchronization methods and the slot allocation in TDMA based het-
erogeneous sensor networks. The chapter on synchronization discusses the sections
of the relevant hardware parts are are responsible for generating a stable clock signal
to the microprocessor and why it is so important for the nodes within a sensor net-
work to become synchronized. Numerous synchronization protocols are discussed
and compared to each other, based on a theoretical model of the hardware. From
those observations, it became clear that the existing protocols either require a non-
negligible communication overhead, do not synchronize all nodes to each other, or
rely on the exact timings of the hardware in order to perform a synchronization. A
new synchronization method is proposed which eliminates any of those drawbacks by
specifying a strict frame structure, and by specifying in the synchronization packet
not the time at which it should be received, but the slot number within the frame.
In such manner, the synchronization does not rely too much on the specifics of the
hardware, but on the other hand, does not cause excessive communication overhead.

The overview of the available MAC protocols in WSNs show that heterogeneous net-
works are often not considered in the literature. For example, the slot assignments
for scheduled channel access methods usually consider only a single slot per node,
which might result in buffer overflows and therefore loss of data. To remedy the is-
sue, the chapter which proposes a novel slot allocation mechanism for TDMA based
heterogeneous networks, dives into the world of the scheduling algorithms, such as
Weighted Fair Queuing (WFQ), Stop-and-Go queuing and packet-by-packet Gener-
alized Processor Sharing protocol (PGPS), which were in the first place designed to
provide a fair throughput in a router or switch, where multiple input sources would
require access to the same output port. Since the proposed protocol makes use of
bandwidth fragmentation, a protocol that constructs a cyclic binary sequence in a
similar manner is discussed. A number of real-time MAC protocols are discussed,
in order to be able to compare the real-time character of the proposed protocol to
the state of the art regarding real-time MAC protocols.

The new MAC protocol that has been proposed, approximates the requested band-
width and allocates the different fractions according to their frequency. The protocol
makes use of fractional bandwidth allocations in order to approximate the requested
bandwidth request. Assumed is that the slot size is fixed in order to prevent network
synchronization issues and that the number of slots per frame is fixed and should be
equal to a power of two. In order to distribute the bandwidth of a single frame, each
bandwidth request is converted into binary Egyptian fractions, which is a series of
unit fractions, where the denominator is a power of two. Each fraction represents
a fraction of the available bandwidth per frame. By regarding each fraction as a
frequency, a slot allocation can be made according to those fractions by assigning
a first slot and allocating every 1/f slot for this bandwidth request. In such way
that when the frequencies are applied, none of the allocations overlap, and the slot
allocations interleave with each other, such that a node requiring a huge amount
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of bandwidth, is able to send its data on time, according to its bandwidth request,
but at the same time, is not blocking the transmission of a node that requires a
low bandwidth. On top of that, the resulting schedule can be encoded in a small
number of bytes, which needs to be sent to the node only once, even if new nodes
join or leave the network. Moreover, the protocol exhibits real-time properties, such
as the deterministic latency.

The second Part of this dissertation focuses on the non-standardized operation of
commodity hardware. Numerous related works have been provided which indicate
the need to have a non-standardized operation. Thanks to the Linux kernel, such
operation is made possible, of which the possible subsystems that might have an
influence are discussed in more detail. An analysis of the possible timer sources
lead to the conclusion that the hrtimer of the Linux kernel exhibits an very inter-
esting performance, which is only exceeded by either the real-time core timer of the
Xenomai real-time extension, or the timer of the eCos RTOS.

The enabling of a scheduled transmission in the Linux kernel and related hardware
driver required a considerable number of modifications. A number of functionali-
ties needed to be circumvented, others disabled, a new association mechanism was
required, the radio reception needed to be disabled during the transmission period,
etc. A careful analysis of the network operation in a standard environment showed
several hardware operations which interfered with the timeliness of the transmission
schedule. Therefore, amongst others, the beacon transmissions were integrated into
the data schedule. The resulting transmission schedule was driven by the hrtimer,
which triggered the next data transmission. Results showed that the modifications
enabled a rather accurate scheduled transmission, where only a fraction of a per-
centage of the arrived packets showed a deviation of more than 10 µs compared to
the expected transmission time.

