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Overview

As its title suggests, this thesis consists of two parts, since it focuses on two separate topics
that are related to the performance evaluation of telecommunication network elements:
(i) the superposition of Markovian traffic sources, and (ii) frame aware buffer acceptance
schemes.

A basic problem in the dimensioning and performance evaluation of telecommunication
network elements is the computation of the buffer occupancy and waiting time distribution
of a discrete-time single server queue, whose input consists of a superposition of processes
modeling traffic streams. An important class of traffic models commonly used in traffic
modeling are the Markovian arrival streams, because they allow to capture the burstiness
and variability present in network traffic, and because of their analytical tractability, are
the Markovian arrival streams. Since most of the time the input to network elements
consists of multiple traffic streams, a characterization of the aggregation or superposition
of Markovian streams is needed. In theory, this aggregation is exactly described by a
new Markov model. A major problem however is the explosion of the state space of this
Markov model when the number of input streams takes values that are typical for real life
situations.

In the first part of the thesis, a method called circulant matching is proposed, which con-
structs, starting from statistical functions of the exact superposition, a new Markovian
arrival stream with a smaller state space to replace the exact superposition. Two statis-
tical functions of the exact input rate process that are known to influence the queueing
performance are matched by this new Markov model, namely the autocorrelation sequence
and the stationary distribution. The transition matrix of the Markov chain is chosen to
be circulant, in order to avoid solving an inverse spectrum problem. Part I of the thesis
consists of three chapters. Chapter 1 illustrates the state space explosion problem and
introduces some definitions and results. The details of the circulant matching method are
presented in Chapter 2. Chapter 3 discusses numerical examples and applications of the
method, among which the superposition of MPEG source type models.

In the second part of the thesis frame aware buffer acceptance schemes are considered.

When packet or frame based data is transported over an ATM (asynchronous transfer
mode) network, these packets are segmented into cells, the small fixed length data units
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v Overview

in which ATM by definition transports all data. A buffer acceptance scheme in a network
element decides about which cells are allowed to enter its buffer, and which cells have to
be dropped. Because the loss of a single cell of a frame leads to a corrupted frame that is
in any case discarded at the destination, buffer acceptance schemes that are frame aware,
i.e., try to accept or discard all cells of a same frame, thus improve the efficiency. Not only
efficiency is an issue, but also the fairness among the effective throughputs of the different
connections. So also schemes that preferentially drop frames from connections that use
more bandwidth than one would call fair have been defined.

Part IT of the thesis consists of four chapters. Chapter 4 gives a more exact definition of a
frame. Since most non-real-time packet based data traffic in a network is TCP traffic, also
a short introduction on TCP and on the two ATM service categories that are most suited
to transport TCP traffic is given. Chapter 5 gives an overview of the most important frame
aware buffer acceptance schemes that are proposed in the literature for use with these two
service categories. A theoretical model to study the transient performance of one of the
schemes that aims at discarding frames in a fair way, namely selective drop, is developed
and applied in Chapter 6. This model is then slightly modified in Chapter 7 to study also
the performance of fair buffer allocation, another frame aware buffer acceptance scheme
that aims at fairness.



Contents

Overview
Contents

Abbreviations

I Circulant matching of the superposition of D-BMAPs

1 Introduction
1.1 An algebraic approach to finite-state stationary Markov chains . . . . . . .
1.1.1 Classification of states . . . . . ... .. ... ... ... .. ...
1.1.2  Stationary distributions . . . . . ... ..o
1.1.3  Eigenstructure of a transition matrix . . . . .. ... ... ... ..
1.2 D-BMAP: discrete-time batch Markovian arrival process . . . . . .. ...
1.2.1 Definition . . . . . . . L
1.2.2  Correlation structure of a D-BMAP . . . . . . ... ... ... ...
1.2.3 Superposition of D-BMAPs . . . . ... ... ... ... ... ...
1.24 The D-BMAP/D/1/K queue . . . . ... ... ... .. ......
1.2.5 Motivations for avoiding the exact superposition of D-BMAPs . . .

2 Circulant matching of the superposition of D-BMAPs
2.1 Input rate process of a D-BMAP . . . . . ... .. ... .. ... ... ..
2.1.1  Correlation structure . . . . . . . . ...
2.1.2  Power spectrum . . . . . ... L

2.1.3 Stationary cumulative distribution . . . .. .. ... .00 L.

iii

ix

© 0o o N N O ot W

— =
_— O O



vi

2.2 Circulant D-BMAP . . . . . . ..o
2.2.1 Definition . . . . ..o oo
2.2.2  Autocorrelation and power spectrum . . . . .. .. ...
2.2.3 Stationary cumulative distribution . . . ... ... ...
2.2.4  Trreducible and periodic circulants . . . . . . .. ... ..

2.3 Superposition of M independent D-BMAPs . . . .. ... ...

2.3.1 Power spectrum of the superposition . . .. .. .. ...

2.3.2 Stationary cumulative distribution of the superposition

2.4 Circulant matching procedure . . . . . ... .. .. ... .. ..
2.4.1 Matching the power spectrum . . . . .. ... ... ...
2.4.2 Matching the stationary cumulative distribution . . . . .

2.5 Conclusions and related work . . . . . . . . ... ... ... ..

3 Numerical examples and applications

3.1 An illustrative example of the circulant matching method . . . .
3.2 Superposition of two dimensional MMBP sources . . ... ...
3.2.1 Markov modulated Bernouilli sources . . . . .. ... ..

3.2.2  Superposition of two dimensional MMBP sources . . . .

3.2.3 Circulant matching of two dimensional MMBP sources

3.2.4 Numerical examples . . . ... ... ... ........
3.3 Multiplexing MPEG video sources . . . . . . ... ... .....
3.3.1 MPEG encoding and the MPEG model of Helvik . . . .
3.3.2 Experimentally obtained CAC boundaries . ... .. ..
3.3.3 Theoretically obtained CAC boundaries . .. ... ...
3.3.4 Numerical results . . . . . ... ... 0oL

3.4 Conclusions . . . . . . . ..

II Frame aware buffer acceptance schemes

4 Introduction

4.1 Some concepts related to buffer acceptance . . . . . . . ... ..

4.2  AAL5 aware buffer acceptance . . . . . . .. ...

CONTENTS



CONTENTS vii

4.3 TCP congestion control . . . . . . . . . . ... Lo 68
4.4 Buffer acceptance and TCP congestion control . . . . . . .. .. ... ... 70
4.5 The UBR and GFR service guarantees . . . . . . .. .. ... ... .... 70
4.6 Performance measures . . . . . . . . ... oo 72
4.6.1 Efficiency . . . . ... 72
4.6.2 Fairness . . . . . . .. 73
5 An overview of buffer acceptance schemes for UBR and GFR 75
5.1 Buffer acceptance schemes for UBR . . . . . .. ... ... ... ...... 75
5.1.1 Some of the first buffer acceptance schemes for UBR . . . . . . .. 75
5.1.2 Buffer acceptance schemes for UBR based on FBA . . .. ... .. 79
5.1.3 Buffer acceptance schemes for UBR based on RED . . . ... ... 82
5.1.4 Related work . . . . ... 84
5.2 Buffer acceptance schemes for GFR . . . .. .. ... ... ... ..., .. 85
5.2.1 Buffer acceptance schemes for GFR relying on a tagging function . 86
5.2.2 Buffer acceptance schemes for GFR using per-VC accounting and
per-VC queueing . . . . . . ..o 87
5.2.3 Buffer acceptance schemes for GFR using per-VC accounting in a
global FIFO buffer . . . . . ... ... ... ... ... 89
5.2.4 Related work . . . . ... 91
5.3 Conclusions . . . . . . .. L 92
6 Transient performance analysis of SD with responsive traffic 97
6.1 Model description . . . . . . . ... 98
6.1.1 System configuration . . . . . ... ..o 98
6.1.2  Source behavior . . . . . ... 99
6.1.3 Buffer acceptance . . . . . ... Lo 100
6.1.4 Scheduling . . . . . . ... 100
6.1.5 System evolution . . . . . .. . . .. ... 101
6.1.6 Transient performance measures . . . . . . . . . . .. .. ... ... 107
6.2 Numerical results and discussion . . . . . . . . . ..o 108
6.2.1 Different start conditions . . . . . . ... ... 108

6.2.2 Influence of the responsive traffic . . . . .. .. ... ... ... .. 119



viii CONTENTS

6.2.3 Influence of the SD parameters . . . . . .. ... ... ... .... 126

6.3 Appendix . . ... 137

7 Extensions to the SD model 141
7.1 Use of a different parameter z for both sources . . . . . .. . ... ... .. 141
7.2 Comparison with fair buffer allocation . . . .. ... ... ... ...... 144
7.3 Conclusions and related work . . . . . . .. ... ... ... ... ... 150
Summary 153
Bibliography 159
Nederlands overzicht 167

Acknowledgements 169



Abbreviations

AAL
ABR
ACTS
ATM
AUU
CAC
CDVT
CLP
CLR
CMPP
C-RED
D-BMAP
DFBA
D-MAP
D-MMPP
EPD
ESPD
FB

FBA
F-GCRA
FIFO

EFS
GCRA
GFR
GFS
GOP
IDC

IDI

IP
ITU-T

LAN

LLC/SNAP

ATM Adaptation Layer

Available Bit Rate

Advanced Communications Technologies and Services
Asynchronous Transfer Mode

ATM User-to-User

Connection Admission Control

Cell Delay Variation Tolerance

Cell Loss Priority

Cell Loss Ratio

Circulant Modulated Poisson Process
Cell-based RED

Discrete-time Batch Markovian Arrival Process
Differential Fair Buffer Allocation
Discrete-time Markovian Arrival Process
Discrete Markov Modulated Poisson Process
Early Packet Discard

Early Selective Packet Discard

Fair Buffering

Fair Buffer Allocation

Frame-based Generic Cell Rate Algorithm
First In First Out

Fair Share

Generic Cell Rate Algorithm

Guaranteed Frame Rate

Global FIFO Scheduling

Group of Pictures

Index of Dispersion for Counts

Index of Dispersion for Intervals

Internet Protocol

International Telecommunications Union-Telecommunication Standardization

Sector
Local Area Network
Logical Link Control/Subnetwork Access Protocol

X



MBS
MCR
MDCR
MFS
MMBP
MMPP
MPEG
4 MSS
nrt-VBR
PCR
PLQF
PPD
P-RED
PTI
QoS
RED
RR
RTT
SAR
SD
SDU
SMAQ
TBA
TCP
TD
UBR
UPC
VC
WBA
WEQ

Maximum Burst Size

Minimum Cell Rate

Minimum Desired Cell Rate
Maximum Frame Size

Markov Modulated Bernouilli Process
Markov Modulated Poisson Process
Moving Picture Experts Group
Maximum Segment Size
non-real-time Variable Bit Rate
Peak Cell Rate

Probabilistic Longest Queue First
Partial Packet Discard
Packet-based RED

Payload Type Indicator

Quality of Service

Random Early Detection

Round Robin

Round Trip Time

Segmentation and Reassembly
Selective Drop

Service Data Unit

Statistical Match and Queueing Tool
Token-based Buffer Allocation
Transport Control Protocol

Tail Drop

Unspecified Bit Rate

Usage Parameter Control

Virtual Channel

Weighted Buffer Allocation
Weighted Fair Queueing

Abbreviations



Part 1

Circulant matching of the
superposition of D-BMAPs






Chapter 1

Introduction

A basic problem in the dimensioning and performance evaluation of telecommunication
network elements is the computation of the buffer occupancy and waiting time distribution
of a single server queue, whose input consists of a superposition of processes modeling
traffic streams. Several main classes of traffic models commonly used in traffic modeling
exist, e.g., renewal, Markov based, fluid, autoregressive, self-similar etc. A nice survey
of these classes can be found in [51]. In this first part of the thesis, we start from the
assumption that a traffic stream is modeled by a D-BMAP (discrete-time batch Markovian
arrival process), which is a quite general discrete-time Markov model that includes many
well-known source models as special cases [9, 10].

Because the input to network elements most of the time consists of multiple traffic streams,
a representation of the aggregation or superposition of traffic streams modeled by
D-BMAPs is needed. In theory, this aggregation is exactly described by a new D-BMAP.
A major problem however is the explosion of the state space of this new D-BMAP when
the number of input streams takes values that are typical for real life situations.

In the first part of the thesis, a method called circulant matching is proposed, which
constructs another D-BMAP with a smaller state space to replace the exact superposition.
This D-BMAP matches two important statistical functions of the exact input rate process,
namely the autocorrelation sequence (characterized in the frequency domain by means of
the power spectrum) and the stationary cumulative distribution. The transition matrix
of this D-BMAP is chosen to be circulant, in order to avoid solving an inverse spectrum
problem.

The circulant matching method for D-BMAPs is based on an approach proposed in [46],
which is a component of a measurement-based tool developed by San-qi Li et al. for the
integration of traffic measurements and queueing analysis. The tool [72, 73], which is called
SMAQ (statistical match and queueing tool), has the ambition to model an arbitrary traf-
fic stream from which the statistics are obtained from measurements. The following three
components form the basis of the tool: (1) measurement of the power spectrum P(w) and
the stationary cumulative distribution F'(x) of the rate process of a traffic stream using
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signal processing techniques, (2) construction of a CMPP (circulant modulated Poisson
process) which statistically matches P(w) and F'(z), (3) analysis of queueing problems
with the constructed CMPP as input. The nature of the statistics of the traffic stream
that should be measured in step (1), and matched in step (2), is studied in the paper [71].
In this paper the influence of first, second, third and fourth order statistics on queueing
performance is investigated through the stationary cumulative distribution, power spec-
trum, bispectrum and trispectrum. The conclusion is that the power spectrum, especially
that in the low frequency band, has the most dominant impact. Interesting in this paper
is that the vehicle used to explore the nature of queue response to second and higher order
input statistics is the MMPP (Markov modulated Poisson process), which is a continuous
time Markov model. First it is shown that the eigenstructure of the transition rate matrix
of an MMPP captures the input spectral functions, so by tuning the eigenstructure of the
MMPP, one can change the input spectral functions of the MMPP. However, finding the
spectral functions of an MMPP is easy, but constructing an MMPP from desired spectral
functions is difficult, if at all possible, since calculating the eigenvalues of a matrix is easy,
but constructing a matrix with a desired set of eigenvalues involves a generally very dif-
ficult to solve, so-called inverse spectrum problem. To circumvent this problem, a special
class of MMPPs, called circulant modulated Poisson processes (CMPPs), is considered, for
which the eigenvalues and eigenvectors of the transition rate matrix are known in closed
form. The queue response to input spectral functions as contributed by a single predefined
eigenvalue is investigated by constructing a CMPP whose transition rate matrix has that
value as eigenvalue. To investigate the effect of spectral functions as contributed by multi-
ple predefined eigenvalues, an independent CMPP is constructed for each eigenvalue, and
then the superposition of these CMPPs is considered. Because the dimension of this super-
position is the product of the individual dimensions of the multiple CMPPs, this approach
is limited by the state space explosion and by the high computation cost of the queueing
analysis when this superposition is used as input. In [46], the construction of a single
circulant with different predefined eigenvalues is considered. Combining this construction
with the observation made in [45] that the power spectrum and the input rate distribution
of the superposition of independent MMPPs can be obtained from the power spectra and
input rate distributions of the individual MMPPs in the superposition, provides for the
fact that the technique used in part (2) of the SMAQ tool could also be used to construct
a CMPP which matches the power spectrum and the stationary cumulative distribution of
the superposition of MMPPs. And this of course opens perspectives for circumventing the
state space explosion problem that occurs when the superposition of multiple independent
D-BMAPs is considered. When for a D-BMAP the eigenstructure of its transition matrix
also would capture the power spectrum (which it does), a similar technique as that in part
(2) of the SMAQ tool could be applied.

The details of the circulant matching method to construct a circulant D-BMAP to replace
the superposition of D-BMAPs are presented in Chapter 2. Remark that an important
difference with the method of the SMAQ tool is that this tool works in continuous time,
while a D-BMAP is a discrete-time model. So the Markov process underlying the CMPP
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has a circulant transition rate matrix, while for a circulant D-BMAP this should be a
circulant transition probability matrix. Since traffic consists of the arrival of discrete entities
(packets, cells etc.) at discrete time instants, it becomes natural however to use discrete-
time models such as the D-BMAP. Another difference between the continuous-time MMPP
and the discrete-time D-BMAP is that D-BMAPs can generate bulk arrivals, while with
MMPPs this is not the case. The motivation in [72] for using a circulant MMPP, and not a
more generic process, called versatile Markovian process, which can capture bulk arrivals,
is that no matching techniques are available for the construction of such processes, and
also that their queueing analysis can become more difficult. The D-BMAP however is
the discrete-time version of the versatile Markovian process [9], and efficient algorithms to
solve queues with a D-BMAP as input exist. Since much of the traffic streams in networks
are highly periodic, periodicity is also often noticed in the transition matrices of D-BMAPs
that model these traffic streams. So we added the notion of periodicity to the circulant
matching method, such that the circulant D-BMAP that replaces the superposition has the
same period as the exact superposition would have. Examples of periodic D-BMAP sources
are the MPEG model that is used in Chapter 3, and the description of the traffic profile
of a tagged constant bit rate source after it has been jittered by background traffic [11].
Other works studying and capturing periodicities are for example [61, 62].

Chapter 3 discusses numerical examples and applications of the circulant matching method.
First a numerical example is worked out in illustration to the theoretical description of the
method in Chapter 2. Then applications are considered where the constructed circulant is
used as input to a queueing system. Focus is on applications that allow us to validate the
obtained results, because either the exact results can also be calculated, or because similar
results obtained experimentally are available.

In the remaining part of this chapter, some definitions and results that are used in the
following chapters are summarized. Section 1.1 deals with the eigenstructure of finite-state
stationary Markov chains. In Section 1.2 the D-BMAP together with some of its proper-
ties is introduced, the state space explosion problem associated with the superposition of
D-BMAPs is illustrated, and the D-BMAP/D/1/K queue is described.

1.1 An algebraic approach to finite-state stationary
Markov chains

The eigenvalues of the transition matrix P of a discrete-time finite-state stationary Markov
chain provide a good deal of information about the periodicity and the number of ergodic
classes associated with the Markov chain. The purpose of this section is to provide a list
of definitions and results that are used in the following chapter, and since the terminology
used in different references about Markov chains is not always uniform, to introduce the
terminology used in this thesis. Books on which this section is based are [18, 44, 48|.
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1.1.1 Classification of states

Given a discrete-time finite-state stationary Markov chain with transition matrix P, a state
j is accessible from state ¢ if there is a sequence of transitions from ¢ to j that has nonzero
probability. The probability of being in state j after the k-th transition, given that the
initial state was 4, is given by (P*¥);;. Two states i and j communicate if they are accessible
to each other. Note that each state communicates with itself since P® = 1.

Two states are said to belong to the same ergodic class if they communicate with each
other. If the state space by itself forms an ergodic class (i.e., all states communicate with
each other), the Markov chain is called irreducible. Otherwise it is called reducible. Also the
corresponding transition matrix is said to be irreducible or reducible. Each Markov chain
has at least one ergodic class, but it is possible that several ergodic classes exist. States
that do not belong to any ergodic class are called transient. These definitions imply that
once an ergodic class is entered, the chain remains within this class for every subsequent
transition. Thus, if the chain starts within an ergodic class, it stays within that class. If it
starts at a transient state, it will enter an ergodic class after a number of transitions and
then remain there.

By relabeling the states of the Markov chain, P can always be written as

PO o ... 0 O
o P®» ... 0 o0
P=| : . (1.1)
0 o ... Pm™ o
RO R® ... RM™ Q

in which each P® is square, stochastic and irreducible. It represents the transitions within
the i-th ergodic class. The matrix Q corresponds to transitions among the transient states.
The matrices R(*) give the transitions from the transient states into the i-th ergodic class.

Among irreducible Markov chains, two types are distinguished: periodic and aperiodic
ones. The period of a Markov chain is concerned with the times at which the chain might
return to a state from which it started. If this can only happen at times that are multiples
of d, where d is the largest integer with this property, the Markov chain is said to have
period d. Also the corresponding transition matrix is said to be periodic with period d. An
aperiodic Markov chain is a Markov chain of period one.

For an irreducible Markov chain of period d, there always exists a relabeling of the states
which puts its transition matrix in the form

0o A© o ... 0
0 o AWM .. 0

P = : , (1.2)
0 0 0 Ald=2)
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where the diagonal blocks are square, but A©®, ... A=Y probably are not. Two states
are said to belong to the same periodic class if they both correspond to the same diagonal
block.

1.1.2 Stationary distributions

If a Markov chain has only one ergodic class, there exists a unique vector 7 of nonnegative
elements summing to one such that #P = m. The vector 7 is called the stationary
distribution of the Markov chain, and its elements 7; equal the long-run proportion of time
that the chain is in state 7. If 7 is a transient state, m; = 0. Otherwise, m; > 0.

If lim,,_, 0 (P™);; = m; for all 4, then the stationary distribution 7 is also called the steady
state distribution. Thus, if P has a steady state distribution, the probability of being in
state 7 as n — oo is a constant independent of the initial state. If P is aperiodic, there
exists a steady state distribution. If P is periodic, (P");; does not converge for n — oo,
but appropriate subsequences do: if the chain is periodic with period d, then for each pair
i,j of states there is an integer r, 0 < r < d, such that (P");; = 0 unless n = md + r, for
some nonnegative integer m, and limmﬂoo(Pmd”)ij = dr;.

1.1.3 Eigenstructure of a transition matrix

If P is the transition matrix of a Markov chain, the composition of its set of eigenvalues is
directly related to the periodicity and the number of ergodic classes of the Markov chain:

e If Pisin the form (1.1), then the eigenvalues of P are the eigenvalues of P™), ... P(™)
and Q put together. None of the eigenvalues of P has a modulus that is larger than
one.

e P has always 1 as eigenvalue. The multiplicity of this eigenvalue 1 is equal to the
number of ergodic classes of the chain.

e If P is irreducible and periodic with period d, P has exactly d eigenvalues with
modulus 1:

=1 M=¢ ... 1 =c""! wherec= et (1.3)

Left and right eigenvectors h; and g; corresponding to \;, chosen such that h;g; =1,
are given by

h; = (7r0 cIimy ¥y L. c_(d_l)jﬂd_l) , (1.4)
where ™ = (ﬂ'g ™ Ty ... wd,l) is the stationary distribution of P, and

ng = (eT del el .. C(d_l)jeT) . (1.5)
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The vectors 7r,h; and g; are partitioned according to the periodic structure of P
(see (1.2)), and e denotes a column vector of 1’s of appropriate length. This property
is easily proven by calculating h,;P and A;h; (resp. Pg; and \,g;), while using that
7P =7 and Pe = e.

e If P is irreducible and periodic with period d, the set of its eigenvalues, regarded as
a system of points in the complex plane, goes over into itself under a rotation of the
plane by the angle 27 /d.

1.2 D-BMAP: discrete-time batch Markovian arrival
process

A discrete-time batch Markovian arrival process (D-BMAP) is a quite general traffic model
for discrete-time Markov sources [9]. Examples of the use of D-BMAPs as traffic model
for realistic sources can be found in e.g., [10, 11, 31]. In [10], a D-BMAP is used as an
approximate model for the superposition of video sources. The D-BMAP defined in [11]
describes the profile of a tagged ATM connection with renewal interarrival distribution
after it shared a multiplexer with background traffic. A method to recursively estimate
the parameters of a D-BMAP is proposed in [31] and applied to real LAN traffic. Its simple
and transparent notation and the fact that it includes many well-known source models as
special cases makes the D-BMAP an attractive model for discrete-time arrival processes.

1.2.1 Definition

Consider a discrete-time stationary Markov chain with transition matrix D, and suppose
that at time n this chain is in some state i, 0 < i < N — 1. At the next time instant n + 1,
a transition to another or possibly the same state is made and a batch arrival may or may
not occur. The matrix Dy governs transitions that correspond to no arrivals, while the
matrices Dy, & > 1, govern transitions that correspond to arrivals of batches of size k. So
a D-BMAP is characterized by a sequence of matrices (Dy)x>o, with

D= ink. (1.6)

In the sequel a D-BMAP is most of the time denoted by the sequence of matrices (Dy);>o.
It is then implicitely assumed that the matrix denoted by the same symbol, but without
the subscript k, denotes the transition matrix of the D-BMAP, which is related to the
matrices (Dy)g>o by the expression above.

If = denotes the stationary distribution of D, then the mean arrival rate of the process is
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given by
A=m>» kDje, (1.7)
k=1

where e denotes a column vector of 1’s.

More details and properties about D-BMAPs can be found in [9]. A special case of the
D-BMAP is the D-MAP (discrete-time Markovian arrival process), which is a D-BMAP
that is completely characterized by Dy and Dy, i.e., all arrivals have a batch size of 1.
Results concerning D-MAPs are given in [12].

In the sequel, when a D-BMAP is said to be irreducible/reducible or aperiodic/periodic, it
is meant that the transition matrix of the underlying Markov chain is irreducible /reducible
or aperiodic/periodic. The same applies when mentioning the stationary distribution, the
eigenvalues or the eigenvectors of a D-BMAP.

1.2.2 Correlation structure of a D-BMAP

The variability in the arrivals of a traffic stream is an essential characteristic that impacts
the buffer occupation when traffic streams are multiplexed. Mathematically, this variability
has been characterized by different expressions such as the autocorrelation, the autocovari-
ance, the index of dispersion for counts (IDC), the index of dispersion for intervals (IDI)
etc. [76, 39, 94].

In the next chapter, the autocorrelation of the input rate of a D-BMAP is derived. The
autocorrelation R[n] is a measure of the rate of change of a stationary stochastic process
(Xk)r [68, p.359]:

2 (R[0] - R[)

Ve>0: P[|Xpn — Xi| >¢] < -2

(1.8)

This equation states that if R[0] — R[n] is small, that is R[n] drops slowly, then the prob-
ability of a large change of (Xj)x in n slots is small.

When X represents the number of arrivals generated by a D-BMAP at time instant £,
then the autocorrelation of (Xj) is derived in [9]:

(1.9)
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1.2.3 Superposition of D-BMAPs

Since the input to a network element does not consist of traffic of a single source, but
of a multiple of sources, a description of the aggregation of traffic streams modeled by
D-BMAPs is needed. Consider M independent D-BMAPs (D](;))kzg, 1 < i< M. Their
superposition can again be described by a D-BMAP, denoted by (Dj)g>0, where

M
D = (X) D,
z:]\l/[ |
D, = X) DY,
i=1

M
D, =D"® (@Dfﬁ) o (
=2

(1.10)
M-1 ‘
DS’)) @ D",

1=1

In the following, we refer to this description of the superposition as the ‘exact superposi-
tion’. The construction of this superposition involves the Kronecker product ®, which is
defined as follows: consider a matrix A = (a;;) of dimension m x n and a matrix B = (b;;)
of dimension r X s; the Kronecker product of the two matrices is defined by

anB algB PN alnB
a1B aB ... a9,B

AgB=| = BT (1.11)
amB amB ... a.,B

In [37], numerous properties of this product are given. What is important here is that
A ® B is seen to be a matrix of dimension mr X ns.

1.2.4 The D-BMAP/D/1/K queue

The D-BMAP/D/1/K queue is a single server system with capacity K. The deterministic
service time of a customer equals one time unit, and the input to the queue is described
by a D-BMAP (Dk)kZO-

When denoting by L(n) the number of customers in the system at time n, and by J(n) the
phase of the arrival process at time n, {(L(n), J(n)),n > 0} is a two dimensional Markov
chain. When N is the dimension of the input D-BMAP, the state space of this Markov
chain is {(,7)|0 < < K,0 < j < N — 1}, and its transition matrix of size (K + 1)N is
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given by
Dy, D; D, ... Dg; >, xDy
Dy, D; D, ... Dg; >, xDy
Q=| 0 Dy Dy ... Dk ZiozK_l D, ) (1.12)
0 0 0 ... D Y re Dg
If the stationary distribution of Q is denoted by x, where x = (XO e XK) with
X, = (%‘,0 e %‘,N—l), then the elements x; ; of x represent the stationary joint proba-

bility that there are ¢ customers in the system and that the phase of the arrival process is
in state j.

The probability that an arriving customer gets lost due to buffer overflow is derived in [10],
and is given by

k(= K)xoDie + 3 S, max{l — K + k —1,0}x;Dse

P
™ 22021 ka e

(1.13)

1.2.5 Motivations for avoiding the exact superposition of
D-BMAPs

An exact description of the superposition of M independent traffic streams modeled by
D-BMAPs is given in (1.10). Since this description involves the Kronecker product, it has
as disadvantage that it leads to a state space explosion: the dimension of the resulting
D-BMAP equals the product of the dimensions of all individual D-BMAPs involved in
the superposition. This implies that when M takes values that are typical for real life
situations, the exact superposition is not usable. Let us illustrate this with an example:
consider 10 sources, each modeled by a D-BMAP of four states whose transition matrix
contains no zeros. Then the D-BMAP describing the exact superposition has 22 states,
which corresponds to 2*° real numbers to describe only its transition matrix. To store such
a matrix in a program as for example MATLAB, which uses double precision floating points
(i.e., 8 bytes per floating point number), 8192 Gigabytes are needed, which clearly is not
realistic and motivates the replacement of the exact superposition by another D-BMAP
with a smaller state space.

A second motivation to keep the state space of a D-BMAP small, and thus to avoid the exact
superposition of D-BMAPs, is that they generally are used as input to a queueing system,
such as for example the single server queueing system with capacity K and deterministic
service time as described in Section 1.2.4. To compute performance measures like the
buffer occupancy and loss probability of such queueing system, the stationary distribution
vector x corresponding to the matrix Q given in equation (1.12) is needed. Remark that
Q is a square matrix of size (K 4+ 1)N, where N is the dimension of the input D-BMAP.
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Fortunately, there exist efficient algorithms that exploit the structure that is present in the
matrix Q to calculate x without needing to store the whole matrix Q. Due to its special
structure, the matrix Q belongs to the class of finite M/G/1-type transition matrices.
There exists a huge amount of literature concerning the numerical solution (i.e., computing
their stationary distribution) of M/G/1-type transition matrices, both for infinite and for
finite buffer systems (see [82, 64, 75, 8] for infinite buffer systems, and [9, 98, 66, 56] for
finite buffer systems, and the references therein). The algorithm that is used in this thesis
to solve the finite D-BMAP/D/1/K queueing system is described in [9], and is based on
a result in [38] extended to block partitioned matrices. The algorithm requires to store
O(K) blocks of the size of the input D-BMAP, which is the same as most other algorithms.
So also here it remains important to keep the state space of the input D-BMAP small.



Chapter 2

Circulant matching of the
superposition of D-BMAPs

This chapter describes the circulant matching method in detail. A summary of this chapter
was presented in [89]. The purpose of the circulant matching method is to construct a
circulant D-BMAP to replace the superposition of independent D-BMAPs. This circulant
D-BMAP matches the power spectrum and the stationary cumulative distribution of the
input rate process of the exact superposition. In the first three sections of this chapter, the
foundation for the description of the circulant matching method in Section 2.4 is laid. In
Section 2.1, expressions for the autocorrelation sequence, power spectrum and stationary
cumulative distribution of a single D-BMAP are derived. For the autocorrelation sequence
and the power spectrum, these expressions are written as a function of the eigenvalues
and eigenvectors of the D-BMAP. The circulant D-BMAP is introduced in Section 2.2,
and based on the results of Section 2.1, formulas for its autocorrelation sequence, power
spectrum and stationary cumulative distribution are obtained. Also the condition for a
circulant to be irreducible and some properties about periodic circulants are proven in this
section. Section 2.3 gives expressions for the power spectrum and the stationary cumulative
distribution of the exact superposition of M independent D-BMAPs. These expressions
can be calculated without explicitely constructing the exact superposition. In Section 2.4
the circulant matching method itself is described, while conclusions and some related work
are given in Section 2.5.

2.1 Input rate process of a D-BMAP

Consider a N-state irreducible D-BMAP (Dy)x>. Denote by 7 its stationary distribution,
and by e a column vector of 1’s. The input rate process (I'(k)); of the D-BMAP is then

13
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defined as follows: I'(k) = T'; when the D-BMAP is in state i at the k-th time slot, where

(5 (50

j=0
The input rate in a slot is thus a random variable I', which takes values I'y,...,['y_1 with
probabilities 7y, ..., 7y _1, where I'; is the expected number of arrivals in a slot when the

D-BMAP is in state 7. The mean input rate is given by

N-1 0
= Z Wiri = ﬂZka e. (22)
1=0 k=1

Remark that the mean input rate equals the mean arrival rate (cfr. equation (1.7)).

2.1.1 Correlation structure

By definition, the autocorrelation sequence R[n] of the input rate process (I'(k))y is given

Rin]| = ET'(kK)T'(k + n)]. (2.3)

For n = 0, this gives using (2.1):

(2.4)

where T' = ( Iy 1)T, and where ® denotes the element-by-element product of
two vectors.

For n > 0,

R[n] = Z I,0;P{T(k) =T, and T(k + n) = T;}

2 (Em) 5(Em) e

i+ s=0 =1 js (25)
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Since (I'(k))x is a stationary real valued process, R[n| is even [68, p.359], i.e., for all n,
R[n] = R|—n]. Thus,

n;éo = (ZZD) D=t (Z lD) (2.6)

Because also the autocorrelation sequence of (Xj)g, where X represents the number of
arrivals in slot k, is even, it can be seen from equation (1.9) that for a lag n # 0, the
autocorrelation R[n| of the input rate process equals that of (Xj).

Assuming that D is diagonalizable, which means that corresponding to each eigenvalue
which has multiplicity greater than one, as many linearly independent eigenvectors as the
multiplicity of that eigenvalue should exist [18, p.368], D can be written as

2

—1
D= ) A\gh, (2.7)
!

Il
<)

where the \;’s are the eigenvalues of D, and g;, resp. h;, are the corresponding right
column, resp. left row, eigenvectors such that h;g; = 1. This gives for the n-th power of
D that [18, p.368]:

N-1

D" = ZO‘Z)nglhla (2.8)

=0

such that
N-1 1
R[TL] Z )\l \n\ ! <Z ka> glhl <Z ka> e = ()\l)\n\—lwl’ (29)
n#0 =0 =0
where

V= (i ka) gih, (i ka) e. (2.10)

As can be seen from these formulas, each eigenvalue A, of D contributes a term to R[n].
This term is determined by the eigenvalue )\, and the corresponding ¢;, which depends on
the eigenvectors of D corresponding to ;.

Since D is an irreducible transition matrix, it has always 1 as a simple eigenvalue. From
now on, this eigenvalue is given the index zero: Ay = 1. Remark from (2.2) and (2.10) that
g is the square of the mean arrival rate of the D-BMAP:

Yo = (Z ka) em (Z ka) e = (E[[(k)])*. (2.11)
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For all eigenvalues )\, it is true that |)\;| < 1. All complex eigenvalues appear in conjugate
pairs and the conjugate of ), is denoted by A;. If \; and Ay are conjugate, then the corre-
sponding ¢, and 1y are also conjugate, since Y- kDj and > ;7 | kDye are real vectors

and the matrices g/h; and gyh; are conjugate. For each eigenvalue, denote \; = \)\l|ei‘”l
and ¢ = [iy|e?®. When D is per10d1c with period d, it has d distinct eigenvalues with
modulus 1: 1,¢,...,c* ", where c=e %" For these eigenvalues, w; equals 6;:

Property 2.1.1. Consider a transition matrix D which is irreducible and has period d.
27
The vy, as defined in (2.10) corresponding to the eigenvalue \y =e™a ™, m € {0,...,d— 1}

27rz

of D has the same argument as \: 1, = |[i)]e"d
Proof. Consider wl as defined in (2.10) corresponding to eigenvalue \, = eim of D,
and define ¢ = e’ . Because all elements of the matrices D;, k£ > 0, are probabilities,
and thus posmve, and because D = 77 Dy, according to the periodic structure of D
(cfr. equation (1.2)), ;2 kDy can be written as

0 s> kD 0 0

o 0 0 > kD . 0

> kDy = : s s ;
k=t 0 0 0 LY kDY

S kDY 0 0 . 0

This, combined with (1.4) and (1.5) implies that

nika g = Z Gtm e Zka e—cchJmﬂ']Zka e, (2.12)
k=1

7=0

and

o d—1 00
h) kDie=Y cimr; Y kDY e. (2.13)
k=1 §=0 k=1

Because (2.13) is the conjugate of the factor after ¢™ in (2.12),

00 2
=" hl Zka (S]
k=1

.

(2.14)

3

R+
from which it is concluded that

2mi

= [yl T, (2.15)



2.1. Input rate process of a D-BMAP 17

Define Q to be the collection of all eigenvalues of D: Q = {\g, ..., Ay_1}. By distinguishing
between the different types of eigenvalues of D, equation (2.9) can be written as:

R[n] = o + (=)™, I (3, c0 and Au=—1} + Z ()™ ey

n=£0 A e(QNR\{0,1,—1})
" Z [y elnl=Disn gier Z (()\l)\n\flwﬁ()\l)\n\ﬂwl)
NEQNC\{1,~1}) AN E(QNT)
In|=1 Im(X;)>0
A<t

(2.16)
=y + (_1)‘"‘*11%[{)\(169 and Ag=—1} T Z ()\l)\n\*lwl

A E(QNR\{0,1,-1})

+2 Z [thi| cos(|njwi) + 2 Z A" | cos(|nfwr — wi + 6,).

A €(QNC) A e(QNC)
Tm(X;)>0 Tm(X;)>0
|A]=1 IAl<1

2.1.2 Power spectrum

The autocorrelation sequence of a stochastic process in the time domain is equivalently
characterized in the frequency domain by its power spectrum, which is defined as the
discrete-time Fourier transform of the autocorrelation sequence [68, p.409]:

+00

P(w)= > Rnje . (2.17)

n=-—oo

Note that only frequencies (expressed in rad/sec) in the range —7 < w < 7 need to be
considered, since P(w) is periodic in w with period 27. The following inversion formula
[68, p.409] allows to recover R[n] from P(w):

™

/P(w)ei"“’dw. (2.18)

—T

1
o

Rin]

For the input rate process (I'(k))g, R[n] is an even sequence, such that (2.17) reduces to

P(w) = Z R[n] cos(nw) = R[0] + QZR[n] cos(nw), with —7<w<m  (2.19)

n=—oo n=1

From this expression, it is seen that P(w) = P(—w), which shows that the knowledge of
P(w) for 0 < w < 7 is sufficient. By using expression (2.16) for R[n], a formula for P(w) is
obtained from which the contribution of each eigenvalue of D to P(w) can easily be read.
A number of results used in the calculation of this formula is presented first.
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Definition 2.1.1 (Dirac delta function). The Dirac delta function is a ‘function’ that
obeys

() d(w—wo) =0 when w # wy,

oo

(b) / §(w — wo)dw = 1.

