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OverviewAs its title suggests, this thesis onsists of two parts, sine it fouses on two separate topisthat are related to the performane evaluation of teleommuniation network elements:(i) the superposition of Markovian traÆ soures, and (ii) frame aware bu�er aeptaneshemes.A basi problem in the dimensioning and performane evaluation of teleommuniationnetwork elements is the omputation of the bu�er oupany and waiting time distributionof a disrete-time single server queue, whose input onsists of a superposition of proessesmodeling traÆ streams. An important lass of traÆ models ommonly used in traÆmodeling are the Markovian arrival streams, beause they allow to apture the burstinessand variability present in network traÆ, and beause of their analytial tratability, arethe Markovian arrival streams. Sine most of the time the input to network elementsonsists of multiple traÆ streams, a haraterization of the aggregation or superpositionof Markovian streams is needed. In theory, this aggregation is exatly desribed by anew Markov model. A major problem however is the explosion of the state spae of thisMarkov model when the number of input streams takes values that are typial for real lifesituations.In the �rst part of the thesis, a method alled irulant mathing is proposed, whih on-struts, starting from statistial funtions of the exat superposition, a new Markovianarrival stream with a smaller state spae to replae the exat superposition. Two statis-tial funtions of the exat input rate proess that are known to inuene the queueingperformane are mathed by this new Markov model, namely the autoorrelation sequeneand the stationary distribution. The transition matrix of the Markov hain is hosen tobe irulant, in order to avoid solving an inverse spetrum problem. Part I of the thesisonsists of three hapters. Chapter 1 illustrates the state spae explosion problem andintrodues some de�nitions and results. The details of the irulant mathing method arepresented in Chapter 2. Chapter 3 disusses numerial examples and appliations of themethod, among whih the superposition of MPEG soure type models.In the seond part of the thesis frame aware bu�er aeptane shemes are onsidered.When paket or frame based data is transported over an ATM (asynhronous transfermode) network, these pakets are segmented into ells, the small �xed length data unitsiii



iv Overviewin whih ATM by de�nition transports all data. A bu�er aeptane sheme in a networkelement deides about whih ells are allowed to enter its bu�er, and whih ells have tobe dropped. Beause the loss of a single ell of a frame leads to a orrupted frame that isin any ase disarded at the destination, bu�er aeptane shemes that are frame aware,i.e., try to aept or disard all ells of a same frame, thus improve the eÆieny. Not onlyeÆieny is an issue, but also the fairness among the e�etive throughputs of the di�erentonnetions. So also shemes that preferentially drop frames from onnetions that usemore bandwidth than one would all fair have been de�ned.Part II of the thesis onsists of four hapters. Chapter 4 gives a more exat de�nition of aframe. Sine most non-real-time paket based data traÆ in a network is TCP traÆ, alsoa short introdution on TCP and on the two ATM servie ategories that are most suitedto transport TCP traÆ is given. Chapter 5 gives an overview of the most important frameaware bu�er aeptane shemes that are proposed in the literature for use with these twoservie ategories. A theoretial model to study the transient performane of one of theshemes that aims at disarding frames in a fair way, namely seletive drop, is developedand applied in Chapter 6. This model is then slightly modi�ed in Chapter 7 to study alsothe performane of fair bu�er alloation, another frame aware bu�er aeptane shemethat aims at fairness.
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Part ICirulant mathing of thesuperposition of D-BMAPs
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Chapter 1IntrodutionA basi problem in the dimensioning and performane evaluation of teleommuniationnetwork elements is the omputation of the bu�er oupany and waiting time distributionof a single server queue, whose input onsists of a superposition of proesses modelingtraÆ streams. Several main lasses of traÆ models ommonly used in traÆ modelingexist, e.g., renewal, Markov based, uid, autoregressive, self-similar et. A nie surveyof these lasses an be found in [51℄. In this �rst part of the thesis, we start from theassumption that a traÆ stream is modeled by a D-BMAP (disrete-time bath Markovianarrival proess), whih is a quite general disrete-time Markov model that inludes manywell-known soure models as speial ases [9, 10℄.Beause the input to network elements most of the time onsists of multiple traÆ streams,a representation of the aggregation or superposition of traÆ streams modeled byD-BMAPs is needed. In theory, this aggregation is exatly desribed by a new D-BMAP.A major problem however is the explosion of the state spae of this new D-BMAP whenthe number of input streams takes values that are typial for real life situations.In the �rst part of the thesis, a method alled irulant mathing is proposed, whihonstruts another D-BMAP with a smaller state spae to replae the exat superposition.This D-BMAP mathes two important statistial funtions of the exat input rate proess,namely the autoorrelation sequene (haraterized in the frequeny domain by means ofthe power spetrum) and the stationary umulative distribution. The transition matrixof this D-BMAP is hosen to be irulant, in order to avoid solving an inverse spetrumproblem.The irulant mathing method for D-BMAPs is based on an approah proposed in [46℄,whih is a omponent of a measurement-based tool developed by San-qi Li et al. for theintegration of traÆ measurements and queueing analysis. The tool [72, 73℄, whih is alledSMAQ (statistial math and queueing tool), has the ambition to model an arbitrary traf-� stream from whih the statistis are obtained from measurements. The following threeomponents form the basis of the tool: (1) measurement of the power spetrum P (!) andthe stationary umulative distribution F (x) of the rate proess of a traÆ stream using3



4 1. Introdutionsignal proessing tehniques, (2) onstrution of a CMPP (irulant modulated Poissonproess) whih statistially mathes P (!) and F (x), (3) analysis of queueing problemswith the onstruted CMPP as input. The nature of the statistis of the traÆ streamthat should be measured in step (1), and mathed in step (2), is studied in the paper [71℄.In this paper the inuene of �rst, seond, third and fourth order statistis on queueingperformane is investigated through the stationary umulative distribution, power spe-trum, bispetrum and trispetrum. The onlusion is that the power spetrum, espeiallythat in the low frequeny band, has the most dominant impat. Interesting in this paperis that the vehile used to explore the nature of queue response to seond and higher orderinput statistis is the MMPP (Markov modulated Poisson proess), whih is a ontinuoustime Markov model. First it is shown that the eigenstruture of the transition rate matrixof an MMPP aptures the input spetral funtions, so by tuning the eigenstruture of theMMPP, one an hange the input spetral funtions of the MMPP. However, �nding thespetral funtions of an MMPP is easy, but onstruting an MMPP from desired spetralfuntions is diÆult, if at all possible, sine alulating the eigenvalues of a matrix is easy,but onstruting a matrix with a desired set of eigenvalues involves a generally very dif-�ult to solve, so-alled inverse spetrum problem. To irumvent this problem, a speiallass of MMPPs, alled irulant modulated Poisson proesses (CMPPs), is onsidered, forwhih the eigenvalues and eigenvetors of the transition rate matrix are known in losedform. The queue response to input spetral funtions as ontributed by a single prede�nedeigenvalue is investigated by onstruting a CMPP whose transition rate matrix has thatvalue as eigenvalue. To investigate the e�et of spetral funtions as ontributed by multi-ple prede�ned eigenvalues, an independent CMPP is onstruted for eah eigenvalue, andthen the superposition of these CMPPs is onsidered. Beause the dimension of this super-position is the produt of the individual dimensions of the multiple CMPPs, this approahis limited by the state spae explosion and by the high omputation ost of the queueinganalysis when this superposition is used as input. In [46℄, the onstrution of a singleirulant with di�erent prede�ned eigenvalues is onsidered. Combining this onstrutionwith the observation made in [45℄ that the power spetrum and the input rate distributionof the superposition of independent MMPPs an be obtained from the power spetra andinput rate distributions of the individual MMPPs in the superposition, provides for thefat that the tehnique used in part (2) of the SMAQ tool ould also be used to onstruta CMPP whih mathes the power spetrum and the stationary umulative distribution ofthe superposition of MMPPs. And this of ourse opens perspetives for irumventing thestate spae explosion problem that ours when the superposition of multiple independentD-BMAPs is onsidered. When for a D-BMAP the eigenstruture of its transition matrixalso would apture the power spetrum (whih it does), a similar tehnique as that in part(2) of the SMAQ tool ould be applied.The details of the irulant mathing method to onstrut a irulant D-BMAP to replaethe superposition of D-BMAPs are presented in Chapter 2. Remark that an importantdi�erene with the method of the SMAQ tool is that this tool works in ontinuous time,while a D-BMAP is a disrete-time model. So the Markov proess underlying the CMPP



1.1. An algebrai approah to �nite-state stationary Markov hains 5has a irulant transition rate matrix, while for a irulant D-BMAP this should be airulant transition probabilitymatrix. Sine traÆ onsists of the arrival of disrete entities(pakets, ells et.) at disrete time instants, it beomes natural however to use disrete-time models suh as the D-BMAP. Another di�erene between the ontinuous-time MMPPand the disrete-time D-BMAP is that D-BMAPs an generate bulk arrivals, while withMMPPs this is not the ase. The motivation in [72℄ for using a irulant MMPP, and not amore generi proess, alled versatile Markovian proess, whih an apture bulk arrivals,is that no mathing tehniques are available for the onstrution of suh proesses, andalso that their queueing analysis an beome more diÆult. The D-BMAP however isthe disrete-time version of the versatile Markovian proess [9℄, and eÆient algorithms tosolve queues with a D-BMAP as input exist. Sine muh of the traÆ streams in networksare highly periodi, periodiity is also often notied in the transition matries of D-BMAPsthat model these traÆ streams. So we added the notion of periodiity to the irulantmathing method, suh that the irulant D-BMAP that replaes the superposition has thesame period as the exat superposition would have. Examples of periodi D-BMAP souresare the MPEG model that is used in Chapter 3, and the desription of the traÆ pro�leof a tagged onstant bit rate soure after it has been jittered by bakground traÆ [11℄.Other works studying and apturing periodiities are for example [61, 62℄.Chapter 3 disusses numerial examples and appliations of the irulant mathing method.First a numerial example is worked out in illustration to the theoretial desription of themethod in Chapter 2. Then appliations are onsidered where the onstruted irulant isused as input to a queueing system. Fous is on appliations that allow us to validate theobtained results, beause either the exat results an also be alulated, or beause similarresults obtained experimentally are available.In the remaining part of this hapter, some de�nitions and results that are used in thefollowing hapters are summarized. Setion 1.1 deals with the eigenstruture of �nite-statestationary Markov hains. In Setion 1.2 the D-BMAP together with some of its proper-ties is introdued, the state spae explosion problem assoiated with the superposition ofD-BMAPs is illustrated, and the D-BMAP/D/1/K queue is desribed.
1.1 An algebrai approah to �nite-state stationaryMarkov hainsThe eigenvalues of the transition matrix P of a disrete-time �nite-state stationary Markovhain provide a good deal of information about the periodiity and the number of ergodilasses assoiated with the Markov hain. The purpose of this setion is to provide a listof de�nitions and results that are used in the following hapter, and sine the terminologyused in di�erent referenes about Markov hains is not always uniform, to introdue theterminology used in this thesis. Books on whih this setion is based are [18, 44, 48℄.



6 1. Introdution1.1.1 Classi�ation of statesGiven a disrete-time �nite-state stationary Markov hain with transition matrixP, a statej is aessible from state i if there is a sequene of transitions from i to j that has nonzeroprobability. The probability of being in state j after the k-th transition, given that theinitial state was i, is given by (Pk)ij. Two states i and j ommuniate if they are aessibleto eah other. Note that eah state ommuniates with itself sine P0 = I.Two states are said to belong to the same ergodi lass if they ommuniate with eahother. If the state spae by itself forms an ergodi lass (i.e., all states ommuniate witheah other), the Markov hain is alled irreduible. Otherwise it is alled reduible. Also theorresponding transition matrix is said to be irreduible or reduible. Eah Markov hainhas at least one ergodi lass, but it is possible that several ergodi lasses exist. Statesthat do not belong to any ergodi lass are alled transient. These de�nitions imply thatone an ergodi lass is entered, the hain remains within this lass for every subsequenttransition. Thus, if the hain starts within an ergodi lass, it stays within that lass. If itstarts at a transient state, it will enter an ergodi lass after a number of transitions andthen remain there.By relabeling the states of the Markov hain, P an always be written asP = 0BBBBB�P(1) 0 : : : 0 00 P(2) : : : 0 0... ... . . . ... ...0 0 : : : P(m) 0R(1) R(2) : : : R(m) Q
1CCCCCA ; (1.1)in whih eah P(i) is square, stohasti and irreduible. It represents the transitions withinthe i-th ergodi lass. The matrixQ orresponds to transitions among the transient states.The matries R(i) give the transitions from the transient states into the i-th ergodi lass.Among irreduible Markov hains, two types are distinguished: periodi and aperiodiones. The period of a Markov hain is onerned with the times at whih the hain mightreturn to a state from whih it started. If this an only happen at times that are multiplesof d, where d is the largest integer with this property, the Markov hain is said to haveperiod d. Also the orresponding transition matrix is said to be periodi with period d. Anaperiodi Markov hain is a Markov hain of period one.For an irreduible Markov hain of period d, there always exists a relabeling of the stateswhih puts its transition matrix in the formP = 0BBBBB� 0 A(0) 0 : : : 00 0 A(1) : : : 0... ... ... . . . ...0 0 0 : : : A(d�2)A(d�1) 0 0 : : : 0

1CCCCCA ; (1.2)



1.1. An algebrai approah to �nite-state stationary Markov hains 7where the diagonal bloks are square, but A(0); : : : ;A(d�1) probably are not. Two statesare said to belong to the same periodi lass if they both orrespond to the same diagonalblok.1.1.2 Stationary distributionsIf a Markov hain has only one ergodi lass, there exists a unique vetor � of nonnegativeelements summing to one suh that �P = �. The vetor � is alled the stationarydistribution of the Markov hain, and its elements �i equal the long-run proportion of timethat the hain is in state i. If i is a transient state, �i = 0. Otherwise, �i > 0.If limn!1(Pn)ij = �j for all i, then the stationary distribution � is also alled the steadystate distribution. Thus, if P has a steady state distribution, the probability of being instate j as n ! 1 is a onstant independent of the initial state. If P is aperiodi, thereexists a steady state distribution. If P is periodi, (Pn)ij does not onverge for n ! 1,but appropriate subsequenes do: if the hain is periodi with period d, then for eah pairi; j of states there is an integer r, 0 � r < d, suh that (Pn)ij = 0 unless n = md + r, forsome nonnegative integer m, and limm!1(Pmd+r)ij = d�j.1.1.3 Eigenstruture of a transition matrixIf P is the transition matrix of a Markov hain, the omposition of its set of eigenvalues isdiretly related to the periodiity and the number of ergodi lasses of the Markov hain:� If P is in the form (1.1), then the eigenvalues of P are the eigenvalues of P(1); : : :P(m)and Q put together. None of the eigenvalues of P has a modulus that is larger thanone.� P has always 1 as eigenvalue. The multipliity of this eigenvalue 1 is equal to thenumber of ergodi lasses of the hain.� If P is irreduible and periodi with period d, P has exatly d eigenvalues withmodulus 1:�0 = 1; �1 = ; : : : ; �d�1 = d�1; where  = e 2�id : (1.3)Left and right eigenvetors hj and gj orresponding to �j, hosen suh that hjgj = 1,are given byhj = ��0 �j�1 �2j�2 : : : �(d�1)j�d�1� ; (1.4)where � = ��0 �1 �2 : : : �d�1� is the stationary distribution of P, andgjT = �eT jeT 2jeT : : : (d�1)jeT � : (1.5)



8 1. IntrodutionThe vetors �;hj and gj are partitioned aording to the periodi struture of P(see (1.2)), and e denotes a olumn vetor of 1's of appropriate length. This propertyis easily proven by alulating hjP and �jhj (resp. Pgj and �jgj), while using that�P = � and Pe = e.� If P is irreduible and periodi with period d, the set of its eigenvalues, regarded asa system of points in the omplex plane, goes over into itself under a rotation of theplane by the angle 2�=d.1.2 D-BMAP: disrete-time bath Markovian arrivalproessA disrete-time bath Markovian arrival proess (D-BMAP) is a quite general traÆ modelfor disrete-time Markov soures [9℄. Examples of the use of D-BMAPs as traÆ modelfor realisti soures an be found in e.g., [10, 11, 31℄. In [10℄, a D-BMAP is used as anapproximate model for the superposition of video soures. The D-BMAP de�ned in [11℄desribes the pro�le of a tagged ATM onnetion with renewal interarrival distributionafter it shared a multiplexer with bakground traÆ. A method to reursively estimatethe parameters of a D-BMAP is proposed in [31℄ and applied to real LAN traÆ. Its simpleand transparent notation and the fat that it inludes many well-known soure models asspeial ases makes the D-BMAP an attrative model for disrete-time arrival proesses.1.2.1 De�nitionConsider a disrete-time stationary Markov hain with transition matrix D, and supposethat at time n this hain is in some state i, 0 � i � N � 1. At the next time instant n+1,a transition to another or possibly the same state is made and a bath arrival may or maynot our. The matrix D0 governs transitions that orrespond to no arrivals, while thematries Dk, k � 1, govern transitions that orrespond to arrivals of bathes of size k. Soa D-BMAP is haraterized by a sequene of matries (Dk)k�0, withD = 1Xk=0Dk: (1.6)In the sequel a D-BMAP is most of the time denoted by the sequene of matries (Dk)k�0.It is then impliitely assumed that the matrix denoted by the same symbol, but withoutthe subsript k, denotes the transition matrix of the D-BMAP, whih is related to thematries (Dk)k�0 by the expression above.If � denotes the stationary distribution of D, then the mean arrival rate of the proess is



1.2. D-BMAP: disrete-time bath Markovian arrival proess 9given by� = � 1Xk=1 kDk e; (1.7)where e denotes a olumn vetor of 1's.More details and properties about D-BMAPs an be found in [9℄. A speial ase of theD-BMAP is the D-MAP (disrete-time Markovian arrival proess), whih is a D-BMAPthat is ompletely haraterized by D0 and D1, i.e., all arrivals have a bath size of 1.Results onerning D-MAPs are given in [12℄.In the sequel, when a D-BMAP is said to be irreduible/reduible or aperiodi/periodi, itis meant that the transition matrix of the underlying Markov hain is irreduible/reduibleor aperiodi/periodi. The same applies when mentioning the stationary distribution, theeigenvalues or the eigenvetors of a D-BMAP.1.2.2 Correlation struture of a D-BMAPThe variability in the arrivals of a traÆ stream is an essential harateristi that impatsthe bu�er oupation when traÆ streams are multiplexed. Mathematially, this variabilityhas been haraterized by di�erent expressions suh as the autoorrelation, the autoovari-ane, the index of dispersion for ounts (IDC), the index of dispersion for intervals (IDI)et. [76, 39, 94℄.In the next hapter, the autoorrelation of the input rate of a D-BMAP is derived. Theautoorrelation R[n℄ is a measure of the rate of hange of a stationary stohasti proess(Xk)k [68, p.359℄:8" > 0 : P [jXk+n �Xkj � "℄ � 2 (R[0℄� R[n℄)"2 : (1.8)This equation states that if R[0℄� R[n℄ is small, that is R[n℄ drops slowly, then the prob-ability of a large hange of (Xk)k in n slots is small.When Xk represents the number of arrivals generated by a D-BMAP at time instant k,then the autoorrelation of (Xk)k is derived in [9℄:R[0℄ = E �X2k� = � 1Xi=1 i2Di e;R[n℄n>0 = E [XkXk+n℄ = � 1Xi=1 iDi!Dn�1 1Xi=1 iDi! e: (1.9)



10 1. Introdution1.2.3 Superposition of D-BMAPsSine the input to a network element does not onsist of traÆ of a single soure, butof a multiple of soures, a desription of the aggregation of traÆ streams modeled byD-BMAPs is needed. Consider M independent D-BMAPs (D(i)k )k�0, 1 � i � M . Theirsuperposition an again be desribed by a D-BMAP, denoted by (Dk)k�0, whereD = MOi=1 D(i);D0 = MOi=1 D(i)0 ;D1 = D(1)1 
 MOi=2 D(i)0 !+ � � �+ M�1Oi=1 D(i)0 !
D(M)1 ;...
(1.10)

In the following, we refer to this desription of the superposition as the `exat superposi-tion'. The onstrution of this superposition involves the Kroneker produt 
, whih isde�ned as follows: onsider a matrix A = (aij) of dimension m�n and a matrix B = (bij)of dimension r � s; the Kroneker produt of the two matries is de�ned byA
B = 0BBB�a11B a12B : : : a1nBa21B a22B : : : a2nB... ... . . . ...am1B am2B : : : amnB
1CCCA : (1.11)In [37℄, numerous properties of this produt are given. What is important here is thatA
B is seen to be a matrix of dimension mr � ns.1.2.4 The D-BMAP/D/1/K queueThe D-BMAP/D/1/K queue is a single server system with apaity K. The deterministiservie time of a ustomer equals one time unit, and the input to the queue is desribedby a D-BMAP (Dk)k�0.When denoting by L(n) the number of ustomers in the system at time n, and by J(n) thephase of the arrival proess at time n, f(L(n); J(n)) ; n � 0g is a two dimensional Markovhain. When N is the dimension of the input D-BMAP, the state spae of this Markovhain is f(l; j)j0 � l � K; 0 � j � N � 1g, and its transition matrix of size (K + 1)N is



1.2. D-BMAP: disrete-time bath Markovian arrival proess 11given byQ = 0BBBBB�D0 D1 D2 : : : DK�1 P1k=KDkD0 D1 D2 : : : DK�1 P1k=KDk0 D0 D1 : : : DK�2 P1k=K�1Dk... ... ... ... ... ...0 0 0 : : : D0 P1k=1Dk
1CCCCCA : (1.12)

If the stationary distribution of Q is denoted by x, where x = �x0 : : : xK� withxi = �xi;0 : : : xi;N�1�, then the elements xi;j of x represent the stationary joint proba-bility that there are i ustomers in the system and that the phase of the arrival proess isin state j.The probability that an arriving ustomer gets lost due to bu�er overow is derived in [10℄,and is given byP = P1l=K+1(l �K)x0Dle +PKk=1P1l=2maxfl �K + k � 1; 0gxkDle�P1k=1 kDk e : (1.13)1.2.5 Motivations for avoiding the exat superposition ofD-BMAPsAn exat desription of the superposition of M independent traÆ streams modeled byD-BMAPs is given in (1.10). Sine this desription involves the Kroneker produt, it hasas disadvantage that it leads to a state spae explosion: the dimension of the resultingD-BMAP equals the produt of the dimensions of all individual D-BMAPs involved inthe superposition. This implies that when M takes values that are typial for real lifesituations, the exat superposition is not usable. Let us illustrate this with an example:onsider 10 soures, eah modeled by a D-BMAP of four states whose transition matrixontains no zeros. Then the D-BMAP desribing the exat superposition has 220 states,whih orresponds to 240 real numbers to desribe only its transition matrix. To store suha matrix in a program as for example MATLAB, whih uses double preision oating points(i.e., 8 bytes per oating point number), 8192 Gigabytes are needed, whih learly is notrealisti and motivates the replaement of the exat superposition by another D-BMAPwith a smaller state spae.A seond motivation to keep the state spae of a D-BMAP small, and thus to avoid the exatsuperposition of D-BMAPs, is that they generally are used as input to a queueing system,suh as for example the single server queueing system with apaity K and deterministiservie time as desribed in Setion 1.2.4. To ompute performane measures like thebu�er oupany and loss probability of suh queueing system, the stationary distributionvetor x orresponding to the matrix Q given in equation (1.12) is needed. Remark thatQ is a square matrix of size (K + 1)N , where N is the dimension of the input D-BMAP.



12 1. IntrodutionFortunately, there exist eÆient algorithms that exploit the struture that is present in thematrix Q to alulate x without needing to store the whole matrix Q. Due to its speialstruture, the matrix Q belongs to the lass of �nite M/G/1-type transition matries.There exists a huge amount of literature onerning the numerial solution (i.e., omputingtheir stationary distribution) of M/G/1-type transition matries, both for in�nite and for�nite bu�er systems (see [82, 64, 75, 8℄ for in�nite bu�er systems, and [9, 98, 66, 56℄ for�nite bu�er systems, and the referenes therein). The algorithm that is used in this thesisto solve the �nite D-BMAP/D/1/K queueing system is desribed in [9℄, and is based ona result in [38℄ extended to blok partitioned matries. The algorithm requires to storeO(K) bloks of the size of the input D-BMAP, whih is the same as most other algorithms.So also here it remains important to keep the state spae of the input D-BMAP small.



Chapter 2Cirulant mathing of thesuperposition of D-BMAPsThis hapter desribes the irulant mathing method in detail. A summary of this hapterwas presented in [89℄. The purpose of the irulant mathing method is to onstrut airulant D-BMAP to replae the superposition of independent D-BMAPs. This irulantD-BMAP mathes the power spetrum and the stationary umulative distribution of theinput rate proess of the exat superposition. In the �rst three setions of this hapter, thefoundation for the desription of the irulant mathing method in Setion 2.4 is laid. InSetion 2.1, expressions for the autoorrelation sequene, power spetrum and stationaryumulative distribution of a single D-BMAP are derived. For the autoorrelation sequeneand the power spetrum, these expressions are written as a funtion of the eigenvaluesand eigenvetors of the D-BMAP. The irulant D-BMAP is introdued in Setion 2.2,and based on the results of Setion 2.1, formulas for its autoorrelation sequene, powerspetrum and stationary umulative distribution are obtained. Also the ondition for airulant to be irreduible and some properties about periodi irulants are proven in thissetion. Setion 2.3 gives expressions for the power spetrum and the stationary umulativedistribution of the exat superposition of M independent D-BMAPs. These expressionsan be alulated without expliitely onstruting the exat superposition. In Setion 2.4the irulant mathing method itself is desribed, while onlusions and some related workare given in Setion 2.5.
2.1 Input rate proess of a D-BMAPConsider a N -state irreduible D-BMAP (Dk)k�0. Denote by � its stationary distribution,and by e a olumn vetor of 1's. The input rate proess (�(k))k of the D-BMAP is then13



14 2. Cirulant mathing of the superposition of D-BMAPsde�ned as follows: �(k) = �i when the D-BMAP is in state i at the k-th time slot, where�i = N�1Xj=0  1Xk=1 kDk!ij =  1Xk=1 kDke!i : (2.1)The input rate in a slot is thus a random variable �, whih takes values �0; : : : ;�N�1 withprobabilities �0; : : : ; �N�1, where �i is the expeted number of arrivals in a slot when theD-BMAP is in state i. The mean input rate is given byE [�(k)℄ = N�1Xi=0 �i�i = � 1Xk=1 kDk e: (2.2)Remark that the mean input rate equals the mean arrival rate (fr. equation (1.7)).2.1.1 Correlation strutureBy de�nition, the autoorrelation sequene R[n℄ of the input rate proess (�(k))k is givenby R[n℄ = E [�(k)�(k + n)℄ : (2.3)For n = 0, this gives using (2.1):R[0℄ = E �(�(k))2� = N�1Xi=0 (�i)2�i = N�1Xi=0 �i " 1Xk=1 kDke!i #2= � " 1Xk=1 kDke!� 1Xk=1 kDke!# = �(�� �); (2.4)where � = ��0 : : : �N�1�T , and where � denotes the element-by-element produt oftwo vetors.For n > 0,R[n℄ = N�1Xi=0 N�1Xj=0 �i�jP f�(k) = �i and �(k + n) = �jg= N�1Xi=0 N�1Xj=0 N�1Xt=0  1Xl=1 lDl!it N�1Xs=0  1Xl=1 lDl!js �i �Dn�1�tj= N�1Xj=0 N�1Xt=0  � 1Xl=1 lDl!t �Dn�1�tj  1Xl=1 lDle!j= � 1Xl=1 lDl!Dn�1 1Xl=1 lDl! e:
(2.5)



2.1. Input rate proess of a D-BMAP 15Sine (�(k))k is a stationary real valued proess, R[n℄ is even [68, p.359℄, i.e., for all n,R[n℄ = R[�n℄. Thus,R[n℄n6=0 = � 1Xl=1 lDl!Djnj�1 1Xl=1 lDl! e: (2.6)Beause also the autoorrelation sequene of (Xk)k, where Xk represents the number ofarrivals in slot k, is even, it an be seen from equation (1.9) that for a lag n 6= 0, theautoorrelation R[n℄ of the input rate proess equals that of (Xk)k.Assuming that D is diagonalizable, whih means that orresponding to eah eigenvaluewhih has multipliity greater than one, as many linearly independent eigenvetors as themultipliity of that eigenvalue should exist [18, p.368℄, D an be written asD = N�1Xl=0 �lglhl; (2.7)where the �l's are the eigenvalues of D, and gl, resp. hl, are the orresponding rightolumn, resp. left row, eigenvetors suh that hlgl = 1. This gives for the n-th power ofD that [18, p.368℄:Dn = N�1Xl=0 (�l)nglhl; (2.8)suh thatR[n℄n6=0 = N�1Xl=0 (�l)jnj�1� 1Xk=1 kDk!glhl 1Xk=1 kDk! e = N�1Xl=0 (�l)jnj�1 l; (2.9)where l = � 1Xk=1 kDk!glhl 1Xk=1 kDk! e: (2.10)As an be seen from these formulas, eah eigenvalue �l of D ontributes a term to R[n℄.This term is determined by the eigenvalue �l and the orresponding  l, whih depends onthe eigenvetors of D orresponding to �l.Sine D is an irreduible transition matrix, it has always 1 as a simple eigenvalue. Fromnow on, this eigenvalue is given the index zero: �0 = 1. Remark from (2.2) and (2.10) that 0 is the square of the mean arrival rate of the D-BMAP: 0 = � 1Xk=1 kDk! e� 1Xk=1 kDk! e = (E [�(k)℄)2 : (2.11)



16 2. Cirulant mathing of the superposition of D-BMAPsFor all eigenvalues �l, it is true that j�lj � 1. All omplex eigenvalues appear in onjugatepairs and the onjugate of �l is denoted by b�l. If �l and �l0 are onjugate, then the orre-sponding  l and  l0 are also onjugate, sine �P1k=1 kDk andP1k=1 kDke are real vetorsand the matries glhl and gl0hl0 are onjugate. For eah eigenvalue, denote �l = j�ljei!land  l = j ljei�l . When D is periodi with period d, it has d distint eigenvalues withmodulus 1: 1; ; : : : ; d�1, where  = e 2�id . For these eigenvalues, !l equals �l:Property 2.1.1. Consider a transition matrix D whih is irreduible and has period d.The  l as de�ned in (2.10) orresponding to the eigenvalue �l = e 2�id m, m 2 f0; : : : ; d� 1gof D has the same argument as �l:  l = j lje 2�id m.Proof. Consider  l as de�ned in (2.10) orresponding to eigenvalue �l = e 2�id m of D,and de�ne  = e 2�id . Beause all elements of the matries Dk, k � 0, are probabilities,and thus positive, and beause D = P1k=0Dk, aording to the periodi struture of D(fr. equation (1.2)), P1k=1 kDk an be written as1Xk=1 kDk = 0BBBBBB� 0 P1k=1 kD(0)k 0 : : : 00 0 P1k=1 kD(1)k : : : 0... ... ... . . . ...0 0 0 : : : P1k=1 kD(d�2)kP1k=1 kD(d�1)k 0 0 : : : 0
1CCCCCCA :

This, ombined with (1.4) and (1.5) implies that� 1Xk=1 kDk gl = d�1Xj=0 (j+1)m�j 1Xk=1 kD(j)k e = m d�1Xj=0 jm�j 1Xk=1 kD(j)k e; (2.12)and hl 1Xk=1 kDk e = d�1Xj=0 �jm�j 1Xk=1 kD(j)k e: (2.13)Beause (2.13) is the onjugate of the fator after m in (2.12), l = m �����hl 1Xk=1 kDk e�����2| {z }2R+ ; (2.14)from whih it is onluded that l = j lje 2�id m: � (2.15)



2.1. Input rate proess of a D-BMAP 17De�ne 
 to be the olletion of all eigenvalues ofD: 
 = f�0; : : : ; �N�1g. By distinguishingbetween the di�erent types of eigenvalues of D, equation (2.9) an be written as:R[n℄n6=0 =  0 + (�1)jnj�1 aIf�a2
 and �a=�1g + X�l2(
\Rnf0;1;�1g)(�l)jnj�1 l+ X�l2(
\Cnf1;�1g)j�lj=1 j lje(jnj�1)i!lei!l + X�l2(
\C )Im(�l)>0j�lj<1 �(�l)jnj�1 l + (b�l)jnj�1 b l�=  0 + (�1)jnj�1 aIf�a2
 and �a=�1g + X�l2(
\Rnf0;1;�1g)(�l)jnj�1 l+ 2 X�l2(
\C )Im(�l)>0j�lj=1 j lj os(jnj!l) + 2 X�l2(
\C )Im(�l)>0j�lj<1 j�ljjnj�1j lj os(jnj!l � !l + �l): (2.16)
2.1.2 Power spetrumThe autoorrelation sequene of a stohasti proess in the time domain is equivalentlyharaterized in the frequeny domain by its power spetrum, whih is de�ned as thedisrete-time Fourier transform of the autoorrelation sequene [68, p.409℄:P (!) = +1Xn=�1R[n℄e�in!: (2.17)Note that only frequenies (expressed in rad/se) in the range �� < ! � � need to beonsidered, sine P (!) is periodi in ! with period 2�. The following inversion formula[68, p.409℄ allows to reover R[n℄ from P (!):R[n℄ = 12� �Z�� P (!)ein!d!: (2.18)For the input rate proess (�(k))k, R[n℄ is an even sequene, suh that (2.17) redues toP (!) = 1Xn=�1R[n℄ os(n!) = R[0℄ + 2 1Xn=1R[n℄ os(n!); with � � < ! � �: (2.19)From this expression, it is seen that P (!) = P (�!), whih shows that the knowledge ofP (!) for 0 � ! � � is suÆient. By using expression (2.16) for R[n℄, a formula for P (!) isobtained from whih the ontribution of eah eigenvalue of D to P (!) an easily be read.A number of results used in the alulation of this formula is presented �rst.



18 2. Cirulant mathing of the superposition of D-BMAPsDe�nition 2.1.1 (Dira delta funtion). The Dira delta funtion is a `funtion' thatobeys (a) Æ(! � !0) = 0 when ! 6= !0;(b) 1Z�1 Æ(! � !0)d! = 1: (2.20)
Interpretation: the Dira delta funtion an be onsidered as the limit of a funtion with awidth dereasing to zero while its amplitude beomes in�nite. However, the produt of both(the area under the funtion) remains onstant. Remark that the de�nition given above isonly a `loose' desription of the Dira delta funtion. A mathematially orret disussionof Dira delta funtions should use the notion of a distribution, a linear funtional on afuntion spae.Property 2.1.2 (Properties of the Dira delta funtion).(a) Sale property: Æ(a(! � !0)) = 1jajÆ(! � !0):(b) Produt with a funtion that is ontinuous at ! = !0:p(!)Æ(! � !0) = p(!0)Æ(! � !0):() 1Xn=�1 e�in! = 2� 1Xn=�1 Æ(! � 2�n):More details about these properties an be found in [87, p.59, 95, 242℄. Remark that when�� < ! � � and 0 < !l < �, then P1n=�1 Æ(! � 2�n) = Æ(!), P1n=�1 Æ(2! � 2�n) =12Æ(!) + 12Æ(! � �), P1n=�1 Æ(! � !l � 2�n) = Æ(! � !l) and P1n=�1 Æ(! + !l � 2�n) =Æ(! + !l).Using these intermediate results, P (!) an be alulated by plugging equation (2.16) inequation (2.19). For larity, this alulation is split up in parts orresponding to all possibletypes of eigenvalues �l of D.Type 1. �l = �0 = 12 0 1Xn=1 os(n!) = � 0 +  0 1Xn=�1 e�in! = � 0 + 2� 0 1Xn=�1 Æ(! � 2�n)= � 0 + 2� 0Æ(!): (2.21)



2.1. Input rate proess of a D-BMAP 19Type 2. �l = �12 a 1Xn=1(�1)n�1 os(n!) = �2 a 1Xn=1 os(2n!)� 1Xn=0 os ((2n + 1)!)!= � a �1 + 1Xn=�1 e�2in! � 1Xn=�1 e�i(2n+1)!!=  a � � a (Æ(!) + Æ(! � �)) + � ae�i! (Æ(!) + Æ(! � �))=  a � 2� aÆ(! � �): (2.22)
Type 3. �l 2 (
 \ R n f0; 1;�1g)2 X�l2(
\Rnf0;1;�1g)  l 1Xn=1(�l)n�1 os(n!) = 2 X�l2(
\Rnf0;1;�1g)  l�l Re( 1Xn=1 ��lei!�n)= 2 X�l2(
\Rnf0;1;�1g)  l�l Re� 11� �lei! � 1�= 2 X�l2(
\Rnf0;1;�1g)  l�l �l os(!)� (�l)21� 2�l os! + (�l)2= 2 X�l2(
\Rnf0;1;�1g)  l os! � �l1� 2�l os! + (�l)2 :

(2.23)
Type 4. �l 2 (
 \ C ) ; Im(�l) > 0 and j�lj = 14 X�l2(
\C )Im(�l)>0j�lj=1 j lj 1Xn=1 os(n!) os(n!l)= 2 X�l2(
\C )Im(�l)>0j�lj=1 j lj 1Xn=1 (os (n(! � !l)) + os (n(! + !l)))= X�l2(
\C )Im(�l)>0j�lj=1 j lj �2 + 1Xn=�1 e�in(!�!l) + 1Xn=�1 e�in(!+!l)!= X�l2(
\C )Im(�l)>0j�lj=1 j lj (�2 + 2�Æ(! � !l) + 2�Æ(! + !l)) :

(2.24)



20 2. Cirulant mathing of the superposition of D-BMAPsType 5. �l 2 (
 \ C ); Im(�l) > 0 and j�lj < 14 X�l2(
\C )Im(�l)>0j�lj<1 1Xn=1 j�ljn�1j lj os (n!l � !l + �l) os(n!)= 4 X�l2(
\C )Im(�l)>0j�lj<1 1Xn=1 Re �(�l)n�1 l	Re �ein!	= 2 X�l2(
\C )Im(�l)>0j�lj<1  Re( l�l 1Xn=1(�lei!)n)+ Re( l�l 1Xn=1(�le�i!)n)!= 2 X�l2(
\C )Im(�l)>0j�lj<1 �Re� l�l � 11� �lei! � 1��+ Re� l�l � 11� �le�i! � 1���= 4 X�l2(
\C )Im(�l)>0j�lj<1 Re� l os! � �l1� 2�l os! + (�l)2� :
(2.25)

Summarizing these results leads toP (!) = R[0℄�  0 + 2� 0Æ(!)+ ( a � 2� aÆ(! � �)) If�a2
 and �a=�1g+ 2 X�l2(
\Rnf0;1;�1g)  l os! � �l1� 2�l os! + (�l)2+ X�l2(
\C )Im(�l)>0j�lj=1 j lj (�2 + 2�Æ(! � !l) + 2�Æ(! + !l))+ 4 X�l2(
\C )Im(�l)>0j�lj<1 Re� l os! � �l1� 2�l os! + (�l)2�; with � � < ! � �: (2.26)
This formula shows that eah eigenvalue �l of D ontributes to P (!) with a term deter-mined by that eigenvalue and the orresponding  l, and that the disrete part in the powerspetrum is aused by the eigenvalues with modulus 1.



