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Abstract

This paper deals with stability in the numerical solution of the promi-

nent Heston partial differential equation from mathematical finance. We

study the well-known central second-order finite difference discretization,

which leads to large semi-discrete systems with non-normal matrices A.

By employing the logarithmic spectral norm we prove practical, rigorous

stability bounds. Our theoretical stability results are illustrated by ample

numerical experiments.
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1 Introduction

This paper deals with stability in the numerical solution of the Heston partial
differential equation (PDE),

∂u

∂t
= 1

2s
2v

∂2u

∂s2
+ ρσsv

∂2u

∂s∂v
+ 1

2σ
2v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
− ru (1.1)

for s > L, v > 0 and 0 < t ≤ T . The Heston PDE constitutes one of the
prominent equations of mathematical finance, cf. e.g. [4, 8, 9, 11]. It gener-
alizes the celebrated one-dimensional Black–Scholes PDE where the volatility
is modelled by a stochastic process rather than being constant. Clearly, (1.1)
can be viewed as a time-dependent advection-diffusion-reaction equation on an
unbounded two-dimensional spatial domain. The exact solution value u(s, v, t)
represents the fair price of a European-style option if at time T − t the under-
lying asset price and its variance equal s and v, respectively, where T > 0 is
the given maturity time of the option. The quantity L ≥ 0 is a lower barrier,
κ > 0 is the mean-reversion rate, η > 0 is the long-term mean, σ > 0 is the
volatility-of-variance, ρ ∈ [−1, 1] is the correlation between the two underlying
Brownian motions, and r > 0 is the interest rate. These quantities are all given
and arbitrary. We remark that in practice the correlation ρ is usually nonzero,
and hence, (1.1) contains a mixed spatial-derivative term. The Heston PDE is
complemented with initial and boundary conditions which are determined by
the specific option under consideration. In this paper we shall assume boundary
conditions of Dirichlet type.

A widely known semi-discretization of PDEs in finance is given by central
second-order finite difference (FD) schemes, see e.g. [11, 14]. To render the
numerical solution of the Heston PDE feasible, the spatial domain is first re-
stricted to a bounded set [L, S]× [0, V ] with fixed values S, V chosen sufficiently
large, with additional Dirichlet conditions imposed at s = S and v = V . Let
m1,m2 ≥ 3 be any given integers and define spatial mesh widths

∆s =
S − L

m1 + 1
, ∆v =

V

m2 + 1
.

The central second-order FD schemes for approximating the advection, diffusion
and mixed derivative terms in (1.1) are

(us)i,j ≈ ui+1,j − ui−1,j

2∆s
, (1.2a)

(uv)i,j ≈ ui,j+1 − ui,j−1

2∆v
, (1.2b)

(uss)i,j ≈ ui+1,j − 2ui,j + ui−1,j

(∆s)2
, (1.2c)

(uvv)i,j ≈ ui,j+1 − 2ui,j + ui,j−1

(∆v)2
, (1.2d)

(usv)i,j ≈ ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4∆s∆v
, (1.2e)
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with the short-hand notation ui,j = u(si, vj , t) and spatial grid points

si = L+ i ·∆s (i = 0, 1, . . . ,m1 + 1) , vj = j ·∆v (j = 0, 1, . . . ,m2 + 1).

Semi-discretization by (1.2) of a given initial-boundary value problem for the
Heston PDE leads to an initial value problem for a large system of ordinary
differential equations (ODEs),

U ′(t) = AU(t) + b(t) (0 ≤ t ≤ T ), U(0) = U0. (1.3)

Here A is a given constant real m×m matrix and b(t) (for 0 ≤ t ≤ T ) and U0

are given real m×1 vectors with m = m1m2. The vector U0 is directly obtained
from the initial condition for (1.1), whereas the vector function b depends on
the boundary conditions. For each t > 0, the entries of the solution vector
U(t) to (1.3) form approximations to the exact solution values u(si, vj , t) for
1 ≤ i ≤ m1, 1 ≤ j ≤ m2.

