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OverviewAs its title suggests, this thesis 
onsists of two parts, sin
e it fo
uses on two separate topi
sthat are related to the performan
e evaluation of tele
ommuni
ation network elements:(i) the superposition of Markovian traÆ
 sour
es, and (ii) frame aware bu�er a

eptan
es
hemes.A basi
 problem in the dimensioning and performan
e evaluation of tele
ommuni
ationnetwork elements is the 
omputation of the bu�er o

upan
y and waiting time distributionof a dis
rete-time single server queue, whose input 
onsists of a superposition of pro
essesmodeling traÆ
 streams. An important 
lass of traÆ
 models 
ommonly used in traÆ
modeling are the Markovian arrival streams, be
ause they allow to 
apture the burstinessand variability present in network traÆ
, and be
ause of their analyti
al tra
tability, arethe Markovian arrival streams. Sin
e most of the time the input to network elements
onsists of multiple traÆ
 streams, a 
hara
terization of the aggregation or superpositionof Markovian streams is needed. In theory, this aggregation is exa
tly des
ribed by anew Markov model. A major problem however is the explosion of the state spa
e of thisMarkov model when the number of input streams takes values that are typi
al for real lifesituations.In the �rst part of the thesis, a method 
alled 
ir
ulant mat
hing is proposed, whi
h 
on-stru
ts, starting from statisti
al fun
tions of the exa
t superposition, a new Markovianarrival stream with a smaller state spa
e to repla
e the exa
t superposition. Two statis-ti
al fun
tions of the exa
t input rate pro
ess that are known to in
uen
e the queueingperforman
e are mat
hed by this new Markov model, namely the auto
orrelation sequen
eand the stationary distribution. The transition matrix of the Markov 
hain is 
hosen tobe 
ir
ulant, in order to avoid solving an inverse spe
trum problem. Part I of the thesis
onsists of three 
hapters. Chapter 1 illustrates the state spa
e explosion problem andintrodu
es some de�nitions and results. The details of the 
ir
ulant mat
hing method arepresented in Chapter 2. Chapter 3 dis
usses numeri
al examples and appli
ations of themethod, among whi
h the superposition of MPEG sour
e type models.In the se
ond part of the thesis frame aware bu�er a

eptan
e s
hemes are 
onsidered.When pa
ket or frame based data is transported over an ATM (asyn
hronous transfermode) network, these pa
kets are segmented into 
ells, the small �xed length data unitsiii



iv Overviewin whi
h ATM by de�nition transports all data. A bu�er a

eptan
e s
heme in a networkelement de
ides about whi
h 
ells are allowed to enter its bu�er, and whi
h 
ells have tobe dropped. Be
ause the loss of a single 
ell of a frame leads to a 
orrupted frame that isin any 
ase dis
arded at the destination, bu�er a

eptan
e s
hemes that are frame aware,i.e., try to a

ept or dis
ard all 
ells of a same frame, thus improve the eÆ
ien
y. Not onlyeÆ
ien
y is an issue, but also the fairness among the e�e
tive throughputs of the di�erent
onne
tions. So also s
hemes that preferentially drop frames from 
onne
tions that usemore bandwidth than one would 
all fair have been de�ned.Part II of the thesis 
onsists of four 
hapters. Chapter 4 gives a more exa
t de�nition of aframe. Sin
e most non-real-time pa
ket based data traÆ
 in a network is TCP traÆ
, alsoa short introdu
tion on TCP and on the two ATM servi
e 
ategories that are most suitedto transport TCP traÆ
 is given. Chapter 5 gives an overview of the most important frameaware bu�er a

eptan
e s
hemes that are proposed in the literature for use with these twoservi
e 
ategories. A theoreti
al model to study the transient performan
e of one of thes
hemes that aims at dis
arding frames in a fair way, namely sele
tive drop, is developedand applied in Chapter 6. This model is then slightly modi�ed in Chapter 7 to study alsothe performan
e of fair bu�er allo
ation, another frame aware bu�er a

eptan
e s
hemethat aims at fairness.
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Chapter 1Introdu
tionA basi
 problem in the dimensioning and performan
e evaluation of tele
ommuni
ationnetwork elements is the 
omputation of the bu�er o

upan
y and waiting time distributionof a single server queue, whose input 
onsists of a superposition of pro
esses modelingtraÆ
 streams. Several main 
lasses of traÆ
 models 
ommonly used in traÆ
 modelingexist, e.g., renewal, Markov based, 
uid, autoregressive, self-similar et
. A ni
e surveyof these 
lasses 
an be found in [51℄. In this �rst part of the thesis, we start from theassumption that a traÆ
 stream is modeled by a D-BMAP (dis
rete-time bat
h Markovianarrival pro
ess), whi
h is a quite general dis
rete-time Markov model that in
ludes manywell-known sour
e models as spe
ial 
ases [9, 10℄.Be
ause the input to network elements most of the time 
onsists of multiple traÆ
 streams,a representation of the aggregation or superposition of traÆ
 streams modeled byD-BMAPs is needed. In theory, this aggregation is exa
tly des
ribed by a new D-BMAP.A major problem however is the explosion of the state spa
e of this new D-BMAP whenthe number of input streams takes values that are typi
al for real life situations.In the �rst part of the thesis, a method 
alled 
ir
ulant mat
hing is proposed, whi
h
onstru
ts another D-BMAP with a smaller state spa
e to repla
e the exa
t superposition.This D-BMAP mat
hes two important statisti
al fun
tions of the exa
t input rate pro
ess,namely the auto
orrelation sequen
e (
hara
terized in the frequen
y domain by means ofthe power spe
trum) and the stationary 
umulative distribution. The transition matrixof this D-BMAP is 
hosen to be 
ir
ulant, in order to avoid solving an inverse spe
trumproblem.The 
ir
ulant mat
hing method for D-BMAPs is based on an approa
h proposed in [46℄,whi
h is a 
omponent of a measurement-based tool developed by San-qi Li et al. for theintegration of traÆ
 measurements and queueing analysis. The tool [72, 73℄, whi
h is 
alledSMAQ (statisti
al mat
h and queueing tool), has the ambition to model an arbitrary traf-�
 stream from whi
h the statisti
s are obtained from measurements. The following three
omponents form the basis of the tool: (1) measurement of the power spe
trum P (!) andthe stationary 
umulative distribution F (x) of the rate pro
ess of a traÆ
 stream using3



4 1. Introdu
tionsignal pro
essing te
hniques, (2) 
onstru
tion of a CMPP (
ir
ulant modulated Poissonpro
ess) whi
h statisti
ally mat
hes P (!) and F (x), (3) analysis of queueing problemswith the 
onstru
ted CMPP as input. The nature of the statisti
s of the traÆ
 streamthat should be measured in step (1), and mat
hed in step (2), is studied in the paper [71℄.In this paper the in
uen
e of �rst, se
ond, third and fourth order statisti
s on queueingperforman
e is investigated through the stationary 
umulative distribution, power spe
-trum, bispe
trum and trispe
trum. The 
on
lusion is that the power spe
trum, espe
iallythat in the low frequen
y band, has the most dominant impa
t. Interesting in this paperis that the vehi
le used to explore the nature of queue response to se
ond and higher orderinput statisti
s is the MMPP (Markov modulated Poisson pro
ess), whi
h is a 
ontinuoustime Markov model. First it is shown that the eigenstru
ture of the transition rate matrixof an MMPP 
aptures the input spe
tral fun
tions, so by tuning the eigenstru
ture of theMMPP, one 
an 
hange the input spe
tral fun
tions of the MMPP. However, �nding thespe
tral fun
tions of an MMPP is easy, but 
onstru
ting an MMPP from desired spe
tralfun
tions is diÆ
ult, if at all possible, sin
e 
al
ulating the eigenvalues of a matrix is easy,but 
onstru
ting a matrix with a desired set of eigenvalues involves a generally very dif-�
ult to solve, so-
alled inverse spe
trum problem. To 
ir
umvent this problem, a spe
ial
lass of MMPPs, 
alled 
ir
ulant modulated Poisson pro
esses (CMPPs), is 
onsidered, forwhi
h the eigenvalues and eigenve
tors of the transition rate matrix are known in 
losedform. The queue response to input spe
tral fun
tions as 
ontributed by a single prede�nedeigenvalue is investigated by 
onstru
ting a CMPP whose transition rate matrix has thatvalue as eigenvalue. To investigate the e�e
t of spe
tral fun
tions as 
ontributed by multi-ple prede�ned eigenvalues, an independent CMPP is 
onstru
ted for ea
h eigenvalue, andthen the superposition of these CMPPs is 
onsidered. Be
ause the dimension of this super-position is the produ
t of the individual dimensions of the multiple CMPPs, this approa
his limited by the state spa
e explosion and by the high 
omputation 
ost of the queueinganalysis when this superposition is used as input. In [46℄, the 
onstru
tion of a single
ir
ulant with di�erent prede�ned eigenvalues is 
onsidered. Combining this 
onstru
tionwith the observation made in [45℄ that the power spe
trum and the input rate distributionof the superposition of independent MMPPs 
an be obtained from the power spe
tra andinput rate distributions of the individual MMPPs in the superposition, provides for thefa
t that the te
hnique used in part (2) of the SMAQ tool 
ould also be used to 
onstru
ta CMPP whi
h mat
hes the power spe
trum and the stationary 
umulative distribution ofthe superposition of MMPPs. And this of 
ourse opens perspe
tives for 
ir
umventing thestate spa
e explosion problem that o

urs when the superposition of multiple independentD-BMAPs is 
onsidered. When for a D-BMAP the eigenstru
ture of its transition matrixalso would 
apture the power spe
trum (whi
h it does), a similar te
hnique as that in part(2) of the SMAQ tool 
ould be applied.The details of the 
ir
ulant mat
hing method to 
onstru
t a 
ir
ulant D-BMAP to repla
ethe superposition of D-BMAPs are presented in Chapter 2. Remark that an importantdi�eren
e with the method of the SMAQ tool is that this tool works in 
ontinuous time,while a D-BMAP is a dis
rete-time model. So the Markov pro
ess underlying the CMPP



1.1. An algebrai
 approa
h to �nite-state stationary Markov 
hains 5has a 
ir
ulant transition rate matrix, while for a 
ir
ulant D-BMAP this should be a
ir
ulant transition probabilitymatrix. Sin
e traÆ
 
onsists of the arrival of dis
rete entities(pa
kets, 
ells et
.) at dis
rete time instants, it be
omes natural however to use dis
rete-time models su
h as the D-BMAP. Another di�eren
e between the 
ontinuous-time MMPPand the dis
rete-time D-BMAP is that D-BMAPs 
an generate bulk arrivals, while withMMPPs this is not the 
ase. The motivation in [72℄ for using a 
ir
ulant MMPP, and not amore generi
 pro
ess, 
alled versatile Markovian pro
ess, whi
h 
an 
apture bulk arrivals,is that no mat
hing te
hniques are available for the 
onstru
tion of su
h pro
esses, andalso that their queueing analysis 
an be
ome more diÆ
ult. The D-BMAP however isthe dis
rete-time version of the versatile Markovian pro
ess [9℄, and eÆ
ient algorithms tosolve queues with a D-BMAP as input exist. Sin
e mu
h of the traÆ
 streams in networksare highly periodi
, periodi
ity is also often noti
ed in the transition matri
es of D-BMAPsthat model these traÆ
 streams. So we added the notion of periodi
ity to the 
ir
ulantmat
hing method, su
h that the 
ir
ulant D-BMAP that repla
es the superposition has thesame period as the exa
t superposition would have. Examples of periodi
 D-BMAP sour
esare the MPEG model that is used in Chapter 3, and the des
ription of the traÆ
 pro�leof a tagged 
onstant bit rate sour
e after it has been jittered by ba
kground traÆ
 [11℄.Other works studying and 
apturing periodi
ities are for example [61, 62℄.Chapter 3 dis
usses numeri
al examples and appli
ations of the 
ir
ulant mat
hing method.First a numeri
al example is worked out in illustration to the theoreti
al des
ription of themethod in Chapter 2. Then appli
ations are 
onsidered where the 
onstru
ted 
ir
ulant isused as input to a queueing system. Fo
us is on appli
ations that allow us to validate theobtained results, be
ause either the exa
t results 
an also be 
al
ulated, or be
ause similarresults obtained experimentally are available.In the remaining part of this 
hapter, some de�nitions and results that are used in thefollowing 
hapters are summarized. Se
tion 1.1 deals with the eigenstru
ture of �nite-statestationary Markov 
hains. In Se
tion 1.2 the D-BMAP together with some of its proper-ties is introdu
ed, the state spa
e explosion problem asso
iated with the superposition ofD-BMAPs is illustrated, and the D-BMAP/D/1/K queue is des
ribed.
1.1 An algebrai
 approa
h to �nite-state stationaryMarkov 
hainsThe eigenvalues of the transition matrix P of a dis
rete-time �nite-state stationary Markov
hain provide a good deal of information about the periodi
ity and the number of ergodi

lasses asso
iated with the Markov 
hain. The purpose of this se
tion is to provide a listof de�nitions and results that are used in the following 
hapter, and sin
e the terminologyused in di�erent referen
es about Markov 
hains is not always uniform, to introdu
e theterminology used in this thesis. Books on whi
h this se
tion is based are [18, 44, 48℄.



6 1. Introdu
tion1.1.1 Classi�
ation of statesGiven a dis
rete-time �nite-state stationary Markov 
hain with transition matrixP, a statej is a

essible from state i if there is a sequen
e of transitions from i to j that has nonzeroprobability. The probability of being in state j after the k-th transition, given that theinitial state was i, is given by (Pk)ij. Two states i and j 
ommuni
ate if they are a

essibleto ea
h other. Note that ea
h state 
ommuni
ates with itself sin
e P0 = I.Two states are said to belong to the same ergodi
 
lass if they 
ommuni
ate with ea
hother. If the state spa
e by itself forms an ergodi
 
lass (i.e., all states 
ommuni
ate withea
h other), the Markov 
hain is 
alled irredu
ible. Otherwise it is 
alled redu
ible. Also the
orresponding transition matrix is said to be irredu
ible or redu
ible. Ea
h Markov 
hainhas at least one ergodi
 
lass, but it is possible that several ergodi
 
lasses exist. Statesthat do not belong to any ergodi
 
lass are 
alled transient. These de�nitions imply thaton
e an ergodi
 
lass is entered, the 
hain remains within this 
lass for every subsequenttransition. Thus, if the 
hain starts within an ergodi
 
lass, it stays within that 
lass. If itstarts at a transient state, it will enter an ergodi
 
lass after a number of transitions andthen remain there.By relabeling the states of the Markov 
hain, P 
an always be written asP = 0BBBBB�P(1) 0 : : : 0 00 P(2) : : : 0 0... ... . . . ... ...0 0 : : : P(m) 0R(1) R(2) : : : R(m) Q
1CCCCCA ; (1.1)in whi
h ea
h P(i) is square, sto
hasti
 and irredu
ible. It represents the transitions withinthe i-th ergodi
 
lass. The matrixQ 
orresponds to transitions among the transient states.The matri
es R(i) give the transitions from the transient states into the i-th ergodi
 
lass.Among irredu
ible Markov 
hains, two types are distinguished: periodi
 and aperiodi
ones. The period of a Markov 
hain is 
on
erned with the times at whi
h the 
hain mightreturn to a state from whi
h it started. If this 
an only happen at times that are multiplesof d, where d is the largest integer with this property, the Markov 
hain is said to haveperiod d. Also the 
orresponding transition matrix is said to be periodi
 with period d. Anaperiodi
 Markov 
hain is a Markov 
hain of period one.For an irredu
ible Markov 
hain of period d, there always exists a relabeling of the stateswhi
h puts its transition matrix in the formP = 0BBBBB� 0 A(0) 0 : : : 00 0 A(1) : : : 0... ... ... . . . ...0 0 0 : : : A(d�2)A(d�1) 0 0 : : : 0

1CCCCCA ; (1.2)



1.1. An algebrai
 approa
h to �nite-state stationary Markov 
hains 7where the diagonal blo
ks are square, but A(0); : : : ;A(d�1) probably are not. Two statesare said to belong to the same periodi
 
lass if they both 
orrespond to the same diagonalblo
k.1.1.2 Stationary distributionsIf a Markov 
hain has only one ergodi
 
lass, there exists a unique ve
tor � of nonnegativeelements summing to one su
h that �P = �. The ve
tor � is 
alled the stationarydistribution of the Markov 
hain, and its elements �i equal the long-run proportion of timethat the 
hain is in state i. If i is a transient state, �i = 0. Otherwise, �i > 0.If limn!1(Pn)ij = �j for all i, then the stationary distribution � is also 
alled the steadystate distribution. Thus, if P has a steady state distribution, the probability of being instate j as n ! 1 is a 
onstant independent of the initial state. If P is aperiodi
, thereexists a steady state distribution. If P is periodi
, (Pn)ij does not 
onverge for n ! 1,but appropriate subsequen
es do: if the 
hain is periodi
 with period d, then for ea
h pairi; j of states there is an integer r, 0 � r < d, su
h that (Pn)ij = 0 unless n = md + r, forsome nonnegative integer m, and limm!1(Pmd+r)ij = d�j.1.1.3 Eigenstru
ture of a transition matrixIf P is the transition matrix of a Markov 
hain, the 
omposition of its set of eigenvalues isdire
tly related to the periodi
ity and the number of ergodi
 
lasses of the Markov 
hain:� If P is in the form (1.1), then the eigenvalues of P are the eigenvalues of P(1); : : :P(m)and Q put together. None of the eigenvalues of P has a modulus that is larger thanone.� P has always 1 as eigenvalue. The multipli
ity of this eigenvalue 1 is equal to thenumber of ergodi
 
lasses of the 
hain.� If P is irredu
ible and periodi
 with period d, P has exa
tly d eigenvalues withmodulus 1:�0 = 1; �1 = 
; : : : ; �d�1 = 
d�1; where 
 = e 2�id : (1.3)Left and right eigenve
tors hj and gj 
orresponding to �j, 
hosen su
h that hjgj = 1,are given byhj = ��0 
�j�1 
�2j�2 : : : 
�(d�1)j�d�1� ; (1.4)where � = ��0 �1 �2 : : : �d�1� is the stationary distribution of P, andgjT = �eT 
jeT 
2jeT : : : 
(d�1)jeT � : (1.5)



8 1. Introdu
tionThe ve
tors �;hj and gj are partitioned a

ording to the periodi
 stru
ture of P(see (1.2)), and e denotes a 
olumn ve
tor of 1's of appropriate length. This propertyis easily proven by 
al
ulating hjP and �jhj (resp. Pgj and �jgj), while using that�P = � and Pe = e.� If P is irredu
ible and periodi
 with period d, the set of its eigenvalues, regarded asa system of points in the 
omplex plane, goes over into itself under a rotation of theplane by the angle 2�=d.1.2 D-BMAP: dis
rete-time bat
h Markovian arrivalpro
essA dis
rete-time bat
h Markovian arrival pro
ess (D-BMAP) is a quite general traÆ
 modelfor dis
rete-time Markov sour
es [9℄. Examples of the use of D-BMAPs as traÆ
 modelfor realisti
 sour
es 
an be found in e.g., [10, 11, 31℄. In [10℄, a D-BMAP is used as anapproximate model for the superposition of video sour
es. The D-BMAP de�ned in [11℄des
ribes the pro�le of a tagged ATM 
onne
tion with renewal interarrival distributionafter it shared a multiplexer with ba
kground traÆ
. A method to re
ursively estimatethe parameters of a D-BMAP is proposed in [31℄ and applied to real LAN traÆ
. Its simpleand transparent notation and the fa
t that it in
ludes many well-known sour
e models asspe
ial 
ases makes the D-BMAP an attra
tive model for dis
rete-time arrival pro
esses.1.2.1 De�nitionConsider a dis
rete-time stationary Markov 
hain with transition matrix D, and supposethat at time n this 
hain is in some state i, 0 � i � N � 1. At the next time instant n+1,a transition to another or possibly the same state is made and a bat
h arrival may or maynot o

ur. The matrix D0 governs transitions that 
orrespond to no arrivals, while thematri
es Dk, k � 1, govern transitions that 
orrespond to arrivals of bat
hes of size k. Soa D-BMAP is 
hara
terized by a sequen
e of matri
es (Dk)k�0, withD = 1Xk=0Dk: (1.6)In the sequel a D-BMAP is most of the time denoted by the sequen
e of matri
es (Dk)k�0.It is then impli
itely assumed that the matrix denoted by the same symbol, but withoutthe subs
ript k, denotes the transition matrix of the D-BMAP, whi
h is related to thematri
es (Dk)k�0 by the expression above.If � denotes the stationary distribution of D, then the mean arrival rate of the pro
ess is