2.2. Cirulant D-BMAP 212.1.3 Stationary umulative distributionThe stationary umulative distribution F (x) of �, the input rate in a slot, is de�ned asF (x) = Pf� � xg: (2.27)Sine Pf� = �ig = �i, F (x) is ompletely determined by �, the stationary distribution ofthe D-BMAP, and by the input rate vetor � = ��0 : : : �N�1�T =P1k=0 kDk e:F (x) = X�i�x�i: (2.28)2.2 Cirulant D-BMAPIn this setion the irulant D-BMAP is introdued, whih is a D-BMAP with as transitionmatrix a irulant matrix. An attrative property of a irulant matrix is that a losedformula for its eigenvalues exists, whih depends on its elements and its dimension. Also theeigenvetors an be written down expliitely, sine they depend only on the dimension of theirulant. This, together with a speial hoie for the matriesQk of the irulant D-BMAP(Qk)k�0, allows to simplify the expression for the  l's de�ned in the previous setion, andto identify the oupling between omponents of the rate vetor of the irulant D-BMAPand its power spetrum. We also present in this setion an easy-to-hek ondition for airulant to be irreduible.2.2.1 De�nitionA N -state irulant D-BMAP (Qk)k�0, with Q =P1k=0Qk, is a D-BMAP with as transi-tion matrix Q a irulant stohasti matrix:Q = 0BBB� a0 a1 : : : aN�1aN�1 a0 : : : aN�2... ... . . . ...a1 a2 : : : a0
1CCCA : (2.29)The matries Qk will be hosen suh that they depend on a, the �rst row of Q, and on avetor , suh that1Xk=1 kQk = diag()Q; (2.30)where diag() is a diagonal matrix with the elements of  on the main diagonal. Thereason for hoosing the matries Qk in this way is that then the input rate vetor �,



22 2. Cirulant mathing of the superposition of D-BMAPswhose elements are de�ned by (2.1), equals . A hoie for the Qk's ould be suh thatthe number of arrivals that are generated while making a transition from state i follows aPoisson distribution with mean i:
Qk =

0BBBBBBBBBB�
a0 (0)ke�0k! a1 (0)ke�0k! : : : aN�1 (0)ke�0k!aN�1 (1)ke�1k! a0 (1)ke�1k! : : : aN�2 (1)ke�1k!... ... . . . ...a1 (N�1)ke�N�1k! a2 (N�1)ke�N�1k! : : : a0 (N�1)ke�N�1k!

1CCCCCCCCCCA ; 8k 2 N : (2.31)
Remark that this is only a possible hoie for the Qk's. Everything in this hapter remainsvalid for another hoie of the Qk's, as long as equation (2.30) stays ful�lled. Further on,symbols introdued before for ordinary D-BMAPs, and used for a irulant D-BMAP, aregiven a `' as subindex.2.2.2 Autoorrelation and power spetrumFrom the previous setion it is known that the autoorrelation sequene and the powerspetrum of the input rate proess of a D-BMAP are ompletely haraterized by theeigenvalues �l of its transition matrix, the orresponding  l's and R[0℄. For a irulantD-BMAP, these values an be written as expressions whih depend on the vetors a and .First of all, the l-th (l 2 f0; : : : ; N � 1g) eigenvalue (�)l of a irulant Q is given by[77, p.169℄(�)l = a0 + a1l + a22l � � �+ aN�1(N�1)l; where  = e 2�iN : (2.32)Remark that this implies that d(�)l = (�)(N�l) mod N , whih means that all real eigenvaluesof Q our in pairs, exept for (�)0 and for (�)N2 if N is even. Notie that (�)0 = 1.Further, if Q is irreduible and periodi with an even period, (�)N2 = �1, sine �1 needsto be a simple eigenvalue of Q. The eigenvetors (g)l and (h)l whih orrespond to (�)l,and whih are hosen suh that (h)l(g)l = 1, are given by(g)l = �1 l 2l : : : (N�1)l�T ;(h)l = 1N �1 �l �2l : : : �(N�1)l� : (2.33)The stationary distribution � ofQ, whih is the normalized left eigenvetor orrespondingto eigenvalue 1, is then given by� = � 1N 1N : : : 1N � ; (2.34)



2.2. Cirulant D-BMAP 23and is thus independent of the elements of Q.Enough information is now available to derive an expression for ( )l:( )l = � 1Xk=1 kQk! (g)l(h)l 1Xk=1 kQk! e= � diag()Q(g)l(h)l diag()Qe= � diag()(�)l(g)l(h)l= 1N2  N�1Xk=0 kkl! N�1Xk=0 k�kl! (�)l; (2.35)
by using de�nition (2.10) in the �rst step, equation (2.30) in the seond step, the fat that(g)l is an eigenvetor of Q orresponding to (�)l in the third step, and (2.33) and (2.34)in the last step. Remark that in this expression1N2  N�1Xk=0 kkl! N�1Xk=0 k�kl! = ����� 1N N�1Xk=0 kkl�����2 2 R+ ; (2.36)whih implies that ( )l is a positive real multiple of (�)l:( )l = �l(�)l; with �l = ��� 1N N�1Xk=0 kkl���2 2 R+ : (2.37)Sine d(�)l = (�)(N�l) mod N , �l equals �(N�l) mod N .For R[0℄, using (2.4) and (2.8), it is derived thatR[0℄ = �(� � �) = �( � ) = � diag()I= � diag()0� X(�)l2
nf0g(g)l(h)l1A= X(�)l2
nf0g 1N2  N�1Xk=0 kkl! N�1Xk=0 k�kl!= X(�)l2
nf0g ( )l(�)l = X(�)l2
nf0g�l:

(2.38)
Also R[n℄, n 6= 0, resp. P(!), an be written in funtion of the �l's and the eigenvalues



24 2. Cirulant mathing of the superposition of D-BMAPs(�)l of Q, using (2.16), resp. (2.26), and the results just now derived:R[n℄n6=0 = �0 + (�1)jnj�N=2IfN is even and (�)N=2=�1g+ X(�)l2(
\Rnf0;1;�1g)(�)jnjl �l + 2 X(�)l2(
\C )Im((�)l)>0j(�)lj=1 �l os (jnj(!)l)+ 2 X(�)l2(
\C )Im((�)l)>0j(�)lj<1 j(�)ljjnjj�lj os ((jnj � 1)(!)l + (�)l) ; (2.39)
and P(!) = 2��0Æ(!) + 2��N=2Æ(! � �)IfN is even and (�)N=2=�1g+ 2 X(�)l2(
\Rnf0;1;�1g)�l � (�)l os! � (�)2l1� 2(�)l os! + (�)2l + 12�+ X(�)l2(
\C )Im((�)l)>0j(�)lj=1 �l (2�Æ(! � (!)l) + 2�Æ(! + (!)l))+ 4 X(�)l2(
\C )Im((�)l)>0j(�)lj<1 �l �Re� (�)l os! � (�)2l1� 2(�)l os! + (�)2l �+ 12� ;with � � < ! � �:

(2.40)
2.2.3 Stationary umulative distributionBeause the stationary distribution � of a irulant D-BMAP is independent of the ele-ments of its transition matrix (fr. equation (2.34)), the stationary umulative distributionF(x) of �, the input rate in a slot, depends only on the input rate vetor �, whihequals :F(x) = Xi�x(�)i = 1N Xi�x 1: (2.41)De�ne �l, l = 0; : : : ; N � 1, as�l = 1N N�1Xk=0 klk; where  = e 2�iN : (2.42)



2.2. Cirulant D-BMAP 25To reover k from the �l's, the following inversion formula an be used, whih is thedisrete Fourier transform of the sequene �0; : : : ; �N�1:t = N�1Xm=0 �m�tm: (2.43)For eah �l, denote �l = j�ljei�l . From (2.37) and (2.42) it is then onluded thatj�lj = p�l: (2.44)Hene, equation (2.43) leads tot = �0 + N�1Xm=1p�mei�m�tm = � + N�1Xm=1p�mei(�m� 2�N tm)= � + N�1Xm=1p�m os(�m � 2�N tm) + i N�1Xm=1p�m sin(�m � 2�N tm): (2.45)Beause �m = �N�m (see equation (2.42)), �N�m = �m and �N�m = ��m. This impliesthat (2.45) redues tot = � + 2 pXm=1p�m os(�m � 2�N tm); for N odd: N = 2p+ 1;t = � + 2 p�1Xm=1p�m os(�m � 2�N tm) +p�p os(�p � �t); for N even: N = 2p:(2.46)2.2.4 Irreduible and periodi irulantsIn this subsetion, a few properties onerning the irreduibility and periodiity of a ir-ulant stohasti matrix Q are given. They are used later on in Setion 2.4. The �rstproperty gives a neessary and suÆient ondition for Q to be irreduible.Property 2.2.1. Consider a N-dimensional irulant Q with a as �rst row and de�neI = fiji 6= 0 and ai 6= 0g. Then Q is irreduible if and only if lm� lm(i;N)i �i2I = N .Proof. De�ne t = lm� lm(i;N)i �i2I .Neessary ondition. Remark �rst that t is always less than or equal to N , beause8a; b 2 N0 : lm(a; b) gd(a; b) = ab [96, p.35℄, whih implies that8i 2 I : lm(i; N)i = Ngd(i; N) :



26 2. Cirulant mathing of the superposition of D-BMAPsSo t is the least ommon multiple of numbers that are all divisors of N .Suppose now that t < N . From the de�nition of t, it is known that for all i 2 I, it is amultiple of lm(i; N), whih implies that it is also a multiple of N . For the t-th eigenvalueof Q (fr. equation (2.32)), this gives:(�)t = N�1Xk=0 akkt = a0 +Xk2I akkt = a0 +Xk2I ak = 1:But also the eigenvalue (�)0 of Q equals 1, whih means that the multipliity of eigen-value 1 is at least 2 (remark that by de�nition of t, t 6= 0). Beause this is in ontraditionwith the irreduibility of Q, the supposition was wrong, whih means that t equals N .SuÆient ondition. Distinguish 2 ases:1. gd (fiji 2 Ig [ fNg) = 1. Denote the elements of I by i1; : : : ; iK . From [96, p.54℄,it is known that9 z1; : : : ; zK+1 2 Z : KXj=1 ij zj + zK+1N = 1:For all the zi's, onsider a ni 2 N suh that zi + niN � 0. Then KXj=1 ij (zj + njN)! mod N = 1:This means that the following sequene of transitions from state 0 to state 1 exists:0! i1 ! (2i1) mod N ! � � � ! (i1(z1 + n1N)) mod N !(i1(z1 + n1N) + i2) mod N ! � � � ! (i1(z1 + n1N) + i2(z2 + n2N)) mod N! � � � !  KXj=1 ij (zj + njN)! mod N = 1:But then also transitions 0! 1! 2! � � � ! N � 1! 0 are possible, whih meansthat all states of Q ommuniate with eah other.2. gd (fiji 2 Ig [ fNg) > 1. By ontraposition, it is proven that this ase annot our.Suppose it an, and denote x = gd (fiji 2 Ig [ fNg). Then N an be written asN = bx, where b < N sine x > 1. By [96, p.28℄ it is known that8i 2 I; 9mi 2 N0 : gd(i; N) = mix:Then 8i 2 I : lm(i; N)i = Ngd(i; N) = Nmix = bmi 2 N :So for all i, b is a multiple of lm(i; N)=i, through whih t � b < N . But this is inontradition with t = N , so the supposition was wrong. �



2.2. Cirulant D-BMAP 27Remark that property 2.2.1 is di�erent from the neessary and suÆient ondition for theirreduibility of a irulant stohasti matrix as stated in [79, p.385, problem 21℄, whihsays that \a Markov hain with a stohasti irulant matrix is irreduible if and onlyif a0 6= 1". This ondition is however not orret, sine for example the irulant witha = �0:2 0 0:2 0 0:6 0� as �rst row is reduible, beause it is impossible to reah aneven numbered state starting from an odd numbered state.Property 2.2.2. Consider a N-dimensional irreduible irulant Q with period d > 1.Then N is a multiple of d and eah periodi lass of Q ontains N=d states.Proof. Consider the states u1; : : : ; un of periodi lass 1 and a state j of periodi lass 0.Then, by the de�nition of the irreduibility and the periodiity of a Markov hain,8 ul 2 fu1; : : : ; ung, 9ml 2 N for whih the state ul is aessible from state j in mld + 1steps. Beause Q is a irulant, this means that from an arbitrary state q of an arbitrarilyhosen periodi lass p, exatly n other states v1; : : : ; vn are aessible in a number of stepswhih is a multiple of d plus 1. Namely, the state vi = (q + ui � j) mod N is reahablefrom q in mid+ 1 steps. Thus, the periodi lass (p+ 1) mod d ontains exatly n states.Beause the periodi lass p was arbitrarily hosen among all periodi lasses, this meansthat all the periodi lasses of Q ontain n states, and thus N = nd. �Property 2.2.3. Consider an irreduible irulant Q with period d > 1 and dimensionN = kd. The periodi lass to whih a state q belongs onsists of the following states:q; (q + d) mod N; : : : ; (q + (k � 1)d) mod N .Proof. From property 2.2.2 it is known that eah periodi lass ontains k states. So inthe ase that k = 1, this property is trivially true. Consider k � 2. Suppose that state 0belongs to periodi lass i (i 2 f0; : : : ; d � 1g), and onsider two di�erent states m and tof periodi lass j = (i+ 1) mod d, suh that there are no states u and v, u 6= v, in lass jfor whih (u� v) mod N < (t �m) mod N . Remark that sine lass j ontains k states,with k � 2, it is always possible to �nd two suh states m and t. Then there exists anl1 2 N suh that state m is aessible from state 0 in l1d + 1 steps. But this implies thatstate t is aessible from state (t �m) mod N in l1d + 1 steps, beause Q is a irulant.This then means that the states 0 and (t�m) mod N belong to the same periodi lass i,whih on its turn implies that there exists an l2 2 N suh that state m is aessible fromstate (t�m) mod N in l2d+ 1 steps. Beause Q is a irulant, this implies that state t isaessible from state (2t�2m) mod N in l2d+1 steps, suh that also state (2t�2m) mod Nbelongs to periodi lass i. By ontinuing this reasoning, it is onluded that all the statesof the form (lt� lm) mod N , l 2 N , belong to periodi lass i. Consequently, all states ofthe form (lt� (l � 1)m) mod N , l 2 N , belong to periodi lass j, sine they are aessiblein l1d+ 1 steps from state (lt� lm) mod N .It is shown now that ((t�m) mod N) divides N . Suppose it does not, and de�nex = j N(t�m) mod N k. Then



28 2. Cirulant mathing of the superposition of D-BMAPs1. x ((t�m) mod N) < N , and beause also (t � m) mod N < N , it follows that(x+ 1) ((t�m) mod N) < 2N ,2. (x+ 1) ((t�m) mod N) > N ,3. ((x+ 1)(t�m)) mod N = ((x + 1) ((t�m) mod N)) mod N < (t�m) mod N .This means that there exist two states u and v in lass j, u = ((x + 2)t� (x+ 1)m) mod Nand v = t,� whih are di�erent: otherwise (u� v) mod N = 0, i.e., ((x + 1)t� (x+ 1)m) mod N= ((x + 1) ((t�m) mod N)) mod N = 0, whih means that (x+1) ((t�m) mod N)should be a multiple of N , whih is not the ase by item 1 and 2 up here, and� for whih (u� v) mod N = ((x+ 1)(t�m)) mod N < (t�m) mod N by item 3.Sine this is in ontradition with the way t and m were hosen, the supposition made iswrong, and thus ((t�m) mod N) divides N . Denote y = N= ((t�m) mod N), y 2 N .Then all states of the form (lt � lm) mod N , l 2 N , equal one of the following y di�erentstates: 0; (t�m) mod N; 2 ((t�m) mod N) ; : : : ; (y � 1) ((t�m) mod N).If it is supposed that y > k, then lass i ontains more than k states, whih ontraditsproperty 2.2.2. If it is supposed that y < k, then a state p of lass i whih is not of the form(lt�lm) mod N , l 2 N , also needs to exist. But then always one of the states of lass i of theform (lt� lm) mod N exists for whih (lt� lm�p) mod N < (t�m) mod N . This impliesthat there are two di�erent states u and v in lass j, namely u = (lt� (l � 1)m) mod N andv = (p+m) mod N , for whih (u�v) mod N = (lt�lm�p) mod N < (t�m) mod N , whihontradits the way t and m were hosen. So y = k, whih means by the de�nition of y that(t�m) mod N = d, and thus periodi lass i ontains the k states 0; d; 2d; : : : ; (k � 1)d.In an analogous way it is proven that the periodi lass of an arbitrary state q ontainsthe states q; (q + d) mod N; : : : ; (q + (k � 1)d) mod N . �Corollary 2.2.4. Consider an irreduible irulant Q with a as �rst row, whih has periodd > 1 and dimension N = kd. If al 6= 0, where l 2 f1; : : : ; N � 1g, then am = 0 if6 9p 2 f0; : : : ; k � 1g for whih m = (l + pd) mod N .Proof. Sine al = Q0;l, and am = Q0;m, it is immediately lear by writing Q in the form ofequation (1.2), that am needs to be zero if state m does not belong to the periodi lass ofstate l. So by property 2.2.3, if there is no p in f0; : : : ; k�1g suh thatm = (l+pd) mod N ,then am = 0. �Remark that in the formulation of orollary 2.2.4, l 2 f1; : : : ; N � 1g, sine if a0 6= 0, thenQ is aperiodi.



2.3. Superposition of M independent D-BMAPs 292.3 Superposition of M independent D-BMAPsConsider M independent D-BMAPs (D(i)k )k�0, 1 � i � M . With eah of these D-BMAPsan input rate proess (�(i)(k))k, as de�ned in Setion 2.1, orresponds. The superposition ofthe M D-BMAPs is again a D-BMAP (fr. Setion 1.2.3), denoted by (Dk)k�0. Denote by(�(k))k the orresponding input rate proess. The autoorrelation sequene R[n℄ and thepower spetrum P (!) of this proess, and the stationary umulative distribution F (x) of �,the input rate of the superposition in a slot, ould be obtained as explained in Setion 2.1.But then it is neessary to expliitly onstrut the D-BMAP (Dk)k�0, whih beomespratially unrealizable if M is large, or if the dimensions of the individual D-BMAPs(D(i)k )k�0 are large, beause of the state spae explosion. It is however also possible toalulate R[n℄, P (!) and F (x) from the autoorrelation sequenes Ri[n℄, the power spetraP (i)(!) and the stationary umulative distributions F (i)(x), 1 � i � M , of the individualD-BMAPs in the superposition, as is illustrated in this setion.2.3.1 Power spetrum of the superpositionThe input rate proess (�(k))k is the aggregation of theM independent input rate proesses(�(i)(k))k:�(k) = MXi=1 �(i)(k): (2.47)Using this relation in equation (2.3) gives an expression for R[n℄, the autoorrelation se-quene of the input rate proess (�(k))k, in funtion of R(1)[n℄; : : : ; R(M)[n℄, where R(i)[n℄,1 � i �M , is the autoorrelation sequene of (�(i)(k))k:R[n℄ = E " MXi=1 �(i)(k)! MXi=1 �(i)(k + n)!#= E 2664 MXi=1 �(i)(k)�(i)(k + n) + MXi=1 MXj=1j 6=i �(i)(k)�(j)(k + n)3775= MXi=1 E ��(i)(k)�(i)(k + n)�+ MXi=1 MXj=1j 6=i E ��(i)(k)�(j)(k + n)�= MXi=1 R(i)[n℄ + MXi=1 MXj=1j 6=i E ��(i)(k)�E ��(j)(k + n)�
(2.48)



30 2. Cirulant mathing of the superposition of D-BMAPs= MXi=1 R(i)[n℄ + MXi=1 MXj=1j 6=i E ��(i)(k)�E ��(j)(k)� ;where in the last step but one the independene of the proesses (�(i)(k))k is used, and inthe last step their stationariness. Beause of equation (2.11), the autoorrelation sequeneR[n℄ an also be written asR[n℄ = MXi=1 R(i)[n℄ + 2 MXi=1 MXj=i+1q (i)0 q (j)0 : (2.49)When plugging this result in equation (2.19), the power spetrum P (!) of the input rateproess (�(k))k is obtained in funtion of the P (i)(!)'s, where P (i)(!), 1 � i � M , is thepower spetrum of (�(i)(k))k:P (!) = MXi=1 R(i)[0℄ + 2 MXi=1 MXj=i+1q (i)0 q (j)0+ 2 1Xn=1 os(n!) MXi=1 R(i)[n℄ + 2 MXi=1 MXj=i+1q (i)0 q (j)0 != MXi=1 P (i)(!) + 2 MXi=1 MXj=i+1q (i)0 q (j)0  1 + 2 1Xn=1 os(n!)!= MXi=1 P (i)(!) + 2 MXi=1 MXj=i+1q (i)0 q (j)0 +1Xn=�1 e�in!= MXi=1 P (i)(!) + 4�Æ(!) MXi=1 MXj=i+1q (i)0 q (j)0 (use property 2.1.2).
(2.50)

From equation (2.26) it is known that eah eigenvalue �(i)l of D(i), 1 � i � M , ontributesto P (i)(!) with a term determined by that eigenvalue and the orresponding  (i)l . So fromthe formula above it is onluded that all eigenvalues of the individual D-BMAPs in thesuperposition ontribute to P (!). But when applying equation (2.26) to the D-BMAP(Dk)k�0 whih desribes the superposition, one might wonder if this onlusion is orret,sine the transition matrix D of the superposition has more eigenvalues than only these ofthe individual D-BMAPs. The property below shows that the onlusion made is indeedorret, sine the ontribution of these eigenvalues is zero. But remark �rst that if f�igand fxig are the eigenvalues and the orresponding eigenvetors of a matrix A, and f�jgand fyjg are the eigenvalues and the orresponding eigenvetors of a matrix B, then A
Bhas as eigenvalues f�i�jg with orresponding eigenvetors fxi 
 yjg (see [37, p.27℄).Property 2.3.1. Consider the D-BMAP (Dk)k�0 whih is the superposition of M inde-pendent D-BMAPs (D(i)k )k�0, and one of its eigenvalues � = �(1): : : : :�(M), where �(i),



2.3. Superposition of M independent D-BMAPs 31i = 1; : : : ;M , is an eigenvalue of D(i), suh that at least two of the values �(i) are di�erentfrom one. Denote the right olumn and left row eigenvetor orresponding to � by g and h.Then  = � (P1k=1 kDk)gh (P1k=1 kDk) e = 0.Proof. At least two of the values �(i) in � = �(1): : : : :�(M), say �(k) and �(l), k 6= l,are di�erent from one. Denote the right eigenvetors orresponding to the eigenvalues �(i)by g(i). Then �(k)g(k) = 0 and �(l)g(l) = 0, beause form = k; l, �(m)D(m)g(m) = �(m)g(m),�(m)D(m)g(m) = �(m)�(m)g(m) and �(m) 6= 1.By using some elementary properties of the Kroneker produt [37, hapter 2℄, it is proventhat 1Xk=1 kDk =  1Xk=1 kD(1)k !
 MOi=2 D(i)!+D(1) 
 1Xk=1 kD(2)k !
 MOi=3 D(i)!+ : : :+ M�2Oi=1 D(i)!
 1Xk=1 kD(M�1)k !
D(M) + M�1Oi=1 D(i)!
 1Xk=1 kD(M)k ! : (2.51)Beause � =NMi=1 �(i) and g =NMi=1 g(i),� 1Xk=1 kDk =  �(1) 1Xk=1 kD(1)k !
 MOi=2 �(i)!+ : : :+  M�1Oi=1 �(i)! 
  �(M) 1Xk=1 kD(M)k ! ; (2.52)where the property that (A
B)(C
D) = AC
BD is used [37, p.24℄. Then� 1Xk=1 kDkg =  �(1) 1Xk=1 kD(1)k g(1)!
 MOi=2 �(i)g(i)!+ : : :+  M�1Oi=1 �(i)g(i)! 
  �(M) 1Xk=1 kD(M)k g(M)! ; (2.53)and beause �(k)g(k) = 0 = �(l)g(l), eah of the terms in this sum is zero, suh that�P1k=1 kDkg = 0, whih implies that  = 0. �2.3.2 Stationary umulative distribution of the superpositionThe stationary umulative distribution F (x) of �, the input rate of the superposition in aslot, is given by (see equation (2.28)):F (x) = X�i�x�i; (2.54)



32 2. Cirulant mathing of the superposition of D-BMAPswhere � is the stationary distribution of the D-BMAP (Dk)k�0 desribing the superposi-tion, and �i is the i-th element of the input rate vetor � =P1k=0 kDke of the superposition.For �, whih is the left eigenvetor whih sums to one orresponding to eigenvalue 1 of thematrix D, it holds that� = MOi=1 �(i); (2.55)where �(i) is the stationary distribution of the D-BMAP (D(i)k )k�0. Remark that the sumof the elements of � is one, sine if the elements of a vetor a sum to one, and the elementsof a vetor b sum to one, then also the elements of the vetor a
 b sum to one.The input rate vetor � of the superposition is obtained from the input rate vetors �(i)using the expression� = MMi=1 �(i): (2.56)This expression uses the Kroneker sum, whih is de�ned analogously as the Kronekerprodut (fr. Setion 1.2.3), but the operation used now is the addition.To derive equation (2.56), onsider two independent D-BMAPs (D(1)k )k�0 and (D(2)k )k�0,with transition matries D(1) and D(2) respetively. From equation (1.10) it is known thattheir superposition is again a D-BMAP ( ~Dk)k�0, with ~Dk = Pkl=0D(1)l 
 D(2)k�l. Denotethe orresponding input rate vetor by ~�. By using the de�nition of ~�, and the fat thatthe Kroneker produt is distributive with respet to the addition (see [37, p.23℄), it isobtained that~� = 1Xk=0 k kXl=0 �D(1)l 
D(2)k�l� e = 1Xl=0 1Xk=l k �D(1)l 
D(2)k�l� e= 1Xl=0 "D(1)l 
 � 1Xk=l kD(2)k�l�# e = 1Xl=0 "D(1)l 
 1Xk=0(k + l)D(2)k !# e= 1Xl=0 "D(1)l 
 1Xk=0 kD(2)k !# e+ 1Xl=0 "lD(1)l 
 1Xk=0D(2)k !# e= " 1Xl=0 D(1)l !
 1Xk=0 kD(2)k !# e+ " 1Xl=0 lD(1)l !
D(2)# e= (D(1)e)
 1Xk=0 kD(2)k e!+ 1Xl=0 lD(1)l e!
 (D(2)e)= (e
 �(2)) + (�(1) 
 e) = �(1) � �(2);
(2.57)



2.4. Cirulant mathing proedure 33where in the third last step the following is used: Az 
 Bw = (A 
 B)(z 
 w) (see[37, p.22℄). Before this step, the e's used are vetors with as length the dimension ofD(1) 
 D(2), while afterwards it are vetors with as length the dimension of D(1), resp.D(2). Sine the dimension of the vetors e is lear from the ontext, no e�ort is done toprovide this information in the notation of the vetor. By applying the reasoning aboveM � 1 times, it is obtained that for the superposition of the M D-BMAPs (D(i)k )k�0,1 � i �M , the input rate vetor � is given by equation (2.56).Thus, by using equations (2.55) and (2.56), the stationary umulative distribution F (x)of � an now be alulated from equation (2.54), using only information of the individualD-BMAPs onstituting the superposition.2.4 Cirulant mathing proedureIn this setion, the proedure to math the superposition of M independent D-BMAPs(D(i)k )k�0, 1 � i � M , by a irulant D-BMAP (Qk)k�0 is presented. The irulantD-BMAP is onstruted suh that P(!) mathes P (!) and F(x) mathes F (x), whereP(!) and F(x) denote the power spetrum and stationary umulative distribution of theinput rate proess of the irulant D-BMAP, while P (!) and F (x) denote the power spe-trum and stationary umulative distribution of the input rate proess of the superposition.As is known from Setion 2.2, a irulant D-BMAP (Qk)k�0 is de�ned by a vetor a, the�rst row of its transition matrix Q, and by a vetor , whih is hosen suh that it equalsthe input rate vetor �. The onstrution of (Qk)k�0 onsists of two steps:1. the onstrution of a and the �xing of the �l's suh that P(!) mathes P (!),2. the onstrution of  suh that F(x) mathes F (x).It is lear that sine both P(!) and  depend on the �l's (see equations (2.40) and (2.46)),these two steps annot be performed ompletely unoupled from eah other. The �l's �xedin the �rst step need to be taken into aount in the seond step.2.4.1 Mathing the power spetrumFrom equation (2.26) it is known that the power spetrum of a D-BMAP (D(i)k )k�0 isompletely determined by R(i)[0℄ and a ontribution of eah of its eigenvalues. The on-tribution of an eigenvalue �(i)l depends on that eigenvalue and on the orresponding  (i)l .Beause of equation (2.50), this means that the power spetrum of the superposition of theM D-BMAPs (D(i)k )k�0, 1 � i � M , is ompletely known by the R(i)[0℄'s and by all eigen-values of the D-BMAPs and their ontributions to their respetive power spetra. Thus,if a D-BMAP (Qk)k�0 ould be onstruted with as eigenvalues of Q the same eigenvalues



34 2. Cirulant mathing of the superposition of D-BMAPsthat ontribute to the power spetrum P (!) of the superposition, and if the  l's of thisD-BMAP are tuned right, this new D-BMAP would be a D-BMAP with the same powerspetrum as the superposition. Remark however that onstruting a matrix with a desiredset of eigenvalues is diÆult, if at all possible, and involves a so-alled inverse spetrumproblem [77, hapter 7℄. To irumvent this problem, the D-BMAP that is onstruted isa irulant D-BMAP, for whih losed formulas exist to desribe its eigenvalues, suh thatthe inverse spetrum problem redues to an easier to solve index searh problem.Constrution of aThe �rst task to takle is thus the onstrution of a irulant stohasti matrix Q whihhas as eigenvalues all values from a prede�ned set. Beause the eigenvalues of a irulantN -dimensional matrix are obtained (see equation (2.32)) by� = aF; (2.58)where Fjk = jk, 0 � j; k � N � 1,  = e 2�iN , and � = �(�)0 (�)1 : : : (�)N�1�, it ispossible to obtain a from � bya = �F�1; where (F�1)jk = 1N �jk: (2.59)This relation is however not useful for onstruting a irulant stohasti matrix, beausenothing guarantees that the elements of a will be positive real numbers whih add up toone. There also not neessarily exists a stohasti irulant whih has only the values ofthe prede�ned set as eigenvalues. So the approah is to searh for a irulant whih hasthe envisaged values as eigenvalues, but very likely also some extra ones. To eliminate theontribution of those last ones to P(!), the orresponding �l's are hosen zero.Denote all the di�erent prede�ned eigenvalues in a vetor �P = �(�P )0 : : : (�P )D�1�.The objetive is then to �nd a vetor a = �a0 : : : aN�1� suh that 8i 2 f0; : : : ; N � 1g :ai 2 R+ , ae = 1 and 8� 2 �P : � 2 �. The vetor a is sought through the adjustmentof (N; i), where N represents the length of a, and thus also of �, and i = �i0 : : : iD�1�represents the position in � of the D prede�ned eigenvalues. Eigenvalue 1 is always anelement of �P . Choose (�P )0 = 1. Then i0 equals 0. For eah seleted (N; i), a linearprogramming sheme will be drawn up to �nd a solution a. If no solution exists, theeigenvalue indies i are adaptively hanged and the dimension N is gradually expanded,until a solution a is found.For eah hoie (N; i), the D+N onditions that have to be ful�lled when searhing for asolution a are:8><>:PN�1j=0 aj = 1PN�1j=0 ajlj = (�P )k; l = ik; k = 1; : : : ; D � 1;al � 0 l = 0; : : : ; N � 1: (2.60)



2.4. Cirulant mathing proedure 35De�nex = �a0 : : : aN�1�T ; (2.61)b = �1 Ref(�P )1g Imf(�P)1g : : : Ref(�P )D�1g Imf(�P)D�1g�T ; (2.62)
and A = 0BBBBBBB�

1 1 1 : : : 11 Ci1;1 Ci1;2 : : : Ci1;N�10 Si1;1 Si1;2 : : : Si1;N�1... ... ... . . . ...1 CiD�1;1 CiD�1;2 : : : CiD�1;N�10 SiD�1;1 SiD�1;2 : : : SiD�1;N�1
1CCCCCCCA ; (2.63)

where Cl;j and Sl;j are de�ned as Cl;j = os 2�ljN and Sl;j = sin 2�ljN .Then the onditions in (2.60) an be rewritten asAx = b; x � 0; (2.64)whih are exatly the onstraints as they appear in the standard form of a linear program(LP) (fr. [95, p.2℄):minimize z = xsubjet to Ax = bx � 0; (2.65)where  is a ost vetor. This means that the standard algorithm to solve a LP, namelythe revised simplex algorithm [95, p.5℄, an be used here.The revised simplex algorithm onsists of two phases. Phase I is used to �nd a feasiblesolution to Ax = b;x � 0, or to determine that no feasible solution exists. Phase II usesthe solution generated in phase I to start with and solves the minimization part of theLP. Thus, for our problem, phase I is suÆient to deide if there exists a solution a fora given (N; i), and to �nd one if there exists one. If no solution exists, the vetor i isadaptively hanged. If no feasible solution is obtained after a �nite number of adaptations,N is expanded and a new yle of index adaptations is started. Obviously, when a feasiblesolution exists for a ertain N , the omputation time to �nd it depends on the indexadaptation sheme. The size of the solution set expands rapidly with N : in theory, D � 1indies have to be given a di�erent value between 1 and N �1, whih means that there are(N�1)!(N�D)! possible ways to do this. However, for some index vetors i, it is known in advanethat no solution exists, so these do not need to be onsidered. The same is true for somevalues of N . Further, it is possible to eliminate some of the values from the prede�nedset of eigenvalues, and as suh ut down the number of onditions of the LP problem,while still enforing that these onditions are ful�lled in the �nal solution. This is done byeliminating in advane the index vetors i for whih these onditions would not be ful�lled.



36 2. Cirulant mathing of the superposition of D-BMAPsThe bene�t of this proedure is that the dimension of the LP problems whih need to besolved beomes smaller, and that fewer possibilities for i need to be onsidered.The following observations allow some redution in the number of hoies (N; i) and in thesize of �P :� For eah nonreal value � in �P , also its omplex onjugate �̂ will be present in �P ,sine the values in �P are obtained as eigenvalues of stohasti matries. There ishowever no need to take both � and �̂ into aount for the onstrution of a, sineit holds for a irulant that d(�)l = (�)(N�l) mod N : if � 2 �P appears in � atposition l, then �̂ automatially appears in � at position (N � l) mod N . Thus,all values � with Im(�) < 0 an be eliminated from �P . Then all index vetors iontaining the values l and (N � l) mod N should not be onsidered anymore, sineno feasible solution onsists for them. Further, for all real values � in �P , only indexvalues smaller than or equal to N=2 need to be onsidered, beause when (�)t witht > (N=2) equals �, then also (�)N�t equals �.� When Q needs to have period d, it is known from the properties in Setion 2.2.4 that{ N needs to be a multiple of d, and{ only N=d values in a are free to take values di�erent from 0, suh that thenumber of olumns of A in equation (2.63) beomes N=d instead of N .We hoose one of these values to be a1, implying (see orollary 2.2.4) that the othervalues are a1+d; a1+2d; : : : ; a1+(k�1)d, where k = N=d. This hoie has the followingadvantages:{ When a1 6= 0, then the resulting irulant Q is irreduible (see property 2.2.1).{ When (�)l = �, then (�)(l+mk) mod N = mk�, where m 2 f0; : : : ; d � 1g and = e 2�iN .As suh, all values with argument not in the segment [0; 2�d [ an be eliminatedfrom �P , beause all these values are the result of a rotation over an angle inf2�d ; 22�d ; : : : ; (d � 1)2�d g of a value with argument in the segment [0; 2�d [ (see Se-tion 1.1.3). So if a � whih belongs to the resulting �P appears in � on posi-tion l, then the values k�; 2k�; : : : ; (d�1)k� appear automatially in � at positions(l+k) mod N; (l+2k) mod N; : : : ; (l+(d�1)k) mod N . Then for all index vetors iontaining a value l and a value (l + mk) mod N , where m 2 f1; : : : ; d � 1g, nofeasible solution exists, so they do not need to be onsidered anymore. When � withargument in ℄0; 2�d [nf�dg belongs to �P , then also �� = \�(d�1)k has its argument in℄0; 2�d [nf�dg and belongs to �P . For eah ouple (�; ��), one of these values an alsobe removed from �P , sine when � appears in � on position l, then �� appears in �on position (N � l+ k) mod N . Thus also for all index vetors i ontaining a value land a value (N � l � mk) mod N , where m 2 f1; : : : ; d � 1g, no feasible solutionexists, suh that these index vetors an also be ignored.



2.4. Cirulant mathing proedure 37� Consider the vetor �P ontaining the prede�ned eigenvalues, but now with all valuesas desribed above removed, i.e., now �P ontains only values � with Im(�) � 0,arg(�) 2 [0; 2�d [ and only one value of eah ouple (�; ��), with �� = \�(d�1)k is presentin �P . When the number of values in �P is D and d is the periodQ should have, thenthe minimal dimension Nmin the irulant Q should have is given by d(2D� 1) when�P ontains no real values di�erent from 1 or values with as argument �=d. OtherwiseNmin = 2d(D� 1). This is beause position 0 in � is taken by eigenvalue 1, and thepositions k; 2k; : : : ; (d�1)k are then taken by the values k; 2k; : : : ; (d�1)k (k = N/d,where N is the dimension of the irulant). When k is even, one of the positions infk=2; 3k=2; : : : ; (2d� 1)k=2g an be taken by a real value or a value with argument�=d of �P . All the other positions in this set are then taken by the rotations of thevalue over the angles 2�m=d, where m = 1; : : : ; d� 1. All the other values � in �Ptake a free position l, by whih also the positions (l +mk) mod N , m = 1; : : : ; d� 1and (N � l�mk) mod N , m = 0; : : : ; d� 1, are taken by the rotations of � over theangles 2�m=d, m = 1; : : : ; d� 1, and by their omplex onjugates. So for all valuesN smaller than Nmin, no feasible solution exists. Remark that the same values forNmin are obtained when d = 1, i.e., when Q should be aperiodi.� Consider the set of points in the omplex plane bounded by the N -sided polygon,N � 2, insribed in the unit irle and with one of its verties at (0; 1), and denoteit by PN . When not all values in �P belong to PN , then no irulant of dimension Nwith all values in �P as eigenvalues exists. This is a onsequene of the property thatsays that a omplex number is an eigenvalue of a stohasti irulant of dimension Nif and only if it belongs to PN [77, orollary 1.3, p.169℄.Although the observations made above substantially redue the number of hoies (N; i)that have to be investigated and the size of �P , espeially for periodi irulants, the sizeof the solution set still expands rapidly with N and with the number of eigenvalues in theprede�ned set �P . As a onsequene, the irulant mathing method is only useful whenall D-BMAPs in the superposition are idential, or an be divided into a limited group ofidential ones, sine then many of their eigenvalues are idential. Beause ontributionsof idential eigenvalues to the power spetrum an be added up, they only need to appearone as eigenvalue of the irulant.Fixing the �l'sConsider 
, the olletion of all eigenvalues of the N -dimensional irulant Q whose on-strution was desribed above. By onstrution, a portion 
P of 
 ontains the eigenval-ues of the matries D(1); : : : ;D(M). It are these eigenvalues whih ontribute to the powerspetrum P (!) of the superposition. The aim is now to determine the ontribution theseeigenvalues should have to P(!), suh that P(!) mathes P (!). From equations (2.40)and (2.37) it is known that the ontribution of eah eigenvalue (�)l 2 
 is determinedby that eigenvalue and by a orresponding �l, whih needs to be a positive real number.