— 00

(2.20)

Interpretation: the Dirac delta function can be considered as the limit of a function with a
width decreasing to zero while its amplitude becomes infinite. However, the product of both
(the area under the function) remains constant. Remark that the definition given above is
only a ‘loose’ description of the Dirac delta function. A mathematically correct discussion
of Dirac delta functions should use the notion of a distribution, a linear functional on a
function space.

Property 2.1.2 (Properties of the Dirac delta function).

1
(a)  Scale property: d(a(w —wp)) = —0(w — wy).

al

(b)  Product with a function that is continuous at w = wy:

p(w)d(w — wp) = p(wp)d(w — wy).

(¢) Z e M = o Z d(w — 2mn).

n=—oo n=—oc

More details about these properties can be found in [87, p.59, 95, 242]. Remark that when
—T<w<mand 0 < w, <, then Y ° _d(w—27mn) = dw), > e . 02w —2mn) =

(W) +36(w—m), >0’ 6w —w —2mn) = §(w—w) and D07 S(w +w, — 27n) =
(S(LU—le).

Using these intermediate results, P(w) can be calculated by plugging equation (2.16) in
equation (2.19). For clarity, this calculation is split up in parts corresponding to all possible
types of eigenvalues \; of D.

Type 1. A=) =1

o0

24 Zcos(nw) = —y + o Z e = by + 2mg Z §(w — 27mn)
n=1

n=—oo n=—oo

(2.21)
= —1ho + 2mod(w).
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Type 2. )\ = —
21, Z(—l)"’1 cos(nw) = —21h, (Z cos(2nw) — Zcos ((2n + 1)w)>
n=1 n=1 n=0
_77/}0, (_1 + i 672inw o i 61(2n+1)w> (222)

= 1hy — T (§(w) 4+ 6(w — 7)) + TYae ™ (§(w) + 6(w — 7))
= wa - 27”%5(0) - ﬂ-)'

Type 3. X\ € (QNR\{0,1,—-1})

D YD T R T .
ME(QNR\{0,1,-1})  n=1 M E(QNR\{0,1,—1}) A n=1
h 1
=2 Req —— -1
Z )\l 1— )\lezw
NEQNR{0,1,-1}) (2.93)
—9 Z ﬂ )\l COS(L«)) — ()\l)2
o _ 2
NEQNRN0,1,-1}) )\l 1 2)\l COSw + ()‘l)
cosw — A
=2 Z W 2
ME@TRT01,—1]) 1 =2\ cosw+ (N\)
Type 4. X\ € (2NC),Im(N\) >0and |N\] =1
4 Z |4 Zcos nw) cos(nwy)
A E(QNC)
Im(A;)>0
I\ ]=1
=2 Z ] Z cos (n(w — wy)) + cos (n(w + wy)))
A E(QNC)
Im(X\)>0
M=t (2.24)
- X (2 3 ey 3 o)
A e(22NC) n=—oc n=—00
Im(X\)>0
IAi|=1
= ) |l (—2+2m0(w — wy) + 276 (w + wy)).
M E(QNC)
Im(X\)>0

IA]=1
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Type 5. X\ € (2NC),Im(\) >0and )| <1

4 Z Z I\ ™ Hay| cos (nw; — wp + 6)) cos(nw)

M E(QNC) n=1
Im(A;)>0
A<l

=4 Z ZR@ )"_11/11} Re {ei"“’}

A €(QNC) n=1
Im(X\)>0
[N]<1

w > W\ wl - —iw\n
- QAIG%TC) ( {)‘_Z(Ale ) } +R6{EZ(A16 ) }> (2.25)
Im(X\)>0

|A <1

(0 1 (0 1
=2 3 (= (e ) S (e )
NEQNT)

Im(X\)>0
‘)‘l‘<1

cosw — N
=4 ) Re {wl 2} .
N 1—2)\cosw+ (\)
Hm()\l)>0

‘)‘l‘<1

Summarizing these results leads to

P(w) = R[0] — 4o + 2mpd(w)
+ (% - QWwaé(w - 77)) ]{/\QEQ and \,=—1}

Cosw — A
2
+ Z wll —2)\cosw + (A)?
ANE(QNR\{0,1,-1})

+ ) [l (-2 + 276 (w — W) + 270 (w + wy)) (2.26)

A E(QNC)
Im(X\)>0
|A]=1

CoOsSw — A

4 R , ith —7m <w <.

+ Z e{wll—Q)\lcosw—i-()\l)?} W TRe=T
A e(NC)

Im(A;)>0
‘Al‘<1

This formula shows that each eigenvalue )\, of D contributes to P(w) with a term deter-
mined by that eigenvalue and the corresponding v;, and that the discrete part in the power
spectrum is caused by the eigenvalues with modulus 1.
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2.1.3 Stationary cumulative distribution

The stationary cumulative distribution F(z) of T, the input rate in a slot, is defined as

F(z) = P{l" < z}. (2.27)
Since P{I' =T;} = m;, F(x) is completely determined by 7, the stationary distribution of
the D-BMAP, and by the input rate vector I' = (g ... FN,I)T =Y, kDye:

Flz) =) _m (2.28)

Figx

2.2 Circulant D-BMAP

In this section the circulant D-BMAP is introduced, which is a D-BMAP with as transition
matrix a circulant matrix. An attractive property of a circulant matrix is that a closed
formula for its eigenvalues exists, which depends on its elements and its dimension. Also the
eigenvectors can be written down explicitely, since they depend only on the dimension of the
circulant. This, together with a special choice for the matrices Qy, of the circulant D-BMAP
(Qk)k>0, allows to simplify the expression for the 1;’s defined in the previous section, and
to identify the coupling between components of the rate vector of the circulant D-BMAP
and its power spectrum. We also present in this section an easy-to-check condition for a
circulant to be irreducible.

2.2.1 Definition

A N-state circulant D-BMAP (Qg)g>0, with Q =>".2 Qx, is a D-BMAP with as transi-
tion matrix Q a circulant stochastic matrix:

agp a ... AaAnN—1
anN—1 Gy ... AN_—2

Q=| . T (2.29)
aq as ... ag

The matrices Q. will be chosen such that they depend on a, the first row of Q, and on a
vector -y, such that

> kQ = diag(7)Q. (2.30)

k=1

where diag(«y) is a diagonal matrix with the elements of 4 on the main diagonal. The
reason for choosing the matrices Q, in this way is that then the input rate vector T,
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whose elements are defined by (2.1), equals 4. A choice for the Q’s could be such that
the number of arrivals that are generated while making a transition from state ¢ follows a
Poisson distribution with mean ~;:

ag (’70)2!67"0 ay (70)2!67”0 o an.y (’70)2!67"0
an 1 (’h)z!f71 ag (71)2!6*”1 . an_s (71)2!6*71
Qr = , VkeN (231

(yw_1)ke IN-1
k!

(yw_1)ke N1 a (yw_1)ke IN-1
k! e 0 k!

a1 a2

Remark that this is only a possible choice for the Q;’s. Everything in this chapter remains
valid for another choice of the Qy’s, as long as equation (2.30) stays fulfilled. Further on,
symbols introduced before for ordinary D-BMAPs, and used for a circulant D-BMAP, are
given a ‘c’ as subindex.

2.2.2 Autocorrelation and power spectrum

From the previous section it is known that the autocorrelation sequence and the power
spectrum of the input rate process of a D-BMAP are completely characterized by the
eigenvalues \; of its transition matrix, the corresponding ¢;’s and R[0]. For a circulant
D-BMAP, these values can be written as expressions which depend on the vectors a and ~.

First of all, the I-th (I € {0,..., N — 1}) eigenvalue (\.); of a circulant Q is given by
[77, p.169]

(Ae)i = ag + arc + agc® -+ + an_1¢ VNI where ¢ = e (2.32)

Remark that this implies that (XSZ = (A¢)(N=1) mod N, Which means that all real eigenvalues
of Q occur in pairs, except for (A.)y and for (AC)% if N is even. Notice that (\.)o = 1.
Further, if Q is irreducible and periodic with an even period, (AC)% = —1, since —1 needs
to be a simple eigenvalue of Q. The eigenvectors (g.); and (h,); which correspond to (A.);,
and which are chosen such that (h.);(g.); = 1, are given by

(gc)l _ (1 Cl C2l o C(N71)1)T :
1 -1 -2 —(N=1)1 (2.33)
(hc)lzﬁ(l e . C ).

The stationary distribution 7. of Q, which is the normalized left eigenvector corresponding
to eigenvalue 1, is then given by

Te=(% ~ ... =), (2.34)
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and is thus independent of the elements of Q.

Enough information is now available to derive an expression for (i.);:

()i = (Z ka) (k ka)

= m. diag(v)Q(g.):(h.); diag(v)Qe
= . diag(y )( (g )( Y

= % <§ ’Ykal) <§ ’Ykal> (At

by using definition (2.10) in the first step, equation (2.30) in the second step, the fact that
(gc); is an eigenvector of Q corresponding to (A.); in the third step, and (2.33) and (2.34)
in the last step. Remark that in this expression

1 <N—1 N—1 1 N—-1
kl —kl
K z)(z ) L

(2.35)

e R", (2.36)

2
kl
Z Yk C
k=0

which implies that (¢.); is a positive real multiple of (\.);:

N-1
. 1 2
(Ye)r = xa(Ac),  with y; = ‘_N ) ’Ykal‘ e R". (2.37)

k=0

Since (A.); = ()‘c)(Nfl) mod N> Xi €quals X(N—1) mod N+
For R.[0], using (2.4) and (2.8), it is derived that

R[0] = m(T. O T,) = m.(y © ) = 7. diag(y)Iy
= m.diag(y ( Jithe) |y
{0}
N-1 - (2.38)
Sy (e (S
(/\C)IEQC\{O}

—~

- 5

(Ae)i€Q2:\{0}

1
Ve
( C) Z Xi-

(Ae)1€Q:\{0}

Also R.[n], n # 0, resp. P.(w), can be written in function of the y;’s and the eigenvalues
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(Ae); of Q, using (2.16), resp. (2.26), and the results just now derived:

Rc[n] = Xo + (_1)‘n‘XN/2]{N is even and (Ac)y/2=—1}

n#0
+ Z ()\C);n‘)g +2 Z X1 cos (|n](we))
(Ae)1€(2.NR\{0,1,—1}) (Ae)1€(2.NC)
HT(()\(/\)C)‘!)TO (2.39)
c)l|=—

+2 3 ™l cos (In] = 1) (@) + (0:)1)

(Ae)1€(2.NC)
Im((Ae);)>0
[(Ae)il<1

and

Pc(w) = QWXUé(w) + 27TXN/26(LU - 7T)[{N is even and (Ac)n/o=—1}
(Ae)icosw — (Ae)? 1
+2 Z Xi ( s+ -
(o)1 €(QNR\{0,1,—1}) L=2(A)icosw+ (M) 2
+ > i (@md(w — (we)) + 2m0(w + (we)))

(Ae)1€(Q2.NC)
]Im(l()\c)l)>0 (2.40)
|(Xe)i]=1

) (A)icosw = (A)f 1

+4 X1 (Re { D),

(Ae)1€(2:NC) 1 —2(A.)icosw + (Ae); 9
Hm((/\c)[)>0

|(Ae)il<1
with — 7 <w <.

2.2.3 Stationary cumulative distribution

Because the stationary distribution 7. of a circulant D-BMAP is independent of the ele-
ments of its transition matrix (cfr. equation (2.34)), the stationary cumulative distribution
F.(z) of T,, the input rate in a slot, depends only on the input rate vector T'., which
equals ~:

Fu(x) =Y (m)i = % d oL (2.41)

i<z i<z

Define 3, [ =0,...,N — 1, as

N-1
]_ i
G = N E vc®,  where c=e~ . (2.42)
k=0
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To recover 7, from the (;’s, the following inversion formula can be used, which is the
discrete Fourier transform of the sequence (q, ..., Oy_1:

N—-1
Y=Y Bmc™™ (2.43)
m=0

For each 3, denote 3, = |B]e'®. From (2.37) and (2.42) it is then concluded that
|6 = v/xi- (2.44)

Hence, equation (2.43) leads to

N-1 N-1
vy = BO + Z Xmeiam Cftm S + Z Xme’i(osz%rtm)
m=1 m=1

(2.45)
N-1 o N-1 o
=Ty + Z Xm oS (v — th) +1i Z Xm Sin (o, — th)
m=1 m=1
Because B,; = Bn_m (see equation (2.42)), XN—m = Xm and ay_, = —ay,. This implies
that (2.45) reduces to
a 2T
V= T+ QmZﬂ Xm COS(ty, — Ntm), for N odd: N =2p +1,
2| 27
Vi =Ty + 2 Z Xm €OS(Qty, — th) + /Xpcos(a, —7t), for N even: N = 2p.
m=1
(2.46)

2.2.4 Irreducible and periodic circulants

In this subsection, a few properties concerning the irreducibility and periodicity of a cir-
culant stochastic matrix Q are given. They are used later on in Section 2.4. The first
property gives a necessary and sufficient condition for Q to be irreducible.

Property 2.2.1. Consider a N-dimensional circulant Q with a as first row and define
I =1{ili #0 and a; # 0}. Then Q is irreducible if and only if lem (M) = N.
iel

[

Proof. Define t = lecm <M> .
iel

1

Necessary condition. Remark first that ¢ is always less than or equal to N, because
Va,b € Ny : lem(a, b) ged(a, b) = ab [96, p.35], which implies that

lem(i, N) N

€1 = .
vie i ged (i, N)
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So t is the least common multiple of numbers that are all divisors of N.

Suppose now that ¢ < N. From the definition of ¢, it is known that for all ¢ € I, it is a
multiple of lem(é, N), which implies that it is also a multiple of N. For the ¢-th eigenvalue
of Q (cfr. equation (2.32)), this gives:

N-1
()\c)t = Z akckt = ag + Zakckt =ag+ Zak =1.
k=0

kel kel

But also the eigenvalue (\.)q of Q equals 1, which means that the multiplicity of eigen-
value 1 is at least 2 (remark that by definition of ¢, ¢t # 0). Because this is in contradiction
with the irreducibility of Q, the supposition was wrong, which means that ¢ equals N.

Sufficient condition. Distinguish 2 cases:

1. ged ({i]i € I} U{N}) = 1. Denote the elements of I by iy,...,ix. From [96, p.54],
it is known that

K
Fz1, 2k €0y iz + 2k N = 1.
j=1

For all the z;’s, consider a n; € N such that z; + n,N > 0. Then

K
(Z ij (2 + an)) mod N = 1.
j=1

This means that the following sequence of transitions from state 0 to state 1 exists:
0—i; — (2;) mod N = -+ = (i1(21 + nyN)) mod N —
(i1(z1 + niN) + i) mod N — -+ = (i1(21 + n1N) 4 ia(22 + naN)) mod N

K

j=1
But then also transitions 0 -1 —2 — --- — N — 1 — 0 are possible, which means
that all states of Q communicate with each other.

2. ged ({ili € I} U {N}) > 1. By contraposition, it is proven that this case cannot occur.
Suppose it can, and denote x = ged ({i]i € I} U{N}). Then N can be written as
N = bz, where b < N since x > 1. By [96, p.28] it is known that

Vie I, 3m; € Ny : ged(i, N) = m;x.

Then

lem(i. N N N
Vie[:cm(_z’ ) _ - _ b en

i ~oged(i, N)  muz my

So for all ¢, b is a multiple of lem(é, N)/i, through which ¢ < b < N. But this is in
contradiction with ¢ = N, so the supposition was wrong. H
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Remark that property 2.2.1 is different from the necessary and sufficient condition for the
irreducibility of a circulant stochastic matrix as stated in [79, p.385, problem 21], which
says that “a Markov chain with a stochastic circulant matriz is irreducible if and only
if ag # 1”. This condition is however not correct, since for example the circulant with
a= (0.2 0 02 0 06 0) as first row is reducible, because it is impossible to reach an
even numbered state starting from an odd numbered state.

Property 2.2.2. Consider a N-dimensional irreducible circulant Q with period d > 1.
Then N is a multiple of d and each periodic class of Q contains N/d states.

Proof. Consider the states uq, ..., u, of periodic class 1 and a state j of periodic class 0.
Then, by the definition of the irreducibility and the periodicity of a Markov chain,
Vu € {uy,...,u,}, Im € N for which the state w; is accessible from state j in m;d + 1
steps. Because Q is a circulant, this means that from an arbitrary state ¢ of an arbitrarily
chosen periodic class p, exactly n other states vy, ..., v, are accessible in a number of steps
which is a multiple of d plus 1. Namely, the state v; = (¢ + u; — j) mod N is reachable
from ¢ in m;d + 1 steps. Thus, the periodic class (p + 1) mod d contains exactly n states.
Because the periodic class p was arbitrarily chosen among all periodic classes, this means
that all the periodic classes of Q contain n states, and thus N = nd. B

Property 2.2.3. Consider an irreducible circulant Q with period d > 1 and dimension
N = kd. The periodic class to which a state q belongs consists of the following states:
¢, (¢+d)mod N,...,(¢+ (k—1)d) mod N.

Proof. From property 2.2.2 it is known that each periodic class contains k states. So in
the case that k£ = 1, this property is trivially true. Consider £ > 2. Suppose that state 0
belongs to periodic class i (i € {0,...,d —1}), and consider two different states m and ¢
of periodic class j = (i + 1) mod d, such that there are no states u and v, u # v, in class j
for which (u — v) mod N < (t —m) mod N. Remark that since class j contains k states,
with & > 2, it is always possible to find two such states m and ¢. Then there exists an
ly € N such that state m is accessible from state 0 in /;d 4+ 1 steps. But this implies that
state ¢ is accessible from state (¢ — m) mod N in [;d + 1 steps, because Q is a circulant.
This then means that the states 0 and (¢ —m) mod N belong to the same periodic class i,
which on its turn implies that there exists an Iy € N such that state m is accessible from
state (t — m) mod N in lyd + 1 steps. Because Q is a circulant, this implies that state ¢ is
accessible from state (2t—2m) mod N in lyd+1 steps, such that also state (2¢—2m) mod N
belongs to periodic class . By continuing this reasoning, it is concluded that all the states
of the form (It — Im) mod N, | € N, belong to periodic class i. Consequently, all states of
the form (It — (I — 1)m) mod N, [ € N, belong to periodic class j, since they are accessible
in l;d 4 1 steps from state (It — Im) mod N.

It is shown now that ((¢ —m) mod N) divides N. Suppose it does not, and define
r= L$J Then

(t—m) mod N
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1. z((t —m)mod N) < N, and because also ({ — m) mod N < N, it follows that
(x+1)((t —m) mod N) < 2N,

2. (x+1)((t—m) mod N) > N,

3. ((x+1)(t—m)) mod N = ((z+1) ((t —m) mod N)) mod N < (¢t —m) mod N.

This means that there exist two states v and v in class j, v = ((z + 2)t — (z + 1)m) mod N
and v = t,

e which are different: otherwise (v —v) mod N =0, i.e., ((z + 1)t — (z + 1)m) mod N
=((z+1)((t =—m) mod N)) mod N = 0, which means that (z+1) ((t — m) mod N)
should be a multiple of N, which is not the case by item 1 and 2 up here, and

e for which (v —v) mod N = ((z + 1)(t — m)) mod N < (t —m) mod N by item 3.

Since this is in contradiction with the way ¢ and m were chosen, the supposition made is
wrong, and thus ((f —m) mod N) divides N. Denote y = N/ ((t —m) mod N), y € N.
Then all states of the form (It —Im) mod N, [ € N, equal one of the following y different
states: 0, (¢t —m) mod N,2((t —m) mod N),...,(y — 1) ((¢t — m) mod N).

If it is supposed that y > k, then class ¢ contains more than k states, which contradicts
property 2.2.2. If it is supposed that y < k, then a state p of class ¢ which is not of the form
(It—Im) mod N, [ € N, also needs to exist. But then always one of the states of class i of the
form (It —Im) mod N exists for which (It —Im —p) mod N < (t —m) mod N. This implies
that there are two different states v and v in class j, namely u = (It — (I — 1)m) mod N and
v = (p+m) mod N, for which (u—v) mod N = (lt—Im—p) mod N < (t—m) mod N, which
contradicts the way ¢ and m were chosen. So y = k, which means by the definition of y that
(t — m) mod N = d, and thus periodic class i contains the & states 0,d,2d, ..., (k — 1)d.

In an analogous way it is proven that the periodic class of an arbitrary state ¢ contains
the states ¢, (¢ +d) mod N, ..., (¢+ (k—1)d) mod N. &

Corollary 2.2.4. Consider an irreducible circulant Q with a as first row, which has period
d > 1 and dimension N = kd. If a # 0, where |l € {1,...,N — 1}, then a,, = 0 if
Ap € {0,...,k — 1} for which m = (I 4+ pd) mod N.

Proof. Since a; = (o, and a,, = Qom, it is immediately clear by writing Q in the form of
equation (1.2), that a,, needs to be zero if state m does not belong to the periodic class of
state [. So by property 2.2.3, if there isno pin {0, ..., k—1} such that m = (I+pd) mod N,
then a,, = 0. W

Remark that in the formulation of corollary 2.2.4, [ € {1,..., N — 1}, since if ag # 0, then
Q is aperiodic.
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2.3 Superposition of M independent D-BMAPs

Consider M independent D-BMAPs (D)0, 1 < i < M. With each of these D-BMAPs
an input rate process (I (k))y, as defined in Section 2.1, corresponds. The superposition of
the M D-BMAPs is again a D-BMAP (cfr. Section 1.2.3), denoted by (Dy)k>o. Denote by
(T'(k))x the corresponding input rate process. The autocorrelation sequence R[n] and the
power spectrum P(w) of this process, and the stationary cumulative distribution F'(z) of T,
the input rate of the superposition in a slot, could be obtained as explained in Section 2.1.
But then it is necessary to explicitly construct the D-BMAP (Dy),>0, which becomes
practically unrealizable if M is large, or if the dimensions of the individual D-BMAPs
(Dg))kzo are large, because of the state space explosion. It is however also possible to
calculate R[n], P(w) and F(z) from the autocorrelation sequences R'[n], the power spectra
P (w) and the stationary cumulative distributions F) (), 1 <4 < M, of the individual
D-BMAPs in the superposition, as is illustrated in this section.

2.3.1 Power spectrum of the superposition

The input rate process (I'(k)) is the aggregation of the M independent input rate processes
(PO (k)

D(k) =Y TO(k). (2.47)

Using this relation in equation (2.3) gives an expression for R[n], the autocorrelation se-
quence of the input rate process (I'(k))x, in function of RV [n], ..., RM)[n], where R®[n],
1 < i< M, is the autocorrelation sequence of (I (k)),:

Rn|=E (i r<i>(k)) (i Ok + n))

IO )T (k + n)

NE
NE

=E ) _TOk)TD(k+n) +

<
Il
_
<.
Il
—
Bl

[N
Yl

- (2.48)
E [Tk (k + n)]

I
M=
o
=
=
=
=
+
S
+
NE
NE

=1 i=1 j=1
J#i
M M M
=Y RO+ > Y E[9(k)] E [Tk +n)]
i=1 =1
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=S RO + S ETOm)] ETO®)].,
=1 =1 §;1

where in the last step but one the independence of the processes (I'”(k)); is used, and in
the last step their stationariness. Because of equation (2.11), the autocorrelation sequence
R[n] can also be written as

Rln] = ZR w23 S el e (2.49)

=1 j=i+1

When plugging this result in equation (2.19), the power spectrum P(w) of the input rate
process (T'(k))y is obtained in function of the P®(w)’s, where P (w), 1 < i < M, is the
power spectrum of (T'¥(k)),:

ZR ol+23 3 Vol

i=1 j=in
+ZZcos(nw) (Z RO +QZ i MW)
o — i=1 j=itt
:i +2ZZ\/J\/J(1+2ZCOSTLM) (2.50)
i s
P puri n=oo
:i w) + 476(w Z Z MW (use property 2.1.2).
i i=1 j=itt

From equation (2.26) it is known that each eigenvalue )\l(i) of D, 1 < i < M, contributes

to P (w) with a term determined by that eigenvalue and the corresponding w{“. So from
the formula above it is concluded that all eigenvalues of the individual D-BMAPs in the
superposition contribute to P(w). But when applying equation (2.26) to the D-BMAP
(D)k>0 which describes the superposition, one might wonder if this conclusion is correct,
since the transition matrix D of the superposition has more eigenvalues than only these of
the individual D-BMAPs. The property below shows that the conclusion made is indeed
correct, since the contribution of these eigenvalues is zero. But remark first that if {y;}
and {x;} are the eigenvalues and the corresponding eigenvectors of a matrix A, and {v;}
and {y;} are the eigenvalues and the corresponding eigenvectors of a matrix B, then A®B
has as eigenvalues {y,;v;} with corresponding eigenvectors {x; ® y;} (see [37, p.27]).

Property 2.3.1. Consider the D-BMAP (Dy)y>o which is the superposition of M inde-
pendent D-BMA Ps (D( ))k>[], and one of its eigenvalues X = N, ... XM where N0,
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i=1,..., M, is an eigenvalue of DO, such that at least two of the values NV are different
from one. Denote the right column and left row eigenvector corresponding to A by g and h.

Then ¢ =m (3 1o, kDy)gh (3 po, kDy) e = 0.

Proof. At least two of the values A\ in A = XM .. XM gay AK) and A0, | #£ [,
are different from one. Denote the right eigenvectors corresponding to the eigenvalues A
by g?). Then #*)g*) = 0 and 7V g® = 0, because for m = k, I, #(MDMglm) = gm)gim)
amDmgm) — \(m)gm)g(m) and \m) £ 1.

By using some elementary properties of the Kronecker product [37, chapter 2], it is proven
that

o

00 M o M
> kD = (Z kij)) ® (@ D“’)) +DYg (Z kDE?) ® (@ D<i>) ¥...
k=1 =2 k=1 =3

k=1

M—2 00 M-1 00
+ (@ D(“) ® (Z kD,ﬁM”) @D 4 (@ D“)) ® (Z kD,gM)) . (251)
i=1 k=1

=1 k=1

Because = ®Z\i1 7@ and g = ®f\i1 g,
oo oo M
Ty kDj = (71'(1) ZkDS)) ® (@M) T
=2
M-—1 00
. (@M) o (W<M> Zm,gM>) @)
=1 k=1

where the property that (A ® B)(C® D) = AC ® BD is used [37, p.24]. Then
oo 00 M
mY_ kDyg = <7r<1> 3 kij)g“)) ® (@Mg@) +...
k=1 k=1 i=2
M-1 oo
+ (® ﬂ(i)g(i)) ® (W(M)ZkDECM)g(m) ., (2.53)
i=1 k=1

and because wFgk) = 0 = gl each of the terms in this sum is zero, such that
Y o, kDyg = 0, which implies that ¢ = 0. W

2.3.2 Stationary cumulative distribution of the superposition

The stationary cumulative distribution F'(z) of T', the input rate of the superposition in a
slot, is given by (see equation (2.28)):

F(z)=> m, (2.54)

<z
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where 7 is the stationary distribution of the D-BMAP (Dy);>o describing the superposi-
tion, and I'; is the i-th element of the input rate vector I' = >~ 2 - kDye of the superposition.

For 7, which is the left eigenvector which sums to one corresponding to eigenvalue 1 of the
matrix D, it holds that

™= ®7r(i), (2.55)

where 7() is the stationary distribution of the D-BMAP (DE:))]CZO. Remark that the sum
of the elements of 7r is one, since if the elements of a vector a sum to one, and the elements
of a vector b sum to one, then also the elements of the vector a ® b sum to one.

The input rate vector T' of the superposition is obtained from the input rate vectors I'”
using the expression

M
r=ro. (2.56)
i=1

This expression uses the Kronecker sum, which is defined analogously as the Kronecker
product (cfr. Section 1.2.3), but the operation used now is the addition.

To derive equation (2.56), consider two independent D-BMAPs (Dg))kzo and (Df))kzo,
with transition matrices D) and D® respectively. From equation (1.10) it is known that
their superposition is again a D-BMAP (f)k)kzo, with D = Zf:o Dl(l) ® fojl. Denote
the corresponding input rate vector by I'. By using the definition of T', and the fact that
the Kronecker product is distributive with respect to the addition (see [37, p.23]), it is
obtained that

0 k oo oo
S CAELTHIES 9 SUCHET AP
k=0 1=0 1=0 k=l
=Y D’ e ZkDf)l)] e=Y D" ® (Z(k + l)Df))] e
=0 L k=l =0 L k=0
=Y pVe <ZkD§f)) e+ lD§1)®< D,(f)) e
1=0 L k=0 1=0 L k=0 i (2.57)
i [(Z Dl(”) ) (ZkDf)) o (Z D’ | oD e
1=0 k=0 1=0 i
= (DWe) ® (Z kD,(f)e) + (Z ZDf”e) ® (D@e)
k=0 =0
= (e® 1'*(2)) + (1‘*(1) ®e) = rger®,
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where in the third last step the following is used: Az ® Bw = (A ® B)(z ® w) (see
[37, p.22]). Before this step, the e’s used are vectors with as length the dimension of
DM @ D@, while afterwards it are vectors with as length the dimension of D™, resp.
D® . Since the dimension of the vectors e is clear from the context, no effort is done to
provide this information in the notation of the vector. By applying the reasoning above
M — 1 times, it is obtained that for the superposition of the M D-BMAPs (D;(;))kzo,
1 < i < M, the input rate vector T is given by equation (2.56).

Thus, by using equations (2.55) and (2.56), the stationary cumulative distribution F'(z)
of ' can now be calculated from equation (2.54), using only information of the individual
D-BMAPs constituting the superposition.

2.4 Circulant matching procedure

In this section, the procedure to match the superposition of M independent D-BMAPs
(D;(;))kzo, 1 < i < M, by a circulant D-BMAP (Qy)r>o is presented. The circulant
D-BMAP is constructed such that P.(w) matches P(w) and F.(z) matches F(zx), where
P.(w) and F.(x) denote the power spectrum and stationary cumulative distribution of the
input rate process of the circulant D-BMAP, while P(w) and F(x) denote the power spec-
trum and stationary cumulative distribution of the input rate process of the superposition.
As is known from Section 2.2, a circulant D-BMAP (Qy)x>o is defined by a vector a, the
first row of its transition matrix Q, and by a vector =y, which is chosen such that it equals
the input rate vector I',. The construction of (Qj)x>o consists of two steps:

1. the construction of a and the fixing of the y;’s such that P.(w) matches P(w),

2. the construction of « such that F.(x) matches F(x).

It is clear that since both P.(w) and 4 depend on the y;’s (see equations (2.40) and (2.46)),
these two steps cannot be performed completely uncoupled from each other. The x;’s fixed
in the first step need to be taken into account in the second step.

2.4.1 Matching the power spectrum

From equation (2.26) it is known that the power spectrum of a D-BMAP (Dgp)kzo is
completely determined by R®[0] and a contribution of each of its eigenvalues. The con-
tribution of an eigenvalue )\l(i) depends on that eigenvalue and on the corresponding wl(i).
Because of equation (2.50), this means that the power spectrum of the superposition of the
M D-BMAPs (D?)kzo, 1 < i< M, is completely known by the R¥[0]’s and by all eigen-
values of the D-BMAPs and their contributions to their respective power spectra. Thus,
if a D-BMAP (Qg)k>o could be constructed with as eigenvalues of Q the same eigenvalues
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that contribute to the power spectrum P(w) of the superposition, and if the ,’s of this
D-BMAP are tuned right, this new D-BMAP would be a D-BMAP with the same power
spectrum as the superposition. Remark however that constructing a matrix with a desired
set of eigenvalues is difficult, if at all possible, and involves a so-called inverse spectrum
problem [77, chapter 7]. To circumvent this problem, the D-BMAP that is constructed is
a circulant D-BMAP, for which closed formulas exist to describe its eigenvalues, such that
the inverse spectrum problem reduces to an easier to solve index search problem.

Construction of a

The first task to tackle is thus the construction of a circulant stochastic matrix Q which
has as eigenvalues all values from a predefined set. Because the eigenvalues of a circulant
N-dimensional matrix are obtained (see equation (2.32)) by

A, = aF, (2.58)
where Fj, =%, 0 < j,k < N—-1,¢= eX, and A, = ((Ae)o A1 oo (Ae)vo1), it is
possible to obtain a from A. by

1 )
a=AF"" where (F7');, = Nc_’k. (2.59)

This relation is however not useful for constructing a circulant stochastic matrix, because
nothing guarantees that the elements of a will be positive real numbers which add up to
one. There also not necessarily exists a stochastic circulant which has only the values of
the predefined set as eigenvalues. So the approach is to search for a circulant which has
the envisaged values as eigenvalues, but very likely also some extra ones. To eliminate the
contribution of those last ones to P.(w), the corresponding x;’s are chosen zero.

Denote all the different predefined eigenvalues in a vector Ap = (()\p)g (AP)D,l).
The objective is then to find a vector a = (ag .. aN,l) such that Vi € {0,...,N —1}:
a; € RY, ae = 1 and VA € Ap : A € A.. The vector a is sought through the adjustment
of (N,1i), where N represents the length of a, and thus also of A., and i = (z’o z'D_l)

represents the position in A, of the D predefined eigenvalues. Eigenvalue 1 is always an
element of Ap. Choose (Ap)g = 1. Then i equals 0. For each selected (NNV,1i), a linear
programming scheme will be drawn up to find a solution a. If no solution exists, the
eigenvalue indices i are adaptively changed and the dimension N is gradually expanded,
until a solution a is found.

For each choice (N, i), the D + N conditions that have to be fulfilled when searching for a
solution a are:

N—
Zj:olaj =1
S aidi = (Ap)y,  I=ipk=1,...,D—1, (2.60)
a >0 1=0,...,N—1.
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Define
X = (ao aN_l)T, (261)
b = (1 Re{()\p)l} Hm{()\p)l} e Re{()\p)D_l} ]Im{()\p)D_l})T, (262)
1 1 1 1
1 Cia Cio .. Cina
0 Si Si, cee SiN-
and A=|, 0T A (2.:63)
1 C’iD—l,l C’iD—l,Q . C’iD_l,Nfl
0 SiD_1,1 SiD—1,2 . SiD—lnyl
where €y ; and S ; are defined as C; ; = cos % and S5 ; = sin %
Then the conditions in (2.60) can be rewritten as
Ax=Db, x>0, (2.64)

which are exactly the constraints as they appear in the standard form of a linear program
(LP) (cfr. [95, p.2]):

minimize z=cXx
subject to Ax=Db (2.65)
x>0,

where c is a cost vector. This means that the standard algorithm to solve a LP, namely
the revised simplex algorithm [95, p.5], can be used here.

The revised simplex algorithm consists of two phases. Phase I is used to find a feasible
solution to Ax = b,x > 0, or to determine that no feasible solution exists. Phase II uses
the solution generated in phase I to start with and solves the minimization part of the
LP. Thus, for our problem, phase I is sufficient to decide if there exists a solution a for
a given (N,i), and to find one if there exists one. If no solution exists, the vector i is
adaptively changed. If no feasible solution is obtained after a finite number of adaptations,
N is expanded and a new cycle of index adaptations is started. Obviously, when a feasible
solution exists for a certain N, the computation time to find it depends on the index
adaptation scheme. The size of the solution set expands rapidly with N: in theory, D — 1
indices have to be given a different value between 1 and N — 1, which means that there are
% possible ways to do this. However, for some index vectors i, it is known in advance
that no solution exists, so these do not need to be considered. The same is true for some
values of N. Further, it is possible to eliminate some of the values from the predefined
set of eigenvalues, and as such cut down the number of conditions of the LP problem,
while still enforcing that these conditions are fulfilled in the final solution. This is done by

eliminating in advance the index vectors i for which these conditions would not be fulfilled.
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The benefit of this procedure is that the dimension of the LP problems which need to be
solved becomes smaller, and that fewer possibilities for i need to be considered.

The following observations allow some reduction in the number of choices (V,i) and in the
size of Ap:

e For each nonreal value A in Ap, also its complex conjugate \ will be present in Ap,
since the values in Ap are obtained as eigenvalues of stochastic matrices. There is
however no need to take both é\and )\ into account for the construction of a, since
it holds for a circulant that (A.); = (Ac)(w—i)moan: if X € Ap appears in A, at
position , then A automatically appears in . at position (N — 1) mod N. Thus,
all values A with Im()) < 0 can be eliminated from Ap. Then all index vectors i
containing the values [ and (N —[) mod N should not be considered anymore, since
no feasible solution consists for them. Further, for all real values A in Ap, only index
values smaller than or equal to N/2 need to be considered, because when (\.); with
t > (N/2) equals A, then also (\.)n—_; equals .

e When Q needs to have period d, it is known from the properties in Section 2.2.4 that

— N needs to be a multiple of d, and

— only N/d values in a are free to take values different from 0, such that the
number of columns of A in equation (2.63) becomes N/d instead of N.

We choose one of these values to be ay, implying (see corollary 2.2.4) that the other
values are aiiq, 1424, ..., Q14(k—1)d, Where k = N/d. This choice has the following
advantages:

— When a; # 0, then the resulting circulant Q is irreducible (see property 2.2.1).
— When (A;); = A, then (A)(tmk) mod N = ™\, where m € {0,...,d — 1} and

2mi
c=en.