1.2. D-BMAP: dis
rete-time bat
h Markovian arrival pro
ess 9given by� = � 1Xk=1 kDk e; (1.7)where e denotes a 
olumn ve
tor of 1's.More details and properties about D-BMAPs 
an be found in [9℄. A spe
ial 
ase of theD-BMAP is the D-MAP (dis
rete-time Markovian arrival pro
ess), whi
h is a D-BMAPthat is 
ompletely 
hara
terized by D0 and D1, i.e., all arrivals have a bat
h size of 1.Results 
on
erning D-MAPs are given in [12℄.In the sequel, when a D-BMAP is said to be irredu
ible/redu
ible or aperiodi
/periodi
, itis meant that the transition matrix of the underlying Markov 
hain is irredu
ible/redu
ibleor aperiodi
/periodi
. The same applies when mentioning the stationary distribution, theeigenvalues or the eigenve
tors of a D-BMAP.1.2.2 Correlation stru
ture of a D-BMAPThe variability in the arrivals of a traÆ
 stream is an essential 
hara
teristi
 that impa
tsthe bu�er o

upation when traÆ
 streams are multiplexed. Mathemati
ally, this variabilityhas been 
hara
terized by di�erent expressions su
h as the auto
orrelation, the auto
ovari-an
e, the index of dispersion for 
ounts (IDC), the index of dispersion for intervals (IDI)et
. [76, 39, 94℄.In the next 
hapter, the auto
orrelation of the input rate of a D-BMAP is derived. Theauto
orrelation R[n℄ is a measure of the rate of 
hange of a stationary sto
hasti
 pro
ess(Xk)k [68, p.359℄:8" > 0 : P [jXk+n �Xkj � "℄ � 2 (R[0℄� R[n℄)"2 : (1.8)This equation states that if R[0℄� R[n℄ is small, that is R[n℄ drops slowly, then the prob-ability of a large 
hange of (Xk)k in n slots is small.When Xk represents the number of arrivals generated by a D-BMAP at time instant k,then the auto
orrelation of (Xk)k is derived in [9℄:R[0℄ = E �X2k� = � 1Xi=1 i2Di e;R[n℄n>0 = E [XkXk+n℄ = � 1Xi=1 iDi!Dn�1 1Xi=1 iDi! e: (1.9)



10 1. Introdu
tion1.2.3 Superposition of D-BMAPsSin
e the input to a network element does not 
onsist of traÆ
 of a single sour
e, butof a multiple of sour
es, a des
ription of the aggregation of traÆ
 streams modeled byD-BMAPs is needed. Consider M independent D-BMAPs (D(i)k )k�0, 1 � i � M . Theirsuperposition 
an again be des
ribed by a D-BMAP, denoted by (Dk)k�0, whereD = MOi=1 D(i);D0 = MOi=1 D(i)0 ;D1 = D(1)1 
 MOi=2 D(i)0 !+ � � �+ M�1Oi=1 D(i)0 !
D(M)1 ;...
(1.10)

In the following, we refer to this des
ription of the superposition as the `exa
t superposi-tion'. The 
onstru
tion of this superposition involves the Krone
ker produ
t 
, whi
h isde�ned as follows: 
onsider a matrix A = (aij) of dimension m�n and a matrix B = (bij)of dimension r � s; the Krone
ker produ
t of the two matri
es is de�ned byA
B = 0BBB�a11B a12B : : : a1nBa21B a22B : : : a2nB... ... . . . ...am1B am2B : : : amnB
1CCCA : (1.11)In [37℄, numerous properties of this produ
t are given. What is important here is thatA
B is seen to be a matrix of dimension mr � ns.1.2.4 The D-BMAP/D/1/K queueThe D-BMAP/D/1/K queue is a single server system with 
apa
ity K. The deterministi
servi
e time of a 
ustomer equals one time unit, and the input to the queue is des
ribedby a D-BMAP (Dk)k�0.When denoting by L(n) the number of 
ustomers in the system at time n, and by J(n) thephase of the arrival pro
ess at time n, f(L(n); J(n)) ; n � 0g is a two dimensional Markov
hain. When N is the dimension of the input D-BMAP, the state spa
e of this Markov
hain is f(l; j)j0 � l � K; 0 � j � N � 1g, and its transition matrix of size (K + 1)N is



1.2. D-BMAP: dis
rete-time bat
h Markovian arrival pro
ess 11given byQ = 0BBBBB�D0 D1 D2 : : : DK�1 P1k=KDkD0 D1 D2 : : : DK�1 P1k=KDk0 D0 D1 : : : DK�2 P1k=K�1Dk... ... ... ... ... ...0 0 0 : : : D0 P1k=1Dk
1CCCCCA : (1.12)

If the stationary distribution of Q is denoted by x, where x = �x0 : : : xK� withxi = �xi;0 : : : xi;N�1�, then the elements xi;j of x represent the stationary joint proba-bility that there are i 
ustomers in the system and that the phase of the arrival pro
ess isin state j.The probability that an arriving 
ustomer gets lost due to bu�er over
ow is derived in [10℄,and is given byP = P1l=K+1(l �K)x0Dle +PKk=1P1l=2maxfl �K + k � 1; 0gxkDle�P1k=1 kDk e : (1.13)1.2.5 Motivations for avoiding the exa
t superposition ofD-BMAPsAn exa
t des
ription of the superposition of M independent traÆ
 streams modeled byD-BMAPs is given in (1.10). Sin
e this des
ription involves the Krone
ker produ
t, it hasas disadvantage that it leads to a state spa
e explosion: the dimension of the resultingD-BMAP equals the produ
t of the dimensions of all individual D-BMAPs involved inthe superposition. This implies that when M takes values that are typi
al for real lifesituations, the exa
t superposition is not usable. Let us illustrate this with an example:
onsider 10 sour
es, ea
h modeled by a D-BMAP of four states whose transition matrix
ontains no zeros. Then the D-BMAP des
ribing the exa
t superposition has 220 states,whi
h 
orresponds to 240 real numbers to des
ribe only its transition matrix. To store su
ha matrix in a program as for example MATLAB, whi
h uses double pre
ision 
oating points(i.e., 8 bytes per 
oating point number), 8192 Gigabytes are needed, whi
h 
learly is notrealisti
 and motivates the repla
ement of the exa
t superposition by another D-BMAPwith a smaller state spa
e.A se
ond motivation to keep the state spa
e of a D-BMAP small, and thus to avoid the exa
tsuperposition of D-BMAPs, is that they generally are used as input to a queueing system,su
h as for example the single server queueing system with 
apa
ity K and deterministi
servi
e time as des
ribed in Se
tion 1.2.4. To 
ompute performan
e measures like thebu�er o

upan
y and loss probability of su
h queueing system, the stationary distributionve
tor x 
orresponding to the matrix Q given in equation (1.12) is needed. Remark thatQ is a square matrix of size (K + 1)N , where N is the dimension of the input D-BMAP.



12 1. Introdu
tionFortunately, there exist eÆ
ient algorithms that exploit the stru
ture that is present in thematrix Q to 
al
ulate x without needing to store the whole matrix Q. Due to its spe
ialstru
ture, the matrix Q belongs to the 
lass of �nite M/G/1-type transition matri
es.There exists a huge amount of literature 
on
erning the numeri
al solution (i.e., 
omputingtheir stationary distribution) of M/G/1-type transition matri
es, both for in�nite and for�nite bu�er systems (see [82, 64, 75, 8℄ for in�nite bu�er systems, and [9, 98, 66, 56℄ for�nite bu�er systems, and the referen
es therein). The algorithm that is used in this thesisto solve the �nite D-BMAP/D/1/K queueing system is des
ribed in [9℄, and is based ona result in [38℄ extended to blo
k partitioned matri
es. The algorithm requires to storeO(K) blo
ks of the size of the input D-BMAP, whi
h is the same as most other algorithms.So also here it remains important to keep the state spa
e of the input D-BMAP small.



Chapter 2Cir
ulant mat
hing of thesuperposition of D-BMAPsThis 
hapter des
ribes the 
ir
ulant mat
hing method in detail. A summary of this 
hapterwas presented in [89℄. The purpose of the 
ir
ulant mat
hing method is to 
onstru
t a
ir
ulant D-BMAP to repla
e the superposition of independent D-BMAPs. This 
ir
ulantD-BMAP mat
hes the power spe
trum and the stationary 
umulative distribution of theinput rate pro
ess of the exa
t superposition. In the �rst three se
tions of this 
hapter, thefoundation for the des
ription of the 
ir
ulant mat
hing method in Se
tion 2.4 is laid. InSe
tion 2.1, expressions for the auto
orrelation sequen
e, power spe
trum and stationary
umulative distribution of a single D-BMAP are derived. For the auto
orrelation sequen
eand the power spe
trum, these expressions are written as a fun
tion of the eigenvaluesand eigenve
tors of the D-BMAP. The 
ir
ulant D-BMAP is introdu
ed in Se
tion 2.2,and based on the results of Se
tion 2.1, formulas for its auto
orrelation sequen
e, powerspe
trum and stationary 
umulative distribution are obtained. Also the 
ondition for a
ir
ulant to be irredu
ible and some properties about periodi
 
ir
ulants are proven in thisse
tion. Se
tion 2.3 gives expressions for the power spe
trum and the stationary 
umulativedistribution of the exa
t superposition of M independent D-BMAPs. These expressions
an be 
al
ulated without expli
itely 
onstru
ting the exa
t superposition. In Se
tion 2.4the 
ir
ulant mat
hing method itself is des
ribed, while 
on
lusions and some related workare given in Se
tion 2.5.
2.1 Input rate pro
ess of a D-BMAPConsider a N -state irredu
ible D-BMAP (Dk)k�0. Denote by � its stationary distribution,and by e a 
olumn ve
tor of 1's. The input rate pro
ess (�(k))k of the D-BMAP is then13



14 2. Cir
ulant mat
hing of the superposition of D-BMAPsde�ned as follows: �(k) = �i when the D-BMAP is in state i at the k-th time slot, where�i = N�1Xj=0  1Xk=1 kDk!ij =  1Xk=1 kDke!i : (2.1)The input rate in a slot is thus a random variable �, whi
h takes values �0; : : : ;�N�1 withprobabilities �0; : : : ; �N�1, where �i is the expe
ted number of arrivals in a slot when theD-BMAP is in state i. The mean input rate is given byE [�(k)℄ = N�1Xi=0 �i�i = � 1Xk=1 kDk e: (2.2)Remark that the mean input rate equals the mean arrival rate (
fr. equation (1.7)).2.1.1 Correlation stru
tureBy de�nition, the auto
orrelation sequen
e R[n℄ of the input rate pro
ess (�(k))k is givenby R[n℄ = E [�(k)�(k + n)℄ : (2.3)For n = 0, this gives using (2.1):R[0℄ = E �(�(k))2� = N�1Xi=0 (�i)2�i = N�1Xi=0 �i " 1Xk=1 kDke!i #2= � " 1Xk=1 kDke!� 1Xk=1 kDke!# = �(�� �); (2.4)where � = ��0 : : : �N�1�T , and where � denotes the element-by-element produ
t oftwo ve
tors.For n > 0,R[n℄ = N�1Xi=0 N�1Xj=0 �i�jP f�(k) = �i and �(k + n) = �jg= N�1Xi=0 N�1Xj=0 N�1Xt=0  1Xl=1 lDl!it N�1Xs=0  1Xl=1 lDl!js �i �Dn�1�tj= N�1Xj=0 N�1Xt=0  � 1Xl=1 lDl!t �Dn�1�tj  1Xl=1 lDle!j= � 1Xl=1 lDl!Dn�1 1Xl=1 lDl! e:
(2.5)



2.1. Input rate pro
ess of a D-BMAP 15Sin
e (�(k))k is a stationary real valued pro
ess, R[n℄ is even [68, p.359℄, i.e., for all n,R[n℄ = R[�n℄. Thus,R[n℄n6=0 = � 1Xl=1 lDl!Djnj�1 1Xl=1 lDl! e: (2.6)Be
ause also the auto
orrelation sequen
e of (Xk)k, where Xk represents the number ofarrivals in slot k, is even, it 
an be seen from equation (1.9) that for a lag n 6= 0, theauto
orrelation R[n℄ of the input rate pro
ess equals that of (Xk)k.Assuming that D is diagonalizable, whi
h means that 
orresponding to ea
h eigenvaluewhi
h has multipli
ity greater than one, as many linearly independent eigenve
tors as themultipli
ity of that eigenvalue should exist [18, p.368℄, D 
an be written asD = N�1Xl=0 �lglhl; (2.7)where the �l's are the eigenvalues of D, and gl, resp. hl, are the 
orresponding right
olumn, resp. left row, eigenve
tors su
h that hlgl = 1. This gives for the n-th power ofD that [18, p.368℄:Dn = N�1Xl=0 (�l)nglhl; (2.8)su
h thatR[n℄n6=0 = N�1Xl=0 (�l)jnj�1� 1Xk=1 kDk!glhl 1Xk=1 kDk! e = N�1Xl=0 (�l)jnj�1 l; (2.9)where l = � 1Xk=1 kDk!glhl 1Xk=1 kDk! e: (2.10)As 
an be seen from these formulas, ea
h eigenvalue �l of D 
ontributes a term to R[n℄.This term is determined by the eigenvalue �l and the 
orresponding  l, whi
h depends onthe eigenve
tors of D 
orresponding to �l.Sin
e D is an irredu
ible transition matrix, it has always 1 as a simple eigenvalue. Fromnow on, this eigenvalue is given the index zero: �0 = 1. Remark from (2.2) and (2.10) that 0 is the square of the mean arrival rate of the D-BMAP: 0 = � 1Xk=1 kDk! e� 1Xk=1 kDk! e = (E [�(k)℄)2 : (2.11)



16 2. Cir
ulant mat
hing of the superposition of D-BMAPsFor all eigenvalues �l, it is true that j�lj � 1. All 
omplex eigenvalues appear in 
onjugatepairs and the 
onjugate of �l is denoted by b�l. If �l and �l0 are 
onjugate, then the 
orre-sponding  l and  l0 are also 
onjugate, sin
e �P1k=1 kDk andP1k=1 kDke are real ve
torsand the matri
es glhl and gl0hl0 are 
onjugate. For ea
h eigenvalue, denote �l = j�ljei!land  l = j ljei�l . When D is periodi
 with period d, it has d distin
t eigenvalues withmodulus 1: 1; 
; : : : ; 
d�1, where 
 = e 2�id . For these eigenvalues, !l equals �l:Property 2.1.1. Consider a transition matrix D whi
h is irredu
ible and has period d.The  l as de�ned in (2.10) 
orresponding to the eigenvalue �l = e 2�id m, m 2 f0; : : : ; d� 1gof D has the same argument as �l:  l = j lje 2�id m.Proof. Consider  l as de�ned in (2.10) 
orresponding to eigenvalue �l = e 2�id m of D,and de�ne 
 = e 2�id . Be
ause all elements of the matri
es Dk, k � 0, are probabilities,and thus positive, and be
ause D = P1k=0Dk, a

ording to the periodi
 stru
ture of D(
fr. equation (1.2)), P1k=1 kDk 
an be written as1Xk=1 kDk = 0BBBBBB� 0 P1k=1 kD(0)k 0 : : : 00 0 P1k=1 kD(1)k : : : 0... ... ... . . . ...0 0 0 : : : P1k=1 kD(d�2)kP1k=1 kD(d�1)k 0 0 : : : 0
1CCCCCCA :

This, 
ombined with (1.4) and (1.5) implies that� 1Xk=1 kDk gl = d�1Xj=0 
(j+1)m�j 1Xk=1 kD(j)k e = 
m d�1Xj=0 
jm�j 1Xk=1 kD(j)k e; (2.12)and hl 1Xk=1 kDk e = d�1Xj=0 
�jm�j 1Xk=1 kD(j)k e: (2.13)Be
ause (2.13) is the 
onjugate of the fa
tor after 
m in (2.12), l = 
m �����hl 1Xk=1 kDk e�����2| {z }2R+ ; (2.14)from whi
h it is 
on
luded that l = j lje 2�id m: � (2.15)



2.1. Input rate pro
ess of a D-BMAP 17De�ne 
 to be the 
olle
tion of all eigenvalues ofD: 
 = f�0; : : : ; �N�1g. By distinguishingbetween the di�erent types of eigenvalues of D, equation (2.9) 
an be written as:R[n℄n6=0 =  0 + (�1)jnj�1 aIf�a2
 and �a=�1g + X�l2(
\Rnf0;1;�1g)(�l)jnj�1 l+ X�l2(
\Cnf1;�1g)j�lj=1 j lje(jnj�1)i!lei!l + X�l2(
\C )Im(�l)>0j�lj<1 �(�l)jnj�1 l + (b�l)jnj�1 b l�=  0 + (�1)jnj�1 aIf�a2
 and �a=�1g + X�l2(
\Rnf0;1;�1g)(�l)jnj�1 l+ 2 X�l2(
\C )Im(�l)>0j�lj=1 j lj 
os(jnj!l) + 2 X�l2(
\C )Im(�l)>0j�lj<1 j�ljjnj�1j lj 
os(jnj!l � !l + �l): (2.16)
2.1.2 Power spe
trumThe auto
orrelation sequen
e of a sto
hasti
 pro
ess in the time domain is equivalently
hara
terized in the frequen
y domain by its power spe
trum, whi
h is de�ned as thedis
rete-time Fourier transform of the auto
orrelation sequen
e [68, p.409℄:P (!) = +1Xn=�1R[n℄e�in!: (2.17)Note that only frequen
ies (expressed in rad/se
) in the range �� < ! � � need to be
onsidered, sin
e P (!) is periodi
 in ! with period 2�. The following inversion formula[68, p.409℄ allows to re
over R[n℄ from P (!):R[n℄ = 12� �Z�� P (!)ein!d!: (2.18)For the input rate pro
ess (�(k))k, R[n℄ is an even sequen
e, su
h that (2.17) redu
es toP (!) = 1Xn=�1R[n℄ 
os(n!) = R[0℄ + 2 1Xn=1R[n℄ 
os(n!); with � � < ! � �: (2.19)From this expression, it is seen that P (!) = P (�!), whi
h shows that the knowledge ofP (!) for 0 � ! � � is suÆ
ient. By using expression (2.16) for R[n℄, a formula for P (!) isobtained from whi
h the 
ontribution of ea
h eigenvalue of D to P (!) 
an easily be read.A number of results used in the 
al
ulation of this formula is presented �rst.



18 2. Cir
ulant mat
hing of the superposition of D-BMAPsDe�nition 2.1.1 (Dira
 delta fun
tion). The Dira
 delta fun
tion is a `fun
tion' thatobeys (a) Æ(! � !0) = 0 when ! 6= !0;(b) 1Z�1 Æ(! � !0)d! = 1: (2.20)
Interpretation: the Dira
 delta fun
tion 
an be 
onsidered as the limit of a fun
tion with awidth de
reasing to zero while its amplitude be
omes in�nite. However, the produ
t of both(the area under the fun
tion) remains 
onstant. Remark that the de�nition given above isonly a `loose' des
ription of the Dira
 delta fun
tion. A mathemati
ally 
orre
t dis
ussionof Dira
 delta fun
tions should use the notion of a distribution, a linear fun
tional on afun
tion spa
e.Property 2.1.2 (Properties of the Dira
 delta fun
tion).(a) S
ale property: Æ(a(! � !0)) = 1jajÆ(! � !0):(b) Produ
t with a fun
tion that is 
ontinuous at ! = !0:p(!)Æ(! � !0) = p(!0)Æ(! � !0):(
) 1Xn=�1 e�in! = 2� 1Xn=�1 Æ(! � 2�n):More details about these properties 
an be found in [87, p.59, 95, 242℄. Remark that when�� < ! � � and 0 < !l < �, then P1n=�1 Æ(! � 2�n) = Æ(!), P1n=�1 Æ(2! � 2�n) =12Æ(!) + 12Æ(! � �), P1n=�1 Æ(! � !l � 2�n) = Æ(! � !l) and P1n=�1 Æ(! + !l � 2�n) =Æ(! + !l).Using these intermediate results, P (!) 
an be 
al
ulated by plugging equation (2.16) inequation (2.19). For 
larity, this 
al
ulation is split up in parts 
orresponding to all possibletypes of eigenvalues �l of D.Type 1. �l = �0 = 12 0 1Xn=1 
os(n!) = � 0 +  0 1Xn=�1 e�in! = � 0 + 2� 0 1Xn=�1 Æ(! � 2�n)= � 0 + 2� 0Æ(!): (2.21)



2.1. Input rate pro
ess of a D-BMAP 19Type 2. �l = �12 a 1Xn=1(�1)n�1 
os(n!) = �2 a 1Xn=1 
os(2n!)� 1Xn=0 
os ((2n + 1)!)!= � a �1 + 1Xn=�1 e�2in! � 1Xn=�1 e�i(2n+1)!!=  a � � a (Æ(!) + Æ(! � �)) + � ae�i! (Æ(!) + Æ(! � �))=  a � 2� aÆ(! � �): (2.22)
Type 3. �l 2 (
 \ R n f0; 1;�1g)2 X�l2(
\Rnf0;1;�1g)  l 1Xn=1(�l)n�1 
os(n!) = 2 X�l2(
\Rnf0;1;�1g)  l�l Re( 1Xn=1 ��lei!�n)= 2 X�l2(
\Rnf0;1;�1g)  l�l Re� 11� �lei! � 1�= 2 X�l2(
\Rnf0;1;�1g)  l�l �l 
os(!)� (�l)21� 2�l 
os! + (�l)2= 2 X�l2(
\Rnf0;1;�1g)  l 
os! � �l1� 2�l 
os! + (�l)2 :

(2.23)
Type 4. �l 2 (
 \ C ) ; Im(�l) > 0 and j�lj = 14 X�l2(
\C )Im(�l)>0j�lj=1 j lj 1Xn=1 
os(n!) 
os(n!l)= 2 X�l2(
\C )Im(�l)>0j�lj=1 j lj 1Xn=1 (
os (n(! � !l)) + 
os (n(! + !l)))= X�l2(
\C )Im(�l)>0j�lj=1 j lj �2 + 1Xn=�1 e�in(!�!l) + 1Xn=�1 e�in(!+!l)!= X�l2(
\C )Im(�l)>0j�lj=1 j lj (�2 + 2�Æ(! � !l) + 2�Æ(! + !l)) :

(2.24)



20 2. Cir
ulant mat
hing of the superposition of D-BMAPsType 5. �l 2 (
 \ C ); Im(�l) > 0 and j�lj < 14 X�l2(
\C )Im(�l)>0j�lj<1 1Xn=1 j�ljn�1j lj 
os (n!l � !l + �l) 
os(n!)= 4 X�l2(
\C )Im(�l)>0j�lj<1 1Xn=1 Re �(�l)n�1 l	Re �ein!	= 2 X�l2(
\C )Im(�l)>0j�lj<1  Re( l�l 1Xn=1(�lei!)n)+ Re( l�l 1Xn=1(�le�i!)n)!= 2 X�l2(
\C )Im(�l)>0j�lj<1 �Re� l�l � 11� �lei! � 1��+ Re� l�l � 11� �le�i! � 1���= 4 X�l2(
\C )Im(�l)>0j�lj<1 Re� l 
os! � �l1� 2�l 
os! + (�l)2� :
(2.25)

Summarizing these results leads toP (!) = R[0℄�  0 + 2� 0Æ(!)+ ( a � 2� aÆ(! � �)) If�a2
 and �a=�1g+ 2 X�l2(
\Rnf0;1;�1g)  l 
os! � �l1� 2�l 
os! + (�l)2+ X�l2(
\C )Im(�l)>0j�lj=1 j lj (�2 + 2�Æ(! � !l) + 2�Æ(! + !l))+ 4 X�l2(
\C )Im(�l)>0j�lj<1 Re� l 
os! � �l1� 2�l 
os! + (�l)2�; with � � < ! � �: (2.26)
This formula shows that ea
h eigenvalue �l of D 
ontributes to P (!) with a term deter-mined by that eigenvalue and the 
orresponding  l, and that the dis
rete part in the powerspe
trum is 
aused by the eigenvalues with modulus 1.