38 2. Cirulant mathing of the superposition of D-BMAPsFurther, 8l 2 f0; : : : ; N�1g, �l should equal �(N�l) mod N . To avoid that the eigenvalues ofQ in 
 n
P , i.e., the eigenvalues whih do not ontribute to P (!), do make a ontributionto P(!), they are hosen equal to zero:8l 2 f0; : : : ; N � 1g for whih (�)l 2 (
 n 
P ) : �l = 0: (2.66)Remark that this is not in ontradition with the requirement that �l should equal�(N�l) mod N , sine if (�)l 2 (
 n 
P ), then (�)(N�l) mod N = d(�)l, and as suh also(�)(N�l) mod N 2 (
 n 
P ), beause eah value in 
P is an eigenvalue of a stohastimatrix.For eigenvalue (�)0 = 1, hoose�0 =  MXi=1 q (i)0 !2 : (2.67)For the other eigenvalues (�)l 2 
P with j(�)lj = 1, hoose�l = MXi=1 j (i)il j; (2.68)where  (i)il is the ` -value' of the i-th D-BMAP (D(i)k )k�0 whih orresponds to eigenvalue�(i)il = (�)l. When not all D(i)'s are idential, it is possible that (�)l is not an eigenvalueof a ertain D(i). In that ase assume that  (i)il = 0 in (2.68). When hoosing the �l'sorresponding to eigenvalues with modulus 1 as de�ned above, the disrete parts of thepower spetrum of the superposition P (!) and of the power spetrum of the irulantP(!) are exatly mathed (see equations (2.40), (2.50) and (2.26)).To math the ontinuous parts of the power spetra P(!) and P (!), de�ne �rst thefollowing funtions of !:X(!) = 2 X(�)l2(
P \Rnf0;1;�1g)l�N=2 �1 + Ifl<N=2g��l� (�)l os! � (�)2l1� 2(�)l os! + (�)2l + 12�+ 4 X(�)l2(
P \C )Im((�)l)>0j(�)lj<1 �l �Re� (�)l os! � (�)2l1� 2(�)l os! + (�)2l �+ 12� ; (2.69)
and X(!) = MXi=1 X(i)(!); (2.70)



2.4. Cirulant mathing proedure 39whereX(i)(!) = R(i)[0℄�  (i)0 +  (i)a If�(i)a 2
(i) and �(i)a =�1g � 2 X�(i)l 2(
(i)\C )Im(�(i)l )>0j�(i)l j=1 j (i)l j
+ 2 X�(i)l 2(
(i)\Rnf0;1;�1g) (i)l os! � �(i)l1� 2�(i)l os! + (�(i)l )2+ 4 X�(i)l 2(
(i)\C )Im(�(i)l )>0j�(i)l j<1 Re� (i)l os! � �(i)l1� 2�(i)l os! + (�(i)l )2�: (2.71)

Remark the fators 1 + Ifl<N=2g in the de�nition of X(!). Their presene is due tothe fat that if (�)l 2 
P \ R n f0; 1;�1g, with l � N=2, then if l 6= N=2, also(�)N�l 2 
P \ R n f0; 1;�1g. Thus in the ontinuous part of the power spetrum ofa irulant a term for �l and a term for �N�l with idential oeÆients our. Sine it isrequired that �l equals �N�l, only the unknown value �l is onsidered in X(!). Later on,after a value has been established for �l, �N�l is set equal to �l.Choose S di�erent values !1; : : : ; !S 2 ℄� �; �℄ and let p be the number of �l's whihappear in X(!). Further, de�ne the matrix E, in whih Eij (1 � i � S; 1 � j � p) isthe oeÆient of the j-th �l in X(!i), and the olumn vetor f whose i-th (1 � i � S)omponent equals X(!i). By solving the nonnegative least square problem (NNLS)minimize jjEx� f jjsubjet to x � 0; (2.72)using the nonnegative least square algorithm [65, p.161℄, a vetor x with p omponents isfound, in whih the i-th omponent gives the value that is assigned to the i-th �l in X(!).For all �l's for whih no value is �xed yet, a value is already assigned to �(N�l) mod N , andsine �l should equal �(N�l) mod N , set �l = �(N�l) mod N .2.4.2 Mathing the stationary umulative distributionIn this setion, the vetor  will be onstruted suh that F(x), the stationary umulativedistribution of the input rate proess of the irulant, mathes the stationary umulativedistribution F (x) of the input rate proess of the superposition. From equations (2.34)and (2.41) it is known that sine  is an equal probability vetor, F(x) is a umulativedistribution whih jumps by 1=N at eah omponent i of the vetor . So in order forF (x) to be mathed by F(x), it is needed to redisretize F (x) by partitioning its rangeinto N equal probability rates. Denote the partitioned range, sorted in asending order,



40 2. Cirulant mathing of the superposition of D-BMAPsby  0 = �00 : : : 0N�1�. Also sort the elements in  in asending order and denote thesorted  by s = �s0 : : : sN�1�.From equation (2.46) it is known that the omponents of  (and thus also of s) dependon N , the �i's and the �i's. Remark that in equation (2.46),� = �� = � 1Xk=1 kQke =p( )0 = p�0: (2.73)Sine N and the �i's were already �xed before when onstruting the irulant matrix Qand mathing the power spetrum, the omponents of  an only be tuned via the ompo-nents of � = ��1 : : : �bN=2�, and more in partiular via those omponents �m of � forwhih (�)m 2 
P , beause if (�)m 62 
P , then �m is hosen zero, and the term with �mdisappears from equation (2.46). The distribution mathing an then be formulated as aminimization problem:minimize�1; : : : ; �bN=2 1N N�1Xk=0 jj0k � skjjsubjet to sk � 0; 8k 2 f0; : : : ; N � 1g; (2.74)whih is solved by a diret searh method whih does not need gradients or other derivativeinformation beause the objetive funtion is not di�erentiable.2.5 Conlusions and related workIn this hapter we desribed the irulant mathing method, of whih the purpose is to re-plae the superposition of independent D-BMAPs by a irulant D-BMAP, whih mathesthe power spetrum and the stationary umulative distribution of the input rate proessof the exat superposition. The reason why a replaement of the exat superposition isneeded, is that this exat superposition su�ers from a state spae explosion, whih makesthat it beomes most of the time impossible to onstrut this superposition, not to mentionusing it as input to a queueing system. The irulant mathing method for D-BMAPs isbased on a omponent of a measurement-based tool developed by San-qi Li et al. [46℄ thatonstruts a irulant modulated Poisson proess to model a traÆ stream. An impor-tant di�erene with the method of San-qi Li is that he works in ontinuous time, while aD-BMAP is a disrete-time model. So to replae the superposition of D-BMAPs by a newirulant D-BMAP, we had to adapt the method for disrete time. Simultaneously, themethod was extended suh that the periodiity whih is present in the transition matrixof D-BMAPs that model periodi traÆ streams, and whih is thus also notied in theirsuperposition, is preserved.Although the irulant mathing method allows to solve some realisti queueing problems(see for example Setion 3.3 of the next hapter), it ertainly is not generally usable. A �rst



2.5. Conlusions and related work 41problem is in the onstrution of the irulant transition matrix, and more in partiularin the number of possible hoies of (N; i) that have to investigated. When the prede�nedset of eigenvalues the irulant should have beomes large (say more than 10, after theredutions we proposed), it might take a long time before a irulant with these values aseigenvalues is found. So as mentioned already before, the irulant mathing method isonly useful when all D-BMAPs in the superposition are idential, or an be divided intoa limited group of idential ones, sine then many of their eigenvalues are idential. Apositive point on the other hand is that the same irulant transition matrix an be usedwhen onsidering a superposition of another number of the same D-BMAPs. The di�erenewill then be in the rate vetor  assoiated with the irulant D-BMAP, not in its transitionmatrix. A seond possible problem is in the onstrution of the rate vetor  when a largepart of the probability mass of the rate distribution of the exat superposition is situated atthe value zero, or very lose to it, as an our when onsidering the superposition of on/o�soures. In that ase, it happens that no solution for the minimization problem formulatedin (2.74) exists for whih all onstraints are ful�lled, i.e., for whih all omponents of therate vetor  are positive. An example of this problem is given in Setion 3.2 of the nexthapter.Of ourse the irulant mathing method is not the only method whih tries to irum-vent the state spae explosion problem that ours with the superposition of Markoviansoures. However, not too muh literature is found about it, ertainly not for disrete-timesoures, although these soure models have reeived inreasing interest with the introdu-tion of paket-based transport protools. An aggregation tehnique for the superpositionof N idential soures is proposed in [23℄. The tehnique is based on grouping togetherstates of the exat superposition that are equivalent from both the total rate generatedwhen the soure is in that state and their future evolution in the system at eah transitionstep. The similarity of two states in terms of their evolution is estimated by alulating thedistane between these two states, onsidered as N -tuples, when their elements are orderedin lexiographi order. In [43℄ a method is proposed whih provides an approximate so-alled `disrete MMPP (D-MMPP)' for the superposition of two independent D-MMPPs.Based on the observation that the multiplexed proess has many states for whih the ratesgenerated in that state are very lose together, another D-MMPP with a muh smallerset of states is onstruted, whose assoiated rates are spread out to over the originalrange of states. Remark however that in this method only �rst order statistis of the exatsuperposition are mathed. Seond order statistis suh as for example the autoorrelationare ignored.Most other related artiles start from traÆ traes and design a parameter �tting methodfor ontinuous-time Markov modulated Poisson proesses (MMPPs). One example is ofourse the method behind the SMAQ tool [46℄, on whih we based the irulant mathingmethod, and that was already disussed in Chapter 1. Another more reent example isgiven in [86℄, where a tehnique is proposed to onstrut an MMPP with 2M states thatmathes the autoovariane tail and the marginal distribution of the proess that ountsthe number of arrivals in sampling intervals. First an MMPP with 2 states is onstruted



42 2. Cirulant mathing of the superposition of D-BMAPsthat mathes the deay of the autoovariane tail. Then an MMPP with M states isonstruted to math the distribution funtion. The �nal MMPP with 2M states is ob-tained by superimposing these two MMPPs. Fous is in [86℄ on the modeling of traÆtraes exhibiting long range dependene. Although Markov models are not intrinsiallylong range dependent, the MMPP is used to apture the tail of the autoovariane up tothe so-alled orrelation horizon, whih is related to the maximum bu�er size. Beausethe proedure mathes two statistial funtions that an also be alulated from statisti-al funtions of the individual soures in a superposition, without expliitely onstrutingthe superposition, the method might also be used to irumvent the state spae explosionproblem.



Chapter 3Numerial examples and appliationsIn this hapter numerial examples and appliations of the irulant mathing method aregiven. In Setion 3.1 we �rst illustrate the rather theoretial desription in the previoushapter of the di�erent steps of the method, by ommenting upon a numerial example. InSetion 3.2 the irulant mathing method is applied to the superposition ofM idential twodimensional Markovian soures. For suh soures it is possible to alulate exat queueingresults, by using an exat desription of the superposition as input to the queueing system.This makes a omparison between the results obtained with the onstruted irulant asinput to the queueing system and the exat results possible. Moreover, a speial type oftwo dimensional Markovian soures, i.e., the on/o� soures, allows us to demonstrate whenthe irulant mathing method does not perform well, or not at all. Using a MarkovianMPEG model, the multiplexing of MPEG video soures is onsidered in Setion 3.3. In thissetion the irulant mathing method is applied to the superposition of a mix of two typesof these soures. We presented this appliation also in [89℄. Based on loss results obtainedby using the irulant as input for a �nite queueing system, CAC boundaries for the mixof these two types of soures are obtained. These boundaries are then ompared to CACboundaries that are obtained experimentally. More details about the CAC experimentsperformed an be found in [1, 2℄. Setion 3.4 onludes this hapter.3.1 An illustrative example of the irulant mathingmethodThe objetive of this setion is to illustrate the theoretial desription in the previoushapter of the di�erent steps of the irulant mathing method by an example. A irulantD-BMAP (Qk)k�0 is onstruted whih mathes the superposition of M = 50 identialD-BMAPs (Dk)k�0. Remark that no onrete appliation is hidden behind the D-BMAP(Dk)k�0 that is used, it is purely hosen to be small enough to write down and large enoughto be periodi and have di�erent types of eigenvalues, suh that the di�erent aspets of43



44 3. Numerial examples and appliationsthe method an be illustrated by it.Consider the D-BMAP (Dk)k�0 with as transition matrixD = 1Xk=0 kDk = 0� 0 A(0) 00 0 A(1)A(2) 0 0 1A ; (3.1)whereA(0) = 0BBBBBB�0:3 0:5 0:1 0:1 00:1 0 0:2 0:4 0:30:1 0:1 0:1 0:2 0:50 0 0:5 0:3 0:20:2 0:2 0 0:3 0:30:1 0:2 0:1 0:5 0:1
1CCCCCCA ; A(1) = 0BBBB�0:2 0:1 0:4 0:3 00:5 0:2 0:1 0 0:20:3 0:5 0 0:1 0:10:1 0:1 0:1 0:1 0:60:2 0:5 0:1 0 0:2

1CCCCA ;
and A(2) = 0BBBB�0:3 0:2 0:2 0:1 0:1 0:10:1 0:2 0:3 0:3 0:1 00:2 0 0:1 0:3 0:2 0:20:2 0:3 0:3 0:1 0 0:10:4 0:2 0 0:1 0 0:3

1CCCCA : (3.2)First remark that D is irreduible and periodi with period d = 3. Its stationary distribu-tion is given by� = (0:0833 0:0614 0:0570 0:0600 0:0257 0:0459 0:0466 0:06170:0609 0:0930 0:0712 0:0820 0:0924 0:0412 0:0294 0:0884) : (3.3)The matries Dk, k � 0, are not expliitely written out here, but they are suh that� = 1Xk=1 kDke = (1:2 1 1 1:3 0:8 1 1:6 1:3 1:4 1 1:32:1 1:9 2:2 1:9 1:8)T : (3.4)Then E [�(k)℄ = �� = � 1Xk=1 kDke =p 0 = 1:4416: (3.5)The position of the 16 eigenvalues of the matrix D in the omplex plane is shown inFigure 3.1. Beause under a rotation of the plane by 2�=3 this set of eigenvalues needs togo over into itself, and beause the dimension of D is not a multiple of three, its period,
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Figure 3.1: Position in the omplex plane of the eigenvalues of the transition matrix D.This set of eigenvalues goes over into itself under a rotation of the plane by 2�=3.one of the eigenvalues needs to be zero. The eigenvalues of D that are di�erent fromzero ontribute to the power spetrum P (!) of the D-BMAP (Dk)k�0, eah by a termdetermined by that eigenvalue and a orresponding  l. The eigenvalues di�erent from zeroare: 0BBBB��0�1�2�3�4
1CCCCA = 0BBBB� 10:35860:20350:1244 + 0:1236i0:0448 + 0:1696i

1CCCCA ; 0BBBB��5�6�7�8�9
1CCCCA = 0BBBB��0�1�2�3�4

1CCCCA  = 0BBBB� �0:5 + 0:8660i�0:1793 + 0:3106i�0:1018 + 0:1762i�0:1692 + 0:0460i�0:1692� 0:0460i
1CCCCA ;

and 0BBBB��10�11�12�13�14
1CCCCA = 0BBBB��0�1�2�3�4

1CCCCA 2 = 0BBBB� �0:5� 0:8660i�0:1793� 0:3106i�0:1018� 0:1762i0:0448� 0:1696i0:1244� 0:1236i
1CCCCA ; (3.6)

where  = e 2�i3 and the eigenvalues are ordered in suh a way that all �i, 0 � i � 4, have
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Figure 3.2: Contribution of the di�erent eigenvalues of the transition matrix D to theontinuous part of the power spetrum.their argument in [0; 2�3 [. The orresponding  l's have the following values:( 0 : : :  14) = (2:0783 0:0023 � 0:0110 0:0043 + 0:0043i� 0:0215 + 0:0043i � 0:0350 + 0:0607i � 0:0017� 0:0010i 0:0171� 0:0102i0:0039 + 0:0027i 0:0039� 0:0027i � 0:0350� 0:0607i � 0:0017 + 0:0010i0:0171 + 0:0102i � 0:0215� 0:0043i 0:0043� 0:0043i) : (3.7)Notie that the  l's orresponding to onjugate eigenvalues are also onjugate, and thatthe  l's orresponding to the eigenvalues with modulus one have the same argument astheir orresponding eigenvalue.Figure 3.2 shows the ontribution of the di�erent eigenvalues of D to the ontinuous partof the power spetrum, and also the ontinuous part of the power spetrum itself, whihis the sum of all ontributions. Remark that as in equation (2.26), the ontribution of anon-real eigenvalue and its onjugate are taken together. Also all ontributions whih areonstant (i.e., not dependent on !) are taken together. The eigenvalues �0, �5 and �10ontribute also to the disrete part of the power spetrum.The idea is now to look for a irulant Q of period d = 3 whih has among its eigenvaluesall eigenvalues of D (exept 0, sine 0 does not ontribute to the power spetrum). From



3.1. An illustrative example of the irulant mathing method 47Setion 2.4.1 it is known that it suÆes to look for a irulant, with �a0 : : : aN�1� as�rst row, where N is a multiple of d = 3 and where only a1; a4; a7; : : : ; aN�2 are free totake values di�erent from zero, that has all prede�ned values of a vetor �P as eigenvalues.Beause from all eigenvalues of D with argument in [0; 2�3 [ the value 0:1244+0:1236i equalsthe omplex onjugate of (0:0448+ 0:1696i)e 4�i3 , after performing all redutions of the sizeof �P as proposed in Setion 2.4.1, �P ontains the elements�P = �1 0:3586 0:2035 0:0448 + 0:1696i� : (3.8)From Setion 2.4.1 it is also known that the minimal dimension for a irulant with theseprede�ned values as eigenvalues is 18. There indeed exists a irulant of dimension 18whih has the values in �P as eigenvalues, i.e., the irulant with �rst row �a0 : : : a17�,where a1 = 0:3033, a4 = 0:1965, a7 = 0:0078, a10 = 0:1465, a13 = 0:0871, a16 = 0:2588,and all other ai's equal to zero. From property 2.2.1 it is known that the irulant isirreduible, and from property 2.2.3 it is seen that the irulant has period d = 3. Denote = e 2�i18 . The eigenvalues of the irulant are then given by(�)l = a1l + a44l + a77l + a1010l + a1313l + a1616l; (3.9)where 0 � l � 17. By onstrution,(�)(l+mk) mod 18 = mk(�)l; (3.10)where k = 18=d = 6 and m 2 f0; : : : ; d� 1g. Thus, the eigenvalues of Q are:0BBBBBB�(�)0(�)1(�)2(�)3(�)4(�)5
1CCCCCCA = 0BBBBBB� 10:35860:1244 + 0:1236i�0:1018� 0:1762i0:0448 + 0:1696i�0:1793 + 0:3106i

1CCCCCCA ; 0BBBBBB� (�)6(�)7(�)8(�)9(�)10(�)11
1CCCCCCA = 0BBBBBB�(�)0(�)1(�)2(�)3(�)4(�)5

1CCCCCCA 6 = 0BBBBBB� �0:5 + 0:8660i�0:1793 + 0:3106i�0:1692 + 0:0460i0:2035�0:1692� 0:0460i�0:1793� 0:3106i
1CCCCCCA ;

and 0BBBBBB�(�)12(�)13(�)14(�)15(�)16(�)17
1CCCCCCA = 0BBBBBB�(�)0(�)1(�)2(�)3(�)4(�)5

1CCCCCCA 12 = 0BBBBBB� �0:5� 0:8660i�0:1793� 0:3106i0:0448� 0:1696i�0:1018 + 0:1762i0:1244� 0:1236i0:3586
1CCCCCCA : (3.11)As an be seen, the irulant has all values of �P as eigenvalues, but also all other eigen-values of D (exept 0). The omplex onjugate of a value (�)j is found as (�)(18�j) mod 18.Remark that sine a irulant exists with the minimal dimension possible to have the val-ues of �P as eigenvalues, the irulant has no other eigenvalues than values whih are alsoeigenvalues of D. When no irulant of dimension 18 would exist whih has the values of�P as eigenvalues, or when we would searh for a irulant of a higher dimension than the



48 3. Numerial examples and appliationsminimal one, Q would have also other eigenvalues than these of D. Remark that until now,the information about the number M = 50 of D-BMAPs (Dk)k�0 in the superposition wasnever used. So the same irulant transition matrix an be used in the mathing of thesuperposition of another number of D-BMAPs (Dk)k�0.The next step is to �x the �i's orresponding to the eigenvalues (�)i of the irulant,in suh a way that the power spetrum of the irulant mathes the power spetrum ofthe superposition of 50 D-BMAPs (Dk)k�0. First the disrete part of the power spetrumis mathed. For the superposition, this disrete part is given by (see equations (2.26)and (2.50))5000� 0Æ(!) + 100�j 5j (Æ(! � 2�=3) + Æ(! + 2�=3)) ; (3.12)while that of the irulant is given by (see equation (2.40))2��0Æ(!) + 2��6 (Æ(! � 2�=3) + 2�Æ(! + 2�=3)) : (3.13)So when hoosing �0 = 2500 0 = 5:1957 � 103 and �6 = 50j 5j = 3:5025, the dis-rete parts of both power spetra math exatly. By de�nition, also �12 is now �xed:�12 = �6 = 3:5025. In ase that the irulant would have also other eigenvalues than thesein �P , their orresponding �-values would be set to zero. To math the ontinuous partsof both power spetra, the nonnegative least square algorithm is used (fr. Setion 2.4.1).Combining the output of this algorithm with the �i's already �xed results in the followingvalues for the �i's:(�0 : : : �17) = �5:1957� 103 0 0 0 0:0163 0:3292 3:5025 0:32920 0 0 0:3292 3:5025 0:3292 0:0163 0 0 0) : (3.14)Remark that �i's orresponding to onjugate eigenvalues are fored to be equal, i.e.,�j = �(18�j) mod 18.The power spetra are now mathed. From the resulting irulant D-BMAP (Qk)k�0, thetransition matrix Q is already known. The vetor , whih should equal the input ratevetor � of the irulant D-BMAP, and whih is needed to ompletely desribe it, is stillmissing and is obtained now by mathing the stationary umulative distribution of theinput rate proess of the irulant with that of the superposition. During this mathing,it should be taken into aount that the omponents t of  depend on the �i's, whih arealready �xed:t = p�0 + 2 8Xm=1p�m os(�m � 2�18 tm) +p�9 os(�9 � �t); (3.15)where p�0 = p( )0 = �� = �, and p�0 = 50p 0, so the mean input rate ofthe irulant is also already �xed, and equals the mean input rate of the superposition.Remark that in equation (3.15), only the �m's are still free variables (more in partiular,�4, �5, �6 and �7, sine for other m's the �m is zero).
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Figure 3.3: Stationary umulative distribution of the input rate proess of the superposi-tion, together with its redisretized version. Redisretization is done suh that all stepshave a height of 1/18.Beause � = �1=18 : : : 1=18�,  is an equal probability vetor. So F (x), whih is thestationary umulative distribution of the superposition, should �rst be redisretized suhthat its range is partitioned into N equal probability rates. F (x) is obtained asF (x) = X��i�x��i ; where �� = 50Oi=1 �; and �� = 50Mi=1 �; (3.16)and is shown in Figure 3.3, together with its redisretized equivalent. Remark that in the�gure F (x) is plot as a ontinuous funtion for the sake of learness, but of ourse it is alsoa disrete stairase funtion, although one with many small steps. The partitioned rangeof ��, sorted in asending order, is(00 : : : 017) = (66:3486 68:0841 68:9373 69:5737 70:1103 70:588671:0252 71:4442 71:8532 72:2575 72:6674 73:0899 73:5358 74:024074:5741 75:2361 76:1289 77:9869) : (3.17)When solving the minimization problem formulated in equation (2.74), the following valuesare found to minimize the goal funtion: �4 = �0:2822, �5 = �2:8825, �6 = �10:9887,and �7 = �0:7469. The resulting rate vetor  is then = (0 : : : 17) = (72:0336 74:0654 70:6549 71:4404 74:0062 70:713571:5844 74:8095 68:6273 72:5679 76:5514 66:5414 72:5486 77:132667:2766 72:1583 75:4499 69:3037) ; (3.18)



50 3. Numerial examples and appliations

0 1 2 3 4 5 6 7 8 9 10
5190

5195

5200

5205

lag n

au
to

co
rr

el
at

io
n 

se
qu

en
ce

superposition
circulant

Figure 3.4: Autoorrelation of the input rateproess of the superposition and of the iru-lant. The lag shown is limited to ten, sinefor a larger lag the di�erene is not perepti-ble anymore. The largest absolute di�erenebetween both sequenes is 0.48, whih givesa relative di�erene of 9:22� 10�5.
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Figure 3.5: Stationary umulative distribu-tion of the input rate proess of the super-postition and of the irulant. All stepsin the distribtution of the irulant have aheight of 1/18.
whih �nalizes the irulant mathing proess. The result is a irulant D-BMAP (Qk)k�0,where the matriesQk are onstruted from a = �a0 : : : a17� and  as in equation (2.31).This irulant D-BMAP, whih has by the mathing a similar autoorrelation sequeneand stationary umulative distribution as the input rate proess of the superposition of50 D-BMAPs (Dk)k�0 (see Figures 3.4 and 3.5), an be used as a tratable replaement ofthis superposition.
3.2 Superposition of two dimensional MMBP souresIn this setion the irulant mathing method is applied to the superposition ofM identialtwo dimensional Markov modulated Bernouilli arrival proesses (MMBP). A �rst motiva-tion for this is validation: beause suh a soure has only two states, there exists an exatmethod without state spae explosion to desribe the superposition ofM idential MMBPsoures. So queueing results with the exat superposition as input traÆ on one hand, andthe irulant that approximates the superposition on the other hand, an be obtained andompared. A seond motivation is that a Markovian on/o� soure is a speial ase of a twodimensional MMBP, and with on/o� soures a situation for whih the irulant mathingmethod does not work well, or does not work at all, an be illustrated.



3.2. Superposition of two dimensional MMBP soures 513.2.1 Markov modulated Bernouilli souresConsider a disrete-time Markov hain with transition matrix D. When this hain is instate i, an arrival is generated aording to a Bernouilli distribution with parameter pi, i.e.,with probability pi an arrival ours, and with probability 1� pi no arrival ours. Hene,this arrival proess is similar to a Bernouilli arrival proess, but the arrival probability ismodulated by the state of a disrete-time Markov hain. Suh an arrival proess is alleda Markov modulated Bernouilli proess (MMBP).In this setion only two dimensional MMBPs are onsidered. Denote by � the probabilitythat the soure makes a transition from the �rst state to the seond state, and by �the probability that it makes a transition from the seond to the �rst state. A D-MAPdesription of this soure is thenD0 = �(1� �)(1� p1) �(1� p1)�(1� p2) (1� �)(1� p2)� ; D1 = �(1� �)p1 �p1�p2 (1� �)p2� ; (3.19)and D = D0 + D1. The stationary distribution of this soure is given by� = ��=(�+ �) �=(�+ �)�, and its mean arrival rate by � = �D1e = (�p1+�p2)=(�+�).Remark that the durations that the soure stays in a state are geometrially distributed,with mean 1=� for the �rst state, and 1=� for the seond state.When one of the parameters p1 or p2 equals zero, the MMBP soure is an on/o� soure.Suppose that p2 = 0. When the soure is then in the seond state, it is `o�' or `silent', i.e.,no arrivals are generated. When the soure is in the �rst state, it is `on' or `ative'.3.2.2 Superposition of two dimensional MMBP souresAs for every D-BMAP, the exat superposition of M idential two dimensional MMBPsoures that are desribed by the D-MAP (D0;D1), is given by the D-BMAP with 2Mstates obtained from the matries D0 and D1 as desribed in Setion 1.2.3. However,beause eah soure has only two states, also the D-BMAP (Sk)0�k�M with M + 1 states,in whih a state i, 0 � i � M , orresponds to the fat that i soures are in the �rststate (and thus M � i soures are in the seond state) an desribe the traÆ generatingproess of the superposition. The elements Si;j of the transition matrix S desribe theprobability of making a transition from a situation in whih i soures are in the �rst state,to a situation in whih j soures are in the �rst state. When the number of soures thatstay in the �rst state is denoted by l, whih then implies that i�l soures make a transitionfrom the �rst to the seond state, while j � l of the soures that are in the seond statetransit to the �rst state, and thus M � i� j+ l of the soures stay in the seond state, Si;jis obtained as follows:Si;j = minfi;jgXl=maxf0;i+j�Mg�il�(1� �)l�i�l�M � ij � l ��j�l(1� �)M�i�j+l: (3.20)



52 3. Numerial examples and appliationsmean sojourn mean sojourn mean arrivalType � � p1 p2 time in state 1 time in state 2 rate �A 1/25 1/50 1/30 1/40 25 50 1/36B 4/25 1/50 1/8 1/64 25/4 50 1/36C 1/75 1/150 1/30 1/40 75 150 1/36D 2/25 1/100 1/8 1/64 25/2 100 1/36Table 3.1: Parameters and harateristis of the MMBP soures used in Setion 3.2.4.When a soure is in the �rst state, it generates an arrival with probability p1, while whenit is in the seond state an arrival is generated with probability p2. So when t soures arein the �rst state, then m 2 f0; : : : ; tg arrivals from soures that are in the �rst state ourwith probability � tm�pm1 (1� p1)t�m, while n 2 f0; : : : ;M � tg arrivals from soures that arein the seond state our with probability �M�tn �pn2 (1� p2)M�t�n, suh that(Sk)i;j = minfi;kgXl=maxf0;k�M+ig�il�pl1(1� p1)i�l�M � ik � l �pk�l2 (1� p2)M�i�k+l Si;j: (3.21)3.2.3 Cirulant mathing of two dimensional MMBP souresBeause a transition matrix has 1 as eigenvalue, and beause the sum of the eigenvaluesof a matrix is equal to the sum of the diagonal entries of that matrix, the two eigenvaluesof the transition matrix of a two dimensional MMBP soure are 1 and 1� �� �. For thesame reasons the two dimensional irulant with �1� (� + �)=2 (� + �)=2� as �rst rowhas these values as eigenvalues. So there always exists a two dimensional irulant with thesame eigenvalues as a two dimensional MMBP. However, using a two dimensional irulantto replae the superposition of suh soures would imply that the stationary umulativedistribution of the input rate of the superposition should be redisretized using two valuesof probability 0.5, whih obviously would result in a very bad desription of the umulativedistribution. So a irulant of a higher dimension should be taken. In the remainder ofthis setion, irulants of size 25 are used.3.2.4 Numerial examplesConsider the superposition of 30 idential MMBP soures with parameters and hara-teristis as mentioned in Table 3.1. Figures 3.6 and 3.7 ompare the distributions of thesystem lengths when the D-BMAP/D/1/K queues are onsidered with as input D-BMAPeither� the D-BMAP (Sk)0�k�M as de�ned by equation (3.21), whih gives an exat desrip-tion of the traÆ generated by the superposition, or
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Figure 3.6: System length distribution forthe exat superposition and for the irulantmath of 30 type A or type B soures.
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Figure 3.7: System length distribution forthe exat superposition and for the irulantmath of 30 type C or type D soures.� the irulant D-BMAP onstruted by the irulant mathing method whih approx-imates the superposition.For the senarios with soures of type A or C, a system apaity K = 75 is used, while forthe other senarios K = 150 is used. Although all types of soures were hosen to havethe same mean arrival rate � = 1=36, suh that 30 soures generate in all ases a load of83%, the traÆ generated by soures of type B and D is more bursty, sine when they arein the �rst state, these soures generate arrivals at a onsiderable higher average rate thanthe type A or type C soures ever do. So for senarios with type B or D soures, a largerqueue is needed to aommodate these bursts.As an be seen from the Figures 3.6 and 3.7, the system length distributions obtained withthe irulants as input math the system length distributions obtained when the exatsuperpositions are used as input rather well. The �gures also illustrate something else.First remark that the input rate distribution of a soure of type A is the same as that of asoure of type C, and ditto for soures of type B and D. In partiular: 1/30 with probability1/3 and 1/40 with probability 2/3 for soures A and C, and 1/8 with probability 1/9 and1/64 with probability 8/9 for soures B and D. For soures of type A and type C thesystem length distributions are almost the same, but for soures of type B and D there isa onsiderable di�erene (remark that Figures 3.6 and 3.7 have a di�erent range on theY-axis): with soures of type D the probability that the system length takes a ertain valueis larger for most values. Although soures of type B and D generate traÆ at the samerates when they are in the �rst or seond state, soures of type D stay for longer periodsin the same state, thus also in the �rst state where traÆ is generated at a higher rate,suh that the traÆ of soure D is more bursty. So soures B and D are nie illustrationsof the fat that when a mathing method would only take �rst order harateristis of the



54 3. Numerial examples and appliationsmean on mean o� mean arrivalType � � p1 duration duration rate �1 1/25 1/50 1/12 25 50 1/362 1/25 1/200 1/4 25 200 1/363 1/25 1/650 3/4 25 650 1/364 1/75 1/150 1/12 75 150 1/365 1/75 1/600 1/4 75 600 1/366 1/75 1/1950 3/4 75 1950 1/36Table 3.2: Parameters and harateristis of the on/o� soures used in Setion 3.2.4.
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Figure 3.10: System length distribution for the exat superposition and for the irulantmath of 20 type 1 on/o� soures.irulant D-BMAP are positive. An explanation for this has to be found in the fat thatthe input rate distribution of an on/o� soure takes two values: p1 and 0, with probabilities�=(�+ �) and �=(�+ �). So the input rate distribution of the superposition of M on/o�soures then takesM+1 values, i.e., 0; p1; 2p1; : : : ;Mp1, where the probability that it takesvalue 0 is given by (�=(�+ �))M . The larger this probability, the more omponents of have to lie `lose to zero'. But there are less values that lie lose to zero than to anothervalue, sine negative values are not allowed. All on/o� soures struggle with this problem,but for soures of type 3 and 6 the probability that the input rate takes value 0 is solarge, i.e., 0.32, that this auses the mathing of the input rate distribution to fail. For theother types of on/o� soures onsidered, a solution exists, but the input rate distributionof the resulting irulant is ertainly no perfet math of that of the superposition, whihexplains why the math between the system length distributions is not very well. Fora superposition of 30 soures, the mathes maybe are not too bad, but when dereasingthe number of soures, the mathes beome muh worse, beause then the probabilities(�=(�+ �))M beome larger. An example of this is shown in Figure 3.10 for 20 soures oftype 1.When onsidering the math of the autoorrelation sequene for the senario with 20 type 1on/o� soures, the math an be onsidered as perfet: both the largest absolute and rela-tive di�erenes between both sequenes are smaller than 10�14. This illustrates that whena mathing method would only take a seond order harateristi (e.g., the autoorrela-tion sequene) into aount and neglets the �rst order distribution, its result might badlyreet the queueing behavior of the soures it replaes. This fat is illustrated more exten-sively in [40℄. This artile explores the variations in the mean queue length when arrivalproesses with the same mean and autoorrelation funtion are applied to a ./D/1 queue.It is observed that the mean queue length an vary substantially, so the behavior of a queue



56 3. Numerial examples and appliationsannot be predited solely based on the mean and autoorrelation funtion of its arrivalproess.3.3 Multiplexing MPEG video souresIn this setion, the irulant mathing method is applied to the superposition of an MPEGsoure model developed by B. Helvik in [42℄. We extensively used this model in a seriesof onnetion admission ontrol (CAC) experiments performed at the ATM1 testbed inBasle, Switzerland. These experiments were arried out within the EXPERT projet [47℄of the European teleommuniations researh program ACTS. Beause CAC experimentsare in fat multiplexing experiments, a omparison between the experimentally and thetheoretially obtained results is possible.3.3.1 MPEG enoding and the MPEG model of HelvikDue to the high bandwidth needs of unompressed video data, several video enodingalgorithms were developed to ompress this data. A widely used oding sheme that isindependent of a partiular appliation is MPEG (Moving Piture Experts Group) [67℄.Several MPEG shemes exist: MPEG-1, MPEG-2 and MPEG-4. The sheme that is dealtwith here is MPEG-1.The MPEG ompression algorithm redues both spatial and temporal redundany of avideo data stream, thereby generating three di�erent frame types of a onstant dura-tion: I-frames, P-frames and B-frames. In all three frame types, spatial redundany isremoved. I-frames or intrapitures are typially the largest of the three frame types, sineonly intra frame enoding is used, i.e., only spatial redundany is removed. P-frames orpredited pitures have also temporal redundany with referene to the previous I-frameor P-frame removed. P-frames are typially the seond largest. B-frames or bidiretionalpitures provide the highest amount of ompression sine they have temporal redundanywith referene to both the previous and the next I-frame or P-frame removed. After theompression, the frames are mostly arranged in a periodi deterministi sequene, e.g.,`IBBPBBPBBPBB'. One suh sequene is referred to as a group of pitures (GOP).Following the standardization of the MPEG algorithm and its wide aeptane, researhersstarted investigating the harateristis of MPEG oded video traÆ and developing souremodels spei� to this type of traÆ. The result is a wide variety of models (see for example[49℄ and the referenes therein). One of these models is the MPEG model of Helvik [42℄,whih is espeially designed for the type of traÆ generator available at the EXPERT1ATM stands for asynhronous transfer mode, and is a onnetion-oriented paket swithing transfermode based on asynhronous time division multiplexing. It uses �xed length pakets of 53 bytes (48 bytespayload + 5 bytes header), alled ells, to transport traÆ. An important property of ATM is its notion ofquality of servie (QoS). The QoS parameter that is onsidered in this setion is the ell loss ratio (CLR),the ratio of lost ells to the total number of transmitted ells. We ome bak to some aspets of ATM inthe seond part of this thesis, but muh more information about it an be found in for example [24℄.
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Figure 3.11: Struture of the MPEG model proposed by Helvik.testbed.The Helvik model is a periodi Markovian model at the MPEG frame level. Its transitiondiagram is shown in Figure 3.11. State sojourn times are deterministi, with as lengtha frame duration. With eah state a (mean) load is assoiated. As an be seen fromFigure 3.11, the Helvik model is level-oriented. A level i models the ativity of the MPEGsoure when the sum of the loads generated by the B-frames and P-frames of a GOPis between two values li and li+1. Beause of the variation in the loads produed bythe di�erent frames in a GOP, a smooth transition over the frames annot be assumed.Therefore, within eah level of the model the I-frame, B-frame and P-frame ativities aremodeled. For the B-frames and P-frames a single state is used. As the I-frames are thelargest, they are modeled in more detail using multiple states. For further details aboutthe Helvik model, we refer to [42℄.The parameters of the Helvik model, i.e., the di�erent load level intervals [li; li+1[, thetransition matrix H = (hi;j), where hi;j desribes the probability of going from level i tolevel j, and the load that is assoiated with eah state, are obtained from MPEG framesize data. Details about how this is done an also be found in [42℄. First one has todeide how many levels L and how many I-states N per level to use. This deision isa trade-o� between the model auray and the number of states `budget'. When Mdenotes the number of frames in a GOP, the number of states in the Helvik model isgiven by (M � 1 + N)L. The two Helvik soures that are used further on are basedon frame size trae data of the James Bond movie `Gold�nger' (referred to as `bond'),and on a trae of an Asterix artoon (referred to as `asterix'). These are two of themany MPEG-1 frame size traes made publily available by the University of W�urzburgat http://nero.informatik.uni-wuerzburg.de/MPEG/. The GOP pattern of these traesis `IBBPBBPBBPBB', suh that the parameter M of the Helvik model equals 12. Eah



58 3. Numerial examples and appliationstrae onsists of 40 000 frames, whih orresponds to approximately half an hour of video.The duration of a frame is 45 ms2. The Helvik soure bond is implemented with �ve loadlevels, and two I-states per level, suh that it is a 65 state model. The asterix soure isalso implemented with two I-states per level, but now four load levels are used, suh thatit has 52 states. With this number of states, we were able to multiplex both models in onetraÆ generator, without exeeding the upper limits of what the equipment an handle.3.3.2 Experimentally obtained CAC boundariesConnetion admission ontrol (CAC) is the traÆ ontrol funtion whih has to determinewhether a new onnetion setup request an be aepted or should be rejeted. This dei-sion is based on the onstraint to meet the negotiated quality of servie (QoS) requirementsof all existing onnetions as well as that of the new onnetion. Besides this basi fun-tion of CAC, there is the seondary goal to maximize the system utilization by allowingfor a statistial multiplexing gain, i.e., an eÆient CAC method should aept as manyonnetions as possible without violating any QoS guarantees.Experimental multiplexing results were obtained in the EXPERT projet by using a traÆgenerator and analyzer instrument, alled ATM-100, whih gives the possibility to generateand analyze quite general random traÆ. The ATM-100 is equipped with a traÆ generatormodule that is used for generating the arti�ial MPEG traÆ. The periodiity of thetraÆ is ompromised in the sense that the duration in the individual states of the Helvikmodel is assumed exponential instead of onstant, whih is a requirement if more than oneMPEG soure is to be generated by the traÆ generator. This traÆ is then multiplexedon the output port of a Fore ASX-200 ATM swith with a bu�er of 100 ells, or on anoutput port of a Ciso LS1010 ATM swith with a bu�er of 256 ells. Due to hardwareonstraints in the traÆ generator, a paing funtion has been used to limit the output portapaity to 37.44 Mbit/s, thereby reduing the number of soures required to adequatelyload the system. The aggregate traÆ stream is then analyzed in the ATM-100 analyzermodule, whih permits ell loss measurements. CAC boundaries are obtained from thesemultiplexing experiments by hanging the traÆ mix until a ell loss ratio (CLR) below,but as lose as possible to a �xed value is obtained. All CAC boundaries were obtainedwith a target CLR of 10�4. More details about the experimental setup are given in [1, 2℄.2Remark that originally on the website where the MPEG traes are made available, it was mentionedthat \the apture rate of the video system was between 19 and 25 frames per seond". Sine it was notlear what the exat apture rate for eah of the traes was, Helvik used in [42℄ the average of these twonumbers, i.e., 22 frames per seond, resulting in a frame time of 45 ms. In the experiments, we adoptedthis number. Later on, this indistintness was lari�ed, and now it is mentioned that \the apture rate ofthe video system was 25 frames per seond", so resulting in a frame time of 40 ms. Sine all experimentalresults were obtained assuming that a frame time has a duration of 45 ms, also the theoretial results aregenerated based on this assumption.