As such, all values with argument not in the segment [0, %[ can be eliminated
from Ap, because all these values are the result of a rotation over an angle in
{%.22%, ..., (d — 1)3} of a value with argument in the segment [0, 27[ (see Sec-
tion 1.1.3). So if a A which belongs to the resulting Ap appears in A, on posi-
tion I, then the values ¢*)\, ¢®* ), ..., c(* D)X appear automatically in A, at positions
(I+k) mod N, (I+2k) mod N,...,(l4+(d—1)k) mod N. Then for all index vectors i
containing a value [ and a value (I + mk) mod N, where m € {1,...,d — 1}, no
feasible solution exists, so they do not need to be Considerﬁiinymore. When A with
argument in ]0, 25[\{Z} belongs to Ap, then also A* = Ac(?=Dk has its argument in
10, 2 [\{Z} and belongs to Ap. For each couple (A, A*), one of these values can also
be removed from Ap, since when A appears in A, on position [, then \* appears in A,
on position (N — [+ k) mod N. Thus also for all index vectors i containing a value
and a value (N — [ — mk) mod N, where m € {1,...,d — 1}, no feasible solution
exists, such that these index vectors can also be ignored.
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e Consider the vector Ap containing the predefined eigenvalues, but now with all values
as described above removed, i.e., now Ap contains only values \ Wm(A) > 0,
arg()) € [0, %[ and only one value of each couple (A, A*), with A* = Ac(@=D¥ is present
in Ap. When the number of values in Ap is D and d is the period Q should have, then
the minimal dimension Ny, the circulant Q should have is given by d(2D — 1) when
Ap contains no real values different from 1 or values with as argument 7 /d. Otherwise
Nmin = 2d(D — 1). This is because position 0 in A, is taken by eigenvalue 1, and the
positions &, 2k, ..., (d — 1)k are then taken by the values c*, ¢?*, ..., cl4=D* (k = N/d,
where N is the dimension of the circulant). When & is even, one of the positions in
{k/2,3k/2,...,(2d — 1)k/2} can be taken by a real value or a value with argument
7/d of Ap. All the other positions in this set are then taken by the rotations of the
value over the angles 2rm/d, where m = 1,...,d — 1. All the other values A in Ap
take a free position [, by which also the positions (I + mk) mod N, m=1,...,d—1
and (N — 1 —mk) mod N, m =0,...,d— 1, are taken by the rotations of A over the
angles 2rm/d, m = 1,...,d — 1, and by their complex conjugates. So for all values
N smaller than N,,;,, no feasible solution exists. Remark that the same values for
Npin are obtained when d = 1, i.e., when @Q should be aperiodic.

e Consider the set of points in the complex plane bounded by the N-sided polygon,
N > 2, inscribed in the unit circle and with one of its vertices at (0, 1), and denote
it by Py. When not all values in Ap belong to Py, then no circulant of dimension N
with all values in Ap as eigenvalues exists. This is a consequence of the property that
says that a complex number is an eigenvalue of a stochastic circulant of dimension N
if and only if it belongs to Py [77, corollary 1.3, p.169].

Although the observations made above substantially reduce the number of choices (V,1)
that have to be investigated and the size of Ap, especially for periodic circulants, the size
of the solution set still expands rapidly with N and with the number of eigenvalues in the
predefined set Ap. As a consequence, the circulant matching method is only useful when
all D-BMAPs in the superposition are identical, or can be divided into a limited group of
identical ones, since then many of their eigenvalues are identical. Because contributions
of identical eigenvalues to the power spectrum can be added up, they only need to appear
once as eigenvalue of the circulant.

Fixing the x;’s

Consider 2., the collection of all eigenvalues of the N-dimensional circulant Q whose con-
struction was described above. By construction, a portion QF of Q. contains the eigenval-
ues of the matrices DM ... D™) It are these eigenvalues which contribute to the power
spectrum P(w) of the superposition. The aim is now to determine the contribution these
eigenvalues should have to P.(w), such that P.(w) matches P(w). From equations (2.40)
and (2.37) it is known that the contribution of each eigenvalue (\.); € Q. is determined
by that eigenvalue and by a corresponding x;, which needs to be a positive real number.
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Further, VI € {0,..., N —1}, x; should equal X(x—) moa - T0 avoid that the eigenvalues of
Q in 2.\ QF, i.e., the eigenvalues which do not contribute to P(w), do make a contribution
to P.(w), they are chosen equal to zero:

vl € {0,...,N — 1} for which ()\.); € (2. \QF):x, =0. (2.66)

Remark that this is not in contradiction with the requirement that x; should equal
X(N—1) mod s since if (Ao); € (2. \ QF), then (A)v—ymoan = (Ac)i, and as such also
(A)(N—tymod v € (¢ \ QF), because each value in QF is an eigenvalue of a stochastic
matrix.

For eigenvalue (\.)q = 1, choose

v 2
Xo = (Z V wé’)) - (2.67)
i=1
For the other eigenvalues ()\.); € QF with |(\.);| = 1, choose
M .
vi=_ Wl (2.68)
i=1

where wi(;) is the ‘¢»-value’ of the i-th D-BMAP (D;(j))kzo which corresponds to eigenvalue
AW = (Ac);. When not all D®)’s are identical, it is possible that ().); is not an eigenvalue

iy ‘
of a certain D, In that case assume that 1/1281) = 0 in (2.68). When choosing the x;’s
corresponding to eigenvalues with modulus 1 as defined above, the discrete parts of the
power spectrum of the superposition P(w) and of the power spectrum of the circulant

P.(w) are exactly matched (see equations (2.40), (2.50) and (2.26)).

To match the continuous parts of the power spectra P.(w) and P(w), define first the
following functions of w:

(Ae)icosw — (Ao)? 1
X, =2 E 141 —
() (14 Tuanrm) xa <1 —2(Ae)icosw + (A.)7 *3
(Ae)r€(22 NR\{0,1,-1})
I<N/2

(M) cosw — (Ae)? 1 (2.69)
4 E R -
+ Al < 6{1—2()\c)lcosw+()\c)l2 + 2/’
(Ae)1E(QPNC)
Im((Ae);)>0

I(Ae)i] <1

and

X(w) = Zx<i>(w), (2.70)
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where

XD(w) = RO0) = ) + 0T 0 00 marioy =2 2o 87
APe@ine)

Tm(A{")>0
‘/\l(i)‘:1
PR R
1o 22 cosw + (A2 (2.71)

/\l(i) e(QMNR\{0,1,-1})
(4)

14 Z Re{wl(i) cosw — A ' }

_ 9@ (1)y2
\De@ing 1 —2)\"cosw+ (")

Im(A7)>0
RYRIES!

Remark the factors 1 + Ijcn/oy in the definition of X.(w). Their presence is due to
the fact that if (\.); € QP N R\ {0,1,—1}, with I < N/2, then if [ # N/2, also
A)nv € QP NR\ {0,1,—1}. Thus in the continuous part of the power spectrum of
a circulant a term for y; and a term for yn_; with identical coefficients occur. Since it is
required that x; equals yn_;, only the unknown value y; is considered in X.(w). Later on,
after a value has been established for x;, xny_; is set equal to ;.

Choose S different values wy,...,ws €]— 7w, 7] and let p be the number of x;’s which
appear in X.(w). Further, define the matrix E, in which E;; (1 < i < S,1 < j < p)is
the coefficient of the j-th x; in X.(w;), and the column vector £ whose i-th (1 < i < S)
component equals X (w;). By solving the nonnegative least square problem (NNLS)

minimize ||Ex — f||

subject to x > 0, (2.72)

using the nonnegative least square algorithm [65, p.161], a vector x with p components is
found, in which the i-th component gives the value that is assigned to the i-th y; in X.(w).

For all x;’s for which no value is fixed yet, a value is already assigned to X(n—;) mod v» and
since x; should equal X(n—1) mod N, S€t Xi = X(N=1) mod N

2.4.2 Matching the stationary cumulative distribution

In this section, the vector - will be constructed such that F.(z), the stationary cumulative
distribution of the input rate process of the circulant, matches the stationary cumulative
distribution F'(z) of the input rate process of the superposition. From equations (2.34)
and (2.41) it is known that since 4 is an equal probability vector, F.(x) is a cumulative
distribution which jumps by 1/N at each component 7; of the vector 4. So in order for
F(z) to be matched by F.(x), it is needed to rediscretize F'(z) by partitioning its range
into N equal probability rates. Denote the partitioned range, sorted in ascending order,
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by v = (7{] 7}\,71). Also sort the elements in v in ascending order and denote the
sorted v by v, = (’yso %N_l).

From equation (2.46) it is known that the components of - (and thus also of «,) depend
on N, the y;’s and the a;’s. Remark that in equation (2.46),

rey=nT.=m Y kQre=/(1)o = X0 (2.73)
k=1

Since N and the x;’s were already fixed before when constructing the circulant matrix Q
and matching the power spectrum, the components of 4 can only be tuned via the compo-
nents of a = (al e aLN/QJ), and more in particular via those components «,, of a for
which (), € QF, because if (\.)m & QF, then y,, is chosen zero, and the term with o,
disappears from equation (2.46). The distribution matching can then be formulated as a
minimization problem:

N-1
.. . /

o _

qu,n.l.n.lfrgfzv/zj E 17 = sl (2.74)

k=0
subject to ¥s, > 0, Vb € {0,...,N — 1},

==

which is solved by a direct search method which does not need gradients or other derivative
information because the objective function is not differentiable.

2.5 Conclusions and related work

In this chapter we described the circulant matching method, of which the purpose is to re-
place the superposition of independent D-BMAPs by a circulant D-BMAP, which matches
the power spectrum and the stationary cumulative distribution of the input rate process
of the exact superposition. The reason why a replacement of the exact superposition is
needed, is that this exact superposition suffers from a state space explosion, which makes
that it becomes most of the time impossible to construct this superposition, not to mention
using it as input to a queueing system. The circulant matching method for D-BMAPs is
based on a component of a measurement-based tool developed by San-qi Li et al. [46] that
constructs a circulant modulated Poisson process to model a traffic stream. An impor-
tant difference with the method of San-qi Li is that he works in continuous time, while a
D-BMAP is a discrete-time model. So to replace the superposition of D-BMAPs by a new
circulant D-BMAP, we had to adapt the method for discrete time. Simultaneously, the
method was extended such that the periodicity which is present in the transition matrix
of D-BMAPs that model periodic traffic streams, and which is thus also noticed in their
superposition, is preserved.

Although the circulant matching method allows to solve some realistic queueing problems
(see for example Section 3.3 of the next chapter), it certainly is not generally usable. A first



2.5. Conclusions and related work 41

problem is in the construction of the circulant transition matrix, and more in particular
in the number of possible choices of (IV,1) that have to investigated. When the predefined
set of eigenvalues the circulant should have becomes large (say more than 10, after the
reductions we proposed), it might take a long time before a circulant with these values as
eigenvalues is found. So as mentioned already before, the circulant matching method is
only useful when all D-BMAPs in the superposition are identical, or can be divided into
a limited group of identical ones, since then many of their eigenvalues are identical. A
positive point on the other hand is that the same circulant transition matrix can be used
when considering a superposition of another number of the same D-BMAPs. The difference
will then be in the rate vector « associated with the circulant D-BMAP, not in its transition
matrix. A second possible problem is in the construction of the rate vector v when a large
part of the probability mass of the rate distribution of the exact superposition is situated at
the value zero, or very close to it, as can occur when considering the superposition of on/off
sources. In that case, it happens that no solution for the minimization problem formulated
in (2.74) exists for which all constraints are fulfilled, i.e., for which all components of the
rate vector v are positive. An example of this problem is given in Section 3.2 of the next
chapter.

Of course the circulant matching method is not the only method which tries to circum-
vent the state space explosion problem that occurs with the superposition of Markovian
sources. However, not too much literature is found about it, certainly not for discrete-time
sources, although these source models have received increasing interest with the introduc-
tion of packet-based transport protocols. An aggregation technique for the superposition
of N identical sources is proposed in [23]. The technique is based on grouping together
states of the exact superposition that are equivalent from both the total rate generated
when the source is in that state and their future evolution in the system at each transition
step. The similarity of two states in terms of their evolution is estimated by calculating the
distance between these two states, considered as N-tuples, when their elements are ordered
in lexicographic order. In [43] a method is proposed which provides an approximate so-
called ‘discrete MMPP (D-MMPP)’ for the superposition of two independent D-MMPPs.
Based on the observation that the multiplexed process has many states for which the rates
generated in that state are very close together, another D-MMPP with a much smaller
set of states is constructed, whose associated rates are spread out to cover the original
range of states. Remark however that in this method only first order statistics of the exact
superposition are matched. Second order statistics such as for example the autocorrelation
are ignored.

Most other related articles start from traffic traces and design a parameter fitting method
for continuous-time Markov modulated Poisson processes (MMPPs). One example is of
course the method behind the SMAQ tool [46], on which we based the circulant matching
method, and that was already discussed in Chapter 1. Another more recent example is
given in [86], where a technique is proposed to construct an MMPP with 2M states that
matches the autocovariance tail and the marginal distribution of the process that counts
the number of arrivals in sampling intervals. First an MMPP with 2 states is constructed
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that matches the decay of the autocovariance tail. Then an MMPP with M states is
constructed to match the distribution function. The final MMPP with 2M states is ob-
tained by superimposing these two MMPPs. Focus is in [86] on the modeling of traffic
traces exhibiting long range dependence. Although Markov models are not intrinsically
long range dependent, the MMPP is used to capture the tail of the autocovariance up to
the so-called correlation horizon, which is related to the maximum buffer size. Because
the procedure matches two statistical functions that can also be calculated from statisti-
cal functions of the individual sources in a superposition, without explicitely constructing
the superposition, the method might also be used to circumvent the state space explosion
problem.



Chapter 3

Numerical examples and applications

In this chapter numerical examples and applications of the circulant matching method are
given. In Section 3.1 we first illustrate the rather theoretical description in the previous
chapter of the different steps of the method, by commenting upon a numerical example. In
Section 3.2 the circulant matching method is applied to the superposition of M identical two
dimensional Markovian sources. For such sources it is possible to calculate exact queueing
results, by using an exact description of the superposition as input to the queueing system.
This makes a comparison between the results obtained with the constructed circulant as
input to the queueing system and the exact results possible. Moreover, a special type of
two dimensional Markovian sources, i.e., the on/off sources, allows us to demonstrate when
the circulant matching method does not perform well, or not at all. Using a Markovian
MPEG model, the multiplexing of MPEG video sources is considered in Section 3.3. In this
section the circulant matching method is applied to the superposition of a mix of two types
of these sources. We presented this application also in [89]. Based on loss results obtained
by using the circulant as input for a finite queueing system, CAC boundaries for the mix
of these two types of sources are obtained. These boundaries are then compared to CAC
boundaries that are obtained experimentally. More details about the CAC experiments
performed can be found in [1, 2]. Section 3.4 concludes this chapter.

3.1 An illustrative example of the circulant matching
method

The objective of this section is to illustrate the theoretical description in the previous
chapter of the different steps of the circulant matching method by an example. A circulant
D-BMAP (Qp)k>o is constructed which matches the superposition of A/ = 50 identical
D-BMAPs (Dy)i>0. Remark that no concrete application is hidden behind the D-BMAP
(Dy)k>o that is used, it is purely chosen to be small enough to write down and large enough
to be periodic and have different types of eigenvalues, such that the different aspects of

43
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the method can be illustrated by it.
Consider the D-BMAP (Dy)k>o with as transition matrix

o0 0 AO® o0
D=) kD= 0 0 AO], (3.1)
k=0 A® 0 0
where
0.3 05 0.1 0.1 0 02 01 04 03 0
0. 0 0.2 04 03
01 01 01 09 05 0.5 02 01 0 0.2
AO = | 75 T L AM =103 05 0 01 01],

0.1 0.1 0.1 0.1 0.6

02 02 0 03 0.3 02 05 01 0 0.2

0.1 0.2 0.1 0.5 0.1

03 02 02 0.1 0.1 0.1
01 02 03 03 01 0

and A®=1[02 0 01 03 02 02]. (3.2)
02 03 03 01 0 01
04 02 0 01 0 03

First remark that D is irreducible and periodic with period d = 3. Its stationary distribu-
tion is given by

m = (0.0833 0.0614 0.0570 0.0600 0.0257 0.0459 0.0466 0.0617
0.0609 0.0930 0.0712 0.0820 0.0924 0.0412 0.0294 0.0884). (3.3)

The matrices Dy, k£ > 0, are not explicitely written out here, but they are such that

I‘:Zkae:(l.Q 1 1 13 08 1 16 1.3 14 1 1.3
k=1 21 1.9 22 19 1.8)7. (3.4)

Then

El(k)]=nT == i kDje = /1y = 1.4416. (3.5)

k=1

The position of the 16 eigenvalues of the matrix D in the complex plane is shown in
Figure 3.1. Because under a rotation of the plane by 27 /3 this set of eigenvalues needs to
go over into itself, and because the dimension of D is not a multiple of three, its period,
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* eigenvalues

Imaginary
o

E

_l L L ) L . i . L . L L
-1 -0.75 -05 -0.25 0 0.25 0.5 0.75 1
Real

Figure 3.1: Position in the complex plane of the eigenvalues of the transition matrix D.
This set of eigenvalues goes over into itself under a rotation of the plane by 27/3.

one of the eigenvalues needs to be zero. The eigenvalues of D that are different from
zero contribute to the power spectrum P(w) of the D-BMAP (Dy)x>0, each by a term
determined by that eigenvalue and a corresponding ;. The eigenvalues different from zero
are:

Ao 1 As Ao —0.5 + 0.8660i
A 0.3586 A6 A —0.1793 + 0.3106i
Ao | = 0.2035 oAM= X ]e=|-01018+0.1762i |,
A3 0.1244 + 0.1236i g A3 —0.1692 + 0.0460i
M\ 0.0448 + 0.1696i Ao A\ —0.1692 — 0.04604
Ao Ao —0.5 — 0.8660i
A1 Al ~0.1793 — 0.31064
and | A | =X | = ]-0.1018-0.1762i |, (3.6)
A3 A3 0.0448 — 0.1696i
A4 A\ 0.1244 — 0.1236i

where ¢ = e’3' and the eigenvalues are ordered in such a way that all \;, 0 < ¢ < 4, have
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- - R[0] and eigenvalue 0, 5 and 10
eigenvalue 1
—— eigenvalue 2
-~ eigenvalue 3 and 14
- eigenvalue 4 and 13
—— eigenvalue 6 and 11
_| —— eigenvalue 7 and 12
= eigenvalue 8 and 9
= powerspectrum (all eigenvalues)

0.1

0.08f .

0.06

0.04

0.02
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O,

-0.02[7""
-0.04
-0.06F 7

-0.08

-0.1 . . ‘
-pi —pi/l2 0 pir2 pi
omega

Figure 3.2: Contribution of the different eigenvalues of the transition matrix D to the
continuous part of the power spectrum.

o

o[ The corresponding ¢/;’s have the following values:

their argument in [0,

(o ... 14) =(2.0783 0.0023 —0.0110 0.0043 + 0.0043i
—0.021540.0043: — 0.0350 + 0.0607: — 0.0017 — 0.0010z 0.0171 — 0.0102
0.0039 + 0.0027: 0.0039 — 0.0027: — 0.0350 — 0.0607z — 0.0017 4 0.0010z
0.0171 4+ 0.0102¢  — 0.0215 — 0.0043; 0.0043 — 0.0043:). (3.7)

Notice that the 1;’s corresponding to conjugate eigenvalues are also conjugate, and that
the 1;’s corresponding to the eigenvalues with modulus one have the same argument as
their corresponding eigenvalue.

Figure 3.2 shows the contribution of the different eigenvalues of D to the continuous part
of the power spectrum, and also the continuous part of the power spectrum itself, which
is the sum of all contributions. Remark that as in equation (2.26), the contribution of a
non-real eigenvalue and its conjugate are taken together. Also all contributions which are
constant (i.e., not dependent on w) are taken together. The eigenvalues Ay, A5 and Aqg
contribute also to the discrete part of the power spectrum.

The idea is now to look for a circulant Q of period d = 3 which has among its eigenvalues
all eigenvalues of D (except 0, since 0 does not contribute to the power spectrum). From
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Section 2.4.1 it is known that it suffices to look for a circulant, with (ao aN_l) as
first row, where N is a multiple of d = 3 and where only aq, a4, az7,...,ay_o are free to
take values different from zero, that has all predefined values of a vector Ap as eigenvalues.
Because from all eigenvalues of D with argument in [0, 25[ the value 0.1244+0.1236¢ equals

the complex conjugate of (0.0448 + 0.16962')6%, after performing all reductions of the size
of Ap as proposed in Section 2.4.1, Ap contains the elements

Ap = (1 0.3586 0.2035 0.0448 + 0.1696%) . (3.8)

From Section 2.4.1 it is also known that the minimal dimension for a circulant with these
predefined values as eigenvalues is 18. There indeed exists a circulant of dimension 18
which has the values in Ap as eigenvalues, i.e., the circulant with first row (ag .. a17),
where ay = 03033, ay = 01965, ar = 00078, ayg = 01465, a3 = 00871, a1g = 02588,
and all other a;’s equal to zero. From property 2.2.1 it is known that the circulant is
1rredu(:1ble and from property 2.2.3 it is seen that the circulant has period d = 3. Denote
c=e7s. The eigenvalues of the circulant are then given by

()\c)l = alcl + a4c4l + a7c7l + alole + 013C13l + a160161, (39)
where 0 < [ < 17. By construction,

()\c)(l+mk) mod 18 — CMk()\c)la (310)

where k£ = 18/d =6 and m € {0,...,d — 1}. Thus, the eigenvalues of Q are:

(Ac)o 1 (Ae)s (Ae)o —0.5 + 0.8660i
(A1 0.3586 (Ae)7 (Ae)r —0.1793 + 0.3106i
(Ac)2 | _ | 0.1244 +0.1236: M)s | [ Qa2 | 6 | —0.1692 + 0.0460i
(A)s | — | —0.1018 — 0.1762i | ° Ade | T 10w € 7 0.2035 ’
(Ae)4 0.0448 + 0.16964 (Ae)10 (Ae)a ~0.1692 — 0.04604
(Ae)s —0.1793 + 0.3106: (Ae)11 (Ae)s —0.1793 — 0.3106i

(Ae)o —0.5 — 0.8660i

(Ae) —0.1793 — 0.3106i
(Ae)a | 1o | 0.0448 — 0.1696i
As | © 7
(A)

12
c)13

)
)
c)l
)
)

Cc Cc

S
—

15 —0.1018 + 0.17622 (3.11)

c)16 cl4 0.1244 — 0.12362
)17 (Ae)s 0.3586

As can be seen, the circulant has all values of Ap as eigenvalues, but also all other eigen-
values of D (except 0). The complex conjugate of a value ().); is found as (Ac)(15—5) mod 18-
Remark that since a circulant exists with the minimal dimension possible to have the val-
ues of Ap as eigenvalues, the circulant has no other eigenvalues than values which are also
eigenvalues of D. When no circulant of dimension 18 would exist which has the values of
Ap as eigenvalues, or when we would search for a circulant of a higher dimension than the

w

Cc Cc

(A
(A
(A
and ()
(A
(A



48 3. Numerical examples and applications

minimal one, @Q would have also other eigenvalues than these of D. Remark that until now,
the information about the number M = 50 of D-BMAPs (Dy);>o in the superposition was
never used. So the same circulant transition matrix can be used in the matching of the
superposition of another number of D-BMAPs (Dy)j>0.

The next step is to fix the y;’s corresponding to the eigenvalues (\.); of the circulant,
in such a way that the power spectrum of the circulant matches the power spectrum of
the superposition of 50 D-BMAPs (Dy),>o. First the discrete part of the power spectrum
is matched. For the superposition, this discrete part is given by (see equations (2.26)
and (2.50))

50007 1pd (w) + 1007|9)5| (§(w — 27/3) + 0(w + 27/3)), (3.12)
while that of the circulant is given by (see equation (2.40))
27 x00 (w) + 27 X6 (6 (w — 27/3) + 270 (w + 27/3)) . (3.13)

So when choosing xo = 2500y = 5.1957 x 10* and xs = 50[5] = 3.5025, the dis-
crete parts of both power spectra match exactly. By definition, also yio is now fixed:
X12 = X6 = 3.5025. In case that the circulant would have also other eigenvalues than these
in Ap, their corresponding y-values would be set to zero. To match the continuous parts
of both power spectra, the nonnegative least square algorithm is used (cfr. Section 2.4.1).
Combining the output of this algorithm with the y,’s already fixed results in the following
values for the y;’s:

(xo .- X17):(5.1957><103 0 0 0 0.0163 0.3292 3.5025 0.3292
0 0 0 03292 3.5025 0.3292 0.0163 0 0 0). (3.14)

Remark that y;’s corresponding to conjugate eigenvalues are forced to be equal, i.e.,
Xj = X(18-35) mod 18-

The power spectra are now matched. From the resulting circulant D-BMAP (Qy)s>0, the
transition matrix Q is already known. The vector =, which should equal the input rate
vector I'. of the circulant D-BMAP, and which is needed to completely describe it, is still
missing and is obtained now by matching the stationary cumulative distribution of the
input rate process of the circulant with that of the superposition. During this matching,
it should be taken into account that the components 7, of v depend on the x;’s, which are
already fixed:

8
2
Y = v/Xo + 2 Z Xm €0 (uy, — %tm) + /X9 cos(ag — 7t), (3.15)
m=1

where /Xo = v/(¥c)o = ®.L. = m.y, and /xo = 501/¢g, so the mean input rate of

the circulant is also already fixed, and equals the mean input rate of the superposition.
Remark that in equation (3.15), only the a,,’s are still free variables (more in particular,
oy, as, ag and az, since for other m’s the x,, is zero).
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Figure 3.3: Stationary cumulative distribution of the input rate process of the superposi-
tion, together with its rediscretized version. Rediscretization is done such that all steps
have a height of 1/18.

Because 7, = (1/18 o 1/18), ~ is an equal probability vector. So F'(z), which is the
stationary cumulative distribution of the superposition, should first be rediscretized such
that its range is partitioned into N equal probability rates. F(z) is obtained as

50 50
F(z) = Z 7, where wF = ®ﬂ., and T* = @1“, (3.16)
i=1 i=1

<z

and is shown in Figure 3.3, together with its rediscretized equivalent. Remark that in the
figure F'(z) is plot as a continuous function for the sake of clearness, but of course it is also
a discrete staircase function, although one with many small steps. The partitioned range
of I'*, sorted in ascending order, is

(v, ... ~.,)=(66.3486 68.0841 68.9373 69.5737 70.1103 70.5886
71.0252 71.4442 71.8532 72.2575 72.6674 73.0899 73.5358 74.0240
745741 752361 76.1280 77.9869). (3.17)

When solving the minimization problem formulated in equation (2.74), the following values
are found to minimize the goal function: a4y = —0.2822, a5 = —2.8825, ag = —10.9887,
and a7 = —0.7469. The resulting rate vector - is then

y=(v ... mr7) =(72.0336 74.0654 70.6549 71.4404 74.0062 70.7135
71.5844 74.8095 68.6273 72.5679 76.5514 66.5414 72.5486 77.1326
67.2766 72.1583 75.4499 69.3037), (3.18)
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between both sequences is 0.48, which gives
a relative difference of 9.22 x 10°.

which finalizes the circulant matching process. The result is a circulant D-BMAP (Qj)x>0.
where the matrices Qy, are constructed from a = (ao a17) and - as in equation (2.31).
This circulant D-BMAP, which has by the matching a similar autocorrelation sequence
and stationary cumulative distribution as the input rate process of the superposition of
50 D-BMAPs (Dy)g>0 (see Figures 3.4 and 3.5), can be used as a tractable replacement of
this superposition.

3.2 Superposition of two dimensional MMBP sources

In this section the circulant matching method is applied to the superposition of M identical
two dimensional Markov modulated Bernouilli arrival processes (MMBP). A first motiva-
tion for this is validation: because such a source has only two states, there exists an exact
method without state space explosion to describe the superposition of M identical MMBP
sources. So queueing results with the exact superposition as input traffic on one hand, and
the circulant that approximates the superposition on the other hand, can be obtained and
compared. A second motivation is that a Markovian on/off source is a special case of a two
dimensional MMBP, and with on/off sources a situation for which the circulant matching
method does not work well, or does not work at all, can be illustrated.
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3.2.1 Markov modulated Bernouilli sources

Consider a discrete-time Markov chain with transition matrix D. When this chain is in
state 7, an arrival is generated according to a Bernouilli distribution with parameter p;, i.e.,
with probability p; an arrival occurs, and with probability 1 — p; no arrival occurs. Hence,
this arrival process is similar to a Bernouilli arrival process, but the arrival probability is
modulated by the state of a discrete-time Markov chain. Such an arrival process is called
a Markov modulated Bernouilli process (MMBP).

In this section only two dimensional MMBPs are considered. Denote by a the probability
that the source makes a transition from the first state to the second state, and by [
the probability that it makes a transition from the second to the first state. A D-MAP
description of this source is then

(1 =a)(1—py) a(l —py) (1= a)p ap,
D, = ( B(1—ps) (1-5)1 —p2)> ., Dy = ( Bps (1—- ﬁ)m) , (3.19)

and D = Dy + D;. The stationary distribution of this source is given by
m=(8/(a+ ) o/(a+pB)), and its mean arrival rate by A = wDye = (8p;+aps)/(a+p).
Remark that the durations that the source stays in a state are geometrically distributed,
with mean 1/« for the first state, and 1/ for the second state.

When one of the parameters p; or py equals zero, the MMBP source is an on/off source.
Suppose that p, = 0. When the source is then in the second state, it is ‘off’ or ‘silent’, i.e.,
no arrivals are generated. When the source is in the first state, it is ‘on’ or ‘active’.

3.2.2 Superposition of two dimensional MMBP sources

As for every D-BMAP, the exact superposition of M identical two dimensional MMBP
sources that are described by the D-MAP (Dg, D,), is given by the D-BMAP with 2
states obtained from the matrices Dy and D; as described in Section 1.2.3. However,
because each source has only two states, also the D-BMAP (Sy)o<x<y with M + 1 states,
in which a state 2, 0 < ¢ < M, corresponds to the fact that ¢ sources are in the first
state (and thus M — i sources are in the second state) can describe the traffic generating
process of the superposition. The elements S;; of the transition matrix S describe the
probability of making a transition from a situation in which 7 sources are in the first state,
to a situation in which j sources are in the first state. When the number of sources that
stay in the first state is denoted by [, which then implies that ¢ —[ sources make a transition
from the first to the second state, while 5 — [ of the sources that are in the second state
transit to the first state, and thus M —i — j +1 of the sources stay in the second state, S; ;
is obtained as follows:

min{i,j} ; . M—i ' o
so= > (Jo-are (V) pa- g 320

l=max{0,i+j—M}
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Type | a 3 » Do mean sojourn | mean sojourn | mean arrival
time in state 1 | time in state 2 rate A
A 1/25 | 1/50 | 1/30 | 1/40 25 50 1/36
B 4/25| 1/50 | 1/8 | 1/64 25/4 50 1/36
C 1/75 | 1/150 | 1/30 | 1/40 75 150 1/36
D 2/25 | 1/100 | 1/8 | 1/64 25/2 100 1/36

Table 3.1: Parameters and characteristics of the MMBP sources used in Section 3.2.4.

When a source is in the first state, it generates an arrival with probability p;, while when
it is in the second state an arrival is generated with probability p,. So when ¢ sources are
in the first state, then m € {0, ..., ¢} arrivals from sources that are in the first state occur
with probability (;)prln(l —p1)™™, while n € {0,..., M —t} arrivals from sources that are
in the second state occur with probability (Mnft)pg(l — po)M =71 such that

min{i,k}

D

l=max{0,k—M+i}

1 i (M —1 _ e
(S = ()= () )a sy, e

3.2.3 Circulant matching of two dimensional MMBP sources

Because a transition matrix has 1 as eigenvalue, and because the sum of the eigenvalues
of a matrix is equal to the sum of the diagonal entries of that matrix, the two eigenvalues
of the transition matrix of a two dimensional MMBP source are 1 and 1 — o — 3. For the
same reasons the two dimensional circulant with (1 — (a+ 3)/2 (a+ ()/2) as first row
has these values as eigenvalues. So there always exists a two dimensional circulant with the
same eigenvalues as a two dimensional MMBP. However, using a two dimensional circulant
to replace the superposition of such sources would imply that the stationary cumulative
distribution of the input rate of the superposition should be rediscretized using two values
of probability 0.5, which obviously would result in a very bad description of the cumulative
distribution. So a circulant of a higher dimension should be taken. In the remainder of
this section, circulants of size 25 are used.

3.2.4 Numerical examples

Consider the superposition of 30 identical MMBP sources with parameters and charac-
teristics as mentioned in Table 3.1. Figures 3.6 and 3.7 compare the distributions of the

system lengths when the D-BMAP/D/1/K queues are considered with as input D-BMAP
either

e the D-BMAP (Si)o<k<m as defined by equation (3.21), which gives an exact descrip-
tion of the traffic generated by the superposition, or
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match of 30 type A or type B sources. match of 30 type C or type D sources.

e the circulant D-BMAP constructed by the circulant matching method which approx-
imates the superposition.

For the scenarios with sources of type A or C, a system capacity K = 75 is used, while for
the other scenarios K = 150 is used. Although all types of sources were chosen to have
the same mean arrival rate A = 1/36, such that 30 sources generate in all cases a load of
83%, the traffic generated by sources of type B and D is more bursty, since when they are
in the first state, these sources generate arrivals at a considerable higher average rate than
the type A or type C sources ever do. So for scenarios with type B or D sources, a larger
queue is needed to accommodate these bursts.

As can be seen from the Figures 3.6 and 3.7, the system length distributions obtained with
the circulants as input match the system length distributions obtained when the exact
superpositions are used as input rather well. The figures also illustrate something else.
First remark that the input rate distribution of a source of type A is the same as that of a
source of type C, and ditto for sources of type B and D. In particular: 1/30 with probability
1/3 and 1/40 with probability 2/3 for sources A and C, and 1/8 with probability 1/9 and
1/64 with probability 8/9 for sources B and D. For sources of type A and type C the
system length distributions are almost the same, but for sources of type B and D there is
a considerable difference (remark that Figures 3.6 and 3.7 have a different range on the
Y-axis): with sources of type D the probability that the system length takes a certain value
is larger for most values. Although sources of type B and D generate traffic at the same
rates when they are in the first or second state, sources of type D stay for longer periods
in the same state, thus also in the first state where traffic is generated at a higher rate,
such that the traffic of source D is more bursty. So sources B and D are nice illustrations
of the fact that when a matching method would only take first order characteristics of the
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Type N 3 . mean on | mean off | mean arrival

duration | duration rate \
1 1/25| 1/50 | 1/12 25 50 1/36
2 1/25| 1/200 | 1/4 25 200 1/36
3 1/25 | 1/650 | 3/4 25 650 1/36
4 1/75 | 1/150 | 1/12 75 150 1/36
5 1/75 | 1/600 | 1/4 75 600 1/36
6 1/75 | 1/1950 | 3/4 75 1950 1/36

Table 3.2: Parameters and characteristics of the on/off sources used in Section 3.2.4.
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Figure 3.9: System length distribution for
the exact superposition and for the circulant
match of 30 type 1 or type 2 on/off sources.

input rate process into account, its result might badly reflect the queueing behavior of the
sources it replaces.

Consider now the superposition of 30 identical on/off sources with parameters and char-
acteristics as mentioned in Table 3.2. Again it is easily seen that for example a source of
type 2 or a source of type 4 is more bursty than a source of type 1. Figures 3.8 and 3.9 show
the system length distributions obtained with the D-BMAP/D/1/K queues, again when
the input is either the exact superposition, or the circulant match of the superposition.
For sources of type 1, 2, 4 and 5 respectively, the system size K is chosen equal to 150,
200, 300 and 600 respectively.

Remark that no queueing results are shown for sources of type 3 or 6. The reason is
that for these types of sources, the circulant matching method does not find a solution.
More in particular, no solution exists for the minimization problem (2.74) such that all
conditions are fulfilled, i.e., such that all components of the input rate vector « of the
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circulant D-BMAP are positive. An explanation for this has to be found in the fact that
the input rate distribution of an on/off source takes two values: p; and 0, with probabilities
B/(a+ 3) and a/(a+ 3). So the input rate distribution of the superposition of M on/off
sources then takes M +1 values, i.e., 0, p1, 2p1, ..., Mp;, where the probability that it takes
value 0 is given by (a/(or+ 8))™. The larger this probability, the more components of ~
have to lie ‘close to zero’. But there are less values that lie close to zero than to another
value, since negative values are not allowed. All on/off sources struggle with this problem,
but for sources of type 3 and 6 the probability that the input rate takes value 0 is so
large, i.e., 0.32, that this causes the matching of the input rate distribution to fail. For the
other types of on/off sources considered, a solution exists, but the input rate distribution
of the resulting circulant is certainly no perfect match of that of the superposition, which
explains why the match between the system length distributions is not very well. For
a superposition of 30 sources, the matches maybe are not too bad, but when decreasing
the number of sources, the matches become much worse, because then the probabilities
(a/(a+ B))™ become larger. An example of this is shown in Figure 3.10 for 20 sources of
type 1.

When considering the match of the autocorrelation sequence for the scenario with 20 type 1
on/off sources, the match can be considered as perfect: both the largest absolute and rela-
tive differences between both sequences are smaller than 10~'*. This illustrates that when
a matching method would only take a second order characteristic (e.g., the autocorrela-
tion sequence) into account and neglects the first order distribution, its result might badly
reflect the queueing behavior of the sources it replaces. This fact is illustrated more exten-
sively in [40]. This article explores the variations in the mean queue length when arrival
processes with the same mean and autocorrelation function are applied to a ./D/1 queue.
It is observed that the mean queue length can vary substantially, so the behavior of a queue



56 3. Numerical examples and applications

cannot be predicted solely based on the mean and autocorrelation function of its arrival
process.

3.3 Multiplexing MPEG video sources

In this section, the circulant matching method is applied to the superposition of an MPEG
source model developed by B. Helvik in [42]. We extensively used this model in a series
of connection admission control (CAC) experiments performed at the ATM' testbed in
Basle, Switzerland. These experiments were carried out within the EXPERT project [47]
of the European telecommunications research program ACTS. Because CAC experiments
are in fact multiplexing experiments, a comparison between the experimentally and the
theoretically obtained results is possible.