2.2. Cir
ulant D-BMAP 212.1.3 Stationary 
umulative distributionThe stationary 
umulative distribution F (x) of �, the input rate in a slot, is de�ned asF (x) = Pf� � xg: (2.27)Sin
e Pf� = �ig = �i, F (x) is 
ompletely determined by �, the stationary distribution ofthe D-BMAP, and by the input rate ve
tor � = ��0 : : : �N�1�T =P1k=0 kDk e:F (x) = X�i�x�i: (2.28)2.2 Cir
ulant D-BMAPIn this se
tion the 
ir
ulant D-BMAP is introdu
ed, whi
h is a D-BMAP with as transitionmatrix a 
ir
ulant matrix. An attra
tive property of a 
ir
ulant matrix is that a 
losedformula for its eigenvalues exists, whi
h depends on its elements and its dimension. Also theeigenve
tors 
an be written down expli
itely, sin
e they depend only on the dimension of the
ir
ulant. This, together with a spe
ial 
hoi
e for the matri
esQk of the 
ir
ulant D-BMAP(Qk)k�0, allows to simplify the expression for the  l's de�ned in the previous se
tion, andto identify the 
oupling between 
omponents of the rate ve
tor of the 
ir
ulant D-BMAPand its power spe
trum. We also present in this se
tion an easy-to-
he
k 
ondition for a
ir
ulant to be irredu
ible.2.2.1 De�nitionA N -state 
ir
ulant D-BMAP (Qk)k�0, with Q =P1k=0Qk, is a D-BMAP with as transi-tion matrix Q a 
ir
ulant sto
hasti
 matrix:Q = 0BBB� a0 a1 : : : aN�1aN�1 a0 : : : aN�2... ... . . . ...a1 a2 : : : a0
1CCCA : (2.29)The matri
es Qk will be 
hosen su
h that they depend on a, the �rst row of Q, and on ave
tor 
, su
h that1Xk=1 kQk = diag(
)Q; (2.30)where diag(
) is a diagonal matrix with the elements of 
 on the main diagonal. Thereason for 
hoosing the matri
es Qk in this way is that then the input rate ve
tor �
,



22 2. Cir
ulant mat
hing of the superposition of D-BMAPswhose elements are de�ned by (2.1), equals 
. A 
hoi
e for the Qk's 
ould be su
h thatthe number of arrivals that are generated while making a transition from state i follows aPoisson distribution with mean 
i:
Qk =

0BBBBBBBBBB�
a0 (
0)ke�
0k! a1 (
0)ke�
0k! : : : aN�1 (
0)ke�
0k!aN�1 (
1)ke�
1k! a0 (
1)ke�
1k! : : : aN�2 (
1)ke�
1k!... ... . . . ...a1 (
N�1)ke�
N�1k! a2 (
N�1)ke�
N�1k! : : : a0 (
N�1)ke�
N�1k!

1CCCCCCCCCCA ; 8k 2 N : (2.31)
Remark that this is only a possible 
hoi
e for the Qk's. Everything in this 
hapter remainsvalid for another 
hoi
e of the Qk's, as long as equation (2.30) stays ful�lled. Further on,symbols introdu
ed before for ordinary D-BMAPs, and used for a 
ir
ulant D-BMAP, aregiven a `
' as subindex.2.2.2 Auto
orrelation and power spe
trumFrom the previous se
tion it is known that the auto
orrelation sequen
e and the powerspe
trum of the input rate pro
ess of a D-BMAP are 
ompletely 
hara
terized by theeigenvalues �l of its transition matrix, the 
orresponding  l's and R[0℄. For a 
ir
ulantD-BMAP, these values 
an be written as expressions whi
h depend on the ve
tors a and 
.First of all, the l-th (l 2 f0; : : : ; N � 1g) eigenvalue (�
)l of a 
ir
ulant Q is given by[77, p.169℄(�
)l = a0 + a1
l + a2
2l � � �+ aN�1
(N�1)l; where 
 = e 2�iN : (2.32)Remark that this implies that d(�
)l = (�
)(N�l) mod N , whi
h means that all real eigenvaluesof Q o

ur in pairs, ex
ept for (�
)0 and for (�
)N2 if N is even. Noti
e that (�
)0 = 1.Further, if Q is irredu
ible and periodi
 with an even period, (�
)N2 = �1, sin
e �1 needsto be a simple eigenvalue of Q. The eigenve
tors (g
)l and (h
)l whi
h 
orrespond to (�
)l,and whi
h are 
hosen su
h that (h
)l(g
)l = 1, are given by(g
)l = �1 
l 
2l : : : 
(N�1)l�T ;(h
)l = 1N �1 
�l 
�2l : : : 
�(N�1)l� : (2.33)The stationary distribution �
 ofQ, whi
h is the normalized left eigenve
tor 
orrespondingto eigenvalue 1, is then given by�
 = � 1N 1N : : : 1N � ; (2.34)



2.2. Cir
ulant D-BMAP 23and is thus independent of the elements of Q.Enough information is now available to derive an expression for ( 
)l:( 
)l = �
 1Xk=1 kQk! (g
)l(h
)l 1Xk=1 kQk! e= �
 diag(
)Q(g
)l(h
)l diag(
)Qe= �
 diag(
)(�
)l(g
)l(h
)l
= 1N2  N�1Xk=0 
k
kl! N�1Xk=0 
k
�kl! (�
)l; (2.35)
by using de�nition (2.10) in the �rst step, equation (2.30) in the se
ond step, the fa
t that(g
)l is an eigenve
tor of Q 
orresponding to (�
)l in the third step, and (2.33) and (2.34)in the last step. Remark that in this expression1N2  N�1Xk=0 
k
kl! N�1Xk=0 
k
�kl! = ����� 1N N�1Xk=0 
k
kl�����2 2 R+ ; (2.36)whi
h implies that ( 
)l is a positive real multiple of (�
)l:( 
)l = �l(�
)l; with �l = ��� 1N N�1Xk=0 
k
kl���2 2 R+ : (2.37)Sin
e d(�
)l = (�
)(N�l) mod N , �l equals �(N�l) mod N .For R
[0℄, using (2.4) and (2.8), it is derived thatR
[0℄ = �
(�
 � �
) = �
(
 � 
) = �
 diag(
)I
= �
 diag(
)0� X(�
)l2

nf0g(g
)l(h
)l1A
= X(�
)l2

nf0g 1N2  N�1Xk=0 
k
kl! N�1Xk=0 
k
�kl!= X(�
)l2

nf0g ( 
)l(�
)l = X(�
)l2

nf0g�l:

(2.38)
Also R
[n℄, n 6= 0, resp. P
(!), 
an be written in fun
tion of the �l's and the eigenvalues



24 2. Cir
ulant mat
hing of the superposition of D-BMAPs(�
)l of Q, using (2.16), resp. (2.26), and the results just now derived:R
[n℄n6=0 = �0 + (�1)jnj�N=2IfN is even and (�
)N=2=�1g+ X(�
)l2(

\Rnf0;1;�1g)(�
)jnjl �l + 2 X(�
)l2(

\C )Im((�
)l)>0j(�
)lj=1 �l 
os (jnj(!
)l)+ 2 X(�
)l2(

\C )Im((�
)l)>0j(�
)lj<1 j(�
)ljjnjj�lj 
os ((jnj � 1)(!
)l + (�
)l) ; (2.39)
and P
(!) = 2��0Æ(!) + 2��N=2Æ(! � �)IfN is even and (�
)N=2=�1g+ 2 X(�
)l2(

\Rnf0;1;�1g)�l � (�
)l 
os! � (�
)2l1� 2(�
)l 
os! + (�
)2l + 12�+ X(�
)l2(

\C )Im((�
)l)>0j(�
)lj=1 �l (2�Æ(! � (!
)l) + 2�Æ(! + (!
)l))+ 4 X(�
)l2(

\C )Im((�
)l)>0j(�
)lj<1 �l �Re� (�
)l 
os! � (�
)2l1� 2(�
)l 
os! + (�
)2l �+ 12� ;with � � < ! � �:

(2.40)
2.2.3 Stationary 
umulative distributionBe
ause the stationary distribution �
 of a 
ir
ulant D-BMAP is independent of the ele-ments of its transition matrix (
fr. equation (2.34)), the stationary 
umulative distributionF
(x) of �
, the input rate in a slot, depends only on the input rate ve
tor �
, whi
hequals 
:F
(x) = X
i�x(�
)i = 1N X
i�x 1: (2.41)De�ne �l, l = 0; : : : ; N � 1, as�l = 1N N�1Xk=0 
k
lk; where 
 = e 2�iN : (2.42)



2.2. Cir
ulant D-BMAP 25To re
over 
k from the �l's, the following inversion formula 
an be used, whi
h is thedis
rete Fourier transform of the sequen
e �0; : : : ; �N�1:
t = N�1Xm=0 �m
�tm: (2.43)For ea
h �l, denote �l = j�ljei�l . From (2.37) and (2.42) it is then 
on
luded thatj�lj = p�l: (2.44)Hen
e, equation (2.43) leads to
t = �0 + N�1Xm=1p�mei�m
�tm = �

 + N�1Xm=1p�mei(�m� 2�N tm)= �

 + N�1Xm=1p�m 
os(�m � 2�N tm) + i N�1Xm=1p�m sin(�m � 2�N tm): (2.45)Be
ause 
�m = �N�m (see equation (2.42)), �N�m = �m and �N�m = ��m. This impliesthat (2.45) redu
es to
t = �

 + 2 pXm=1p�m 
os(�m � 2�N tm); for N odd: N = 2p+ 1;
t = �

 + 2 p�1Xm=1p�m 
os(�m � 2�N tm) +p�p 
os(�p � �t); for N even: N = 2p:(2.46)2.2.4 Irredu
ible and periodi
 
ir
ulantsIn this subse
tion, a few properties 
on
erning the irredu
ibility and periodi
ity of a 
ir-
ulant sto
hasti
 matrix Q are given. They are used later on in Se
tion 2.4. The �rstproperty gives a ne
essary and suÆ
ient 
ondition for Q to be irredu
ible.Property 2.2.1. Consider a N-dimensional 
ir
ulant Q with a as �rst row and de�neI = fiji 6= 0 and ai 6= 0g. Then Q is irredu
ible if and only if l
m� l
m(i;N)i �i2I = N .Proof. De�ne t = l
m� l
m(i;N)i �i2I .Ne
essary 
ondition. Remark �rst that t is always less than or equal to N , be
ause8a; b 2 N0 : l
m(a; b) g
d(a; b) = ab [96, p.35℄, whi
h implies that8i 2 I : l
m(i; N)i = Ng
d(i; N) :



26 2. Cir
ulant mat
hing of the superposition of D-BMAPsSo t is the least 
ommon multiple of numbers that are all divisors of N .Suppose now that t < N . From the de�nition of t, it is known that for all i 2 I, it is amultiple of l
m(i; N), whi
h implies that it is also a multiple of N . For the t-th eigenvalueof Q (
fr. equation (2.32)), this gives:(�
)t = N�1Xk=0 ak
kt = a0 +Xk2I ak
kt = a0 +Xk2I ak = 1:But also the eigenvalue (�
)0 of Q equals 1, whi
h means that the multipli
ity of eigen-value 1 is at least 2 (remark that by de�nition of t, t 6= 0). Be
ause this is in 
ontradi
tionwith the irredu
ibility of Q, the supposition was wrong, whi
h means that t equals N .SuÆ
ient 
ondition. Distinguish 2 
ases:1. g
d (fiji 2 Ig [ fNg) = 1. Denote the elements of I by i1; : : : ; iK . From [96, p.54℄,it is known that9 z1; : : : ; zK+1 2 Z : KXj=1 ij zj + zK+1N = 1:For all the zi's, 
onsider a ni 2 N su
h that zi + niN � 0. Then KXj=1 ij (zj + njN)! mod N = 1:This means that the following sequen
e of transitions from state 0 to state 1 exists:0! i1 ! (2i1) mod N ! � � � ! (i1(z1 + n1N)) mod N !(i1(z1 + n1N) + i2) mod N ! � � � ! (i1(z1 + n1N) + i2(z2 + n2N)) mod N! � � � !  KXj=1 ij (zj + njN)! mod N = 1:But then also transitions 0! 1! 2! � � � ! N � 1! 0 are possible, whi
h meansthat all states of Q 
ommuni
ate with ea
h other.2. g
d (fiji 2 Ig [ fNg) > 1. By 
ontraposition, it is proven that this 
ase 
annot o

ur.Suppose it 
an, and denote x = g
d (fiji 2 Ig [ fNg). Then N 
an be written asN = bx, where b < N sin
e x > 1. By [96, p.28℄ it is known that8i 2 I; 9mi 2 N0 : g
d(i; N) = mix:Then 8i 2 I : l
m(i; N)i = Ng
d(i; N) = Nmix = bmi 2 N :So for all i, b is a multiple of l
m(i; N)=i, through whi
h t � b < N . But this is in
ontradi
tion with t = N , so the supposition was wrong. �



2.2. Cir
ulant D-BMAP 27Remark that property 2.2.1 is di�erent from the ne
essary and suÆ
ient 
ondition for theirredu
ibility of a 
ir
ulant sto
hasti
 matrix as stated in [79, p.385, problem 21℄, whi
hsays that \a Markov 
hain with a sto
hasti
 
ir
ulant matrix is irredu
ible if and onlyif a0 6= 1". This 
ondition is however not 
orre
t, sin
e for example the 
ir
ulant witha = �0:2 0 0:2 0 0:6 0� as �rst row is redu
ible, be
ause it is impossible to rea
h aneven numbered state starting from an odd numbered state.Property 2.2.2. Consider a N-dimensional irredu
ible 
ir
ulant Q with period d > 1.Then N is a multiple of d and ea
h periodi
 
lass of Q 
ontains N=d states.Proof. Consider the states u1; : : : ; un of periodi
 
lass 1 and a state j of periodi
 
lass 0.Then, by the de�nition of the irredu
ibility and the periodi
ity of a Markov 
hain,8 ul 2 fu1; : : : ; ung, 9ml 2 N for whi
h the state ul is a

essible from state j in mld + 1steps. Be
ause Q is a 
ir
ulant, this means that from an arbitrary state q of an arbitrarily
hosen periodi
 
lass p, exa
tly n other states v1; : : : ; vn are a

essible in a number of stepswhi
h is a multiple of d plus 1. Namely, the state vi = (q + ui � j) mod N is rea
hablefrom q in mid+ 1 steps. Thus, the periodi
 
lass (p+ 1) mod d 
ontains exa
tly n states.Be
ause the periodi
 
lass p was arbitrarily 
hosen among all periodi
 
lasses, this meansthat all the periodi
 
lasses of Q 
ontain n states, and thus N = nd. �Property 2.2.3. Consider an irredu
ible 
ir
ulant Q with period d > 1 and dimensionN = kd. The periodi
 
lass to whi
h a state q belongs 
onsists of the following states:q; (q + d) mod N; : : : ; (q + (k � 1)d) mod N .Proof. From property 2.2.2 it is known that ea
h periodi
 
lass 
ontains k states. So inthe 
ase that k = 1, this property is trivially true. Consider k � 2. Suppose that state 0belongs to periodi
 
lass i (i 2 f0; : : : ; d � 1g), and 
onsider two di�erent states m and tof periodi
 
lass j = (i+ 1) mod d, su
h that there are no states u and v, u 6= v, in 
lass jfor whi
h (u� v) mod N < (t �m) mod N . Remark that sin
e 
lass j 
ontains k states,with k � 2, it is always possible to �nd two su
h states m and t. Then there exists anl1 2 N su
h that state m is a

essible from state 0 in l1d + 1 steps. But this implies thatstate t is a

essible from state (t �m) mod N in l1d + 1 steps, be
ause Q is a 
ir
ulant.This then means that the states 0 and (t�m) mod N belong to the same periodi
 
lass i,whi
h on its turn implies that there exists an l2 2 N su
h that state m is a

essible fromstate (t�m) mod N in l2d+ 1 steps. Be
ause Q is a 
ir
ulant, this implies that state t isa

essible from state (2t�2m) mod N in l2d+1 steps, su
h that also state (2t�2m) mod Nbelongs to periodi
 
lass i. By 
ontinuing this reasoning, it is 
on
luded that all the statesof the form (lt� lm) mod N , l 2 N , belong to periodi
 
lass i. Consequently, all states ofthe form (lt� (l � 1)m) mod N , l 2 N , belong to periodi
 
lass j, sin
e they are a

essiblein l1d+ 1 steps from state (lt� lm) mod N .It is shown now that ((t�m) mod N) divides N . Suppose it does not, and de�nex = j N(t�m) mod N k. Then



28 2. Cir
ulant mat
hing of the superposition of D-BMAPs1. x ((t�m) mod N) < N , and be
ause also (t � m) mod N < N , it follows that(x+ 1) ((t�m) mod N) < 2N ,2. (x+ 1) ((t�m) mod N) > N ,3. ((x+ 1)(t�m)) mod N = ((x + 1) ((t�m) mod N)) mod N < (t�m) mod N .This means that there exist two states u and v in 
lass j, u = ((x + 2)t� (x+ 1)m) mod Nand v = t,� whi
h are di�erent: otherwise (u� v) mod N = 0, i.e., ((x + 1)t� (x+ 1)m) mod N= ((x + 1) ((t�m) mod N)) mod N = 0, whi
h means that (x+1) ((t�m) mod N)should be a multiple of N , whi
h is not the 
ase by item 1 and 2 up here, and� for whi
h (u� v) mod N = ((x+ 1)(t�m)) mod N < (t�m) mod N by item 3.Sin
e this is in 
ontradi
tion with the way t and m were 
hosen, the supposition made iswrong, and thus ((t�m) mod N) divides N . Denote y = N= ((t�m) mod N), y 2 N .Then all states of the form (lt � lm) mod N , l 2 N , equal one of the following y di�erentstates: 0; (t�m) mod N; 2 ((t�m) mod N) ; : : : ; (y � 1) ((t�m) mod N).If it is supposed that y > k, then 
lass i 
ontains more than k states, whi
h 
ontradi
tsproperty 2.2.2. If it is supposed that y < k, then a state p of 
lass i whi
h is not of the form(lt�lm) mod N , l 2 N , also needs to exist. But then always one of the states of 
lass i of theform (lt� lm) mod N exists for whi
h (lt� lm�p) mod N < (t�m) mod N . This impliesthat there are two di�erent states u and v in 
lass j, namely u = (lt� (l � 1)m) mod N andv = (p+m) mod N , for whi
h (u�v) mod N = (lt�lm�p) mod N < (t�m) mod N , whi
h
ontradi
ts the way t and m were 
hosen. So y = k, whi
h means by the de�nition of y that(t�m) mod N = d, and thus periodi
 
lass i 
ontains the k states 0; d; 2d; : : : ; (k � 1)d.In an analogous way it is proven that the periodi
 
lass of an arbitrary state q 
ontainsthe states q; (q + d) mod N; : : : ; (q + (k � 1)d) mod N . �Corollary 2.2.4. Consider an irredu
ible 
ir
ulant Q with a as �rst row, whi
h has periodd > 1 and dimension N = kd. If al 6= 0, where l 2 f1; : : : ; N � 1g, then am = 0 if6 9p 2 f0; : : : ; k � 1g for whi
h m = (l + pd) mod N .Proof. Sin
e al = Q0;l, and am = Q0;m, it is immediately 
lear by writing Q in the form ofequation (1.2), that am needs to be zero if state m does not belong to the periodi
 
lass ofstate l. So by property 2.2.3, if there is no p in f0; : : : ; k�1g su
h thatm = (l+pd) mod N ,then am = 0. �Remark that in the formulation of 
orollary 2.2.4, l 2 f1; : : : ; N � 1g, sin
e if a0 6= 0, thenQ is aperiodi
.