3.3. Multiplexing MPEG video soures 593.3.3 Theoretially obtained CAC boundariesThe Markovian MPEG model of Helvik is mapped onto a D-BMAP (Dk)k�0 in a ratherstraightforward way. The transition matrix D is easily read from the transition diagramshown in Figure 3.11 and from the values in the matrix H, whih desribes the transitionprobabilities among the di�erent levels of the Helvik model. The transition matrix of theD-BMAP has period 12, due to the periodi GOP struture in the MPEG traes and inthe Helvik model. For eah state, the Helvik model gives the number of bits that should begenerated during the time that the model is in that state. First this number is transformedfrom bits into ells (dnumber of bits = (8� 48)e). When for a ertain state i this results inyi ells, then 8k � 0 and 8j, (Dk)ij is de�ned as(Dk)ij = (Dij if k = yi;0 otherwise: (3.22)Based on the parameters of the Helvik soures, a D-BMAP for the bond and the asterixsoures an thus be onstruted.To obtain results omparable with the experimental results, a superposition of theseD-BMAPs should be o�ered to a single server queueing system. This system should have a�nite bu�er apaity of 100 or 256 ells and a deterministi servie time equal to the timeneeded to plae one ell on a link of 37.44 Mbit/s (all this time a slot).Beause of the size of the bond and asterix D-BMAPs, i.e., 65 or 52 states, it is obviouslythat the exat superposition of these soures annot be used (a superposition of two of suhsoures has already 4225 resp. 2704 states). So the irulant mathing method is appliedto these soures, resulting in a irulant D-BMAP (Qk)k�0. For a superposition of asterixor bond D-BMAPs, the resulting irulant has 132 states. For a superposition of bond andasterix soures, the result is a irulant of dimension 276. These dimensions stay the sameirrespetive of the number of soures that is multiplexed, the di�erenes are in the ratevetor  of the irulant D-BMAPs.Sine the Helvik model is a model at the MPEG frame level, the underlying time unit of theirulant D-BMAP (Qk)k�0 is also a frame time, or 45 ms. Beause the irulant D-BMAPwill be used as input to a queueing system with a onstant servie time of one slot, it hasto be transformed into a D-BMAP with one slot as underlying time unit. Suppose that thestate sojourn time of this new D-BMAP is geometrially distributed with mean x, wherex is the number of slots in a frame time. Then p = 1� 1=x is the probability of staying inthe same state after one slot. Transform the irulant D-BMAP (Qk)k�0 into the irulantD-BMAP (Rk)k�0 with one slot as underlying time unit, by de�ning the elements of itstransition matrix R asRij = ((1� p)Qij if i 6= j;p if i = j: (3.23)Remark that the periodiity of the input traÆ is in this way ompromised in a similar wayas in the experiments, and that the matrix R is stohasti, sine for all i, Qii = 0, beause
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Figure 3.12: Comparison of theoretiallyand experimentally obtained 10�4 CACboundary with a bu�er apaity of 100 ells.
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Figure 3.13: Comparison of theoretiallyand experimentally obtained 10�4 CACboundary with a bu�er apaity of 256 ells.Q is periodi. Construt a vetor ̂ from the rate vetor  = P1k=1 kQke by dividing allits elements by x, i.e., ̂i = i=x. The matries Rk are then obtained from R and ̂ as in(2.31).By using the D-BMAP (Rk)k�0 as input for the D-BMAP/D/1/K + 1 queueing system,where K = 100 or K = 256, and alulating the ell loss probability for this systemusing formula (1.13), theoretial CAC boundaries an be obtained in a similar way as theexperimental CAC boundaries, i.e., by hanging the traÆ mix until a CLR below, but aslose as possible to 10�4 is obtained.3.3.4 Numerial resultsAll results presented here are obtained with the values already mentioned before: a bu�erapaity of 100 or 256 ells, an outgoing link of apaity 37.44 Mbit/s, whih implies thatone slot equals 11.325 �s, and a target CLR of 10�4. Figure 3.123 shows results for thebu�er of 100 ells, Figure 3.13 for that of 256 ells. If the theoretially and experimentally3Remark that this �gure is also shown in [89℄, but that the theoretially obtained results shown noware slightly better than these shown in [89℄. The reason is that when we generated the results of [89℄, theminimization problem (2.74) of the irulant mathing method was implemented using the MATLAB fun-tion fmins, whih uses the Nelder-Meade simplex method [78℄. Beause fmins implements unonstrainedminimization, while we require that all omponents of the rate vetor are positive, we adapted this methodas suggested in [78℄ for onstrained optimization: we let the goal funtion take a large positive value whena omponent of the rate vetor is negative. Later we had aess to the MATLAB optimization toolbox,in whih the funtion fminon, whih �nds the onstrained minimum of a funtion of several variables, isavailable. It is this funtion that is used to generate the results shown in Figure 3.12.



3.4. Conlusions 61obtained points shown in the �gures are ompared, it is seen that the theoretial resultsare more onservative than the experimental results, with a larger deviation if the num-ber of asterix soures grows. For the D-BMAPs of the MPEG soures, the parametersas obtained from the Helvik model are used, whih gives rise to a mean arrival rate of58.1812 ells/45 ms, or 0.54820 Mbit/s for the asterix soure, and 63.3247 ells/45 ms or0.59666 Mbit/s for the bond soure. If the Helvik soures are implemented in the traÆgenerator however, their parameters are automatially slightly hanged to adapt them tothe hardware limitations of this devie. Depending on the number of soures generated,these hanges may beome more important. The �rst limitation is that only transitionprobability values in integer multiples of 1/256 are allowed. Seondly, the peak rate gener-ated in a state of the model must divide the link rate, suh that in a state the interarrivaltime between ells is always the same integer number of slots. As a result, the mean arrivalrate for an experimental asterix soure is 0.51318 Mbit/s, and 0.59221 Mbit/s for a bondsoure. The experimental model for the asterix soure thus generates 0.03502 Mbit/s lessthan the theoretial model, whih means that for a ertain experimental point the orre-sponding theoretial CLR is worse, depending on the number of asterix soures used. Thisexplains partially why the theoretial CAC boundary lies below the experimental one, witha larger di�erene when more asterix soures are involved. Analogue observations are madein [2℄ when the experimental results are ompared with results obtained by simulation.3.4 ConlusionsNumerial examples and appliations of the irulant mathing method were desribed inthis hapter. A �rst appliation disussed in Setion 3.2 is the superposition ofM identialtwo dimensional MMBP soures. For these types of soures, it is possible to ompare thesystem lengths obtained when using the irulant approximation of the superposition andthe exat superposition as input to a queueing system, beause the exat superposition ofM idential two dimensional soures is also exatly desribed by an (M + 1)-dimensionalMarkov soure. First general MMBP soures are onsidered, and the system length dis-tribution obtained with a irulant as input mathed the exat system length distributionrather well. Then a speial type of MMBP soures is onsidered, namely on/o� soures.For these type of soures the agreement between the system length distribution obtainedwith the irulants as input and the exat distribution is bad. The reason is that the ratedistribution of the irulant very badly mathes that of the exat superposition, beausea large part of the probability mass of the rate distribution is loated at rate zero. Thesame fat sometimes even auses the irulant mathing method to fail in �nding a validrate distribution for the irulant. Using the two dimensional soures it is also illustratedthat it is neessary for a mathing method to take both �rst and seond order statistis ofthe arrival proess into aount, sine when onsidering only one of both, the result of themathing proess might badly reet the queueing behavior of the soures it replaes.A seond appliation, onsidered in Setion 3.3, is the superposition of a periodi MPEG



62 3. Numerial examples and appliationssoure model. Using the irulant mathing method, we obtained a theoretial CAC bound-ary for a mix of two types of MPEG soures. Remark that due to the dimension of theMPEG soure models (52 and 65 states) and the realisti number of suh soures onsid-ered, it is impossible to obtain the exat queueing results using the exat superposition.So we ompared the theoretially obtained results with experimentally obtained results.
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Chapter 4IntrodutionIn the late 1980s, the asynhronous transfer mode (ATM) [24, 80℄ was developed in or-der to provide a network that was apable of handling a virtually unlimited range ofuser appliations independent of their bandwidth requirements. The major organizationsresponsible for developing standards and spei�ations for ATM are the ITU-T (Inter-national Teleommuniations Union-Teleommuniation Standardization Setor) and theATM Forum. ATM is a fast onnetion-oriented paket swithing transfer mode based onasynhronous time division multiplexing. It uses �xed length pakets of 53 bytes (48 bytespayload + 5 bytes header), alled ells, to transport data. Based on some information inthe header of eah ell, ells belonging to the same virtual hannel (VC) an be identi�ed.Cell sequene integrity is preserved per VC.When ATM ame on the sene, it was thought to be the beginning of a new era in net-working, beause it was both a loal area network and a wide area network tehnologythat ould start at the desktop. In addition, ATM's ability to provide end-to-end qualityof servie (QoS) was highly praised. However, ATM never beame the magi end-to-endsolution. But it has been suessfully deployed in the bakbone network, beause of itsability to provide QoS. The ATM framework for providing QoS guarantees is desribed inthe ATM Forum's TraÆ Management Spei�ation [5℄. Di�erent ATM servie ategoriesand traÆ ontrol funtions whih relate traÆ harateristis and QoS requirements tonetwork behavior have been de�ned.Four servie ategories are intended for non-real-time data traÆ: non-real-time variablebit rate (nrt-VBR), available bit rate (ABR), unspei�ed bit rate (UBR) and guaranteedframe rate (GFR). Data appliations using the most widely used protool suite in omputerommuniations, i.e., TCP/IP (transport ontrol protool/internet protool), inrease theirrate if extra bandwidth is available in the network, and redue it if ongestion builds up.As a result, this type of traÆ may be highly unpreditable, extremely bursty and veryhard to haraterize in terms of a peak ell rate, sustainable ell rate and maximum burstsize, as is needed to set up a nrt-VBR onnetion. An additional weakness of nrt-VBRin the ontext of transporting TCP/IP traÆ is its inability to de�ne a QoS guarantee in65



66 4. Introdutionterms of frames1. The ABR servie ategory was developed espeially for traÆ souresthat are willing to adapt their rate to hanging network onditions and available resoures,but an only haraterize their traÆ in a rather `vague' way. ABR uses a feedbak owontrol sheme to provide information about ongestion inside the network to the soures,and it expets soures to adapt their traÆ in aordane to this feedbak. This feedbakalgorithm is however fairly omplex, espeially in the endsystems. Further, when ATMis not deployed end-to-end, ATM's traÆ ontrol terminates at the aess nodes and itbeomes very diÆult to expliitely ontrol a non-ATM soure. So the most suited servieategories for TCP/IP traÆ are UBR and GFR.The best way to haraterize the UBR servie ategory is as ATM's `best e�ort' servieategory: UBR is not subjet to a spei� traÆ ontrat, so no spei�ation of the traÆthat will be sent over a UBR onnetion is needed, but also no QoS ommitments are madeto UBR onnetions. To perform end-to-end ongestion ontrol, UBR depends entirely ona higher layer protool suh as TCP.Where UBR was developed as a way to aommodate traÆ that is diÆult to hara-terize to the early ATM market, GFR, whih was initially alled UBR+, was developedespeially for this kind of paket data (i.e., TCP/IP traÆ). The main motivation behindthe introdution of GFR was to retain the simpliity of UBR at the user network interfae,while providing GFR onnetions with a minimum ell rate guarantee at the frame level:if frames smaller than a spei�ed maximum frame size are sent in a burst of ells that doesnot exeed a maximum burst size, then these frames are expeted to get delivered arossthe network with minimum losses.The absene of ongestion ontrol mehanisms for the basi UBR servie an lead to a lowthroughput for this type of onnetions. As a result, ompetitive UBR implementationsenhane the basi UBR servie with intelligent frame aware bu�er aeptane shemes. ForGFR, it is expliitely required in the de�nition of the GFR servie ategory that this typeof traÆ is transmitted as frames of ells, and that the ATM swithes supporting GFRneed to be frame aware and aept or disard entire frames instead of individual ells.Frame aware bu�er aeptane shemes, also often alled paket disarding mehanisms,are the topi of the seond part of this thesis.A literature overview of the most important frame aware bu�er aeptane shemes pro-posed for UBR and GFR is given in the next hapter. In Chapter 6, a theoretial modelis developed and applied to study the transient performane of the seletive drop bu�eraeptane algorithm. This model is slightly modi�ed in Chapter 7 to study the fair bu�eralloation aeptane sheme. The remainder of the urrent hapter ontains short intro-dutory desriptions on AAL5 frames, TCP ongestion ontrol, the UBR and GFR servieguarantees and on performane measures that are important to assess the performane ofTCP over UBR or GFR.1The term `frame' means an AAL5 frame, and is disussed further on in this hapter. Roughly spoken,it orresponds to an IP paket whih holds a TCP segment.



4.1. Some onepts related to bu�er aeptane 674.1 Some onepts related to bu�er aeptaneA bu�er aeptane sheme deides about whih ells are allowed to enter the bu�er of anetwork element, and whih ells have to be dropped. This deision is very often takenbased on bu�er aounting information, i.e., on the ounters and states assoiated withthe bu�er.Together with the sheduling algorithm, the bu�er aeptane sheme determines thethroughput and fairness guarantees a network element an o�er to the di�erent virtualiruits. The sheduling algorithm is the algorithm that deides about the order in whihthe aepted ells will leave the bu�er.Closely related to sheduling is the queueing strategy used, i.e., the internal organization ofthe bu�er. The queueing strategy an be a global one, most of the time resulting in FIFOsheduling, or it an be per-lass or per-VC, whih makes sheduling shemes like roundrobin, priority sheduling et. possible. Important to note is that the aounting strategyused does not imply a queueing strategy: many of the shemes whih are onsidered furtheron use per-VC aounting ombined with global queueing.Although stritly speaking the term `bu�er aeptane sheme' as de�ned above oversonly the deision rules about whih ells to aept in the bu�er, it is also often used todenote the totality of bu�er aeptane (in the strit sense), aounting, queueing andsheduling. Throughout this thesis, the term is also used in both meanings. Sometimes,bu�er aeptane is also alled bu�er management (e.g., in [32, 5℄).4.2 AAL5 aware bu�er aeptaneThe most widely used ATM adaptation layer (AAL) for data traÆ is AAL5. The GFRservie guarantee is even expliitely based on the use of AAL5. AAL5 provides to theupper layer protools an unassured transfer of variable-sized servie data units (SDU) overthe underlying ATM network. Eah suh variable-sized SDU is enapsulated in an AAL5frame whih onsists of a payload �eld of up to 65 535 bytes, some padding bytes and a8-byte long trailer (see Figure 4.1). The padding aligns the AAL5 frame on a multiple of48 bytes. The segmentation of the AAL5 frame in ells by the AAL5 segmentation andreassembly (SAR) sublayer does not introdue any new overhead, but relies on the payloadtype indiator (PTI) �eld in the ATM header. The ATM user-to-user (AUU) bit in thePTI �eld for user data ells is set to zero by the SAR sublayer for all ells, exept for thelast ell of eah AAL5 frame, whih is transmitted with the AUU bit set to one. Bu�eraeptane shemes an thus detet frame boundaries by inspeting the AUU bit in theheader of the ATM ells.Bu�er aeptane shemes in ATM networks deide in priniple about the aeptane ofells. But with AAL5, bu�er aeptane shemes preferentially are AAL5 frame aware,beause the destination AAL5 entity heks eah reassembled AAL5 frame for message
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48 bytes5 bytesFigure 4.1: Enapsulation of data in AAL5 and AAL5 segmentation into ATM ells.length and yli redundany hek �eld, and disards orrupted frames. The loss of asingle ell of an AAL5 frame at a network element thus leads to the loss of a whole frameat the destination. Bu�er aeptane shemes without frame awareness onsequently giverise to a ow of ATM ells that is very likely to transport inomplete frames whih areof no use. This an degrade the data throughput signi�antly. To support GFR, bu�eraeptane shemes are required to be AAL5 aware, sine the GFR servie guarantee isbased on AAL5 frames.4.3 TCP ongestion ontrolIf the UBR or GFR servie ategory is used to transport TCP/IP traÆ, network elementsperform ongestion ontrol (i.e., paket disarding) based on loal information. For end-to-end ongestion ontrol, these servie ategories depend entirely on TCP.The ongestion ontrol of TCP is window-based. TCP's window size orresponds to theamount of data the TCP soure an send in one round trip time (RTT), and is the mini-mum of the reeiver's advertised window (RCVWND) and the sender's ongestion window(CWND).The ongestion ontrol sheme of TCP inludes four algorithms, i.e., `slow start', `onges-tion avoidane', `fast retransmit' and `fast reovery' [50, 3℄. The slow start and ongestionavoidane algorithms ontrol TCP's window size. A variable SSTRESH is maintained foreah onnetion to swith between the two algorithms. When a TCP onnetion starts orhas been idle for a time longer than the retransmission timeout, the slow start mehanism



4.3. TCP ongestion ontrol 69is used. At the beginning of the slow start algorithm, CWND is set to 1 maximum seg-ment size (MSS). Eah time an aknowledgement (ACK) for new data is reeived, CWNDis inreased by 1 MSS. If CWND reahes SSTRESH, the ongestion avoidane algorithmtakes over, and now CWND is inreased by 1/CWND on reeipt of a new ACK. Slow startorresponds with an exponential inrease of the ongestion window every round trip time,ongestion avoidane with a linear inrease.TCP's ongestion ontrol relies on segment loss as the indiation of ongestion. On dete-tion of a segment loss by expiration of the retransmission timer, half the urrent windowsize is reorded in SSTRESH, CWND is set to 1 MSS and slow start is initiated. Thetriggering of the retransmission timer is a�eted by the TCP timer granularity. Most realTCP implementations use a 100 to 500 ms timer granularity, although some simulationsuse a muh lower granularity (e.g., 0.1 ms in [84℄). Sine the timer granularity determinesthe amount of time lost during ongestion, lowering the TCP granularity results in fasterreovery after a loss and thus a higher throughput.Sine a TCP reeiver should send an immediate dupliate ACK when an out-of-ordersegment arrives, the sender an also detet losses based on inoming dupliate ACKs.After reeiving three dupliate ACKs, the fast retransmit algorithm sets SSTRESH to halfthe urrent window size, and retransmits the segment that appears to be the missing onewithout waiting for the retransmission timer to expire. If the fast retransmit algorithm isimplemented in ombination with the fast reovery algorithm, CWND is set to SSTRESHplus 3�MSS. Otherwise, CWND is set to 1 MSS and slow start is initiated.The fast reovery algorithm governs the transmission of new data until a non-dupliateACK arrives: it inrements CWND by 1 MSS for eah additional dupliate ACK reeived,and transmits a segment if allowed by TCP's window size. When an ACK for new dataarrives, CWND is set to SSTRESH, whih implies that the ongestion avoidane algorithmis triggered. The reason for not performing slow start is that the reeipt of the dupliateACKs does not only indiate that a segment has been lost, but also that segments are mostlikely arriving at the destination.The two most ommon referene implementations for TCP are Tahoe TCP and RenoTCP [27℄. Tahoe TCP refers to TCP with the slow start, ongestion avoidane and fastretransmit algorithms implemented, while Reno TCP implements also the fast reoveryalgorithm.Sine the fast retransmit and reovery algorithms are known to generally not reover veryeÆiently from multiple losses in a single window of pakets [27℄, the seletive aknowl-edgement (SACK) strategy was proposed in [74℄. With seletive aknowledgements, thedata reeiver an inform the sender about all segments that have arrived suessfully, sothe sender needs to retransmit only the segments that have atually been lost.



70 4. Introdution4.4 Bu�er aeptane and TCP ongestion ontrolThe rate at whih a TCP soure an send data into the network depends on its windowsize. If the network would have diret ontrol over this window size, it ould ontrol thesoure's rate. The network however does not have this diret ontrol. But sine TCP'songestion ontrol sheme manipulates the window size by inreasing it while there areno losses, and dereasing it on detetion of a lost TCP segment, the network ould haveindiret ontrol over a soure's rate by means of dropping.This dropping ours automatially in ase of ongestion beause of bu�er overow, butan lead to very low e�etive throughput. Dropping an however also be done in a moreintelligent way, by trying to drop omplete frames prior to ongestion, preferentially froma onnetion whih is using more bandwidth than one would all fair. To determine whihonnetions are getting more than a fair share of the bandwidth, the number of ells eahonnetion has in the bu�er is taken into aount, and the priniple is used that onnetionswhih use more than a fair share of the bu�er apaity will also get more than a fair share ofthe bandwidth. Connetions from whih ells are dropped will derease their rate beauseof the TCP ongestion ontrol mehanism. As a result, these onnetions will probablyhave the fewest ells in the bu�er next time the ell dropping ondition is satis�ed, andtheir frames have the least hane of being disarded. So it is unlikely that in bu�eraeptane shemes whih try to drop frames in a `fair' manner, frames from the same VCget disarded all the time.4.5 The UBR and GFR servie guaranteesThe UBR servie guarantee as de�ned in [5℄ is simple to desribe: UBR o�ers no traÆrelated servie guarantee. No ommitment is made about the ell loss ratio experiened bya UBR onnetion, or about the ell transfer delay experiened by ells on the onnetion.Fairness among onnetions annot be assumed, although a loal poliy in some networkelements may have this e�et.The desription of the GFR servie guarantee is not so easy. It is expliitely based on AAL5frames. Before it an be formulated, some parameters and terms need to be introdued.For a GFR onnetion, a traÆ ontrat is spei�ed that is omposed of the followingparameters: a minimum ell rate (MCR) and assoiated ell delay variation toleraneCDVTMCR, a peak ell rate (PCR) and assoiated ell delay variation tolerane CDVTPCR,a maximum frame size (MFS) and a maximum burst size (MBS). The MFS is the maximumAAL5 frame size in ells.A ell with its ell loss priority (CLP) bit set to one is alled marked when the originatorof the ell has set the CLP bit. When it is the network that has set the CLP bit, theell is alled tagged. Any soure or network element that sets the CLP bit of a ell toone shall set the CLP bit of every other ell of the same frame to one as well, sine no



4.5. The UBR and GFR servie guarantees 71partial frame marking or tagging is allowed by the GFR de�nition. There are two typesof GFR onnetions: GFR.1 and GFR.2 onnetions. In either type of GFR onnetion,less important frames may be marked by the soure. Tagging by the network is howeveronly allowed for GFR.2 onnetions. Networks may only tag frames that are ineligible. Aframe is eligible if and only if it is onforming, and it passes the F-GCRA test.A frame is onforming if all its ells are onforming. The ell onformane is heked bythe GFR usage parameter ontrol (UPC), whih veri�es if� the ell is either the last ell of a frame, or no more than MFS�1 ells of the sameframe have preeded it, i.e., the frame length is limited to MFS ells,� the end systems send traÆ at a ell rate that onforms to PCR and CDVTPCR, i.e.,the ell does not violate PCR,� the ell has the same CLP value as the �rst ell of the frame to whih it belongs, i.e.,CLP should be set uniformly in a frame.The UPC disards or tags (if allowed) ells of non-onforming frames. Beause the threetests performed by the UPC are applied on ell level, the UPC is unable to predit theonformane of sueeding ells when the �rst ell of a frame is reeived. Sine no partialtagging is allowed, the tails of non-onforming frames are therefore usually disarded.To be eligible, a frame must additionally pass the frame-based generi ell rate algorithmF-GCRA(T; L) [5, p.72℄, whih is the referene algorithm used to identify the QoS eligibilityof a frame with respet to the minimum ell rate MCR = 1=T , assuming that a toleraneL = (MBS � 1)(1=MCR � 1=PCR)�1, is allowed. The F-GCRA is an adaptation of thewell-known GCRA used with the VBR servie ategory [5, p.31℄. The main di�erenebetween the GCRA and the F-GCRA is that the F-GCRA delares entire CLP=0 framesto be eligible or non-eligible. Reasons for frames to fail the F-GCRA test are that theframes are CLP=1 frames, the frame interarrival times are too small, or traÆ was sent atPCR for longer than the MBS. Beause CLP=1 frames annot pass the F-GCRA test, allCLP=1 frames are ineligible. A lassi�ation of the frames of a GFR onnetion in termsof marking/tagging, onformane and eligibility is shown in Table 4.1.The GFR servie guarantee provides a low ell loss ratio (CLR) for a number of ells inomplete CLP=0 frames, at least equal to the number of ells in eligible frames. SineCLP=1 frames are not subjet to the CLR objetive, bu�er aeptane shemes in networkelements will treat them with lower priority. Note that sine the GFR servie guarantee iswith respet to a number of ells in omplete frames, and not preisely to the frames thatare onsidered eligible, the network is not required to perform the F-GCRA test, althoughsome swith elements may rely on it to satisfy the GFR servie guarantee.Cells may always be sent at a rate up to the PCR. Apart from the MCR guarantee, theGFR servie also inludes the expetation that traÆ in exess of MCR and MBS will bedelivered within the limits of available resoures, and that eah onnetion will be provided



72 4. IntrodutionCLP frame onforming frame frame passes F-GCRA type of frame0 no no ineligible nononforming0 no yes ineligible nononforming0 yes no ineligible onforming0 yes yes eligible onforming1 no no ineligible nononforming1 yes no ineligible onformingTable 4.1: Classi�ation of GFR frames.with a fair share of those available resoures. So bu�er aeptane shemes for GFR needto be designed in suh a way that they an deliver both rate and fairness guarantees tothe GFR onnetions.Beause the GFR servie guarantee applies to omplete AAL5 frames, bu�er aeptaneshemes used with GFR deide about the aeptane of a frame on arrival of its �rst ell: ifthis �rst ell is aepted, they try to aept all ells of the frame; if the �rst ell is disarded,all ells of the frame are disarded. So all these shemes need at least one per-VC state toindiate if the next ell on the onnetion will be the �rst one of a frame.4.6 Performane measuresTo deide about the performane of TCP over UBR or GFR using a ertain bu�er a-eptane sheme, the throughput obtained by the di�erent onnetions at the destinationTCP layer is measured. Throughput is de�ned as the number of bytes delivered to thedestination appliation divided by the time needed to deliver these bytes. This measure isalso alled goodput or e�etive throughput, as it is the throughput that is `good' or `e�e-tive' in terms of the higher layer protool. If the soures are not persistent (i.e., they haveonly a limited amount of data to send), the total time needed by eah soure to deliver allits data to the destination appliation is onverted into a throughput value by dividing theamount of data by the measured time. Two important performane measures are obtainedfrom the throughput values: eÆieny and fairness.4.6.1 EÆienyThe eÆieny of TCP over UBR or GFR is de�ned as:eÆieny = sum of TCP throughputsmaximum possible TCP throughput ; (4.1)where the maximum possible TCP throughput is the throughput attainable by the TCPlayer on a link. This throughput is lower than the link apaity beause of header, trailer



4.6. Performane measures 73and padding overhead added to the data by di�erent layers (see Figure 4.1). Consideringfor example a TCP MSS of 512 bytes, the maximum possible throughput is approximately125.2 Mbps on a 155.52 Mbps link [36℄.4.6.2 FairnessTo deide about the fairness of a ertain bu�er aeptane sheme, a fairness riterion isneeded. Several example fairness riteria, suh as equal alloation, weighted alloation,MCR plus equal share, alloation proportional to MCR, et. are given in [5℄. Of ourse,fairness riteria based on MCRs are only appliable to GFR onnetions. The most usedriterion for UBR traÆ is the equal alloation.One a fairness riterion is de�ned, the distane between the resoure alloation and thedesired goal needs to be assessed. In the ase of equal alloation, this is often donevisually, by plotting the e�etive throughput of the di�erent onnetions versus time (e.g.,in [28, 69, 25℄). Another way to judge the fairness is by making use of a fairness index.Several fairness indies are used in the literature (e.g., indies based on the oeÆient ofvariation of the goodputs [25, 85℄). The following one, whih is de�ned by the ATM-Forumin [4℄ and used in e.g., [36, 35, 55℄, is used in Chapter 6.If the goodputs of N virtual iruits are found to be fT1; : : : ; TNg, where the ideal goodputsaording to the hosen fairness riterion should be fT̂1; : : : ; T̂Ng, thenfairness index =  NXi=1 xi!2� N NXi=1 xi2! ; (4.2)where xi = Ti=T̂i is the relative goodput alloation of onnetion i. This fairness indexranges between zero (minimum fairness) and one (maximum fairness) and an be given thefollowing interpretation: if N � k of the N xi's are zero, while the remaining k xi's areequal and non-zero, the fairness index will be k=N , or the fration of users favored. Moreproperties of this fairness index an be found in [53, 52℄.





Chapter 5An overview of bu�er aeptaneshemes for UBR and GFRA literature overview of the most representative frame aware bu�er aeptane shemesde�ned for use with the UBR or GFR ATM servie ategories is given in this hapter.The overview is kept rather desriptive, but in [91℄ pseudo ode of all shemes that aredisussed, using a uniform notation and level of detail, an be found. Also the general on-lusions of performane evaluation studies of the shemes by simulation or by experimentsare summarized, without going into details onerning the simulation/experimental on-�guration, exat parameter settings and TCP implementations used in the various studies.These details and the detailed results an be found in the referenes this hapter is basedon. At the end of this hapter, a summary of the queueing and sheduling strategy usedin eah sheme, and of the aounting information that needs to be kept, is given (seeTable 5.1 for the UBR shemes, and Table 5.2 for the GFR shemes).
5.1 Bu�er aeptane shemes for UBR5.1.1 Some of the �rst bu�er aeptane shemes for UBRIn this setion three of the very �rst bu�er aeptane shemes de�ned for UBR are on-sidered: tail drop, partial paket disard and early paket disard. Although tail drop isnot frame aware, and its performane is not satisfatory at all, the sheme is inluded heresine it illustrates the problems whih need to be resolved by `better' bu�er aeptaneshemes. Partial and early paket disard are important shemes sine they are widelyimplemented in ommerial ATM swithes, and the priniples behind these shemes keepropping up in almost all of the more sophistiated shemes disussed in the followingsetions. 75



76 5. An overview of bu�er aeptane shemes for UBR and GFRTail dropThe simplest bu�er aeptane sheme for use with UBR is alled tail drop (TD). Thissheme aepts ells into a global bu�er as long as the bu�er is not full. Upon bu�eroverow, ells are dropped.Applying tail drop while providing suÆiently large bu�ers to minimize ell loss, and lettingthe higher layer protool (i.e., TCP) handle reovery after an oasional loss, was the initialidea about how to deal with the absene of ongestion ontrol for UBR. However, it hasbeen shown by simulations [84, 36℄ that this approah an give low eÆieny results. Mainreasons for this are:� Delivery of useless ells. Dropping a single ell at a network element results inthe disarding at the reeiver of all other ells of the same frame. Although theseells are thus useless, they are still transmitted over the network, resulting in lowergoodput. Furthermore, these useless ells onsume bandwidth and bu�er spae, suhthat in times of ongestion they may ause other frames to lose also some ells.This problem beomes worse with smaller bu�ers, larger frames, inreased numberof ative onnetions and inreased TCP window sizes [84℄.� Link idle time due to TCP synhronization e�ets. Beause ells from several onne-tions usually arrive interleaved at a swith, ells from all soures are dropped whenthe dropping ondition is satis�ed, i.e., the bu�er is full. As a result, all sourestimeout and go through slow start at roughly the same time. This is alled TCPsynhronization. While the soures wait for a timeout, they stop sending data intothe network. So oasionally, the ongested link an be idle.Although TCP synhronization is an important fator that a�ets TCP's performane,it is not a signi�ant problem in the senarios explored in [84℄. This is beause in thesimulations this paper reports on, the TCP timer granularity was hanged to 0.1 ms,whih is muh lower than the value used in real TCP implementations (100 to 500 ms). Aritiism of [36℄ on TCP simulations whih use a timer granularity lower than 100 ms isthat the throughput obtained in these simulations is arti�ially inreased.TCP synhronization does not neessarily result in the link being idle for a while. It isalso possible that one or two `luky' soures esape synhronization, and these soures anthen send their next window and keep �lling up the bu�er while the other soures havestopped sending data. The luky soures thus get most of the bandwidth, whih results inunfairness between the goodput of the various onnetions.Results in [35℄ show that fairness is better if TCP's fast retransmit and reovery algorithmsare enabled, sine those algorithms help in mitigating the TCP synhronization e�ets. TheeÆieny an however be worse for links with large bandwidth delay produts. Beausemultiple segments are dropped during ongestion, and fast retransmit and reovery annotreover from multiple segment losses, some segments are retransmitted during slow start,



5.1. Bu�er aeptane shemes for UBR 77even though they have already been suessfully reeived. In links with large bandwidthdelay produts, the number of retransmitted segments an be signi�ant.TCP performs best when there is zero loss. The onnetions then ahieve 100% of thepossible throughput and perfet fairness. For a swith to guarantee zero loss for TCP overUBR with tail drop, [54℄ onludes from simulation results that the amount of bu�eringrequired is at least equal to the sum of the TCP maximum window sizes for all TCPonnetions. This is in partiular true for onnetions with small round trip times, sinefor large round trip times the swith has more time to lear out the bu�er before data of thenext TCP window arrives. In any ase, the inrease in bu�er requirements is proportionalto the number of soures in the simulation. This implies that UBR with tail drop andalmost no loss is thus not salable.
Partial paket disardIf a ell of an AAL5 frame is dropped beause of bu�er overow, there is no reason totransmit the remaining ells of this frame. The partial paket disard (PPD) sheme [84℄drops all ells of a frame subsequent to a ell loss, apart from the last one. The disardis `partial' beause at the time of ell loss, some ells of the orrupted frame may alreadybe stored in the bu�er or even be transmitted. The PPD sheme does not searh for ellspossibly stored in the bu�er. The implementation of PPD requires per-VC aounting,sine for eah VC a state must be kept to indiate if the VC urrently has to drop ells.The last ell of a orrupted frame is not dropped, beause this ell is needed at sueedingnetwork elements and at the destination to delineate the beginning of a new frame. Ifthe last ell is dropped anyway beause there is no plae left in the bu�er, the ells of theorrupted frame whih arrive at the destination get merged there with the next frame. Thismerged frame fails the yli redundany hek and is dropped. The soure thus needs toretransmit both frames. Therefore, if the last ell of a frame is dropped, PPD also dropsthe next frame to avoid the useless transmission of the ells of this frame.Simulations in [84℄ and experiments in [55℄ ompare the eÆieny obtained when usingPPD with that obtained when using tail drop. Results with PPD are better, but theimprovements are limited beause still a signi�ant amount of useless ells is transmittedover the link.The PPD sheme is often used in onjuntion with bu�er aeptane shemes whih tryto drop omplete frames. These shemes start from the priniple that ells of a frame areonly dropped if the �rst ell of the frame to whih they belong was dropped. But in asea non-�rst ell of a frame is dropped beause of bu�er overow, although the �rst ell ofthe frame was not dropped, the PPD sheme is used to ensure that the remaining ells ofthe frame are also dropped.