3.3.1 MPEG encoding and the MPEG model of Helvik

Due to the high bandwidth needs of uncompressed video data, several video encoding
algorithms were developed to compress this data. A widely used coding scheme that is
independent of a particular application is MPEG (Moving Picture Experts Group) [67].
Several MPEG schemes exist: MPEG-1, MPEG-2 and MPEG-4. The scheme that is dealt
with here is MPEG-1.

The MPEG compression algorithm reduces both spatial and temporal redundancy of a
video data stream, thereby generating three different frame types of a constant dura-
tion: I-frames, P-frames and B-frames. In all three frame types, spatial redundancy is
removed. I-frames or intrapictures are typically the largest of the three frame types, since
only intra frame encoding is used, i.e., only spatial redundancy is removed. P-frames or
predicted pictures have also temporal redundancy with reference to the previous I-frame
or P-frame removed. P-frames are typically the second largest. B-frames or bidirectional
pictures provide the highest amount of compression since they have temporal redundancy
with reference to both the previous and the next I-frame or P-frame removed. After the
compression, the frames are mostly arranged in a periodic deterministic sequence, e.g.,
‘IBBPBBPBBPBB’. One such sequence is referred to as a group of pictures (GOP).

Following the standardization of the MPEG algorithm and its wide acceptance, researchers
started investigating the characteristics of MPEG coded video traffic and developing source
models specific to this type of traffic. The result is a wide variety of models (see for example
[49] and the references therein). One of these models is the MPEG model of Helvik [42],
which is especially designed for the type of traffic generator available at the EXPERT

'ATM stands for asynchronous transfer mode, and is a connection-oriented packet switching transfer
mode based on asynchronous time division multiplexing. It uses fixed length packets of 53 bytes (48 bytes
payload + 5 bytes header), called cells, to transport traffic. An important property of ATM is its notion of
quality of service (QoS). The QoS parameter that is considered in this section is the cell loss ratio (CLR),
the ratio of lost cells to the total number of transmitted cells. We come back to some aspects of ATM in
the second part of this thesis, but much more information about it can be found in for example [24].
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Figure 3.11: Structure of the MPEG model proposed by Helvik.

testbed.

The Helvik model is a periodic Markovian model at the MPEG frame level. Its transition
diagram is shown in Figure 3.11. State sojourn times are deterministic, with as length
a frame duration. With each state a (mean) load is associated. As can be seen from
Figure 3.11, the Helvik model is level-oriented. A level ¢ models the activity of the MPEG
source when the sum of the loads generated by the B-frames and P-frames of a GOP
is between two values [; and l;;y. Because of the variation in the loads produced by
the different frames in a GOP, a smooth transition over the frames cannot be assumed.
Therefore, within each level of the model the I-frame, B-frame and P-frame activities are
modeled. For the B-frames and P-frames a single state is used. As the I-frames are the
largest, they are modeled in more detail using multiple states. For further details about
the Helvik model, we refer to [42].

The parameters of the Helvik model, i.e., the different load level intervals [l;,[;11[, the
transition matrix H = (h; j), where h;; describes the probability of going from level i to
level j, and the load that is associated with each state, are obtained from MPEG frame
size data. Details about how this is done can also be found in [42]. First one has to
decide how many levels L and how many I-states N per level to use. This decision is
a trade-off between the model accuracy and the number of states ‘budget’. When M
denotes the number of frames in a GOP, the number of states in the Helvik model is
given by (M — 14 N)L. The two Helvik sources that are used further on are based
on frame size trace data of the James Bond movie ‘Goldfinger’ (referred to as ‘bond’),
and on a trace of an Asterix cartoon (referred to as ‘asterix’). These are two of the
many MPEG-1 frame size traces made publicly available by the University of Wiirzburg
at http://nero.informatik.uni-wuerzburg.de/MPEG/. The GOP pattern of these traces
is IBBPBBPBBPBB’, such that the parameter M of the Helvik model equals 12. Each
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trace consists of 40 000 frames, which corresponds to approximately half an hour of video.
The duration of a frame is 45 ms?. The Helvik source bond is implemented with five load
levels, and two I-states per level, such that it is a 65 state model. The asterix source is
also implemented with two I-states per level, but now four load levels are used, such that
it has 52 states. With this number of states, we were able to multiplex both models in one
traffic generator, without exceeding the upper limits of what the equipment can handle.

3.3.2 Experimentally obtained CAC boundaries

Connection admission control (CAC) is the traffic control function which has to determine
whether a new connection setup request can be accepted or should be rejected. This deci-
sion is based on the constraint to meet the negotiated quality of service (QoS) requirements
of all existing connections as well as that of the new connection. Besides this basic func-
tion of CAC, there is the secondary goal to maximize the system utilization by allowing
for a statistical multiplexing gain, i.e., an efficient CAC method should accept as many
connections as possible without violating any QoS guarantees.

Experimental multiplexing results were obtained in the EXPERT project by using a traffic
generator and analyzer instrument, called ATM-100, which gives the possibility to generate
and analyze quite general random traffic. The ATM-100 is equipped with a traffic generator
module that is used for generating the artificial MPEG traffic. The periodicity of the
traffic is compromised in the sense that the duration in the individual states of the Helvik
model is assumed exponential instead of constant, which is a requirement if more than one
MPEG source is to be generated by the traffic generator. This traffic is then multiplexed
on the output port of a Fore ASX-200 ATM switch with a buffer of 100 cells, or on an
output port of a Cisco LS1010 ATM switch with a buffer of 256 cells. Due to hardware
constraints in the traffic generator, a pacing function has been used to limit the output port
capacity to 37.44 Mbit/s, thereby reducing the number of sources required to adequately
load the system. The aggregate traffic stream is then analyzed in the ATM-100 analyzer
module, which permits cell loss measurements. CAC boundaries are obtained from these
multiplexing experiments by changing the traffic mix until a cell loss ratio (CLR) below,
but as close as possible to a fixed value is obtained. All CAC boundaries were obtained
with a target CLR of 10~*. More details about the experimental setup are given in [1, 2].

2Remark that originally on the website where the MPEG traces are made available, it was mentioned
that “the capture rate of the video system was between 19 and 25 frames per second”. Since it was not
clear what the exact capture rate for each of the traces was, Helvik used in [42] the average of these two
numbers, i.e., 22 frames per second, resulting in a frame time of 45 ms. In the experiments, we adopted
this number. Later on, this indistinctness was clarified, and now it is mentioned that “the capture rate of
the video system was 25 frames per second”, so resulting in a frame time of 40 ms. Since all experimental
results were obtained assuming that a frame time has a duration of 45 ms, also the theoretical results are
generated based on this assumption.
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3.3.3 Theoretically obtained CAC boundaries

The Markovian MPEG model of Helvik is mapped onto a D-BMAP (Dy)>o in a rather
straightforward way. The transition matrix D is easily read from the transition diagram
shown in Figure 3.11 and from the values in the matrix H, which describes the transition
probabilities among the different levels of the Helvik model. The transition matrix of the
D-BMAP has period 12, due to the periodic GOP structure in the MPEG traces and in
the Helvik model. For each state, the Helvik model gives the number of bits that should be
generated during the time that the model is in that state. First this number is transformed
from bits into cells ([number of bits / (8 x 48)]). When for a certain state 7 this results in
y; cells, then Yk > 0 and Vj, (Dy);; is defined as

D, ifk=y
D) = 4 b 3.22

(Dw)i { 0 otherwise. ( )
Based on the parameters of the Helvik sources, a D-BMAP for the bond and the asterix
sources can thus be constructed.

To obtain results comparable with the experimental results, a superposition of these
D-BMAPs should be offered to a single server queueing system. This system should have a
finite buffer capacity of 100 or 256 cells and a deterministic service time equal to the time
needed to place one cell on a link of 37.44 Mbit/s (call this time a slot).

Because of the size of the bond and asterix D-BMAPs, i.e., 65 or 52 states, it is obviously
that the exact superposition of these sources cannot be used (a superposition of two of such
sources has already 4225 resp. 2704 states). So the circulant matching method is applied
to these sources, resulting in a circulant D-BMAP (Qj)x>0. For a superposition of asterix
or bond D-BMAPs, the resulting circulant has 132 states. For a superposition of bond and
asterix sources, the result is a circulant of dimension 276. These dimensions stay the same
irrespective of the number of sources that is multiplexed, the differences are in the rate
vector =y of the circulant D-BMAPs.

Since the Helvik model is a model at the MPEG frame level, the underlying time unit of the
circulant D-BMAP (Qj)k>o is also a frame time, or 45 ms. Because the circulant D-BMAP
will be used as input to a queueing system with a constant service time of one slot, it has
to be transformed into a D-BMAP with one slot as underlying time unit. Suppose that the
state sojourn time of this new D-BMAP is geometrically distributed with mean x, where
x is the number of slots in a frame time. Then p = 1 — 1/x is the probability of staying in
the same state after one slot. Transform the circulant D-BMAP (Qy)x>o into the circulant
D-BMAP (Rj)k>o with one slot as underlying time unit, by defining the elements of its
transition matrix R as

1— o if 1 # 7,

Rij = {( Py o 7&‘7. (3.23)
P if i = 7.

Remark that the periodicity of the input traffic is in this way compromised in a similar way

as in the experiments, and that the matrix R is stochastic, since for all 7, Q;; = 0, because
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boundary with a buffer capacity of 100 cells. boundary with a buffer capacity of 256 cells.

Q is periodic. Construct a vector 4 from the rate vector v = > -, kQie by dividing all
its elements by x, i.e., 4, = +,/x. The matrices Ry, are then obtained from R and 4 as in
(2.31).

By using the D-BMAP (Ry);>o as input for the D-BMAP/D/1/K + 1 queueing system,
where K = 100 or K = 256, and calculating the cell loss probability for this system
using formula (1.13), theoretical CAC boundaries can be obtained in a similar way as the
experimental CAC boundaries, i.e., by changing the traffic mix until a CLR below, but as
close as possible to 107 is obtained.

3.3.4 Numerical results

All results presented here are obtained with the values already mentioned before: a buffer
capacity of 100 or 256 cells, an outgoing link of capacity 37.44 Mbit/s, which implies that
one slot equals 11.325 ps, and a target CLR of 10~*. Figure 3.12% shows results for the
buffer of 100 cells, Figure 3.13 for that of 256 cells. If the theoretically and experimentally

3Remark that this figure is also shown in [89], but that the theoretically obtained results shown now
are slightly better than these shown in [89]. The reason is that when we generated the results of [89], the
minimization problem (2.74) of the circulant matching method was implemented using the MATLAB func-
tion fmins, which uses the Nelder-Meade simplex method [78]. Because fmins implements unconstrained
minimization, while we require that all components of the rate vector are positive, we adapted this method
as suggested in [78] for constrained optimization: we let the goal function take a large positive value when
a component of the rate vector is negative. Later we had access to the MATLAB optimization toolbox,
in which the function fmincon, which finds the constrained minimum of a function of several variables, is
available. It is this function that is used to generate the results shown in Figure 3.12.
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obtained points shown in the figures are compared, it is seen that the theoretical results
are more conservative than the experimental results, with a larger deviation if the num-
ber of asterix sources grows. For the D-BMAPs of the MPEG sources, the parameters
as obtained from the Helvik model are used, which gives rise to a mean arrival rate of
58.1812 cells/45 ms, or 0.54820 Mbit/s for the asterix source, and 63.3247 cells/45 ms or
0.59666 Mbit/s for the bond source. If the Helvik sources are implemented in the traffic
generator however, their parameters are automatically slightly changed to adapt them to
the hardware limitations of this device. Depending on the number of sources generated,
these changes may become more important. The first limitation is that only transition
probability values in integer multiples of 1/256 are allowed. Secondly, the peak rate gener-
ated in a state of the model must divide the link rate, such that in a state the interarrival
time between cells is always the same integer number of slots. As a result, the mean arrival
rate for an experimental asterix source is 0.51318 Mbit/s, and 0.59221 Mbit/s for a bond
source. The experimental model for the asterix source thus generates 0.03502 Mbit/s less
than the theoretical model, which means that for a certain experimental point the corre-
sponding theoretical CLR is worse, depending on the number of asterix sources used. This
explains partially why the theoretical CAC boundary lies below the experimental one, with
a larger difference when more asterix sources are involved. Analogue observations are made
in [2] when the experimental results are compared with results obtained by simulation.

3.4 Conclusions

Numerical examples and applications of the circulant matching method were described in
this chapter. A first application discussed in Section 3.2 is the superposition of M identical
two dimensional MMBP sources. For these types of sources, it is possible to compare the
system lengths obtained when using the circulant approximation of the superposition and
the exact superposition as input to a queueing system, because the exact superposition of
M identical two dimensional sources is also exactly described by an (M + 1)-dimensional
Markov source. First general MMBP sources are considered, and the system length dis-
tribution obtained with a circulant as input matched the exact system length distribution
rather well. Then a special type of MMBP sources is considered, namely on/off sources.
For these type of sources the agreement between the system length distribution obtained
with the circulants as input and the exact distribution is bad. The reason is that the rate
distribution of the circulant very badly matches that of the exact superposition, because
a large part of the probability mass of the rate distribution is located at rate zero. The
same fact sometimes even causes the circulant matching method to fail in finding a valid
rate distribution for the circulant. Using the two dimensional sources it is also illustrated
that it is necessary for a matching method to take both first and second order statistics of
the arrival process into account, since when considering only one of both, the result of the
matching process might badly reflect the queueing behavior of the sources it replaces.

A second application, considered in Section 3.3, is the superposition of a periodic MPEG
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source model. Using the circulant matching method, we obtained a theoretical CAC bound-
ary for a mix of two types of MPEG sources. Remark that due to the dimension of the
MPEG source models (52 and 65 states) and the realistic number of such sources consid-
ered, it is impossible to obtain the exact queueing results using the exact superposition.
So we compared the theoretically obtained results with experimentally obtained results.
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Chapter 4

Introduction

In the late 1980s, the asynchronous transfer mode (ATM) [24, 80] was developed in or-
der to provide a network that was capable of handling a virtually unlimited range of
user applications independent of their bandwidth requirements. The major organizations
responsible for developing standards and specifications for ATM are the ITU-T (Inter-
national Telecommunications Union-Telecommunication Standardization Sector) and the
ATM Forum. ATM is a fast connection-oriented packet switching transfer mode based on
asynchronous time division multiplexing. It uses fixed length packets of 53 bytes (48 bytes
payload + 5 bytes header), called cells, to transport data. Based on some information in
the header of each cell, cells belonging to the same virtual channel (VC) can be identified.
Cell sequence integrity is preserved per VC.

When ATM came on the scene, it was thought to be the beginning of a new era in net-
working, because it was both a local area network and a wide area network technology
that could start at the desktop. In addition, ATM’s ability to provide end-to-end quality
of service (QoS) was highly praised. However, ATM never became the magic end-to-end
solution. But it has been successfully deployed in the backbone network, because of its
ability to provide QoS. The ATM framework for providing QoS guarantees is described in
the ATM Forum’s Traffic Management Specification [5]. Different ATM service categories
and traffic control functions which relate traffic characteristics and QoS requirements to
network behavior have been defined.

Four service categories are intended for non-real-time data traffic: non-real-time variable
bit rate (nrt-VBR), available bit rate (ABR), unspecified bit rate (UBR) and guaranteed
frame rate (GFR). Data applications using the most widely used protocol suite in computer
communications, i.e., TCP/IP (transport control protocol /internet protocol), increase their
rate if extra bandwidth is available in the network, and reduce it if congestion builds up.
As a result, this type of traffic may be highly unpredictable, extremely bursty and very
hard to characterize in terms of a peak cell rate, sustainable cell rate and maximum burst
size, as is needed to set up a nrt-VBR connection. An additional weakness of nrt-VBR
in the context of transporting TCP/IP traffic is its inability to define a QoS guarantee in
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terms of frames'. The ABR service category was developed especially for traffic sources
that are willing to adapt their rate to changing network conditions and available resources,
but can only characterize their traffic in a rather ‘vague’ way. ABR uses a feedback flow
control scheme to provide information about congestion inside the network to the sources,
and it expects sources to adapt their traffic in accordance to this feedback. This feedback
algorithm is however fairly complex, especially in the endsystems. Further, when ATM
is not deployed end-to-end, ATM’s traffic control terminates at the access nodes and it
becomes very difficult to explicitely control a non-ATM source. So the most suited service
categories for TCP/IP traffic are UBR and GFR.

The best way to characterize the UBR service category is as ATM’s ‘best effort’ service
category: UBR is not subject to a specific traffic contract, so no specification of the traffic
that will be sent over a UBR connection is needed, but also no QoS commitments are made
to UBR connections. To perform end-to-end congestion control, UBR depends entirely on
a higher layer protocol such as TCP.

Where UBR was developed as a way to accommodate traffic that is difficult to charac-
terize to the early ATM market, GFR, which was initially called UBR+, was developed
especially for this kind of packet data (i.e., TCP/IP traffic). The main motivation behind
the introduction of GFR was to retain the simplicity of UBR at the user network interface,
while providing GFR connections with a minimum cell rate guarantee at the frame level:
if frames smaller than a specified maximum frame size are sent in a burst of cells that does
not exceed a maximum burst size, then these frames are expected to get delivered across
the network with minimum losses.

The absence of congestion control mechanisms for the basic UBR service can lead to a low
throughput for this type of connections. As a result, competitive UBR implementations
enhance the basic UBR service with intelligent frame aware buffer acceptance schemes. For
GFR, it is explicitely required in the definition of the GFR service category that this type
of traffic is transmitted as frames of cells, and that the ATM switches supporting GFR
need to be frame aware and accept or discard entire frames instead of individual cells.
Frame aware buffer acceptance schemes, also often called packet discarding mechanisms,
are the topic of the second part of this thesis.

A literature overview of the most important frame aware buffer acceptance schemes pro-
posed for UBR and GFR is given in the next chapter. In Chapter 6, a theoretical model
is developed and applied to study the transient performance of the selective drop buffer
acceptance algorithm. This model is slightly modified in Chapter 7 to study the fair buffer
allocation acceptance scheme. The remainder of the current chapter contains short intro-
ductory descriptions on AAL5 frames, TCP congestion control, the UBR and GFR service
guarantees and on performance measures that are important to assess the performance of
TCP over UBR or GFR.

!The term ‘frame’ means an AAL5 frame, and is discussed further on in this chapter. Roughly spoken,
it corresponds to an IP packet which holds a TCP segment.
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4.1 Some concepts related to buffer acceptance

A buffer acceptance scheme decides about which cells are allowed to enter the buffer of a
network element, and which cells have to be dropped. This decision is very often taken

based on buffer accounting information, i.e., on the counters and states associated with
the buffer.

Together with the scheduling algorithm, the buffer acceptance scheme determines the
throughput and fairness guarantees a network element can offer to the different virtual
circuits. The scheduling algorithm is the algorithm that decides about the order in which
the accepted cells will leave the buffer.

Closely related to scheduling is the queueing strategy used, i.e., the internal organization of
the buffer. The queueing strategy can be a global one, most of the time resulting in FIFO
scheduling, or it can be per-class or per-VC, which makes scheduling schemes like round
robin, priority scheduling etc. possible. Important to note is that the accounting strategy
used does not imply a queueing strategy: many of the schemes which are considered further
on use per-VC accounting combined with global queueing.

Although strictly speaking the term ‘buffer acceptance scheme’ as defined above covers
only the decision rules about which cells to accept in the buffer, it is also often used to
denote the totality of buffer acceptance (in the strict sense), accounting, queueing and
scheduling. Throughout this thesis, the term is also used in both meanings. Sometimes,
buffer acceptance is also called buffer management (e.g., in [32, 5]).

4.2 AAL5 aware buffer acceptance

The most widely used ATM adaptation layer (AAL) for data traffic is AAL5. The GFR
service guarantee is even explicitely based on the use of AAL5. AALS5 provides to the
upper layer protocols an unassured transfer of variable-sized service data units (SDU) over
the underlying ATM network. Each such variable-sized SDU is encapsulated in an AAL5
frame which consists of a payload field of up to 65535 bytes, some padding bytes and a
8-byte long trailer (see Figure 4.1). The padding aligns the AAL5 frame on a multiple of
48 bytes. The segmentation of the AAL5 frame in cells by the AAL5 segmentation and
reassembly (SAR) sublayer does not introduce any new overhead, but relies on the payload
type indicator (PTI) field in the ATM header. The ATM user-to-user (AUU) bit in the
PTT field for user data cells is set to zero by the SAR sublayer for all cells, except for the
last cell of each AAL5 frame, which is transmitted with the AUU bit set to one. Buffer
acceptance schemes can thus detect frame boundaries by inspecting the AUU bit in the
header of the ATM cells.

Buffer acceptance schemes in ATM networks decide in principle about the acceptance of
cells. But with AALDS, buffer acceptance schemes preferentially are AAL5 frame aware,
because the destination AALS entity checks each reassembled AAL5 frame for message
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Figure 4.1: Encapsulation of data in AAL5 and AAL5S segmentation into ATM cells.

length and cyclic redundancy check field, and discards corrupted frames. The loss of a
single cell of an AAL5 frame at a network element thus leads to the loss of a whole frame
at the destination. Buffer acceptance schemes without frame awareness consequently give
rise to a flow of ATM cells that is very likely to transport incomplete frames which are
of no use. This can degrade the data throughput significantly. To support GFR, buffer
acceptance schemes are required to be AAL5 aware, since the GFR service guarantee is
based on AAL5 frames.

4.3 TCP congestion control

If the UBR or GFR service category is used to transport TCP/IP traffic, network elements
perform congestion control (i.e., packet discarding) based on local information. For end-
to-end congestion control, these service categories depend entirely on TCP.

The congestion control of TCP is window-based. TCP’s window size corresponds to the
amount of data the TCP source can send in one round trip time (RTT), and is the mini-
mum of the receiver’s advertised window (RCVWND) and the sender’s congestion window
(CWND).

The congestion control scheme of TCP includes four algorithms, i.e., ‘slow start’, ‘conges-
tion avoidance’, ‘fast retransmit’ and ‘fast recovery’ [50, 3]. The slow start and congestion
avoidance algorithms control TCP’s window size. A variable SSTRESH is maintained for
each connection to switch between the two algorithms. When a TCP connection starts or
has been idle for a time longer than the retransmission timeout, the slow start mechanism
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is used. At the beginning of the slow start algorithm, CWND is set to 1 maximum seg-
ment size (MSS). Each time an acknowledgement (ACK) for new data is received, CWND
is increased by 1 MSS. If CWND reaches SSTRESH, the congestion avoidance algorithm
takes over, and now CWND is increased by 1/CWND on receipt of a new ACK. Slow start
corresponds with an exponential increase of the congestion window every round trip time,
congestion avoidance with a linear increase.

TCP’s congestion control relies on segment loss as the indication of congestion. On detec-
tion of a segment loss by expiration of the retransmission timer, half the current window
size is recorded in SSTRESH, CWND is set to 1 MSS and slow start is initiated. The
triggering of the retransmission timer is affected by the TCP timer granularity. Most real
TCP implementations use a 100 to 500 ms timer granularity, although some simulations
use a much lower granularity (e.g., 0.1 ms in [84]). Since the timer granularity determines
the amount of time lost during congestion, lowering the TCP granularity results in faster
recovery after a loss and thus a higher throughput.

Since a TCP receiver should send an immediate duplicate ACK when an out-of-order
segment arrives, the sender can also detect losses based on incoming duplicate ACKs.
After receiving three duplicate ACKs, the fast retransmit algorithm sets SSTRESH to half
the current window size, and retransmits the segment that appears to be the missing one
without waiting for the retransmission timer to expire. If the fast retransmit algorithm is
implemented in combination with the fast recovery algorithm, CWND is set to SSTRESH
plus 3xMSS. Otherwise, CWND is set to 1 MSS and slow start is initiated.

The fast recovery algorithm governs the transmission of new data until a non-duplicate
ACK arrives: it increments CWND by 1 MSS for each additional duplicate ACK received,
and transmits a segment if allowed by TCP’s window size. When an ACK for new data
arrives, CWND is set to SSTRESH, which implies that the congestion avoidance algorithm
is triggered. The reason for not performing slow start is that the receipt of the duplicate
ACKs does not only indicate that a segment has been lost, but also that segments are most
likely arriving at the destination.

The two most common reference implementations for TCP are Tahoe TCP and Reno
TCP [27]. Tahoe TCP refers to TCP with the slow start, congestion avoidance and fast
retransmit algorithms implemented, while Reno TCP implements also the fast recovery
algorithm.

Since the fast retransmit and recovery algorithms are known to generally not recover very
efficiently from multiple losses in a single window of packets [27], the selective acknowl-
edgement (SACK) strategy was proposed in [74]. With selective acknowledgements, the
data receiver can inform the sender about all segments that have arrived successfully, so
the sender needs to retransmit only the segments that have actually been lost.
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4.4 Buffer acceptance and TCP congestion control

The rate at which a TCP source can send data into the network depends on its window
size. If the network would have direct control over this window size, it could control the
source’s rate. The network however does not have this direct control. But since TCP’s
congestion control scheme manipulates the window size by increasing it while there are
no losses, and decreasing it on detection of a lost TCP segment, the network could have
indirect control over a source’s rate by means of dropping.

This dropping occurs automatically in case of congestion because of buffer overflow, but
can lead to very low effective throughput. Dropping can however also be done in a more
intelligent way, by trying to drop complete frames prior to congestion, preferentially from
a connection which is using more bandwidth than one would call fair. To determine which
connections are getting more than a fair share of the bandwidth, the number of cells each
connection has in the buffer is taken into account, and the principle is used that connections
which use more than a fair share of the buffer capacity will also get more than a fair share of
the bandwidth. Connections from which cells are dropped will decrease their rate because
of the TCP congestion control mechanism. As a result, these connections will probably
have the fewest cells in the buffer next time the cell dropping condition is satisfied, and
their frames have the least chance of being discarded. So it is unlikely that in buffer
acceptance schemes which try to drop frames in a ‘fair’ manner, frames from the same VC
get discarded all the time.

4.5 The UBR and GFR service guarantees

The UBR service guarantee as defined in [5] is simple to describe: UBR. offers no traffic
related service guarantee. No commitment is made about the cell loss ratio experienced by
a UBR connection, or about the cell transfer delay experienced by cells on the connection.
Fairness among connections cannot be assumed, although a local policy in some network
elements may have this effect.

The description of the GFR service guarantee is not so easy. It is explicitely based on AAL5
frames. Before it can be formulated, some parameters and terms need to be introduced.

For a GFR connection, a traffic contract is specified that is composed of the following
parameters: a minimum cell rate (MCR) and associated cell delay variation tolerance
CDVTycr, a peak cell rate (PCR) and associated cell delay variation tolerance CDV Tpcg,
a maximum frame size (MFS) and a maximum burst size (MBS). The MFS is the maximum
AALS frame size in cells.

A cell with its cell loss priority (CLP) bit set to one is called marked when the originator
of the cell has set the CLP bit. When it is the network that has set the CLP bit, the
cell is called tagged. Any source or network element that sets the CLP bit of a cell to
one shall set the CLP bit of every other cell of the same frame to one as well, since no
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partial frame marking or tagging is allowed by the GFR definition. There are two types
of GFR connections: GFR.1 and GFR.2 connections. In either type of GFR connection,
less important frames may be marked by the source. Tagging by the network is however
only allowed for GFR.2 connections. Networks may only tag frames that are ineligible. A
frame is eligible if and only if it is conforming, and it passes the F-GCRA test.

A frame is conforming if all its cells are conforming. The cell conformance is checked by
the GFR usage parameter control (UPC), which verifies if

e the cell is either the last cell of a frame, or no more than MFS—1 cells of the same
frame have preceded it, i.e., the frame length is limited to MFS cells,

e the end systems send traffic at a cell rate that conforms to PCR and CDVTpcg, i.e.,
the cell does not violate PCR,

e the cell has the same CLP value as the first cell of the frame to which it belongs, i.e.,
CLP should be set uniformly in a frame.

The UPC discards or tags (if allowed) cells of non-conforming frames. Because the three
tests performed by the UPC are applied on cell level, the UPC is unable to predict the
conformance of succeeding cells when the first cell of a frame is received. Since no partial
tagging is allowed, the tails of non-conforming frames are therefore usually discarded.

To be eligible, a frame must additionally pass the frame-based generic cell rate algorithm
F-GCRA(T, L) [5, p.72], which is the reference algorithm used to identify the QoS eligibility
of a frame with respect to the minimum cell rate MCR = 1/T, assuming that a tolerance
L = (MBS - 1)(1/MCR — 1/PCR)™!, is allowed. The F-GCRA is an adaptation of the
well-known GCRA used with the VBR service category [5, p.31]. The main difference
between the GCRA and the F-GCRA is that the F-GCRA declares entire CLP=0 frames
to be eligible or non-eligible. Reasons for frames to fail the F-GCRA test are that the
frames are CLP=1 frames, the frame interarrival times are too small, or traffic was sent at
PCR for longer than the MBS. Because CLP=1 frames cannot pass the F-GCRA test, all
CLP=1 frames are ineligible. A classification of the frames of a GFR connection in terms
of marking/tagging, conformance and eligibility is shown in Table 4.1.

The GFR service guarantee provides a low cell loss ratio (CLR) for a number of cells in
complete CLP=0 frames, at least equal to the number of cells in eligible frames. Since
CLP=1 frames are not subject to the CLR objective, buffer acceptance schemes in network
elements will treat them with lower priority. Note that since the GFR service guarantee is
with respect to a number of cells in complete frames, and not precisely to the frames that
are considered eligible, the network is not required to perform the F-GCRA test, although
some switch elements may rely on it to satisfy the GFR service guarantee.

Cells may always be sent at a rate up to the PCR. Apart from the MCR guarantee, the
GFR service also includes the expectation that traffic in excess of MCR and MBS will be
delivered within the limits of available resources, and that each connection will be provided
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‘ CLP frame ‘ conforming frame ‘ frame passes F-GCRA H type of frame ‘

0 no no ineligible nonconforming
0 no yes ineligible nonconforming
0 yes no ineligible conforming

0 yes yes eligible conforming

1 no no ineligible nonconforming
1 yes no ineligible conforming

Table 4.1: Classification of GFR frames.

with a fair share of those available resources. So buffer acceptance schemes for GFR need
to be designed in such a way that they can deliver both rate and fairness guarantees to
the GFR connections.

Because the GFR service guarantee applies to complete AAL5 frames, buffer acceptance
schemes used with GFR decide about the acceptance of a frame on arrival of its first cell: if
this first cell is accepted, they try to accept all cells of the frame; if the first cell is discarded,
all cells of the frame are discarded. So all these schemes need at least one per-VC state to
indicate if the next cell on the connection will be the first one of a frame.

4.6 Performance measures

To decide about the performance of TCP over UBR or GFR using a certain buffer ac-
ceptance scheme, the throughput obtained by the different connections at the destination
TCP layer is measured. Throughput is defined as the number of bytes delivered to the
destination application divided by the time needed to deliver these bytes. This measure is
also called goodput or effective throughput, as it is the throughput that is ‘good’ or ‘effec-
tive’ in terms of the higher layer protocol. If the sources are not persistent (i.e., they have
only a limited amount of data to send), the total time needed by each source to deliver all
its data to the destination application is converted into a throughput value by dividing the
amount of data by the measured time. Two important performance measures are obtained
from the throughput values: efficiency and fairness.

4.6.1 Efficiency

The efficiency of TCP over UBR or GFR is defined as:

sum of TCP throughputs
maximum possible TCP throughput’

efficiency = (4.1)

where the maximum possible TCP throughput is the throughput attainable by the TCP
layer on a link. This throughput is lower than the link capacity because of header, trailer
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and padding overhead added to the data by different layers (see Figure 4.1). Considering
for example a TCP MSS of 512 bytes, the maximum possible throughput is approximately
125.2 Mbps on a 155.52 Mbps link [36].

4.6.2 Fairness

To decide about the fairness of a certain buffer acceptance scheme, a fairness criterion is
needed. Several example fairness criteria, such as equal allocation, weighted allocation,
MCR plus equal share, allocation proportional to MCR, etc. are given in [5]. Of course,
fairness criteria based on MCRs are only applicable to GFR connections. The most used
criterion for UBR traffic is the equal allocation.

Once a fairness criterion is defined, the distance between the resource allocation and the
desired goal needs to be assessed. In the case of equal allocation, this is often done
visually, by plotting the effective throughput of the different connections versus time (e.g.,
in [28, 69, 25]). Another way to judge the fairness is by making use of a fairness index.
Several fairness indices are used in the literature (e.g., indices based on the coefficient of
variation of the goodputs [25, 85]). The following one, which is defined by the ATM-Forum
in [4] and used in e.g., [36, 35, 55], is used in Chapter 6.

If the goodputs of N virtual circuits are found to be {7, ..., Ty}, where the ideal goodputs

according to the chosen fairness criterion should be {Tl, ..., T}, then
N 2 N
fairness index = <Z xz) / (NZSEZ?) , (4.2)
i=1 i=1

where z; = TZ/TZ is the relative goodput allocation of connection 7. This fairness index
ranges between zero (minimum fairness) and one (maximum fairness) and can be given the
following interpretation: if N — k of the N z;’s are zero, while the remaining k x;’s are
equal and non-zero, the fairness index will be k/N, or the fraction of users favored. More
properties of this fairness index can be found in [53, 52].






Chapter 5

An overview of buffer acceptance
schemes for UBR and GFR

A literature overview of the most representative frame aware buffer acceptance schemes
defined for use with the UBR or GFR ATM service categories is given in this chapter.
The overview is kept rather descriptive, but in [91] pseudo code of all schemes that are
discussed, using a uniform notation and level of detail, can be found. Also the general con-
clusions of performance evaluation studies of the schemes by simulation or by experiments
are summarized, without going into details concerning the simulation/experimental con-
figuration, exact parameter settings and TCP implementations used in the various studies.
These details and the detailed results can be found in the references this chapter is based
on. At the end of this chapter, a summary of the queueing and scheduling strategy used
in each scheme, and of the accounting information that needs to be kept, is given (see
Table 5.1 for the UBR schemes, and Table 5.2 for the GFR schemes).

5.1 Buffer acceptance schemes for UBR

5.1.1 Some of the first buffer acceptance schemes for UBR

In this section three of the very first buffer acceptance schemes defined for UBR are con-
sidered: tail drop, partial packet discard and early packet discard. Although tail drop is
not frame aware, and its performance is not satisfactory at all, the scheme is included here
since it illustrates the problems which need to be resolved by ‘better’ buffer acceptance
schemes. Partial and early packet discard are important schemes since they are widely
implemented in commercial ATM switches, and the principles behind these schemes keep
cropping up in almost all of the more sophisticated schemes discussed in the following
sections.

75



76 5. An overview of buffer acceptance schemes for UBR and GFR

Tail drop

The simplest buffer acceptance scheme for use with UBR is called tail drop (TD). This
scheme accepts cells into a global buffer as long as the buffer is not full. Upon buffer
overflow, cells are dropped.

Applying tail drop while providing sufficiently large buffers to minimize cell loss, and letting
the higher layer protocol (i.e., TCP) handle recovery after an occasional loss, was the initial
idea about how to deal with the absence of congestion control for UBR. However, it has
been shown by simulations [84, 36] that this approach can give low efficiency results. Main
reasons for this are:

e Delivery of useless cells. Dropping a single cell at a network element results in
the discarding at the receiver of all other cells of the same frame. Although these
cells are thus useless, they are still transmitted over the network, resulting in lower
goodput. Furthermore, these useless cells consume bandwidth and buffer space, such
that in times of congestion they may cause other frames to lose also some cells.
This problem becomes worse with smaller buffers, larger frames, increased number
of active connections and increased TCP window sizes [84].

e Link idle time due to TCP synchronization effects. Because cells from several connec-
tions usually arrive interleaved at a switch, cells from all sources are dropped when
the dropping condition is satisfied, i.e., the buffer is full. As a result, all sources
timeout and go through slow start at roughly the same time. This is called TCP
synchronization. While the sources wait for a timeout, they stop sending data into
the network. So occasionally, the congested link can be idle.

Although TCP synchronization is an important factor that affects TCP’s performance,
it is not a significant problem in the scenarios explored in [84]. This is because in the
simulations this paper reports on, the TCP timer granularity was changed to 0.1 ms,
which is much lower than the value used in real TCP implementations (100 to 500 ms). A
criticism of [36] on TCP simulations which use a timer granularity lower than 100 ms is
that the throughput obtained in these simulations is artificially increased.

TCP synchronization does not necessarily result in the link being idle for a while. It is
also possible that one or two ‘lucky’ sources escape synchronization, and these sources can
then send their next window and keep filling up the buffer while the other sources have
stopped sending data. The lucky sources thus get most of the bandwidth, which results in
unfairness between the goodput of the various connections.

Results in [35] show that fairness is better if TCP’s fast retransmit and recovery algorithms
are enabled, since those algorithms help in mitigating the TCP synchronization effects. The
efficiency can however be worse for links with large bandwidth delay products. Because
multiple segments are dropped during congestion, and fast retransmit and recovery cannot
recover from multiple segment losses, some segments are retransmitted during slow start,
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even though they have already been successfully received. In links with large bandwidth
delay products, the number of retransmitted segments can be significant.

TCP performs best when there is zero loss. The connections then achieve 100% of the
possible throughput and perfect fairness. For a switch to guarantee zero loss for TCP over
UBR with tail drop, [54] concludes from simulation results that the amount of buffering
required is at least equal to the sum of the TCP maximum window sizes for all TCP
connections. This is in particular true for connections with small round trip times, since
for large round trip times the switch has more time to clear out the buffer before data of the
next TCP window arrives. In any case, the increase in buffer requirements is proportional
to the number of sources in the simulation. This implies that UBR with tail drop and
almost no loss is thus not scalable.

Partial packet discard

If a cell of an AAL5 frame is dropped because of buffer overflow, there is no reason to
transmit the remaining cells of this frame. The partial packet discard (PPD) scheme [84]
drops all cells of a frame subsequent to a cell loss, apart from the last one. The discard
is ‘partial’ because at the time of cell loss, some cells of the corrupted frame may already
be stored in the buffer or even be transmitted. The PPD scheme does not search for cells
possibly stored in the buffer. The implementation of PPD requires per-VC accounting,
since for each VC a state must be kept to indicate if the VC currently has to drop cells.