The aim of our paper is to gain insight into the stability of the semi-discrete
Heston PDE (1.3). To this purpose, we are interested in the existence of useful,
rigorous upper bounds on the quantity ||etA|| (for t ≥ 0) where || · || denotes an
induced matrix norm. Such bounds, on the magnitude of the matrix exponen-
tial of tA, guarantee that any (rounding or discretization) errors cannot grow
excessively. For central second-order FD discretizations of the Black–Scholes
PDE, adequate stability bounds were recently proved in [6]. These bounds are
of the well-known type

||etA|| ≤ Ketω (t ≥ 0) (1.4)

with constants ω ∈ R and K ≥ 1. To our knowledge stability estimates of the
type (1.4) have not been obtained in the literature up to now for FD discretiza-
tions of the Heston PDE. In the present paper, we shall establish a natural
extension of stability results derived in [6]. We note that a main difficulty in
proving this extension lies in the mixed derivative term in the Heston PDE,
which does not arise in the Black–Scholes case.

As the semi-discrete Heston matrix A is in general non-normal, bounds on
the norm of etA which are based solely on the eigenvalues of A are most often not
useful. For the stability analysis in this paper, we shall employ the logarithmic
spectral norm. For any given complex k × k matrix A, with integer k ≥ 1, it is
defined by the limit

µ2[A] = lim
t↓0

||I + tA||2 − 1

t
,

where || · ||2 is the spectral norm and I is the k × k identity matrix. We note
that general complex matrices A are considered for later use. The following key
result forms the basis for our analysis; see e.g. [2, 7, 10, 12].

Theorem 1.1 Let A be any complex k × k matrix and ω ∈ R. Then

µ2[A] ≤ ω ⇐⇒ ||etA||2 ≤ etω for all t ≥ 0.
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Denote by 〈· , ·〉2 and | · |2 the standard inner product and Euclidean norm, re-
spectively. Then for the logarithmic spectral norm one has the more convenient
formulas

µ2[A] = max
{
Re〈Ax, x〉2 : x ∈ C

k , |x|2 = 1
}

(1.5a)

= max
{
λ : λ eigenvalue of 1

2 (A+A∗)
}
, (1.5b)

where A∗ stands for the Hermitian adjoint of A.
Motivated by the study [6] for the Black–Scholes PDE, we introduce also a

suitably scaled version of the spectral norm on Cm×m. Consider the positive
diagonal matrices

D1 = diag(s1, s2, . . . , sm1
) , D2 = diag(v1, v2, . . . , vm2

) , D = D2 ⊗D1 ,

where ⊗ is the Kronecker product. For vectors x ∈ C
m we define the norm

|x|D = |D−1/2 x|2

and denote for matrices A ∈ Cm×m the induced matrix norm and logarithmic
norm by ||A||D and µD[A], respectively. For any matrix A there holds

||A||D = ||D−1/2 AD1/2||2 , µD[A] = µ2[D
−1/2 AD1/2] (1.6)

and the spectral norm of A is bounded in terms of its scaled version through

||A||2 ≤
√

sm1
vm2

s1v1
· ||A||D . (1.7)

The outline of the paper is as follows. In Section 2 we derive practical
stability bounds for the semi-discrete Heston PDE (1.3). Here the advection
and diffusion terms are each studied individually. Numerical illustrations are
provided in Section 3, with actual computations of the norms of matrix expo-
nentials. Conclusions and issues for future research are discussed in Section 4.