2.3. Superposition of M independent D-BMAPs 292.3 Superposition of M independent D-BMAPsConsider M independent D-BMAPs (D(i)k )k�0, 1 � i � M . With ea
h of these D-BMAPsan input rate pro
ess (�(i)(k))k, as de�ned in Se
tion 2.1, 
orresponds. The superposition ofthe M D-BMAPs is again a D-BMAP (
fr. Se
tion 1.2.3), denoted by (Dk)k�0. Denote by(�(k))k the 
orresponding input rate pro
ess. The auto
orrelation sequen
e R[n℄ and thepower spe
trum P (!) of this pro
ess, and the stationary 
umulative distribution F (x) of �,the input rate of the superposition in a slot, 
ould be obtained as explained in Se
tion 2.1.But then it is ne
essary to expli
itly 
onstru
t the D-BMAP (Dk)k�0, whi
h be
omespra
ti
ally unrealizable if M is large, or if the dimensions of the individual D-BMAPs(D(i)k )k�0 are large, be
ause of the state spa
e explosion. It is however also possible to
al
ulate R[n℄, P (!) and F (x) from the auto
orrelation sequen
es Ri[n℄, the power spe
traP (i)(!) and the stationary 
umulative distributions F (i)(x), 1 � i � M , of the individualD-BMAPs in the superposition, as is illustrated in this se
tion.2.3.1 Power spe
trum of the superpositionThe input rate pro
ess (�(k))k is the aggregation of theM independent input rate pro
esses(�(i)(k))k:�(k) = MXi=1 �(i)(k): (2.47)Using this relation in equation (2.3) gives an expression for R[n℄, the auto
orrelation se-quen
e of the input rate pro
ess (�(k))k, in fun
tion of R(1)[n℄; : : : ; R(M)[n℄, where R(i)[n℄,1 � i �M , is the auto
orrelation sequen
e of (�(i)(k))k:R[n℄ = E " MXi=1 �(i)(k)! MXi=1 �(i)(k + n)!#= E 2664 MXi=1 �(i)(k)�(i)(k + n) + MXi=1 MXj=1j 6=i �(i)(k)�(j)(k + n)3775= MXi=1 E ��(i)(k)�(i)(k + n)�+ MXi=1 MXj=1j 6=i E ��(i)(k)�(j)(k + n)�= MXi=1 R(i)[n℄ + MXi=1 MXj=1j 6=i E ��(i)(k)�E ��(j)(k + n)�
(2.48)



30 2. Cir
ulant mat
hing of the superposition of D-BMAPs= MXi=1 R(i)[n℄ + MXi=1 MXj=1j 6=i E ��(i)(k)�E ��(j)(k)� ;where in the last step but one the independen
e of the pro
esses (�(i)(k))k is used, and inthe last step their stationariness. Be
ause of equation (2.11), the auto
orrelation sequen
eR[n℄ 
an also be written asR[n℄ = MXi=1 R(i)[n℄ + 2 MXi=1 MXj=i+1q (i)0 q (j)0 : (2.49)When plugging this result in equation (2.19), the power spe
trum P (!) of the input ratepro
ess (�(k))k is obtained in fun
tion of the P (i)(!)'s, where P (i)(!), 1 � i � M , is thepower spe
trum of (�(i)(k))k:P (!) = MXi=1 R(i)[0℄ + 2 MXi=1 MXj=i+1q (i)0 q (j)0+ 2 1Xn=1 
os(n!) MXi=1 R(i)[n℄ + 2 MXi=1 MXj=i+1q (i)0 q (j)0 != MXi=1 P (i)(!) + 2 MXi=1 MXj=i+1q (i)0 q (j)0  1 + 2 1Xn=1 
os(n!)!= MXi=1 P (i)(!) + 2 MXi=1 MXj=i+1q (i)0 q (j)0 +1Xn=�1 e�in!= MXi=1 P (i)(!) + 4�Æ(!) MXi=1 MXj=i+1q (i)0 q (j)0 (use property 2.1.2).
(2.50)

From equation (2.26) it is known that ea
h eigenvalue �(i)l of D(i), 1 � i � M , 
ontributesto P (i)(!) with a term determined by that eigenvalue and the 
orresponding  (i)l . So fromthe formula above it is 
on
luded that all eigenvalues of the individual D-BMAPs in thesuperposition 
ontribute to P (!). But when applying equation (2.26) to the D-BMAP(Dk)k�0 whi
h des
ribes the superposition, one might wonder if this 
on
lusion is 
orre
t,sin
e the transition matrix D of the superposition has more eigenvalues than only these ofthe individual D-BMAPs. The property below shows that the 
on
lusion made is indeed
orre
t, sin
e the 
ontribution of these eigenvalues is zero. But remark �rst that if f�igand fxig are the eigenvalues and the 
orresponding eigenve
tors of a matrix A, and f�jgand fyjg are the eigenvalues and the 
orresponding eigenve
tors of a matrix B, then A
Bhas as eigenvalues f�i�jg with 
orresponding eigenve
tors fxi 
 yjg (see [37, p.27℄).Property 2.3.1. Consider the D-BMAP (Dk)k�0 whi
h is the superposition of M inde-pendent D-BMAPs (D(i)k )k�0, and one of its eigenvalues � = �(1): : : : :�(M), where �(i),



2.3. Superposition of M independent D-BMAPs 31i = 1; : : : ;M , is an eigenvalue of D(i), su
h that at least two of the values �(i) are di�erentfrom one. Denote the right 
olumn and left row eigenve
tor 
orresponding to � by g and h.Then  = � (P1k=1 kDk)gh (P1k=1 kDk) e = 0.Proof. At least two of the values �(i) in � = �(1): : : : :�(M), say �(k) and �(l), k 6= l,are di�erent from one. Denote the right eigenve
tors 
orresponding to the eigenvalues �(i)by g(i). Then �(k)g(k) = 0 and �(l)g(l) = 0, be
ause form = k; l, �(m)D(m)g(m) = �(m)g(m),�(m)D(m)g(m) = �(m)�(m)g(m) and �(m) 6= 1.By using some elementary properties of the Krone
ker produ
t [37, 
hapter 2℄, it is proventhat 1Xk=1 kDk =  1Xk=1 kD(1)k !
 MOi=2 D(i)!+D(1) 
 1Xk=1 kD(2)k !
 MOi=3 D(i)!+ : : :+ M�2Oi=1 D(i)!
 1Xk=1 kD(M�1)k !
D(M) + M�1Oi=1 D(i)!
 1Xk=1 kD(M)k ! : (2.51)Be
ause � =NMi=1 �(i) and g =NMi=1 g(i),� 1Xk=1 kDk =  �(1) 1Xk=1 kD(1)k !
 MOi=2 �(i)!+ : : :+  M�1Oi=1 �(i)! 
  �(M) 1Xk=1 kD(M)k ! ; (2.52)where the property that (A
B)(C
D) = AC
BD is used [37, p.24℄. Then� 1Xk=1 kDkg =  �(1) 1Xk=1 kD(1)k g(1)!
 MOi=2 �(i)g(i)!+ : : :+  M�1Oi=1 �(i)g(i)! 
  �(M) 1Xk=1 kD(M)k g(M)! ; (2.53)and be
ause �(k)g(k) = 0 = �(l)g(l), ea
h of the terms in this sum is zero, su
h that�P1k=1 kDkg = 0, whi
h implies that  = 0. �2.3.2 Stationary 
umulative distribution of the superpositionThe stationary 
umulative distribution F (x) of �, the input rate of the superposition in aslot, is given by (see equation (2.28)):F (x) = X�i�x�i; (2.54)



32 2. Cir
ulant mat
hing of the superposition of D-BMAPswhere � is the stationary distribution of the D-BMAP (Dk)k�0 des
ribing the superposi-tion, and �i is the i-th element of the input rate ve
tor � =P1k=0 kDke of the superposition.For �, whi
h is the left eigenve
tor whi
h sums to one 
orresponding to eigenvalue 1 of thematrix D, it holds that� = MOi=1 �(i); (2.55)where �(i) is the stationary distribution of the D-BMAP (D(i)k )k�0. Remark that the sumof the elements of � is one, sin
e if the elements of a ve
tor a sum to one, and the elementsof a ve
tor b sum to one, then also the elements of the ve
tor a
 b sum to one.The input rate ve
tor � of the superposition is obtained from the input rate ve
tors �(i)using the expression� = MMi=1 �(i): (2.56)This expression uses the Krone
ker sum, whi
h is de�ned analogously as the Krone
kerprodu
t (
fr. Se
tion 1.2.3), but the operation used now is the addition.To derive equation (2.56), 
onsider two independent D-BMAPs (D(1)k )k�0 and (D(2)k )k�0,with transition matri
es D(1) and D(2) respe
tively. From equation (1.10) it is known thattheir superposition is again a D-BMAP ( ~Dk)k�0, with ~Dk = Pkl=0D(1)l 
 D(2)k�l. Denotethe 
orresponding input rate ve
tor by ~�. By using the de�nition of ~�, and the fa
t thatthe Krone
ker produ
t is distributive with respe
t to the addition (see [37, p.23℄), it isobtained that~� = 1Xk=0 k kXl=0 �D(1)l 
D(2)k�l� e = 1Xl=0 1Xk=l k �D(1)l 
D(2)k�l� e= 1Xl=0 "D(1)l 
 � 1Xk=l kD(2)k�l�# e = 1Xl=0 "D(1)l 
 1Xk=0(k + l)D(2)k !# e= 1Xl=0 "D(1)l 
 1Xk=0 kD(2)k !# e+ 1Xl=0 "lD(1)l 
 1Xk=0D(2)k !# e= " 1Xl=0 D(1)l !
 1Xk=0 kD(2)k !# e+ " 1Xl=0 lD(1)l !
D(2)# e= (D(1)e)
 1Xk=0 kD(2)k e!+ 1Xl=0 lD(1)l e!
 (D(2)e)= (e
 �(2)) + (�(1) 
 e) = �(1) � �(2);
(2.57)



2.4. Cir
ulant mat
hing pro
edure 33where in the third last step the following is used: Az 
 Bw = (A 
 B)(z 
 w) (see[37, p.22℄). Before this step, the e's used are ve
tors with as length the dimension ofD(1) 
 D(2), while afterwards it are ve
tors with as length the dimension of D(1), resp.D(2). Sin
e the dimension of the ve
tors e is 
lear from the 
ontext, no e�ort is done toprovide this information in the notation of the ve
tor. By applying the reasoning aboveM � 1 times, it is obtained that for the superposition of the M D-BMAPs (D(i)k )k�0,1 � i �M , the input rate ve
tor � is given by equation (2.56).Thus, by using equations (2.55) and (2.56), the stationary 
umulative distribution F (x)of � 
an now be 
al
ulated from equation (2.54), using only information of the individualD-BMAPs 
onstituting the superposition.2.4 Cir
ulant mat
hing pro
edureIn this se
tion, the pro
edure to mat
h the superposition of M independent D-BMAPs(D(i)k )k�0, 1 � i � M , by a 
ir
ulant D-BMAP (Qk)k�0 is presented. The 
ir
ulantD-BMAP is 
onstru
ted su
h that P
(!) mat
hes P (!) and F
(x) mat
hes F (x), whereP
(!) and F
(x) denote the power spe
trum and stationary 
umulative distribution of theinput rate pro
ess of the 
ir
ulant D-BMAP, while P (!) and F (x) denote the power spe
-trum and stationary 
umulative distribution of the input rate pro
ess of the superposition.As is known from Se
tion 2.2, a 
ir
ulant D-BMAP (Qk)k�0 is de�ned by a ve
tor a, the�rst row of its transition matrix Q, and by a ve
tor 
, whi
h is 
hosen su
h that it equalsthe input rate ve
tor �
. The 
onstru
tion of (Qk)k�0 
onsists of two steps:1. the 
onstru
tion of a and the �xing of the �l's su
h that P
(!) mat
hes P (!),2. the 
onstru
tion of 
 su
h that F
(x) mat
hes F (x).It is 
lear that sin
e both P
(!) and 
 depend on the �l's (see equations (2.40) and (2.46)),these two steps 
annot be performed 
ompletely un
oupled from ea
h other. The �l's �xedin the �rst step need to be taken into a

ount in the se
ond step.2.4.1 Mat
hing the power spe
trumFrom equation (2.26) it is known that the power spe
trum of a D-BMAP (D(i)k )k�0 is
ompletely determined by R(i)[0℄ and a 
ontribution of ea
h of its eigenvalues. The 
on-tribution of an eigenvalue �(i)l depends on that eigenvalue and on the 
orresponding  (i)l .Be
ause of equation (2.50), this means that the power spe
trum of the superposition of theM D-BMAPs (D(i)k )k�0, 1 � i � M , is 
ompletely known by the R(i)[0℄'s and by all eigen-values of the D-BMAPs and their 
ontributions to their respe
tive power spe
tra. Thus,if a D-BMAP (Qk)k�0 
ould be 
onstru
ted with as eigenvalues of Q the same eigenvalues



34 2. Cir
ulant mat
hing of the superposition of D-BMAPsthat 
ontribute to the power spe
trum P (!) of the superposition, and if the  l's of thisD-BMAP are tuned right, this new D-BMAP would be a D-BMAP with the same powerspe
trum as the superposition. Remark however that 
onstru
ting a matrix with a desiredset of eigenvalues is diÆ
ult, if at all possible, and involves a so-
alled inverse spe
trumproblem [77, 
hapter 7℄. To 
ir
umvent this problem, the D-BMAP that is 
onstru
ted isa 
ir
ulant D-BMAP, for whi
h 
losed formulas exist to des
ribe its eigenvalues, su
h thatthe inverse spe
trum problem redu
es to an easier to solve index sear
h problem.Constru
tion of aThe �rst task to ta
kle is thus the 
onstru
tion of a 
ir
ulant sto
hasti
 matrix Q whi
hhas as eigenvalues all values from a prede�ned set. Be
ause the eigenvalues of a 
ir
ulantN -dimensional matrix are obtained (see equation (2.32)) by�
 = aF; (2.58)where Fjk = 
jk, 0 � j; k � N � 1, 
 = e 2�iN , and �
 = �(�
)0 (�
)1 : : : (�
)N�1�, it ispossible to obtain a from �
 bya = �
F�1; where (F�1)jk = 1N 
�jk: (2.59)This relation is however not useful for 
onstru
ting a 
ir
ulant sto
hasti
 matrix, be
ausenothing guarantees that the elements of a will be positive real numbers whi
h add up toone. There also not ne
essarily exists a sto
hasti
 
ir
ulant whi
h has only the values ofthe prede�ned set as eigenvalues. So the approa
h is to sear
h for a 
ir
ulant whi
h hasthe envisaged values as eigenvalues, but very likely also some extra ones. To eliminate the
ontribution of those last ones to P
(!), the 
orresponding �l's are 
hosen zero.Denote all the di�erent prede�ned eigenvalues in a ve
tor �P = �(�P )0 : : : (�P )D�1�.The obje
tive is then to �nd a ve
tor a = �a0 : : : aN�1� su
h that 8i 2 f0; : : : ; N � 1g :ai 2 R+ , ae = 1 and 8� 2 �P : � 2 �
. The ve
tor a is sought through the adjustmentof (N; i), where N represents the length of a, and thus also of �
, and i = �i0 : : : iD�1�represents the position in �
 of the D prede�ned eigenvalues. Eigenvalue 1 is always anelement of �P . Choose (�P )0 = 1. Then i0 equals 0. For ea
h sele
ted (N; i), a linearprogramming s
heme will be drawn up to �nd a solution a. If no solution exists, theeigenvalue indi
es i are adaptively 
hanged and the dimension N is gradually expanded,until a solution a is found.For ea
h 
hoi
e (N; i), the D+N 
onditions that have to be ful�lled when sear
hing for asolution a are:8><>:PN�1j=0 aj = 1PN�1j=0 aj
lj = (�P )k; l = ik; k = 1; : : : ; D � 1;al � 0 l = 0; : : : ; N � 1: (2.60)



2.4. Cir
ulant mat
hing pro
edure 35De�nex = �a0 : : : aN�1�T ; (2.61)b = �1 Ref(�P )1g Imf(�P)1g : : : Ref(�P )D�1g Imf(�P)D�1g�T ; (2.62)
and A = 0BBBBBBB�

1 1 1 : : : 11 Ci1;1 Ci1;2 : : : Ci1;N�10 Si1;1 Si1;2 : : : Si1;N�1... ... ... . . . ...1 CiD�1;1 CiD�1;2 : : : CiD�1;N�10 SiD�1;1 SiD�1;2 : : : SiD�1;N�1
1CCCCCCCA ; (2.63)

where Cl;j and Sl;j are de�ned as Cl;j = 
os 2�ljN and Sl;j = sin 2�ljN .Then the 
onditions in (2.60) 
an be rewritten asAx = b; x � 0; (2.64)whi
h are exa
tly the 
onstraints as they appear in the standard form of a linear program(LP) (
fr. [95, p.2℄):minimize z = 
xsubje
t to Ax = bx � 0; (2.65)where 
 is a 
ost ve
tor. This means that the standard algorithm to solve a LP, namelythe revised simplex algorithm [95, p.5℄, 
an be used here.The revised simplex algorithm 
onsists of two phases. Phase I is used to �nd a feasiblesolution to Ax = b;x � 0, or to determine that no feasible solution exists. Phase II usesthe solution generated in phase I to start with and solves the minimization part of theLP. Thus, for our problem, phase I is suÆ
ient to de
ide if there exists a solution a fora given (N; i), and to �nd one if there exists one. If no solution exists, the ve
tor i isadaptively 
hanged. If no feasible solution is obtained after a �nite number of adaptations,N is expanded and a new 
y
le of index adaptations is started. Obviously, when a feasiblesolution exists for a 
ertain N , the 
omputation time to �nd it depends on the indexadaptation s
heme. The size of the solution set expands rapidly with N : in theory, D � 1indi
es have to be given a di�erent value between 1 and N �1, whi
h means that there are(N�1)!(N�D)! possible ways to do this. However, for some index ve
tors i, it is known in advan
ethat no solution exists, so these do not need to be 
onsidered. The same is true for somevalues of N . Further, it is possible to eliminate some of the values from the prede�nedset of eigenvalues, and as su
h 
ut down the number of 
onditions of the LP problem,while still enfor
ing that these 
onditions are ful�lled in the �nal solution. This is done byeliminating in advan
e the index ve
tors i for whi
h these 
onditions would not be ful�lled.