The last cell of a corrupted frame is not dropped, because this cell is needed at succeeding
network elements and at the destination to delineate the beginning of a new frame. If
the last cell is dropped anyway because there is no place left in the buffer, the cells of the
corrupted frame which arrive at the destination get merged there with the next frame. This
merged frame fails the cyclic redundancy check and is dropped. The source thus needs to
retransmit both frames. Therefore, if the last cell of a frame is dropped, PPD also drops
the next frame to avoid the useless transmission of the cells of this frame.

Simulations in [84] and experiments in [55] compare the efficiency obtained when using
PPD with that obtained when using tail drop. Results with PPD are better, but the
improvements are limited because still a significant amount of useless cells is transmitted
over the link.

The PPD scheme is often used in conjunction with buffer acceptance schemes which try
to drop complete frames. These schemes start from the principle that cells of a frame are
only dropped if the first cell of the frame to which they belong was dropped. But in case
a non-first cell of a frame is dropped because of buffer overflow, although the first cell of
the frame was not dropped, the PPD scheme is used to ensure that the remaining cells of
the frame are also dropped.
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Early packet discard

Early packet discard (EPD) is a buffer acceptance scheme that has been widely imple-
mented in commercial ATM switches. It tries to avoid the transmission of useless cells
over the network by dropping complete AAL5 frames (i.e., all their cells) when the buffer
becomes in danger of overflowing. This is implemented by setting a threshold, the EPD
threshold, and discarding the first cell of any incoming frame if on arrival of this cell the
buffer occupancy exceeds the threshold. Once the first cell of a frame has been discarded,
its remaining cells are also discarded on their arrival. As with PPD, the implementation
of the scheme requires a state per VC to indicate if the VC currently has to drop cells.
Because frame boundaries are indicated by the last cell of each frame, a per-VC state to
indicate if the next cell on the connection will be the first cell of a frame is also needed.

The EPD threshold splits the capacity of the buffer into an effective and an excess buffer
capacity. The excess buffer capacity is used to accommodate cells from frames whose first
cell has arrived before the EPD threshold was exceeded. In the worst case, the switch
could have received the first cell of a frame from all connections before reaching the EPD
threshold. To make it possible for the buffer to accept all these frames, [36] suggests to set
the EPD threshold at (buffer capacity - N+ maximum frame size), where N is the expected
number of connections active at the same time.

Simulation results in [36, 84] and experimental results in [55] show that EPD normally
improves the efficiency of TCP over UBR. However, the results of [55] also show that the
position of the EPD threshold is a critical point for small buffers, since in this case the
excess capacity has to be considered as a reduction of the effective buffer size, which results
in an increasing frame loss. So the worst case setting of the EPD threshold as suggested in
[36], if possible, is not in all cases a good idea, and also not necessary, as is shown in [83].
In that paper it is illustrated by simulations that when all sources are highly synchronized,
an excess buffer capacity of 50-75% of the worst case excess buffer requirement is large
enough to obtain a reasonable performance. In the case where no inherent synchronization
is present, this number can be reduced to 25-50%, and in both cases the percentages may
be reduced even further if the number of VCs is very large.

The reason that EPD normally improves the efficiency of TCP over UBR is because the
link now only carries complete frames, and because EPD concentrates the cell loss to a
lower number of frames. In this way, EPD increases the likelihood that during congestion
at least some of the VCs succeed in transferring a complete frame, and get a chance to
further increase their window. It is however exactly this behavior which makes that EPD
cannot guarantee fairness. Since EPD does not take the current rate or buffer utilization of
the different VCs into account while discarding frames, it is very well possible that frames
from connections causing the congestion are accepted, resulting in a possible rate increase
for these connections, while frames of other connections are dropped, which forces these
connections to decrease their rate.

Simulations in [28, 36, 70] show that the degree of unfairness increases as the buffer ca-
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pacity is reduced. It is also shown in [70] that the effective throughput is much lower
for connections which traverse more congested links than other connections. Simulations
in [35] show that the combination EPD and fast retransmit and recovery improves the
fairness, but hurts the efficiency for links with large bandwidth delay products.

5.1.2 Buffer acceptance schemes for UBR based on FBA

All buffer acceptance schemes discussed in the previous section fail in offering fair allocation
of bandwidth among competing connections. The schemes discussed in the current section
are all based on the fair buffer allocation scheme proposed by Heinanen and Kilkki in [41].
The principle behind this scheme is that a connection that gets more than its fair share
of buffer space will also get more than its fair share of the bandwidth. This principle is
true, irrespective of the scheduling algorithm used, since buffer space is always limited. So
to provide bandwidth fairness to connections, it is necessary to at least allocate the buffer
capacity fairly among the connections. The fairness offered in this way is fairness at the
time that first cells of frames are accepted in the buffer. Scheduling can add to that by
letting the cells of the different VCs leave the buffer in a fair order, such that the fair buffer
allocation is also maintained throughout transmissions.

Fair buffer allocation

The fair buffer allocation (FBA) scheme proposed in [41] attempts to improve bandwidth
fairness between competing VCs by allocating the buffer capacity fairly among them. A
frame from a connection is discarded if the buffer occupancy exceeds a certain fixed thresh-
old while the connection takes more than its fair share of the buffer. As with EPD, the
decision about the acceptance of a frame is taken upon arrival of its first cell.

FBA is implemented with a global FIFO buffer and per-VC accounting. Besides per-VC
states which indicate if the next cell on the connection will be the first cell of a frame, and
if cells on the VC currently have to be dropped, also a counter is kept for each VC. This
counter represents the number of cells that the VC has in the buffer, and is used to decide
if the VC exceeds its fair share (FS). The fair share of a connection is calculated as the
product of its so called fair allocation and the acceptable load ratio:

F'S = fair allocation x acceptable load ratio. (5.1)
The fair allocation indicates how many cells the VC would have in the buffer if the total
number of cells in the buffer was divided fairly among the various active connections, where

a connection is called active if it has at least one cell in the buffer. For the FBA scheme,
the fair allocation is chosen as the average number of cells per active connection:

: . Q
f llocation = —= 5.2
air allocation = —, (5.2)
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Figure 5.1: Acceptable load ratio versus the buffer occupancy for the FBA scheme.

where () is the total buffer occupancy and N is the number of active connections.

The ratio of the number of cells that a VC has in the buffer to the fair allocation is called the
load ratio of the VC, and gives a measure of how much the VC exceeds the fair allocation.
The acceptable load ratio is the highest load ratio at which frames are still accepted in
the buffer. The acceptable load ratio used in the FBA scheme is a smooth function of the
buffer occupancy:

acceptable load ratio = 7 (1 + w) , (5.3)

Q—-L

where Z is a linear scaling factor, typically between 0.5 and 1, Q. is the buffer capacity,
@ is the buffer occupancy and L is the fixed threshold below which all frames are accepted.
Figure 5.1 shows the acceptable load ratio versus the buffer occupancy for Z = 0.5 and
Z = 1. Tt can be seen from this figure that if () is close to the threshold L, a VC can
exceed the fair allocation considerably, but the acceptable load ratio decreases very fast
when () increases. For all Z less than one, the acceptable load ratio becomes smaller than
one when Q gets larger than Z(Qmax — L) + L. This means that if the buffer is almost
full, a new frame can be dropped even when its connection occupies less of the buffer than
the fair allocation. As stated in [41], this property is desirable since some of the buffer
capacity should be left for the remaining cells of already accepted frames.

As expected, simulations [28, 36] show that the fairness results obtained with the FBA
scheme are better than those obtained with the EPD scheme, since now frames of over-
loading connections are dropped in preference to underloading ones. Most of the time, also
the efficiency results obtained with FBA are better, because the dropping condition is not
fulfilled for all connections at the same time anymore, such that TCP synchronization is
easier broken. However, it is also shown in [36] that the FBA scheme is sensitive to changes
in the parameters L and Z. Higher efficiency values have either L or Z high, since higher
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buffer utilization is allowed in these cases. But there is a considerable variation in the
fairness numbers obtained, since not all combinations of the parameter values are equally
effective in breaking the TCP synchronization. If for example almost all connections ex-
ceed their fair share at roughly the same time, the buffer occupancy will presumably be no
longer above the threshold L at the moment that the few connections that did not exceed
their fair share earlier finally do exceed it, since the other sources have stopped sending
meanwhile because of dropped segments. The frames of the ‘lucky’ sources are thus not
dropped, resulting in unfairness.

Selective drop

Selective drop (SD) [36], also called EPD with per-VC accounting [69], is a simpler version
of the FBA scheme. The principle of the SD scheme is exactly the same as that of the
FBA scheme: it is implemented with a global FIFO buffer and per-VC accounting, and
new frames of a connection are discarded if on arrival of their first cell the buffer occupancy
exceeds a certain fixed threshold while the connection takes more than its fair share of the
buffer. The only difference with the FBA scheme is in the definition of the ‘fair share’. It
is again calculated as the product of the fair allocation and the acceptable load ratio, and
the fair allocation is again chosen as the average number of cells per connection, but the
acceptable load ratio is now a simple parameter K independent of the buffer occupancy.

F'S = fair allocation x acceptable load ratio = %K. (5.4)

Since this scheme also drops frames of overloading connections in preference to underload-
ing ones, it improves fairness over the EPD scheme, as is shown by simulations in [36, 69].
Also the efficiency values obtained are slightly better. Compared to the FBA scheme (for
optimal parameter values), the efficiency results obtained with SD are slightly lower than
with FBA, while the fairness results are comparable. The simulations in [36] also show
that the fairness of the scheme decreases with an increasing number of sources, and those
in [69] indicate that the more hops a VC traverses, the lower its effective throughput is.

EPD with per-VC queueing

In both the FBA and SD schemes discussed above, a fair allocation of the buffer capacity
is maintained only at the moments of acceptance of the first cell of a frame. But since
in both schemes all VCs share a single FIFO buffer, this fair buffer allocation cannot be
maintained throughout transmissions. The EPD with per-VC queueing mechanism [69]
uses the same criteria as the SD scheme to decide about the buffer acceptance of cells,
but cells from the different VCs are placed into different queues (per-VC queueing). All
these VC queues are then served using round robin scheduling, such that the accepted cells
are emitted from the buffer in a fair manner. The EPD with per-VC queueing scheme
thus does not only provide fair buffer allocation at moments of frame acceptance, but also
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throughout transmissions. In this way, throughput fairness can be achieved as long as each
VC has some cells in its queue.

In [69], simulation results obtained by using EPD with per-VC queueing are compared
to results obtained by using the SD scheme. It appears that EPD with per-VC queueing
achieves almost perfect fairness, also for VCs which traverse more hops. However, the
efficiency obtained with the scheme is somewhat lower than that obtained with SD, which
is explained as a synchronization effect.

5.1.3 Buffer acceptance schemes for UBR based on RED

The random early detection (RED) algorithm was first proposed in [30], and applies for
IP gateways. RED thus deals with IP packets, not ATM cells. The RED algorithm has
some attractive properties: RED gateways keep the average queue size low, while allowing
occasional bursts of packets in the queue; during congestion, the probability that a packet
from a particular connection is dropped is roughly proportional to that connection’s share
of the bandwidth through the gateway; RED avoids TCP synchronization since packet
dropping will probably concern the most greedy connections. Because of these attractive
properties, some adaptations of the RED scheme for use with ATM were developed: cell-
based RED (C-RED) [25], packet-based RED (P-RED) [25] and ATM-RED [85].

First the RED algorithm is shortly described. Then the P-RED and ATM-RED proposals
are discussed. The C-RED proposal is not considered here since it is outperformed in both
efficiency and fairness results by P-RED, which is also less complex to implement.

The RED algorithm

The objective of the RED algorithm as proposed in [30] is to keep the throughput of an IP
gateway high, but its delay low. This is done by dropping arriving packets with a certain
probability each time the average queue size of the gateway exceeds a certain threshold.
The RED algorithm is applied on a global FIFO queue, for which only global accounting
information is kept.

On each packet arrival, the average queue size is estimated by!
Avg = (1 — wy)Avg + w,Q, (5.5)

where w, is a weight between 0 and 1, and ) is the actual queue size. This average queue
size is then compared with two thresholds L (low) and H (high): when it is less than L, the
packet is accepted; when it is greater than H, the packet is dropped; if it is between the

!This equation is actually used only when the queue is not empty on packet arrival. When it is empty,
the average queue size is calculated based on the number of packets that might have arrived during the
idle time.
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two thresholds, the packet is dropped with a probability p,. The initial drop probability
py is calculated as a linear function of the average queue size:

Py = Maty = (5.6)

where maz, is the maximum value for p,. The final drop probability p, is calculated such
that when the average queue size is constant, the random variable describing the number
of packets that arrive after a dropped packet, until the next dropped packet, is uniformly
distributed over {1,2,...,1/p,} (assuming that 1/p, is an integer):

pa= —D— (5.7)

1 — pycount’

The parameter count counts the number of accepted packets since the last dropped packet
or since Avg exceeded L.

Packet-based RED

Packet-based RED (P-RED) [25] is an AAL5 aware buffer acceptance algorithm for use
with ATM-UBR. The decision about the acceptance of an AAL5 frame is taken upon arrival
of the first cell of the frame: if the first cell of a frame is discarded, its remaining cells are
also discarded on their arrival. P-RED is implemented using a global FIFO buffer and two
fixed thresholds L and H. The algorithm implements EPD with the threshold H: if the
buffer occupancy @) is above H on arrival of the first cell of a frame, this frame is discarded.
Otherwise, the average queue length is estimated by equation (5.5), and compared with the
thresholds L and H exactly as in the RED algorithm described above. When the average
queue size is below L, the frame is accepted; when it is above H, the frame is dropped.
When the average queue size is between L and H, the frame is dropped with a probability
pa calculated by equation (5.7) as in the RED algorithm. There is however a difference in
the calculation of the initial drop probability p,. If the new packet belongs to VC i, p is
weighted by the load ratio of VC 1:

Avg— L
H-L
where the load ratio of VC i is defined by Q;N/@ as in the FBA algorithm. Remark that

due to the weights that appear in (5.8), the P-RED algorithm needs to keep per-VC buffer
accounting information.

Py = mazx, x load ratio of VC i, (5.8)

Simulations in [25] compare the performance of P-RED with that of EPD using a sim-
ulation configuration with different propagation delays for the various TCP sources. It
appears clearly that efficiency and fairness obtained with P-RED are better than with
EPD, and that both the queue size and the average queue size of P-RED is low compared
to EPD. This means that the P-RED algorithm is an attractive buffer acceptance algo-
rithm for interactive applications like Telnet. Moreover, the drop probability for this type
of connections is very low since their load ratio is expected to be very low.
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ATM-RED

ATM-RED [85] is also an adaptation of the original RED algorithm for use with ATM. It
uses a global FTFO buffer and two thresholds L and H. Typical to the ATM-RED algorithm
is that a drop probability is calculated on cell level. Since the algorithm accepts or discards
entire AAL5 frames, each discard decision concerns the next frame (with relation to the
cell that caused the decision), except if the decision is made on arrival of the first cell
of a frame. This approach allows to obtain smaller values for the overall frame dropping
probability when frames are smaller.

ATM-RED calculates a drop probability when a first cell of a frame arrives at the buffer
and it has not yet been decided if this frame is to be dropped, and when a non-first cell of
a frame is accepted in the buffer and it has not yet been decided if the next frame on the
same connection will be dropped. To calculate the drop probability, first an average queue
size Avg is calculated using (5.5). Then, if Avg > L, p,. is calculated as

maz, (Avg — L)/(H — L) if L < Avg < H,
pe= {1+ (1 —mazx.)(Avg—2H)/H if H < Avg < 2H, (5.9)
1 if Avg > 2H,

where maz, is the maximum value for p. when Avg < H. With a probability p,. it is then
decided to drop the next AAL5 frame.

Remark that from the viewpoint of per-VC complexity, this algorithm needs to keep only
three bits of state for each VC, while the P-RED algorithm needs also a counter per VC.
The price for this is however the requirement to compute the p. probability upon cell
arrivals instead of once for each packet as in P-RED.

In [85], the performance of ATM-RED has been compared to the performance of EPD and
FBA in several quite different environments. It is shown by simulation that FBA and ATM-
RED are almost always superior to EPD. ATM-RED has in general by far the lowest mean
buffer occupancy, which gives low delays, while offering high goodputs and link utilization.
ATM-RED is also a good solution as regards the fairness among similar sources (same
characteristics, same RTTs, crossing the same hops), but is poor at achieving fairness
under a heterogeneous traffic mix. In particular, sources with higher RTTs or crossing
more hops, have lower goodputs.

5.1.4 Related work

The buffer acceptance schemes discussed until now are a number of representative schemes
for UBR. Of course, more schemes exist. In [60] for example, two drop from front schemes
are proposed: pure drop from front and partial frame drop at front. These schemes are
similar to the tail drop and partial packet discard schemes, but cells are dropped at the
front of the buffer instead of at the end. This policy causes TCP’s congestion control
actions being invoked approximately one buffer drain time earlier.
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The early selective packet discard (ESPD) scheme introduced in [21] tries to avoid the link
idle time due to synchronization by concentrating the frame discarding on a few connections
only. Spread over times longer than a frame duration, ESPD makes connections to take
turns to access the network resources. This is unlike EPD where the dropping/accepting
status of a connection is released upon the arrival of the last cell of a frame. In [21, 22],
it is demonstrated that ESPD slightly improves the effective throughput over EPD and
provides better overall fairness since it provides more throughput enhancement to a long
round trip time session than to a short round trip time session.

In [58] the Fair Buffering (FB) mechanism is proposed, which allocates buffer space for the
different connections in proportion to their bandwidth delay products, and spreads out the
discarding of frames from the same connection over time. FB needs to know however each
connection’s RTT, a value which in practice is not known by the switches [33].

A modification of the FBA scheme for supporting weighted bandwidth allocation is pro-
posed in [41]. However, no performance evaluation of the scheme is performed. In the
modified FBA version, the fair allocation for a connection i is calculated as W;Q/W,
where W; is a weighting coefficient associated with connection i and W is the sum of the
weighting coefficients of all active connections.

Virtual queueing, a technique which is discussed in [97], emulates an acceptance scheme
similar to the EPD with per-VC queueing scheme on a global queue. This is done by
maintaining a counter M; for each VC 1. Cells leave the buffer in FIFO order, but regardless
of which VC a transmitted cell actually belongs to, the counters M; are decremented in a
round robin fashion as if per-VC queueing and round robin scheduling were implemented.
Every time a cell of connection 7 is accepted in the buffer, the counter M; is incremented.
To avoid loss of buffer allocation to active connections with temporarily empty virtual
queue, the per-VC counters are allowed to be negative. The scheme achieves nearly perfect
fairness.

5.2 Buffer acceptance schemes for GFR

In general, buffer acceptance schemes for GFR can be classified in three categories:

e schemes relying on a tagging function,
e schemes using per-VC accounting and per-VC queueing,

e schemes using per-VC accounting in a global FIFO buffer.

For each of these categories, an informative example implementation is given in the ATM
Forum Traffic Management Specification [5], while also other schemes have been defined
in the literature. Some of these schemes are discussed in this section. Remark that the
terminology that is used relies heavily on the terms introduced in Section 4.5.
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5.2.1 Buffer acceptance schemes for GFR relying on a tagging
function

The schemes in this first category rely on the fact that network based tagging is performed
at the entrance of the network to provide the per-VC minimum rate guarantees to the
different connections. The tagging function, which is typically based on the F-GCRA
algorithm, identifies the eligible and ineligible frames of each connection and sets their CLP
bit correspondingly, while the buffer acceptance scheme then uses this CLP information to
treat the eligible frames preferentially. When deciding about the acceptance of a new frame,
these schemes usually take their decision based on global buffer accounting information and
the CLP priority of the frame. Remark that because these buffer acceptance schemes rely
on network based tagging, they cannot support GFR.1 connections.

Implementation using tagging and a FIFO queue

The buffer acceptance scheme that is considered here is one of the informative example
implementations given in the ATM Forum Traffic Management Specification [5]. The
acceptance scheme relies on two fixed buffer thresholds L (low) and H (high) in a global
FIFO queue. Those thresholds are used as EPD thresholds, L for the CLP=1 frames and
H for the CLP=0 frames. The L threshold is used to limit the amount of CLP=1 frames
in the buffer. The scheme is very simple, but it is immediately clear that no attempt is
made to divide the excess bandwidth in a fair manner between the different connections.
As already mentioned, this scheme is of no use if it is not preceded by a tagging function.

Simulation experiments with this implementation are performed in [81, 14, 15]. Tt is shown
that the performance of TCP is never satisfactory, since not all TCP sources are able to
benefit from the minimum guaranteed bandwidth. VCs with higher MCRs get throughputs
which are much lower than their MCRs, while the VCs with lower MCRs get bandwidth
in excess of their MCRs. The reason is that when the buffer occupancy goes below L, all
frames are accepted into the buffer. The acceptance rate of cells of the different connections
into the buffer is therefore not proportional to their MCR, implying that their respective
service rates are also not proportional to their MCRs. Whenever the buffer occupation
exceeds L, the cell acceptance rate into the buffer is bounded by the rate at which cells pass
the F-GCRA tagging function without being tagged. But since TCP traffic is bursty, the
F-GCRA tags a large fraction of the frames, even when the long term average throughput of
a VC is smaller than its MCR. Furthermore, the F-GCRA has the tendency to mark TCP
traffic in bursts. The tagged frames are dropped when the buffer occupancy is above L,
and the large number of bursty losses combined with TCP’s congestion control algorithms
force the congestion window of the TCP sources down such that less traffic is sent into the
network. For sources with high MCR, the average congestion window can be much lower
than their on average required value to fill the minimum reserved throughput. In [15] it is
shown that the performance is much better in scenarios where each ATM VC carries the
traffic of more than one TCP connection, since when a burst of frames is marked by the
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F-GCRA, and later on discarded by the buffer acceptance scheme, not all TCP connections
are affected.

Implementation using tagging and per-VC queueing

Since the results obtained with the GFR implementation using tagging and a FIFO queue
were not satisfactory, also an implementation based on tagging and per-VC queueing is
investigated in [81]. The same criteria as in the first scheme are used to decide about the
buffer acceptance of cells, but the cells from the different VCs are now buffered in different
queues (per-VC queueing). These VC queues are scheduled using round robin scheduling
or weighted round robin scheduling with the weights set in proportion to the MCRs of the
connections.

The simulation results in [81] indicate that with round robin scheduling, the throughput of
all VCs again does not always reach the MCR, for the same reasons as when using a FIFO
buffer. With the weighted round robin scheduling, the MCR for each VC is guaranteed
in the buffer region below L because of the scheduler, and in the region between L and
H because only the MCR gets through the F-GCRA tagging function. In the example
simulated in [81], the throughput of each VC is above its MCR, and it is then concluded
that a rate guaranteeing service discipline such as weighted round robin in conjunction
with a tagging function can make the guarantees for the GFR service discipline. However,
we can imagine that the fact that the TCP traffic is not able to adapt its behavior to the
F-GCRA tagging function, and the resulting problem as described above of sources having
a too low average window size to use their guaranteed rate, could also occur here.

5.2.2 Buffer acceptance schemes for GFR using per-VC account-
ing and per-VC queueing

Since per-VC queueing maintains a separate queue for each VC, it isolates frames from
different VCs. A suitable per-VC scheduling mechanism can then select between the queues
at each scheduling instant to provide all active connections with their reserved bandwidth.
When it is however not sure that ineligible frames are tagged at the entrance of the network,
or if GFR.1 connections need to be supported, it must be ensured that a single VC is
not able to saturate the switch buffers. For this, also per-VC accounting needs to be
implemented, because if an unbalanced distribution of the buffer occupancy is allowed,
then the resulting output will also be unbalanced since the total buffer space is limited.

Implementation using per-VC accounting and WFQ-like scheduling

This buffer acceptance scheme for GFR is again one of the schemes proposed in [5]. It uses
per-VC queueing, per-VC scheduling and a per-VC counter R; representing the number of
CLP=0 cells VC 7 has in its queue. Individual connections are scheduled at a rate of at
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least their MCR using a WFQ-like scheduler. This guarantees that when active, each VC
is allocated its reserved bandwidth as well as some fair share of the excess bandwidth.

The scheme uses two global thresholds, L (low) and H (high), and a threshold 7T; for
each VC queue, which is typically set to the MBS of connection ¢. The threshold L is
used as EPD threshold for CLP=1 frames. CLP=0 frames are accepted if the total buffer
occupancy is below the second threshold H, or if R; is below T; for a frame of connection 7.

In [14], simulation experiments were performed with this buffer acceptance scheme. The
WEFQ-like scheduler used is a virtual spacing scheduler. With GFR.1 connections, the
performance was much better than with the implementation using tagging and a FIFO
queue. The goodput achieved by the TCP sources is much closer to the expected goodput,
although sources with a high MCR are again somewhat penalized. With GFR.2 connections
where the F-GCRA tags frames at the entrance of the network, the TCP performance was
lower than with the GFR.1 connections. This is again because the TCP traffic is bursty,
implying that many frames are tagged by the F-GCRA. Further, these CLP=1 frames are
already discarded by the buffer acceptance scheme when the buffer occupancy is relatively
small.

Global FIFO scheduling

Global FIFO scheduling (GFS) is proposed in [19]. In contrast to other buffer acceptance
schemes for GFR, GFS does not use the CLP information in the cells, but integrates the
buffer acceptance scheme and the eligibility test.

GFS uses per-VC queueing, a global FIFO buffer containing references from the VC queues,
a fixed global threshold L and a threshold 7; for each VC queue. The decision about the
eligibility of a frame and about the acceptance of the cells of the frame in the buffer is
taken on arrival of the first cell of the frame. When the frame is considered eligible, or
when the total buffer occupancy is below the global threshold L, or when the occupancy of
the queue ¢ corresponding to the connection on which the frame arrives is below 7T;, then
the first cell of the frame and all its following cells are accepted. Otherwise, all cells of the
frame are discarded. Each time a cell arrives from a frame that is accepted, and this frame
is considered eligible, a reference to the VC it belongs to is put into the FIFO buffer. The
FIFO buffer thus maintains the order in which the VC queues have to be served according
to the order of the arrivals of cells from frames which have been chosen eligible for the GFR
MCR service guarantee. When the global FIFO queue is empty, a round robin scheduling
scheme is performed among all VC queues. The excess bandwidth is thus equally shared
among the excess traffic, in contrast to the previous WF(Q based scheme that shares it in
proportion to the MCRs of the connections.

Simulations in [19] evaluate the performance of GFS. When there are no losses, GF'S shows
good performance and provides each connection with its guaranteed bandwidth. The excess
bandwidth is shared equally among the different VCs. When cell losses occur, GF'S cannot
always guarantee the reserved bandwidth in a fair manner, but the results are close to
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what might be expected (MCR plus an equal share of the left over bandwidth).

5.2.3 Buffer acceptance schemes for GFR using per-VC account-
ing in a global FIFO buffer

For a service like GFR, the cost of per-VC queueing and per-VC scheduling may be consid-
ered too high, making an implementation using a global FIFO buffer for all VCs desirable.
In contrast to per-VC queueing, FIFO queueing cannot isolate frames from different VCs
at the egress of the buffer, since the cells are scheduled in the order in which they entered
the buffer. So an intelligent buffer acceptance algorithm based on per-VC accounting is
needed to provide the minimum rate guarantees to the various connections. Several buffer
acceptance schemes for GFR using per-VC accounting in a global FIFO buffer have been
proposed, but were not able to deliver GFR guarantees. Examples of these are weighted
buffer allocation (WBA) in [34] and a scheme based on dynamic per-VC thresholds in
[7]. In this section, two acceptance schemes that are more successful in delivering GFR
guarantees are considered.

Differential fair buffer allocation

Differential fair buffer allocation (DFBA) is also one of the example GFR implementations
of the ATM Forum Traffic Management Specification [5]. Tt is designed for use with a global
FIFO buffer and tries to allocate buffer capacity fairly amongst competing connections.
This allocation is proportional to the MCRs of the connections, by assigning to each
connection a weight W; corresponding to its MCR.

DFBA uses two thresholds L (low) and H (high). If on arrival of the first cell of a frame the
total buffer occupancy () falls below L, the scheme attempts to bring the system to efficient
utilization by accepting the frame. When @ is above L, it drops new CLP=1 frames to
ensure that sufficient buffer capacity is available for CLP=0 frames. The threshold L is
thus an EPD threshold for low priority frames. The threshold H does the same for CLP=0
frames, so when () is above H, all new frames are discarded. When () is between L and H,
DFBA attempts to allocate buffer space proportional to the MCRs: when ();, the number
of cells of connection 7 in the buffer, is below its fair share, then new CLP=0 frames of
connection i are accepted. In DFBA, the fair share of connection 7 equals its fair allocation
(i.e., the acceptable load ratio is 1), which is defined as

fair allocation for connection i = — Q,

w

where W is the sum of the weighting coefficients of all active connections. If Q); exceeds
the fair share of connection 7, then new CLP=0 frames of connection 7 are dropped with
a certain probability. The purpose of this probabilistic drop is to notify TCP sources of
congestion, but in such a way that they back off without a timeout, and thus without
temporal inactivity.
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The DFBA drop probability consists of an efficiency and a fairness component. The ef-
ficiency component increases linearly when () increases from L to H, and the fairness
component increases linearly with an increase of @Q; from (W;/W)Q to Q:

p = P{drop} = Z @%@ E”;V/%)/? +(1— @%). (5.10)

In this formula, the parameter « is used to assign appropriate weights to the fairness and ef-
ficiency components. The parameter Z; defines the maximum drop probability enforceable
for connection 1.

Simulations with the DFBA scheme for GFR.1 VCs carrying multiple TCP/IP connections
are performed in [33, 16]. They show that DFBA meets the MCR guarantees, but fails to
share the excess bandwidth among the VCs in proportion to their MCR: the smaller MCR
a connection has, the larger the proportion ‘goodput/MCR’ for that connection becomes.
In [16], it is illustrated that the poor fairness obtained with DFBA results from the fact
that DFBA fails to provide a fair share of the buffer to the various VCs. Tuning the
parameter Z; carefully with respect to the MCR of VC i can alleviate this problem a bit,
but not entirely.

Although DFBA treats CLP=0 and CLP=1 frames differently, as far as we are aware of, no
results are published with the DFBA scheme using GFR.2 connections. The same problem
as previously discussed is however to be expected: since TCP is not able to adapt its
behavior to the F-GCRA function, a large percentage of the frames will be tagged. These
tagged frames are discarded by DFBA when () exceeds L, resulting in some sources having
for long times a congestion window smaller than their MCR times their round trip time,
which implies that these sources cannot use their minimum bandwidth guarantee.

Token-based buffer allocation

Like the GFS scheme, the token-based buffer allocation (TBA) scheme proposed in [13]
tests the eligibility of the frames at the switching element, without using the CLP informa-
tion in the cells. A main difference between the eligibility test used with TBA in [13] and
the one used with GFS in [19], is that in this last scheme the buffer acceptance algorithm
uses per-VC counters to count the number of cells each VC has in the buffer, while also
the eligibility test keeps F-GCRA alike counters for each VC. In TBA, an approximate
token based solution is used for the eligibility test which increments and decreases one of
the per-VC counters of the buffer acceptance algorithm: a counter C; is associated with
VC 7 and decreased every time a cell of VC i is accepted in the FIFO buffer; this counter
is incremented at a rate corresponding to the MCR of connection 7. Further, the excess
bandwidth is divided among the active VCs by distributing excess tokens which also in-
crement the C;’s. The distribution of these excess tokens can be done equally among all
VCs, in proportion to their MCRs, but also completely uncoupled from the MCRs.

The buffer acceptance part of the TBA scheme is implemented in a FIFO buffer. The
scheme takes a different acceptance decision for a frame of connection ¢ depending on if
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connection 7 is a GFR.1 or a GFR.2 connection. The switch has this information about
each connection available, since it has been signaled during connection establishment. For
a GFR.2 connection, no CLP=0 frames should be discarded, so they are always accepted.
CLP=1 frames of a GFR.2 connection are accepted based on the RED algorithm, thus
with a certain probability. For GFR.1 connections, CLP=0 frames are accepted if the C}
counter is positive, or based on the RED algorithm with a certain probability; CLP=1
frames are accepted if the C; counter is larger than some positive value (e.g., MBS;/2),
or again based on the RED algorithm with a certain probability. When the acceptance
decision is based on the RED algorithm, the average queue length Avg, which is calculated
using equation (5.5), is compared to two fixed thresholds L (low) and H (high): the frame is
accepted if Avg is below L; when it is above H, the frame is dropped. When Avg is between
both thresholds, a packet dropping probability p, is calculated. This p, is calculated as a
linear function of the average buffer occupancy and the C; counter:

Avg — L

min(0, C;)
=«
H-L

e (5.11)

Do

The relative influence of the average buffer occupancy and the C; counter on the dropping
probability depends on the values of o and 2.

Simulations in [13] compare the performance of the TBA scheme with that of the implemen-
tation using tagging and a FIFO queue and the implementation using per-VC accounting
and WFQ-like scheduling. For GFR.1 connections that carry the traffic of a single TCP
connection, the performance of TBA is rather disappointing and highly dependent on the
values of the parameters and on the TCP implementations used. Mostly the scheme does
not bring any significant benefit compared to the the implementation using tagging and a
FIFO queue: also with TBA VCs with higher MCRs get throughputs below their reserved
bandwidth, while VCs with lower MCR get bandwidth in excess of their MCRs. If each VC
carries the traffic of several TCP connections, the performance of TBA is better: each VC
can efficiently utilize its minimum bandwidth, and the performance does not appear to de-
pend heavily on the chosen values of the parameters. Compared with the implementation
using per-VC accounting and WFQ-like scheduling, the performance of TBA is comparable
or even slightly better. Although the TBA scheme provides a different treatment to GFR.1
and GFR.2 connections, no simulations with GFR.2 traffic were performed in [13].

5.2.4 Related work

As with the acceptance schemes for UBR, more schemes than the ones presented exist also
for GFR. In [26], three acceptance schemes closely related to the ones already discussed
are proposed. The first one is the implementation using tagging and a FIFO queue, but

2When p, needs to be calculated for a frame from a GFR.1 connection, it is proposed to use a larger 3
for the CLP=1 frames than for the CLP=0 frames, such that the discard probability for CLP=1 frames
is higher than for CLP=0 frames.
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combined with the drop from front strategy. The second scheme falls into the category
of schemes using per-VC accounting in a FIFO buffer. It uses a fixed threshold L for the
CLP=1 frames and a fixed threshold H for the CLP=0 frames, together with separate
accounting information about the number of CLP=0 and CLP=1 cells each VC has in
the buffer, to decide about the acceptance of a CLP=1, resp. CLP=0, frame. The third
scheme combines the second scheme with the drop from front strategy. The conclusion of
the study in [26] is that the combination of a buffer acceptance scheme with drop from
front improves its fairness, but can negatively impact its efficiency because when cells of a
given frame should be dropped, some cells of that frame might already have left the buffer.

In [88], a scheme which belongs to the category of schemes using per-VC accounting in a
FIFO buffer is presented. The scheme relies on the virtual queueing technique of [97] and
divides the time in intervals of length 7. In each period 7', the virtual scheduling mechanism
consists of two phases. In the first phase, the scheduler virtually serves T'x MCR; cells from
each VC 7 to guarantee to each connection its MCR. In the second phase, the scheduler
virtually serves each VC in a round robin fashion to achieve fair allocation of the excess
bandwidth. The actual order in which cells leave the buffer is FIFO. Although the principles
behind the scheme are sound, we think that a more complex implementation of these
principles than presented in [88] is needed, since the implementation of [88] can lead to the
loss of connections from the list identifying the active VCs.

A packet-discard push-out scheme which belongs to the category of schemes using per-VC
accounting in a global FIFO buffer is proposed in [20]. As long as a certain dynamic
variable C' which estimates the available buffer space is positive, all frames are accepted.
Since C takes the buffer space needed by cells of frames whose first cell has already been
accepted into account, this policy does not hurt already accepted frames. If C' is negative,
a new frame of connection i arrives at the buffer, and the cells of connection i do not
occupy more than a certain share of the buffer, then the queue manager selects another (or
more than one) connection that occupies too much space in the buffer, and the last frame
of this VC is pushed out of the buffer such that space comes available for the new frame
of connection i. The performance of this scheme is only compared with the performance
of EPD in [20]. Simulation results illustrate that the buffer utilization is kept at 100%
with the packet-discard push-out scheme, while this is not always the case for EPD, and
that the scheme can prevent an ill-behaved source from obtaining an arbitrary share of the
bandwidth.

5.3 Conclusions

In this chapter, an overview of the most representative buffer acceptance schemes that have
been proposed for use with the UBR and GFR ATM service categories was presented.
Characteristic of all schemes is their AAL5 frame awareness: if the scheme decides to
accept, respectively discard, the first cell of a frame, it will try to accept, respectively
drop, all cells of the same frame, since incomplete frames are of no use at the destination.



5.3. Conclusions 93

The principles of two of the earliest proposed schemes, namely partial packet discard and
early packet discard, are found back in many of the more sophisticated schemes. To be
able to accept the non-first cells of a frame from which the first cell was accepted, most
acceptance schemes use a threshold, as in EPD, to provide some excess capacity in the
buffer. If in spite of this excess capacity a cell is lost because of buffer overflow, the
remaining cells of its frame are discarded as in PPD.

No QoS commitments are made by the network to UBR connections, but most recent
buffer acceptance schemes for UBR try to provide a fair allocation of the bandwidth to
competing connections. This is done by aiming at a fair allocation of the buffer capacity
among the connections, using the principle behind the FBA scheme that a connection that
gets more than its fair share of the buffer space will also get more than its fair share of
the bandwidth. The same principle is used in some of the buffer acceptance schemes for
GFR, although the fairness is an issue then only to the excess capacity. The first concern
of buffer acceptance schemes for GFR is to provide each connection with its MCR service
guarantee.

Relying on the attractive properties of the RED scheme in IP gateways, some schemes for
ATM using the principles behind RED are proposed. The most important feature of these
schemes is their ability to keep the average buffer size, and thus also the average queueing
delay, low.