78 5. An overview of bu�er aeptane shemes for UBR and GFREarly paket disardEarly paket disard (EPD) is a bu�er aeptane sheme that has been widely imple-mented in ommerial ATM swithes. It tries to avoid the transmission of useless ellsover the network by dropping omplete AAL5 frames (i.e., all their ells) when the bu�erbeomes in danger of overowing. This is implemented by setting a threshold, the EPDthreshold, and disarding the �rst ell of any inoming frame if on arrival of this ell thebu�er oupany exeeds the threshold. One the �rst ell of a frame has been disarded,its remaining ells are also disarded on their arrival. As with PPD, the implementationof the sheme requires a state per VC to indiate if the VC urrently has to drop ells.Beause frame boundaries are indiated by the last ell of eah frame, a per-VC state toindiate if the next ell on the onnetion will be the �rst ell of a frame is also needed.The EPD threshold splits the apaity of the bu�er into an e�etive and an exess bu�erapaity. The exess bu�er apaity is used to aommodate ells from frames whose �rstell has arrived before the EPD threshold was exeeded. In the worst ase, the swithould have reeived the �rst ell of a frame from all onnetions before reahing the EPDthreshold. To make it possible for the bu�er to aept all these frames, [36℄ suggests to setthe EPD threshold at (bu�er apaity - N� maximum frame size), where N is the expetednumber of onnetions ative at the same time.Simulation results in [36, 84℄ and experimental results in [55℄ show that EPD normallyimproves the eÆieny of TCP over UBR. However, the results of [55℄ also show that theposition of the EPD threshold is a ritial point for small bu�ers, sine in this ase theexess apaity has to be onsidered as a redution of the e�etive bu�er size, whih resultsin an inreasing frame loss. So the worst ase setting of the EPD threshold as suggested in[36℄, if possible, is not in all ases a good idea, and also not neessary, as is shown in [83℄.In that paper it is illustrated by simulations that when all soures are highly synhronized,an exess bu�er apaity of 50-75% of the worst ase exess bu�er requirement is largeenough to obtain a reasonable performane. In the ase where no inherent synhronizationis present, this number an be redued to 25-50%, and in both ases the perentages maybe redued even further if the number of VCs is very large.The reason that EPD normally improves the eÆieny of TCP over UBR is beause thelink now only arries omplete frames, and beause EPD onentrates the ell loss to alower number of frames. In this way, EPD inreases the likelihood that during ongestionat least some of the VCs sueed in transferring a omplete frame, and get a hane tofurther inrease their window. It is however exatly this behavior whih makes that EPDannot guarantee fairness. Sine EPD does not take the urrent rate or bu�er utilization ofthe di�erent VCs into aount while disarding frames, it is very well possible that framesfrom onnetions ausing the ongestion are aepted, resulting in a possible rate inreasefor these onnetions, while frames of other onnetions are dropped, whih fores theseonnetions to derease their rate.Simulations in [28, 36, 70℄ show that the degree of unfairness inreases as the bu�er a-



5.1. Bu�er aeptane shemes for UBR 79paity is redued. It is also shown in [70℄ that the e�etive throughput is muh lowerfor onnetions whih traverse more ongested links than other onnetions. Simulationsin [35℄ show that the ombination EPD and fast retransmit and reovery improves thefairness, but hurts the eÆieny for links with large bandwidth delay produts.5.1.2 Bu�er aeptane shemes for UBR based on FBAAll bu�er aeptane shemes disussed in the previous setion fail in o�ering fair alloationof bandwidth among ompeting onnetions. The shemes disussed in the urrent setionare all based on the fair bu�er alloation sheme proposed by Heinanen and Kilkki in [41℄.The priniple behind this sheme is that a onnetion that gets more than its fair shareof bu�er spae will also get more than its fair share of the bandwidth. This priniple istrue, irrespetive of the sheduling algorithm used, sine bu�er spae is always limited. Soto provide bandwidth fairness to onnetions, it is neessary to at least alloate the bu�erapaity fairly among the onnetions. The fairness o�ered in this way is fairness at thetime that �rst ells of frames are aepted in the bu�er. Sheduling an add to that byletting the ells of the di�erent VCs leave the bu�er in a fair order, suh that the fair bu�eralloation is also maintained throughout transmissions.Fair bu�er alloationThe fair bu�er alloation (FBA) sheme proposed in [41℄ attempts to improve bandwidthfairness between ompeting VCs by alloating the bu�er apaity fairly among them. Aframe from a onnetion is disarded if the bu�er oupany exeeds a ertain �xed thresh-old while the onnetion takes more than its fair share of the bu�er. As with EPD, thedeision about the aeptane of a frame is taken upon arrival of its �rst ell.FBA is implemented with a global FIFO bu�er and per-VC aounting. Besides per-VCstates whih indiate if the next ell on the onnetion will be the �rst ell of a frame, andif ells on the VC urrently have to be dropped, also a ounter is kept for eah VC. Thisounter represents the number of ells that the VC has in the bu�er, and is used to deideif the VC exeeds its fair share (FS). The fair share of a onnetion is alulated as theprodut of its so alled fair alloation and the aeptable load ratio:FS = fair alloation� aeptable load ratio: (5.1)The fair alloation indiates how many ells the VC would have in the bu�er if the totalnumber of ells in the bu�er was divided fairly among the various ative onnetions, wherea onnetion is alled ative if it has at least one ell in the bu�er. For the FBA sheme,the fair alloation is hosen as the average number of ells per ative onnetion:fair alloation = QN ; (5.2)
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Figure 5.1: Aeptable load ratio versus the bu�er oupany for the FBA sheme.where Q is the total bu�er oupany and N is the number of ative onnetions.The ratio of the number of ells that a VC has in the bu�er to the fair alloation is alled theload ratio of the VC, and gives a measure of how muh the VC exeeds the fair alloation.The aeptable load ratio is the highest load ratio at whih frames are still aepted inthe bu�er. The aeptable load ratio used in the FBA sheme is a smooth funtion of thebu�er oupany:aeptable load ratio = Z �1 + Qmax �QQ� L � ; (5.3)where Z is a linear saling fator, typially between 0.5 and 1, Qmax is the bu�er apaity,Q is the bu�er oupany and L is the �xed threshold below whih all frames are aepted.Figure 5.1 shows the aeptable load ratio versus the bu�er oupany for Z = 0:5 andZ = 1. It an be seen from this �gure that if Q is lose to the threshold L, a VC anexeed the fair alloation onsiderably, but the aeptable load ratio dereases very fastwhen Q inreases. For all Z less than one, the aeptable load ratio beomes smaller thanone when Q gets larger than Z(Qmax � L) + L. This means that if the bu�er is almostfull, a new frame an be dropped even when its onnetion oupies less of the bu�er thanthe fair alloation. As stated in [41℄, this property is desirable sine some of the bu�erapaity should be left for the remaining ells of already aepted frames.As expeted, simulations [28, 36℄ show that the fairness results obtained with the FBAsheme are better than those obtained with the EPD sheme, sine now frames of over-loading onnetions are dropped in preferene to underloading ones. Most of the time, alsothe eÆieny results obtained with FBA are better, beause the dropping ondition is notful�lled for all onnetions at the same time anymore, suh that TCP synhronization iseasier broken. However, it is also shown in [36℄ that the FBA sheme is sensitive to hangesin the parameters L and Z. Higher eÆieny values have either L or Z high, sine higher



5.1. Bu�er aeptane shemes for UBR 81bu�er utilization is allowed in these ases. But there is a onsiderable variation in thefairness numbers obtained, sine not all ombinations of the parameter values are equallye�etive in breaking the TCP synhronization. If for example almost all onnetions ex-eed their fair share at roughly the same time, the bu�er oupany will presumably be nolonger above the threshold L at the moment that the few onnetions that did not exeedtheir fair share earlier �nally do exeed it, sine the other soures have stopped sendingmeanwhile beause of dropped segments. The frames of the `luky' soures are thus notdropped, resulting in unfairness.Seletive dropSeletive drop (SD) [36℄, also alled EPD with per-VC aounting [69℄, is a simpler versionof the FBA sheme. The priniple of the SD sheme is exatly the same as that of theFBA sheme: it is implemented with a global FIFO bu�er and per-VC aounting, andnew frames of a onnetion are disarded if on arrival of their �rst ell the bu�er oupanyexeeds a ertain �xed threshold while the onnetion takes more than its fair share of thebu�er. The only di�erene with the FBA sheme is in the de�nition of the `fair share'. Itis again alulated as the produt of the fair alloation and the aeptable load ratio, andthe fair alloation is again hosen as the average number of ells per onnetion, but theaeptable load ratio is now a simple parameter K independent of the bu�er oupany.FS = fair alloation� aeptable load ratio = QN K: (5.4)Sine this sheme also drops frames of overloading onnetions in preferene to underload-ing ones, it improves fairness over the EPD sheme, as is shown by simulations in [36, 69℄.Also the eÆieny values obtained are slightly better. Compared to the FBA sheme (foroptimal parameter values), the eÆieny results obtained with SD are slightly lower thanwith FBA, while the fairness results are omparable. The simulations in [36℄ also showthat the fairness of the sheme dereases with an inreasing number of soures, and thosein [69℄ indiate that the more hops a VC traverses, the lower its e�etive throughput is.EPD with per-VC queueingIn both the FBA and SD shemes disussed above, a fair alloation of the bu�er apaityis maintained only at the moments of aeptane of the �rst ell of a frame. But sinein both shemes all VCs share a single FIFO bu�er, this fair bu�er alloation annot bemaintained throughout transmissions. The EPD with per-VC queueing mehanism [69℄uses the same riteria as the SD sheme to deide about the bu�er aeptane of ells,but ells from the di�erent VCs are plaed into di�erent queues (per-VC queueing). Allthese VC queues are then served using round robin sheduling, suh that the aepted ellsare emitted from the bu�er in a fair manner. The EPD with per-VC queueing shemethus does not only provide fair bu�er alloation at moments of frame aeptane, but also



82 5. An overview of bu�er aeptane shemes for UBR and GFRthroughout transmissions. In this way, throughput fairness an be ahieved as long as eahVC has some ells in its queue.In [69℄, simulation results obtained by using EPD with per-VC queueing are omparedto results obtained by using the SD sheme. It appears that EPD with per-VC queueingahieves almost perfet fairness, also for VCs whih traverse more hops. However, theeÆieny obtained with the sheme is somewhat lower than that obtained with SD, whihis explained as a synhronization e�et.5.1.3 Bu�er aeptane shemes for UBR based on REDThe random early detetion (RED) algorithm was �rst proposed in [30℄, and applies forIP gateways. RED thus deals with IP pakets, not ATM ells. The RED algorithm hassome attrative properties: RED gateways keep the average queue size low, while allowingoasional bursts of pakets in the queue; during ongestion, the probability that a paketfrom a partiular onnetion is dropped is roughly proportional to that onnetion's shareof the bandwidth through the gateway; RED avoids TCP synhronization sine paketdropping will probably onern the most greedy onnetions. Beause of these attrativeproperties, some adaptations of the RED sheme for use with ATM were developed: ell-based RED (C-RED) [25℄, paket-based RED (P-RED) [25℄ and ATM-RED [85℄.First the RED algorithm is shortly desribed. Then the P-RED and ATM-RED proposalsare disussed. The C-RED proposal is not onsidered here sine it is outperformed in botheÆieny and fairness results by P-RED, whih is also less omplex to implement.The RED algorithmThe objetive of the RED algorithm as proposed in [30℄ is to keep the throughput of an IPgateway high, but its delay low. This is done by dropping arriving pakets with a ertainprobability eah time the average queue size of the gateway exeeds a ertain threshold.The RED algorithm is applied on a global FIFO queue, for whih only global aountinginformation is kept.On eah paket arrival, the average queue size is estimated by1Avg = (1� wq)Avg + wqQ; (5.5)where wq is a weight between 0 and 1, and Q is the atual queue size. This average queuesize is then ompared with two thresholds L (low) and H (high): when it is less than L, thepaket is aepted; when it is greater than H, the paket is dropped; if it is between the1This equation is atually used only when the queue is not empty on paket arrival. When it is empty,the average queue size is alulated based on the number of pakets that might have arrived during theidle time.



5.1. Bu�er aeptane shemes for UBR 83two thresholds, the paket is dropped with a probability pa. The initial drop probabilitypb is alulated as a linear funtion of the average queue size:pb = maxp Avg � LH � L ; (5.6)where maxp is the maximum value for pb. The �nal drop probability pa is alulated suhthat when the average queue size is onstant, the random variable desribing the numberof pakets that arrive after a dropped paket, until the next dropped paket, is uniformlydistributed over f1; 2; : : : ; 1=pbg (assuming that 1=pb is an integer):pa = pb1� pb ount: (5.7)The parameter ount ounts the number of aepted pakets sine the last dropped paketor sine Avg exeeded L.Paket-based REDPaket-based RED (P-RED) [25℄ is an AAL5 aware bu�er aeptane algorithm for usewith ATM-UBR. The deision about the aeptane of an AAL5 frame is taken upon arrivalof the �rst ell of the frame: if the �rst ell of a frame is disarded, its remaining ells arealso disarded on their arrival. P-RED is implemented using a global FIFO bu�er and two�xed thresholds L and H. The algorithm implements EPD with the threshold H: if thebu�er oupany Q is above H on arrival of the �rst ell of a frame, this frame is disarded.Otherwise, the average queue length is estimated by equation (5.5), and ompared with thethresholds L and H exatly as in the RED algorithm desribed above. When the averagequeue size is below L, the frame is aepted; when it is above H, the frame is dropped.When the average queue size is between L and H, the frame is dropped with a probabilitypa alulated by equation (5.7) as in the RED algorithm. There is however a di�erene inthe alulation of the initial drop probability pb. If the new paket belongs to VC i, pb isweighted by the load ratio of VC i:pb = maxpAvg � LH � L � load ratio of VC i; (5.8)where the load ratio of VC i is de�ned by QiN=Q as in the FBA algorithm. Remark thatdue to the weights that appear in (5.8), the P-RED algorithm needs to keep per-VC bu�eraounting information.Simulations in [25℄ ompare the performane of P-RED with that of EPD using a sim-ulation on�guration with di�erent propagation delays for the various TCP soures. Itappears learly that eÆieny and fairness obtained with P-RED are better than withEPD, and that both the queue size and the average queue size of P-RED is low omparedto EPD. This means that the P-RED algorithm is an attrative bu�er aeptane algo-rithm for interative appliations like Telnet. Moreover, the drop probability for this typeof onnetions is very low sine their load ratio is expeted to be very low.



84 5. An overview of bu�er aeptane shemes for UBR and GFRATM-REDATM-RED [85℄ is also an adaptation of the original RED algorithm for use with ATM. Ituses a global FIFO bu�er and two thresholds L andH. Typial to the ATM-RED algorithmis that a drop probability is alulated on ell level. Sine the algorithm aepts or disardsentire AAL5 frames, eah disard deision onerns the next frame (with relation to theell that aused the deision), exept if the deision is made on arrival of the �rst ellof a frame. This approah allows to obtain smaller values for the overall frame droppingprobability when frames are smaller.ATM-RED alulates a drop probability when a �rst ell of a frame arrives at the bu�erand it has not yet been deided if this frame is to be dropped, and when a non-�rst ell ofa frame is aepted in the bu�er and it has not yet been deided if the next frame on thesame onnetion will be dropped. To alulate the drop probability, �rst an average queuesize Avg is alulated using (5.5). Then, if Avg > L, p is alulated asp = 8><>:max (Avg � L)=(H � L) if L < Avg � H;1 + (1�max)(Avg � 2H)=H if H < Avg � 2H;1 if Avg > 2H; (5.9)where max is the maximum value for p when Avg � H. With a probability p it is thendeided to drop the next AAL5 frame.Remark that from the viewpoint of per-VC omplexity, this algorithm needs to keep onlythree bits of state for eah VC, while the P-RED algorithm needs also a ounter per VC.The prie for this is however the requirement to ompute the p probability upon ellarrivals instead of one for eah paket as in P-RED.In [85℄, the performane of ATM-RED has been ompared to the performane of EPD andFBA in several quite di�erent environments. It is shown by simulation that FBA and ATM-RED are almost always superior to EPD. ATM-RED has in general by far the lowest meanbu�er oupany, whih gives low delays, while o�ering high goodputs and link utilization.ATM-RED is also a good solution as regards the fairness among similar soures (sameharateristis, same RTTs, rossing the same hops), but is poor at ahieving fairnessunder a heterogeneous traÆ mix. In partiular, soures with higher RTTs or rossingmore hops, have lower goodputs.5.1.4 Related workThe bu�er aeptane shemes disussed until now are a number of representative shemesfor UBR. Of ourse, more shemes exist. In [60℄ for example, two drop from front shemesare proposed: pure drop from front and partial frame drop at front. These shemes aresimilar to the tail drop and partial paket disard shemes, but ells are dropped at thefront of the bu�er instead of at the end. This poliy auses TCP's ongestion ontrolations being invoked approximately one bu�er drain time earlier.



5.2. Bu�er aeptane shemes for GFR 85The early seletive paket disard (ESPD) sheme introdued in [21℄ tries to avoid the linkidle time due to synhronization by onentrating the frame disarding on a few onnetionsonly. Spread over times longer than a frame duration, ESPD makes onnetions to taketurns to aess the network resoures. This is unlike EPD where the dropping/aeptingstatus of a onnetion is released upon the arrival of the last ell of a frame. In [21, 22℄,it is demonstrated that ESPD slightly improves the e�etive throughput over EPD andprovides better overall fairness sine it provides more throughput enhanement to a longround trip time session than to a short round trip time session.In [58℄ the Fair Bu�ering (FB) mehanism is proposed, whih alloates bu�er spae for thedi�erent onnetions in proportion to their bandwidth delay produts, and spreads out thedisarding of frames from the same onnetion over time. FB needs to know however eahonnetion's RTT, a value whih in pratie is not known by the swithes [33℄.A modi�ation of the FBA sheme for supporting weighted bandwidth alloation is pro-posed in [41℄. However, no performane evaluation of the sheme is performed. In themodi�ed FBA version, the fair alloation for a onnetion i is alulated as WiQ=W ,where Wi is a weighting oeÆient assoiated with onnetion i and W is the sum of theweighting oeÆients of all ative onnetions.Virtual queueing, a tehnique whih is disussed in [97℄, emulates an aeptane shemesimilar to the EPD with per-VC queueing sheme on a global queue. This is done bymaintaining a ounterMi for eah VC i. Cells leave the bu�er in FIFO order, but regardlessof whih VC a transmitted ell atually belongs to, the ounters Mi are deremented in around robin fashion as if per-VC queueing and round robin sheduling were implemented.Every time a ell of onnetion i is aepted in the bu�er, the ounter Mi is inremented.To avoid loss of bu�er alloation to ative onnetions with temporarily empty virtualqueue, the per-VC ounters are allowed to be negative. The sheme ahieves nearly perfetfairness.5.2 Bu�er aeptane shemes for GFRIn general, bu�er aeptane shemes for GFR an be lassi�ed in three ategories:� shemes relying on a tagging funtion,� shemes using per-VC aounting and per-VC queueing,� shemes using per-VC aounting in a global FIFO bu�er.For eah of these ategories, an informative example implementation is given in the ATMForum TraÆ Management Spei�ation [5℄, while also other shemes have been de�nedin the literature. Some of these shemes are disussed in this setion. Remark that theterminology that is used relies heavily on the terms introdued in Setion 4.5.



86 5. An overview of bu�er aeptane shemes for UBR and GFR5.2.1 Bu�er aeptane shemes for GFR relying on a taggingfuntionThe shemes in this �rst ategory rely on the fat that network based tagging is performedat the entrane of the network to provide the per-VC minimum rate guarantees to thedi�erent onnetions. The tagging funtion, whih is typially based on the F-GCRAalgorithm, identi�es the eligible and ineligible frames of eah onnetion and sets their CLPbit orrespondingly, while the bu�er aeptane sheme then uses this CLP information totreat the eligible frames preferentially. When deiding about the aeptane of a new frame,these shemes usually take their deision based on global bu�er aounting information andthe CLP priority of the frame. Remark that beause these bu�er aeptane shemes relyon network based tagging, they annot support GFR.1 onnetions.Implementation using tagging and a FIFO queueThe bu�er aeptane sheme that is onsidered here is one of the informative exampleimplementations given in the ATM Forum TraÆ Management Spei�ation [5℄. Theaeptane sheme relies on two �xed bu�er thresholds L (low) and H (high) in a globalFIFO queue. Those thresholds are used as EPD thresholds, L for the CLP=1 frames andH for the CLP=0 frames. The L threshold is used to limit the amount of CLP=1 framesin the bu�er. The sheme is very simple, but it is immediately lear that no attempt ismade to divide the exess bandwidth in a fair manner between the di�erent onnetions.As already mentioned, this sheme is of no use if it is not preeded by a tagging funtion.Simulation experiments with this implementation are performed in [81, 14, 15℄. It is shownthat the performane of TCP is never satisfatory, sine not all TCP soures are able tobene�t from the minimum guaranteed bandwidth. VCs with higher MCRs get throughputswhih are muh lower than their MCRs, while the VCs with lower MCRs get bandwidthin exess of their MCRs. The reason is that when the bu�er oupany goes below L, allframes are aepted into the bu�er. The aeptane rate of ells of the di�erent onnetionsinto the bu�er is therefore not proportional to their MCR, implying that their respetiveservie rates are also not proportional to their MCRs. Whenever the bu�er oupationexeeds L, the ell aeptane rate into the bu�er is bounded by the rate at whih ells passthe F-GCRA tagging funtion without being tagged. But sine TCP traÆ is bursty, theF-GCRA tags a large fration of the frames, even when the long term average throughput ofa VC is smaller than its MCR. Furthermore, the F-GCRA has the tendeny to mark TCPtraÆ in bursts. The tagged frames are dropped when the bu�er oupany is above L,and the large number of bursty losses ombined with TCP's ongestion ontrol algorithmsfore the ongestion window of the TCP soures down suh that less traÆ is sent into thenetwork. For soures with high MCR, the average ongestion window an be muh lowerthan their on average required value to �ll the minimum reserved throughput. In [15℄ it isshown that the performane is muh better in senarios where eah ATM VC arries thetraÆ of more than one TCP onnetion, sine when a burst of frames is marked by the



5.2. Bu�er aeptane shemes for GFR 87F-GCRA, and later on disarded by the bu�er aeptane sheme, not all TCP onnetionsare a�eted.Implementation using tagging and per-VC queueingSine the results obtained with the GFR implementation using tagging and a FIFO queuewere not satisfatory, also an implementation based on tagging and per-VC queueing isinvestigated in [81℄. The same riteria as in the �rst sheme are used to deide about thebu�er aeptane of ells, but the ells from the di�erent VCs are now bu�ered in di�erentqueues (per-VC queueing). These VC queues are sheduled using round robin shedulingor weighted round robin sheduling with the weights set in proportion to the MCRs of theonnetions.The simulation results in [81℄ indiate that with round robin sheduling, the throughput ofall VCs again does not always reah the MCR, for the same reasons as when using a FIFObu�er. With the weighted round robin sheduling, the MCR for eah VC is guaranteedin the bu�er region below L beause of the sheduler, and in the region between L andH beause only the MCR gets through the F-GCRA tagging funtion. In the examplesimulated in [81℄, the throughput of eah VC is above its MCR, and it is then onludedthat a rate guaranteeing servie disipline suh as weighted round robin in onjuntionwith a tagging funtion an make the guarantees for the GFR servie disipline. However,we an imagine that the fat that the TCP traÆ is not able to adapt its behavior to theF-GCRA tagging funtion, and the resulting problem as desribed above of soures havinga too low average window size to use their guaranteed rate, ould also our here.5.2.2 Bu�er aeptane shemes for GFR using per-VC aount-ing and per-VC queueingSine per-VC queueing maintains a separate queue for eah VC, it isolates frames fromdi�erent VCs. A suitable per-VC sheduling mehanism an then selet between the queuesat eah sheduling instant to provide all ative onnetions with their reserved bandwidth.When it is however not sure that ineligible frames are tagged at the entrane of the network,or if GFR.1 onnetions need to be supported, it must be ensured that a single VC isnot able to saturate the swith bu�ers. For this, also per-VC aounting needs to beimplemented, beause if an unbalaned distribution of the bu�er oupany is allowed,then the resulting output will also be unbalaned sine the total bu�er spae is limited.Implementation using per-VC aounting and WFQ-like shedulingThis bu�er aeptane sheme for GFR is again one of the shemes proposed in [5℄. It usesper-VC queueing, per-VC sheduling and a per-VC ounter Ri representing the number ofCLP=0 ells VC i has in its queue. Individual onnetions are sheduled at a rate of at



88 5. An overview of bu�er aeptane shemes for UBR and GFRleast their MCR using a WFQ-like sheduler. This guarantees that when ative, eah VCis alloated its reserved bandwidth as well as some fair share of the exess bandwidth.The sheme uses two global thresholds, L (low) and H (high), and a threshold Ti foreah VC queue, whih is typially set to the MBS of onnetion i. The threshold L isused as EPD threshold for CLP=1 frames. CLP=0 frames are aepted if the total bu�eroupany is below the seond threshold H, or if Ri is below Ti for a frame of onnetion i.In [14℄, simulation experiments were performed with this bu�er aeptane sheme. TheWFQ-like sheduler used is a virtual spaing sheduler. With GFR.1 onnetions, theperformane was muh better than with the implementation using tagging and a FIFOqueue. The goodput ahieved by the TCP soures is muh loser to the expeted goodput,although soures with a high MCR are again somewhat penalized. With GFR.2 onnetionswhere the F-GCRA tags frames at the entrane of the network, the TCP performane waslower than with the GFR.1 onnetions. This is again beause the TCP traÆ is bursty,implying that many frames are tagged by the F-GCRA. Further, these CLP=1 frames arealready disarded by the bu�er aeptane sheme when the bu�er oupany is relativelysmall.Global FIFO shedulingGlobal FIFO sheduling (GFS) is proposed in [19℄. In ontrast to other bu�er aeptaneshemes for GFR, GFS does not use the CLP information in the ells, but integrates thebu�er aeptane sheme and the eligibility test.GFS uses per-VC queueing, a global FIFO bu�er ontaining referenes from the VC queues,a �xed global threshold L and a threshold Ti for eah VC queue. The deision about theeligibility of a frame and about the aeptane of the ells of the frame in the bu�er istaken on arrival of the �rst ell of the frame. When the frame is onsidered eligible, orwhen the total bu�er oupany is below the global threshold L, or when the oupany ofthe queue i orresponding to the onnetion on whih the frame arrives is below Ti, thenthe �rst ell of the frame and all its following ells are aepted. Otherwise, all ells of theframe are disarded. Eah time a ell arrives from a frame that is aepted, and this frameis onsidered eligible, a referene to the VC it belongs to is put into the FIFO bu�er. TheFIFO bu�er thus maintains the order in whih the VC queues have to be served aordingto the order of the arrivals of ells from frames whih have been hosen eligible for the GFRMCR servie guarantee. When the global FIFO queue is empty, a round robin shedulingsheme is performed among all VC queues. The exess bandwidth is thus equally sharedamong the exess traÆ, in ontrast to the previous WFQ based sheme that shares it inproportion to the MCRs of the onnetions.Simulations in [19℄ evaluate the performane of GFS. When there are no losses, GFS showsgood performane and provides eah onnetion with its guaranteed bandwidth. The exessbandwidth is shared equally among the di�erent VCs. When ell losses our, GFS annotalways guarantee the reserved bandwidth in a fair manner, but the results are lose to



5.2. Bu�er aeptane shemes for GFR 89what might be expeted (MCR plus an equal share of the left over bandwidth).5.2.3 Bu�er aeptane shemes for GFR using per-VC aount-ing in a global FIFO bu�erFor a servie like GFR, the ost of per-VC queueing and per-VC sheduling may be onsid-ered too high, making an implementation using a global FIFO bu�er for all VCs desirable.In ontrast to per-VC queueing, FIFO queueing annot isolate frames from di�erent VCsat the egress of the bu�er, sine the ells are sheduled in the order in whih they enteredthe bu�er. So an intelligent bu�er aeptane algorithm based on per-VC aounting isneeded to provide the minimum rate guarantees to the various onnetions. Several bu�eraeptane shemes for GFR using per-VC aounting in a global FIFO bu�er have beenproposed, but were not able to deliver GFR guarantees. Examples of these are weightedbu�er alloation (WBA) in [34℄ and a sheme based on dynami per-VC thresholds in[7℄. In this setion, two aeptane shemes that are more suessful in delivering GFRguarantees are onsidered.Di�erential fair bu�er alloationDi�erential fair bu�er alloation (DFBA) is also one of the example GFR implementationsof the ATM Forum TraÆ Management Spei�ation [5℄. It is designed for use with a globalFIFO bu�er and tries to alloate bu�er apaity fairly amongst ompeting onnetions.This alloation is proportional to the MCRs of the onnetions, by assigning to eahonnetion a weight Wi orresponding to its MCR.DFBA uses two thresholds L (low) and H (high). If on arrival of the �rst ell of a frame thetotal bu�er oupany Q falls below L, the sheme attempts to bring the system to eÆientutilization by aepting the frame. When Q is above L, it drops new CLP=1 frames toensure that suÆient bu�er apaity is available for CLP=0 frames. The threshold L isthus an EPD threshold for low priority frames. The threshold H does the same for CLP=0frames, so when Q is above H, all new frames are disarded. When Q is between L and H,DFBA attempts to alloate bu�er spae proportional to the MCRs: when Qi, the numberof ells of onnetion i in the bu�er, is below its fair share, then new CLP=0 frames ofonnetion i are aepted. In DFBA, the fair share of onnetion i equals its fair alloation(i.e., the aeptable load ratio is 1), whih is de�ned asfair alloation for onnetion i = WiW Q;where W is the sum of the weighting oeÆients of all ative onnetions. If Qi exeedsthe fair share of onnetion i, then new CLP=0 frames of onnetion i are dropped witha ertain probability. The purpose of this probabilisti drop is to notify TCP soures ofongestion, but in suh a way that they bak o� without a timeout, and thus withouttemporal inativity.



90 5. An overview of bu�er aeptane shemes for UBR and GFRThe DFBA drop probability onsists of an eÆieny and a fairness omponent. The ef-�ieny omponent inreases linearly when Q inreases from L to H, and the fairnessomponent inreases linearly with an inrease of Qi from (Wi=W )Q to Q:p = Pfdropg = Zi��Qi � (Wi=W )QQ(1�Wi=W ) + (1� �)Q� LH � L�: (5.10)In this formula, the parameter � is used to assign appropriate weights to the fairness and ef-�ieny omponents. The parameter Zi de�nes the maximum drop probability enforeablefor onnetion i.Simulations with the DFBA sheme for GFR.1 VCs arrying multiple TCP/IP onnetionsare performed in [33, 16℄. They show that DFBA meets the MCR guarantees, but fails toshare the exess bandwidth among the VCs in proportion to their MCR: the smaller MCRa onnetion has, the larger the proportion `goodput/MCR' for that onnetion beomes.In [16℄, it is illustrated that the poor fairness obtained with DFBA results from the fatthat DFBA fails to provide a fair share of the bu�er to the various VCs. Tuning theparameter Zi arefully with respet to the MCR of VC i an alleviate this problem a bit,but not entirely.Although DFBA treats CLP=0 and CLP=1 frames di�erently, as far as we are aware of, noresults are published with the DFBA sheme using GFR.2 onnetions. The same problemas previously disussed is however to be expeted: sine TCP is not able to adapt itsbehavior to the F-GCRA funtion, a large perentage of the frames will be tagged. Thesetagged frames are disarded by DFBA when Q exeeds L, resulting in some soures havingfor long times a ongestion window smaller than their MCR times their round trip time,whih implies that these soures annot use their minimum bandwidth guarantee.Token-based bu�er alloationLike the GFS sheme, the token-based bu�er alloation (TBA) sheme proposed in [13℄tests the eligibility of the frames at the swithing element, without using the CLP informa-tion in the ells. A main di�erene between the eligibility test used with TBA in [13℄ andthe one used with GFS in [19℄, is that in this last sheme the bu�er aeptane algorithmuses per-VC ounters to ount the number of ells eah VC has in the bu�er, while alsothe eligibility test keeps F-GCRA alike ounters for eah VC. In TBA, an approximatetoken based solution is used for the eligibility test whih inrements and dereases one ofthe per-VC ounters of the bu�er aeptane algorithm: a ounter Ci is assoiated withVC i and dereased every time a ell of VC i is aepted in the FIFO bu�er; this ounteris inremented at a rate orresponding to the MCR of onnetion i. Further, the exessbandwidth is divided among the ative VCs by distributing exess tokens whih also in-rement the Ci's. The distribution of these exess tokens an be done equally among allVCs, in proportion to their MCRs, but also ompletely unoupled from the MCRs.The bu�er aeptane part of the TBA sheme is implemented in a FIFO bu�er. Thesheme takes a di�erent aeptane deision for a frame of onnetion i depending on if



5.2. Bu�er aeptane shemes for GFR 91onnetion i is a GFR.1 or a GFR.2 onnetion. The swith has this information abouteah onnetion available, sine it has been signaled during onnetion establishment. Fora GFR.2 onnetion, no CLP=0 frames should be disarded, so they are always aepted.CLP=1 frames of a GFR.2 onnetion are aepted based on the RED algorithm, thuswith a ertain probability. For GFR.1 onnetions, CLP=0 frames are aepted if the Ciounter is positive, or based on the RED algorithm with a ertain probability; CLP=1frames are aepted if the Ci ounter is larger than some positive value (e.g., MBSi/2),or again based on the RED algorithm with a ertain probability. When the aeptanedeision is based on the RED algorithm, the average queue length Avg, whih is alulatedusing equation (5.5), is ompared to two �xed thresholds L (low) andH (high): the frame isaepted if Avg is below L; when it is above H, the frame is dropped. When Avg is betweenboth thresholds, a paket dropping probability pb is alulated. This pb is alulated as alinear funtion of the average bu�er oupany and the Ci ounter:pb = �Avg � LH � L � � min(0; Ci)H : (5.11)The relative inuene of the average bu�er oupany and the Ci ounter on the droppingprobability depends on the values of � and �2.Simulations in [13℄ ompare the performane of the TBA sheme with that of the implemen-tation using tagging and a FIFO queue and the implementation using per-VC aountingand WFQ-like sheduling. For GFR.1 onnetions that arry the traÆ of a single TCPonnetion, the performane of TBA is rather disappointing and highly dependent on thevalues of the parameters and on the TCP implementations used. Mostly the sheme doesnot bring any signi�ant bene�t ompared to the the implementation using tagging and aFIFO queue: also with TBA VCs with higher MCRs get throughputs below their reservedbandwidth, while VCs with lower MCR get bandwidth in exess of their MCRs. If eah VCarries the traÆ of several TCP onnetions, the performane of TBA is better: eah VCan eÆiently utilize its minimum bandwidth, and the performane does not appear to de-pend heavily on the hosen values of the parameters. Compared with the implementationusing per-VC aounting and WFQ-like sheduling, the performane of TBA is omparableor even slightly better. Although the TBA sheme provides a di�erent treatment to GFR.1and GFR.2 onnetions, no simulations with GFR.2 traÆ were performed in [13℄.5.2.4 Related workAs with the aeptane shemes for UBR, more shemes than the ones presented exist alsofor GFR. In [26℄, three aeptane shemes losely related to the ones already disussedare proposed. The �rst one is the implementation using tagging and a FIFO queue, but2When pb needs to be alulated for a frame from a GFR.1 onnetion, it is proposed to use a larger �for the CLP=1 frames than for the CLP=0 frames, suh that the disard probability for CLP=1 framesis higher than for CLP=0 frames.



92 5. An overview of bu�er aeptane shemes for UBR and GFRombined with the drop from front strategy. The seond sheme falls into the ategoryof shemes using per-VC aounting in a FIFO bu�er. It uses a �xed threshold L for theCLP=1 frames and a �xed threshold H for the CLP=0 frames, together with separateaounting information about the number of CLP=0 and CLP=1 ells eah VC has inthe bu�er, to deide about the aeptane of a CLP=1, resp. CLP=0, frame. The thirdsheme ombines the seond sheme with the drop from front strategy. The onlusion ofthe study in [26℄ is that the ombination of a bu�er aeptane sheme with drop fromfront improves its fairness, but an negatively impat its eÆieny beause when ells of agiven frame should be dropped, some ells of that frame might already have left the bu�er.In [88℄, a sheme whih belongs to the ategory of shemes using per-VC aounting in aFIFO bu�er is presented. The sheme relies on the virtual queueing tehnique of [97℄ anddivides the time in intervals of length T . In eah period T , the virtual sheduling mehanismonsists of two phases. In the �rst phase, the sheduler virtually serves T�MCRi ells fromeah VC i to guarantee to eah onnetion its MCR. In the seond phase, the shedulervirtually serves eah VC in a round robin fashion to ahieve fair alloation of the exessbandwidth. The atual order in whih ells leave the bu�er is FIFO. Although the priniplesbehind the sheme are sound, we think that a more omplex implementation of thesepriniples than presented in [88℄ is needed, sine the implementation of [88℄ an lead to theloss of onnetions from the list identifying the ative VCs.A paket-disard push-out sheme whih belongs to the ategory of shemes using per-VCaounting in a global FIFO bu�er is proposed in [20℄. As long as a ertain dynamivariable C whih estimates the available bu�er spae is positive, all frames are aepted.Sine C takes the bu�er spae needed by ells of frames whose �rst ell has already beenaepted into aount, this poliy does not hurt already aepted frames. If C is negative,a new frame of onnetion i arrives at the bu�er, and the ells of onnetion i do notoupy more than a ertain share of the bu�er, then the queue manager selets another (ormore than one) onnetion that oupies too muh spae in the bu�er, and the last frameof this VC is pushed out of the bu�er suh that spae omes available for the new frameof onnetion i. The performane of this sheme is only ompared with the performaneof EPD in [20℄. Simulation results illustrate that the bu�er utilization is kept at 100%with the paket-disard push-out sheme, while this is not always the ase for EPD, andthat the sheme an prevent an ill-behaved soure from obtaining an arbitrary share of thebandwidth.5.3 ConlusionsIn this hapter, an overview of the most representative bu�er aeptane shemes that havebeen proposed for use with the UBR and GFR ATM servie ategories was presented.Charateristi of all shemes is their AAL5 frame awareness: if the sheme deides toaept, respetively disard, the �rst ell of a frame, it will try to aept, respetivelydrop, all ells of the same frame, sine inomplete frames are of no use at the destination.



5.3. Conlusions 93The priniples of two of the earliest proposed shemes, namely partial paket disard andearly paket disard, are found bak in many of the more sophistiated shemes. To beable to aept the non-�rst ells of a frame from whih the �rst ell was aepted, mostaeptane shemes use a threshold, as in EPD, to provide some exess apaity in thebu�er. If in spite of this exess apaity a ell is lost beause of bu�er overow, theremaining ells of its frame are disarded as in PPD.No QoS ommitments are made by the network to UBR onnetions, but most reentbu�er aeptane shemes for UBR try to provide a fair alloation of the bandwidth toompeting onnetions. This is done by aiming at a fair alloation of the bu�er apaityamong the onnetions, using the priniple behind the FBA sheme that a onnetion thatgets more than its fair share of the bu�er spae will also get more than its fair share ofthe bandwidth. The same priniple is used in some of the bu�er aeptane shemes forGFR, although the fairness is an issue then only to the exess apaity. The �rst onernof bu�er aeptane shemes for GFR is to provide eah onnetion with its MCR servieguarantee.Relying on the attrative properties of the RED sheme in IP gateways, some shemes forATM using the priniples behind RED are proposed. The most important feature of theseshemes is their ability to keep the average bu�er size, and thus also the average queueingdelay, low.Most bu�er aeptane shemes proposed to support GFR onnetions an be grouped inone of the three main ategories, as is done in Setion 5.2. The �rst ategory ontainsshemes relying on the tagging of ineligible frames by a F-GCRA funtion to provide theper-VC minimum rate guarantees to the di�erent onnetions. This implies that thoseshemes an only support GFR.2 onnetions. Shemes that support GFR.1 onnetionsare found in the seond and the third ategory. The shemes in the seond ategory useper-VC aounting and per-VC queueing, making per-VC sheduling possible. With anappropriate per-VC sheduling algorithm, eah VC is, when ative, alloated its reservedbandwidth. The shemes in the third ategory use per-VC aounting in a FIFO bu�er,sine the ost of per-VC queueing and per-VC sheduling may be too high for a servieategory like GFR.In general, bu�er aeptane shemes for GFR have problems in providing GFR.2 on-netions with their minimum guaranteed bandwidth. This is beause the GFR servieguarantee applies only to the CLP=0 frames of a onnetion. So the bu�er aeptaneshemes have to treat the CLP=1 frames with a lower priority. But TCP ongestion on-trol mehanisms reat on the loss of the frames by reduing the windows of the soures,resulting in some TCP soures sending at a rate whih is muh too low to obtain theirreserved throughput. The main ause of this problem is found in the fat that TCP is notable to adapt its behavior to the F-GCRA tagging funtion used with GFR.2 onnetions.It is shown in [13℄ that when the F-GCRA funtion is preeded by a shaping funtion, asigni�ant gain in performane is notied for the GFR implementation using tagging and aFIFO queue. It seems however logial to expet the same improvement of the performane



94 5. An overview of bu�er aeptane shemes for UBR and GFRwhen the shaping funtion is used in ombination with other bu�er aeptane shemes.For bu�er aeptane shemes not only the priniples behind the aeptane algorithm areimportant, but also the aounting information the algorithm an base its deisions onand the queueing and sheduling strategy used. In Tables 5.1 and 5.2 a summary of thisinformation for the main bu�er aeptane shemes disussed in this hapter is provided.Finally, remark that the ATM-Forum has reently proposed an optional minimum desiredell rate (MDCR) indiation for UBR [6℄, by whih UBR onnetions an indiate to thenetwork a preferene for a minimum bandwidth objetive. Regardless of the preseneand/or value of this MDCR, this does not de�ne a servie ommitment of the network tothe UBR onnetion. However, network spei� QoS ommitments for suh onnetionsare not preluded. When a network wants to provide suh QoS ommitments, it will needto implement a bu�er aeptane sheme whih relates losely to the shemes disussed forGFR in this hapter.
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Queueing Sheduling Aounting information: Aounting information:Bu�er aeptane sheme strategy strategy per-VC statesa ountersbTail drop global FIFO - global (Q)Partial paket disard global FIFO dropi global (Q)dropiEarly paket disard global FIFO new framei global (Q)dropi global (Q,N)Fair bu�er alloation global FIFO new framei per-VC (Qi)dropi global (Q,N)Seletive drop global FIFO new framei per-VC (Qi)dropi global (Q,N)EPD with per-VC queueing per-VC round robin new framei per-VC (Qi)dropi global (Q,N ,ount,Avg)Paket-based RED global FIFO new framei per-VC (Qi)dropiATM-RED global FIFO new frame global (Q,Avg)dropnextiTable 5.1: Bu�er aeptane shemes for UBR: overview of the queueing, sheduling and aounting strategies.aDropi is a per-VC state that indiates if the next ell on onnetion i needs to be dropped. On arrival of the last ell of a frame ononnetion i, it is reset. New framei is a per-VC state whih indiates that the next ell on onnetion i is the �rst one of a frame. Dropnextiis a per-VC state that indiates if the next frame on onnetion i needs to be dropped.bQ: total bu�er oupany; N : number of ative onnetions; Qi: number of ells of VC i in the bu�er; Avg: average bu�er oupany,alulated by equation (5.5); ount: number of aepted frames sine the last dropped frame, or sine Avg exeeded a threshold L.
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R Queueing Sheduling Aounting information: Aounting information:Bu�er aeptane sheme strategy strategy per-VC statesa ountersbdropiTagging + FIFO global FIFO new framei global (Q)(weighted) dropiTagging + per-VC queueing per-VC round robin new framei global (Q)Per-VC aounting and WFQ-like dropi global (Q)WFQ-like sheduling per-VC (virtual spaing) new framei per-VC (Ri)dropiGlobal FIFO sheduling per-VC FIFO + new framei global (Q)round robind eligiblei per-VC (Qi)dropi global (Q,N ,W )Di�erential fair bu�er alloation global FIFO new framei per-VC (Qi,Wi)dropi global(Q,Avg)Token based bu�er alloation global FIFO new framei per-VC (Ci)Table 5.2: Bu�er aeptane shemes for GFR: overview of the queueing, sheduling and aounting strategies.aDropi is a per-VC state that indiates if the next ell on onnetion i needs to be dropped. On arrival of the last ell of a frame ononnetion i, it is reset. New framei is a per-VC state whih indiates that the next ell on onnetion i is the �rst one of a frame. Eligiblei isa per-VC state that indiates if the urrent frame on onnetion i is onsidered eligible.bQ: total bu�er oupany; Ri: number of CLP=0 ells of VC i in the bu�er; Qi: number of ells of VC i in the bu�er; N : number ofative onnetions; Wi: weight of VC i; W : sum of the weights of all ative VCs; Avg: average bu�er oupany, alulated by equation (5.5);Ci: token ounter assoiated with VC i.Although the name of the sheme suggests otherwise, ells are queued per-VC. There is also a FIFO queue in whih referenes to theper-VC queues are queued.dAs long as the FIFO queue ontains referenes to the VC queues, sheduling is FIFO. If the FIFO queue is empty, sheduling is roundrobin.