2 Stability bounds

Let I denote the identity matrix of generic dimension. Associated with the FD
formulas (1.2), we define the tridiagonal m1 ×m1 matrices

L1 =
1

2∆s
· tridiag (−1 , 0 , 1) , M1 =

1

(∆s)2
· tridiag (1 , −2 , 1)

and the tridiagonal m2 ×m2 matrices

L2 =
1

2∆v
· tridiag (−1 , 0 , 1) , M2 =

1

(∆v)2
· tridiag (1 , −2 , 1) .
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FD discretization by (1.2) of the spatial derivative terms rsus, κ(η − v)uv,
1
2s

2vuss, ρσsvusv,
1
2σ

2vuvv in the Heston PDE (1.1) gives rise to the following
real m×m matrices, respectively:

A1 = rI ⊗ (D1L1) , (2.1a)

A2 = κ[(ηI −D2)L2]⊗ I , (2.1b)

A3 = 1
2D2 ⊗ (D2

1M1) , (2.1c)

A4 = ρσ(D2L2)⊗ (D1L1) , (2.1d)

A5 = 1
2σ

2(D2M2)⊗ I . (2.1e)

Here a lexicographic ordering of the spatial grid points is considered. It is worth
noting that (D2L2)⊗ (D1L1) in (2.1d) can be regarded as a discrete analogue of
(vuv) ◦ (sus) = svusv where ◦ denotes composition. The semi-discrete Heston
matrix A in (1.3) is equal to

A = A1 +A2 +A3 +A4 +A5 − rI.

Our introductory result concerns the two parts of the semi-discrete Heston
matrix corresponding to the advection terms in the s- and v-directions. It
provides useful stability bounds of the type (1.4) for these.

Theorem 2.1 Let r, κ, η > 0 and let A1, A2 be given by (2.1a), (2.1b). Then

||etA1 ||2 ≤ etω (t ≥ 0) with ω =
r

2

and
||etA2 ||2 ≤ etω (t ≥ 0) with ω =

κ

2
.

The above values for ω are the smallest that hold uniformly in the respective
mesh widths.

Proof Consider the symmetric matrix F = tridiag
(
1
2 , 0,

1
2

)
of generic dimen-

sion. All eigenvalues of this matrix lie in the real interval [−1, 1]. It is readily
verified that A1 + AT

1 = −rI ⊗ F and A2 + AT
2 = κF ⊗ I (for any η). The

eigenvalues of I ⊗F and F ⊗ I are the same as those of the pertinent matrix F .
By (1.5b) it thus follows that µ2[A1] ≤ r/2 and µ2[A2] ≤ κ/2 and application of
Theorem 1.1 yields the required bounds. Furthermore, as there exist eigenval-
ues of F that converge to −1 and 1 when the dimension increases, the obtained
values for ω are the smallest that hold uniformly in the respective mesh widths.

2

The subsequent lemma deals with the logarithmic spectral norm of certain
matrices of block Toeplitz type and is essential to the proof of our main result
in this paper. Let E = tridiag(0, 0, 1) denote the m2×m2 forward shift matrix.
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Lemma 2.2 Let B0, B1 be any given real m1×m1 matrices and let the m×m
matrix B be defined by

B = I ⊗B0 + E ⊗B1 + ET ⊗BT
1 .

Then
µ2[B] ≤ max

ζ∈C,|ζ|=1
µ2[B0 + 2ζB1].

Proof Consider the so-called symbol of B, given by

B(ζ) = B0 + ζB1 + ζ−1BT
1

for ζ ∈ C, |ζ| = 1. Since B is a block Toeplitz matrix, also the exponential

etB =

∞∑

j=0

tj

j!
Bj

is block Toeplitz. The symbol of etB is equal to etB(ζ) and one has the bound

||etB||2 ≤ max
ζ∈C,|ζ|=1

||etB(ζ)||2 ,

which is a consequence of Parseval’s identity, see e.g. [1, p.186]. By Theorem
1.1 it readily follows from this that

µ2[B] ≤ max
ζ∈C,|ζ|=1

µ2[B(ζ)].

Let B̂(ζ) = B0 + 2ζB1. Then the Hermitian parts of B(ζ) and B̂(ζ) are equal

and hence, by (1.5b), there holds µ2[B(ζ)] = µ2[B̂(ζ)]. This yields the proof.

2

Our main result of this paper concerns the stability of the diffusion part
(including the mixed derivative term) of the semi-discrete Heston system.