Most buffer acceptance schemes proposed to support GFR connections can be grouped in
one of the three main categories, as is done in Section 5.2. The first category contains
schemes relying on the tagging of ineligible frames by a F-GCRA function to provide the
per-VC minimum rate guarantees to the different connections. This implies that those
schemes can only support GFR.2 connections. Schemes that support GFR.1 connections
are found in the second and the third category. The schemes in the second category use
per-VC accounting and per-VC queueing, making per-VC scheduling possible. With an
appropriate per-VC scheduling algorithm, each VC is, when active, allocated its reserved
bandwidth. The schemes in the third category use per-VC accounting in a FIFO buffer,
since the cost of per-VC queueing and per-VC scheduling may be too high for a service
category like GFR.

In general, buffer acceptance schemes for GFR have problems in providing GFR.2 con-
nections with their minimum guaranteed bandwidth. This is because the GFR service
guarantee applies only to the CLP=0 frames of a connection. So the buffer acceptance
schemes have to treat the CLP=1 frames with a lower priority. But TCP congestion con-
trol mechanisms react on the loss of the frames by reducing the windows of the sources,
resulting in some TCP sources sending at a rate which is much too low to obtain their
reserved throughput. The main cause of this problem is found in the fact that TCP is not
able to adapt its behavior to the F-GCRA tagging function used with GFR.2 connections.
It is shown in [13] that when the F-GCRA function is preceded by a shaping function, a
significant gain in performance is noticed for the GFR implementation using tagging and a
FIFO queue. It seems however logical to expect the same improvement of the performance



94 5. An overview of buffer acceptance schemes for UBR and GFR

when the shaping function is used in combination with other buffer acceptance schemes.

For buffer acceptance schemes not only the principles behind the acceptance algorithm are
important, but also the accounting information the algorithm can base its decisions on
and the queueing and scheduling strategy used. In Tables 5.1 and 5.2 a summary of this
information for the main buffer acceptance schemes discussed in this chapter is provided.

Finally, remark that the ATM-Forum has recently proposed an optional minimum desired
cell rate (MDCR) indication for UBR [6], by which UBR connections can indicate to the
network a preference for a minimum bandwidth objective. Regardless of the presence
and/or value of this MDCR, this does not define a service commitment of the network to
the UBR connection. However, network specific QoS commitments for such connections
are not precluded. When a network wants to provide such QoS commitments, it will need
to implement a buffer acceptance scheme which relates closely to the schemes discussed for
GFR in this chapter.



Queueing | Scheduling | Accounting information: | Accounting information:
Buffer acceptance scheme b
strategy strategy per-VC states® counters
Tail drop global FIFO - global (Q)
Partial packet discard global FIFO drop; global (Q)
. drop;
Early packet discard global FIFO new_frame, global (Q)
. . drop; global (Q,N)
Fair buffer allocation global FIFO new_frame, per-VC (Q;)
. drop; global (Q,N)
Selective drop global FIFO new_frame, per-VC (Q;)
. . . drop; global (Q,N)
EPD with per-VC queueing || per-VC | round robin new._frame, per-VC (Qs)
Packet-based RED global FIFO drop; global (Q.IV,count, Avg)
new_frame; per-VC (Q;)
drop;
ATM-RED global FIFO new_frame global (Q,Avg)
dropnext;

Table 5.1: Buffer acceptance schemes for UBR: overview of the queueing, scheduling and accounting strategies.

“Drop; is a per-VC state that indicates if the next cell on connection 7 needs to be dropped. On arrival of the last cell of a frame on
connection i, it is reset. New_frame; is a per-VC state which indicates that the next cell on connection i is the first one of a frame. Dropnext;

is a per-VC state that indicates if the next frame on connection i needs to be dropped.

Q: total buffer occupancy; N: number of active connections; Q;: number of cells of VC i in the buffer; Avg: average buffer occupancy,

calculated by equation (5.5); count: number of accepted frames since the last dropped frame, or since Avg exceeded a threshold L.
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new_frame;

Queueing Scheduling Accounting information: | Accounting information:
Buffer acceptance scheme b
strategy strategy per-VC states® counters
. drop;
Tagging + FIFO global FIFO new_frame, global (Q)
. i : i (weighted) drop;
Tagging + per-VC queueing per-VC round tobin new_frame, global (Q)
Per-VC accounting and orVC WFQ-like drop; global (Q)
WEFQ-like scheduling pe (virtual spacing) new_frame; per-VC (R;)
drop;
FIF ! lobal
Global FIFO scheduling per-VCe O+ new_frame; global (Q)
round robin . per-VC (Q;)
eligible;
. . . . drop; global (Q,N,W)
Differential fair buffer allocation global FIFO new._frame, per-VC (O, V)
Token based buffer allocation global FIFO drop; global(Q, Avg)

per-VC (C;)

Table 5.2: Buffer acceptance schemes for GFR: overview of the queueing, scheduling and accounting strategies.

“Drop; is a per-VC state that indicates if the next cell on connection i needs to be dropped. On arrival of the last cell of a frame on
connection i, it is reset. New_frame; is a per-VC state which indicates that the next cell on connection i is the first one of a frame. Eligible; is

a per-VC state that indicates if the current frame on connection i is considered eligible.

®Q: total buffer occupancy; R;: number of CLP=0 cells of VC i in the buffer; @Q;: number of cells of VC i in the buffer; N: number of
active connections; W;: weight of VC i; W: sum of the weights of all active VCs; Avg: average buffer occupancy, calculated by equation (5.5);

C;: token counter associated with VC 4.

¢Although the name of the scheme suggests otherwise, cells are queued per-VC. There is also a FIFO queue in which references to the

per-VC queues are queued.

?As long as the FIFO queue contains references to the VC queues, scheduling is FIFO. If the FIFO queue is empty, scheduling is round

robin.




Chapter 6

Transient performance analysis of the
selective drop buffer acceptance
algorithm with responsive traffic

The selective drop and EPD with per-VC queueing buffer acceptance schemes discussed
in Chapter 5 use the same frame' aware buffer acceptance rules to decide about which
cells are allowed to enter the buffer and which cells are discarded. A flowchart of these
rules is shown in Figure 6.1. In the selective drop scheme these rules are combined with a
global queueing strategy and the FIFO scheduling strategy, while in the EPD with per-VC
queueing scheme they are used in combination with per-VC queueing and round robin
scheduling. In the current chapter we consider them in combination with three scheduling
algorithms: FIFO, round robin (RR) and a variant of probabilistic longest queue first
(PLQF). For the sake of simplicity, throughout this chapter only the term ‘selective drop
(SD)’ is used, completed when needed with the specific scheduling algorithm considered.

The transient performance of SD is analyzed when traffic is generated by sources which
respond to the presence or absence of losses (as TCP sources do). For this goal a theoretical
model is developed, where two responsive sources send traffic in fixed-sized packets of
cells, via a buffer on which the SD buffer acceptance algorithm is implemented. Transient
efficiency and fairness results are obtained from the model, most of the time under an
unfair start condition, which corresponds to a situation where one source alone has been
sending traffic for some time, and suddenly the second source starts also sending traffic,
leading to a bottleneck.

Where performance oriented studies typically rely on the assumption that the stochastic
process modeling the phenomenon of interest is already in steady state, transient perfor-
mance results are addressed in this chapter. Transient analysis is important when the life
cycle of the phenomenon under study is not long enough, since usually a stochastic process

!Throughout this chapter, the terms ‘frame’ and ‘packet’ are used interchangeably.
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At arrival of a cell of connection i:

first cell
of packet ?

accept cell
drop; = false

discard cell
drop; = true

discard

accept cell

no discard cell
drop; = true

Figure 6.1: Flowchart of the acceptance rules used by the SD and EPD with per-VC
queueing scheme. The following notation is used: ): buffer occupancy; Qnax: capacity of
the buffer; @);: number of cells of connection 7 in the buffer; L: a fixed threshold; F'S: Fair
Share. FS is calculated as (QQ/N) x K, where N is the number of active connections and
K is a fixed parameter of the SD algorithm.

cannot reach steady state unless time evolves towards infinity, or when its behavior before
reaching steady state is important. So when observing the reaction upon an unfair start
situation of a buffer acceptance scheme which aims at fairness, a transient approach is
required.

The results presented in this chapter are an extension to the results we already presented
in [92, 93]. The structure of the chapter is as follows: the theoretical model is described
in Section 6.1, and results obtained with the model are presented and discussed in Sec-
tion 6.2. This last section is further subdivided in three subsections: identical scenarios
under three different start conditions are considered in Section 6.2.1, while the influence
of the responsive traffic, resp. of the SD parameters, under an unfair start situation, is
considered in Section 6.2.2, resp. Section 6.2.3. Conclusions are drawn each time at the
end of the subsections.

6.1 Model description

6.1.1 System configuration

The performance of the SD buffer acceptance scheme will be observed using the config-
uration of Figure 6.2. Traffic is generated in fixed-sized packets of cells by two respon-
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Responsive
source 1

Responsive
source 2

T scheduling
buffer acceptance
algorithm (SD)

Figure 6.2: System configuration.

sive sources, which respond to the presence/absence of losses of their traffic by decreas-
ing/increasing the amount of packets they send in a certain time. All traffic is sent to the
same destination via the output port of a network element. The links in the scenario all
have the same capacity, which makes this output port a bottleneck at which buffering is
needed. The decision about which packets are allowed to enter the buffer is made using
the SD buffer acceptance algorithm. The queueing in the buffer can be global, or per-VC,
and the order in which the cells leave the buffer depends on the scheduling algorithm used.

6.1.2 Source behavior

The traffic in the system is generated by two independent but identical sources, which
send their traffic in fixed-sized packets of D back-to-back cells (for modeling simplicity it
is assumed that D is even). The time needed to place D cells onto the links is considered
as time unit of the system, and is called a ‘slot’. On the input links, a slot thus equals the
time to place a packet of cells onto the links, while on the output link the D cells that may
be put onto the link in a slot can belong to both connections, depending on the output
of the scheduling algorithm. The sources are persistent sources that have always traffic to
send, but the amount of packets they send in a time of z slots (where x is a parameter
of the source model) is limited by their window size. The window sizes of the sources are
updated every x slots, based on the number of packets a source has lost at the buffer in
the previous x slots. The following rules are used for the window updates:

e if a source did not lose any packets during the previous z slots, then its window size
is increased by one packet, except if it has already reached its maximum window size
of x packets,

e if a source has lost one packet during the previous z slots, then its window size is
approximately halved, by setting it to the smallest integer not smaller than half its
current window size,

e if a source has lost two or more packets during the previous x slots, then its window
size is reduced to one packet.
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Further, it is assumed that a source with a window size of r packets (1 < r < z) sends
these packets during the first r slots of an interval of x slots.

6.1.3 Buffer acceptance

When a packet arrives at the buffer, the decision about if it is allowed to enter the buffer
or not is made based upon the SD buffer acceptance algorithm. Denote by @4, resp. o,
the number of cells of connection 1, resp. connection 2, in the buffer, by Q = Qi + Q-
the total buffer occupancy, by L the fixed threshold of the SD algorithm, by K the fixed
parameter of the SD algorithm, and by N the number of active connections. Because of
the assumption in the model that the sources send the D cells of a packet back-to-back,
packet boundaries correspond to slot boundaries. Since the acceptance rule (QQ < L or
Qi < (Q/N) x K) of the SD algorithm is only tested for the first cell of a packet (see
Figure 6.1), a decision about the acceptance or discarding of the complete packet can be
made in the model at slot boundaries. If packets from both sources arrive at the same
time and they both pass the acceptance rules, but there is only place in the buffer for one
packet, then it is assumed that each packet has equal probability of being the one that is
dropped.

6.1.4 Scheduling

Three scheduling algorithms are considered: FIFO, round robin (RR) and probabilistic
longest queue first (PLQF). In a FIFO system, if the D cells of a packet arrive back-to-
back at the buffer, D cells of one connection (when upon arrival of this packet no packet
of the other connection arrived), or D/2 cells of each connection (when a packet of both
connections arrived at the same time) leave the buffer in a slot. In a RR system on the
other hand, when at departure instants no cells of the other connections are present, D cells
of one connection leave the buffer in a slot. Otherwise, D/2 cells of each connection leave
the buffer in a slot. The system is also considered with a PLQF scheduling discipline, which
selects for service a connection with a probability proportional to the contribution of this
connection to the total queue length. Where the aim of RR scheduling is to let an equal
amount of cells of each connection leave the buffer per scheduling cycle, PLQF scheduling
strives to an equal amount of cells of each connection in the buffer. Corresponding to the
FIFO and RR system, also in the PLQF system we let D/2 cells of each connection or
D cells of one connection leave the system in a slot, and this with the following probabilities:

e D/2 cells of each connection, with probability S/Q,

e D cells of connection 1, with probability LZ?S/Q,

e D cells of connection 2, with probability 7@;95/2

I
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output sequences

probability = 1/2
probability = 1/6
s [T [T ——  — AN E ]~
! ! : : 3 PLQFf — probability = 1/6
ooz [T 7 [ PN BRI~
I———
slot 3 slot 2 slot 1 slot 0 probability = 1/6
4

cells which leave the buffer during the same slot

Figure 6.3: In the PLQF system, different output sequences occur probabilistically.

arrs. | depts. | arrs. | depts. | arrs. | depts. | arrs. | depts. | depts. | depts.
slot 0 | slot 0 | slot 1 | slot 1 | slot 2 | slot 2 | slot 3 | slot 3 | slot 4 | slot 5
Q1 2 0 2 1 1 O} 1213|1201 0
Q- 0 0 2 1 3 2111413131221 0
S 0 0 4 2 2 0] 214162402 0
vl D] [ [l ]l el ] ]

Table 6.1: Values of the parameters @1, )2 and S (expressed as a multiple of D/2) at
different times for the PLQF system shown in Figure 6.3.

where S is the number of cells in the buffer belonging to packets that have been accepted
at the same time as other packets.

To illustrate the probabilistic character of PLQF scheduling and to make the meaning of
S more clear, a small example is shown in Figure 6.3 and Table 6.1. Figure 6.3 shows for
four slots packets that are accepted in the buffer and the possible output sequences that
can occur when PLQF scheduling is applied. Table 6.1 shows the values of the parameters
Q1, Q2 and S (expressed as a multiple of D/2) at different times.

6.1.5 System evolution

Define the following random variables at discrete-time slot boundaries k, where k = lx+m,
leNand me{0,...,z — 1}, fori=1,2:

e (;(k): number of cells of connection i in the buffer at time k,

e W;(k): number of packets source i sends in the interval of length x slots that starts
at time [x,
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‘ slot 0 ‘ slotl ‘ slot 2 ‘

0- ot 1= 2= ot 3~ '3+
—— ——— —— ——
arrivals slot 0 departures slot 0 arrivals slot 1 departures slot 1 arrivals slot 2 departures slot 2 arrivals slot 3
count losses count losses count losses adapt windows count losses

reset loss counters

Figure 6.4: Evolution of the system during the first 3 slots for z = 3.

e L;(k): number of lost (i.e., not accepted in the buffer) packets of source i at time k
since the beginning of the interval of length x slots that started at time lx (0, 1, or
2, where ‘2’ means ‘more than one’).

For the PLQF system, define also

e S(k): number of cells in the buffer at time k& belonging to packets that have been
accepted at the same time as other packets

Remark that because in a slot 0 cells, D cells of one connection or D/2 cells of both
connections leave the buffer, and because in a slot 0 or D cells of each connection enter the
buffer, the number of cells of each connection in the buffer at slot boundaries is always a
multiple of D/2. So the values the Q;(k)’s can take are always multiples of D/2, and the
values S(k) can take are always multiples of D. Further, corresponding to the assumption
made in Section 6.1.2 that the window sizes of the sources are updated every z slots, the
definition of W;(k) implies that W;(lx) = W;(lz +1) = --- =W;(lz + = — 1).

To simplify the description of the evolution over time of the defined system, split the time
instant & virtually into £~ and k*, where &~ represents the moment just before the arrivals,
if any, of slot & occur, and k™ represents the moment just before the departures, if any, of
slot k occur. The result is an evolution 0~ - 0" - 17 =1t —» ... > (k- 1)t > k™ —
kT — (k+1)” — .... Two types of evolution over time can then be distinguished:

1. Evolution of the type k= — k™: the arrivals in the buffer during slot k are taken into
account, resulting in a possible increase of the random variables Q;(k™), S(k*) and
L;(k*) compared to Q;(k~), S(k~) and L;(k™).

2. Evolution of the type k™ — (k 4+ 1)7: the departures from the buffer during slot &
are taken into account, resulting in a possible decrease of the @Q; ((k+1)7) and
S ((k+1)7) compared to Q;(k™) and S(k*). When k + 1 is a multiple of z, also the
window size W; ((k 4+ 1)7) of each source is updated from W;(k"), using the value
L;(k*). Further, the loss counters L; ((k + 1)) are reset to zero.

Figure 6.4 illustrates for x = 3 the evolution of the system during the first three slots.

Remark that the tuple (W;(k™), W5(k ™)) provides enough information to know from which
connections packets arrive in slot k, while based on (Q1(k~), Q2(k™)) it can be determined
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by means of the SD algorithm which of these packets are accepted in the buffer. Using
the information (Wy(k™), Wo(k™), L1(k™), Lo(k™)), where k + 1 is a multiple of z, window
updates can be performed. To decide which cells depart from the buffer during slot k, the
information that is needed depends on the scheduling algorithm used:

e RR: (Q1(kT),Qa(kT)),
e PLQF: (Q1(k1), Q2(k™), S(kT)).

For FIFO, which is one of the simplest scheduling schemes to implement, it is necessary
to keep track of the order in which the cells of the different connections have entered the
buffer. In an analytical model this is difficult to incorporate, since even for two sources
this makes the number of states in the model very large, leading to an unattractive model.
Because of that, we do not describe the system evolution of the FIFO system theoretically,
but obtain it by simulation. In these simulations, the same source behavior and modeling
assumptions are used as in the theoretical models for RR and PLQF. A formal description
of the system evolution corresponding to the informal description above is now given for
the RR and PLQF system.

At time k, the state of the PLQF system is given by a seven dimensional element
(Q1(k), Qa(k), S(k), Wy (k), Wy(k), Li(k), La(k)). The evolution over time of the system
is described by a multidimensional discrete-time random process

{(Ql(k): Q2(k)7 S(k)a Wl(k)a W2(k): Ll(k): LQ(k)) s k Z 0}: (61)

whose future, given the presence, is independent of the past for all time instants k. Hence
the process is a Markov chain. It is however a nonstationary Markov chain, since the
probability of going from one state to another depends on the time at which the transition
is made (multiple of x or not).

Analoguously, the state of the RR system at time & is described by a six dimensional ele-
ment (Qi(k), Qa(k), W1 (k), Wa(k), L1(k), La(k)), and the evolution over time of the system
is then given by the Markov chain

{(Ql(k)a QQ(k)a Wl(k)a WQ(k)a Ll(k)a LQ(k)) s k 2 0} : (62)

In the sequel, when the only difference between an equation for the RR system and for the
PLQF system is that the random variable S(k) needs to be omitted for the RR system, as
is the case in equations (6.1) and (6.2), only the equation for the PLQF system is written
out formally.

Denote the state space of the Markov chains by € and define
Xi = (Q1(k),Qq(k), S(k), Wyi(k), Wy(k), L1(k), La(k)). The random variables that con-
stitute the multidimensional states X take values in the following range (assume that
Qmax is a multiple of D):
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e i1(k):0,D/2,D,3D/2,...,Qmax,

Qo) 0,D,2D, ..., Qmax — Q1(k), if Q1(k) is an even multiple of D/2,
[ ] .
2 D/2,3D/2.5D/2, ..., Qmax — Q1 (k), if Q1 (k) is an odd multiple of D/2,

. S(H): {0,2D,4D, o 2mi1_1{Q1(k),Q2(k)}, %f Q1 (k) %s an even mult.iple of D/2,
D.,3D,5D,....2min{Q:(k), Q2(k)}, if Q(k) is an odd multiple of D/2,
o Wi(k):1,2,...,x, fori=1,2,
o Li(k):0,1,2, fori=12.
Assuming the probabilities that the system is in a certain state (¢, o, §, w1, s, Zl, l}) € Qat

time &k~ are known, the probability that the system is in a state (g1, qa, $, w1, wo, l1,1l3) €
at time k™ is calculated using the complete probability formula:

P{Xp+ = (q1, 92,5, w1, w3, 11, o)} =
Z P {Xk+ = (q1, g2, 8, wi, wa, i, o) | Xp- = (G1, o, 3, ?f)laifb,[l,[z)}

(41,G2,8,01 02,01,02)€Q

P {Xk— = (@1@2,@1@1,1@2,51,[2)}- (6.3)

For simplicity, denote the conditional probability in equation (6.3) by P;. Let L be the
fixed threshold of the SD algorithm, and denote by FS(g;, ¢2) the fair share as calculated
by the SD algorithm, i.e.,

Q1 + G2

FS(quanQ) — K 3
Iigi 20y + Ligo 20}

(6.4)

where 14 denotes the indicator function of an event A.

To compute P;, assume that £ = lz +m, | € N and m € {0,...,2 — 1}. Since at time
(k — 1)* the departures of slot £ — 1 were taken into account, at time &k~ there is always
place in the buffer for at least D cells. Different cases can be distinguished:

1. wy > m and wy > m, i.e., arrivals occur on both connections.

(a) 41+ ¢ < L, or (@1 + ¢ > L, ¢t < FS(G1,G>) and ¢ < Fs(él,fb)), i.e., both
packets are accepted.
L. ¢1+ G2 < Qmax — 2D, i.e., there is place in the buffer for both packets. Then
Py =1if (q1,q2, 5, w1, w2, 1, 12) = (G1 + D, Go + D, 542D, 1y, s, Iy, [).
ii. ¢1 + ¢o = Qmax — D, i.e., there is place in the buffer for only one packet.

Each packet has equal probability of being the one that is dropped. Then
Pl :1/2 if5:§, w1 :’UA}l, UIQZUA)Q, and
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e 1= +D, qo=Go, L=l ls=l+1orly=1I=2 or
s =G, =G+D,h=h+1lorli=1=21l=l.
(b) ¢1+ G2 > L, ¢ < FS(q1,¢2) and G, > FS(q1,¢2), i.e., only the packet of connec-

tion 1 is accepted, that of connection 2 is dropped. Then Py =1if ¢ = ¢ + D,
q2:q2,52§,w1:w1,w2:w2, llzll,l2:lg+10rl2:l2:2.

(¢) ¢1 +¢ > L, ¢ > FS(¢1,¢2) and ¢» < FS(q1,¢2), i.e., only the packet of con-
nection 2 is accepted, that of connection 1 is dropped Then P =1if ¢ = g1,
QQ—QQ+D S—S wl—wl,wg—wQ, ll—l1+10rl1—l1—2 l2—l2

(d) ¢+ G2 > L, g1 > FS(G1,¢2) and ga > FS(¢1, G2), i.e., both packets are dropped.
ThenApl =1 lfgl = (jl, Q2 :A(b’ s = §, w, = @Dl, Wo = wg, ll = l1+1 or
l1:h:2,l2:l2+1orl2=l2=2.

2. w; > m and wy < m, i.e., only on connection 1 an arrival occurs.
(a) 1 + G2 < L, or (qu + ¢y > L and ¢ < FS(cjl,qg)) , i.e., the packet is accepted.
Then Py = 1if (q1, g2, s, wi, wa, 11, 12) = (¢1 + D, Go, 3, 1,19, 11, l2).
(b) G + Go > L and §; > FS(Gi,Gs) . i.e., the packet is dropped. Then P, = 1 if
G =q1, G2=1{q2, S=35, w; =W, we =1y, iy =l +1orl =1l =2 ly=1I.
3. w; < m and wy > m, i.e., only on connection 2 an arrival occurs.
(a) 1 + G2 < L, or (qu + ¢y > L and ¢y < FS(dl,qg)) , 1.e., the packet is accepted.
Then Py = 1if (q1, g2, s, w1, wa, 1, 13) = (¢1. G2 + D, 3, w1,w2,l1,l2)
(b) ¢1 + ¢ > L and ¢, > FS(G1,qs) , i.e., the packet is dropped. Then P, = 1 if

Q=0,@=0,5S=5 w =W, wy =Wy, [y =l,la=>L+1orly=1 =2.

4. 0y <m and Wy < m, ie., no arrivals occur. Then Py = 1if (g1, g2, 5, w1, w2, 11, l2) =
(q1, Go, 8,701,109, 11, I5).

In all other cases, P, = 0.

To compute the probabilities that the system is in a certain state (G, go, §, 11, Wo, Zl, Zg) e
at time k7, again the complete probability formula is used:

P{Xi = (a1, 5100103, 1, 5) | =

Z P {Xk* = ((jh‘f%@; ?171,7172;[1;[2) | X(k—1)+ = (qlaQQ:Sawlaw%ll:lQ)}

(q1,92,5,w1,w2,l1,l2)€EQ

P{ X 1)+ = (a1, 4, 8, wi, wa, 11, 1)} . (6.5)

Denote the conditional probability in equation (6.5) by P», and assume that k£ = [z + m,
l € Nand m € {0,...,z — 1}. Remark that when m # 0, only the departures of slot
k — 1 are taken into account. When m = 0, also the window sizes are adapted and the
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loss counters are reset. Define by f the window update function that corresponds to the
source behavior rules described in Section 6.1.2:

min{w; + 1,2} ifl; =0,
1 if [; = 2.

Again, different cases can be distinguished:

1. ¢t + ¢2 = 0, i.e., the system is empty. Then Py = 1 if (41, o, 8, @y, 0o, Iy, l) =
(Q1aQQ>3>w1aw2al1al2)-

2. q1 +qy # 0, i.e., the system is not empty. If

o m # 0, W = wiy, Wy =wy, Iy =1y, ly =1y, or

e m=0,w = f(w,lh), Wy = f(wa,ly), i =0,1,=0,
then

(a) for PLQF scheduling,
i. P, = s/(q1 + q2), i.e., D/2 cells of each connection leave the buffer, if
G=¢—D/2,Go=q—D/2, §=5—D.
. Py = (1 —s/2)/(q1 + q2), i.e., D cells of connection 1 leave the buffer, if
G=q¢—D, ¢p=q,5=s.
iii. P, = (g2 — s/2)/(q1 + q2), i.e., D cells of connection 2 leave the buffer, if
Gh=q,p=¢—D, s=s
(b) for RR scheduling, P, =1 if
L. 70, G1 = 1 — D/2, G = g2 — D/2, i.e., the buffer contains cells of
both connections, so D/2 cells of each connection leave the buffer.
ii. ¢ =q— D, ¢, = qy =0, i.e., the buffer contains only cells of connection 1,
so D cells of that connection leave the buffer.

iii. ¢1 =q1 =0, ¢ = qo — D, i.e., the buffer contains only cells of connection 2,
so D cells of that connection leave the buffer.

In all other cases, P, = 0.

Using alternately the equations (6.3) and (6.5), the probabilities that the system is in a cer-
tain state of Q at time k= or kT can be calculated when starting values
P{Xo- = (Gi,Ga, 8,101, 19, 11,15)} at time 0~ for all states (Gy, 4o, 8, 11, o, [, l5) € Q are
given. Remark that by definition of the random variables L;(k) and Ly(k), L1(07) =
Ly(07) = 0, i.e., the starting probabilities P{Xo- = (1, §o, $, w1, o, I, Zg)} should be zero
when [, # 0 or when s # 0.



6.1. Model description 107

6.1.6 Transient performance measures

From the state of the system at time kT, the following random variables (i = 1,2) are
obtained:

e O;(k): number of cells of connection i that leave the buffer during slot &.

Remark that the O;(k)’s take values 0, D/2 or D. Further on in this section, F [O;(k)] is
used, which is the average over all realizations of the random process O;(k), and is thus
per definition given by

E[0i(k)] = (D/2) P{Oi(k) = D/2} + D P{O;(k) = D}. (6.7)

For the systems with FIFO and RR scheduling, due to the fact that this are non-probabilis-
tic scheduling schemes, it is possible that the random processes O;(k) are deterministic (i.e.,
have only one realization), such that E [O;(k)] = O;(k). This is the case when the initial
state of the system is deterministic, and over time it never occurs that two packets that
arrive at the same time are both accepted by the acceptance rules, while there is only place
in the buffer for one packet. When the latter would happen anyhow, the sample paths of
the processes O;(k) split into two branches at such moments.

For the PLQF system, the probability that O;(k) equals D/2 is the probability that during
slot k, D/2 cells of each connection leave the buffer:

S
P{Oz(k) — D/Q} = Z " +q2 P{Xk+ - (q17q2737w1aw27l17l2)}' (68)
€N

(ql 5q2955w1;w29l1;l2)
a1+¢2#0

The probability that O;(k) equals D with PLQF scheduling is given by the probability
that D cells of connection ¢ leave the buffer during slot &:

Z g — /2
(QI7q2955w1;w29l1,l2)€Q 1 2
q1+gq27#0

P{Xk+ = (Q1a92;5;w1;w2,11,12)}- (6-9)

With RR scheduling, the probability that O;(k) equals D/2 is the probability that at
time kT the buffer contains cells of both connections:

P{0O;(k) = D/2} = > P{X+ = (q1.q2, 5, wi, wa, Iy, )} (6.10)

(q1,92,5,w1,w2,l1,l2)EQ
q1+9270,q1.q2#0

The probability that at time k™ the buffer contains only cells of connection ¢ equals the
probability that O;(k) = D for the RR system:

P{O;(k) = D} = Z P{Xp+ = (q1,q2, 5, w1, w2, 11, 12) } . (6.11)

(ql ,q2,5,w1,U)2,l1,12)€Q
q1+9270, q1.92=0, ¢; 0
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For the FIFO system, the probability distribution of the O;(k)’s is obtained by simulation.

Both the efficiency and fairness performance of the system in transient state are of interest,
and are obtained from the effective throughputs 7;(k) of the connections after k slots. Since
the effective throughput of a connection is defined as the average number of packets of that
connection that have arrived at the destination, divided by the time needed to deliver these
packets, T;(k) is calculated as

T.(h) = 5= > Fl00)] (6.12)

J=0

Remark the factor ‘D’ in the denominator, since we want the throughput to be expressed
in packets per slot time.

The efficiency after k slots is defined as the sum of the effective throughputs of all con-
nections after & slots, divided by the maximum possible effective throughput after £ slots
(which is one packet per slot time), resulting in

efficiency (k) = T1 (k) + T (k). (6.13)

To decide about the fairness performance of the system, the fairness index of equation (4.2)
is used. Since the equal division of the total effective throughput among both connections
is considered as the perfectly fair situation, the fairness index after k slots, denoted by
F(k), reduces to

() + To(h)*
2(T3(0)" + 2 (Ta(k))°

Fk) = (6.14)

Remark that for two sources, F'(k) ranges between one half (minimum fairness) and one
(maximum fairness).

6.2 Numerical results and discussion

6.2.1 Different start conditions

The scenarios in this section are all considered with the following three deterministic start
conditions: P{Xo— = ((jl,(jg, §,’UA)1, ’LZ)Q, ll, lg)} = ]_, where

L. ((jl;Cj?agawlaw?;Zl;lA?) = (070;07 1; 170:0)7
2. (quan27'§7uA)17UA)2alAlalAQ) = (0,0,0,%,1‘,0,0),

3. ((jl;Cj?agawlaw?;lAl;lA?) = (0,0,0,$, 170;0)



6.2. Numerical results and discussion 109

Start condition 1 corresponds to a set-up where the two sources start probing the network
at the same time with a window size of one packet. The buffer of the system is empty at
that time. Under start condition 2, the two sources start also sending traffic to an empty
system at the same time, but now they do it in a very aggressive way, by both starting
at their maximum window size. With start condition 3, the window setting is the most
unfair situation possible, but also the most realistic one. Start condition 3 can be seen
as the result of a situation where only one source is sending traffic, and because there is
no bottleneck then, all traffic of this source passes through the system without building
up a queue and without losses. The window size of this source can thereby grow until
its maximum. At time 07, the second source starts also sending traffic, starting with a
window size of one packet.

Scenario 6.2.1. Consider a system with following parameters:

e 2 =10 (slots), Qmax = 12 x D (cells), L =7 x D (cells), K =1,

e PLQF scheduling.

The evolution over time of the mean window size of the two sources and the mean buffer
occupation of the two connections under the three start conditions is shown in Figures 6.5
and 6.6. Because the input traffic in the system is generated by two identical sources,
none of which is offered a preferential treatment by the buffer acceptance or the scheduling
scheme, the mean window sizes and the mean buffer occupations coincide under identical
start values for both connections, although of course the two window sizes and the two
buffer occupations at time £ are often different. This is not only the case in this example,
but is true in general, as is shown in the appendix. For start condition 3, there is a difference
in the start value of the two window sizes. In Figures 6.5 and 6.6, a difference between the
curves of both connections is clearly seen at the beginning, while afterwards the curves for
both connections become more and more the same (i.e., the differences between the curves
become invisible on the plots after approximately 500 slots). It is observed very often in
scenarios with PLQF scheduling that the curves for the mean window size and the mean
queue size of both connections coincide more and more when time progresses. This can
be explained as follows: when at time k£ the mean buffer occupation and window size of
both connections would be calculated over only these sample paths on which it occurred
at a certain time instant [ before k that the parameters (buffer occupation, window size,
loss counter) of both connections were the same, then these means would be identical
for both connections (cfr. property 6.3.1). The more time progresses, the more likely it
becomes that it has happened on more and more sample paths that the parameters of
both connections were the same once, and thus that the difference between the means for
connection 1 and connection 2 become smaller. This is of course true for all scheduling
schemes considered, but since PLQF scheduling aims at equal buffer occupation for all
connections, the probability that the parameters of the connections come together at a
certain time instant is higher with PLQF scheduling.
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Figure 6.5: Evolution of the mean window
sizes when x = 10, Qmax = 12X D, L =7xD
and K = 1 under different start conditions
(PLQF scheduling). In the two topmost
plots, the curves of connection 1 and 2 coin-
cide.

Figure 6.6: Evolution of the mean buffer oc-
cupations when z = 10, Qumax = 12 X D,
L =7x D and K = 1 under different start
conditions (PLQF scheduling). In the two
topmost plots, the curves of connection 1
and 2 coincide.

Figure 6.5 shows clearly the oscillating behavior of the window size of the sources, which is
caused by their responsiveness: the window is allowed to grow as long as no losses occur,
and it is reduced after losses. The window size of a source keeps on oscillating (except if it
is allowed to stay at its maximum value, which occurs when there is no bottleneck in the
system), because the source’s behavior is such that it keeps on trying to let its window grow.
Remark again that Figure 6.5 does not show the evolution of the window sizes W; (k) over
time, but E[W;(k)]. In the beginning, E[W;(k)] is equal to W;(k), since the start conditions
used are deterministic ones (one start vector with probability 1), but during time more
and more sample paths are explored because of the probabilistic character of the system.
From Figure 6.5 it is also seen that for the different start conditions, the mean window
sizes oscillate around the same value (4.7 X D cells) in the long run.

In Figure 6.6 it is seen that the oscillating behavior of the windows of the sources is reflected
in the low-frequency oscillations of the queue sizes. The high-frequency oscillations of the
queue sizes have a length of z slots, and are caused by the fact that when a source has a
window size of r packets, it sends packets during the first r slots of an interval of x slots,
letting the queue grow during these slots and go down afterwards when packets leave but
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Figure 6.8: Evolution of the efficiency when
r = 10, Quax = 12 x D, L = 7 x D
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(PLQF scheduling). For start conditions (PLQF scheduling).
(0,0,0,1,1,0,0) and (0,0,0,z,z,0,0), the

curves of connection 1 and 2 coincide.

do not arrive.

Figure 6.7 shows the evolution over time of the throughput of the different connections.
Because of the identical mean output of the two connections under start conditions 1 and 2,
their throughput curves coincide. Under start condition 1, the throughput of a connection
is lower than under start condition 2, especially in the beginning. This difference is mainly
caused by the difference in the mean number of packets that leave the system during the
first slots. This number is clearly larger with start condition 2, since then the window sizes
and consequently the buffer occupations are larger. Under start condition 1, the system is
under-utilized in the beginning (remark from Figure 6.6 that the mean buffer occupation
becomes often zero then), because the sources need time to build up their window. In
line with definition (6.12), this difference in output of the system at the beginning stays
perceptible for some while in the throughput values. When comparing the throughput of
the two connections under start condition 3, it is seen that in the beginning the throughput
of connection 1 is higher than that of connection 2, since then source 1 sends more packets
than source 2, and they are all accepted, at least until ) > L. Figures 6.6 and 6.7
together illustrate clearly how an initial difference between the output from the system
of both connections stays perceptible in the throughput values: the buffer occupations of
both connections coincide from a certain moment on, while this is not the case for the
throughput values. It is however the buffer occupation which determines with some delay
the output values, since all packets that are accepted in the buffer also leave the buffer
(packets that do not pass the acceptance rules of the acceptance scheme do not enter the

buffer either).
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The evolution of the efficiency over time under the three start conditions is shown in
Figure 6.8. The efficiency obtained with start condition 3 is the highest, while that obtained
with start condition 1 is the lowest. Remark that for start conditions 1 and 2 the efficiency
is exactly twice the throughput of a connection, since the throughput for both connections
coincides. This explains why the efficiency is higher under start condition 2 than under
start condition 1. Under start condition 3, the efficiency is even higher in the beginning,
because while the window of source 2 is still growing, source 1 sends enough traffic into the
system to keep its utilization high. When the window of source 1 needs to go down, that of
source 2 is large enough to keep the system at high utilization. The fact that the efficiency
curves are below one from a certain moment on indicates that on some of the sample paths
the system gets temporarily empty with a strict positive probability: formulas (6.12) and
(6.13) indicate that for efficiency(k) to be equal to one, the mean output of the system
needs to be D cells in all slots until slot k£, and since the maximum output per slot is
D cells, the mean can only be D cells if the output is D cells with probability 1 (i.e., the
system is always non-empty with probability 1). The moment that the efficiency drops
below one occurs first for start condition 1, then for start condition 2 and the latest for
start condition 3. This explains why the first dropping of the efficiency is the largest for
start condition 1 and the smallest for start condition 3: the longer the efficiency stays one,
the smaller the difference between the numerator and the denominator of equation (6.12)
and consequently the larger the efficiency is when the average output becomes smaller than
one for the first time.