Chapter 6Transient performane analysis of theseletive drop bu�er aeptanealgorithm with responsive traÆThe seletive drop and EPD with per-VC queueing bu�er aeptane shemes disussedin Chapter 5 use the same frame1 aware bu�er aeptane rules to deide about whihells are allowed to enter the bu�er and whih ells are disarded. A owhart of theserules is shown in Figure 6.1. In the seletive drop sheme these rules are ombined with aglobal queueing strategy and the FIFO sheduling strategy, while in the EPD with per-VCqueueing sheme they are used in ombination with per-VC queueing and round robinsheduling. In the urrent hapter we onsider them in ombination with three shedulingalgorithms: FIFO, round robin (RR) and a variant of probabilisti longest queue �rst(PLQF). For the sake of simpliity, throughout this hapter only the term `seletive drop(SD)' is used, ompleted when needed with the spei� sheduling algorithm onsidered.The transient performane of SD is analyzed when traÆ is generated by soures whihrespond to the presene or absene of losses (as TCP soures do). For this goal a theoretialmodel is developed, where two responsive soures send traÆ in �xed-sized pakets ofells, via a bu�er on whih the SD bu�er aeptane algorithm is implemented. TransienteÆieny and fairness results are obtained from the model, most of the time under anunfair start ondition, whih orresponds to a situation where one soure alone has beensending traÆ for some time, and suddenly the seond soure starts also sending traÆ,leading to a bottlenek.Where performane oriented studies typially rely on the assumption that the stohastiproess modeling the phenomenon of interest is already in steady state, transient perfor-mane results are addressed in this hapter. Transient analysis is important when the lifeyle of the phenomenon under study is not long enough, sine usually a stohasti proess1Throughout this hapter, the terms `frame' and `paket' are used interhangeably.97



98 6. Transient performane analysis of SD with responsive traÆ
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Figure 6.1: Flowhart of the aeptane rules used by the SD and EPD with per-VCqueueing sheme. The following notation is used: Q: bu�er oupany; Qmax: apaity ofthe bu�er; Qi: number of ells of onnetion i in the bu�er; L: a �xed threshold; FS: FairShare. FS is alulated as (Q=N) �K, where N is the number of ative onnetions andK is a �xed parameter of the SD algorithm.annot reah steady state unless time evolves towards in�nity, or when its behavior beforereahing steady state is important. So when observing the reation upon an unfair startsituation of a bu�er aeptane sheme whih aims at fairness, a transient approah isrequired.The results presented in this hapter are an extension to the results we already presentedin [92, 93℄. The struture of the hapter is as follows: the theoretial model is desribedin Setion 6.1, and results obtained with the model are presented and disussed in Se-tion 6.2. This last setion is further subdivided in three subsetions: idential senariosunder three di�erent start onditions are onsidered in Setion 6.2.1, while the inueneof the responsive traÆ, resp. of the SD parameters, under an unfair start situation, isonsidered in Setion 6.2.2, resp. Setion 6.2.3. Conlusions are drawn eah time at theend of the subsetions.6.1 Model desription6.1.1 System on�gurationThe performane of the SD bu�er aeptane sheme will be observed using the on�g-uration of Figure 6.2. TraÆ is generated in �xed-sized pakets of ells by two respon-
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Responsive Figure 6.2: System on�guration.sive soures, whih respond to the presene/absene of losses of their traÆ by dereas-ing/inreasing the amount of pakets they send in a ertain time. All traÆ is sent to thesame destination via the output port of a network element. The links in the senario allhave the same apaity, whih makes this output port a bottlenek at whih bu�ering isneeded. The deision about whih pakets are allowed to enter the bu�er is made usingthe SD bu�er aeptane algorithm. The queueing in the bu�er an be global, or per-VC,and the order in whih the ells leave the bu�er depends on the sheduling algorithm used.6.1.2 Soure behaviorThe traÆ in the system is generated by two independent but idential soures, whihsend their traÆ in �xed-sized pakets of D bak-to-bak ells (for modeling simpliity itis assumed that D is even). The time needed to plae D ells onto the links is onsideredas time unit of the system, and is alled a `slot'. On the input links, a slot thus equals thetime to plae a paket of ells onto the links, while on the output link the D ells that maybe put onto the link in a slot an belong to both onnetions, depending on the outputof the sheduling algorithm. The soures are persistent soures that have always traÆ tosend, but the amount of pakets they send in a time of x slots (where x is a parameterof the soure model) is limited by their window size. The window sizes of the soures areupdated every x slots, based on the number of pakets a soure has lost at the bu�er inthe previous x slots. The following rules are used for the window updates:� if a soure did not lose any pakets during the previous x slots, then its window sizeis inreased by one paket, exept if it has already reahed its maximum window sizeof x pakets,� if a soure has lost one paket during the previous x slots, then its window size isapproximately halved, by setting it to the smallest integer not smaller than half itsurrent window size,� if a soure has lost two or more pakets during the previous x slots, then its windowsize is redued to one paket.



100 6. Transient performane analysis of SD with responsive traÆFurther, it is assumed that a soure with a window size of r pakets (1 � r � x) sendsthese pakets during the �rst r slots of an interval of x slots.6.1.3 Bu�er aeptaneWhen a paket arrives at the bu�er, the deision about if it is allowed to enter the bu�eror not is made based upon the SD bu�er aeptane algorithm. Denote by Q1, resp. Q2,the number of ells of onnetion 1, resp. onnetion 2, in the bu�er, by Q = Q1 + Q2the total bu�er oupany, by L the �xed threshold of the SD algorithm, by K the �xedparameter of the SD algorithm, and by N the number of ative onnetions. Beause ofthe assumption in the model that the soures send the D ells of a paket bak-to-bak,paket boundaries orrespond to slot boundaries. Sine the aeptane rule (Q � L orQi � (Q=N) � K) of the SD algorithm is only tested for the �rst ell of a paket (seeFigure 6.1), a deision about the aeptane or disarding of the omplete paket an bemade in the model at slot boundaries. If pakets from both soures arrive at the sametime and they both pass the aeptane rules, but there is only plae in the bu�er for onepaket, then it is assumed that eah paket has equal probability of being the one that isdropped.6.1.4 ShedulingThree sheduling algorithms are onsidered: FIFO, round robin (RR) and probabilistilongest queue �rst (PLQF). In a FIFO system, if the D ells of a paket arrive bak-to-bak at the bu�er, D ells of one onnetion (when upon arrival of this paket no paketof the other onnetion arrived), or D=2 ells of eah onnetion (when a paket of bothonnetions arrived at the same time) leave the bu�er in a slot. In a RR system on theother hand, when at departure instants no ells of the other onnetions are present, D ellsof one onnetion leave the bu�er in a slot. Otherwise, D=2 ells of eah onnetion leavethe bu�er in a slot. The system is also onsidered with a PLQF sheduling disipline, whihselets for servie a onnetion with a probability proportional to the ontribution of thisonnetion to the total queue length. Where the aim of RR sheduling is to let an equalamount of ells of eah onnetion leave the bu�er per sheduling yle, PLQF shedulingstrives to an equal amount of ells of eah onnetion in the bu�er. Corresponding to theFIFO and RR system, also in the PLQF system we let D=2 ells of eah onnetion orD ells of one onnetion leave the system in a slot, and this with the following probabilities:� D=2 ells of eah onnetion, with probability S=Q,� D ells of onnetion 1, with probability Q1�S=2Q ,� D ells of onnetion 2, with probability Q2�S=2Q ,



6.1. Model desription 101
slot 0slot 1slot 2slot 3

connection 2

connection 1

PLQF

output sequences

cells which leave the buffer during the same slot

probability = 1/6

probability = 1/6

probability = 1/2

probability = 1/6

Figure 6.3: In the PLQF system, di�erent output sequenes our probabilistially.arrs. depts. arrs. depts. arrs. depts. arrs. depts. depts. depts.slot 0 slot 0 slot 1 slot 1 slot 2 slot 2 slot 3 slot 3 slot 4 slot 5Q1 2 0 2 1 1 0 1 2 3 1 2 0 1 0Q2 0 0 2 1 3 2 1 4 3 3 2 2 1 0S 0 0 4 2 2 0 2 4 6 2 4 0 2 0withprob. 1 1 1 1 1 12 12 12 12 13 23 16 56 1Table 6.1: Values of the parameters Q1, Q2 and S (expressed as a multiple of D=2) atdi�erent times for the PLQF system shown in Figure 6.3.where S is the number of ells in the bu�er belonging to pakets that have been aeptedat the same time as other pakets.To illustrate the probabilisti harater of PLQF sheduling and to make the meaning ofS more lear, a small example is shown in Figure 6.3 and Table 6.1. Figure 6.3 shows forfour slots pakets that are aepted in the bu�er and the possible output sequenes thatan our when PLQF sheduling is applied. Table 6.1 shows the values of the parametersQ1, Q2 and S (expressed as a multiple of D=2) at di�erent times.6.1.5 System evolutionDe�ne the following random variables at disrete-time slot boundaries k, where k = lx+m,l 2 N and m 2 f0; : : : ; x� 1g, for i = 1; 2:� Qi(k): number of ells of onnetion i in the bu�er at time k,� Wi(k): number of pakets soure i sends in the interval of length x slots that startsat time lx,
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Figure 6.4: Evolution of the system during the �rst 3 slots for x = 3.� Li(k): number of lost (i.e., not aepted in the bu�er) pakets of soure i at time ksine the beginning of the interval of length x slots that started at time lx (0, 1, or2, where `2' means `more than one').For the PLQF system, de�ne also� S(k): number of ells in the bu�er at time k belonging to pakets that have beenaepted at the same time as other paketsRemark that beause in a slot 0 ells, D ells of one onnetion or D=2 ells of bothonnetions leave the bu�er, and beause in a slot 0 or D ells of eah onnetion enter thebu�er, the number of ells of eah onnetion in the bu�er at slot boundaries is always amultiple of D=2. So the values the Qi(k)'s an take are always multiples of D=2, and thevalues S(k) an take are always multiples of D. Further, orresponding to the assumptionmade in Setion 6.1.2 that the window sizes of the soures are updated every x slots, thede�nition of Wi(k) implies that Wi(lx) = Wi(lx + 1) = � � � =Wi(lx+ x� 1).To simplify the desription of the evolution over time of the de�ned system, split the timeinstant k virtually into k� and k+, where k� represents the moment just before the arrivals,if any, of slot k our, and k+ represents the moment just before the departures, if any, ofslot k our. The result is an evolution 0� ! 0+ ! 1� ! 1+ ! � � � ! (k � 1)+ ! k� !k+ ! (k + 1)� ! : : : . Two types of evolution over time an then be distinguished:1. Evolution of the type k� ! k+: the arrivals in the bu�er during slot k are taken intoaount, resulting in a possible inrease of the random variables Qi(k+), S(k+) andLi(k+) ompared to Qi(k�), S(k�) and Li(k�).2. Evolution of the type k+ ! (k + 1)�: the departures from the bu�er during slot kare taken into aount, resulting in a possible derease of the Qi ((k + 1)�) andS ((k + 1)�) ompared to Qi(k+) and S(k+). When k+ 1 is a multiple of x, also thewindow size Wi ((k + 1)�) of eah soure is updated from Wi(k+), using the valueLi(k+). Further, the loss ounters Li ((k + 1)�) are reset to zero.Figure 6.4 illustrates for x = 3 the evolution of the system during the �rst three slots.Remark that the tuple (W1(k�);W2(k�)) provides enough information to know from whihonnetions pakets arrive in slot k, while based on (Q1(k�); Q2(k�)) it an be determined



6.1. Model desription 103by means of the SD algorithm whih of these pakets are aepted in the bu�er. Usingthe information (W1(k+);W2(k+); L1(k+); L2(k+)), where k + 1 is a multiple of x, windowupdates an be performed. To deide whih ells depart from the bu�er during slot k, theinformation that is needed depends on the sheduling algorithm used:� RR: (Q1(k+); Q2(k+)),� PLQF: (Q1(k+); Q2(k+); S(k+)).For FIFO, whih is one of the simplest sheduling shemes to implement, it is neessaryto keep trak of the order in whih the ells of the di�erent onnetions have entered thebu�er. In an analytial model this is diÆult to inorporate, sine even for two souresthis makes the number of states in the model very large, leading to an unattrative model.Beause of that, we do not desribe the system evolution of the FIFO system theoretially,but obtain it by simulation. In these simulations, the same soure behavior and modelingassumptions are used as in the theoretial models for RR and PLQF. A formal desriptionof the system evolution orresponding to the informal desription above is now given forthe RR and PLQF system.At time k, the state of the PLQF system is given by a seven dimensional element(Q1(k); Q2(k); S(k);W1(k);W2(k); L1(k); L2(k)). The evolution over time of the systemis desribed by a multidimensional disrete-time random proessf(Q1(k); Q2(k); S(k);W1(k);W2(k); L1(k); L2(k)) ; k � 0g ; (6.1)whose future, given the presene, is independent of the past for all time instants k. Henethe proess is a Markov hain. It is however a nonstationary Markov hain, sine theprobability of going from one state to another depends on the time at whih the transitionis made (multiple of x or not).Analoguously, the state of the RR system at time k is desribed by a six dimensional ele-ment (Q1(k); Q2(k);W1(k);W2(k); L1(k); L2(k)), and the evolution over time of the systemis then given by the Markov hainf(Q1(k); Q2(k);W1(k);W2(k); L1(k); L2(k)) ; k � 0g : (6.2)In the sequel, when the only di�erene between an equation for the RR system and for thePLQF system is that the random variable S(k) needs to be omitted for the RR system, asis the ase in equations (6.1) and (6.2), only the equation for the PLQF system is writtenout formally.Denote the state spae of the Markov hains by 
 and de�neXk = (Q1(k); Q2(k); S(k);W1(k);W2(k); L1(k); L2(k)). The random variables that on-stitute the multidimensional states Xk take values in the following range (assume thatQmax is a multiple of D):



104 6. Transient performane analysis of SD with responsive traÆ� Q1(k) : 0; D=2; D; 3D=2; : : : ; Qmax,� Q2(k) : (0; D; 2D; : : : ; Qmax �Q1(k); if Q1(k) is an even multiple of D=2;D=2; 3D=2; 5D=2; : : : ; Qmax �Q1(k); if Q1(k) is an odd multiple of D=2;� S(k) : (0; 2D; 4D; : : : ; 2minfQ1(k); Q2(k)g ; if Q1(k) is an even multiple of D=2;D; 3D; 5D; : : : ; 2minfQ1(k); Q2(k)g ; if Q1(k) is an odd multiple of D=2;� Wi(k) : 1; 2; : : : ; x; for i = 1; 2,� Li(k) : 0; 1; 2; for i = 1; 2.Assuming the probabilities that the system is in a ertain state (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
 attime k� are known, the probability that the system is in a state (q1; q2; s; w1; w2; l1; l2) 2 
at time k+ is alulated using the omplete probability formula:P fXk+ = (q1; q2; s; w1; w2; l1; l2)g =X(q̂1;q̂2;ŝ;ŵ1;ŵ2;l̂1;l̂2)2
P nXk+ = (q1; q2; s; w1; w2; l1; l2) j Xk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)oP nXk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o : (6.3)For simpliity, denote the onditional probability in equation (6.3) by P1. Let L be the�xed threshold of the SD algorithm, and denote by FS(q̂1; q̂2) the fair share as alulatedby the SD algorithm, i.e.,FS(q̂1; q̂2) = K q̂1 + q̂2Ifq̂1 6=0g + Ifq̂2 6=0g ; (6.4)where IA denotes the indiator funtion of an event A.To ompute P1, assume that k = lx + m, l 2 N and m 2 f0; : : : ; x � 1g. Sine at time(k � 1)+ the departures of slot k � 1 were taken into aount, at time k� there is alwaysplae in the bu�er for at least D ells. Di�erent ases an be distinguished:1. ŵ1 > m and ŵ2 > m, i.e., arrivals our on both onnetions.(a) q̂1 + q̂2 � L, or �q̂1 + q̂2 > L, q̂1 � FS(q̂1; q̂2) and q̂2 � FS(q̂1; q̂2)�, i.e., bothpakets are aepted.i. q̂1+ q̂2 � Qmax�2D, i.e., there is plae in the bu�er for both pakets. ThenP1 = 1 if (q1; q2; s; w1; w2; l1; l2) = (q̂1 +D; q̂2 +D; ŝ+ 2D; ŵ1; ŵ2; l̂1; l̂2).ii. q̂1 + q̂2 = Qmax � D, i.e., there is plae in the bu�er for only one paket.Eah paket has equal probability of being the one that is dropped. ThenP1 = 1=2 if s = ŝ, w1 = ŵ1, w2 = ŵ2, and



6.1. Model desription 105� q1 = q̂1 +D, q2 = q̂2, l1 = l̂1, l2 = l̂2 + 1 or l2 = l̂2 = 2, or� q1 = q̂1, q2 = q̂2 +D, l1 = l̂1 + 1 or l1 = l̂1 = 2, l2 = l̂2.(b) q̂1 + q̂2 > L, q̂1 � FS(q̂1; q̂2) and q̂2 > FS(q̂1; q̂2), i.e., only the paket of onne-tion 1 is aepted, that of onnetion 2 is dropped. Then P1 = 1 if q1 = q̂1+D,q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1, l2 = l̂2 + 1 or l2 = l̂2 = 2.() q̂1 + q̂2 > L, q̂1 > FS(q̂1; q̂2) and q̂2 � FS(q̂1; q̂2), i.e., only the paket of on-netion 2 is aepted, that of onnetion 1 is dropped. Then P1 = 1 if q1 = q̂1,q2 = q̂2 +D, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1 + 1 or l1 = l̂1 = 2, l2 = l̂2.(d) q̂1 + q̂2 > L, q̂1 > FS(q̂1; q̂2) and q̂2 > FS(q̂1; q̂2), i.e., both pakets are dropped.Then P1 = 1 if q1 = q̂1, q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1 + 1 orl1 = l̂1 = 2, l2 = l̂2 + 1 or l2 = l̂2 = 2.2. ŵ1 > m and ŵ2 � m, i.e., only on onnetion 1 an arrival ours.(a) q̂1 + q̂2 � L, or �q̂1 + q̂2 > L and q̂1 � FS(q̂1; q̂2)� , i.e., the paket is aepted.Then P1 = 1 if (q1; q2; s; w1; w2; l1; l2) = (q̂1 +D; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2).(b) q̂1 + q̂2 > L and q̂1 > FS(q̂1; q̂2) , i.e., the paket is dropped. Then P1 = 1 ifq1 = q̂1, q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1 + 1 or l1 = l̂1 = 2, l2 = l̂2.3. ŵ1 � m and ŵ2 > m, i.e., only on onnetion 2 an arrival ours.(a) q̂1 + q̂2 � L, or �q̂1 + q̂2 > L and q̂2 � FS(q̂1; q̂2)� , i.e., the paket is aepted.Then P1 = 1 if (q1; q2; s; w1; w2; l1; l2) = (q̂1; q̂2 +D; ŝ; ŵ1; ŵ2; l̂1; l̂2).(b) q̂1 + q̂2 > L and q̂2 > FS(q̂1; q̂2) , i.e., the paket is dropped. Then P1 = 1 ifq1 = q̂1, q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1, l2 = l̂2 + 1 or l2 = l̂2 = 2.4. ŵ1 � m and ŵ2 � m, i.e., no arrivals our. Then P1 = 1 if (q1; q2; s; w1; w2; l1; l2) =(q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2).In all other ases, P1 = 0.To ompute the probabilities that the system is in a ertain state (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
at time k�, again the omplete probability formula is used:P nXk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o =X(q1;q2;s;w1;w2;l1;l2)2
P nXk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) j X(k�1)+ = (q1; q2; s; w1; w2; l1; l2)oP �X(k�1)+ = (q1; q2; s; w1; w2; l1; l2)	 : (6.5)Denote the onditional probability in equation (6.5) by P2, and assume that k = lx +m,l 2 N and m 2 f0; : : : ; x � 1g. Remark that when m 6= 0, only the departures of slotk � 1 are taken into aount. When m = 0, also the window sizes are adapted and the



106 6. Transient performane analysis of SD with responsive traÆloss ounters are reset. De�ne by f the window update funtion that orresponds to thesoure behavior rules desribed in Setion 6.1.2:f(wi; li) = 8><>:minfwi + 1; xg if li = 0;�wi2 � if li = 1;1 if li = 2: (6.6)Again, di�erent ases an be distinguished:1. q1 + q2 = 0, i.e., the system is empty. Then P2 = 1 if (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) =(q1; q2; s; w1; w2; l1; l2).2. q1 + q2 6= 0, i.e., the system is not empty. If� m 6= 0, ŵ1 = w1, ŵ2 = w2, l̂1 = l1, l̂2 = l2, or� m = 0, ŵ1 = f(w1; l1), ŵ2 = f(w2; l2), l̂1 = 0, l̂2 = 0,then(a) for PLQF sheduling,i. P2 = s=(q1 + q2), i.e., D=2 ells of eah onnetion leave the bu�er, ifq̂1 = q1 �D=2, q̂2 = q2 �D=2, ŝ = s�D.ii. P2 = (q1 � s=2)=(q1 + q2), i.e., D ells of onnetion 1 leave the bu�er, ifq̂1 = q1 �D, q̂2 = q2, ŝ = s.iii. P2 = (q2 � s=2)=(q1 + q2), i.e., D ells of onnetion 2 leave the bu�er, ifq̂1 = q1, q̂2 = q2 �D, ŝ = s.(b) for RR sheduling, P2 = 1 ifi. q1:q2 6= 0, q̂1 = q1 � D=2, q̂2 = q2 � D=2, i.e., the bu�er ontains ells ofboth onnetions, so D=2 ells of eah onnetion leave the bu�er.ii. q̂1 = q1�D, q̂2 = q2 = 0, i.e., the bu�er ontains only ells of onnetion 1,so D ells of that onnetion leave the bu�er.iii. q̂1 = q1 = 0, q̂2 = q2�D, i.e., the bu�er ontains only ells of onnetion 2,so D ells of that onnetion leave the bu�er.In all other ases, P2 = 0.Using alternately the equations (6.3) and (6.5), the probabilities that the system is in a er-tain state of 
 at time k� or k+ an be alulated when starting valuesPfX0� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)g at time 0� for all states (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
 aregiven. Remark that by de�nition of the random variables L1(k) and L2(k), L1(0�) =L2(0�) = 0, i.e., the starting probabilities PfX0� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)g should be zerowhen l̂1 6= 0 or when l̂2 6= 0.



6.1. Model desription 1076.1.6 Transient performane measuresFrom the state of the system at time k+, the following random variables (i = 1; 2) areobtained:� Oi(k): number of ells of onnetion i that leave the bu�er during slot k.Remark that the Oi(k)'s take values 0, D=2 or D. Further on in this setion, E [Oi(k)℄ isused, whih is the average over all realizations of the random proess Oi(k), and is thusper de�nition given byE [Oi(k)℄ = (D=2)P fOi(k) = D=2g+DP fOi(k) = Dg : (6.7)For the systems with FIFO and RR sheduling, due to the fat that this are non-probabilis-ti sheduling shemes, it is possible that the random proesses Oi(k) are deterministi (i.e.,have only one realization), suh that E [Oi(k)℄ = Oi(k). This is the ase when the initialstate of the system is deterministi, and over time it never ours that two pakets thatarrive at the same time are both aepted by the aeptane rules, while there is only plaein the bu�er for one paket. When the latter would happen anyhow, the sample paths ofthe proesses Oi(k) split into two branhes at suh moments.For the PLQF system, the probability that Oi(k) equals D=2 is the probability that duringslot k, D=2 ells of eah onnetion leave the bu�er:P fOi(k) = D=2g = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0 sq1 + q2 P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.8)The probability that Oi(k) equals D with PLQF sheduling is given by the probabilitythat D ells of onnetion i leave the bu�er during slot k:P fOi(k) = Dg = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0 qi � s=2q1 + q2 P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.9)With RR sheduling, the probability that Oi(k) equals D=2 is the probability that attime k+ the bu�er ontains ells of both onnetions:P fOi(k) = D=2g = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0; q1:q2 6=0 P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.10)The probability that at time k+ the bu�er ontains only ells of onnetion i equals theprobability that Oi(k) = D for the RR system:P fOi(k) = Dg = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0; q1:q2=0; qi 6=0P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.11)



108 6. Transient performane analysis of SD with responsive traÆFor the FIFO system, the probability distribution of the Oi(k)'s is obtained by simulation.Both the eÆieny and fairness performane of the system in transient state are of interest,and are obtained from the e�etive throughputs Ti(k) of the onnetions after k slots. Sinethe e�etive throughput of a onnetion is de�ned as the average number of pakets of thatonnetion that have arrived at the destination, divided by the time needed to deliver thesepakets, Ti(k) is alulated asTi(k) = 1Dk k�1Xj=0 E [Oi(j)℄ : (6.12)Remark the fator `D' in the denominator, sine we want the throughput to be expressedin pakets per slot time.The eÆieny after k slots is de�ned as the sum of the e�etive throughputs of all on-netions after k slots, divided by the maximum possible e�etive throughput after k slots(whih is one paket per slot time), resulting ineÆieny(k) = T1(k) + T2(k): (6.13)To deide about the fairness performane of the system, the fairness index of equation (4.2)is used. Sine the equal division of the total e�etive throughput among both onnetionsis onsidered as the perfetly fair situation, the fairness index after k slots, denoted byF (k), redues toF (k) = (T1(k) + T2(k))22 (T1(k))2 + 2 (T2(k))2 : (6.14)Remark that for two soures, F (k) ranges between one half (minimum fairness) and one(maximum fairness).6.2 Numerial results and disussion6.2.1 Di�erent start onditionsThe senarios in this setion are all onsidered with the following three deterministi startonditions: PfX0� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)g = 1, where1. (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) = (0; 0; 0; 1; 1; 0; 0),2. (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) = (0; 0; 0; x; x; 0; 0),3. (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) = (0; 0; 0; x; 1; 0; 0).



6.2. Numerial results and disussion 109Start ondition 1 orresponds to a set-up where the two soures start probing the networkat the same time with a window size of one paket. The bu�er of the system is empty atthat time. Under start ondition 2, the two soures start also sending traÆ to an emptysystem at the same time, but now they do it in a very aggressive way, by both startingat their maximum window size. With start ondition 3, the window setting is the mostunfair situation possible, but also the most realisti one. Start ondition 3 an be seenas the result of a situation where only one soure is sending traÆ, and beause there isno bottlenek then, all traÆ of this soure passes through the system without buildingup a queue and without losses. The window size of this soure an thereby grow untilits maximum. At time 0�, the seond soure starts also sending traÆ, starting with awindow size of one paket.Senario 6.2.1. Consider a system with following parameters:� x = 10 (slots), Qmax = 12�D (ells), L = 7�D (ells), K = 1,� PLQF sheduling.The evolution over time of the mean window size of the two soures and the mean bu�eroupation of the two onnetions under the three start onditions is shown in Figures 6.5and 6.6. Beause the input traÆ in the system is generated by two idential soures,none of whih is o�ered a preferential treatment by the bu�er aeptane or the shedulingsheme, the mean window sizes and the mean bu�er oupations oinide under identialstart values for both onnetions, although of ourse the two window sizes and the twobu�er oupations at time k are often di�erent. This is not only the ase in this example,but is true in general, as is shown in the appendix. For start ondition 3, there is a di�erenein the start value of the two window sizes. In Figures 6.5 and 6.6, a di�erene between theurves of both onnetions is learly seen at the beginning, while afterwards the urves forboth onnetions beome more and more the same (i.e., the di�erenes between the urvesbeome invisible on the plots after approximately 500 slots). It is observed very often insenarios with PLQF sheduling that the urves for the mean window size and the meanqueue size of both onnetions oinide more and more when time progresses. This anbe explained as follows: when at time k the mean bu�er oupation and window size ofboth onnetions would be alulated over only these sample paths on whih it ourredat a ertain time instant l before k that the parameters (bu�er oupation, window size,loss ounter) of both onnetions were the same, then these means would be identialfor both onnetions (fr. property 6.3.1). The more time progresses, the more likely itbeomes that it has happened on more and more sample paths that the parameters ofboth onnetions were the same one, and thus that the di�erene between the means foronnetion 1 and onnetion 2 beome smaller. This is of ourse true for all shedulingshemes onsidered, but sine PLQF sheduling aims at equal bu�er oupation for allonnetions, the probability that the parameters of the onnetions ome together at aertain time instant is higher with PLQF sheduling.
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Figure 6.5: Evolution of the mean windowsizes when x = 10, Qmax = 12�D, L = 7�Dand K = 1 under di�erent start onditions(PLQF sheduling). In the two topmostplots, the urves of onnetion 1 and 2 oin-ide.

0 500 1000 1500
0

2

4

6

time (slots)

qu
eu

e 
si

ze
 (

pa
ck

et
s) start condition (0,0,0,1,1,0,0)

0 500 1000 1500
0

2

4

6

time (slots)

qu
eu

e 
si

ze
 (

pa
ck

et
s) start condition (0,0,0,x,x,0,0)

0 500 1000 1500
0

2

4

6

time (slots)

qu
eu

e 
si

ze
 (

pa
ck

et
s) start condition (0,0,0,x,1,0,0), connection 1

start condition (0,0,0,x,1,0,0), connection 2

Figure 6.6: Evolution of the mean bu�er o-upations when x = 10, Qmax = 12 � D,L = 7�D and K = 1 under di�erent startonditions (PLQF sheduling). In the twotopmost plots, the urves of onnetion 1and 2 oinide.Figure 6.5 shows learly the osillating behavior of the window size of the soures, whih isaused by their responsiveness: the window is allowed to grow as long as no losses our,and it is redued after losses. The window size of a soure keeps on osillating (exept if itis allowed to stay at its maximum value, whih ours when there is no bottlenek in thesystem), beause the soure's behavior is suh that it keeps on trying to let its window grow.Remark again that Figure 6.5 does not show the evolution of the window sizes Wi(k) overtime, but E[Wi(k)℄. In the beginning, E[Wi(k)℄ is equal toWi(k), sine the start onditionsused are deterministi ones (one start vetor with probability 1), but during time moreand more sample paths are explored beause of the probabilisti harater of the system.From Figure 6.5 it is also seen that for the di�erent start onditions, the mean windowsizes osillate around the same value (4:7�D ells) in the long run.In Figure 6.6 it is seen that the osillating behavior of the windows of the soures is reetedin the low-frequeny osillations of the queue sizes. The high-frequeny osillations of thequeue sizes have a length of x slots, and are aused by the fat that when a soure has awindow size of r pakets, it sends pakets during the �rst r slots of an interval of x slots,letting the queue grow during these slots and go down afterwards when pakets leave but
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Figure 6.7: Evolution of the throughputswhen x = 10, Qmax = 12 � D, L = 7 � Dand K = 1 under di�erent start onditions(PLQF sheduling). For start onditions(0; 0; 0; 1; 1; 0; 0) and (0; 0; 0; x; x; 0; 0), theurves of onnetion 1 and 2 oinide.
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do not arrive.Figure 6.7 shows the evolution over time of the throughput of the di�erent onnetions.Beause of the idential mean output of the two onnetions under start onditions 1 and 2,their throughput urves oinide. Under start ondition 1, the throughput of a onnetionis lower than under start ondition 2, espeially in the beginning. This di�erene is mainlyaused by the di�erene in the mean number of pakets that leave the system during the�rst slots. This number is learly larger with start ondition 2, sine then the window sizesand onsequently the bu�er oupations are larger. Under start ondition 1, the system isunder-utilized in the beginning (remark from Figure 6.6 that the mean bu�er oupationbeomes often zero then), beause the soures need time to build up their window. Inline with de�nition (6.12), this di�erene in output of the system at the beginning stayspereptible for some while in the throughput values. When omparing the throughput ofthe two onnetions under start ondition 3, it is seen that in the beginning the throughputof onnetion 1 is higher than that of onnetion 2, sine then soure 1 sends more paketsthan soure 2, and they are all aepted, at least until Q > L. Figures 6.6 and 6.7together illustrate learly how an initial di�erene between the output from the systemof both onnetions stays pereptible in the throughput values: the bu�er oupations ofboth onnetions oinide from a ertain moment on, while this is not the ase for thethroughput values. It is however the bu�er oupation whih determines with some delaythe output values, sine all pakets that are aepted in the bu�er also leave the bu�er(pakets that do not pass the aeptane rules of the aeptane sheme do not enter thebu�er either).
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Figure 6.9: Evolution of the fairness index when x = 10, Qmax = 12 � D, L = 7 � Dand K = 1 under di�erent start onditions (PLQF sheduling). For start onditions(0; 0; 0; 1; 1; 0; 0) and (0; 0; 0; x; x; 0; 0) the urves oinide.The evolution of the eÆieny over time under the three start onditions is shown inFigure 6.8. The eÆieny obtained with start ondition 3 is the highest, while that obtainedwith start ondition 1 is the lowest. Remark that for start onditions 1 and 2 the eÆienyis exatly twie the throughput of a onnetion, sine the throughput for both onnetionsoinides. This explains why the eÆieny is higher under start ondition 2 than understart ondition 1. Under start ondition 3, the eÆieny is even higher in the beginning,beause while the window of soure 2 is still growing, soure 1 sends enough traÆ into thesystem to keep its utilization high. When the window of soure 1 needs to go down, that ofsoure 2 is large enough to keep the system at high utilization. The fat that the eÆienyurves are below one from a ertain moment on indiates that on some of the sample pathsthe system gets temporarily empty with a strit positive probability: formulas (6.12) and(6.13) indiate that for eÆieny(k) to be equal to one, the mean output of the systemneeds to be D ells in all slots until slot k, and sine the maximum output per slot isD ells, the mean an only be D ells if the output is D ells with probability 1 (i.e., thesystem is always non-empty with probability 1). The moment that the eÆieny dropsbelow one ours �rst for start ondition 1, then for start ondition 2 and the latest forstart ondition 3. This explains why the �rst dropping of the eÆieny is the largest forstart ondition 1 and the smallest for start ondition 3: the longer the eÆieny stays one,the smaller the di�erene between the numerator and the denominator of equation (6.12)and onsequently the larger the eÆieny is when the average output beomes smaller thanone for the �rst time.The evolution of the fairness index is shown in Figure 6.9. For start onditions 1 and 2this index is onstantly one, sine under these start onditions the throughput of the twoonnetions is exatly the same. With start ondition 3, some time is needed to approah



6.2. Numerial results and disussion 113a fairness index lose to one. Remark that the results are only shown for the �rst 500 timeslots, sine as soon as the system reovers from the unfairness aused by the unfair startsituation, the fairness index approahes one, sine the behavior of the two soures is thesame, and they are treated equally by the bu�er aeptane and the sheduling algorithm.This illustrates the importane of a transient analysis when observing the behavior of theSD sheme towards an unfair start situation. In real systems, unfair (start)situations areonstantly reated when onnetions appear and disappear.Figures 6.8 and 6.9 illustrate that the eÆieny and the fairness of a senario give omple-mentary information about the throughput of the di�erent onnetions. EÆieny looks athow well the outgoing apaity of the system is used, without aring by whih onnetionit is used, while fairness looks at how fair the outgoing apaity is used by the di�erentonnetions, independent of how muh or how little of the outgoing apaity is used.To illustrate that the observations made about senario 6.2.1 under the three di�erent startonditions are more generally valid, a lot of other senarios were onsidered, two of whihare added here for further illustration.Senario 6.2.2. Consider a system with following parameters:� x = 13 (slots), Qmax = 15�D (ells), L = 7�D (ells), K = 1,� RR sheduling.In this senario, the evolution of the system is deterministi under the third start ondition.Under the �rst and seond start ondition, there are eah time two sample paths that aresymmetri with respet to onnetion 1 and 2. These two sample paths oinide until the�rst time that the bu�er overows, beause the SD aeptane rules are always ful�lleduntil then due to the idential behavior of both onnetions. When the bu�er overows, thesample path splits into two symmetrial sample paths with equal probability. Afterwards,the behavior of the two onnetions di�ers, and the SD algorithm is always able to fore thewindow of one of the onnetions to go down on time suh that the bu�er never overowsagain and the sample paths never split again. A problem of the SD algorithm is illustratedhere: when there are onstantly a fair amount of ells of eah onnetion present in thebu�er, the SD algorithm does not disard pakets, and so it annot be avoided that thebu�er oupation grows until the bu�er overows. Of ourse this problem is less severe inreality than in the model. In the model it is assumed that pakets arrive at slot boundariesand that the windows of both soures are updated at the same time, whereas in realitythere will be some jitter in the arrival of the pakets at the network elements and in theupdating of the windows of the soures.Figure 6.10 shows the evolution of the mean window sizes of the soures, and Figure 6.11that of the mean bu�er oupations of the onnetions. As an be seen from these �gures,the evolutions of the average window and queue sizes with the �rst and seond startondition beome the same after a while. More in partiular, the average behavior of thesystem with start ondition 1 at time k is idential to the average behavior of the system
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Figure 6.10: Evolution of the mean windowsizes when x = 13, Qmax = 15�D, L = 7�Dand K = 1 under di�erent start onditions(RR sheduling). In the two topmost plots,the urves of onnetion 1 and 2 oinide.
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Figure 6.11: Evolution of the mean bu�eroupations when x = 13, Qmax = 15 � D,L = 7�D and K = 1 under di�erent startonditions (RR sheduling). In the two top-most plots, the urves of onnetion 1 and 2oinide.
with start ondition 2 at time k�104, for all k � 157. From Figures 6.12 and 6.13 it is seenthat the throughput of the onnetions and the eÆieny is higher under start ondition 2than under start ondition 1. Sine the behavior of both systems beomes the same withsome delay, this illustrates again the inuene of a di�erene in output from the system atthe beginning. The eÆieny is the highest with start ondition 3, sine then it ours onlyrarely that the bu�er is empty, and there is thus only rarely no output during some slots.Figure 6.14 shows the evolution of the fairness index. Again, the fairness is onstantlyone for equal start values, and approahes one after some time when the start values arenot equal. Remark that the fairness index always approahes one when the behavior ofthe two soures is the same, and they are treated equally by the bu�er aeptane andthe sheduling algorithm. So one ould wonder what the inuene of the SD algorithmis. Beause of that, the evolution of the fairness index with the third start ondition, butnow without the implementation of the SD algorithm, is also shown in Figure 6.14. As anbe seen, when SD is not implemented, it takes muh more time before the fairness indexapproahes one.
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Figure 6.12: Evolution of the throughputswhen x = 13, Qmax = 15 � D, L = 7 � Dand K = 1 under di�erent start ondi-tions (RR sheduling). For start onditions(0; 0; 1; 1; 0; 0) and (0; 0; x; x; 0; 0), the urvesof onnetion 1 and 2 oinide.
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Figure 6.15: Evolution of the mean win-dow sizes when x = 10, Qmax = 20 � D,L = 13�D and K = 1 under di�erent startonditions (FIFO sheduling). In the twotopmost plots, the urves of onnetion 1and 2 oinide.
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Figure 6.16: Evolution of the mean bu�eroupations when x = 10, Qmax = 20 � D,L = 13�D and K = 1 under di�erent startonditions (FIFO sheduling). In the twotopmost plots, the urves of onnetion 1and 2 oinide.Senario 6.2.3. Consider a system with following parameters:� x = 10 (slots), Qmax = 20�D (ells), L = 13�D (ells), K = 1,� FIFO sheduling.Figures 6.15 until 6.18 show the evolution of the window sizes, the bu�er oupations, thethroughput and the eÆieny obtained with this system under the three start onditions.Again it an be seen from the �gures that under start ondition 3, the throughput ofonnetion 1 is higher than that of onnetion 2, beause of its initial higher window,whih makes that soure 1 an send more pakets than soure 2 during the initial periodwhere all pakets are aepted beause the total bu�er oupation is not yet above L. Asame explanation an be given to the fat that the eÆieny is the highest under startondition 3, and the lowest under start ondition 1. Remark that the eÆieny stays equalto one under the seond and third start ondition for a muh longer time in this senariothan in the previous senarios, beause enough pakets (more than x per x slots) are sentin the beginning to let the queue grow, and sine L and Qmax are larger here than in
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Figure 6.17: Evolution of the throughputswhen x = 10, Qmax = 20 � D, L = 13 � Dand K = 1 under di�erent start ondi-tions (FIFO sheduling). For start ondi-tions (0; 0; 1; 1; 0; 0) and (0; 0; x; x; 0; 0), theurves of onnetion 1 and 2 oinide.
1 500 1000 1500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (slots)

ef
fic

ie
nc

y

start condition (0,0,1,1,0,0)
start condition (0,0,x,x,0,0)
start condition (0,0,x,1,0,0)Figure 6.18: Evolution of the eÆieny whenx = 10, Qmax = 20 � D, L = 13 � Dand K = 1 under di�erent start onditions(FIFO sheduling).