Theorem 2.3 Let σ > 0 and ρ ∈ [−1, 1] and let A3, A4, A5 be given by (2.1c),
(2.1d), (2.1e). Then, for all t ≥ 0,

||et(A3+A4+A5)||D ≤ 1 , (2.2a)

||et(A3+A4+A5)||2 ≤
√

sm1
vm2

s1v1
. (2.2b)

The strong stability result (2.2a) means that the diffusion part of the semi-
discrete Heston system is contractive in the scaled spectral norm. The bound
(2.2b) for the standard spectral norm is discussed in more detail in Section 3.
Theorem 2.3 can be viewed as a natural extension of [6, Theorem 2.8] that was
derived for the case of the Black–Scholes PDE. In the special situation where
ρ = 0, so that no mixed derivative term is present in the Heston PDE and the
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matrix A4 vanishes, the result of Theorem 2.3 can be obtained in analogous way
to loc. cit. However, the important general situation where ρ 6= 0 requires a
new, and more elaborate, proof.

Proof The bound (2.2b) follows directly from (2.2a) by (1.7). By Theorem 1.1,
the bound (2.2a) is equivalent to µD[A3 + A4 + A5] ≤ 0. In the following we
show that this condition holds. For convenience, the proof is split into three,
consecutive parts.

(i) For any given real square matrices A, G with G nonsingular it holds that
µ2[A] ≤ 0 if and only if µ2[G

TAG] ≤ 0. Choosing A = A3 + A4 + A5 and

G = D
−1/2
2 ⊗ I, and taking into account (1.6), we obtain

µD[A3 +A4 +A5] ≤ 0 ⇐⇒ µ2[B] ≤ 0,

where the matrix B is given by

B = (D−1
2 ⊗D

−1/2
1 )(A3 +A4 +A5)(I ⊗D

1/2
1 )

= 1
2I ⊗ (D

3/2
1 M1D

1/2
1 ) + ρσL2 ⊗ (D

1/2
1 L1D

1/2
1 ) + 1

2σ
2M2 ⊗ I.

Let σ̃ = σ/∆v and define the matrices

L̃1 = D
1/2
1 L1D

1/2
1 , M̃1 = D

3/2
1 M1D

1/2
1 .

Note that

L2 =
1

2∆v
(E − ET) , M2 =

1

(∆v)2
(E − 2I + ET).

Inserting into B yields

B = 1
2I ⊗ M̃1 + ρσL2 ⊗ L̃1 +

1
2σ

2M2 ⊗ I

= 1
2

[
I ⊗ M̃1 + ρσ̃(E − ET)⊗ L̃1 + bσ̃2(E − 2I + ET)⊗ I

]

= 1
2

[
I ⊗ (M̃1 − 2σ̃2I) + E ⊗ (ρσ̃L̃1 + σ̃2I) + ET ⊗ (−ρσ̃L̃1 + σ̃2I)

]
.

Since L̃T
1 = −L̃1 we are in the situation of Lemma 2.2. Application of this

lemma yields the following sufficient condition for µ2[B] ≤ 0, with ζ ∈ C :

µ2

[
1
2M̃1 − σ̃2I + ζ(ρσ̃L̃1 + σ̃2I)

]
≤ 0 whenever |ζ| = 1.

Let i denote the imaginary unit and let λmax[A] stand for the maximum eigen-
value of any matrix A having just real eigenvalues. Using (1.5b) one readily
finds that the sufficient condition above is equivalent to

λmax

[
1
2 (M̃1 + M̃T

1 ) + 2 i(Im ζ)ρσ̃L̃1

]
≤ 2σ̃2(1−Re ζ) whenever |ζ| = 1. (2.3)

7



(ii) Define Cs = D1L1 and Css = 1
2D

2
1M1. Remark that these matrices can be

viewed as FD discretizations of the sus and 1
2s

2uss terms, respectively. Clearly,

L̃1 = D
−1/2
1 CsD

1/2
1 .

Next, a direct calculation shows that

1
2 (M1D1 −D1M1) = L1

and using this one obtains

1
2 (M̃1 + M̃T

1 ) = D
−1/2
1 (2Css + Cs)D

1/2
1 .