The evolution of the fairness index is shown in Figure 6.9. For start conditions 1 and 2
this index is constantly one, since under these start conditions the throughput of the two
connections is exactly the same. With start condition 3, some time is needed to approach
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a fairness index close to one. Remark that the results are only shown for the first 500 time
slots, since as soon as the system recovers from the unfairness caused by the unfair start
situation, the fairness index approaches one, since the behavior of the two sources is the
same, and they are treated equally by the buffer acceptance and the scheduling algorithm.
This illustrates the importance of a transient analysis when observing the behavior of the
SD scheme towards an unfair start situation. In real systems, unfair (start)situations are
constantly created when connections appear and disappear.

Figures 6.8 and 6.9 illustrate that the efficiency and the fairness of a scenario give comple-
mentary information about the throughput of the different connections. Efficiency looks at
how well the outgoing capacity of the system is used, without caring by which connection
it is used, while fairness looks at how fair the outgoing capacity is used by the different
connections, independent of how much or how little of the outgoing capacity is used.

To illustrate that the observations made about scenario 6.2.1 under the three different start
conditions are more generally valid, a lot of other scenarios were considered, two of which
are added here for further illustration.

Scenario 6.2.2. Consider a system with following parameters:

e 1 =13 (slots), Qmax = 15 x D (cells), L =7 x D (cells), K =1,
e RR scheduling.

In this scenario, the evolution of the system is deterministic under the third start condition.
Under the first and second start condition, there are each time two sample paths that are
symmetric with respect to connection 1 and 2. These two sample paths coincide until the
first time that the buffer overflows, because the SD acceptance rules are always fulfilled
until then due to the identical behavior of both connections. When the buffer overflows, the
sample path splits into two symmetrical sample paths with equal probability. Afterwards,
the behavior of the two connections differs, and the SD algorithm is always able to force the
window of one of the connections to go down on time such that the buffer never overflows
again and the sample paths never split again. A problem of the SD algorithm is illustrated
here: when there are constantly a fair amount of cells of each connection present in the
buffer, the SD algorithm does not discard packets, and so it cannot be avoided that the
buffer occupation grows until the buffer overflows. Of course this problem is less severe in
reality than in the model. In the model it is assumed that packets arrive at slot boundaries
and that the windows of both sources are updated at the same time, whereas in reality
there will be some jitter in the arrival of the packets at the network elements and in the
updating of the windows of the sources.

Figure 6.10 shows the evolution of the mean window sizes of the sources, and Figure 6.11
that of the mean buffer occupations of the connections. As can be seen from these figures,
the evolutions of the average window and queue sizes with the first and second start
condition become the same after a while. More in particular, the average behavior of the
system with start condition 1 at time £ is identical to the average behavior of the system
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Figure 6.10: Evolution of the mean window
sizes when x = 13, Qmax = 15x D, L =7xD
and K = 1 under different start conditions
(RR scheduling). In the two topmost plots,
the curves of connection 1 and 2 coincide.

Figure 6.11: Evolution of the mean buffer
occupations when z = 13, Qmax = 15 X D,
L =7x D and K = 1 under different start
conditions (RR scheduling). In the two top-
most plots, the curves of connection 1 and 2

coincide.

with start condition 2 at time k£ — 104, for all £ > 157. From Figures 6.12 and 6.13 it is seen
that the throughput of the connections and the efficiency is higher under start condition 2
than under start condition 1. Since the behavior of both systems becomes the same with
some delay, this illustrates again the influence of a difference in output from the system at
the beginning. The efficiency is the highest with start condition 3, since then it occurs only
rarely that the buffer is empty, and there is thus only rarely no output during some slots.
Figure 6.14 shows the evolution of the fairness index. Again, the fairness is constantly
one for equal start values, and approaches one after some time when the start values are
not equal. Remark that the fairness index always approaches one when the behavior of
the two sources is the same, and they are treated equally by the buffer acceptance and
the scheduling algorithm. So one could wonder what the influence of the SD algorithm
is. Because of that, the evolution of the fairness index with the third start condition, but
now without the implementation of the SD algorithm, is also shown in Figure 6.14. As can
be seen, when SD is not implemented, it takes much more time before the fairness index
approaches one.
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Figure 6.15: Evolution of the mean win-
dow sizes when z = 10, Qmax = 20 X D,
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Figure 6.16: Evolution of the mean buffer
occupations when z = 10, Qma.x = 20 X D,
L =13 x D and K = 1 under different start
conditions (FIFO scheduling). In the two
topmost plots, the curves of connection 1
and 2 coincide.

Scenario 6.2.3. Consider a system with following parameters:

e =10 (slots), Qmax = 20 X D (cells), L = 13 x D (cells), K =1,

e FIFO scheduling.

Figures 6.15 until 6.18 show the evolution of the window sizes, the buffer occupations, the
throughput and the efficiency obtained with this system under the three start conditions.
Again it can be seen from the figures that under start condition 3, the throughput of
connection 1 is higher than that of connection 2, because of its initial higher window,
which makes that source 1 can send more packets than source 2 during the initial period
where all packets are accepted because the total buffer occupation is not yet above L. A
same explanation can be given to the fact that the efficiency is the highest under start
condition 3, and the lowest under start condition 1. Remark that the efficiency stays equal
to one under the second and third start condition for a much longer time in this scenario
than in the previous scenarios, because enough packets (more than z per x slots) are sent
in the beginning to let the queue grow, and since L and (). are larger here than in
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the other scenarios, which means that more packets can be buffered to keep the efficiency
longer equal to one.

Figure 6.19 shows the evolution of the fairness index under the three start conditions,
and also for the same system without SD implemented under the third start condition.
It is again seen that under start conditions 1 and 2 the fairness is perfect because of the
equal throughput of both connections. Under the third start condition, the fairness index
approaches one sooner when SD is implemented. So the SD algorithm clearly influences
the fairness results in a positive way. However, the problem of the SD algorithm mentioned
already in scenario 6.2.2 (when there are a fair amount of cells of each connection present
in the buffer, the SD algorithm cannot discard packets, and so it occurs that the buffer
grows until it overflows) appears also in this scenario, as can be seen from Figure 6.16. It
happens that the mean buffer occupation of both connections together equals QQmax, Which
means that on all sample paths the buffer occupation of both connections together equals
(Qmax at these times. This suggests that the buffer has overflowed on these times, which is
only possible when there are a fair amount of cells of each connection present in the buffer
from the moment that () exceeds L until it reaches Qmax.

Conclusions

The conclusions of this section are that when the input traffic is generated by two identical
sources, none of which is offered a preferential treatment by the buffer acceptance or the
scheduling scheme, then

e The mean window sizes and the mean buffer occupations coincide under identical
start values for both connections, resulting in equal throughput for both connections
and thus perfect fairness.

e The fairness index approaches one as soon as the system has recovered from the
unfairness caused by an unfair start situation. This illustrates the importance of a
transient analysis when observing the behavior of the SD scheme towards an unfair
start situation.

e A difference in the amount of output from the buffer at the beginning due to different
start conditions for the system stays perceptible in the efficiency values. A difference
in the amount of output of the two connections at the beginning due to unequal start
values for both connections stays perceptible for some while in the throughput and
fairness values.

From now on, all scenarios are considered with start condition 3, to observe the behavior
of the SD scheme towards an unfair start situation.
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6.2.2 Influence of the responsive traffic

In this section it is illustrated with numerical examples that due to the responsiveness of
the sources, it is not necessarily true anymore that being more conservative in accepting
packets implies a lower efficiency, as would be the case when non-responsive sources would
be used. As a result, there is not necessarily a trade-off between efficiency and fairness, as
is also illustrated by the examples. All examples are considered with start condition 3 of
the previous subsection.

Scenario 6.2.4. Consider the two systems with following parameters:

e =10 (slots), Qmax = 12 X D (cells),
e FIFO scheduling,

e (1) with SD implemented: L =7 x D (cells), K =1, (2) without SD implemented.

When packets arrive at the first system, they are accepted as long as the SD acceptance
rules are fulfilled, while in the second system they are accepted as long as there is place in
the buffer. Figure 6.20 shows the efficiency obtained with both systems. The highest effi-
ciency is obtained when SD is implemented, so when being more conservative in accepting
packets. The evolution of the first system is deterministic, while that of the second system
is not. So the efficiency of the system without SD is the average efficiency over all sample
paths. The efficiency of two such sample paths is shown in Figure 6.21. One of these paths
is a most-likely path, which is a path obtained by following always the branch that has
the highest probability associated with it (or one of these branches when there are more
of them) when the sample path of the system evolution splits.

The evolution of the window sizes corresponding to the two sample paths of Figure 6.21
is shown in Figures 6.22 and 6.23. Figure 6.24 shows the evolution of the mean window
sizes for the system without SD implemented, and Figure 6.25 that for the system with
SD. Figure 6.24, together with the Figures 6.22 and 6.23, illustrates clearly that although
the mean window sizes of both connections coincide after a while and stay almost constant
in the long run, this is certainly not the case on the single sample paths. That the mean
window sizes for both connections stay different and highly variable for the system with
SD implemented (Figure 6.25) is because this system is deterministic, such that the mean
window sizes correspond to the window sizes on the single sample path that occurs. It can
be seen that in the system with SD, when the window of a source goes down, it is most
of the time only halved, which indicates that only one packet of the source was dropped
during the previous x slots. In the system without SD on the other hand, the windows
generally can grow larger, but both windows afterwards go down at the same moment,
often both to a size of one, which indicates that two or more packets per connection were
lost during the previous x slots. The result of this is that during the time the windows
need to grow again, the buffer which first overflowed becomes empty, which results in a
decrease of efficiency, since there is no output during some slots.
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Figure 6.23: Evolution of the window sizes
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Figure 6.26: Evolution of the fairness index when x = 10, Quax = 12 x D, with and without
SD implemented (FIFO scheduling). SD parameters: L =7 x D, K = 1.

From the fairness results in Figure 6.26 for the two systems it is seen that the fairness is
much better when the SD algorithm is applied. This is a result that also appeared from
the scenarios in Section 6.2.1, and that is to be expected, since the SD algorithm aims
at fairness. In the very beginning, the two fairness curves are the same, since as long as
the acceptance rules of the SD algorithm are fulfilled, the output of the systems depends
only on the scheduling algorithm and on the traffic that is offered, which is equal then
since the traffic that is offered stays the same for both systems as long as no losses occur.
Because both the efficiency and fairness are larger for the system with SD implemented,
this scenario illustrates that there is not necessarily a trade-off between efficiency and
fairness.

Remark that no fairness curves are shown for single sample paths, as was done for the
efficiency, since the global fairness is not just the mean of the fairness obtained on all
different sample paths, whereas for the efficiency this relation is true, as can be seen from
the definitions in Section 6.1.6.

Scenario 6.2.5. Consider the two systems with following parameters:

e 2 =10 (slots), Qmax = 12 x D (cells), L =9 x D (cells),
e PLQF scheduling,
e () K=12, (2) K=14.

Figure 6.27 shows the average efficiency obtained with these systems. The highest efficiency
is obtained when K is set to 1.2, so when being more conservative in accepting packets.
The same figure shows also for both settings of K the efficiency of a single sample path.
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Figure 6.28: Evolution of the fairness index
when z = 10, Qmax = 12X D, L =9 x D,
K =12 or K = 1.4 (PLQF scheduling).

L=9xD, K =120 K = 1.4 (PLQF
scheduling).

As can be seen, although the average efficiency is the highest with K = 1.2, a sample
path obtained with K = 1.4 does not have to lie the whole time below one obtained with
K = 1.2. Figures 6.29 and 6.30 show the evolution of the window sizes and queue sizes
of the two connections corresponding to the sample paths whose efficiency is shown in
Figure 6.27. It can be seen from the plots that a decrease in efficiency occurs at moments
that the buffer becomes empty, and these moments occur with some delay after moments
on which the sum of both windows was low. The delay is caused by the fact that the
windows are forced to go down due to losses, and losses only occur when the queue size is
at least 9 x D cells, since L =9 x D. During the time the windows need to grow again,
the queue can flow empty.

On the sample path shown for K = 1.2, the queue does not become empty during ap-
proximately the first 160 slots, keeping the efficiency equal to 1. The reason is that in the
beginning, the queue occupation is completely unfair, due to the unfair start situation, so
the SD algorithm drops packets from the first connection. As a result, the window of the
first source is forced to one, but the influx of packets into the queue keeps assured since the
second source was able to grow its window by that time. Later on, the queue size of both
connections is more equal over time, making that losses occur then due to buffer overflow.
As can be seen from Figure 6.29, most of the time one of the windows is forced down com-
pletely, while the other is only halved. This window is then mostly forced down further
at the next window adaptation by the SD algorithm, since its corresponding connection
has more packets in the queue. For K = 1.4, the acceptance rules of the SD algorithm
are less conservative, such that in the beginning only one packet of the first connection
is dropped, and the window of that connection is halved. Afterwards, also losses due to
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scheduling). scheduling).

buffer overflow occur, such that the windows of the two connections need to go down (that
of connection 2 less than that of connection 1). While the windows grow again, the queue
becomes empty, resulting in a drop of the efficiency. When looking at the average efficiency
in Figure 6.27, the moment of the first drop of efficiency occurs at approximately the same
time for K = 1.2 and K = 1.4, which indicates that for both K’s there are sample paths
for which the queue becomes empty at that time. However, the total probability mass of
the sample paths on which this occurs when K equals 1.2 is much less than when K = 1.4.

From Figure 6.28 it is seen that the unfairness of the start situation is solved a bit earlier for
K = 1.2 than for K = 1.4. This is because with K = 1.2, packets of the connection which
has most cells in the buffer are dropped sooner than with K = 1.4, since the acceptance
condition @); < FS is sooner not fulfilled anymore. Also this scenario illustrates that there
is not necessarily a trade-off between efficiency and fairness, because the efficiency and the
fairness are higher for K = 1.2 than for K = 1.4.

The two previous examples have illustrated that being more conservative in accepting
packets does not necessarily result in lower efficiency, due to the responsiveness of the
sources. That this is not always the case is illustrated by many of the examples in the next
section, and by the following example:
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Scenario 6.2.6. Consider the two systems with following parameters:

e =10 (slots), Qmax = 12 x D (cells), K =1,
e RR scheduling,
e (1) L=3xD (cells), (2) L =5 x D (cells).

The efficiency obtained with these systems is shown in Figure 6.31. The evolution of the
window sizes is shown in Figures 6.33 and 6.34. Both system evolutions are deterministic,
since the queue occupation never reaches the maximum buffer size and RR scheduling is
applied. It is seen from Figure 6.31 that the highest efficiency is obtained for L = 5 x D.
The reason is that for L = 3 x D, both windows are at nearly the same time large, and
at nearly the same time small, while when the windows are large, their sum is never very
large (never larger than 13 packets) because the low setting of L causes already losses at
low buffer occupations. So the queue is often empty during the times that both windows
are small, as can be seen from Figure 6.35, because then there are not enough packets sent
to keep the buffer full, and before when the windows were high, only a small reserve could
be collected. When L equals 5 x D on the other hand, the first window is large when
the other is small, and vice versa, such that the buffer becomes only rarely empty (see
Figure 6.36), so the efficiency remains high.

The fairness obtained for both settings of L is already very soon high. This is because the
fairness condition of the SD algorithm is already tested very soon, and the RR scheduling
algorithm lets the cells leave the buffer in a very fair way as long as there are cells of
both connections present in the buffer. The reason that the fairness curve for L =5 x D
slowly oscillates around that of L = 3 x D is that for L = 5 X D there are alternately
periods that there are no cells of the first, respectively the second, connection in the buffer
when the window of that particular connection is low. During such period, more cells of
one connection leave the buffer, such that the fairness goes slightly down, but during the
following period more cells of the other connection leave the buffer, such that the fairness
increases again.

Conclusions

For this section, the conclusions are that

e Due to the responsiveness of the sources, it is not necessarily true anymore that being
more conservative in accepting packets implies a lower efficiency, as would be the case
when non-responsive sources would be used.

e There is not necessarily a trade-off between efficiency and fairness, so it should be
possible to find parameter settings for the SD scheme that result in both good effi-
ciency and good fairness results.
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‘ z (slots) ‘ Qmax (cells) ‘ Qmax/T ‘

6 5x D 0.83
7x D 1.17
12 x D 2.00
10 5x D 0.50
8 x D 0.80
12 x D 1.20
20 x D 2.00
13 7x D 0.54
10 x D 0.77
16 x D 1.23
26 x D 2.00

Table 6.2: Parameter settings for the scenarios considered in Section 6.2.3.

6.2.3 Influence of the SD parameters

In this section the influence of the parameters of the SD algorithm on the efficiency and
fairness results, when starting from the unfair start condition 3 of Section 6.2.1, is studied.
Because of the unfair start situation, all fairness curves have a typical shape: in the
beginning they go very fast down, because then an unfair amount of packets of each
connection is offered to the system; since the buffer is empty then, all packets are accepted
until @) exceeds L, so also the output of the system is unfair in the beginning. Afterwards,
the fairness increases again in a rather steep and fluctuating way, and finally it slowly
grows towards one. When discussing fairness results further on, this last part of a fairness
curve is called the ‘horizontal’ part, the other part the ‘steep’ part.

Scenarios that are considered in this section have parameters as shown in Table 6.2. These
parameters are chosen such that the ratio of Q. to x approximately takes the same values
(0.50, 0.80, 1.20 and 2.00) for the different settings of . Remark that during z slots, x
packets may leave the buffer. So ideally, the windows of both sources should be fixed a little
below x/2. But this is not how responsive but greedy sources work: they always try to let
their window grow, and decrease it only when losses occur. So on one hand the buffer is
needed to accommodate packets that arrive simultaneously, and on the other hand to build
up some reserve of packets to keep the efficiency high when the windows of the sources are
low. With a setting of Quax/z equal to 0.50 and two sources, in the ideal situation there is
only place in the buffer to accommodate packets that arrive simultaneously. With a setting
of Qmax/x larger than 0.50, some reserve can be built up. When Qax/z equals 2, in the
worst case scenario that both sources send together at their maximum rate, the buffer can
accommodate their packets during 2z slots. Remark however that it are the parameters
of the SD algorithm which determine in a large way how many packets eventually are
accommodated in the buffer.
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Influence of the threshold L

Consider the systems of Table 6.2 and set the SD parameter K equal to 1. The threshold L
is varied between L = 1 x D and L = Qna.x — D. Remark that the maximal setting of L
corresponds to the case where the SD algorithm is not implemented, since at the moments
that packets arrive, there is always place in the buffer for at least one packet, because D cells
have just left it. So when L is set at D cells before Qmay, it is always true that Q < L
when packets arrive, and the test ); < F'S is never performed. First the observations made
based on this extensive set of scenarios are summarized. Afterwards they are illustrated
by representative examples.

The following observations are made:

e For RR and PLQF scheduling, the efficiency generally increases when L increases.
This seems natural because increasing L implies that more packets are accepted, but
as has been mentioned before, this is not always true due to the responsiveness of
the sources. The exceptions to this general rule are:

— There are always settings of L through which higher efficiency values are ob-
tained than when L is set to its maximal value Quax — D (i.e., SD is not imple-
mented). With RR scheduling, there are more of these settings than with PLQF
scheduling. Sometimes even perfect efficiency values (i.e., constantly equal to 1)
are obtained with RR. With the implementation of the SD algorithm, whose
main intention is to increase the fairness, there are thus settings of L that allow
to obtain also a higher efficiency than when SD is not implemented.

— With RR scheduling, in case that the efficiency results obtained are very high,
it is possible that a larger L leads to a lower efficiency. Probably because these
results are so close to optimal, a change of L becomes less significant.

— With PLQF scheduling, for efficiency results which are among the highest ob-
tained with a particular scenario, sometimes a larger L gives lower efficiency
results.

— A few examples are found with RR scheduling where the efficiency is drastically
lower than what would be expected when looking at the results obtained with
neighboring examples (i.e., examples where the difference in the setting of L is
only D cells). In these examples the windows of both sources synchronize after
a while, but in such a way that the buffer becomes often empty, which pulls the
efficiency down. None of such examples occur with PLQF scheduling, because
of the probabilistic character of such systems.

e With FIFO scheduling, the statement that the efficiency increases when L increases
is true when z is small (x = 6), and for very small values of L for the other z’s. In the
other cases, no real relation can be found between a change of L and the corresponding
change of the efficiency, but in general large L values (a few packet sizes before the
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end of the buffer) give better efficiency results than small L values. As with RR
and PLQF scheduling, also with FIFO scheduling there are always settings of L with
which higher efficiency values are obtained than when SD is not implemented, but
sometimes these results are not the whole time above these obtained when no SD
is implemented, but only in the long run. As with RR scheduling, also with FTFO
scheduling some examples are found where the windows of both sources synchronize
in such a way that the buffer becomes often empty, implying decreasing efficiency
results.

e A main observation that can be made about the fairness for the systems with RR
and PLQF scheduling is that it is always much better when SD is implemented than
when SD is not implemented, irrespective of the exact setting of L. For all settings
of L such that L < Quax — D (i.e., SD implemented), no specific setting of L can
really be judged to give results that are the whole time better than with another L.
With FIFO scheduling, in general the same observation can be made. However, a
few exceptions are found now where the fairness is worse in a scenario where SD is
used than when it is not used.

e In the very beginning, the fairness curves coincide for all L, since the behavior of all
systems is the same as long as () < L. Later, the curves split. The smaller L, the
sooner a curve splits from the other curves, since the smaller L, the sooner the SD
scheme starts to solve the initial unfairness.

e In general, the larger z, the longer the steep part lasts, when time is expressed in
multiples of x. This indicates that the longer between adapting the windows, the
longer it takes before the initial unfairness is more or less solved.

The observations summarized above are now illustrated by numerical examples. Fig-
ures 6.37 until 6.39 show some of the efficiency results obtained with RR scheduling. In Fig-
ure 6.37 results obtained with the system with parameters x = 13 slots and Q. = 10 x D
cells are shown. As can be seen, the efficiency increases when L increases, except for
L=3xDcellsand L =9 x D cells. L =9 x D cells is the scenario in which the SD algo-
rithm is not applied. A higher efficiency than in this scenario is obtained with L larger or
equal to 5 x D cells. The scenario with L set equal to 3 x D cells is one of the few examples
where the efficiency curve is different than expected. Analyzing the results obtained with
this scenario learns that in this scenario the windows of both sources synchronize after a
while, but in such a way that the sum of both windows is always much smaller than z.
This means that every z slots, there will be some slots that the buffer is empty, which pulls
the efficiency down. Figure 6.38 shows results obtained with the scenario where x = 13
slots and Qmax = 16 X D cells. Again values for L can be found such that the efficiency
is larger than when SD is not implemented (L = 15 x D cells). In general, the efficiency
increases when L increases, but for L = 12 x D cells, the efficiency is smaller than when
L =10 x D cells, except in the beginning. But for both settings of L the efficiency is high
(above 0.98). The results shown in Figure 6.39 are all obtained with the scenario where x
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Figure 6.40: Fairness results obtained when
r = 13, Qmax = 20 x D and K = 1 for
different settings of L (RR scheduling).

equals 10 slots and Qmax equals 20 x D cells. When L is set between 8 x D and 17 x D, the
efficiency obtained is always perfect (i.e., constantly equal to one), which means that the
buffer never becomes empty. Also the buffer never overflows under these scenarios. For
L = 18 x D, the efficiency curve is a little below one, so this is again an example where the
efficiency is very high, but smaller than with a scenario where L is smaller (i.e., smaller
than all scenarios that lead to a perfect efficiency).

Some fairness results obtained with the systems with RR scheduling are shown in Fig-
ures 6.40 and 6.41. In these figures only a few curves are shown to keep the figures clear,
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but all fairness curves for L # Quax — D lie in the same region as the curves shown in
the figures. This illustrates that the fairness is much better when SD is implemented than
when it is not implemented. Remark also the dips (around 60-100 slots in Figure 6.40, 78-
130 slots in Figure 6.41) in the fairness curves when SD is not implemented. Before losses
occur, the second source is allowed to let its window grow and sends more and more cells
in the system, such that the initial unfairness is slowly solved. Because the SD algorithm
is not implemented, losses occur due to buffer overflow, and the most likely situation is
that both connections experience losses, and have to reduce their window. This makes that
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the fairness goes down again (the dip), because the first connection still has the largest
reserve of cells in the queue from before, and because the window of the first source was
still the largest when losses occurred, it is very likely that this window now still is larger
than that of the second source, although not as extremely anymore as in the beginning.
The figures illustrate also that the curves coincide in the beginning, and one by one branch
off. The smaller L, the sooner this happens. Comparing Figure 6.40 with Figure 6.41
shows that in Figure 6.41, where z is 13, it takes longer (approximately 10 times z slots)
before the horizontal part of the curves starts than in Figure 6.40 where x = 10 and it
takes approximately 7 times x slots.

Figures 6.42 and 6.43 show some results obtained when PLQF scheduling is used. In
Figure 6.42, efficiency results are shown for x = 13 slots and Qunax = 16 X D cells. This
figure illustrates that also with PLQF scheduling there are settings of L with which higher
efficiency values are obtained than when SD is not implemented (L = 15 x D). Further
it can be seen from the figure that in general, the efficiency increases when L increases,
although this is not always the case. For example, for L = 11 x D the efficiency is larger
than for L = 13 x D. When looking at the most-likely path for this last case, it is seen that
from a certain time on (around 420 slots) approximately once every 520 slots, the window
of one connection is forced down until its minimum, while that of the second connection,
which at that time was not too large, is halved, such that both connections end up with
a small window. Some time is needed to let these windows grow again, during which the
buffer flows empty for a few slots. Figure 6.43 shows fairness results when x equals 10 slots
and Qmax is 20 x D. The figure illustrates clearly that the fairness obtained when SD is
not implemented (L = 19 x D) is worse than when it is implemented and that the fairness
curves coincide in the beginning, and branch off one by one, first for the smallest L. This
branching off happens sooner here than in the corresponding case with RR scheduling
(Figure 6.40), since with RR a difference in fairness occurs only from the moment that
there is a difference in the output for the scenarios with different L. This happens when
there is a difference in which queue is empty at the particular moment.

Results obtained when FIFO scheduling is used are shown in Figures 6.44 until 6.46.
Figure 6.44 shows efficiency results obtained when x = 6 and Q. = 7 X D. Here it is
true that the efficiency increases when L increases, and that again there are settings of L
(L =4x D and L = 5 x D) such that higher efficiency values can be obtained when
SD is implemented than when SD is not implemented. In Figure 6.45, efficiency results
obtained for x = 13 and Qmax = 10 x D are shown. It can be seen from the figure that
for small values of L, the efficiency increases when L is larger. For larger values of L,
no real relation seems to exist between a change of L and a corresponding change of the
efficiency, but except for L = 8 x D, all settings of L above 5 x D give reasonable efficiency
results. Analyzing the results obtained when L equals 8 x D learns that all sample paths
will eventually reach a state in which the windows of both sources synchronize, and once
the system has reached this state, it keeps returning to it. During such a cycle, which lasts
117 slots, in 31 of these slots the buffer is empty, implying that the efficiency keeps going
down. No figure is shown here where no setting of L is found such that the corresponding
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efficiency curve lies the whole time above that obtained when SD is not implemented. But
for example when z = 10 and Q,.x = 8 x D, only efficiency curves which lie in the long
run above that obtained when L =7 x D (no SD implemented) exist. Figure 6.46 shows
fairness results obtained when x = 6 and Qmax = 12 X D. Mostly, the fairness obtained
when SD is implemented is better than when SD is not implemented (L = 11 x D), but
this figure shows also one of the very few exceptions found. When L = 7 x D, it looks
from the figure that the fairness curve does not approach one. Investigating the numerical
results learns however that it does, but much slower than normal. The reason is that in
this particular scenario, the following occurs frequently: the window of connection two
shows with a slight delay the same behavior as that of connection one; at the moment that
packets of connection one are dropped by the SD algorithm (obviously, W; has reached
a maximum at that time, and the buffer content is above L), then also the window of
connection two is fairly high, such that () will stay above L; during the following interval
of x slots, W5 reaches its maximum, but W; is low now, and thus connection one sends
much less than connection two, implying that connection two will loose a lot of packets;
the result is that the window of connection two has to go down, such that connection two
can send less than connection one; because this occurs repeatedly, the unfairness is higher
now than in other scenarios.

Influence of the parameter K

For the scenarios of Table 6.2 with z = 10 and different settings of L, K will now be chosen
from K =1, K = 1.2 and K = 1.4. The larger K, the less severe the SD algorithm is in
dropping packets. The following observations are made based on the results:
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e With RR scheduling, it is true in general that when K increases, then the efficiency
stays equal or increases also. The larger L, the smaller the positive effect of increasing
K becomes. Some exceptions are found where the efficiency obtained with K = 1.2
or K = 1.4 is the lowest. This occurs when the efficiency results are very large or
in scenarios where the windows synchronize in such a way that the buffers become
often empty. On the fairness results almost no influence of K is noticed. The steep
parts of the fairness curves for the different K mostly coincide, since as long as cells
are present in both queues, the output of the RR scheduling algorithm is the same
for the different scenarios.

e With PLQF scheduling, for small L (approximately L < z/2) a larger K gives a
larger efficiency. The larger Q.x is, for the larger L values this stays true. When
L is increased, the results evolve through the following situations: (i) a larger K
gives still a larger efficiency in the long run, but in the transient phase the efficiency
curves cross. (ii) K = 1.2 gives a higher efficiency than K = 1, but for K = 1.4
the efficiency is below that obtained with K = 1, (iii) a larger K implies a lower
efficiency. For the fairness, some differences are noticed when changing K, but the
different fairness curves still stay very close to each other. The largest difference is
noticed in the steep parts of the curves, where the smallest K value gives the best
result.

e When FIFO scheduling is applied, as with PLQF scheduling the efficiency increases
when K increases for small L. The more L grows, an evolution towards the fact that
a larger K gives a lower efficiency is seen. Concerning the fairness results, curves
obtained for different K values coincide in the beginning, after which they one by
one branch off. In the steep part the best fairness is obtained when K equals 1. In
the long run, it is difficult to judge which K value gives best results in a scenario.
What is seen often in the horizontal parts of the fairness curves is a slowly oscillating
behavior. Curves which show this behavior correspond often to scenarios with which
perfect efficiency values are obtained.

In Figure 6.47 some efficiency results are shown for different settings of L and K when
=10, Qmax = 12 X D and RR scheduling is applied. The curves for K =1 and K = 1.2
when L = 5 x D, and those for the three K values when L. = 7x D or L = 9 x D
coincide. For all L, except L = 1 x D, the efficiency increases when K grows, but the
differences between the curves for K = 1 and these of K = 1.4 decrease when L increases.
For L =1x D and K = 1 or K = 1.2, the evolution of both systems is deterministic,
since the queue occupation never reaches the maximum buffer size. The efficiency curve
obtained when K equals 1.2 lies below that when K equals 1, since in the first case the
buffer becomes more often empty. Some fairness results obtained with different K for
=10, Qmax = 20 x D and L = 3 x D can be found in Figure 6.48. The steep part of the
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three curves coincides, in the horizontal part a slight difference is seen.

Figures 6.49 and 6.50 show efficiency results obtained with PLQF scheduling when x = 10
and Quax = 20 x D. The figures illustrate the evolution from ‘a larger K gives a larger
efficiency’ for small L towards ‘a larger K gives a smaller efficiency’ for large L. For
L =5xDor L =7xD, the efficiency increases when K increases. For L = 9 x D and
L =11 x D, in the long run this stays true, but in the transient phase the largest efficiency
is obtained when K = 1.2. When L equals 13 x D, the largest efficiency is obtained
with K = 1.2, the lowest with K = 1.4. Finally, with L = 16 x D, a larger K gives a
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Figure 6.53: Fairness results obtained when x = 10, Quax = 12 x D and L = 9 x D for
different settings of L and K (FIFO scheduling).

smaller efficiency. Figure 6.51 shows some fairness results when PLQF scheduling is used
for x = 10, Quax = 20 x D and L = 5 x D. As the figure illustrates, no large differences
occur between the fairness curves for different K. The dip in the fairness around 100-150
slots corresponds to the first moment that the window of connection 2 is forced down (until
then it has been growing). Because connection 2 still has to make up some of its initial
arrears, and now temporarily can send less than connection 1, the fairness goes a bit down
again.



136 6. Transient performance analysis of SD with responsive traffic

Figures 6.52 and 6.53 show results for the different values of K when FIFO scheduling is
applied. In Figure 6.52 efficiency values are shown for a scenario in which x = 10 and
@max = 12 x D. As can be seen, when L equals 3 x D, then the efficiency increases when
K increases. For L =7 x D, the efficiency is the largest (i.e., perfect) when K = 1.2. The
efficiency obtained with K = 1 is larger than that obtained with K = 1.4, while in the
transient phase curves cross. When L equals 9 x D, the lowest efficiency is obtained when
K = 1.4. Figure 6.53 shows fairness results for different K when L equals 9 x D for the
same scenario as used in Figure 6.52. The three fairness curves coincide in the beginning
and then branch off one by one. In the horizontal part, the curves for K =1 and K = 1.2
show an oscillating behavior caused by the fact that the window of one connection is high
while that of the other connection is low. Because of the FTFO scheduling, this implies that
during a period more cells of connection one will leave the buffer, such that the fairness
goes down. During a following period, more cells of connection two leave the buffer, such
that the fairness grows again, and so on. Comparing with Figure 6.52 learns that perfect
efficiency values are obtained when L =9 x D and K =1 or K = 1.2.

Conclusions

The most important conclusion of this section is that the presence of the SD algorithm
has a large positive effect on the fairness results, irrespective of the exact setting of the
parameters of the algorithm. On the efficiency results however, these parameters have
more influence.

With RR and PLQF scheduling, the efficiency generally increases when the threshold L
increases, and choosing L at a few packet sizes less than the size of the buffer results
in a good setting. With RR scheduling, the chance is rather high that the efficiency
values obtained are then even above these obtained when SD is not implemented (so
there is no trade-off between efficiency and fairness then). With PLQF scheduling, this
chance is reasonable. Remark however that with RR scheduling, sometimes the efficiency is
lower than expected because of synchronization effects. When using PLQF scheduling, no
lasting synchronization will occur because of the probabilistic character of the scheduling
algorithm in these scenarios. Also with FIFO scheduling, synchronization can occur. With
FIFO scheduling it is much harder to make a conclusion about the best setting of the
threshold L, since no real relation was found between a change of L and a corresponding
change of the efficiency. But choosing it a few packet sizes less than the size of the buffer
as with RR and PLQF scheduling gave in most scenarios rather good results.

The parameter K of the SD algorithm has also more influence on the efficiency results
than on the fairness results. Increasing K has principally a positive effect on the efficiency
when L is set at a small value. When the setting of L is larger, this positive effect is still
seen with RR scheduling, but with PLQF and FIFO scheduling the probability is rather
high that the efficiency will be lower than when K is chosen equal to one.

As a general conclusion, it is recommended to implement SD to increase the fairness, but
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with a parameter setting focusing on the efficiency results.

6.3 Appendix

In this appendix it is shown that under identical start values for both connections (i.e.,
Q1(07) = Q(07), W1(07) = Wa(07), L1(07) = Ly(07)), the mean window size and the
mean buffer occupation at an arbitrary time instant [ is identical for both connections.
For the PLQF and the RR system, this is a special case of the property below, which is
proven formally. For the FIFO system, only an intuitive explanation is given. Because the
results in this chapter for the FIFO system are obtained by simulation, no mathematical
description of the evolution over time of this system was developed before. Developing it
here would only introduce more notation to describe the order in which the cells of the
different connections have entered the buffer, after which a formal proof would be almost
analogue to that for the PLQF and RR system.

Property 6.3.1. Let k be an element of the ordered set {07,07,17,1%,27,2% ... }. For
the PLQF and the RR system as defined in Section 6.1, if for all (q1, q2, 8, w1, wa, 11, 13) €
for which P{Xy = (q1, q2, 8, w1, wa, l1, o)} # 0, it is true that g1 = q2, w1 = wo and Iy = Iy,
then E[Q1(1)] = E[Q2(1)] and E [W1(1)] = E[Wy(l)], for all 1 > k.

Remark that the random variable S is only present in the states of {2 when needed, i.e.,
when PLQF scheduling is applied.

Proof. From the computations in Section 6.1.5 of
P = P{Xh+ = (q1,q2, s, wi, wa, Iy, 1) | Xp- = (@1@2,@1@1,1@2,[1,52)} , and  (6.15)

pP,=Pr {Xh— = (qla(hasawl;w%llal?) | X(h71)+ = ((jla(jZagawlawZailaZZ)} ; (6-16)

it is easily seen that when P, = p;, then also

P{ X+ = (@2, 1,5, w3, w1, 5, 1) | Xo = (G 1, 5, 03,10, b, 1) | = (6.17)
and when P, = p,, then also

P{Xi = (@21, 5,02, w1, b, 1) | Xuoays = (G, 41, 5,03, 100, 1, 1) | = (6.18)
By induction it is now shown that for all [ > k,

P{X, = (q1, ¢, s, w1, wa,l1,15)} = P{X; = (g2, 1, 5, wa, w1, lo, 1) } . (6.19)
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For [ = k, (6.19) is trivially true by the assumption in property 6.3.1. Assume that (6.19)
is also true for [ > k (inductionhypothesis). If [ = h~, then define I* = h*. If [ equals h™,
then define I* = (h+ 1)~. So it should be shown now that (6.19) is also true for [*:

P{Xz* = (fhaQQ;S;wl;wQ,lth)} =

Z P {Xz* = (Q1,Q2,5,w1,w2;l1;l2) | X = (Cﬁ;‘f%@; ?171,1172;[1;[2)}
(G1,G2,8,1,9,11,i2)€N e
P {Xz = (Q1;‘J2a5; w1,w2;l1;l2)}
= Z P {Xz* = (q27QI757w2;w17l2712) | X = (Cf2a<j1a§aw2;wlai2ai1)}

(G2,01,8,2,1,02,01)€Q
P{Xz = (@2@1;3;@2;@1,[2,51)} = P{Xp = (q2,q1, 5, wa, w1, o, 1)}, (6.20)
where the first and third equalities use the complete probability formula, and the second
equality uses that when (qi, Go, 8, 1, s, l1, lo) € €, then also (Ga, 1, 8, Wa, 1, s, 1) € €,

together with equations (6.15) and (6.17) when [* = h™, or equations (6.16) and (6.18)
when [* = h™, and the inductionhypothesis.