1 100 200 300 400 500

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (slots)

fa
irn

es
s 

in
de

x

start condition (0,0,1,1,0,0)
start condition (0,0,x,x,0,0)
start condition (0,0,x,1,0,0)
start condition (0,0,x,1,0,0), without SDFigure 6.19: Evolution of the fairness index when x = 10, Qmax = 20�D, L = 13 � Dand K = 1 under di�erent start onditions (FIFO sheduling). For start onditions(0; 0; 1; 1; 0; 0) and (0; 0; x; x; 0; 0) the urves oinide. For the third start ondition, also aomparison with the fairness index when SD is not implemented is shown.



118 6. Transient performane analysis of SD with responsive traÆthe other senarios, whih means that more pakets an be bu�ered to keep the eÆienylonger equal to one.Figure 6.19 shows the evolution of the fairness index under the three start onditions,and also for the same system without SD implemented under the third start ondition.It is again seen that under start onditions 1 and 2 the fairness is perfet beause of theequal throughput of both onnetions. Under the third start ondition, the fairness indexapproahes one sooner when SD is implemented. So the SD algorithm learly inuenesthe fairness results in a positive way. However, the problem of the SD algorithm mentionedalready in senario 6.2.2 (when there are a fair amount of ells of eah onnetion presentin the bu�er, the SD algorithm annot disard pakets, and so it ours that the bu�ergrows until it overows) appears also in this senario, as an be seen from Figure 6.16. Ithappens that the mean bu�er oupation of both onnetions together equals Qmax, whihmeans that on all sample paths the bu�er oupation of both onnetions together equalsQmax at these times. This suggests that the bu�er has overowed on these times, whih isonly possible when there are a fair amount of ells of eah onnetion present in the bu�erfrom the moment that Q exeeds L until it reahes Qmax.ConlusionsThe onlusions of this setion are that when the input traÆ is generated by two identialsoures, none of whih is o�ered a preferential treatment by the bu�er aeptane or thesheduling sheme, then� The mean window sizes and the mean bu�er oupations oinide under identialstart values for both onnetions, resulting in equal throughput for both onnetionsand thus perfet fairness.� The fairness index approahes one as soon as the system has reovered from theunfairness aused by an unfair start situation. This illustrates the importane of atransient analysis when observing the behavior of the SD sheme towards an unfairstart situation.� A di�erene in the amount of output from the bu�er at the beginning due to di�erentstart onditions for the system stays pereptible in the eÆieny values. A di�erenein the amount of output of the two onnetions at the beginning due to unequal startvalues for both onnetions stays pereptible for some while in the throughput andfairness values.From now on, all senarios are onsidered with start ondition 3, to observe the behaviorof the SD sheme towards an unfair start situation.



6.2. Numerial results and disussion 1196.2.2 Inuene of the responsive traÆIn this setion it is illustrated with numerial examples that due to the responsiveness ofthe soures, it is not neessarily true anymore that being more onservative in aeptingpakets implies a lower eÆieny, as would be the ase when non-responsive soures wouldbe used. As a result, there is not neessarily a trade-o� between eÆieny and fairness, asis also illustrated by the examples. All examples are onsidered with start ondition 3 ofthe previous subsetion.Senario 6.2.4. Consider the two systems with following parameters:� x = 10 (slots), Qmax = 12�D (ells),� FIFO sheduling,� (1) with SD implemented: L = 7�D (ells), K = 1, (2) without SD implemented.When pakets arrive at the �rst system, they are aepted as long as the SD aeptanerules are ful�lled, while in the seond system they are aepted as long as there is plae inthe bu�er. Figure 6.20 shows the eÆieny obtained with both systems. The highest eÆ-ieny is obtained when SD is implemented, so when being more onservative in aeptingpakets. The evolution of the �rst system is deterministi, while that of the seond systemis not. So the eÆieny of the system without SD is the average eÆieny over all samplepaths. The eÆieny of two suh sample paths is shown in Figure 6.21. One of these pathsis a most-likely path, whih is a path obtained by following always the branh that hasthe highest probability assoiated with it (or one of these branhes when there are moreof them) when the sample path of the system evolution splits.The evolution of the window sizes orresponding to the two sample paths of Figure 6.21is shown in Figures 6.22 and 6.23. Figure 6.24 shows the evolution of the mean windowsizes for the system without SD implemented, and Figure 6.25 that for the system withSD. Figure 6.24, together with the Figures 6.22 and 6.23, illustrates learly that althoughthe mean window sizes of both onnetions oinide after a while and stay almost onstantin the long run, this is ertainly not the ase on the single sample paths. That the meanwindow sizes for both onnetions stay di�erent and highly variable for the system withSD implemented (Figure 6.25) is beause this system is deterministi, suh that the meanwindow sizes orrespond to the window sizes on the single sample path that ours. It anbe seen that in the system with SD, when the window of a soure goes down, it is mostof the time only halved, whih indiates that only one paket of the soure was droppedduring the previous x slots. In the system without SD on the other hand, the windowsgenerally an grow larger, but both windows afterwards go down at the same moment,often both to a size of one, whih indiates that two or more pakets per onnetion werelost during the previous x slots. The result of this is that during the time the windowsneed to grow again, the bu�er whih �rst overowed beomes empty, whih results in aderease of eÆieny, sine there is no output during some slots.
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Figure 6.20: Evolution of the eÆieny whenx = 10, Qmax = 12 � D, with and withoutSD implemented (FIFO sheduling). SD pa-rameters: L = 7�D, K = 1.
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Figure 6.21: Average eÆieny and eÆ-ieny obtained on two sample paths whenx = 10, Qmax = 12�D, SD not implemented(FIFO sheduling).
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Figure 6.22: Evolution of the window sizesorresponding to the most likely path shownin Figure 6.21 (system without SD, x = 10,Qmax = 12�D, FIFO sheduling).
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Figure 6.23: Evolution of the window sizesorresponding to the `other' sample pathshown in Figure 6.21 (system without SD,x = 10, Qmax = 12�D, FIFO sheduling).
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Figure 6.24: Evolution of the mean windowsizes when x = 10, Qmax = 12 �D, SD notimplemented (FIFO sheduling).
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Figure 6.26: Evolution of the fairness index when x = 10, Qmax = 12�D, with and withoutSD implemented (FIFO sheduling). SD parameters: L = 7�D, K = 1.From the fairness results in Figure 6.26 for the two systems it is seen that the fairness ismuh better when the SD algorithm is applied. This is a result that also appeared fromthe senarios in Setion 6.2.1, and that is to be expeted, sine the SD algorithm aimsat fairness. In the very beginning, the two fairness urves are the same, sine as long asthe aeptane rules of the SD algorithm are ful�lled, the output of the systems dependsonly on the sheduling algorithm and on the traÆ that is o�ered, whih is equal thensine the traÆ that is o�ered stays the same for both systems as long as no losses our.Beause both the eÆieny and fairness are larger for the system with SD implemented,this senario illustrates that there is not neessarily a trade-o� between eÆieny andfairness.Remark that no fairness urves are shown for single sample paths, as was done for theeÆieny, sine the global fairness is not just the mean of the fairness obtained on alldi�erent sample paths, whereas for the eÆieny this relation is true, as an be seen fromthe de�nitions in Setion 6.1.6.Senario 6.2.5. Consider the two systems with following parameters:� x = 10 (slots), Qmax = 12�D (ells), L = 9�D (ells),� PLQF sheduling,� (1) K = 1:2, (2) K = 1:4.Figure 6.27 shows the average eÆieny obtained with these systems. The highest eÆienyis obtained when K is set to 1.2, so when being more onservative in aepting pakets.The same �gure shows also for both settings of K the eÆieny of a single sample path.
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Figure 6.27: Evolution of the average eÆ-ieny and the eÆieny obtained on twosample paths when x = 10, Qmax = 12�D,L = 9 � D, K = 1:2 or K = 1:4 (PLQFsheduling).
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Figure 6.28: Evolution of the fairness indexwhen x = 10, Qmax = 12 � D, L = 9 � D,K = 1:2 or K = 1:4 (PLQF sheduling).
As an be seen, although the average eÆieny is the highest with K = 1:2, a samplepath obtained with K = 1:4 does not have to lie the whole time below one obtained withK = 1:2. Figures 6.29 and 6.30 show the evolution of the window sizes and queue sizesof the two onnetions orresponding to the sample paths whose eÆieny is shown inFigure 6.27. It an be seen from the plots that a derease in eÆieny ours at momentsthat the bu�er beomes empty, and these moments our with some delay after momentson whih the sum of both windows was low. The delay is aused by the fat that thewindows are fored to go down due to losses, and losses only our when the queue size isat least 9 � D ells, sine L = 9 � D. During the time the windows need to grow again,the queue an ow empty.On the sample path shown for K = 1:2, the queue does not beome empty during ap-proximately the �rst 160 slots, keeping the eÆieny equal to 1. The reason is that in thebeginning, the queue oupation is ompletely unfair, due to the unfair start situation, sothe SD algorithm drops pakets from the �rst onnetion. As a result, the window of the�rst soure is fored to one, but the inux of pakets into the queue keeps assured sine theseond soure was able to grow its window by that time. Later on, the queue size of bothonnetions is more equal over time, making that losses our then due to bu�er overow.As an be seen from Figure 6.29, most of the time one of the windows is fored down om-pletely, while the other is only halved. This window is then mostly fored down furtherat the next window adaptation by the SD algorithm, sine its orresponding onnetionhas more pakets in the queue. For K = 1:4, the aeptane rules of the SD algorithmare less onservative, suh that in the beginning only one paket of the �rst onnetionis dropped, and the window of that onnetion is halved. Afterwards, also losses due to
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Figure 6.29: Evolution of the window andqueue sizes orresponding to the samplepath shown in Figure 6.27 for K = 1:2(x = 10, Qmax = 12�D, L = 9�D, PLQFsheduling).
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Figure 6.30: Evolution of the window andqueue sizes orresponding to the samplepath shown in Figure 6.27 for K = 1:4(x = 10, Qmax = 12�D, L = 9�D, PLQFsheduling).
bu�er overow our, suh that the windows of the two onnetions need to go down (thatof onnetion 2 less than that of onnetion 1). While the windows grow again, the queuebeomes empty, resulting in a drop of the eÆieny. When looking at the average eÆienyin Figure 6.27, the moment of the �rst drop of eÆieny ours at approximately the sametime for K = 1:2 and K = 1:4, whih indiates that for both K's there are sample pathsfor whih the queue beomes empty at that time. However, the total probability mass ofthe sample paths on whih this ours when K equals 1.2 is muh less than when K = 1:4.From Figure 6.28 it is seen that the unfairness of the start situation is solved a bit earlier forK = 1:2 than for K = 1:4. This is beause with K = 1:2, pakets of the onnetion whihhas most ells in the bu�er are dropped sooner than with K = 1:4, sine the aeptaneondition Qi � FS is sooner not ful�lled anymore. Also this senario illustrates that thereis not neessarily a trade-o� between eÆieny and fairness, beause the eÆieny and thefairness are higher for K = 1:2 than for K = 1:4.The two previous examples have illustrated that being more onservative in aeptingpakets does not neessarily result in lower eÆieny, due to the responsiveness of thesoures. That this is not always the ase is illustrated by many of the examples in the nextsetion, and by the following example:



124 6. Transient performane analysis of SD with responsive traÆSenario 6.2.6. Consider the two systems with following parameters:� x = 10 (slots), Qmax = 12�D (ells), K = 1,� RR sheduling,� (1) L = 3�D (ells), (2) L = 5�D (ells).The eÆieny obtained with these systems is shown in Figure 6.31. The evolution of thewindow sizes is shown in Figures 6.33 and 6.34. Both system evolutions are deterministi,sine the queue oupation never reahes the maximum bu�er size and RR sheduling isapplied. It is seen from Figure 6.31 that the highest eÆieny is obtained for L = 5�D.The reason is that for L = 3 � D, both windows are at nearly the same time large, andat nearly the same time small, while when the windows are large, their sum is never verylarge (never larger than 13 pakets) beause the low setting of L auses already losses atlow bu�er oupations. So the queue is often empty during the times that both windowsare small, as an be seen from Figure 6.35, beause then there are not enough pakets sentto keep the bu�er full, and before when the windows were high, only a small reserve ouldbe olleted. When L equals 5 � D on the other hand, the �rst window is large whenthe other is small, and vie versa, suh that the bu�er beomes only rarely empty (seeFigure 6.36), so the eÆieny remains high.The fairness obtained for both settings of L is already very soon high. This is beause thefairness ondition of the SD algorithm is already tested very soon, and the RR shedulingalgorithm lets the ells leave the bu�er in a very fair way as long as there are ells ofboth onnetions present in the bu�er. The reason that the fairness urve for L = 5�Dslowly osillates around that of L = 3 � D is that for L = 5 � D there are alternatelyperiods that there are no ells of the �rst, respetively the seond, onnetion in the bu�erwhen the window of that partiular onnetion is low. During suh period, more ells ofone onnetion leave the bu�er, suh that the fairness goes slightly down, but during thefollowing period more ells of the other onnetion leave the bu�er, suh that the fairnessinreases again.ConlusionsFor this setion, the onlusions are that� Due to the responsiveness of the soures, it is not neessarily true anymore that beingmore onservative in aepting pakets implies a lower eÆieny, as would be the asewhen non-responsive soures would be used.� There is not neessarily a trade-o� between eÆieny and fairness, so it should bepossible to �nd parameter settings for the SD sheme that result in both good eÆ-ieny and good fairness results.
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Figure 6.31: Evolution of the eÆieny whenx = 10, Qmax = 12�D, K = 1, L = 3�Dor L = 5�D (RR sheduling).
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Figure 6.32: Evolution of the fairness indexwhen x = 10, Qmax = 12 � D, K = 1,L = 3�D or L = 5�D (RR sheduling).
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Figure 6.33: Evolution of the window sizeswhen x = 10, Qmax = 12 � D, K = 1 andL = 3�D, (RR sheduling).
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connection 2Figure 6.34: Evolution of the window sizeswhen x = 10, Qmax = 12 � D, K = 1 andL = 5�D, (RR sheduling).
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Figure 6.35: Evolution of the bu�er oupa-tions when x = 10, Qmax = 12 � D, K = 1and L = 3�D, (RR sheduling).
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Figure 6.36: Evolution of the bu�er oupa-tions when x = 10, Qmax = 12 � D, K = 1and L = 5�D, (RR sheduling).



126 6. Transient performane analysis of SD with responsive traÆx (slots) Qmax (ells) Qmax=x6 5�D 0.837�D 1.1712�D 2.0010 5�D 0.508�D 0.8012�D 1.2020�D 2.0013 7�D 0.5410�D 0.7716�D 1.2326�D 2.00Table 6.2: Parameter settings for the senarios onsidered in Setion 6.2.3.6.2.3 Inuene of the SD parametersIn this setion the inuene of the parameters of the SD algorithm on the eÆieny andfairness results, when starting from the unfair start ondition 3 of Setion 6.2.1, is studied.Beause of the unfair start situation, all fairness urves have a typial shape: in thebeginning they go very fast down, beause then an unfair amount of pakets of eahonnetion is o�ered to the system; sine the bu�er is empty then, all pakets are aepteduntil Q exeeds L, so also the output of the system is unfair in the beginning. Afterwards,the fairness inreases again in a rather steep and utuating way, and �nally it slowlygrows towards one. When disussing fairness results further on, this last part of a fairnessurve is alled the `horizontal' part, the other part the `steep' part.Senarios that are onsidered in this setion have parameters as shown in Table 6.2. Theseparameters are hosen suh that the ratio of Qmax to x approximately takes the same values(0.50, 0.80, 1.20 and 2.00) for the di�erent settings of x. Remark that during x slots, xpakets may leave the bu�er. So ideally, the windows of both soures should be �xed a littlebelow x=2. But this is not how responsive but greedy soures work: they always try to lettheir window grow, and derease it only when losses our. So on one hand the bu�er isneeded to aommodate pakets that arrive simultaneously, and on the other hand to buildup some reserve of pakets to keep the eÆieny high when the windows of the soures arelow. With a setting of Qmax=x equal to 0.50 and two soures, in the ideal situation there isonly plae in the bu�er to aommodate pakets that arrive simultaneously. With a settingof Qmax=x larger than 0.50, some reserve an be built up. When Qmax=x equals 2, in theworst ase senario that both soures send together at their maximum rate, the bu�er anaommodate their pakets during 2x slots. Remark however that it are the parametersof the SD algorithm whih determine in a large way how many pakets eventually areaommodated in the bu�er.



6.2. Numerial results and disussion 127Inuene of the threshold LConsider the systems of Table 6.2 and set the SD parameter K equal to 1. The threshold Lis varied between L = 1� D and L = Qmax �D. Remark that the maximal setting of Lorresponds to the ase where the SD algorithm is not implemented, sine at the momentsthat pakets arrive, there is always plae in the bu�er for at least one paket, beauseD ellshave just left it. So when L is set at D ells before Qmax, it is always true that Q � Lwhen pakets arrive, and the test Qi � FS is never performed. First the observations madebased on this extensive set of senarios are summarized. Afterwards they are illustratedby representative examples.The following observations are made:� For RR and PLQF sheduling, the eÆieny generally inreases when L inreases.This seems natural beause inreasing L implies that more pakets are aepted, butas has been mentioned before, this is not always true due to the responsiveness ofthe soures. The exeptions to this general rule are:{ There are always settings of L through whih higher eÆieny values are ob-tained than when L is set to its maximal value Qmax�D (i.e., SD is not imple-mented). With RR sheduling, there are more of these settings than with PLQFsheduling. Sometimes even perfet eÆieny values (i.e., onstantly equal to 1)are obtained with RR. With the implementation of the SD algorithm, whosemain intention is to inrease the fairness, there are thus settings of L that allowto obtain also a higher eÆieny than when SD is not implemented.{ With RR sheduling, in ase that the eÆieny results obtained are very high,it is possible that a larger L leads to a lower eÆieny. Probably beause theseresults are so lose to optimal, a hange of L beomes less signi�ant.{ With PLQF sheduling, for eÆieny results whih are among the highest ob-tained with a partiular senario, sometimes a larger L gives lower eÆienyresults.{ A few examples are found with RR sheduling where the eÆieny is drastiallylower than what would be expeted when looking at the results obtained withneighboring examples (i.e., examples where the di�erene in the setting of L isonly D ells). In these examples the windows of both soures synhronize aftera while, but in suh a way that the bu�er beomes often empty, whih pulls theeÆieny down. None of suh examples our with PLQF sheduling, beauseof the probabilisti harater of suh systems.� With FIFO sheduling, the statement that the eÆieny inreases when L inreasesis true when x is small (x = 6), and for very small values of L for the other x's. In theother ases, no real relation an be found between a hange of L and the orrespondinghange of the eÆieny, but in general large L values (a few paket sizes before the



128 6. Transient performane analysis of SD with responsive traÆend of the bu�er) give better eÆieny results than small L values. As with RRand PLQF sheduling, also with FIFO sheduling there are always settings of L withwhih higher eÆieny values are obtained than when SD is not implemented, butsometimes these results are not the whole time above these obtained when no SDis implemented, but only in the long run. As with RR sheduling, also with FIFOsheduling some examples are found where the windows of both soures synhronizein suh a way that the bu�er beomes often empty, implying dereasing eÆienyresults.� A main observation that an be made about the fairness for the systems with RRand PLQF sheduling is that it is always muh better when SD is implemented thanwhen SD is not implemented, irrespetive of the exat setting of L. For all settingsof L suh that L < Qmax � D (i.e., SD implemented), no spei� setting of L anreally be judged to give results that are the whole time better than with another L.With FIFO sheduling, in general the same observation an be made. However, afew exeptions are found now where the fairness is worse in a senario where SD isused than when it is not used.� In the very beginning, the fairness urves oinide for all L, sine the behavior of allsystems is the same as long as Q � L. Later, the urves split. The smaller L, thesooner a urve splits from the other urves, sine the smaller L, the sooner the SDsheme starts to solve the initial unfairness.� In general, the larger x, the longer the steep part lasts, when time is expressed inmultiples of x. This indiates that the longer between adapting the windows, thelonger it takes before the initial unfairness is more or less solved.The observations summarized above are now illustrated by numerial examples. Fig-ures 6.37 until 6.39 show some of the eÆieny results obtained with RR sheduling. In Fig-ure 6.37 results obtained with the system with parameters x = 13 slots and Qmax = 10�Dells are shown. As an be seen, the eÆieny inreases when L inreases, exept forL = 3�D ells and L = 9�D ells. L = 9�D ells is the senario in whih the SD algo-rithm is not applied. A higher eÆieny than in this senario is obtained with L larger orequal to 5�D ells. The senario with L set equal to 3�D ells is one of the few exampleswhere the eÆieny urve is di�erent than expeted. Analyzing the results obtained withthis senario learns that in this senario the windows of both soures synhronize after awhile, but in suh a way that the sum of both windows is always muh smaller than x.This means that every x slots, there will be some slots that the bu�er is empty, whih pullsthe eÆieny down. Figure 6.38 shows results obtained with the senario where x = 13slots and Qmax = 16 � D ells. Again values for L an be found suh that the eÆienyis larger than when SD is not implemented (L = 15 �D ells). In general, the eÆienyinreases when L inreases, but for L = 12 � D ells, the eÆieny is smaller than whenL = 10�D ells, exept in the beginning. But for both settings of L the eÆieny is high(above 0.98). The results shown in Figure 6.39 are all obtained with the senario where x
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L = 9 x DFigure 6.37: EÆieny results obtainedwhen x = 13, Qmax = 10�D and K = 1 fordi�erent settings of L (RR sheduling).
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L = 15 x DFigure 6.38: EÆieny results obtainedwhen x = 13, Qmax = 16�D and K = 1 fordi�erent settings of L (RR sheduling).
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Figure 6.39: EÆieny results obtainedwhen x = 10, Qmax = 20�D and K = 1 fordi�erent settings of L (RR sheduling).
1 100 200 300 400 500

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (slots)

fa
irn

es
s 

in
de

x

L = 5 x D
L = 9 x D
L = 13 x D
L = 16 x D
L = 19 x DFigure 6.40: Fairness results obtained whenx = 13, Qmax = 20 � D and K = 1 fordi�erent settings of L (RR sheduling).equals 10 slots and Qmax equals 20�D ells. When L is set between 8�D and 17�D, theeÆieny obtained is always perfet (i.e., onstantly equal to one), whih means that thebu�er never beomes empty. Also the bu�er never overows under these senarios. ForL = 18�D, the eÆieny urve is a little below one, so this is again an example where theeÆieny is very high, but smaller than with a senario where L is smaller (i.e., smallerthan all senarios that lead to a perfet eÆieny).Some fairness results obtained with the systems with RR sheduling are shown in Fig-ures 6.40 and 6.41. In these �gures only a few urves are shown to keep the �gures lear,
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L = 15 x DFigure 6.41: Fairness results obtained whenx = 13, Qmax = 16 � D and K = 1 fordi�erent settings of L (RR sheduling).
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Figure 6.42: EÆieny results obtainedwhen x = 13, Qmax = 16�D and K = 1 fordi�erent settings of L (PLQF sheduling).
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L = 19 x DFigure 6.43: Fairness results obtained whenx = 10, Qmax = 20 � D and K = 1 fordi�erent settings of L (PLQF sheduling).
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L = 5 x D: perfect efficiency

L = 1 x D
L = 2 x D
L = 3 x D
L = 4 x D
L = 6 x DFigure 6.44: EÆieny results obtainedwhen x = 6, Qmax = 7 � D and K = 1 fordi�erent settings of L (FIFO sheduling).but all fairness urves for L 6= Qmax � D lie in the same region as the urves shown inthe �gures. This illustrates that the fairness is muh better when SD is implemented thanwhen it is not implemented. Remark also the dips (around 60-100 slots in Figure 6.40, 78-130 slots in Figure 6.41) in the fairness urves when SD is not implemented. Before lossesour, the seond soure is allowed to let its window grow and sends more and more ellsin the system, suh that the initial unfairness is slowly solved. Beause the SD algorithmis not implemented, losses our due to bu�er overow, and the most likely situation isthat both onnetions experiene losses, and have to redue their window. This makes that



6.2. Numerial results and disussion 131the fairness goes down again (the dip), beause the �rst onnetion still has the largestreserve of ells in the queue from before, and beause the window of the �rst soure wasstill the largest when losses ourred, it is very likely that this window now still is largerthan that of the seond soure, although not as extremely anymore as in the beginning.The �gures illustrate also that the urves oinide in the beginning, and one by one branho�. The smaller L, the sooner this happens. Comparing Figure 6.40 with Figure 6.41shows that in Figure 6.41, where x is 13, it takes longer (approximately 10 times x slots)before the horizontal part of the urves starts than in Figure 6.40 where x = 10 and ittakes approximately 7 times x slots.Figures 6.42 and 6.43 show some results obtained when PLQF sheduling is used. InFigure 6.42, eÆieny results are shown for x = 13 slots and Qmax = 16 � D ells. This�gure illustrates that also with PLQF sheduling there are settings of L with whih highereÆieny values are obtained than when SD is not implemented (L = 15 � D). Furtherit an be seen from the �gure that in general, the eÆieny inreases when L inreases,although this is not always the ase. For example, for L = 11�D the eÆieny is largerthan for L = 13�D. When looking at the most-likely path for this last ase, it is seen thatfrom a ertain time on (around 420 slots) approximately one every 520 slots, the windowof one onnetion is fored down until its minimum, while that of the seond onnetion,whih at that time was not too large, is halved, suh that both onnetions end up witha small window. Some time is needed to let these windows grow again, during whih thebu�er ows empty for a few slots. Figure 6.43 shows fairness results when x equals 10 slotsand Qmax is 20 � D. The �gure illustrates learly that the fairness obtained when SD isnot implemented (L = 19�D) is worse than when it is implemented and that the fairnessurves oinide in the beginning, and branh o� one by one, �rst for the smallest L. Thisbranhing o� happens sooner here than in the orresponding ase with RR sheduling(Figure 6.40), sine with RR a di�erene in fairness ours only from the moment thatthere is a di�erene in the output for the senarios with di�erent L. This happens whenthere is a di�erene in whih queue is empty at the partiular moment.Results obtained when FIFO sheduling is used are shown in Figures 6.44 until 6.46.Figure 6.44 shows eÆieny results obtained when x = 6 and Qmax = 7 � D. Here it istrue that the eÆieny inreases when L inreases, and that again there are settings of L(L = 4 � D and L = 5 � D) suh that higher eÆieny values an be obtained whenSD is implemented than when SD is not implemented. In Figure 6.45, eÆieny resultsobtained for x = 13 and Qmax = 10 � D are shown. It an be seen from the �gure thatfor small values of L, the eÆieny inreases when L is larger. For larger values of L,no real relation seems to exist between a hange of L and a orresponding hange of theeÆieny, but exept for L = 8�D, all settings of L above 5�D give reasonable eÆienyresults. Analyzing the results obtained when L equals 8�D learns that all sample pathswill eventually reah a state in whih the windows of both soures synhronize, and onethe system has reahed this state, it keeps returning to it. During suh a yle, whih lasts117 slots, in 31 of these slots the bu�er is empty, implying that the eÆieny keeps goingdown. No �gure is shown here where no setting of L is found suh that the orresponding
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L = 9 x DFigure 6.45: EÆieny results obtainedwhen x = 13, Qmax = 10�D and K = 1 fordi�erent settings of L (FIFO sheduling).

1 60 120 180 240 300
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (slots)

fa
irn

es
s 

in
de

x

L = 3 x D
L = 5 x D
L = 7 x D
L = 9 x D
L = 11 x DFigure 6.46: Fairness results obtained whenx = 6, Qmax = 12�D and K = 1 for di�er-ent settings of L (FIFO sheduling).eÆieny urve lies the whole time above that obtained when SD is not implemented. Butfor example when x = 10 and Qmax = 8 � D, only eÆieny urves whih lie in the longrun above that obtained when L = 7 �D (no SD implemented) exist. Figure 6.46 showsfairness results obtained when x = 6 and Qmax = 12 � D. Mostly, the fairness obtainedwhen SD is implemented is better than when SD is not implemented (L = 11 � D), butthis �gure shows also one of the very few exeptions found. When L = 7 � D, it looksfrom the �gure that the fairness urve does not approah one. Investigating the numerialresults learns however that it does, but muh slower than normal. The reason is that inthis partiular senario, the following ours frequently: the window of onnetion twoshows with a slight delay the same behavior as that of onnetion one; at the moment thatpakets of onnetion one are dropped by the SD algorithm (obviously, W1 has reaheda maximum at that time, and the bu�er ontent is above L), then also the window ofonnetion two is fairly high, suh that Q will stay above L; during the following intervalof x slots, W2 reahes its maximum, but W1 is low now, and thus onnetion one sendsmuh less than onnetion two, implying that onnetion two will loose a lot of pakets;the result is that the window of onnetion two has to go down, suh that onnetion twoan send less than onnetion one; beause this ours repeatedly, the unfairness is highernow than in other senarios.Inuene of the parameter KFor the senarios of Table 6.2 with x = 10 and di�erent settings of L, K will now be hosenfrom K = 1, K = 1:2 and K = 1:4. The larger K, the less severe the SD algorithm is indropping pakets. The following observations are made based on the results:



6.2. Numerial results and disussion 133� With RR sheduling, it is true in general that when K inreases, then the eÆienystays equal or inreases also. The larger L, the smaller the positive e�et of inreasingK beomes. Some exeptions are found where the eÆieny obtained with K = 1:2or K = 1:4 is the lowest. This ours when the eÆieny results are very large orin senarios where the windows synhronize in suh a way that the bu�ers beomeoften empty. On the fairness results almost no inuene of K is notied. The steepparts of the fairness urves for the di�erent K mostly oinide, sine as long as ellsare present in both queues, the output of the RR sheduling algorithm is the samefor the di�erent senarios.� With PLQF sheduling, for small L (approximately L < x=2) a larger K gives alarger eÆieny. The larger Qmax is, for the larger L values this stays true. WhenL is inreased, the results evolve through the following situations: (i) a larger Kgives still a larger eÆieny in the long run, but in the transient phase the eÆienyurves ross. (ii) K = 1:2 gives a higher eÆieny than K = 1, but for K = 1:4the eÆieny is below that obtained with K = 1, (iii) a larger K implies a lowereÆieny. For the fairness, some di�erenes are notied when hanging K, but thedi�erent fairness urves still stay very lose to eah other. The largest di�erene isnotied in the steep parts of the urves, where the smallest K value gives the bestresult.� When FIFO sheduling is applied, as with PLQF sheduling the eÆieny inreaseswhen K inreases for small L. The more L grows, an evolution towards the fat thata larger K gives a lower eÆieny is seen. Conerning the fairness results, urvesobtained for di�erent K values oinide in the beginning, after whih they one byone branh o�. In the steep part the best fairness is obtained when K equals 1. Inthe long run, it is diÆult to judge whih K value gives best results in a senario.What is seen often in the horizontal parts of the fairness urves is a slowly osillatingbehavior. Curves whih show this behavior orrespond often to senarios with whihperfet eÆieny values are obtained.In Figure 6.47 some eÆieny results are shown for di�erent settings of L and K whenx = 10, Qmax = 12�D and RR sheduling is applied. The urves for K = 1 and K = 1:2when L = 5 � D, and those for the three K values when L = 7 � D or L = 9 � Doinide. For all L, exept L = 1 � D, the eÆieny inreases when K grows, but thedi�erenes between the urves for K = 1 and these of K = 1:4 derease when L inreases.For L = 1 � D and K = 1 or K = 1:2, the evolution of both systems is deterministi,sine the queue oupation never reahes the maximum bu�er size. The eÆieny urveobtained when K equals 1.2 lies below that when K equals 1, sine in the �rst ase thebu�er beomes more often empty. Some fairness results obtained with di�erent K forx = 10, Qmax = 20�D and L = 3�D an be found in Figure 6.48. The steep part of the
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L = 7 x D, K = 1, 1.2, 1.4Figure 6.47: EÆieny results obtainedwhen x = 10, Qmax = 12 � D for di�erentsettings of L and K (RR sheduling).
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Figure 6.48: Fairness results obtained whenx = 10, Qmax = 20� D and L = 3 �D fordi�erent settings of K (RR sheduling).
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L = 9 x D, K = 1.4Figure 6.49: EÆieny results obtainedwhen x = 10, Qmax = 20 � D for di�erentsettings of L and K (PLQF sheduling).
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L = 16 x D, K = 1.4Figure 6.50: EÆieny results obtainedwhen x = 10, Qmax = 20 � D for di�erentsettings of L and K (PLQF sheduling).three urves oinides, in the horizontal part a slight di�erene is seen.Figures 6.49 and 6.50 show eÆieny results obtained with PLQF sheduling when x = 10and Qmax = 20 � D. The �gures illustrate the evolution from `a larger K gives a largereÆieny' for small L towards `a larger K gives a smaller eÆieny' for large L. ForL = 5 �D or L = 7 �D, the eÆieny inreases when K inreases. For L = 9� D andL = 11�D, in the long run this stays true, but in the transient phase the largest eÆienyis obtained when K = 1:2. When L equals 13 � D, the largest eÆieny is obtainedwith K = 1:2, the lowest with K = 1:4. Finally, with L = 16 � D, a larger K gives a
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Figure 6.51: Fairness results obtained whenx = 10, Qmax = 20�D and L = 5�D for dif-ferent settings of L and K (PLQF shedul-ing).
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L = 9 x D, K = 1.4Figure 6.52: EÆieny results obtainedwhen x = 10, Qmax = 12 � D for di�erentsettings of L and K (FIFO sheduling).
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Figure 6.53: Fairness results obtained when x = 10, Qmax = 12 � D and L = 9 � D fordi�erent settings of L and K (FIFO sheduling).smaller eÆieny. Figure 6.51 shows some fairness results when PLQF sheduling is usedfor x = 10, Qmax = 20�D and L = 5�D. As the �gure illustrates, no large di�erenesour between the fairness urves for di�erent K. The dip in the fairness around 100-150slots orresponds to the �rst moment that the window of onnetion 2 is fored down (untilthen it has been growing). Beause onnetion 2 still has to make up some of its initialarrears, and now temporarily an send less than onnetion 1, the fairness goes a bit downagain.