36 2. Cir
ulant mat
hing of the superposition of D-BMAPsThe bene�t of this pro
edure is that the dimension of the LP problems whi
h need to besolved be
omes smaller, and that fewer possibilities for i need to be 
onsidered.The following observations allow some redu
tion in the number of 
hoi
es (N; i) and in thesize of �P :� For ea
h nonreal value � in �P , also its 
omplex 
onjugate �̂ will be present in �P ,sin
e the values in �P are obtained as eigenvalues of sto
hasti
 matri
es. There ishowever no need to take both � and �̂ into a

ount for the 
onstru
tion of a, sin
eit holds for a 
ir
ulant that d(�
)l = (�
)(N�l) mod N : if � 2 �P appears in �
 atposition l, then �̂ automati
ally appears in �
 at position (N � l) mod N . Thus,all values � with Im(�) < 0 
an be eliminated from �P . Then all index ve
tors i
ontaining the values l and (N � l) mod N should not be 
onsidered anymore, sin
eno feasible solution 
onsists for them. Further, for all real values � in �P , only indexvalues smaller than or equal to N=2 need to be 
onsidered, be
ause when (�
)t witht > (N=2) equals �, then also (�
)N�t equals �.� When Q needs to have period d, it is known from the properties in Se
tion 2.2.4 that{ N needs to be a multiple of d, and{ only N=d values in a are free to take values di�erent from 0, su
h that thenumber of 
olumns of A in equation (2.63) be
omes N=d instead of N .We 
hoose one of these values to be a1, implying (see 
orollary 2.2.4) that the othervalues are a1+d; a1+2d; : : : ; a1+(k�1)d, where k = N=d. This 
hoi
e has the followingadvantages:{ When a1 6= 0, then the resulting 
ir
ulant Q is irredu
ible (see property 2.2.1).{ When (�
)l = �, then (�
)(l+mk) mod N = 
mk�, where m 2 f0; : : : ; d � 1g and
 = e 2�iN .As su
h, all values with argument not in the segment [0; 2�d [ 
an be eliminatedfrom �P , be
ause all these values are the result of a rotation over an angle inf2�d ; 22�d ; : : : ; (d � 1)2�d g of a value with argument in the segment [0; 2�d [ (see Se
-tion 1.1.3). So if a � whi
h belongs to the resulting �P appears in �
 on posi-tion l, then the values 
k�; 
2k�; : : : ; 
(d�1)k� appear automati
ally in �
 at positions(l+k) mod N; (l+2k) mod N; : : : ; (l+(d�1)k) mod N . Then for all index ve
tors i
ontaining a value l and a value (l + mk) mod N , where m 2 f1; : : : ; d � 1g, nofeasible solution exists, so they do not need to be 
onsidered anymore. When � withargument in ℄0; 2�d [nf�dg belongs to �P , then also �� = \�
(d�1)k has its argument in℄0; 2�d [nf�dg and belongs to �P . For ea
h 
ouple (�; ��), one of these values 
an alsobe removed from �P , sin
e when � appears in �
 on position l, then �� appears in �
on position (N � l+ k) mod N . Thus also for all index ve
tors i 
ontaining a value land a value (N � l � mk) mod N , where m 2 f1; : : : ; d � 1g, no feasible solutionexists, su
h that these index ve
tors 
an also be ignored.
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ulant mat
hing pro
edure 37� Consider the ve
tor �P 
ontaining the prede�ned eigenvalues, but now with all valuesas des
ribed above removed, i.e., now �P 
ontains only values � with Im(�) � 0,arg(�) 2 [0; 2�d [ and only one value of ea
h 
ouple (�; ��), with �� = \�
(d�1)k is presentin �P . When the number of values in �P is D and d is the periodQ should have, thenthe minimal dimension Nmin the 
ir
ulant Q should have is given by d(2D� 1) when�P 
ontains no real values di�erent from 1 or values with as argument �=d. OtherwiseNmin = 2d(D� 1). This is be
ause position 0 in �
 is taken by eigenvalue 1, and thepositions k; 2k; : : : ; (d�1)k are then taken by the values 
k; 
2k; : : : ; 
(d�1)k (k = N/d,where N is the dimension of the 
ir
ulant). When k is even, one of the positions infk=2; 3k=2; : : : ; (2d� 1)k=2g 
an be taken by a real value or a value with argument�=d of �P . All the other positions in this set are then taken by the rotations of thevalue over the angles 2�m=d, where m = 1; : : : ; d� 1. All the other values � in �Ptake a free position l, by whi
h also the positions (l +mk) mod N , m = 1; : : : ; d� 1and (N � l�mk) mod N , m = 0; : : : ; d� 1, are taken by the rotations of � over theangles 2�m=d, m = 1; : : : ; d� 1, and by their 
omplex 
onjugates. So for all valuesN smaller than Nmin, no feasible solution exists. Remark that the same values forNmin are obtained when d = 1, i.e., when Q should be aperiodi
.� Consider the set of points in the 
omplex plane bounded by the N -sided polygon,N � 2, ins
ribed in the unit 
ir
le and with one of its verti
es at (0; 1), and denoteit by PN . When not all values in �P belong to PN , then no 
ir
ulant of dimension Nwith all values in �P as eigenvalues exists. This is a 
onsequen
e of the property thatsays that a 
omplex number is an eigenvalue of a sto
hasti
 
ir
ulant of dimension Nif and only if it belongs to PN [77, 
orollary 1.3, p.169℄.Although the observations made above substantially redu
e the number of 
hoi
es (N; i)that have to be investigated and the size of �P , espe
ially for periodi
 
ir
ulants, the sizeof the solution set still expands rapidly with N and with the number of eigenvalues in theprede�ned set �P . As a 
onsequen
e, the 
ir
ulant mat
hing method is only useful whenall D-BMAPs in the superposition are identi
al, or 
an be divided into a limited group ofidenti
al ones, sin
e then many of their eigenvalues are identi
al. Be
ause 
ontributionsof identi
al eigenvalues to the power spe
trum 
an be added up, they only need to appearon
e as eigenvalue of the 
ir
ulant.Fixing the �l'sConsider 

, the 
olle
tion of all eigenvalues of the N -dimensional 
ir
ulant Q whose 
on-stru
tion was des
ribed above. By 
onstru
tion, a portion 
P
 of 

 
ontains the eigenval-ues of the matri
es D(1); : : : ;D(M). It are these eigenvalues whi
h 
ontribute to the powerspe
trum P (!) of the superposition. The aim is now to determine the 
ontribution theseeigenvalues should have to P
(!), su
h that P
(!) mat
hes P (!). From equations (2.40)and (2.37) it is known that the 
ontribution of ea
h eigenvalue (�
)l 2 

 is determinedby that eigenvalue and by a 
orresponding �l, whi
h needs to be a positive real number.
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ulant mat
hing of the superposition of D-BMAPsFurther, 8l 2 f0; : : : ; N�1g, �l should equal �(N�l) mod N . To avoid that the eigenvalues ofQ in 

 n
P
 , i.e., the eigenvalues whi
h do not 
ontribute to P (!), do make a 
ontributionto P
(!), they are 
hosen equal to zero:8l 2 f0; : : : ; N � 1g for whi
h (�
)l 2 (

 n 
P
 ) : �l = 0: (2.66)Remark that this is not in 
ontradi
tion with the requirement that �l should equal�(N�l) mod N , sin
e if (�
)l 2 (

 n 
P
 ), then (�
)(N�l) mod N = d(�
)l, and as su
h also(�
)(N�l) mod N 2 (

 n 
P
 ), be
ause ea
h value in 
P
 is an eigenvalue of a sto
hasti
matrix.For eigenvalue (�
)0 = 1, 
hoose�0 =  MXi=1 q (i)0 !2 : (2.67)For the other eigenvalues (�
)l 2 
P
 with j(�
)lj = 1, 
hoose�l = MXi=1 j (i)il j; (2.68)where  (i)il is the ` -value' of the i-th D-BMAP (D(i)k )k�0 whi
h 
orresponds to eigenvalue�(i)il = (�
)l. When not all D(i)'s are identi
al, it is possible that (�
)l is not an eigenvalueof a 
ertain D(i). In that 
ase assume that  (i)il = 0 in (2.68). When 
hoosing the �l's
orresponding to eigenvalues with modulus 1 as de�ned above, the dis
rete parts of thepower spe
trum of the superposition P (!) and of the power spe
trum of the 
ir
ulantP
(!) are exa
tly mat
hed (see equations (2.40), (2.50) and (2.26)).To mat
h the 
ontinuous parts of the power spe
tra P
(!) and P (!), de�ne �rst thefollowing fun
tions of !:X
(!) = 2 X(�
)l2(
P
 \Rnf0;1;�1g)l�N=2 �1 + Ifl<N=2g��l� (�
)l 
os! � (�
)2l1� 2(�
)l 
os! + (�
)2l + 12�+ 4 X(�
)l2(
P
 \C )Im((�
)l)>0j(�
)lj<1 �l �Re� (�
)l 
os! � (�
)2l1� 2(�
)l 
os! + (�
)2l �+ 12� ; (2.69)
and X(!) = MXi=1 X(i)(!); (2.70)



2.4. Cir
ulant mat
hing pro
edure 39whereX(i)(!) = R(i)[0℄�  (i)0 +  (i)a If�(i)a 2
(i) and �(i)a =�1g � 2 X�(i)l 2(
(i)\C )Im(�(i)l )>0j�(i)l j=1 j (i)l j
+ 2 X�(i)l 2(
(i)\Rnf0;1;�1g) (i)l 
os! � �(i)l1� 2�(i)l 
os! + (�(i)l )2+ 4 X�(i)l 2(
(i)\C )Im(�(i)l )>0j�(i)l j<1 Re� (i)l 
os! � �(i)l1� 2�(i)l 
os! + (�(i)l )2�: (2.71)

Remark the fa
tors 1 + Ifl<N=2g in the de�nition of X
(!). Their presen
e is due tothe fa
t that if (�
)l 2 
P
 \ R n f0; 1;�1g, with l � N=2, then if l 6= N=2, also(�
)N�l 2 
P
 \ R n f0; 1;�1g. Thus in the 
ontinuous part of the power spe
trum ofa 
ir
ulant a term for �l and a term for �N�l with identi
al 
oeÆ
ients o

ur. Sin
e it isrequired that �l equals �N�l, only the unknown value �l is 
onsidered in X
(!). Later on,after a value has been established for �l, �N�l is set equal to �l.Choose S di�erent values !1; : : : ; !S 2 ℄� �; �℄ and let p be the number of �l's whi
happear in X
(!). Further, de�ne the matrix E, in whi
h Eij (1 � i � S; 1 � j � p) isthe 
oeÆ
ient of the j-th �l in X
(!i), and the 
olumn ve
tor f whose i-th (1 � i � S)
omponent equals X(!i). By solving the nonnegative least square problem (NNLS)minimize jjEx� f jjsubje
t to x � 0; (2.72)using the nonnegative least square algorithm [65, p.161℄, a ve
tor x with p 
omponents isfound, in whi
h the i-th 
omponent gives the value that is assigned to the i-th �l in X
(!).For all �l's for whi
h no value is �xed yet, a value is already assigned to �(N�l) mod N , andsin
e �l should equal �(N�l) mod N , set �l = �(N�l) mod N .2.4.2 Mat
hing the stationary 
umulative distributionIn this se
tion, the ve
tor 
 will be 
onstru
ted su
h that F
(x), the stationary 
umulativedistribution of the input rate pro
ess of the 
ir
ulant, mat
hes the stationary 
umulativedistribution F (x) of the input rate pro
ess of the superposition. From equations (2.34)and (2.41) it is known that sin
e 
 is an equal probability ve
tor, F
(x) is a 
umulativedistribution whi
h jumps by 1=N at ea
h 
omponent 
i of the ve
tor 
. So in order forF (x) to be mat
hed by F
(x), it is needed to redis
retize F (x) by partitioning its rangeinto N equal probability rates. Denote the partitioned range, sorted in as
ending order,
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ulant mat
hing of the superposition of D-BMAPsby 
 0 = �
00 : : : 
0N�1�. Also sort the elements in 
 in as
ending order and denote thesorted 
 by 
s = �
s0 : : : 
sN�1�.From equation (2.46) it is known that the 
omponents of 
 (and thus also of 
s) dependon N , the �i's and the �i's. Remark that in equation (2.46),�

 = �
�
 = �
 1Xk=1 kQke =p( 
)0 = p�0: (2.73)Sin
e N and the �i's were already �xed before when 
onstru
ting the 
ir
ulant matrix Qand mat
hing the power spe
trum, the 
omponents of 
 
an only be tuned via the 
ompo-nents of � = ��1 : : : �bN=2
�, and more in parti
ular via those 
omponents �m of � forwhi
h (�
)m 2 
P
 , be
ause if (�
)m 62 
P
 , then �m is 
hosen zero, and the term with �mdisappears from equation (2.46). The distribution mat
hing 
an then be formulated as aminimization problem:minimize�1; : : : ; �bN=2
 1N N�1Xk=0 jj
0k � 
skjjsubje
t to 
sk � 0; 8k 2 f0; : : : ; N � 1g; (2.74)whi
h is solved by a dire
t sear
h method whi
h does not need gradients or other derivativeinformation be
ause the obje
tive fun
tion is not di�erentiable.2.5 Con
lusions and related workIn this 
hapter we des
ribed the 
ir
ulant mat
hing method, of whi
h the purpose is to re-pla
e the superposition of independent D-BMAPs by a 
ir
ulant D-BMAP, whi
h mat
hesthe power spe
trum and the stationary 
umulative distribution of the input rate pro
essof the exa
t superposition. The reason why a repla
ement of the exa
t superposition isneeded, is that this exa
t superposition su�ers from a state spa
e explosion, whi
h makesthat it be
omes most of the time impossible to 
onstru
t this superposition, not to mentionusing it as input to a queueing system. The 
ir
ulant mat
hing method for D-BMAPs isbased on a 
omponent of a measurement-based tool developed by San-qi Li et al. [46℄ that
onstru
ts a 
ir
ulant modulated Poisson pro
ess to model a traÆ
 stream. An impor-tant di�eren
e with the method of San-qi Li is that he works in 
ontinuous time, while aD-BMAP is a dis
rete-time model. So to repla
e the superposition of D-BMAPs by a new
ir
ulant D-BMAP, we had to adapt the method for dis
rete time. Simultaneously, themethod was extended su
h that the periodi
ity whi
h is present in the transition matrixof D-BMAPs that model periodi
 traÆ
 streams, and whi
h is thus also noti
ed in theirsuperposition, is preserved.Although the 
ir
ulant mat
hing method allows to solve some realisti
 queueing problems(see for example Se
tion 3.3 of the next 
hapter), it 
ertainly is not generally usable. A �rst
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lusions and related work 41problem is in the 
onstru
tion of the 
ir
ulant transition matrix, and more in parti
ularin the number of possible 
hoi
es of (N; i) that have to investigated. When the prede�nedset of eigenvalues the 
ir
ulant should have be
omes large (say more than 10, after theredu
tions we proposed), it might take a long time before a 
ir
ulant with these values aseigenvalues is found. So as mentioned already before, the 
ir
ulant mat
hing method isonly useful when all D-BMAPs in the superposition are identi
al, or 
an be divided intoa limited group of identi
al ones, sin
e then many of their eigenvalues are identi
al. Apositive point on the other hand is that the same 
ir
ulant transition matrix 
an be usedwhen 
onsidering a superposition of another number of the same D-BMAPs. The di�eren
ewill then be in the rate ve
tor 
 asso
iated with the 
ir
ulant D-BMAP, not in its transitionmatrix. A se
ond possible problem is in the 
onstru
tion of the rate ve
tor 
 when a largepart of the probability mass of the rate distribution of the exa
t superposition is situated atthe value zero, or very 
lose to it, as 
an o

ur when 
onsidering the superposition of on/o�sour
es. In that 
ase, it happens that no solution for the minimization problem formulatedin (2.74) exists for whi
h all 
onstraints are ful�lled, i.e., for whi
h all 
omponents of therate ve
tor 
 are positive. An example of this problem is given in Se
tion 3.2 of the next
hapter.Of 
ourse the 
ir
ulant mat
hing method is not the only method whi
h tries to 
ir
um-vent the state spa
e explosion problem that o

urs with the superposition of Markoviansour
es. However, not too mu
h literature is found about it, 
ertainly not for dis
rete-timesour
es, although these sour
e models have re
eived in
reasing interest with the introdu
-tion of pa
ket-based transport proto
ols. An aggregation te
hnique for the superpositionof N identi
al sour
es is proposed in [23℄. The te
hnique is based on grouping togetherstates of the exa
t superposition that are equivalent from both the total rate generatedwhen the sour
e is in that state and their future evolution in the system at ea
h transitionstep. The similarity of two states in terms of their evolution is estimated by 
al
ulating thedistan
e between these two states, 
onsidered as N -tuples, when their elements are orderedin lexi
ographi
 order. In [43℄ a method is proposed whi
h provides an approximate so-
alled `dis
rete MMPP (D-MMPP)' for the superposition of two independent D-MMPPs.Based on the observation that the multiplexed pro
ess has many states for whi
h the ratesgenerated in that state are very 
lose together, another D-MMPP with a mu
h smallerset of states is 
onstru
ted, whose asso
iated rates are spread out to 
over the originalrange of states. Remark however that in this method only �rst order statisti
s of the exa
tsuperposition are mat
hed. Se
ond order statisti
s su
h as for example the auto
orrelationare ignored.Most other related arti
les start from traÆ
 tra
es and design a parameter �tting methodfor 
ontinuous-time Markov modulated Poisson pro
esses (MMPPs). One example is of
ourse the method behind the SMAQ tool [46℄, on whi
h we based the 
ir
ulant mat
hingmethod, and that was already dis
ussed in Chapter 1. Another more re
ent example isgiven in [86℄, where a te
hnique is proposed to 
onstru
t an MMPP with 2M states thatmat
hes the auto
ovarian
e tail and the marginal distribution of the pro
ess that 
ountsthe number of arrivals in sampling intervals. First an MMPP with 2 states is 
onstru
ted



42 2. Cir
ulant mat
hing of the superposition of D-BMAPsthat mat
hes the de
ay of the auto
ovarian
e tail. Then an MMPP with M states is
onstru
ted to mat
h the distribution fun
tion. The �nal MMPP with 2M states is ob-tained by superimposing these two MMPPs. Fo
us is in [86℄ on the modeling of traÆ
tra
es exhibiting long range dependen
e. Although Markov models are not intrinsi
allylong range dependent, the MMPP is used to 
apture the tail of the auto
ovarian
e up tothe so-
alled 
orrelation horizon, whi
h is related to the maximum bu�er size. Be
ausethe pro
edure mat
hes two statisti
al fun
tions that 
an also be 
al
ulated from statisti-
al fun
tions of the individual sour
es in a superposition, without expli
itely 
onstru
tingthe superposition, the method might also be used to 
ir
umvent the state spa
e explosionproblem.



Chapter 3Numeri
al examples and appli
ationsIn this 
hapter numeri
al examples and appli
ations of the 
ir
ulant mat
hing method aregiven. In Se
tion 3.1 we �rst illustrate the rather theoreti
al des
ription in the previous
hapter of the di�erent steps of the method, by 
ommenting upon a numeri
al example. InSe
tion 3.2 the 
ir
ulant mat
hing method is applied to the superposition ofM identi
al twodimensional Markovian sour
es. For su
h sour
es it is possible to 
al
ulate exa
t queueingresults, by using an exa
t des
ription of the superposition as input to the queueing system.This makes a 
omparison between the results obtained with the 
onstru
ted 
ir
ulant asinput to the queueing system and the exa
t results possible. Moreover, a spe
ial type oftwo dimensional Markovian sour
es, i.e., the on/o� sour
es, allows us to demonstrate whenthe 
ir
ulant mat
hing method does not perform well, or not at all. Using a MarkovianMPEG model, the multiplexing of MPEG video sour
es is 
onsidered in Se
tion 3.3. In thisse
tion the 
ir
ulant mat
hing method is applied to the superposition of a mix of two typesof these sour
es. We presented this appli
ation also in [89℄. Based on loss results obtainedby using the 
ir
ulant as input for a �nite queueing system, CAC boundaries for the mixof these two types of sour
es are obtained. These boundaries are then 
ompared to CACboundaries that are obtained experimentally. More details about the CAC experimentsperformed 
an be found in [1, 2℄. Se
tion 3.4 
on
ludes this 
hapter.3.1 An illustrative example of the 
ir
ulant mat
hingmethodThe obje
tive of this se
tion is to illustrate the theoreti
al des
ription in the previous
hapter of the di�erent steps of the 
ir
ulant mat
hing method by an example. A 
ir
ulantD-BMAP (Qk)k�0 is 
onstru
ted whi
h mat
hes the superposition of M = 50 identi
alD-BMAPs (Dk)k�0. Remark that no 
on
rete appli
ation is hidden behind the D-BMAP(Dk)k�0 that is used, it is purely 
hosen to be small enough to write down and large enoughto be periodi
 and have di�erent types of eigenvalues, su
h that the di�erent aspe
ts of43



44 3. Numeri
al examples and appli
ationsthe method 
an be illustrated by it.Consider the D-BMAP (Dk)k�0 with as transition matrixD = 1Xk=0 kDk = 0� 0 A(0) 00 0 A(1)A(2) 0 0 1A ; (3.1)whereA(0) = 0BBBBBB�0:3 0:5 0:1 0:1 00:1 0 0:2 0:4 0:30:1 0:1 0:1 0:2 0:50 0 0:5 0:3 0:20:2 0:2 0 0:3 0:30:1 0:2 0:1 0:5 0:1
1CCCCCCA ; A(1) = 0BBBB�0:2 0:1 0:4 0:3 00:5 0:2 0:1 0 0:20:3 0:5 0 0:1 0:10:1 0:1 0:1 0:1 0:60:2 0:5 0:1 0 0:2

1CCCCA ;
and A(2) = 0BBBB�0:3 0:2 0:2 0:1 0:1 0:10:1 0:2 0:3 0:3 0:1 00:2 0 0:1 0:3 0:2 0:20:2 0:3 0:3 0:1 0 0:10:4 0:2 0 0:1 0 0:3

1CCCCA : (3.2)First remark that D is irredu
ible and periodi
 with period d = 3. Its stationary distribu-tion is given by� = (0:0833 0:0614 0:0570 0:0600 0:0257 0:0459 0:0466 0:06170:0609 0:0930 0:0712 0:0820 0:0924 0:0412 0:0294 0:0884) : (3.3)The matri
es Dk, k � 0, are not expli
itely written out here, but they are su
h that� = 1Xk=1 kDke = (1:2 1 1 1:3 0:8 1 1:6 1:3 1:4 1 1:32:1 1:9 2:2 1:9 1:8)T : (3.4)Then E [�(k)℄ = �� = � 1Xk=1 kDke =p 0 = 1:4416: (3.5)The position of the 16 eigenvalues of the matrix D in the 
omplex plane is shown inFigure 3.1. Be
ause under a rotation of the plane by 2�=3 this set of eigenvalues needs togo over into itself, and be
ause the dimension of D is not a multiple of three, its period,
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Figure 3.1: Position in the 
omplex plane of the eigenvalues of the transition matrix D.This set of eigenvalues goes over into itself under a rotation of the plane by 2�=3.one of the eigenvalues needs to be zero. The eigenvalues of D that are di�erent fromzero 
ontribute to the power spe
trum P (!) of the D-BMAP (Dk)k�0, ea
h by a termdetermined by that eigenvalue and a 
orresponding  l. The eigenvalues di�erent from zeroare: 0BBBB��0�1�2�3�4
1CCCCA = 0BBBB� 10:35860:20350:1244 + 0:1236i0:0448 + 0:1696i