Therefore, by a similarity transformation, (2.3) is equivalent to

λmax

[
Css +

1
2Cs + i(Im ζ)ρσ̃Cs

]
≤ σ̃2(1− Re ζ) whenever |ζ| = 1. (2.4)

For |ζ| = 1 it holds that

1− Re ζ ≥ 1
2 (1 + Re ζ)(1 − Re ζ) = 1

2 (1− (Re ζ)2) = 1
2 (Im ζ)2.

This bound gives rise to the following sufficient condition:

λmax

[
Css +

1
2Cs + iyρσ̃Cs

]
≤ 1

2 σ̃
2y2 whenever y ∈ R, |y| ≤ 1.

Then, upon replacing 1
2yρσ̃ by y and using that the correlation ρ satisfies |ρ| ≤ 1,

we arrive at the neat condition

λmax

[
Css +

(
1
2 + 2 iy

)
Cs

]
≤ 2y2 whenever y ∈ R. (2.5)

Summarizing,

(2.5) =⇒ (2.4) ⇐⇒ (2.3) =⇒ µ2[B] ≤ 0.

In the third and final part we prove that (2.5) is fulfilled.

(iii) Let µ∞[A] denote the logarithmic maximum norm of any complex square
matrix A. It is well-known that if A = (ai,j) then

µ∞[A] = max
i

(Re ai,i +
∑

j 6=i

|ai,j | ) .

Any induced logarithmic norm forms an upper bound on the real parts of the
eigenvalues of A. In the following, the logarithmic maximum norm will be used
to this purpose.

Write νi = si/∆s for 1 ≤ i ≤ m1. There holds

Css +
(
1
2 + 2 iy

)
Cs = tridiag(βi, αi, γi)

8



with

αi = −ν2i , βi =
1
2νi

(
νi − 1

2 − 2 iy
)

, γi =
1
2νi

(
νi +

1
2 + 2 iy

)
.

In proving (2.5) we need to distinguish two cases: |y| ≥ 1/2, and the more
intricate case |y| < 1/2.

|y| ≥ 1/2 Put β1 = 0, γm1
= 0. One has

λmax

[
Css +

(
1
2 + 2 iy

)
Cs

]
≤ µ∞

[
Css +

(
1
2 + 2 iy

)
Cs

]
= max

1≤i≤m1

{αi+|βi|+|γi|}.

Let 1 ≤ i ≤ m1. Then αi + |βi|+ |γi| ≤ 2y2 if

νi

√(
νi − 1

2

)2
+ θ + νi

√(
νi +

1
2

)2
+ θ ≤ 2ν2i + θ,

where θ = 4y2. By an elementary calculation one verifies that this inequality is
equivalent to

4θ(θ − 1)ν4i + θ2(4θ − 1)ν2i + θ4 ≥ 0,

which holds whenever θ ≥ 1. Thus, condition (2.5) is valid whenever |y| ≥ 1/2.

|y| < 1/2 Let ∆ = diag(δ1, δ2, . . . , δm1
) with arbitrary real numbers δi > 0

(1 ≤ i ≤ m1) and write εi = δi/δi−1 (2 ≤ i ≤ m1). A similarity transformation
with the diagonal matrix ∆ leads to the following bound,

λmax

[
Css +

(
1
2 + 2 iy

)
Cs

]
≤ µ∞

[
∆
(
Css +

(
1
2 + 2 iy

)
Cs

)
∆−1

]
=

max

{
α1 +

1

ε2
|γ1| , max

2≤i≤m1−1
{αi + εi|βi|+

1

εi+1
|γi|} , αm1

+ εm1
|βm1

|
}
.

Let 2 ≤ i ≤ m1 − 1. The estimate

|x± 2 iy| ≤ x+
2y2

x
(for x ∈ R, x > 0)

yields

αi + εi|βi|+
1

εi+1
|γi| ≤ ai + bi · 2y2,

where

ai =
νi
2

[
−2νi + εi(νi − 1

2 ) +
1

εi+1
(νi +

1
2 )

]
,

bi =
νi
2

[
εi

νi − 1
2

+
1

εi+1(νi +
1
2 )

]
.