The third Part discussed the performance of Rendezvous protocols in the context
of a Cognitive Radio Network. The overview of existing methods showed the lack
of consideration for the asynchronous operation. The first method proposed a low
impact method to evaluate protocols in an asynchronous manner, showing that a
considerable improvement could be achieved by allowing protocols to operate in an
asynchronous manner. Therefore an asynchronous extension was proposed, which
ensured that protocols would operate in an asynchronous manner by assigning larger
slot to the higher priority protocols. The performance evaluation showed promising
results, indicating the benefit of exploiting the asynchronous behavior. A further
optimization of the protocol, in combination with a Rendezvous protocol specifi-
cally designed to cooperate with the extension, showed that the performance of the
combination significantly outperformed any regular Rendezvous protocol.

Future work needs to be performed for all discussed protocols. The proposed TDMA
based MAC protocol in Chapter 5 shows promising results when considering only
a star topology. However, when a larger network is considered, the performance
drops due to the extra slot allocations required to enable the parents to service
their children. Moreover, although the latency can be controlled by limiting the
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accuracy of the approximation, the downside of this operation is that for a small
number of bytes an entire slot is required. Possible improvements could be made by
allowing a heterogeneous slot size throughout the network. In other words, when
an entire slot is considered too large, half of a slot could be assigned. Since every
transmission incurs some overhead regarding radio switching time and preamble
transmission, such action will result in a lower efficiency, that is, less bandwidth
will be available for data transmissions when compared to a full slot. However,
when such method is employed only when absolutely necessary, it can result in a
considerable improvement. On the other hand, since the protocol is optimal in a
star formation, the network could be segmented in a number of clusters, making
usage of one of the discussed methods to determine cluster heads, and the protocol
would ensure a timely delivery of the data within each cluster.

The implementation of the scheduled transmission in the Linux kernel can also be
improved in a significant manner. Currently, the reception mechanism of the radio
is disabled during the transmission period in order to prevent any probe requests
to capture the radio. A method similar as in one of the related works could be em-
ployed, where the receive path was directed to an empty antenna, thereby ensuring
that the radio did not experience any interference from receptions. Moreover, the
current implementation only involves the transmitter side. The receiver side should
incorporate a synchronization mechanism based on the already established synchro-
nization between the Access Point and its clients. The implementation showed also
that when operating in a normal environment, where a lot of foreign traffic can be
detected, a lot of packets are lost. In order to remedy this issue, the protocol could
be adjusted to included a carrier sensing before initiating the transmission, as some
of the WSN MAC protocols do. A more flexible slot assignment would be required
in such case. Note that up till now, the entire implementation was done at the host
side, that is, the Linux kernel. Recently, the ath9k_htc firmware source code has
also been made public as open source, allowing to make an implementation of the
scheduled transmission in the firmware, thereby circumventing any possible impact
from kernel processes.

The Rendezvous protocol of the last section has been verified by means of simula-
tions. However, implementing the protocol on hardware, such as USRP, would still
provide considerable challenges regarding the actual detection of the SUs. Methods
similar as Low Power Listening of WSNs could be employed for such application.
However, the frequency of the transmissions and listen events should be carefully
considered, since the simulation only considered that sufficient time is available to
allow a communication. Initiating such communication only at the start and end of
a slot would not even approach a performance similar to the one determined by the
simulations.

During the time span of writing this work, 3GPP started on the 5G standard, which
defines the design of ultra reliable and low latency communication (uRLLC). It is
interesting to see whether the proposed algorithm in this work matches the concepts
of this standard. In short, the key elements of uRLLC are described here and
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compared to our proposed protocol afterwards. The first key element of uRRLC
is the usage of mini-slots, which are a lot smaller than usual slots. This allows
for a flexible transmission duration. Moreover, is the UE (User Equipment) more
frequently monitoring the DL (down-link) control to check to check the scheduling
information for both the DL and UL (up-link) data transmissions. In order to
minimize the waiting time to transmit a packet, the UE does not need to transmit
a request first and then wait for a UL grant. Periodic UL resources for a UE allow
the UE to transmit as soon as it has data available.

It is interesting to see how some ideas are comparable to the concepts, proposed in
this dissertation. For example, instead of demanding that a node or UE requests
for bandwidth every time, bandwidth is allocated for this node, such that it can
send as soon as it has data available. In the protocol, described in this work, every
node send its required bandwidth estimation and receives such bandwidth until its
requirements change. Other than that, as part of the future work, it was proposed
to make the slots smaller, such that we can achieve a lower latency at the cost of
lower efficiency. In uRRLC, smaller slot sizes are also proposed, in order to allow
more frequent scheduling of the resources. Thanks to the periodicity of the protocol
in this work, there is already a frequent scheduling of the slots, not requiring any
adjustment to that part of the protocol and therefore a more frequent monitoring
of the schedule is not required.
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