1CCCCA ; 0BBBB��5�6�7�8�9
1CCCCA = 0BBBB��0�1�2�3�4

1CCCCA 
 = 0BBBB� �0:5 + 0:8660i�0:1793 + 0:3106i�0:1018 + 0:1762i�0:1692 + 0:0460i�0:1692� 0:0460i
1CCCCA ;

and 0BBBB��10�11�12�13�14
1CCCCA = 0BBBB��0�1�2�3�4

1CCCCA 
2 = 0BBBB� �0:5� 0:8660i�0:1793� 0:3106i�0:1018� 0:1762i0:0448� 0:1696i0:1244� 0:1236i
1CCCCA ; (3.6)

where 
 = e 2�i3 and the eigenvalues are ordered in su
h a way that all �i, 0 � i � 4, have
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Figure 3.2: Contribution of the di�erent eigenvalues of the transition matrix D to the
ontinuous part of the power spe
trum.their argument in [0; 2�3 [. The 
orresponding  l's have the following values:( 0 : : :  14) = (2:0783 0:0023 � 0:0110 0:0043 + 0:0043i� 0:0215 + 0:0043i � 0:0350 + 0:0607i � 0:0017� 0:0010i 0:0171� 0:0102i0:0039 + 0:0027i 0:0039� 0:0027i � 0:0350� 0:0607i � 0:0017 + 0:0010i0:0171 + 0:0102i � 0:0215� 0:0043i 0:0043� 0:0043i) : (3.7)Noti
e that the  l's 
orresponding to 
onjugate eigenvalues are also 
onjugate, and thatthe  l's 
orresponding to the eigenvalues with modulus one have the same argument astheir 
orresponding eigenvalue.Figure 3.2 shows the 
ontribution of the di�erent eigenvalues of D to the 
ontinuous partof the power spe
trum, and also the 
ontinuous part of the power spe
trum itself, whi
his the sum of all 
ontributions. Remark that as in equation (2.26), the 
ontribution of anon-real eigenvalue and its 
onjugate are taken together. Also all 
ontributions whi
h are
onstant (i.e., not dependent on !) are taken together. The eigenvalues �0, �5 and �10
ontribute also to the dis
rete part of the power spe
trum.The idea is now to look for a 
ir
ulant Q of period d = 3 whi
h has among its eigenvaluesall eigenvalues of D (ex
ept 0, sin
e 0 does not 
ontribute to the power spe
trum). From
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hing method 47Se
tion 2.4.1 it is known that it suÆ
es to look for a 
ir
ulant, with �a0 : : : aN�1� as�rst row, where N is a multiple of d = 3 and where only a1; a4; a7; : : : ; aN�2 are free totake values di�erent from zero, that has all prede�ned values of a ve
tor �P as eigenvalues.Be
ause from all eigenvalues of D with argument in [0; 2�3 [ the value 0:1244+0:1236i equalsthe 
omplex 
onjugate of (0:0448+ 0:1696i)e 4�i3 , after performing all redu
tions of the sizeof �P as proposed in Se
tion 2.4.1, �P 
ontains the elements�P = �1 0:3586 0:2035 0:0448 + 0:1696i� : (3.8)From Se
tion 2.4.1 it is also known that the minimal dimension for a 
ir
ulant with theseprede�ned values as eigenvalues is 18. There indeed exists a 
ir
ulant of dimension 18whi
h has the values in �P as eigenvalues, i.e., the 
ir
ulant with �rst row �a0 : : : a17�,where a1 = 0:3033, a4 = 0:1965, a7 = 0:0078, a10 = 0:1465, a13 = 0:0871, a16 = 0:2588,and all other ai's equal to zero. From property 2.2.1 it is known that the 
ir
ulant isirredu
ible, and from property 2.2.3 it is seen that the 
ir
ulant has period d = 3. Denote
 = e 2�i18 . The eigenvalues of the 
ir
ulant are then given by(�
)l = a1
l + a4
4l + a7
7l + a10
10l + a13
13l + a16
16l; (3.9)where 0 � l � 17. By 
onstru
tion,(�
)(l+mk) mod 18 = 
mk(�
)l; (3.10)where k = 18=d = 6 and m 2 f0; : : : ; d� 1g. Thus, the eigenvalues of Q are:0BBBBBB�(�
)0(�
)1(�
)2(�
)3(�
)4(�
)5
1CCCCCCA = 0BBBBBB� 10:35860:1244 + 0:1236i�0:1018� 0:1762i0:0448 + 0:1696i�0:1793 + 0:3106i

1CCCCCCA ; 0BBBBBB� (�
)6(�
)7(�
)8(�
)9(�
)10(�
)11
1CCCCCCA = 0BBBBBB�(�
)0(�
)1(�
)2(�
)3(�
)4(�
)5

1CCCCCCA 
6 = 0BBBBBB� �0:5 + 0:8660i�0:1793 + 0:3106i�0:1692 + 0:0460i0:2035�0:1692� 0:0460i�0:1793� 0:3106i
1CCCCCCA ;

and 0BBBBBB�(�
)12(�
)13(�
)14(�
)15(�
)16(�
)17
1CCCCCCA = 0BBBBBB�(�
)0(�
)1(�
)2(�
)3(�
)4(�
)5

1CCCCCCA 
12 = 0BBBBBB� �0:5� 0:8660i�0:1793� 0:3106i0:0448� 0:1696i�0:1018 + 0:1762i0:1244� 0:1236i0:3586
1CCCCCCA : (3.11)As 
an be seen, the 
ir
ulant has all values of �P as eigenvalues, but also all other eigen-values of D (ex
ept 0). The 
omplex 
onjugate of a value (�
)j is found as (�
)(18�j) mod 18.Remark that sin
e a 
ir
ulant exists with the minimal dimension possible to have the val-ues of �P as eigenvalues, the 
ir
ulant has no other eigenvalues than values whi
h are alsoeigenvalues of D. When no 
ir
ulant of dimension 18 would exist whi
h has the values of�P as eigenvalues, or when we would sear
h for a 
ir
ulant of a higher dimension than the
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ationsminimal one, Q would have also other eigenvalues than these of D. Remark that until now,the information about the number M = 50 of D-BMAPs (Dk)k�0 in the superposition wasnever used. So the same 
ir
ulant transition matrix 
an be used in the mat
hing of thesuperposition of another number of D-BMAPs (Dk)k�0.The next step is to �x the �i's 
orresponding to the eigenvalues (�
)i of the 
ir
ulant,in su
h a way that the power spe
trum of the 
ir
ulant mat
hes the power spe
trum ofthe superposition of 50 D-BMAPs (Dk)k�0. First the dis
rete part of the power spe
trumis mat
hed. For the superposition, this dis
rete part is given by (see equations (2.26)and (2.50))5000� 0Æ(!) + 100�j 5j (Æ(! � 2�=3) + Æ(! + 2�=3)) ; (3.12)while that of the 
ir
ulant is given by (see equation (2.40))2��0Æ(!) + 2��6 (Æ(! � 2�=3) + 2�Æ(! + 2�=3)) : (3.13)So when 
hoosing �0 = 2500 0 = 5:1957 � 103 and �6 = 50j 5j = 3:5025, the dis-
rete parts of both power spe
tra mat
h exa
tly. By de�nition, also �12 is now �xed:�12 = �6 = 3:5025. In 
ase that the 
ir
ulant would have also other eigenvalues than thesein �P , their 
orresponding �-values would be set to zero. To mat
h the 
ontinuous partsof both power spe
tra, the nonnegative least square algorithm is used (
fr. Se
tion 2.4.1).Combining the output of this algorithm with the �i's already �xed results in the followingvalues for the �i's:(�0 : : : �17) = �5:1957� 103 0 0 0 0:0163 0:3292 3:5025 0:32920 0 0 0:3292 3:5025 0:3292 0:0163 0 0 0) : (3.14)Remark that �i's 
orresponding to 
onjugate eigenvalues are for
ed to be equal, i.e.,�j = �(18�j) mod 18.The power spe
tra are now mat
hed. From the resulting 
ir
ulant D-BMAP (Qk)k�0, thetransition matrix Q is already known. The ve
tor 
, whi
h should equal the input rateve
tor �
 of the 
ir
ulant D-BMAP, and whi
h is needed to 
ompletely des
ribe it, is stillmissing and is obtained now by mat
hing the stationary 
umulative distribution of theinput rate pro
ess of the 
ir
ulant with that of the superposition. During this mat
hing,it should be taken into a

ount that the 
omponents 
t of 
 depend on the �i's, whi
h arealready �xed:
t = p�0 + 2 8Xm=1p�m 
os(�m � 2�18 tm) +p�9 
os(�9 � �t); (3.15)where p�0 = p( 
)0 = �
�
 = �

, and p�0 = 50p 0, so the mean input rate ofthe 
ir
ulant is also already �xed, and equals the mean input rate of the superposition.Remark that in equation (3.15), only the �m's are still free variables (more in parti
ular,�4, �5, �6 and �7, sin
e for other m's the �m is zero).
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Figure 3.3: Stationary 
umulative distribution of the input rate pro
ess of the superposi-tion, together with its redis
retized version. Redis
retization is done su
h that all stepshave a height of 1/18.Be
ause �
 = �1=18 : : : 1=18�, 
 is an equal probability ve
tor. So F (x), whi
h is thestationary 
umulative distribution of the superposition, should �rst be redis
retized su
hthat its range is partitioned into N equal probability rates. F (x) is obtained asF (x) = X��i�x��i ; where �� = 50Oi=1 �; and �� = 50Mi=1 �; (3.16)and is shown in Figure 3.3, together with its redis
retized equivalent. Remark that in the�gure F (x) is plot as a 
ontinuous fun
tion for the sake of 
learness, but of 
ourse it is alsoa dis
rete stair
ase fun
tion, although one with many small steps. The partitioned rangeof ��, sorted in as
ending order, is(
00 : : : 
017) = (66:3486 68:0841 68:9373 69:5737 70:1103 70:588671:0252 71:4442 71:8532 72:2575 72:6674 73:0899 73:5358 74:024074:5741 75:2361 76:1289 77:9869) : (3.17)When solving the minimization problem formulated in equation (2.74), the following valuesare found to minimize the goal fun
tion: �4 = �0:2822, �5 = �2:8825, �6 = �10:9887,and �7 = �0:7469. The resulting rate ve
tor 
 is then
 = (
0 : : : 
17) = (72:0336 74:0654 70:6549 71:4404 74:0062 70:713571:5844 74:8095 68:6273 72:5679 76:5514 66:5414 72:5486 77:132667:2766 72:1583 75:4499 69:3037) ; (3.18)
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Figure 3.4: Auto
orrelation of the input ratepro
ess of the superposition and of the 
ir
u-lant. The lag shown is limited to ten, sin
efor a larger lag the di�eren
e is not per
epti-ble anymore. The largest absolute di�eren
ebetween both sequen
es is 0.48, whi
h givesa relative di�eren
e of 9:22� 10�5.
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Figure 3.5: Stationary 
umulative distribu-tion of the input rate pro
ess of the super-postition and of the 
ir
ulant. All stepsin the distribtution of the 
ir
ulant have aheight of 1/18.
whi
h �nalizes the 
ir
ulant mat
hing pro
ess. The result is a 
ir
ulant D-BMAP (Qk)k�0,where the matri
esQk are 
onstru
ted from a = �a0 : : : a17� and 
 as in equation (2.31).This 
ir
ulant D-BMAP, whi
h has by the mat
hing a similar auto
orrelation sequen
eand stationary 
umulative distribution as the input rate pro
ess of the superposition of50 D-BMAPs (Dk)k�0 (see Figures 3.4 and 3.5), 
an be used as a tra
table repla
ement ofthis superposition.
3.2 Superposition of two dimensional MMBP sour
esIn this se
tion the 
ir
ulant mat
hing method is applied to the superposition ofM identi
altwo dimensional Markov modulated Bernouilli arrival pro
esses (MMBP). A �rst motiva-tion for this is validation: be
ause su
h a sour
e has only two states, there exists an exa
tmethod without state spa
e explosion to des
ribe the superposition ofM identi
al MMBPsour
es. So queueing results with the exa
t superposition as input traÆ
 on one hand, andthe 
ir
ulant that approximates the superposition on the other hand, 
an be obtained and
ompared. A se
ond motivation is that a Markovian on/o� sour
e is a spe
ial 
ase of a twodimensional MMBP, and with on/o� sour
es a situation for whi
h the 
ir
ulant mat
hingmethod does not work well, or does not work at all, 
an be illustrated.



3.2. Superposition of two dimensional MMBP sour
es 513.2.1 Markov modulated Bernouilli sour
esConsider a dis
rete-time Markov 
hain with transition matrix D. When this 
hain is instate i, an arrival is generated a

ording to a Bernouilli distribution with parameter pi, i.e.,with probability pi an arrival o

urs, and with probability 1� pi no arrival o

urs. Hen
e,this arrival pro
ess is similar to a Bernouilli arrival pro
ess, but the arrival probability ismodulated by the state of a dis
rete-time Markov 
hain. Su
h an arrival pro
ess is 
alleda Markov modulated Bernouilli pro
ess (MMBP).In this se
tion only two dimensional MMBPs are 
onsidered. Denote by � the probabilitythat the sour
e makes a transition from the �rst state to the se
ond state, and by �the probability that it makes a transition from the se
ond to the �rst state. A D-MAPdes
ription of this sour
e is thenD0 = �(1� �)(1� p1) �(1� p1)�(1� p2) (1� �)(1� p2)� ; D1 = �(1� �)p1 �p1�p2 (1� �)p2� ; (3.19)and D = D0 + D1. The stationary distribution of this sour
e is given by� = ��=(�+ �) �=(�+ �)�, and its mean arrival rate by � = �D1e = (�p1+�p2)=(�+�).Remark that the durations that the sour
e stays in a state are geometri
ally distributed,with mean 1=� for the �rst state, and 1=� for the se
ond state.When one of the parameters p1 or p2 equals zero, the MMBP sour
e is an on/o� sour
e.Suppose that p2 = 0. When the sour
e is then in the se
ond state, it is `o�' or `silent', i.e.,no arrivals are generated. When the sour
e is in the �rst state, it is `on' or `a
tive'.3.2.2 Superposition of two dimensional MMBP sour
esAs for every D-BMAP, the exa
t superposition of M identi
al two dimensional MMBPsour
es that are des
ribed by the D-MAP (D0;D1), is given by the D-BMAP with 2Mstates obtained from the matri
es D0 and D1 as des
ribed in Se
tion 1.2.3. However,be
ause ea
h sour
e has only two states, also the D-BMAP (Sk)0�k�M with M + 1 states,in whi
h a state i, 0 � i � M , 
orresponds to the fa
t that i sour
es are in the �rststate (and thus M � i sour
es are in the se
ond state) 
an des
ribe the traÆ
 generatingpro
ess of the superposition. The elements Si;j of the transition matrix S des
ribe theprobability of making a transition from a situation in whi
h i sour
es are in the �rst state,to a situation in whi
h j sour
es are in the �rst state. When the number of sour
es thatstay in the �rst state is denoted by l, whi
h then implies that i�l sour
es make a transitionfrom the �rst to the se
ond state, while j � l of the sour
es that are in the se
ond statetransit to the �rst state, and thus M � i� j+ l of the sour
es stay in the se
ond state, Si;jis obtained as follows:Si;j = minfi;jgXl=maxf0;i+j�Mg�il�(1� �)l�i�l�M � ij � l ��j�l(1� �)M�i�j+l: (3.20)
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al examples and appli
ationsmean sojourn mean sojourn mean arrivalType � � p1 p2 time in state 1 time in state 2 rate �A 1/25 1/50 1/30 1/40 25 50 1/36B 4/25 1/50 1/8 1/64 25/4 50 1/36C 1/75 1/150 1/30 1/40 75 150 1/36D 2/25 1/100 1/8 1/64 25/2 100 1/36Table 3.1: Parameters and 
hara
teristi
s of the MMBP sour
es used in Se
tion 3.2.4.When a sour
e is in the �rst state, it generates an arrival with probability p1, while whenit is in the se
ond state an arrival is generated with probability p2. So when t sour
es arein the �rst state, then m 2 f0; : : : ; tg arrivals from sour
es that are in the �rst state o

urwith probability � tm�pm1 (1� p1)t�m, while n 2 f0; : : : ;M � tg arrivals from sour
es that arein the se
ond state o

ur with probability �M�tn �pn2 (1� p2)M�t�n, su
h that(Sk)i;j = minfi;kgXl=maxf0;k�M+ig�il�pl1(1� p1)i�l�M � ik � l �pk�l2 (1� p2)M�i�k+l Si;j: (3.21)3.2.3 Cir
ulant mat
hing of two dimensional MMBP sour
esBe
ause a transition matrix has 1 as eigenvalue, and be
ause the sum of the eigenvaluesof a matrix is equal to the sum of the diagonal entries of that matrix, the two eigenvaluesof the transition matrix of a two dimensional MMBP sour
e are 1 and 1� �� �. For thesame reasons the two dimensional 
ir
ulant with �1� (� + �)=2 (� + �)=2� as �rst rowhas these values as eigenvalues. So there always exists a two dimensional 
ir
ulant with thesame eigenvalues as a two dimensional MMBP. However, using a two dimensional 
ir
ulantto repla
e the superposition of su
h sour
es would imply that the stationary 
umulativedistribution of the input rate of the superposition should be redis
retized using two valuesof probability 0.5, whi
h obviously would result in a very bad des
ription of the 
umulativedistribution. So a 
ir
ulant of a higher dimension should be taken. In the remainder ofthis se
tion, 
ir
ulants of size 25 are used.3.2.4 Numeri
al examplesConsider the superposition of 30 identi
al MMBP sour
es with parameters and 
hara
-teristi
s as mentioned in Table 3.1. Figures 3.6 and 3.7 
ompare the distributions of thesystem lengths when the D-BMAP/D/1/K queues are 
onsidered with as input D-BMAPeither� the D-BMAP (Sk)0�k�M as de�ned by equation (3.21), whi
h gives an exa
t des
rip-tion of the traÆ
 generated by the superposition, or
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Figure 3.6: System length distribution forthe exa
t superposition and for the 
ir
ulantmat
h of 30 type A or type B sour
es.
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Figure 3.7: System length distribution forthe exa
t superposition and for the 
ir
ulantmat
h of 30 type C or type D sour
es.� the 
ir
ulant D-BMAP 
onstru
ted by the 
ir
ulant mat
hing method whi
h approx-imates the superposition.For the s
enarios with sour
es of type A or C, a system 
apa
ity K = 75 is used, while forthe other s
enarios K = 150 is used. Although all types of sour
es were 
hosen to havethe same mean arrival rate � = 1=36, su
h that 30 sour
es generate in all 
ases a load of83%, the traÆ
 generated by sour
es of type B and D is more bursty, sin
e when they arein the �rst state, these sour
es generate arrivals at a 
onsiderable higher average rate thanthe type A or type C sour
es ever do. So for s
enarios with type B or D sour
es, a largerqueue is needed to a

ommodate these bursts.As 
an be seen from the Figures 3.6 and 3.7, the system length distributions obtained withthe 
ir
ulants as input mat
h the system length distributions obtained when the exa
tsuperpositions are used as input rather well. The �gures also illustrate something else.First remark that the input rate distribution of a sour
e of type A is the same as that of asour
e of type C, and ditto for sour
es of type B and D. In parti
ular: 1/30 with probability1/3 and 1/40 with probability 2/3 for sour
es A and C, and 1/8 with probability 1/9 and1/64 with probability 8/9 for sour
es B and D. For sour
es of type A and type C thesystem length distributions are almost the same, but for sour
es of type B and D there isa 
onsiderable di�eren
e (remark that Figures 3.6 and 3.7 have a di�erent range on theY-axis): with sour
es of type D the probability that the system length takes a 
ertain valueis larger for most values. Although sour
es of type B and D generate traÆ
 at the samerates when they are in the �rst or se
ond state, sour
es of type D stay for longer periodsin the same state, thus also in the �rst state where traÆ
 is generated at a higher rate,su
h that the traÆ
 of sour
e D is more bursty. So sour
es B and D are ni
e illustrationsof the fa
t that when a mat
hing method would only take �rst order 
hara
teristi
s of the
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al examples and appli
ationsmean on mean o� mean arrivalType � � p1 duration duration rate �1 1/25 1/50 1/12 25 50 1/362 1/25 1/200 1/4 25 200 1/363 1/25 1/650 3/4 25 650 1/364 1/75 1/150 1/12 75 150 1/365 1/75 1/600 1/4 75 600 1/366 1/75 1/1950 3/4 75 1950 1/36Table 3.2: Parameters and 
hara
teristi
s of the on/o� sour
es used in Se
tion 3.2.4.
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t superposition and for the 
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ulantmat
h of 30 type 1 or type 2 on/o� sour
es.
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type 5: circulantFigure 3.9: System length distribution forthe exa
t superposition and for the 
ir
ulantmat
h of 30 type 1 or type 2 on/o� sour
es.input rate pro
ess into a