It holds that

ai + bi · 2y2 ≤ 2y2
(
whenever |y| < 1

2

)
⇐⇒ ai ≤ 0 and 2ai + bi ≤ 1.

9



By trial and error, we have found the convenient choice

εj =
(νj − 1

2 )(νj +
1
2 )

ν2j
(for 2 ≤ j ≤ m1). (2.6)

Using (2.6), and noticing that νi+1 = νi + 1, it is easily seen that

ai = −1

8

νi − 3
4

νi(νi +
3
2 )

.

Since νi ≥ i ≥ 2 there follows ai < 0. Next,

bi =
νi
2

[
νi +

1
2

ν2i
+

(νi + 1)2

(νi +
1
2 )

2(νi +
3
2 )

]
.

A straightforward calculation shows that

2ai + bi ≤ 1 ⇐⇒ ν3i − 3
4ν

2
i − 3

2νi − 9
16 ≥ 0.

It is readily verified that the inequality in the right-hand side is fulfilled. Hence,
with (2.6),

αi + εi|βi|+
1

εi+1
|γi| ≤ 2y2 (2 ≤ i ≤ m1 − 1).

By an analogous reasoning it follows that

α1 +
1

ε2
|γ1| ≤ 2y2 , αm1

+ εm1
|βm1

| ≤ 2y2.

Consequently, condition (2.5) is also valid whenever |y| < 1/2. This completes
the proof of the theorem.

2

3 Numerical experiments

In this section we numerically examine the stability bound (2.2b) of Theorem
2.3 for the diffusion part of the semi-discrete Heston system. Slightly rewritten,
it reads

||et(A3+A4+A5)||2 ≤
√

L+m1S

m1L+ S
m2 .

The right-hand side is equal to
√
m1m2 =

√
m if L = 0, and it is at most equal

to
√
min{m1, S/L} ·m2 whenever L > 0. For L > 0 the stability bound (2.2b)

is thus more favorable than for L = 0.
We estimated in MATLAB (version R2009a) the maximum of ||et(A3+A4+A5)||2

over t ≥ 0 for a variety of cases. We considered all combinations of parameter
values

σ ∈ {0.1, 0.2} , ρ ∈ {−1, 0, 1} , L ∈ {0, 10}.

10



5 10 15 20 25
1

1.1

1.2

1.3

1.4

m
2

m
ax

t ||
et(

A
3+

A
4+

A
5) || 2

σ = 0.1, ρ = 1

 

 

L=0
L=10

5 10 15 20 25
1

1.1

1.2

1.3

1.4

m
2

m
ax

t ||
et(

A
3+

A
4+

A
5) || 2

σ = 0.2, ρ = 1

 

 

L=0
L=10

5 10 15 20 25
1

1.1

1.2

1.3

1.4

m
2

m
ax

t ||
et(

A
3+

A
4+

A
5) || 2

σ = 0.1, ρ = 0

 

 

L=0
L=10

5 10 15 20 25
1

1.1

1.2

1.3

1.4

m
2

m
ax

t ||
et(

A
3+

A
4+

A
5) || 2

σ = 0.2, ρ = 0

 

 

L=0
L=10

5 10 15 20 25
1

1.1

1.2

1.3

1.4

m
2

m
ax

t ||
et(

A
3+

A
4+

A
5) || 2

σ = 0.1, ρ = −1

 

 

L=0
L=10

5 10 15 20 25
1

1.1

1.2

1.3

1.4

m
2

m
ax

t ||
et(

A
3+

A
4+

A
5) || 2

σ = 0.2, ρ = −1

 

 