By definition of the mean, it follows now immediately that for each | > k,

2Qmax/D

tD
E[Q:i(1)] = Z ) Z P{Xi = (q1,q2, 5, wi,wa,l1,12)}
t=0 (q1.92,8,w1,w2,l1,l2)EQN
q1=tD/2
2Qmax/D
tD
= o Z P{Xi = (g2, q1, 8, w2, w1, 15, 1)} = E[Q2(1)], (6.21)
t=0 (q2,q1,8,w2,w1,l2,l1)EQ
q1=tD/2

and analogously that E [W,(l)] = E [Wy(1)]. &

Under identical start values for both connections, property 6.3.1 can be applied for £k = 07,
such that for the PLQF and the RR system the mean window size and the mean buffer
occupation at an arbitrary time instant [ is identical for both connections.

Property 6.3.1 is also valid for the FIFO system under the extra condition that the equal
amounts of cells in the buffer of connection 1 and connection 2 at time k are in such an
order present in the buffer that D/2 cells of each connection leave the buffer per slot under
FIFO scheduling. Because the condition of property 6.3.1 and this extra condition stay
fulfilled until the first time instant later than time k& that the buffer overflows on one of
the sample paths, property 6.3.1 is already certainly true until that time instant. Because
with FIFO scheduling a sample path only splits at times that buffer overflow occurs, and it
was assumed that then each connection has equal probability of being the one from which
the packet is lost, for each sample path there is always another sample path with identical
probability such that the number of cells of connection 1 in the buffer on the first sample
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path equals the number of cells of connection 2 in the buffer on the second sample path,
and vice versa, and the same is true for the window sizes and the values of the loss counters.
So property 6.3.1 stays also true after the first time instant that the buffer overflows on a
sample path.






Chapter 7

Extensions to the SD model

In this chapter two extensions to the model developed in Chapter 6 are considered. In
Section 7.1 the parameter x of the source model, which represents the time after which
the responsive sources update their window, is taken differently for both sources. The
motivation behind this extension is to introduce another aspect of unfairness in the model
than the unfair start situation, and observe the behavior of the SD scheme under this
kind of unfairness. Where in Chapter 6 the SD buffer acceptance rules were considered, in
Section 7.2 the definition of the fair share is changed such that now the fair buffer allocation
(FBA) acceptance rules are considered. A comparison with the results obtained in this
case and the results obtained before using SD is made. Section 7.3 concludes this chapter
with a short overview of other methods used in the literature to model frame aware buffer
acceptance schemes.

7.1 Use of a different parameter x for both sources

With real TCP sources, there is an inherent unfairness to connections with longer roundtrip
times [29]. This unfairness originates from the fact that in the absence of congestion, each
connection increases its window every roundtrip time, so the window and thus also the
throughput increases at a faster rate for connections with shorter roundtrip times.

In the model developed in the previous chapter, a source increases its window after z slots
when no losses occurred during these x slots. Since two identical sources were considered,
both sources used the same value for . In this section we extend the source model such
that both connections use a different value for z, i.e., x1 for the first source and x5 for the
second source, with z; # 5. The source behavior stays the same, except that the window
size of source i (i = 1,2) now can take values in the range 1, ..., z;.

A scenario with identical start conditions for both connections is considered:

141
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Figure 7.1: Fairness results obtained when Figure 7.2: Throughput results obtained
r1 =10, 29 = 13, Qmax = 16 X D and K =1 when z; = 10, 29 = 13, Qmax = 16 X D
for different settings of L (RR scheduling). and K = 1 for different settings of L (RR
Identical start conditions. scheduling). Identical start conditions.

Scenario 7.1.1.

e Start condition: P{XU— = ((jl,(jg,ﬁ)l,wg,il,ig)} = 1, where ((jl,(jg,ﬁ)l,wg,il,ig) =
(0,0,1,1,0,0).

e 1 =10 (slots), 5 = 13 (slots), Qmax = 16 x D (cells), K =1,
e RR scheduling,

e (1) L=12xD (cells), (2) L =13xD (cells), (3) L =14x D (cells), (4) L=15xD
(cells).

Remark that when identical start conditions were considered in the previous chapter, this
resulted in equal throughputs for both connections and thus perfect fairness. But since
now both sources are not identical anymore, this does not need to be true anymore (i.e.,
Property 6.3.1 does not need to hold). Setting the threshold L equal to 15 x D cells is
again the same as not implementing the SD algorithm.

Figure 7.1 shows fairness results. In the beginning, when the buffer content has not yet
reached the threshold L, the behavior of all systems is the same: the fairness goes down
for the first time after the first source increases its window, and thus sends new packets;
because x5 > x1, the second source cannot send traffic at that time, so the fairness goes
down; after the second source has also increased its window, it also sends new packets,
and after they have left the queue the fairness equals 1 again. This goes on until the
second source cannot catch up anymore with the amount of packets the first source has
already sent. So when both sources have different intervals after which they update their
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Figure 7.3: Evolution of the window and Figure 7.4: Efficiency results obtained when
queue sizes when z; = 10, o = 13, x; = 10, 29 = 13, Qmax = 16 X D, and
Qmax = 16 x D, K=1and L=13xD K = 1 for different settings of L (RR
(RR scheduling). Identical start conditions. scheduling). Identical start conditions.

window, fairness is not perfect anymore. But with SD implemented, fairness again is better
than when SD is not implemented. So SD partially resolves the bias against the shorter
updating interval x; of connection 1. Figure 7.2 translates the unfairness to the difference
in throughput for both connections. As can be seen, although the maximum window size
of the first source is smaller than that of the second source, the first connection obtains
a higher throughput than the second one. This is because the first source can send more
traffic over time than the second one, since the window of the first source recuperates faster
after it needed to go down.

Figure 7.3 shows the evolution of the window and queue sizes for both connections when
L =13 x D. Remark that both window settings are the same at the start, but the window
of the first source grows faster. Because the first source can thus send more traffic, the
SD algorithm drops packets of the first connection once the threshold L is exceeded, and
the window of the first source is forced down. Meanwhile, the second source can let its
window grow further, and thus sends more traffic, such that the next time packets of the
second connection are dropped. Remark however that the second source can never let its
window grow until its maximum window size of 13 packets, while that of the first source at
regular times reaches its maximum window size of 10 packets. The reason is that the first
source benefits from a small window of the second source, since then the second connection
sends only a few packets, plus after it has sent them, it takes a long time before the next
packets arrive. So the first source has for a long period the buffer almost for its own, with
periods where there is no bottleneck, such that the total buffer occupancy will be below the
threshold L. Quite the reverse happens when the window of the first source is small. The
second connection benefits from this, but only for a short time, since the time before new
packets from the first source arrive is not so long. And when then the queue occupancy
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grows above L, the second connection looses packets and has to reduce its window, such
that it never reaches its maximum value.

In Figure 7.4 the evolution of the efficiency for the four systems is shown. In the beginning
the efficiency is low, since both sources still have to let their windows grow. After both
windows are large enough to keep the buffer non-empty, the efficiency increases. Remark
that all settings of L considered were chosen a few packet sizes before the end of the buffer.
These settings of L were found in the previous chapter to be good settings for the threshold
to obtain good efficiency and good fairness results. Also here this is the case: both the
efficiency and fairness results obtained with them are better than the results obtained when
SD is not implemented (L = 15 x D).

7.2 Comparison with fair buffer allocation

From Chapter 5 it is known that the selective drop buffer acceptance scheme is a simpler
version of the fair buffer allocation (FBA) buffer acceptance scheme. The difference be-
tween both schemes is in the calculation of the fair share (FS), and more in particular in
the acceptable load ratio. For both schemes the FS is calculated as the product of the fair
allocation and the acceptable load ratio, but for SD the acceptable load ratio is a simple
parameter K, while for the FBA scheme it is given by
M) , (7.1)
Q- L

where 7 is a scaling factor, (),a.x the buffer capacity, L a fixed threshold and () the buffer
occupancy. Because this is the only difference between both schemes, the flowchart of the
acceptance rules shown in Figure 6.1 is also valid for the FBA scheme, where the FS is
now calculated using the acceptable load ratio given above. As a consequence, if in the
model developed in Chapter 6 for the SD scheme the definition of the FS in equation (6.4)
is replaced by

J Qmax — 1 — G2 1 + @2
FS(¢1,42) = 7 (1 + = — , 7.2

(6 &) Gr+q—L Iigi#0y + Liga0) (72)
then this model can also be used for the FBA scheme.

acceptable load ratio = 7 (1 +

In Table 7.1 the meaning of the acceptable load ratio is illustrated with a small example.
The table shows for (Qax = 6 X D and for different values of the buffer occupation ) and
different settings of the threshold L the FBA acceptable load ratio when 7 equals 1. For
other values of Z, the numbers in this table need to be multiplied by Z. The meaning of
the acceptable load ratio is the following: when a new packet of connection 7 arrives at the
buffer, it is accepted in the buffer if the number of cells (); of connection 7 in the buffer at
that moment is not larger than the number in the table corresponding to () and L, times
Q/N, the average number of cells per active connection in the buffer. Remark that the
packet is always accepted if ) < L, so the value ‘o0’ is put in the table on these positions.



7.2. Comparison with fair buffer allocation 145

| |L=1xD|L=2xD|[L=3xD|L=4xD|L=5xD

Q=2xD 5) o0 00 00 o0
Q=3xD 5/2 4 00 00 00
Q=4xD 5/3 2 3 00 00
Q=5xD 5/4 4/3 3/2 2 s
Q=6xD 1 1 1 1 1

Table 7.1: Acceptable load ratio for the FBA scheme when Qax = 6 X D (cells) and Z =1
for different values of the buffer occupation ) and different settings of the threshold L.

From the columns of the table it is read that the closer () is to the threshold L, the more
times a connection is allowed to exceed the fair allocation before its packet is dropped. The
closer @) is t0 (max, the smaller this value becomes. When Z = 1, the values in the table
never become smaller than 1, while when Z < 1, the values decrease when () increases and
become smaller than 1 before ().« is reached. On the rows of the table it is seen that for
a certain buffer occupation (), the value in the table increases for increasing L, meaning
that the closer L is to Qmax, the more times a connection’s occupation of the buffer may
exceed the fair allocation before cells of its new packets are dropped. For the SD scheme,
a similar table would have the value of K on all positions where now a number stands.
So with SD the threshold L is only indicating from which buffer occupation level on the
scheme should test on the fairness before accepting cells of a new packet, while with FBA
the threshold is also used in the calculation of the acceptable load ratio.

The goal of this section is to compare the performance obtained when using the FBA
acceptance scheme with the performance obtained when using the SD acceptance scheme.
The starting point is again the unfair start situation used in the previous chapter where
at time 0~ the window of source 1 is at its maximum, while the window of source 2 is
at its minimum. As for SD, the FBA scheme is originally defined with a global queueing
and FIFO scheduling strategy, but we consider it also in combination with RR and PLQF
scheduling.

Consider systems with parameters as shown below:
e =10 (slots), Qmax = 12 x D (cells),
e =10 (slots), Qmax = 20 x D (cells),
e =13 (slots), Qmax = 16 x D (cells).

Similar results as in the previous chapter (evolution of the throughputs, efficiency, fairness
index over time) are obtained when considering these systems with FBA. To make an easy
comparison of the results with these for the SD scheme possible, we present the results in a
slightly different way as before. Figures 7.5 until 7.10 show the results. In each figure one of
the systems mentioned before combined with one of the scheduling schemes is considered,
for different settings of the threshold L and for three settings of the FBA parameter 7,
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Figure 7.6: Efficiency and fairness results obtained with RR scheduling when x = 13 and

Qmax = 16 x D.
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ie., Z=1,7=0.8and Z = 0.5. Results obtained with SD when K = 1 are also shown.
Subplots in the figures on the same column show results obtained after a certain fixed
number N of packets of cells (N = 10z, 30x or 100x packets) have left the buffer. The
height of the bars represents the efficiency obtained with a scenario at that time, while the
dark, resp. light gray areas represent the throughput of connection 1, resp. connection 2
at that time. The higher the bars, the less time was needed to successfully deliver the N
packets to the destination. When the height of the bar is 1, this means that the N packets
have left the buffer after the minimum time possible of NV slots. The horizontal part of the
white plus-sign in each bar indicates half the height of the bar. Since the efficiency after
k slots is the sum of the throughputs of the two connections after k£ slots, the plus-sign
indicates what the throughputs of both connections should be to have perfect fairness. The
numbers on the horizontal axis of each subplot indicate the setting of the threshold in the
buffer, expressed as a multiple of D cells. Remark that for comparison, the leftmost bar
in each plot gives results obtained when neither SD, neither FBA is implemented. So in
subplots in the same column of a figure, the leftmost bar is always the same.

From Figures 7.5 until 7.10, and based on the main observations already made in the
previous chapter about the SD algorithm, the following similarities and differences between
the FBA and SD acceptance schemes are noticed:

e Like the SD algorithm, also the FBA algorithm has a large positive effect on the
fairness results, irrespective of the exact settings of the parameters L and Z of the
algorithm. In the figures this is mainly seen when N = 10z packets and when
N = 30x packets. Afterwards also the system without acceptance scheme approaches
perfect fairness because the two sources considered are equal. The fairness obtained
with FBA is comparable to that obtained by SD.

e Also for the FBA scheme the parameter setting has more influence on the efficiency,
although not so extreme as for the SD scheme. With SD, the efficiency generally
increases with increasing L, as is also clearly seen on the figures in this section. For
SD it was concluded that a setting of L a few packet sizes before the end of the buffer
resulted most of the time in good efficiency, so the results obtained with FBA should
be compared with the results obtained in this case. For the FBA scheme, no strict
relation between the setting of L and the efficiency appears from the results. Most
settings give efficiency results that are comparable with good results obtained with
the SD algorithm.

e With RR scheduling, the efficiency obtained when FBA is used is in most cases above
that obtained when no acceptance scheme is implemented, and also often perfect (i.e.,
constantly equal to 1). So FBA with RR scheduling results in both good efficiency
and fairness. When FBA is combined with FIFO or PLQF scheduling, the efficiency
values obtained are often above these obtained without acceptance scheme, but not
always. With PLQF scheduling, usually the highest efficiency results are obtained
when a higher L is combined with a lower Z, or vice versa.
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Figure 7.7: Efficiency and fairness results obtained with FIFO scheduling when x = 10

and Qmax = 12 x D.
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7.3 Conclusions and related work

In this chapter two extensions to the model developed in Chapter 6 were considered. First
the model was adapted such that the interval after which the sources update their window
is different for both sources. This implies that a kind of inherent unfairness is introduced
in the model, since the window of the source with the smallest update interval can grow
faster and thus this source can recuperate faster after its window is forced down due to
losses. The scenario we considered illustrated clearly that because the two sources are now
different, some unfairness in the throughputs of the two connections stays present for ever.
However, SD can partially resolve the bias that exists against the source with the shorter
updating interval and improve the fairness results.

Secondly the definition of the fair share was modified such that the fair buffer allocation
(FBA) scheme could be considered. Results obtained with this scheme show that as the SD
scheme, also the FBA scheme has a large positive effect on the fairness results, irrespective
of the exact setting of its parameters. These parameters have, again as with the SD scheme,
more influence on the efficiency results, although their influence is not so large as with the
SD scheme. Both the fairness and the efficiency results obtained with the FBA scheme
are comparable with the results that are obtained with the SD scheme, for well-chosen
parameters.

Most, theoretical models of frame aware buffer acceptance schemes in the literature are
about partial packet discard (PPD) and early packet discard (EPD). In [17] the behavior
of the EPD scheme is studied by considering the evolution of the buffer level over time
using a deterministic model where r sources continuously send packets of cells, whose
boundaries are offset from one another by an equal amount. [83] analyzes the worst-case
excess buffer capacity requirement for the EPD and for SD-like schemes (the difference is
in the calculation of the fair share (FS), which is calculated as FS = KL/N instead of
FS = KQ/N) that use global queueing and FIFO scheduling, or per-VC queueing and RR
scheduling. An upperbound value on the total buffer occupancy is derived for all schemes.
With EPD this upper bound is reached when all sources begin sending a new packet just
one cell time before the queue occupation exceeds the EPD threshold. With the SD-like
schemes the upper bound is reached with the staggered input schedule where VC j begins
sending a new packet just before the buffer occupation of VC j — 1 reaches its maximum
value.

In [63], PPD and EPD are compared with tail drop (TD) using a single source. The
TD system is modeled as an M/M/1/N queueing system. Each of the Poisson arrivals
representing a cell is assumed to belong to the same packet as the previous arrival with a
certain probability p, and is the first cell of a new packet with probability 1 — p. The same
system is considered to model PPD and EPD, by distinguishing between two modes: the
normal mode 0 in which packets are admitted to the system and the discarding mode 1
in which packets are discarded. The states of the M/M/1/N system representing that a
certain number j of cells are present in the system are now split into two states (,0) and
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(7,1), where 0 and 1 indicate the mode the system is in. With PPD, when the system
is in state (N, 0), the buffer is full. A cell that arrives at this state is discarded and the
system enters state (N, 1). Since the following cells belonging to the same packet must
be discarded, the system stays in mode 1 until a new packet starts and the system is
not full on arrival of its first cell. The EPD scheme is modeled analoguously, except that
an additional threshold K is defined. If a first cell of a packet arrives when the system
occupation is j > K, the cell is not admitted to the system and the system enters state
(7,1) in discarding mode.

An exact analysis of the packet loss probability obtained with TD, PPD and EPD for
M homogeneous sources is carried out in [57]. Each source generates cells according to a
two state discrete-time Markovian on/off source, where a packet is compounded of cells
that are generated in the same on period. An off period represents the inactive period
between adjacent packets. For packet level performance analysis each two state Markov
source is expanded into a three state source by adding an on* state, in order to distinguish
successful packets from corrupted/lost packets while the source is active. A very similar
analysis is performed in [59], except that now continuous time on/off sources are used.

In [90] we developed a model with similar input sources as in [57], in a first attempt to
model the SD scheme with per-VC queueing and RR scheduling. Remark that important
differences from the modeling point of view between this scheme and EPD or PPD are that
this scheme uses per-VC accounting information to decide if cells of a new packet may enter
the buffer or not, and that the queues are served according to a cyclic service strategy. The
analysis we made was approximate in the sense that a queueing system with one tagged
queue and repeated server vacations together with the occupation of all per-VC queues
was considered. Although the results of this approximate model are in accordance with
results obtained by simulating the exact model (i.e., the model that considers all queues
together and exact RR scheduling), this model lacks the possibility to obtain other results
than packet discard ratios, queue length distributions and cell loss ratios. So an important
aim of the acceptance scheme considered, namely fairness, could not be assessed with the
model. Furthermore, as in the other models described above, the sources were also not
responsive to losses.






Summary

As its title suggests, this thesis consists of two parts, since it focuses on two separate topics
that are related to the performance evaluation of telecommunication network elements:
(i) the superposition of Markovian traffic sources, and (ii) frame aware buffer acceptance
schemes.

Part I: Circulant matching of the superposition of D-BMAPs

A basic problem in the dimensioning and performance evaluation of telecommunication
network elements is the computation of the buffer occupancy and waiting time distribution
of a single server queue, whose input consists of a superposition of processes modeling traffic
streams. Starting from the assumption that a traffic stream is modeled by a D-BMAP
(discrete-time batch Markovian arrival process), which is a quite general discrete-time
Markov model, a representation of the aggregation or superposition of D-BMAPs is needed,
since the input to network elements generally consists of multiple traffic streams. In theory,
this aggregation is exactly described by a new D-BMAP. A major problem however is the
explosion of the state space of this new D-BMAP when the number of input streams takes
values that are typical for real life situations. In the first part of the thesis, a method
called circulant matching is proposed, which constructs another D-BMAP with a smaller
state space to replace the exact superposition.

Chapter 1 reviews some definitions and results about finite-state stationary Markov chains
and their eigenstructure, that are used in the following chapters. It also gives the definition
and some properties of the D-BMAP and the D-BMAP/D/1/K queue and motivates why
the exact superposition of D-BMAPs should be avoided.

Chapter 2 presents the details of the circulant matching method. The purpose of this
method is to construct another D-BMAP to replace the exact superposition of independent
D-BMAPs, while matching the autocorrelation sequence (characterized in the frequency
domain by the power spectrum) and the stationary cumulative distribution of the input
rate process of the exact superposition. The transition matrix of the D-BMAP is chosen to
be circulant, in order to avoid solving an inverse spectrum problem. First expressions for
the autocorrelation sequence, power spectrum and stationary cumulative distribution of a
single D-BMAP are derived. For the autocorrelation sequence and the power spectrum,
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these expressions are written as a function of the eigenvalues and eigenvectors of the tran-
sition matrix of the D-BMAP. Then the circulant D-BMAP is introduced, and based on
the results obtained before, formulas for its autocorrelation sequence, power spectrum and
stationary cumulative distribution are obtained. Also the condition for a circulant tran-
sition matrix to be irreducible and some properties about periodic circulants are proven.
Finally expressions for the power spectrum and stationary cumulative distribution of the
exact superposition of independent D-BMAPs, that can be calculated without explicitely
constructing the exact superposition, are derived. All these results lay the foundation
for the description of how the circulant D-BMAP that replaces the exact superposition is
constructed. This construction consists of two steps: the matching of the power spectra
and the matching of the stationary cumulative distribution of the input rate process of
the circulant D-BMAP and of the exact superposition of D-BMAPs. First the transition
matrix of the circulant D-BMAP is constructed, in such a way that it has as eigenval-
ues among others all eigenvalues of the D-BMAPs in the superposition, since it are these
eigenvalues which contribute to the power spectrum of the superposition. Then the fac-
tors by which each eigenvalue of the circulant contributes to the power spectrum of the
circulant D-BMAP are fixed, such that the power spectrum of the circulant matches that
of the exact superposition. Secondly the input rate vector of the circulant D-BMAP is
constructed, taking into account the parameters that were already fixed in the previous
step, such that also the stationary distribution of the circulant D-BMAP matches that of
the exact superposition.

The circulant matching method for D-BMAPs is based on a component of a measurement-
based tool developed by San-qi Li et al. [46]. An important difference with the method of
San-qi Li is that he works in continuous time, while a D-BMAP is a discrete-time model.
So to replace the superposition of D-BMAPs by a new circulant D-BMAP, we had to
adapt the method for discrete time. Simultaneously, the method was extended such that
the periodicity which is present in the transition matrix of D-BMAPs that model periodic
traffic streams, and which is thus also noticed in their superposition, is preserved.

The circulant matching method allows us to solve some realistic queueing problems, as
is illustrated in Chapter 3. But it also has its limitations. A first problem is in the
construction of the circulant transition matrix, and more in particular in the number
of possible choices that need to be investigated for its dimension and the indices of its
eigenvalues. When the predefined set of eigenvalues the circulant should have becomes large
(say more than 10, after some reductions we proposed), it might take a long time before
a circulant with these values as eigenvalues is found. So the circulant matching method is
only useful when all D-BMAPs in the superposition are identical, or can be divided into
a limited group of identical ones, since then many of their eigenvalues are identical. A
positive point on the other hand is that the same circulant transition matrix can be used
when considering a superposition of another number of the same D-BMAPs. The difference
is in the rate vector associated with the circulant D-BMAP, not in its transition matrix. A
second possible problem is in the construction of this rate vector when a large part of the
probability mass of the rate distribution of the exact superposition is situated at the value
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zero, or very close to it, as can occur when considering the superposition of on/off sources.
In that case, it can happen that no solution for a constrained minimization problem that
needs to be solved when constructing the rate vector of the circulant D-BMAP, exists.

Chapter 3 presents numerical examples and applications of the circulant matching
method. First the rather theoretical description of the different steps of the method in the
previous chapter is illustrated by commenting upon a numerical example where a circulant
D-BMAP is constructed to replace the superposition of 50 identical 16-state D-BMAPs of
period 3. Then the superposition of identical two dimensional MMBPs (Markov modu-
lated Bernouilli arrival processes) is considered. For these types of sources, it is possible
to compare the system lengths obtained when using either the circulant approximation
of the superposition or the exact superposition as input to a queueing system, because
the exact superposition of M identical two dimensional sources is also exactly described
by an (M + 1)-dimensional Markov source. First general MMBP sources are considered,
and the system length distribution obtained with a circulant as input matched the exact
system length distribution rather well. Then a special type of MMBP sources is consid-
ered, namely on/off sources. For these type of sources the agreement between the system
length distribution obtained with the circulants as input and the exact distribution is bad.
The reason is that the rate distribution of the circulant very badly matches that of the
exact superposition, because a large part of the probability mass of the rate distribution is
located at rate zero. The same fact sometimes even causes the circulant matching method
to fail in finding a valid rate distribution for the circulant. Using the two dimensional
sources it is also illustrated that it is necessary for a matching method to take both first
and second order statistics of the arrival process into account, since when considering only
one of both, the result of the matching process might badly reflect the queueing behavior
of the sources it replaces. Another application that is considered in Chapter 3 is the su-
perposition of a periodic MPEG source model. Using the circulant matching method, we
obtained a theoretical CAC boundary for a mix of two types of MPEG sources. Remark
that due to the dimension of the MPEG source models (52 and 65 states) and the realistic
number of such sources considered, it is impossible to obtain the exact queueing results
using the exact superposition. So we compared the theoretically obtained results with ex-
perimentally obtained results. The results confirm the accuracy of the circulant matching
method.

Part II: Frame aware buffer acceptance schemes

In the second part of the thesis frame aware buffer acceptance schemes are considered.
When packet or frame based data is transported over an ATM (asynchronous transfer
mode) network, these packets are segmented into cells. A buffer acceptance scheme in a
network element decides about which cells are allowed to enter its buffer, and which cells
have to be dropped. Because the loss of a single cell of a frame leads to a corrupted frame
that is in any case discarded at the destination, buffer acceptance schemes that are frame
aware, i.e., try to accept or discard all cells of a same frame, thus improve the efficiency.
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Not only efficiency is an issue, but also the fairness among the effective throughputs of the
different connections. So also schemes that preferentially drop frames from connections
that use more bandwidth than one would call fair have been defined.

Chapter 4 reviews some concepts related to buffer acceptance and gives a more exact
definition of a frame. Since most non-real-time packet based data traffic in a network is
TCP traffic, also a short introduction on TCP and on the two ATM service categories that
are most suited to transport TCP traffic, i.e., unspecified bit rate (UBR) and guaranteed
frame rate (GFR), is given. Also the definition of some performance measures that are
considered in the following chapters is given.

Chapter 5 gives an overview of the most representative buffer acceptance schemes that
have been proposed in the literature for use with the UBR and GFR ATM service cate-
gories. Characteristic of all schemes is their AAL5 frame awareness: if the scheme decides
to accept, respectively discard, the first cell of a frame, it will try to accept, respectively
drop, all cells of the same frame, since incomplete frames are of no use at the destina-
tion. The principles of two of the earliest proposed schemes, namely partial packet discard
(PPD) and early packet discard (EPD), are found back in many of the more sophisticated
schemes. To be able to accept the non-first cells of a frame from which the first cell was
accepted, most acceptance schemes use a threshold, as in EPD, to provide some excess
capacity in the buffer. If in spite of this excess capacity a cell is lost because of buffer
overflow, the remaining cells of its frame are discarded as in PPD.

No QoS commitments are made by the network to UBR connections, but most recent buffer
acceptance schemes for UBR try to provide a fair allocation of the bandwidth to competing
connections. This is done by aiming at a fair allocation of the buffer capacity among the
connections, using the principle behind the fair buffer allocation (FBA) scheme that a
connection that gets more than its fair share of the buffer space will also get more than its
fair share of the bandwidth. The same principle is used in some of the buffer acceptance
schemes for GFR, although the fairness is an issue then only to the excess capacity. The
first concern of buffer acceptance schemes for GFR is to provide each connection with its
minimum cell rate service guarantee.

Relying on the attractive properties of the random early detection (RED) scheme in IP
gateways, some schemes for ATM using the principles behind RED are proposed. The
most important feature of these schemes is their ability to keep the average buffer size, and
thus also the average queueing delay, low.

Most buffer acceptance schemes proposed to support GFR connections can be grouped in
one of three main categories. The first category contains schemes relying on the tagging of
ineligible frames to provide the per-VC minimum rate guarantees to the different connec-
tions. The schemes in the second category use per-VC accounting and per-VC queueing,
making per-VC scheduling possible. With an appropriate per-VC scheduling algorithm,
each VC is, when active, allocated its reserved bandwidth. The schemes in the third cat-
egory use per-VC accounting in a FIFO buffer, since the cost of per-VC queueing and
per-VC scheduling may be too high for a service category like GFR.
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For buffer acceptance schemes not only the principles behind the acceptance algorithm
are important, but also the accounting information the algorithm can base its decisions
on and the queueing and scheduling strategy used. In Chapter 5 also a summary of this
information for the main buffer acceptance schemes discussed is provided.

Chapter 6 considers one of the schemes discussed in the previous chapter, namely selective
drop (SD), that aims at discarding frames in a fair way. The transient performance of SD
is analyzed when traffic is generated by sources for which the amount of traffic they can
send is controlled by a window that responds to the presence or absence of losses (as TCP
sources do). For this goal a theoretical model is developed, where two responsive sources
send traffic in fixed-sized packets of cells, via a buffer on which the SD buffer acceptance
algorithm is implemented. Transient efficiency and fairness results are then obtained from
the model.

First some identical scenarios are considered under different start conditions, among which
an unfair start condition, which corresponds to a situation where one source alone has
been sending traffic for some time, and suddenly the second source starts also sending
traffic. Conclusions are that: (i) When the input traffic is generated by two identical
sources, none of which is offered a preferential treatment by the buffer acceptance or the
scheduling scheme, then the mean window sizes and the mean buffer occupations coincide
under identical start values for both connections, resulting in equal throughput for both
connections and thus perfect fairness. (ii) The fairness approaches perfect fairness as soon
as the system has recovered from the unfairness caused by an unfair start situation. This
illustrates the importance of a transient analysis when observing the behavior of the SD
scheme towards an unfair start situation. (iii) A difference in the amount of output from
the buffer at the beginning due to different start conditions for the system stays perceptible
in the efficiency values. A difference in the amount of output of the two connections at
the beginning due to unequal start values for both connections stays perceptible for some
while in the throughput and fairness values.

Then it is illustrated with some examples that due to the responsiveness of the sources, it
is not necessarily true anymore that being more conservative in accepting packets implies
a lower efficiency, as would be the case when non-responsive sources would be used. There
is also not necessarily a trade-off between efficiency and fairness.

Also the influence of the parameters of the SD algorithm (SD has two parameters, a thresh-
old L and another parameter K) on the efficiency and fairness results is studied when start-
ing from the unfair start situation. The most important conclusion of this study is that the
presence of the SD algorithm has a large positive effect on the fairness results, irrespective
of the exact setting of the parameters of the algorithm. On the efficiency results however,
these parameters have more influence. The SD algorithm is considered in combination with
three scheduling algorithms. With round robin (RR) and probabilistic longest queue first
(PLQF) scheduling, the efficiency generally increases when the threshold L increases, and
choosing L at a few packet sizes less than the size of the buffer results in a good setting.
With RR scheduling, the chance is rather high that the efficiency values obtained are then
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even above these obtained when SD is not implemented (so there is no trade-off between
efficiency and fairness then). With PLQF scheduling, this chance is reasonable. Remark
however that with RR scheduling, sometimes the efficiency is lower than expected because
of synchronization effects. When using PLQF scheduling, no lasting synchronization will
occur because of the probabilistic character of the scheduling algorithm in these scenarios.
Also with FIFO scheduling, synchronization can occur. With FIFO scheduling it is much
harder to make a conclusion about the best setting of the threshold L, since no real relation
was found between a change of L and a corresponding change of the efficiency. But choos-
ing it a few packet sizes less than the size of the buffer as with RR and PLQF scheduling
gave in most scenarios rather good results. The parameter K of the SD algorithm has
also more influence on the efficiency results than on the fairness results. Increasing K has
principally a positive effect on the efficiency when L is set at a small value. When the
setting of L is larger, this positive effect is still seen with RR scheduling, but with PLQF
and FIFO scheduling the probability is rather high that the efficiency will be lower than
when K is chosen equal to one. As a general conclusion, it is recommended to implement
SD to increase the fairness, but with a parameter setting focusing on the efficiency results.

Chapter 7 considers two extensions to the model developed in Chapter 6. First the
model was adapted such that the interval after which the sources update their window is
different for both sources. This implies that a kind of inherent unfairness is introduced
in the model, since the window of the source with the smallest update interval can grow
faster and thus this source can recuperate faster after its window is forced down due to
losses. The scenario we considered illustrated clearly that because the two sources are now
different, some unfairness in the throughputs of the two connections stays present for ever.
However, SD can partially resolve the bias that exists against the source with the shorter
updating interval and improve the fairness results.

Secondly the definition of the fair share was modified such that also the fair buffer allocation
(FBA) scheme, another frame aware buffer acceptance scheme that aims at fairness, could
be considered. Results obtained with this scheme show that as the SD scheme, also the FBA
scheme has a large positive effect on the fairness results, irrespective of the exact setting
of its parameters. These parameters have, again as with the SD scheme, more influence on
the efficiency results, although their influence is not so large as with the SD scheme. Both
the fairness and the efficiency results obtained with the FBA scheme are comparable with
the results that are obtained with the SD scheme, for well-chosen parameters.
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Nederlands overzicht

Zoals gesuggereerd wordt door de titel, bestaat deze thesis uit twee delen. Twee afzon-
derlijke onderwerpen die gerelateerd zijn met de prestatieanalyse van telecommunicatie-
netwerkelementen worden beschouwd: (i) de superpositie van Markov verkeersbronnen, en
(ii) pakketbewuste bufferacceptatie.

Een fundamenteel probleem bij het dimensioneren en de prestatieanalyse van telecommu-
nicatienetwerkelementen is het berekenen van de distributie van de wachtrijbezetting en
van de wachttijd in een discrete-tijd wachtrijsysteem met als input een superpositie van
processen die verkeersstromen modelleren. Een belangrijke klasse van veelgebruikte ver-
keersmodellen zijn de Markov verkeersbronnen, enerzijds omdat deze bronnen het grillig
(‘bursty’) en variabel karakter van netwerkverkeer kunnen beschrijven, en anderzijds om-
dat ze analytisch bruikbaar zijn. Omdat de input van een netwerkelement meestal uit
meerdere verkeersstromen bestaat, moet ook de superpositie van Markov verkeersstromen
gekarakteriseerd kunnen worden. In theorie wordt deze superpositie exact beschreven door
een nieuw Markov model. Een probleem is echter de explosie van de toestandsruimte van
dit Markov model indien het aantal inputstromen realistische waarden aanneemt.

Het eerste deel van deze thesis stelt een methode voor, circulant matching genoemd, die een
nieuwe Markov aankomststroom met een kleinere toestandsruimte construeert ter vervan-
ging van de exacte superpositie. Twee statistische functies van het exacte inputsnelheids-
proces die de prestaties van wachtrijen beinvloeden, namelijk de autocorrelatiesequentie
en de stationaire distributie, worden gematcht door dit nieuwe Markov model. De tran-
sitiematrix van de Markov keten is een circulante matrix, om het oplossen van een omge-
keerdspectrumprobleem te vermijden. Deel I van de thesis bestaat uit drie hoofdstukken.
Hoofdstuk 1 illustreert het probleem van de explosie van de toestandsruimte en introduceert
enkele definities en resultaten. Een gedetailleerde beschrijving van de ‘circulant matching’
methode is te vinden in Hoofdstuk 2. Hoofdstuk 3 bespreekt numerieke voorbeelden en toe-
passingen van de methode, waaronder de superpositie van een model voor MPEG bronnen.

Het tweede deel van de thesis handelt over pakketbewuste bufferacceptatieschema’s. In-
dien pakketgebaseerde data getransporteerd wordt over een ATM (‘asynchronous transfer
mode’) netwerk, dan worden deze pakketten opgedeeld in cellen, de kleine data-eenheden
met een vaste lengte waarin ATM per definitie alle data verstuurt. Een bufferacceptatie-
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schema beslist welke cellen de buffer van een netwerkelement binnen mogen, en welke niet.
Omdat het verlies van een enkele cel van een pakket al resulteert in een corrupt pakket
dat sowieso weggegooid wordt aan de bestemming, verbeteren pakketbewuste bufferaccep-
tatieschema’s de efficiéntie. Niet enkel efficiéntie is belangrijk, maar ook hoe rechtvaardig
de totale effectieve ‘throughput’ onder de verschillende verbindingen verdeeld is. Daarom
werden ook schema’s gedefinieerd die bij voorkeur pakketten van verbindingen die meer
bandbreedte gebruiken dan wat eerlijk is, laten verloren gaan.

Deel TI van de thesis bestaat uit vier hoofdstukken. Hoofdstuk 4 definieert wat exact onder
de term pakket moet verstaan worden. Omdat het overgrote deel niet-tijdskritisch pakket-
gebaseerd dataverkeer in een netwerk TCP verkeer is, wordt ook een korte inleiding over
TCP en over de twee ATM servicecategorieén die het meest geschikt zijn om TCP verkeer
te transporteren, toegevoegd. Hoofdstuk 5 maakt een overzicht van de belangrijkste pak-
ketbewuste bufferacceptatieschema’s die voorgesteld worden in de literatuur voor gebruik
in combinatie met deze twee servicecategorieén. In Hoofdstuk 6 wordt een theoretisch
model opgesteld en toegepast om de vergankelijke (‘transient’) prestaties te bestuderen
van één van deze schema’s, namelijk ‘selective drop’. Selective drop is een voorbeeld van
een schema dat probeert om het verloren gaan van pakketten eerlijk te verdelen onder de
verschillende verbindingen. Door het aanbrengen van een kleine wijziging aan het model
uit Hoofdstuk 6, wordt in Hoofdstuk 7 de prestatie van het ‘fair buffer allocation’ sche-
ma, een ander schema dat streeft naar een rechtvaardige verdeling van de totale effectieve
‘throughput’ onder de verschillende verbindingen, bestudeerd.
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