ount, its result might badly re
e
t the queueing behavior of thesour
es it repla
es.Consider now the superposition of 30 identi
al on/o� sour
es with parameters and 
har-a
teristi
s as mentioned in Table 3.2. Again it is easily seen that for example a sour
e oftype 2 or a sour
e of type 4 is more bursty than a sour
e of type 1. Figures 3.8 and 3.9 showthe system length distributions obtained with the D-BMAP/D/1/K queues, again whenthe input is either the exa
t superposition, or the 
ir
ulant mat
h of the superposition.For sour
es of type 1, 2, 4 and 5 respe
tively, the system size K is 
hosen equal to 150,200, 300 and 600 respe
tively.Remark that no queueing results are shown for sour
es of type 3 or 6. The reason isthat for these types of sour
es, the 
ir
ulant mat
hing method does not �nd a solution.More in parti
ular, no solution exists for the minimization problem (2.74) su
h that all
onditions are ful�lled, i.e., su
h that all 
omponents of the input rate ve
tor 
 of the
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Figure 3.10: System length distribution for the exa
t superposition and for the 
ir
ulantmat
h of 20 type 1 on/o� sour
es.
ir
ulant D-BMAP are positive. An explanation for this has to be found in the fa
t thatthe input rate distribution of an on/o� sour
e takes two values: p1 and 0, with probabilities�=(�+ �) and �=(�+ �). So the input rate distribution of the superposition of M on/o�sour
es then takesM+1 values, i.e., 0; p1; 2p1; : : : ;Mp1, where the probability that it takesvalue 0 is given by (�=(�+ �))M . The larger this probability, the more 
omponents of 
have to lie `
lose to zero'. But there are less values that lie 
lose to zero than to anothervalue, sin
e negative values are not allowed. All on/o� sour
es struggle with this problem,but for sour
es of type 3 and 6 the probability that the input rate takes value 0 is solarge, i.e., 0.32, that this 
auses the mat
hing of the input rate distribution to fail. For theother types of on/o� sour
es 
onsidered, a solution exists, but the input rate distributionof the resulting 
ir
ulant is 
ertainly no perfe
t mat
h of that of the superposition, whi
hexplains why the mat
h between the system length distributions is not very well. Fora superposition of 30 sour
es, the mat
hes maybe are not too bad, but when de
reasingthe number of sour
es, the mat
hes be
ome mu
h worse, be
ause then the probabilities(�=(�+ �))M be
ome larger. An example of this is shown in Figure 3.10 for 20 sour
es oftype 1.When 
onsidering the mat
h of the auto
orrelation sequen
e for the s
enario with 20 type 1on/o� sour
es, the mat
h 
an be 
onsidered as perfe
t: both the largest absolute and rela-tive di�eren
es between both sequen
es are smaller than 10�14. This illustrates that whena mat
hing method would only take a se
ond order 
hara
teristi
 (e.g., the auto
orrela-tion sequen
e) into a

ount and negle
ts the �rst order distribution, its result might badlyre
e
t the queueing behavior of the sour
es it repla
es. This fa
t is illustrated more exten-sively in [40℄. This arti
le explores the variations in the mean queue length when arrivalpro
esses with the same mean and auto
orrelation fun
tion are applied to a ./D/1 queue.It is observed that the mean queue length 
an vary substantially, so the behavior of a queue
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annot be predi
ted solely based on the mean and auto
orrelation fun
tion of its arrivalpro
ess.3.3 Multiplexing MPEG video sour
esIn this se
tion, the 
ir
ulant mat
hing method is applied to the superposition of an MPEGsour
e model developed by B. Helvik in [42℄. We extensively used this model in a seriesof 
onne
tion admission 
ontrol (CAC) experiments performed at the ATM1 testbed inBasle, Switzerland. These experiments were 
arried out within the EXPERT proje
t [47℄of the European tele
ommuni
ations resear
h program ACTS. Be
ause CAC experimentsare in fa
t multiplexing experiments, a 
omparison between the experimentally and thetheoreti
ally obtained results is possible.3.3.1 MPEG en
oding and the MPEG model of HelvikDue to the high bandwidth needs of un
ompressed video data, several video en
odingalgorithms were developed to 
ompress this data. A widely used 
oding s
heme that isindependent of a parti
ular appli
ation is MPEG (Moving Pi
ture Experts Group) [67℄.Several MPEG s
hemes exist: MPEG-1, MPEG-2 and MPEG-4. The s
heme that is dealtwith here is MPEG-1.The MPEG 
ompression algorithm redu
es both spatial and temporal redundan
y of avideo data stream, thereby generating three di�erent frame types of a 
onstant dura-tion: I-frames, P-frames and B-frames. In all three frame types, spatial redundan
y isremoved. I-frames or intrapi
tures are typi
ally the largest of the three frame types, sin
eonly intra frame en
oding is used, i.e., only spatial redundan
y is removed. P-frames orpredi
ted pi
tures have also temporal redundan
y with referen
e to the previous I-frameor P-frame removed. P-frames are typi
ally the se
ond largest. B-frames or bidire
tionalpi
tures provide the highest amount of 
ompression sin
e they have temporal redundan
ywith referen
e to both the previous and the next I-frame or P-frame removed. After the
ompression, the frames are mostly arranged in a periodi
 deterministi
 sequen
e, e.g.,`IBBPBBPBBPBB'. One su
h sequen
e is referred to as a group of pi
tures (GOP).Following the standardization of the MPEG algorithm and its wide a

eptan
e, resear
hersstarted investigating the 
hara
teristi
s of MPEG 
oded video traÆ
 and developing sour
emodels spe
i�
 to this type of traÆ
. The result is a wide variety of models (see for example[49℄ and the referen
es therein). One of these models is the MPEG model of Helvik [42℄,whi
h is espe
ially designed for the type of traÆ
 generator available at the EXPERT1ATM stands for asyn
hronous transfer mode, and is a 
onne
tion-oriented pa
ket swit
hing transfermode based on asyn
hronous time division multiplexing. It uses �xed length pa
kets of 53 bytes (48 bytespayload + 5 bytes header), 
alled 
ells, to transport traÆ
. An important property of ATM is its notion ofquality of servi
e (QoS). The QoS parameter that is 
onsidered in this se
tion is the 
ell loss ratio (CLR),the ratio of lost 
ells to the total number of transmitted 
ells. We 
ome ba
k to some aspe
ts of ATM inthe se
ond part of this thesis, but mu
h more information about it 
an be found in for example [24℄.
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Figure 3.11: Stru
ture of the MPEG model proposed by Helvik.testbed.The Helvik model is a periodi
 Markovian model at the MPEG frame level. Its transitiondiagram is shown in Figure 3.11. State sojourn times are deterministi
, with as lengtha frame duration. With ea
h state a (mean) load is asso
iated. As 
an be seen fromFigure 3.11, the Helvik model is level-oriented. A level i models the a
tivity of the MPEGsour
e when the sum of the loads generated by the B-frames and P-frames of a GOPis between two values li and li+1. Be
ause of the variation in the loads produ
ed bythe di�erent frames in a GOP, a smooth transition over the frames 
annot be assumed.Therefore, within ea
h level of the model the I-frame, B-frame and P-frame a
tivities aremodeled. For the B-frames and P-frames a single state is used. As the I-frames are thelargest, they are modeled in more detail using multiple states. For further details aboutthe Helvik model, we refer to [42℄.The parameters of the Helvik model, i.e., the di�erent load level intervals [li; li+1[, thetransition matrix H = (hi;j), where hi;j des
ribes the probability of going from level i tolevel j, and the load that is asso
iated with ea
h state, are obtained from MPEG framesize data. Details about how this is done 
an also be found in [42℄. First one has tode
ide how many levels L and how many I-states N per level to use. This de
ision isa trade-o� between the model a

ura
y and the number of states `budget'. When Mdenotes the number of frames in a GOP, the number of states in the Helvik model isgiven by (M � 1 + N)L. The two Helvik sour
es that are used further on are basedon frame size tra
e data of the James Bond movie `Gold�nger' (referred to as `bond'),and on a tra
e of an Asterix 
artoon (referred to as `asterix'). These are two of themany MPEG-1 frame size tra
es made publi
ly available by the University of W�urzburgat http://nero.informatik.uni-wuerzburg.de/MPEG/. The GOP pattern of these tra
esis `IBBPBBPBBPBB', su
h that the parameter M of the Helvik model equals 12. Ea
h
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al examples and appli
ationstra
e 
onsists of 40 000 frames, whi
h 
orresponds to approximately half an hour of video.The duration of a frame is 45 ms2. The Helvik sour
e bond is implemented with �ve loadlevels, and two I-states per level, su
h that it is a 65 state model. The asterix sour
e isalso implemented with two I-states per level, but now four load levels are used, su
h thatit has 52 states. With this number of states, we were able to multiplex both models in onetraÆ
 generator, without ex
eeding the upper limits of what the equipment 
an handle.3.3.2 Experimentally obtained CAC boundariesConne
tion admission 
ontrol (CAC) is the traÆ
 
ontrol fun
tion whi
h has to determinewhether a new 
onne
tion setup request 
an be a

epted or should be reje
ted. This de
i-sion is based on the 
onstraint to meet the negotiated quality of servi
e (QoS) requirementsof all existing 
onne
tions as well as that of the new 
onne
tion. Besides this basi
 fun
-tion of CAC, there is the se
ondary goal to maximize the system utilization by allowingfor a statisti
al multiplexing gain, i.e., an eÆ
ient CAC method should a

ept as many
onne
tions as possible without violating any QoS guarantees.Experimental multiplexing results were obtained in the EXPERT proje
t by using a traÆ
generator and analyzer instrument, 
alled ATM-100, whi
h gives the possibility to generateand analyze quite general random traÆ
. The ATM-100 is equipped with a traÆ
 generatormodule that is used for generating the arti�
ial MPEG traÆ
. The periodi
ity of thetraÆ
 is 
ompromised in the sense that the duration in the individual states of the Helvikmodel is assumed exponential instead of 
onstant, whi
h is a requirement if more than oneMPEG sour
e is to be generated by the traÆ
 generator. This traÆ
 is then multiplexedon the output port of a Fore ASX-200 ATM swit
h with a bu�er of 100 
ells, or on anoutput port of a Cis
o LS1010 ATM swit
h with a bu�er of 256 
ells. Due to hardware
onstraints in the traÆ
 generator, a pa
ing fun
tion has been used to limit the output port
apa
ity to 37.44 Mbit/s, thereby redu
ing the number of sour
es required to adequatelyload the system. The aggregate traÆ
 stream is then analyzed in the ATM-100 analyzermodule, whi
h permits 
ell loss measurements. CAC boundaries are obtained from thesemultiplexing experiments by 
hanging the traÆ
 mix until a 
ell loss ratio (CLR) below,but as 
lose as possible to a �xed value is obtained. All CAC boundaries were obtainedwith a target CLR of 10�4. More details about the experimental setup are given in [1, 2℄.2Remark that originally on the website where the MPEG tra
es are made available, it was mentionedthat \the 
apture rate of the video system was between 19 and 25 frames per se
ond". Sin
e it was not
lear what the exa
t 
apture rate for ea
h of the tra
es was, Helvik used in [42℄ the average of these twonumbers, i.e., 22 frames per se
ond, resulting in a frame time of 45 ms. In the experiments, we adoptedthis number. Later on, this indistin
tness was 
lari�ed, and now it is mentioned that \the 
apture rate ofthe video system was 25 frames per se
ond", so resulting in a frame time of 40 ms. Sin
e all experimentalresults were obtained assuming that a frame time has a duration of 45 ms, also the theoreti
al results aregenerated based on this assumption.
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es 593.3.3 Theoreti
ally obtained CAC boundariesThe Markovian MPEG model of Helvik is mapped onto a D-BMAP (Dk)k�0 in a ratherstraightforward way. The transition matrix D is easily read from the transition diagramshown in Figure 3.11 and from the values in the matrix H, whi
h des
ribes the transitionprobabilities among the di�erent levels of the Helvik model. The transition matrix of theD-BMAP has period 12, due to the periodi
 GOP stru
ture in the MPEG tra
es and inthe Helvik model. For ea
h state, the Helvik model gives the number of bits that should begenerated during the time that the model is in that state. First this number is transformedfrom bits into 
ells (dnumber of bits = (8� 48)e). When for a 
ertain state i this results inyi 
ells, then 8k � 0 and 8j, (Dk)ij is de�ned as(Dk)ij = (Dij if k = yi;0 otherwise: (3.22)Based on the parameters of the Helvik sour
es, a D-BMAP for the bond and the asterixsour
es 
an thus be 
onstru
ted.To obtain results 
omparable with the experimental results, a superposition of theseD-BMAPs should be o�ered to a single server queueing system. This system should have a�nite bu�er 
apa
ity of 100 or 256 
ells and a deterministi
 servi
e time equal to the timeneeded to pla
e one 
ell on a link of 37.44 Mbit/s (
all this time a slot).Be
ause of the size of the bond and asterix D-BMAPs, i.e., 65 or 52 states, it is obviouslythat the exa
t superposition of these sour
es 
annot be used (a superposition of two of su
hsour
es has already 4225 resp. 2704 states). So the 
ir
ulant mat
hing method is appliedto these sour
es, resulting in a 
ir
ulant D-BMAP (Qk)k�0. For a superposition of asterixor bond D-BMAPs, the resulting 
ir
ulant has 132 states. For a superposition of bond andasterix sour
es, the result is a 
ir
ulant of dimension 276. These dimensions stay the sameirrespe
tive of the number of sour
es that is multiplexed, the di�eren
es are in the rateve
tor 
 of the 
ir
ulant D-BMAPs.Sin
e the Helvik model is a model at the MPEG frame level, the underlying time unit of the
ir
ulant D-BMAP (Qk)k�0 is also a frame time, or 45 ms. Be
ause the 
ir
ulant D-BMAPwill be used as input to a queueing system with a 
onstant servi
e time of one slot, it hasto be transformed into a D-BMAP with one slot as underlying time unit. Suppose that thestate sojourn time of this new D-BMAP is geometri
ally distributed with mean x, wherex is the number of slots in a frame time. Then p = 1� 1=x is the probability of staying inthe same state after one slot. Transform the 
ir
ulant D-BMAP (Qk)k�0 into the 
ir
ulantD-BMAP (Rk)k�0 with one slot as underlying time unit, by de�ning the elements of itstransition matrix R asRij = ((1� p)Qij if i 6= j;p if i = j: (3.23)Remark that the periodi
ity of the input traÆ
 is in this way 
ompromised in a similar wayas in the experiments, and that the matrix R is sto
hasti
, sin
e for all i, Qii = 0, be
ause
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Figure 3.12: Comparison of theoreti
allyand experimentally obtained 10�4 CACboundary with a bu�er 
apa
ity of 100 
ells.
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Figure 3.13: Comparison of theoreti
allyand experimentally obtained 10�4 CACboundary with a bu�er 
apa
ity of 256 
ells.Q is periodi
. Constru
t a ve
tor 
̂ from the rate ve
tor 
 = P1k=1 kQke by dividing allits elements by x, i.e., 
̂i = 
i=x. The matri
es Rk are then obtained from R and 
̂ as in(2.31).By using the D-BMAP (Rk)k�0 as input for the D-BMAP/D/1/K + 1 queueing system,where K = 100 or K = 256, and 
al
ulating the 
ell loss probability for this systemusing formula (1.13), theoreti
al CAC boundaries 
an be obtained in a similar way as theexperimental CAC boundaries, i.e., by 
hanging the traÆ
 mix until a CLR below, but as
lose as possible to 10�4 is obtained.3.3.4 Numeri
al resultsAll results presented here are obtained with the values already mentioned before: a bu�er
apa
ity of 100 or 256 
ells, an outgoing link of 
apa
ity 37.44 Mbit/s, whi
h implies thatone slot equals 11.325 �s, and a target CLR of 10�4. Figure 3.123 shows results for thebu�er of 100 
ells, Figure 3.13 for that of 256 
ells. If the theoreti
ally and experimentally3Remark that this �gure is also shown in [89℄, but that the theoreti
ally obtained results shown noware slightly better than these shown in [89℄. The reason is that when we generated the results of [89℄, theminimization problem (2.74) of the 
ir
ulant mat
hing method was implemented using the MATLAB fun
-tion fmins, whi
h uses the Nelder-Meade simplex method [78℄. Be
ause fmins implements un
onstrainedminimization, while we require that all 
omponents of the rate ve
tor are positive, we adapted this methodas suggested in [78℄ for 
onstrained optimization: we let the goal fun
tion take a large positive value whena 
omponent of the rate ve
tor is negative. Later we had a

ess to the MATLAB optimization toolbox,in whi
h the fun
tion fmin
on, whi
h �nds the 
onstrained minimum of a fun
tion of several variables, isavailable. It is this fun
tion that is used to generate the results shown in Figure 3.12.



3.4. Con
lusions 61obtained points shown in the �gures are 
ompared, it is seen that the theoreti
al resultsare more 
onservative than the experimental results, with a larger deviation if the num-ber of asterix sour
es grows. For the D-BMAPs of the MPEG sour
es, the parametersas obtained from the Helvik model are used, whi
h gives rise to a mean arrival rate of58.1812 
ells/45 ms, or 0.54820 Mbit/s for the asterix sour
e, and 63.3247 
ells/45 ms or0.59666 Mbit/s for the bond sour
e. If the Helvik sour
es are implemented in the traÆ
generator however, their parameters are automati
ally slightly 
hanged to adapt them tothe hardware limitations of this devi
e. Depending on the number of sour
es generated,these 
hanges may be
ome more important. The �rst limitation is that only transitionprobability values in integer multiples of 1/256 are allowed. Se
ondly, the peak rate gener-ated in a state of the model must divide the link rate, su
h that in a state the interarrivaltime between 
ells is always the same integer number of slots. As a result, the mean arrivalrate for an experimental asterix sour
e is 0.51318 Mbit/s, and 0.59221 Mbit/s for a bondsour
e. The experimental model for the asterix sour
e thus generates 0.03502 Mbit/s lessthan the theoreti
al model, whi
h means that for a 
ertain experimental point the 
orre-sponding theoreti
al CLR is worse, depending on the number of asterix sour
es used. Thisexplains partially why the theoreti
al CAC boundary lies below the experimental one, witha larger di�eren
e when more asterix sour
es are involved. Analogue observations are madein [2℄ when the experimental results are 
ompared with results obtained by simulation.3.4 Con
lusionsNumeri
al examples and appli
ations of the 
ir
ulant mat
hing method were des
ribed inthis 
hapter. A �rst appli
ation dis
ussed in Se
tion 3.2 is the superposition ofM identi
altwo dimensional MMBP sour
es. For these types of sour
es, it is possible to 
ompare thesystem lengths obtained when using the 
ir
ulant approximation of the superposition andthe exa
t superposition as input to a queueing system, be
ause the exa
t superposition ofM identi
al two dimensional sour
es is also exa
tly des
ribed by an (M + 1)-dimensionalMarkov sour
e. First general MMBP sour
es are 
onsidered, and the system length dis-tribution obtained with a 
ir
ulant as input mat
hed the exa
t system length distributionrather well. Then a spe
ial type of MMBP sour
es is 
onsidered, namely on/o� sour
es.For these type of sour
es the agreement between the system length distribution obtainedwith the 
ir
ulants as input and the exa
t distribution is bad. The reason is that the ratedistribution of the 
ir
ulant very badly mat
hes that of the exa
t superposition, be
ausea large part of the probability mass of the rate distribution is lo
ated at rate zero. Thesame fa
t sometimes even 
auses the 
ir
ulant mat
hing method to fail in �nding a validrate distribution for the 
ir
ulant. Using the two dimensional sour
es it is also illustratedthat it is ne
essary for a mat
hing method to take both �rst and se
ond order statisti
s ofthe arrival pro
ess into a

ount, sin
e when 
onsidering only one of both, the result of themat
hing pro
ess might badly re
e
t the queueing behavior of the sour
es it repla
es.A se
ond appli
ation, 
onsidered in Se
tion 3.3, is the superposition of a periodi
 MPEG
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al examples and appli
ationssour
e model. Using the 
ir
ulant mat
hing method, we obtained a theoreti
al CAC bound-ary for a mix of two types of MPEG sour
es. Remark that due to the dimension of theMPEG sour
e models (52 and 65 states) and the realisti
 number of su
h sour
es 
onsid-ered, it is impossible to obtain the exa
t queueing results using the exa
t superposition.So we 
ompared the theoreti
ally obtained results with experimentally obtained results.
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Chapter 4Introdu
tionIn the late 1980s, the asyn
hronous transfer mode (ATM) [24, 80℄ was developed in or-der to provide a network that was 
apable of handling a virtually unlimited range ofuser appli
ations independent of their bandwidth requirements. The major organizationsresponsible for developing standards and spe
i�
ations for ATM are the ITU-T (Inter-national Tele
ommuni
ations Union-Tele
ommuni
ation Standardization Se
tor) and theATM Forum. ATM is a fast 
onne
tion-oriented pa
ket swit
hing transfer mode based onasyn
hronous time division multiplexing. It uses �xed length pa
kets of 53 bytes (48 bytespayload + 5 bytes header), 
alled 
ells, to transport data. Based on some information inthe header of ea
h 
ell, 
ells belonging to the same virtual 
hannel (VC) 
an be identi�ed.Cell sequen
e integrity is preserved per VC.When ATM 
ame on the s
ene, it was thought to be the beginning of a new era in net-working, be
ause it was both a lo
al area network and a wide area network te
hnologythat 
ould start at the desktop. In addition, ATM's ability to provide end-to-end qualityof servi
e (QoS) was highly praised. However, ATM never be
ame the magi
 end-to-endsolution. But it has been su

essfully deployed in the ba
kbone network, be
ause of itsability to provide QoS. The ATM framework for providing QoS guarantees is des
ribed inthe ATM Forum's TraÆ
 Management Spe
i�
ation [5℄. Di�erent ATM servi
e 
ategoriesand traÆ
 
ontrol fun
tions whi
h relate traÆ
 
hara
teristi
s and QoS requirements tonetwork behavior have been de�ned.Four servi
e 
ategories are intended for non-real-time data traÆ
: non-real-time variablebit rate (nrt-VBR), available bit rate (ABR), unspe
i�ed bit rate (UBR) and guaranteedframe rate (GFR). Data appli
ations using the most widely used proto
ol suite in 
omputer
ommuni
ations, i.e., TCP/IP (transport 
ontrol proto
ol/internet proto
ol), in
rease theirrate if extra bandwidth is available in the network, and redu
e it if 
ongestion builds up.As a result, this type of traÆ
 may be highly unpredi
table, extremely bursty and veryhard to 
hara
terize in terms of a peak 
ell rate, sustainable 
ell rate and maximum burstsize, as is needed to set up a nrt-VBR 
onne
tion. An additional weakness of nrt-VBRin the 
ontext of transporting TCP/IP traÆ
 is its inability to de�ne a QoS guarantee in65