L=0
L=10

Figure 1: Graph of estimated maxt≥0 ||et(A3+A4+A5)||2 vs. m2 = 5, 7, 9, . . . , 25
for L = 0 (black squares) and L = 10 (grey circles) where m1 = 2m2. Left
column: σ = 0.1. Right column: σ = 0.2. Top row: ρ = 1. Middle row: ρ = 0.
Bottom row: ρ = −1.
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Following [5] we chose m1 = 2m2 (so that the dimension m = 2m2
2) and se-

lected m2 = 5, 7, 9, . . . , 25. Further S = 800, V = 5 were taken as in loc. cit.
For the computation of the matrix exponential and the spectral norm the MAT-
LAB functions expm and norm(·,2) were used. We note that the feasibility of
expm implied m2 = 25 as the largest reasonable choice (then m = 1250). The
maximum over t ≥ 0 was estimated in a basic way by sampling the values for
t = 0, 1, 2, . . . , 100 and subsequently refining in the region around the largest
value. We mention that the location of the maximum was always found to lie
in the interval 0 ≤ t ≤ 5.

The obtained results are displayed in Fig. 1. Each of the six subfigures
shows the estimated maximum of ||et(A3+A4+A5)||2 over t ≥ 0 versus m2 for a
given pair (σ, ρ). The black squares correspond to L = 0 and the grey circles to
L = 10. As a first observation from Fig. 1, it is readily seen that all numerical
results are in agreement with the theoretical stability bound (2.2b). Secondly,
Fig. 1 reveals that for L = 10 the computed maximum of ||et(A3+A4+A5)||2 is
never larger, and in general much smaller, than that for L = 0. In addition,
we find in all cases a growth that appears to be at most directly proportional
to

√
m ∼ m2 and

√
m2 when L = 0 and L = 10, respectively. This agrees

with the bound (2.2b) as well, as discussed above. Thirdly, Fig. 1 indicates the
positive result that the value of σ and especially ρ only has a limited impact on
the actual maximum of ||et(A3+A4+A5)||2. Note that for ρ we considered here the
interesting extreme cases −1, 0, 1, but this result was confirmed by numerical
experiments with various other values.

4 Conclusions and future research

In this paper useful, rigorous stability bounds have been derived relevant to
central second-order finite difference discretizations of the Heston PDE from
mathematical finance. Results for the advection and diffusion parts have been
proved individually and are valid for arbitrary Heston parameters. The stability
estimates obtained in this paper can be viewed as natural extensions of recent
stability results from [6] for the case of the one-dimensional Black–Scholes PDE.

Besides the standard spectral norm, a suitably scaled version has been con-
sidered, following a fruitful idea from loc. cit. The main result of our paper,
Theorem 2.3, states that in this scaled spectral norm the semi-discrete diffusion
part of the Heston PDE is contractive. This result holds for arbitrary correla-
tion values ρ ∈ [−1, 1] and thus covers the practically important situation where
a mixed spatial-derivative term is present.

The bound in the standard spectral norm is (also) uniform in ρ, which has
been illustrated by ample numerical experiments. Both theoretical and numer-
ical evidence reveals that in the standard spectral norm the stability of the
semi-discrete diffusion part is much more favorable if the lower barrier L > 0
than if L = 0. In actual applications, L > 0 is often fulfilled, for example for
barrier options; else it is harmless to increase L slightly, when the actual region
of interest for the asset prices lies far away from this value.
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We note that the results in this paper can directly be combined, using a
well-known theorem due to von Neumann [3, Sects. IV.11, V.7], to arrive at
stability bounds for various classes of time-discretization schemes applied to
the semi-discrete Heston PDE, e.g. Runge–Kutta methods and linear multistep
methods. For the sake of brevity we have not explicitly included these results
here.

In future research we shall investigate, among others, the stability of FD
schemes for the Heston PDE on non-uniform spatial grids. Such grids play an
important role in mathematical finance. In [6, 13] stability bounds pertinent
to non-uniform grids were derived for the case of the Black–Scholes PDE and
more general one-dimensional advection-diffusion-reaction equations. In future
research we also intend to study for example the adaptation of the obtained
stability results to different types of boundary conditions.
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