136 6. Transient performane analysis of SD with responsive traÆFigures 6.52 and 6.53 show results for the di�erent values of K when FIFO sheduling isapplied. In Figure 6.52 eÆieny values are shown for a senario in whih x = 10 andQmax = 12�D. As an be seen, when L equals 3�D, then the eÆieny inreases whenK inreases. For L = 7�D, the eÆieny is the largest (i.e., perfet) when K = 1:2. TheeÆieny obtained with K = 1 is larger than that obtained with K = 1:4, while in thetransient phase urves ross. When L equals 9�D, the lowest eÆieny is obtained whenK = 1:4. Figure 6.53 shows fairness results for di�erent K when L equals 9 � D for thesame senario as used in Figure 6.52. The three fairness urves oinide in the beginningand then branh o� one by one. In the horizontal part, the urves for K = 1 and K = 1:2show an osillating behavior aused by the fat that the window of one onnetion is highwhile that of the other onnetion is low. Beause of the FIFO sheduling, this implies thatduring a period more ells of onnetion one will leave the bu�er, suh that the fairnessgoes down. During a following period, more ells of onnetion two leave the bu�er, suhthat the fairness grows again, and so on. Comparing with Figure 6.52 learns that perfeteÆieny values are obtained when L = 9�D and K = 1 or K = 1:2.ConlusionsThe most important onlusion of this setion is that the presene of the SD algorithmhas a large positive e�et on the fairness results, irrespetive of the exat setting of theparameters of the algorithm. On the eÆieny results however, these parameters havemore inuene.With RR and PLQF sheduling, the eÆieny generally inreases when the threshold Linreases, and hoosing L at a few paket sizes less than the size of the bu�er resultsin a good setting. With RR sheduling, the hane is rather high that the eÆienyvalues obtained are then even above these obtained when SD is not implemented (sothere is no trade-o� between eÆieny and fairness then). With PLQF sheduling, thishane is reasonable. Remark however that with RR sheduling, sometimes the eÆieny islower than expeted beause of synhronization e�ets. When using PLQF sheduling, nolasting synhronization will our beause of the probabilisti harater of the shedulingalgorithm in these senarios. Also with FIFO sheduling, synhronization an our. WithFIFO sheduling it is muh harder to make a onlusion about the best setting of thethreshold L, sine no real relation was found between a hange of L and a orrespondinghange of the eÆieny. But hoosing it a few paket sizes less than the size of the bu�eras with RR and PLQF sheduling gave in most senarios rather good results.The parameter K of the SD algorithm has also more inuene on the eÆieny resultsthan on the fairness results. Inreasing K has prinipally a positive e�et on the eÆienywhen L is set at a small value. When the setting of L is larger, this positive e�et is stillseen with RR sheduling, but with PLQF and FIFO sheduling the probability is ratherhigh that the eÆieny will be lower than when K is hosen equal to one.As a general onlusion, it is reommended to implement SD to inrease the fairness, but



6.3. Appendix 137with a parameter setting fousing on the eÆieny results.6.3 AppendixIn this appendix it is shown that under idential start values for both onnetions (i.e.,Q1(0�) = Q2(0�), W1(0�) = W2(0�), L1(0�) = L2(0�)), the mean window size and themean bu�er oupation at an arbitrary time instant l is idential for both onnetions.For the PLQF and the RR system, this is a speial ase of the property below, whih isproven formally. For the FIFO system, only an intuitive explanation is given. Beause theresults in this hapter for the FIFO system are obtained by simulation, no mathematialdesription of the evolution over time of this system was developed before. Developing ithere would only introdue more notation to desribe the order in whih the ells of thedi�erent onnetions have entered the bu�er, after whih a formal proof would be almostanalogue to that for the PLQF and RR system.Property 6.3.1. Let k be an element of the ordered set f0�; 0+; 1�; 1+; 2�; 2+; : : : g. Forthe PLQF and the RR system as de�ned in Setion 6.1, if for all (q1; q2; s; w1; w2; l1; l2) 2 
for whih PfXk = (q1; q2; s; w1; w2; l1; l2)g 6= 0, it is true that q1 = q2, w1 = w2 and l1 = l2,then E [Q1(l)℄ = E [Q2(l)℄ and E [W1(l)℄ = E [W2(l)℄, for all l � k.Remark that the random variable S is only present in the states of 
 when needed, i.e.,when PLQF sheduling is applied.Proof. From the omputations in Setion 6.1.5 ofP1 = P nXh+ = (q1; q2; s; w1; w2; l1; l2) j Xh� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o ; and (6.15)P2 = P nXh� = (q1; q2; s; w1; w2; l1; l2) j X(h�1)+ = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o ; (6.16)it is easily seen that when P1 = p1, then alsoP nXh+ = (q2; q1; s; w2; w1; l2; l1) j Xh� = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)o = p1; (6.17)and when P2 = p2, then alsoP nXh� = (q2; q1; s; w2; w1; l2; l1) j X(h�1)+ = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)o = p2: (6.18)By indution it is now shown that for all l � k,P fXl = (q1; q2; s; w1; w2; l1; l2)g = P fXl = (q2; q1; s; w2; w1; l2; l1)g : (6.19)



138 6. Transient performane analysis of SD with responsive traÆFor l = k, (6.19) is trivially true by the assumption in property 6.3.1. Assume that (6.19)is also true for l > k (indutionhypothesis). If l = h�, then de�ne l� = h+. If l equals h+,then de�ne l� = (h+ 1)�. So it should be shown now that (6.19) is also true for l�:P fXl� = (q1; q2; s; w1; w2; l1; l2)g =X(q̂1;q̂2;ŝ;ŵ1;ŵ2;l̂1;l̂2)2
P nXl� = (q1; q2; s; w1; w2; l1; l2) j Xl = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)oP nXl = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o= X(q̂2;q̂1;ŝ;ŵ2;ŵ1;l̂2;l̂1)2
P nXl� = (q2; q1; s; w2; w1; l2; l2) j Xl = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)oP nXl = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)o = P fXl� = (q2; q1; s; w2; w1; l2; l1)g ; (6.20)where the �rst and third equalities use the omplete probability formula, and the seondequality uses that when (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
, then also (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1) 2 
,together with equations (6.15) and (6.17) when l� = h+, or equations (6.16) and (6.18)when l� = h�, and the indutionhypothesis.By de�nition of the mean, it follows now immediately that for eah l � k,E [Q1(l)℄ = 2Qmax=DXt=0 tD2 X(q1;q2;s;w1;w2;l1;l2)2
q1=tD=2 P fXl = (q1; q2; s; w1; w2; l1; l2)g= 2Qmax=DXt=0 tD2 X(q2;q1;s;w2;w1;l2;l1)2
q1=tD=2 P fXl = (q2; q1; s; w2; w1; l2; l1)g = E [Q2(l)℄ ; (6.21)and analogously that E [W1(l)℄ = E [W2(l)℄. �Under idential start values for both onnetions, property 6.3.1 an be applied for k = 0�,suh that for the PLQF and the RR system the mean window size and the mean bu�eroupation at an arbitrary time instant l is idential for both onnetions.Property 6.3.1 is also valid for the FIFO system under the extra ondition that the equalamounts of ells in the bu�er of onnetion 1 and onnetion 2 at time k are in suh anorder present in the bu�er that D=2 ells of eah onnetion leave the bu�er per slot underFIFO sheduling. Beause the ondition of property 6.3.1 and this extra ondition stayful�lled until the �rst time instant later than time k that the bu�er overows on one ofthe sample paths, property 6.3.1 is already ertainly true until that time instant. Beausewith FIFO sheduling a sample path only splits at times that bu�er overow ours, and itwas assumed that then eah onnetion has equal probability of being the one from whihthe paket is lost, for eah sample path there is always another sample path with identialprobability suh that the number of ells of onnetion 1 in the bu�er on the �rst sample



6.3. Appendix 139path equals the number of ells of onnetion 2 in the bu�er on the seond sample path,and vie versa, and the same is true for the window sizes and the values of the loss ounters.So property 6.3.1 stays also true after the �rst time instant that the bu�er overows on asample path.





Chapter 7Extensions to the SD modelIn this hapter two extensions to the model developed in Chapter 6 are onsidered. InSetion 7.1 the parameter x of the soure model, whih represents the time after whihthe responsive soures update their window, is taken di�erently for both soures. Themotivation behind this extension is to introdue another aspet of unfairness in the modelthan the unfair start situation, and observe the behavior of the SD sheme under thiskind of unfairness. Where in Chapter 6 the SD bu�er aeptane rules were onsidered, inSetion 7.2 the de�nition of the fair share is hanged suh that now the fair bu�er alloation(FBA) aeptane rules are onsidered. A omparison with the results obtained in thisase and the results obtained before using SD is made. Setion 7.3 onludes this hapterwith a short overview of other methods used in the literature to model frame aware bu�eraeptane shemes.
7.1 Use of a di�erent parameter x for both souresWith real TCP soures, there is an inherent unfairness to onnetions with longer roundtriptimes [29℄. This unfairness originates from the fat that in the absene of ongestion, eahonnetion inreases its window every roundtrip time, so the window and thus also thethroughput inreases at a faster rate for onnetions with shorter roundtrip times.In the model developed in the previous hapter, a soure inreases its window after x slotswhen no losses ourred during these x slots. Sine two idential soures were onsidered,both soures used the same value for x. In this setion we extend the soure model suhthat both onnetions use a di�erent value for x, i.e., x1 for the �rst soure and x2 for theseond soure, with x1 6= x2. The soure behavior stays the same, exept that the windowsize of soure i (i = 1; 2) now an take values in the range 1; : : : ; xi.A senario with idential start onditions for both onnetions is onsidered:141
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Figure 7.1: Fairness results obtained whenx1 = 10, x2 = 13, Qmax = 16�D and K = 1for di�erent settings of L (RR sheduling).Idential start onditions.
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144 7. Extensions to the SD modelgrows above L, the seond onnetion looses pakets and has to redue its window, suhthat it never reahes its maximum value.In Figure 7.4 the evolution of the eÆieny for the four systems is shown. In the beginningthe eÆieny is low, sine both soures still have to let their windows grow. After bothwindows are large enough to keep the bu�er non-empty, the eÆieny inreases. Remarkthat all settings of L onsidered were hosen a few paket sizes before the end of the bu�er.These settings of L were found in the previous hapter to be good settings for the thresholdto obtain good eÆieny and good fairness results. Also here this is the ase: both theeÆieny and fairness results obtained with them are better than the results obtained whenSD is not implemented (L = 15�D).7.2 Comparison with fair bu�er alloationFrom Chapter 5 it is known that the seletive drop bu�er aeptane sheme is a simplerversion of the fair bu�er alloation (FBA) bu�er aeptane sheme. The di�erene be-tween both shemes is in the alulation of the fair share (FS), and more in partiular inthe aeptable load ratio. For both shemes the FS is alulated as the produt of the fairalloation and the aeptable load ratio, but for SD the aeptable load ratio is a simpleparameter K, while for the FBA sheme it is given byaeptable load ratio = Z �1 + Qmax �QQ� L � ; (7.1)where Z is a saling fator, Qmax the bu�er apaity, L a �xed threshold and Q the bu�eroupany. Beause this is the only di�erene between both shemes, the owhart of theaeptane rules shown in Figure 6.1 is also valid for the FBA sheme, where the FS isnow alulated using the aeptable load ratio given above. As a onsequene, if in themodel developed in Chapter 6 for the SD sheme the de�nition of the FS in equation (6.4)is replaed byFS(q̂1; q̂2) = Z �1 + Qmax � q̂1 � q̂2q̂1 + q̂2 � L �� q̂1 + q̂2Ifq̂1 6=0g + Ifq̂2 6=0g� ; (7.2)then this model an also be used for the FBA sheme.In Table 7.1 the meaning of the aeptable load ratio is illustrated with a small example.The table shows for Qmax = 6�D and for di�erent values of the bu�er oupation Q anddi�erent settings of the threshold L the FBA aeptable load ratio when Z equals 1. Forother values of Z, the numbers in this table need to be multiplied by Z. The meaning ofthe aeptable load ratio is the following: when a new paket of onnetion i arrives at thebu�er, it is aepted in the bu�er if the number of ells Qi of onnetion i in the bu�er atthat moment is not larger than the number in the table orresponding to Q and L, timesQ=N , the average number of ells per ative onnetion in the bu�er. Remark that thepaket is always aepted if Q � L, so the value `1' is put in the table on these positions.



7.2. Comparison with fair bu�er alloation 145L = 1�D L = 2�D L = 3�D L = 4�D L = 5�DQ = 2�D 5 1 1 1 1Q = 3�D 5/2 4 1 1 1Q = 4�D 5/3 2 3 1 1Q = 5�D 5/4 4/3 3/2 2 1Q = 6�D 1 1 1 1 1Table 7.1: Aeptable load ratio for the FBA sheme when Qmax = 6�D (ells) and Z = 1for di�erent values of the bu�er oupation Q and di�erent settings of the threshold L.From the olumns of the table it is read that the loser Q is to the threshold L, the moretimes a onnetion is allowed to exeed the fair alloation before its paket is dropped. Theloser Q is to Qmax, the smaller this value beomes. When Z = 1, the values in the tablenever beome smaller than 1, while when Z < 1, the values derease when Q inreases andbeome smaller than 1 before Qmax is reahed. On the rows of the table it is seen that fora ertain bu�er oupation Q, the value in the table inreases for inreasing L, meaningthat the loser L is to Qmax, the more times a onnetion's oupation of the bu�er mayexeed the fair alloation before ells of its new pakets are dropped. For the SD sheme,a similar table would have the value of K on all positions where now a number stands.So with SD the threshold L is only indiating from whih bu�er oupation level on thesheme should test on the fairness before aepting ells of a new paket, while with FBAthe threshold is also used in the alulation of the aeptable load ratio.The goal of this setion is to ompare the performane obtained when using the FBAaeptane sheme with the performane obtained when using the SD aeptane sheme.The starting point is again the unfair start situation used in the previous hapter whereat time 0� the window of soure 1 is at its maximum, while the window of soure 2 isat its minimum. As for SD, the FBA sheme is originally de�ned with a global queueingand FIFO sheduling strategy, but we onsider it also in ombination with RR and PLQFsheduling.Consider systems with parameters as shown below:� x = 10 (slots), Qmax = 12�D (ells),� x = 10 (slots), Qmax = 20�D (ells),� x = 13 (slots), Qmax = 16�D (ells).Similar results as in the previous hapter (evolution of the throughputs, eÆieny, fairnessindex over time) are obtained when onsidering these systems with FBA. To make an easyomparison of the results with these for the SD sheme possible, we present the results in aslightly di�erent way as before. Figures 7.5 until 7.10 show the results. In eah �gure one ofthe systems mentioned before ombined with one of the sheduling shemes is onsidered,for di�erent settings of the threshold L and for three settings of the FBA parameter Z,
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Figure 7.5: EÆieny and fairness results obtained with RR sheduling when x = 10 andQmax = 12�D.
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Figure 7.6: EÆieny and fairness results obtained with RR sheduling when x = 13 andQmax = 16�D.



7.2. Comparison with fair bu�er alloation 147i.e., Z = 1, Z = 0:8 and Z = 0:5. Results obtained with SD when K = 1 are also shown.Subplots in the �gures on the same olumn show results obtained after a ertain �xednumber N of pakets of ells (N = 10x; 30x or 100x pakets) have left the bu�er. Theheight of the bars represents the eÆieny obtained with a senario at that time, while thedark, resp. light gray areas represent the throughput of onnetion 1, resp. onnetion 2at that time. The higher the bars, the less time was needed to suessfully deliver the Npakets to the destination. When the height of the bar is 1, this means that the N paketshave left the bu�er after the minimum time possible of N slots. The horizontal part of thewhite plus-sign in eah bar indiates half the height of the bar. Sine the eÆieny afterk slots is the sum of the throughputs of the two onnetions after k slots, the plus-signindiates what the throughputs of both onnetions should be to have perfet fairness. Thenumbers on the horizontal axis of eah subplot indiate the setting of the threshold in thebu�er, expressed as a multiple of D ells. Remark that for omparison, the leftmost barin eah plot gives results obtained when neither SD, neither FBA is implemented. So insubplots in the same olumn of a �gure, the leftmost bar is always the same.From Figures 7.5 until 7.10, and based on the main observations already made in theprevious hapter about the SD algorithm, the following similarities and di�erenes betweenthe FBA and SD aeptane shemes are notied:� Like the SD algorithm, also the FBA algorithm has a large positive e�et on thefairness results, irrespetive of the exat settings of the parameters L and Z of thealgorithm. In the �gures this is mainly seen when N = 10x pakets and whenN = 30x pakets. Afterwards also the system without aeptane sheme approahesperfet fairness beause the two soures onsidered are equal. The fairness obtainedwith FBA is omparable to that obtained by SD.� Also for the FBA sheme the parameter setting has more inuene on the eÆieny,although not so extreme as for the SD sheme. With SD, the eÆieny generallyinreases with inreasing L, as is also learly seen on the �gures in this setion. ForSD it was onluded that a setting of L a few paket sizes before the end of the bu�erresulted most of the time in good eÆieny, so the results obtained with FBA shouldbe ompared with the results obtained in this ase. For the FBA sheme, no stritrelation between the setting of L and the eÆieny appears from the results. Mostsettings give eÆieny results that are omparable with good results obtained withthe SD algorithm.� With RR sheduling, the eÆieny obtained when FBA is used is in most ases abovethat obtained when no aeptane sheme is implemented, and also often perfet (i.e.,onstantly equal to 1). So FBA with RR sheduling results in both good eÆienyand fairness. When FBA is ombined with FIFO or PLQF sheduling, the eÆienyvalues obtained are often above these obtained without aeptane sheme, but notalways. With PLQF sheduling, usually the highest eÆieny results are obtainedwhen a higher L is ombined with a lower Z, or vie versa.
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Figure 7.7: EÆieny and fairness results obtained with FIFO sheduling when x = 10and Qmax = 12�D.
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Figure 7.8: EÆieny and fairness results obtained with FIFO sheduling when x = 10and Qmax = 20�D.
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Figure 7.9: EÆieny and fairness results obtained with PLQF sheduling when x = 10and Qmax = 12�D.
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Figure 7.10: EÆieny and fairness results obtained with PLQF sheduling when x = 10and Qmax = 20�D.



150 7. Extensions to the SD model7.3 Conlusions and related workIn this hapter two extensions to the model developed in Chapter 6 were onsidered. Firstthe model was adapted suh that the interval after whih the soures update their windowis di�erent for both soures. This implies that a kind of inherent unfairness is introduedin the model, sine the window of the soure with the smallest update interval an growfaster and thus this soure an reuperate faster after its window is fored down due tolosses. The senario we onsidered illustrated learly that beause the two soures are nowdi�erent, some unfairness in the throughputs of the two onnetions stays present for ever.However, SD an partially resolve the bias that exists against the soure with the shorterupdating interval and improve the fairness results.Seondly the de�nition of the fair share was modi�ed suh that the fair bu�er alloation(FBA) sheme ould be onsidered. Results obtained with this sheme show that as the SDsheme, also the FBA sheme has a large positive e�et on the fairness results, irrespetiveof the exat setting of its parameters. These parameters have, again as with the SD sheme,more inuene on the eÆieny results, although their inuene is not so large as with theSD sheme. Both the fairness and the eÆieny results obtained with the FBA shemeare omparable with the results that are obtained with the SD sheme, for well-hosenparameters.Most theoretial models of frame aware bu�er aeptane shemes in the literature areabout partial paket disard (PPD) and early paket disard (EPD). In [17℄ the behaviorof the EPD sheme is studied by onsidering the evolution of the bu�er level over timeusing a deterministi model where r soures ontinuously send pakets of ells, whoseboundaries are o�set from one another by an equal amount. [83℄ analyzes the worst-aseexess bu�er apaity requirement for the EPD and for SD-like shemes (the di�erene isin the alulation of the fair share (FS), whih is alulated as FS = KL=N instead ofFS = KQ=N) that use global queueing and FIFO sheduling, or per-VC queueing and RRsheduling. An upperbound value on the total bu�er oupany is derived for all shemes.With EPD this upper bound is reahed when all soures begin sending a new paket justone ell time before the queue oupation exeeds the EPD threshold. With the SD-likeshemes the upper bound is reahed with the staggered input shedule where VC j beginssending a new paket just before the bu�er oupation of VC j � 1 reahes its maximumvalue.In [63℄, PPD and EPD are ompared with tail drop (TD) using a single soure. TheTD system is modeled as an M/M/1/N queueing system. Eah of the Poisson arrivalsrepresenting a ell is assumed to belong to the same paket as the previous arrival with aertain probability p, and is the �rst ell of a new paket with probability 1� p. The samesystem is onsidered to model PPD and EPD, by distinguishing between two modes: thenormal mode 0 in whih pakets are admitted to the system and the disarding mode 1in whih pakets are disarded. The states of the M/M/1/N system representing that aertain number j of ells are present in the system are now split into two states (j; 0) and



7.3. Conlusions and related work 151(j; 1), where 0 and 1 indiate the mode the system is in. With PPD, when the systemis in state (N; 0), the bu�er is full. A ell that arrives at this state is disarded and thesystem enters state (N; 1). Sine the following ells belonging to the same paket mustbe disarded, the system stays in mode 1 until a new paket starts and the system isnot full on arrival of its �rst ell. The EPD sheme is modeled analoguously, exept thatan additional threshold K is de�ned. If a �rst ell of a paket arrives when the systemoupation is j � K, the ell is not admitted to the system and the system enters state(j; 1) in disarding mode.An exat analysis of the paket loss probability obtained with TD, PPD and EPD forM homogeneous soures is arried out in [57℄. Eah soure generates ells aording to atwo state disrete-time Markovian on/o� soure, where a paket is ompounded of ellsthat are generated in the same on period. An o� period represents the inative periodbetween adjaent pakets. For paket level performane analysis eah two state Markovsoure is expanded into a three state soure by adding an on� state, in order to distinguishsuessful pakets from orrupted/lost pakets while the soure is ative. A very similaranalysis is performed in [59℄, exept that now ontinuous time on/o� soures are used.In [90℄ we developed a model with similar input soures as in [57℄, in a �rst attempt tomodel the SD sheme with per-VC queueing and RR sheduling. Remark that importantdi�erenes from the modeling point of view between this sheme and EPD or PPD are thatthis sheme uses per-VC aounting information to deide if ells of a new paket may enterthe bu�er or not, and that the queues are served aording to a yli servie strategy. Theanalysis we made was approximate in the sense that a queueing system with one taggedqueue and repeated server vaations together with the oupation of all per-VC queueswas onsidered. Although the results of this approximate model are in aordane withresults obtained by simulating the exat model (i.e., the model that onsiders all queuestogether and exat RR sheduling), this model laks the possibility to obtain other resultsthan paket disard ratios, queue length distributions and ell loss ratios. So an importantaim of the aeptane sheme onsidered, namely fairness, ould not be assessed with themodel. Furthermore, as in the other models desribed above, the soures were also notresponsive to losses.





SummaryAs its title suggests, this thesis onsists of two parts, sine it fouses on two separate topisthat are related to the performane evaluation of teleommuniation network elements:(i) the superposition of Markovian traÆ soures, and (ii) frame aware bu�er aeptaneshemes.Part I: Cirulant mathing of the superposition of D-BMAPsA basi problem in the dimensioning and performane evaluation of teleommuniationnetwork elements is the omputation of the bu�er oupany and waiting time distributionof a single server queue, whose input onsists of a superposition of proesses modeling traÆstreams. Starting from the assumption that a traÆ stream is modeled by a D-BMAP(disrete-time bath Markovian arrival proess), whih is a quite general disrete-timeMarkov model, a representation of the aggregation or superposition of D-BMAPs is needed,sine the input to network elements generally onsists of multiple traÆ streams. In theory,this aggregation is exatly desribed by a new D-BMAP. A major problem however is theexplosion of the state spae of this new D-BMAP when the number of input streams takesvalues that are typial for real life situations. In the �rst part of the thesis, a methodalled irulant mathing is proposed, whih onstruts another D-BMAP with a smallerstate spae to replae the exat superposition.Chapter 1 reviews some de�nitions and results about �nite-state stationary Markov hainsand their eigenstruture, that are used in the following hapters. It also gives the de�nitionand some properties of the D-BMAP and the D-BMAP/D/1/K queue and motivates whythe exat superposition of D-BMAPs should be avoided.Chapter 2 presents the details of the irulant mathing method. The purpose of thismethod is to onstrut another D-BMAP to replae the exat superposition of independentD-BMAPs, while mathing the autoorrelation sequene (haraterized in the frequenydomain by the power spetrum) and the stationary umulative distribution of the inputrate proess of the exat superposition. The transition matrix of the D-BMAP is hosen tobe irulant, in order to avoid solving an inverse spetrum problem. First expressions forthe autoorrelation sequene, power spetrum and stationary umulative distribution of asingle D-BMAP are derived. For the autoorrelation sequene and the power spetrum,153



154 Summarythese expressions are written as a funtion of the eigenvalues and eigenvetors of the tran-sition matrix of the D-BMAP. Then the irulant D-BMAP is introdued, and based onthe results obtained before, formulas for its autoorrelation sequene, power spetrum andstationary umulative distribution are obtained. Also the ondition for a irulant tran-sition matrix to be irreduible and some properties about periodi irulants are proven.Finally expressions for the power spetrum and stationary umulative distribution of theexat superposition of independent D-BMAPs, that an be alulated without expliitelyonstruting the exat superposition, are derived. All these results lay the foundationfor the desription of how the irulant D-BMAP that replaes the exat superposition isonstruted. This onstrution onsists of two steps: the mathing of the power spetraand the mathing of the stationary umulative distribution of the input rate proess ofthe irulant D-BMAP and of the exat superposition of D-BMAPs. First the transitionmatrix of the irulant D-BMAP is onstruted, in suh a way that it has as eigenval-ues among others all eigenvalues of the D-BMAPs in the superposition, sine it are theseeigenvalues whih ontribute to the power spetrum of the superposition. Then the fa-tors by whih eah eigenvalue of the irulant ontributes to the power spetrum of theirulant D-BMAP are �xed, suh that the power spetrum of the irulant mathes thatof the exat superposition. Seondly the input rate vetor of the irulant D-BMAP isonstruted, taking into aount the parameters that were already �xed in the previousstep, suh that also the stationary distribution of the irulant D-BMAP mathes that ofthe exat superposition.The irulant mathing method for D-BMAPs is based on a omponent of a measurement-based tool developed by San-qi Li et al. [46℄. An important di�erene with the method ofSan-qi Li is that he works in ontinuous time, while a D-BMAP is a disrete-time model.So to replae the superposition of D-BMAPs by a new irulant D-BMAP, we had toadapt the method for disrete time. Simultaneously, the method was extended suh thatthe periodiity whih is present in the transition matrix of D-BMAPs that model perioditraÆ streams, and whih is thus also notied in their superposition, is preserved.The irulant mathing method allows us to solve some realisti queueing problems, asis illustrated in Chapter 3. But it also has its limitations. A �rst problem is in theonstrution of the irulant transition matrix, and more in partiular in the numberof possible hoies that need to be investigated for its dimension and the indies of itseigenvalues. When the prede�ned set of eigenvalues the irulant should have beomes large(say more than 10, after some redutions we proposed), it might take a long time beforea irulant with these values as eigenvalues is found. So the irulant mathing method isonly useful when all D-BMAPs in the superposition are idential, or an be divided intoa limited group of idential ones, sine then many of their eigenvalues are idential. Apositive point on the other hand is that the same irulant transition matrix an be usedwhen onsidering a superposition of another number of the same D-BMAPs. The di�ereneis in the rate vetor assoiated with the irulant D-BMAP, not in its transition matrix. Aseond possible problem is in the onstrution of this rate vetor when a large part of theprobability mass of the rate distribution of the exat superposition is situated at the value



Summary 155zero, or very lose to it, as an our when onsidering the superposition of on/o� soures.In that ase, it an happen that no solution for a onstrained minimization problem thatneeds to be solved when onstruting the rate vetor of the irulant D-BMAP, exists.Chapter 3 presents numerial examples and appliations of the irulant mathingmethod. First the rather theoretial desription of the di�erent steps of the method in theprevious hapter is illustrated by ommenting upon a numerial example where a irulantD-BMAP is onstruted to replae the superposition of 50 idential 16-state D-BMAPs ofperiod 3. Then the superposition of idential two dimensional MMBPs (Markov modu-lated Bernouilli arrival proesses) is onsidered. For these types of soures, it is possibleto ompare the system lengths obtained when using either the irulant approximationof the superposition or the exat superposition as input to a queueing system, beausethe exat superposition of M idential two dimensional soures is also exatly desribedby an (M + 1)-dimensional Markov soure. First general MMBP soures are onsidered,and the system length distribution obtained with a irulant as input mathed the exatsystem length distribution rather well. Then a speial type of MMBP soures is onsid-ered, namely on/o� soures. For these type of soures the agreement between the systemlength distribution obtained with the irulants as input and the exat distribution is bad.The reason is that the rate distribution of the irulant very badly mathes that of theexat superposition, beause a large part of the probability mass of the rate distribution isloated at rate zero. The same fat sometimes even auses the irulant mathing methodto fail in �nding a valid rate distribution for the irulant. Using the two dimensionalsoures it is also illustrated that it is neessary for a mathing method to take both �rstand seond order statistis of the arrival proess into aount, sine when onsidering onlyone of both, the result of the mathing proess might badly reet the queueing behaviorof the soures it replaes. Another appliation that is onsidered in Chapter 3 is the su-perposition of a periodi MPEG soure model. Using the irulant mathing method, weobtained a theoretial CAC boundary for a mix of two types of MPEG soures. Remarkthat due to the dimension of the MPEG soure models (52 and 65 states) and the realistinumber of suh soures onsidered, it is impossible to obtain the exat queueing resultsusing the exat superposition. So we ompared the theoretially obtained results with ex-perimentally obtained results. The results on�rm the auray of the irulant mathingmethod.Part II: Frame aware bu�er aeptane shemesIn the seond part of the thesis frame aware bu�er aeptane shemes are onsidered.When paket or frame based data is transported over an ATM (asynhronous transfermode) network, these pakets are segmented into ells. A bu�er aeptane sheme in anetwork element deides about whih ells are allowed to enter its bu�er, and whih ellshave to be dropped. Beause the loss of a single ell of a frame leads to a orrupted framethat is in any ase disarded at the destination, bu�er aeptane shemes that are frameaware, i.e., try to aept or disard all ells of a same frame, thus improve the eÆieny.



156 SummaryNot only eÆieny is an issue, but also the fairness among the e�etive throughputs of thedi�erent onnetions. So also shemes that preferentially drop frames from onnetionsthat use more bandwidth than one would all fair have been de�ned.Chapter 4 reviews some onepts related to bu�er aeptane and gives a more exatde�nition of a frame. Sine most non-real-time paket based data traÆ in a network isTCP traÆ, also a short introdution on TCP and on the two ATM servie ategories thatare most suited to transport TCP traÆ, i.e., unspei�ed bit rate (UBR) and guaranteedframe rate (GFR), is given. Also the de�nition of some performane measures that areonsidered in the following hapters is given.Chapter 5 gives an overview of the most representative bu�er aeptane shemes thathave been proposed in the literature for use with the UBR and GFR ATM servie ate-gories. Charateristi of all shemes is their AAL5 frame awareness: if the sheme deidesto aept, respetively disard, the �rst ell of a frame, it will try to aept, respetivelydrop, all ells of the same frame, sine inomplete frames are of no use at the destina-tion. The priniples of two of the earliest proposed shemes, namely partial paket disard(PPD) and early paket disard (EPD), are found bak in many of the more sophistiatedshemes. To be able to aept the non-�rst ells of a frame from whih the �rst ell wasaepted, most aeptane shemes use a threshold, as in EPD, to provide some exessapaity in the bu�er. If in spite of this exess apaity a ell is lost beause of bu�eroverow, the remaining ells of its frame are disarded as in PPD.No QoS ommitments are made by the network to UBR onnetions, but most reent bu�eraeptane shemes for UBR try to provide a fair alloation of the bandwidth to ompetingonnetions. This is done by aiming at a fair alloation of the bu�er apaity among theonnetions, using the priniple behind the fair bu�er alloation (FBA) sheme that aonnetion that gets more than its fair share of the bu�er spae will also get more than itsfair share of the bandwidth. The same priniple is used in some of the bu�er aeptaneshemes for GFR, although the fairness is an issue then only to the exess apaity. The�rst onern of bu�er aeptane shemes for GFR is to provide eah onnetion with itsminimum ell rate servie guarantee.Relying on the attrative properties of the random early detetion (RED) sheme in IPgateways, some shemes for ATM using the priniples behind RED are proposed. Themost important feature of these shemes is their ability to keep the average bu�er size, andthus also the average queueing delay, low.Most bu�er aeptane shemes proposed to support GFR onnetions an be grouped inone of three main ategories. The �rst ategory ontains shemes relying on the tagging ofineligible frames to provide the per-VC minimum rate guarantees to the di�erent onne-tions. The shemes in the seond ategory use per-VC aounting and per-VC queueing,making per-VC sheduling possible. With an appropriate per-VC sheduling algorithm,eah VC is, when ative, alloated its reserved bandwidth. The shemes in the third at-egory use per-VC aounting in a FIFO bu�er, sine the ost of per-VC queueing andper-VC sheduling may be too high for a servie ategory like GFR.



Summary 157For bu�er aeptane shemes not only the priniples behind the aeptane algorithmare important, but also the aounting information the algorithm an base its deisionson and the queueing and sheduling strategy used. In Chapter 5 also a summary of thisinformation for the main bu�er aeptane shemes disussed is provided.Chapter 6 onsiders one of the shemes disussed in the previous hapter, namely seletivedrop (SD), that aims at disarding frames in a fair way. The transient performane of SDis analyzed when traÆ is generated by soures for whih the amount of traÆ they ansend is ontrolled by a window that responds to the presene or absene of losses (as TCPsoures do). For this goal a theoretial model is developed, where two responsive souressend traÆ in �xed-sized pakets of ells, via a bu�er on whih the SD bu�er aeptanealgorithm is implemented. Transient eÆieny and fairness results are then obtained fromthe model.First some idential senarios are onsidered under di�erent start onditions, among whihan unfair start ondition, whih orresponds to a situation where one soure alone hasbeen sending traÆ for some time, and suddenly the seond soure starts also sendingtraÆ. Conlusions are that: (i) When the input traÆ is generated by two identialsoures, none of whih is o�ered a preferential treatment by the bu�er aeptane or thesheduling sheme, then the mean window sizes and the mean bu�er oupations oinideunder idential start values for both onnetions, resulting in equal throughput for bothonnetions and thus perfet fairness. (ii) The fairness approahes perfet fairness as soonas the system has reovered from the unfairness aused by an unfair start situation. Thisillustrates the importane of a transient analysis when observing the behavior of the SDsheme towards an unfair start situation. (iii) A di�erene in the amount of output fromthe bu�er at the beginning due to di�erent start onditions for the system stays pereptiblein the eÆieny values. A di�erene in the amount of output of the two onnetions atthe beginning due to unequal start values for both onnetions stays pereptible for somewhile in the throughput and fairness values.Then it is illustrated with some examples that due to the responsiveness of the soures, itis not neessarily true anymore that being more onservative in aepting pakets impliesa lower eÆieny, as would be the ase when non-responsive soures would be used. Thereis also not neessarily a trade-o� between eÆieny and fairness.Also the inuene of the parameters of the SD algorithm (SD has two parameters, a thresh-old L and another parameterK) on the eÆieny and fairness results is studied when start-ing from the unfair start situation. The most important onlusion of this study is that thepresene of the SD algorithm has a large positive e�et on the fairness results, irrespetiveof the exat setting of the parameters of the algorithm. On the eÆieny results however,these parameters have more inuene. The SD algorithm is onsidered in ombination withthree sheduling algorithms. With round robin (RR) and probabilisti longest queue �rst(PLQF) sheduling, the eÆieny generally inreases when the threshold L inreases, andhoosing L at a few paket sizes less than the size of the bu�er results in a good setting.With RR sheduling, the hane is rather high that the eÆieny values obtained are then



158 Summaryeven above these obtained when SD is not implemented (so there is no trade-o� betweeneÆieny and fairness then). With PLQF sheduling, this hane is reasonable. Remarkhowever that with RR sheduling, sometimes the eÆieny is lower than expeted beauseof synhronization e�ets. When using PLQF sheduling, no lasting synhronization willour beause of the probabilisti harater of the sheduling algorithm in these senarios.Also with FIFO sheduling, synhronization an our. With FIFO sheduling it is muhharder to make a onlusion about the best setting of the threshold L, sine no real relationwas found between a hange of L and a orresponding hange of the eÆieny. But hoos-ing it a few paket sizes less than the size of the bu�er as with RR and PLQF shedulinggave in most senarios rather good results. The parameter K of the SD algorithm hasalso more inuene on the eÆieny results than on the fairness results. Inreasing K hasprinipally a positive e�et on the eÆieny when L is set at a small value. When thesetting of L is larger, this positive e�et is still seen with RR sheduling, but with PLQFand FIFO sheduling the probability is rather high that the eÆieny will be lower thanwhen K is hosen equal to one. As a general onlusion, it is reommended to implementSD to inrease the fairness, but with a parameter setting fousing on the eÆieny results.Chapter 7 onsiders two extensions to the model developed in Chapter 6. First themodel was adapted suh that the interval after whih the soures update their window isdi�erent for both soures. This implies that a kind of inherent unfairness is introduedin the model, sine the window of the soure with the smallest update interval an growfaster and thus this soure an reuperate faster after its window is fored down due tolosses. The senario we onsidered illustrated learly that beause the two soures are nowdi�erent, some unfairness in the throughputs of the two onnetions stays present for ever.However, SD an partially resolve the bias that exists against the soure with the shorterupdating interval and improve the fairness results.Seondly the de�nition of the fair share was modi�ed suh that also the fair bu�er alloation(FBA) sheme, another frame aware bu�er aeptane sheme that aims at fairness, ouldbe onsidered. Results obtained with this sheme show that as the SD sheme, also the FBAsheme has a large positive e�et on the fairness results, irrespetive of the exat settingof its parameters. These parameters have, again as with the SD sheme, more inuene onthe eÆieny results, although their inuene is not so large as with the SD sheme. Boththe fairness and the eÆieny results obtained with the FBA sheme are omparable withthe results that are obtained with the SD sheme, for well-hosen parameters.
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Nederlands overzihtZoals gesuggereerd wordt door de titel, bestaat deze thesis uit twee delen. Twee afzon-derlijke onderwerpen die gerelateerd zijn met de prestatieanalyse van teleommuniatie-netwerkelementen worden beshouwd: (i) de superpositie van Markov verkeersbronnen, en(ii) pakketbewuste bu�eraeptatie.Een fundamenteel probleem bij het dimensioneren en de prestatieanalyse van teleommu-niatienetwerkelementen is het berekenen van de distributie van de wahtrijbezetting envan de wahttijd in een disrete-tijd wahtrijsysteem met als input een superpositie vanproessen die verkeersstromen modelleren. Een belangrijke klasse van veelgebruikte ver-keersmodellen zijn de Markov verkeersbronnen, enerzijds omdat deze bronnen het grillig(`bursty') en variabel karakter van netwerkverkeer kunnen beshrijven, en anderzijds om-dat ze analytish bruikbaar zijn. Omdat de input van een netwerkelement meestal uitmeerdere verkeersstromen bestaat, moet ook de superpositie van Markov verkeersstromengekarakteriseerd kunnen worden. In theorie wordt deze superpositie exat beshreven dooreen nieuw Markov model. Een probleem is ehter de explosie van de toestandsruimte vandit Markov model indien het aantal inputstromen realistishe waarden aanneemt.Het eerste deel van deze thesis stelt een methode voor, irulant mathing genoemd, die eennieuwe Markov aankomststroom met een kleinere toestandsruimte onstrueert ter vervan-ging van de exate superpositie. Twee statistishe funties van het exate inputsnelheids-proes die de prestaties van wahtrijen be��nvloeden, namelijk de autoorrelatiesequentieen de stationaire distributie, worden gematht door dit nieuwe Markov model. De tran-sitiematrix van de Markov keten is een irulante matrix, om het oplossen van een omge-keerdspetrumprobleem te vermijden. Deel I van de thesis bestaat uit drie hoofdstukken.Hoofdstuk 1 illustreert het probleem van de explosie van de toestandsruimte en introdueertenkele de�nities en resultaten. Een gedetailleerde beshrijving van de `irulant mathing'methode is te vinden in Hoofdstuk 2. Hoofdstuk 3 bespreekt numerieke voorbeelden en toe-passingen van de methode, waaronder de superpositie van een model voor MPEG bronnen.Het tweede deel van de thesis handelt over pakketbewuste bu�eraeptatieshema's. In-dien pakketgebaseerde data getransporteerd wordt over een ATM (`asynhronous transfermode') netwerk, dan worden deze pakketten opgedeeld in ellen, de kleine data-eenhedenmet een vaste lengte waarin ATM per de�nitie alle data verstuurt. Een bu�eraeptatie-167



168 Nederlands overzihtshema beslist welke ellen de bu�er van een netwerkelement binnen mogen, en welke niet.Omdat het verlies van een enkele el van een pakket al resulteert in een orrupt pakketdat sowieso weggegooid wordt aan de bestemming, verbeteren pakketbewuste bu�eraep-tatieshema's de eÆi�entie. Niet enkel eÆi�entie is belangrijk, maar ook hoe rehtvaardigde totale e�etieve `throughput' onder de vershillende verbindingen verdeeld is. Daaromwerden ook shema's gede�nieerd die bij voorkeur pakketten van verbindingen die meerbandbreedte gebruiken dan wat eerlijk is, laten verloren gaan.Deel II van de thesis bestaat uit vier hoofdstukken. Hoofdstuk 4 de�nieert wat exat onderde term pakket moet verstaan worden. Omdat het overgrote deel niet-tijdskritish pakket-gebaseerd dataverkeer in een netwerk TCP verkeer is, wordt ook een korte inleiding overTCP en over de twee ATM servieategorie�en die het meest geshikt zijn om TCP verkeerte transporteren, toegevoegd. Hoofdstuk 5 maakt een overziht van de belangrijkste pak-ketbewuste bu�eraeptatieshema's die voorgesteld worden in de literatuur voor gebruikin ombinatie met deze twee servieategorie�en. In Hoofdstuk 6 wordt een theoretishmodel opgesteld en toegepast om de vergankelijke (`transient') prestaties te bestuderenvan �e�en van deze shema's, namelijk `seletive drop'. Seletive drop is een voorbeeld vaneen shema dat probeert om het verloren gaan van pakketten eerlijk te verdelen onder devershillende verbindingen. Door het aanbrengen van een kleine wijziging aan het modeluit Hoofdstuk 6, wordt in Hoofdstuk 7 de prestatie van het `fair bu�er alloation' she-ma, een ander shema dat streeft naar een rehtvaardige verdeling van de totale e�etieve`throughput' onder de vershillende verbindingen, bestudeerd.
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