66 4. Introdu
tionterms of frames1. The ABR servi
e 
ategory was developed espe
ially for traÆ
 sour
esthat are willing to adapt their rate to 
hanging network 
onditions and available resour
es,but 
an only 
hara
terize their traÆ
 in a rather `vague' way. ABR uses a feedba
k 
ow
ontrol s
heme to provide information about 
ongestion inside the network to the sour
es,and it expe
ts sour
es to adapt their traÆ
 in a

ordan
e to this feedba
k. This feedba
kalgorithm is however fairly 
omplex, espe
ially in the endsystems. Further, when ATMis not deployed end-to-end, ATM's traÆ
 
ontrol terminates at the a

ess nodes and itbe
omes very diÆ
ult to expli
itely 
ontrol a non-ATM sour
e. So the most suited servi
e
ategories for TCP/IP traÆ
 are UBR and GFR.The best way to 
hara
terize the UBR servi
e 
ategory is as ATM's `best e�ort' servi
e
ategory: UBR is not subje
t to a spe
i�
 traÆ
 
ontra
t, so no spe
i�
ation of the traÆ
that will be sent over a UBR 
onne
tion is needed, but also no QoS 
ommitments are madeto UBR 
onne
tions. To perform end-to-end 
ongestion 
ontrol, UBR depends entirely ona higher layer proto
ol su
h as TCP.Where UBR was developed as a way to a

ommodate traÆ
 that is diÆ
ult to 
hara
-terize to the early ATM market, GFR, whi
h was initially 
alled UBR+, was developedespe
ially for this kind of pa
ket data (i.e., TCP/IP traÆ
). The main motivation behindthe introdu
tion of GFR was to retain the simpli
ity of UBR at the user network interfa
e,while providing GFR 
onne
tions with a minimum 
ell rate guarantee at the frame level:if frames smaller than a spe
i�ed maximum frame size are sent in a burst of 
ells that doesnot ex
eed a maximum burst size, then these frames are expe
ted to get delivered a
rossthe network with minimum losses.The absen
e of 
ongestion 
ontrol me
hanisms for the basi
 UBR servi
e 
an lead to a lowthroughput for this type of 
onne
tions. As a result, 
ompetitive UBR implementationsenhan
e the basi
 UBR servi
e with intelligent frame aware bu�er a

eptan
e s
hemes. ForGFR, it is expli
itely required in the de�nition of the GFR servi
e 
ategory that this typeof traÆ
 is transmitted as frames of 
ells, and that the ATM swit
hes supporting GFRneed to be frame aware and a

ept or dis
ard entire frames instead of individual 
ells.Frame aware bu�er a

eptan
e s
hemes, also often 
alled pa
ket dis
arding me
hanisms,are the topi
 of the se
ond part of this thesis.A literature overview of the most important frame aware bu�er a

eptan
e s
hemes pro-posed for UBR and GFR is given in the next 
hapter. In Chapter 6, a theoreti
al modelis developed and applied to study the transient performan
e of the sele
tive drop bu�era

eptan
e algorithm. This model is slightly modi�ed in Chapter 7 to study the fair bu�erallo
ation a

eptan
e s
heme. The remainder of the 
urrent 
hapter 
ontains short intro-du
tory des
riptions on AAL5 frames, TCP 
ongestion 
ontrol, the UBR and GFR servi
eguarantees and on performan
e measures that are important to assess the performan
e ofTCP over UBR or GFR.1The term `frame' means an AAL5 frame, and is dis
ussed further on in this 
hapter. Roughly spoken,it 
orresponds to an IP pa
ket whi
h holds a TCP segment.



4.1. Some 
on
epts related to bu�er a

eptan
e 674.1 Some 
on
epts related to bu�er a

eptan
eA bu�er a

eptan
e s
heme de
ides about whi
h 
ells are allowed to enter the bu�er of anetwork element, and whi
h 
ells have to be dropped. This de
ision is very often takenbased on bu�er a

ounting information, i.e., on the 
ounters and states asso
iated withthe bu�er.Together with the s
heduling algorithm, the bu�er a

eptan
e s
heme determines thethroughput and fairness guarantees a network element 
an o�er to the di�erent virtual
ir
uits. The s
heduling algorithm is the algorithm that de
ides about the order in whi
hthe a

epted 
ells will leave the bu�er.Closely related to s
heduling is the queueing strategy used, i.e., the internal organization ofthe bu�er. The queueing strategy 
an be a global one, most of the time resulting in FIFOs
heduling, or it 
an be per-
lass or per-VC, whi
h makes s
heduling s
hemes like roundrobin, priority s
heduling et
. possible. Important to note is that the a

ounting strategyused does not imply a queueing strategy: many of the s
hemes whi
h are 
onsidered furtheron use per-VC a

ounting 
ombined with global queueing.Although stri
tly speaking the term `bu�er a

eptan
e s
heme' as de�ned above 
oversonly the de
ision rules about whi
h 
ells to a

ept in the bu�er, it is also often used todenote the totality of bu�er a

eptan
e (in the stri
t sense), a

ounting, queueing ands
heduling. Throughout this thesis, the term is also used in both meanings. Sometimes,bu�er a

eptan
e is also 
alled bu�er management (e.g., in [32, 5℄).4.2 AAL5 aware bu�er a

eptan
eThe most widely used ATM adaptation layer (AAL) for data traÆ
 is AAL5. The GFRservi
e guarantee is even expli
itely based on the use of AAL5. AAL5 provides to theupper layer proto
ols an unassured transfer of variable-sized servi
e data units (SDU) overthe underlying ATM network. Ea
h su
h variable-sized SDU is en
apsulated in an AAL5frame whi
h 
onsists of a payload �eld of up to 65 535 bytes, some padding bytes and a8-byte long trailer (see Figure 4.1). The padding aligns the AAL5 frame on a multiple of48 bytes. The segmentation of the AAL5 frame in 
ells by the AAL5 segmentation andreassembly (SAR) sublayer does not introdu
e any new overhead, but relies on the payloadtype indi
ator (PTI) �eld in the ATM header. The ATM user-to-user (AUU) bit in thePTI �eld for user data 
ells is set to zero by the SAR sublayer for all 
ells, ex
ept for thelast 
ell of ea
h AAL5 frame, whi
h is transmitted with the AUU bit set to one. Bu�era

eptan
e s
hemes 
an thus dete
t frame boundaries by inspe
ting the AUU bit in theheader of the ATM 
ells.Bu�er a

eptan
e s
hemes in ATM networks de
ide in prin
iple about the a

eptan
e of
ells. But with AAL5, bu�er a

eptan
e s
hemes preferentially are AAL5 frame aware,be
ause the destination AAL5 entity 
he
ks ea
h reassembled AAL5 frame for message
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apsulation of data in AAL5 and AAL5 segmentation into ATM 
ells.length and 
y
li
 redundan
y 
he
k �eld, and dis
ards 
orrupted frames. The loss of asingle 
ell of an AAL5 frame at a network element thus leads to the loss of a whole frameat the destination. Bu�er a

eptan
e s
hemes without frame awareness 
onsequently giverise to a 
ow of ATM 
ells that is very likely to transport in
omplete frames whi
h areof no use. This 
an degrade the data throughput signi�
antly. To support GFR, bu�era

eptan
e s
hemes are required to be AAL5 aware, sin
e the GFR servi
e guarantee isbased on AAL5 frames.4.3 TCP 
ongestion 
ontrolIf the UBR or GFR servi
e 
ategory is used to transport TCP/IP traÆ
, network elementsperform 
ongestion 
ontrol (i.e., pa
ket dis
arding) based on lo
al information. For end-to-end 
ongestion 
ontrol, these servi
e 
ategories depend entirely on TCP.The 
ongestion 
ontrol of TCP is window-based. TCP's window size 
orresponds to theamount of data the TCP sour
e 
an send in one round trip time (RTT), and is the mini-mum of the re
eiver's advertised window (RCVWND) and the sender's 
ongestion window(CWND).The 
ongestion 
ontrol s
heme of TCP in
ludes four algorithms, i.e., `slow start', `
onges-tion avoidan
e', `fast retransmit' and `fast re
overy' [50, 3℄. The slow start and 
ongestionavoidan
e algorithms 
ontrol TCP's window size. A variable SSTRESH is maintained forea
h 
onne
tion to swit
h between the two algorithms. When a TCP 
onne
tion starts orhas been idle for a time longer than the retransmission timeout, the slow start me
hanism
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ongestion 
ontrol 69is used. At the beginning of the slow start algorithm, CWND is set to 1 maximum seg-ment size (MSS). Ea
h time an a
knowledgement (ACK) for new data is re
eived, CWNDis in
reased by 1 MSS. If CWND rea
hes SSTRESH, the 
ongestion avoidan
e algorithmtakes over, and now CWND is in
reased by 1/CWND on re
eipt of a new ACK. Slow start
orresponds with an exponential in
rease of the 
ongestion window every round trip time,
ongestion avoidan
e with a linear in
rease.TCP's 
ongestion 
ontrol relies on segment loss as the indi
ation of 
ongestion. On dete
-tion of a segment loss by expiration of the retransmission timer, half the 
urrent windowsize is re
orded in SSTRESH, CWND is set to 1 MSS and slow start is initiated. Thetriggering of the retransmission timer is a�e
ted by the TCP timer granularity. Most realTCP implementations use a 100 to 500 ms timer granularity, although some simulationsuse a mu
h lower granularity (e.g., 0.1 ms in [84℄). Sin
e the timer granularity determinesthe amount of time lost during 
ongestion, lowering the TCP granularity results in fasterre
overy after a loss and thus a higher throughput.Sin
e a TCP re
eiver should send an immediate dupli
ate ACK when an out-of-ordersegment arrives, the sender 
an also dete
t losses based on in
oming dupli
ate ACKs.After re
eiving three dupli
ate ACKs, the fast retransmit algorithm sets SSTRESH to halfthe 
urrent window size, and retransmits the segment that appears to be the missing onewithout waiting for the retransmission timer to expire. If the fast retransmit algorithm isimplemented in 
ombination with the fast re
overy algorithm, CWND is set to SSTRESHplus 3�MSS. Otherwise, CWND is set to 1 MSS and slow start is initiated.The fast re
overy algorithm governs the transmission of new data until a non-dupli
ateACK arrives: it in
rements CWND by 1 MSS for ea
h additional dupli
ate ACK re
eived,and transmits a segment if allowed by TCP's window size. When an ACK for new dataarrives, CWND is set to SSTRESH, whi
h implies that the 
ongestion avoidan
e algorithmis triggered. The reason for not performing slow start is that the re
eipt of the dupli
ateACKs does not only indi
ate that a segment has been lost, but also that segments are mostlikely arriving at the destination.The two most 
ommon referen
e implementations for TCP are Tahoe TCP and RenoTCP [27℄. Tahoe TCP refers to TCP with the slow start, 
ongestion avoidan
e and fastretransmit algorithms implemented, while Reno TCP implements also the fast re
overyalgorithm.Sin
e the fast retransmit and re
overy algorithms are known to generally not re
over veryeÆ
iently from multiple losses in a single window of pa
kets [27℄, the sele
tive a
knowl-edgement (SACK) strategy was proposed in [74℄. With sele
tive a
knowledgements, thedata re
eiver 
an inform the sender about all segments that have arrived su

essfully, sothe sender needs to retransmit only the segments that have a
tually been lost.
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tion4.4 Bu�er a

eptan
e and TCP 
ongestion 
ontrolThe rate at whi
h a TCP sour
e 
an send data into the network depends on its windowsize. If the network would have dire
t 
ontrol over this window size, it 
ould 
ontrol thesour
e's rate. The network however does not have this dire
t 
ontrol. But sin
e TCP's
ongestion 
ontrol s
heme manipulates the window size by in
reasing it while there areno losses, and de
reasing it on dete
tion of a lost TCP segment, the network 
ould haveindire
t 
ontrol over a sour
e's rate by means of dropping.This dropping o

urs automati
ally in 
ase of 
ongestion be
ause of bu�er over
ow, but
an lead to very low e�e
tive throughput. Dropping 
an however also be done in a moreintelligent way, by trying to drop 
omplete frames prior to 
ongestion, preferentially froma 
onne
tion whi
h is using more bandwidth than one would 
all fair. To determine whi
h
onne
tions are getting more than a fair share of the bandwidth, the number of 
ells ea
h
onne
tion has in the bu�er is taken into a

ount, and the prin
iple is used that 
onne
tionswhi
h use more than a fair share of the bu�er 
apa
ity will also get more than a fair share ofthe bandwidth. Conne
tions from whi
h 
ells are dropped will de
rease their rate be
auseof the TCP 
ongestion 
ontrol me
hanism. As a result, these 
onne
tions will probablyhave the fewest 
ells in the bu�er next time the 
ell dropping 
ondition is satis�ed, andtheir frames have the least 
han
e of being dis
arded. So it is unlikely that in bu�era

eptan
e s
hemes whi
h try to drop frames in a `fair' manner, frames from the same VCget dis
arded all the time.4.5 The UBR and GFR servi
e guaranteesThe UBR servi
e guarantee as de�ned in [5℄ is simple to des
ribe: UBR o�ers no traÆ
related servi
e guarantee. No 
ommitment is made about the 
ell loss ratio experien
ed bya UBR 
onne
tion, or about the 
ell transfer delay experien
ed by 
ells on the 
onne
tion.Fairness among 
onne
tions 
annot be assumed, although a lo
al poli
y in some networkelements may have this e�e
t.The des
ription of the GFR servi
e guarantee is not so easy. It is expli
itely based on AAL5frames. Before it 
an be formulated, some parameters and terms need to be introdu
ed.For a GFR 
onne
tion, a traÆ
 
ontra
t is spe
i�ed that is 
omposed of the followingparameters: a minimum 
ell rate (MCR) and asso
iated 
ell delay variation toleran
eCDVTMCR, a peak 
ell rate (PCR) and asso
iated 
ell delay variation toleran
e CDVTPCR,a maximum frame size (MFS) and a maximum burst size (MBS). The MFS is the maximumAAL5 frame size in 
ells.A 
ell with its 
ell loss priority (CLP) bit set to one is 
alled marked when the originatorof the 
ell has set the CLP bit. When it is the network that has set the CLP bit, the
ell is 
alled tagged. Any sour
e or network element that sets the CLP bit of a 
ell toone shall set the CLP bit of every other 
ell of the same frame to one as well, sin
e no



4.5. The UBR and GFR servi
e guarantees 71partial frame marking or tagging is allowed by the GFR de�nition. There are two typesof GFR 
onne
tions: GFR.1 and GFR.2 
onne
tions. In either type of GFR 
onne
tion,less important frames may be marked by the sour
e. Tagging by the network is howeveronly allowed for GFR.2 
onne
tions. Networks may only tag frames that are ineligible. Aframe is eligible if and only if it is 
onforming, and it passes the F-GCRA test.A frame is 
onforming if all its 
ells are 
onforming. The 
ell 
onforman
e is 
he
ked bythe GFR usage parameter 
ontrol (UPC), whi
h veri�es if� the 
ell is either the last 
ell of a frame, or no more than MFS�1 
ells of the sameframe have pre
eded it, i.e., the frame length is limited to MFS 
ells,� the end systems send traÆ
 at a 
ell rate that 
onforms to PCR and CDVTPCR, i.e.,the 
ell does not violate PCR,� the 
ell has the same CLP value as the �rst 
ell of the frame to whi
h it belongs, i.e.,CLP should be set uniformly in a frame.The UPC dis
ards or tags (if allowed) 
ells of non-
onforming frames. Be
ause the threetests performed by the UPC are applied on 
ell level, the UPC is unable to predi
t the
onforman
e of su

eeding 
ells when the �rst 
ell of a frame is re
eived. Sin
e no partialtagging is allowed, the tails of non-
onforming frames are therefore usually dis
arded.To be eligible, a frame must additionally pass the frame-based generi
 
ell rate algorithmF-GCRA(T; L) [5, p.72℄, whi
h is the referen
e algorithm used to identify the QoS eligibilityof a frame with respe
t to the minimum 
ell rate MCR = 1=T , assuming that a toleran
eL = (MBS � 1)(1=MCR � 1=PCR)�1, is allowed. The F-GCRA is an adaptation of thewell-known GCRA used with the VBR servi
e 
ategory [5, p.31℄. The main di�eren
ebetween the GCRA and the F-GCRA is that the F-GCRA de
lares entire CLP=0 framesto be eligible or non-eligible. Reasons for frames to fail the F-GCRA test are that theframes are CLP=1 frames, the frame interarrival times are too small, or traÆ
 was sent atPCR for longer than the MBS. Be
ause CLP=1 frames 
annot pass the F-GCRA test, allCLP=1 frames are ineligible. A 
lassi�
ation of the frames of a GFR 
onne
tion in termsof marking/tagging, 
onforman
e and eligibility is shown in Table 4.1.The GFR servi
e guarantee provides a low 
ell loss ratio (CLR) for a number of 
ells in
omplete CLP=0 frames, at least equal to the number of 
ells in eligible frames. Sin
eCLP=1 frames are not subje
t to the CLR obje
tive, bu�er a

eptan
e s
hemes in networkelements will treat them with lower priority. Note that sin
e the GFR servi
e guarantee iswith respe
t to a number of 
ells in 
omplete frames, and not pre
isely to the frames thatare 
onsidered eligible, the network is not required to perform the F-GCRA test, althoughsome swit
h elements may rely on it to satisfy the GFR servi
e guarantee.Cells may always be sent at a rate up to the PCR. Apart from the MCR guarantee, theGFR servi
e also in
ludes the expe
tation that traÆ
 in ex
ess of MCR and MBS will bedelivered within the limits of available resour
es, and that ea
h 
onne
tion will be provided
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tionCLP frame 
onforming frame frame passes F-GCRA type of frame0 no no ineligible non
onforming0 no yes ineligible non
onforming0 yes no ineligible 
onforming0 yes yes eligible 
onforming1 no no ineligible non
onforming1 yes no ineligible 
onformingTable 4.1: Classi�
ation of GFR frames.with a fair share of those available resour
es. So bu�er a

eptan
e s
hemes for GFR needto be designed in su
h a way that they 
an deliver both rate and fairness guarantees tothe GFR 
onne
tions.Be
ause the GFR servi
e guarantee applies to 
omplete AAL5 frames, bu�er a

eptan
es
hemes used with GFR de
ide about the a

eptan
e of a frame on arrival of its �rst 
ell: ifthis �rst 
ell is a

epted, they try to a

ept all 
ells of the frame; if the �rst 
ell is dis
arded,all 
ells of the frame are dis
arded. So all these s
hemes need at least one per-VC state toindi
ate if the next 
ell on the 
onne
tion will be the �rst one of a frame.4.6 Performan
e measuresTo de
ide about the performan
e of TCP over UBR or GFR using a 
ertain bu�er a
-
eptan
e s
heme, the throughput obtained by the di�erent 
onne
tions at the destinationTCP layer is measured. Throughput is de�ned as the number of bytes delivered to thedestination appli
ation divided by the time needed to deliver these bytes. This measure isalso 
alled goodput or e�e
tive throughput, as it is the throughput that is `good' or `e�e
-tive' in terms of the higher layer proto
ol. If the sour
es are not persistent (i.e., they haveonly a limited amount of data to send), the total time needed by ea
h sour
e to deliver allits data to the destination appli
ation is 
onverted into a throughput value by dividing theamount of data by the measured time. Two important performan
e measures are obtainedfrom the throughput values: eÆ
ien
y and fairness.4.6.1 EÆ
ien
yThe eÆ
ien
y of TCP over UBR or GFR is de�ned as:eÆ
ien
y = sum of TCP throughputsmaximum possible TCP throughput ; (4.1)where the maximum possible TCP throughput is the throughput attainable by the TCPlayer on a link. This throughput is lower than the link 
apa
ity be
ause of header, trailer
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e measures 73and padding overhead added to the data by di�erent layers (see Figure 4.1). Consideringfor example a TCP MSS of 512 bytes, the maximum possible throughput is approximately125.2 Mbps on a 155.52 Mbps link [36℄.4.6.2 FairnessTo de
ide about the fairness of a 
ertain bu�er a

eptan
e s
heme, a fairness 
riterion isneeded. Several example fairness 
riteria, su
h as equal allo
ation, weighted allo
ation,MCR plus equal share, allo
ation proportional to MCR, et
. are given in [5℄. Of 
ourse,fairness 
riteria based on MCRs are only appli
able to GFR 
onne
tions. The most used
riterion for UBR traÆ
 is the equal allo
ation.On
e a fairness 
riterion is de�ned, the distan
e between the resour
e allo
ation and thedesired goal needs to be assessed. In the 
ase of equal allo
ation, this is often donevisually, by plotting the e�e
tive throughput of the di�erent 
onne
tions versus time (e.g.,in [28, 69, 25℄). Another way to judge the fairness is by making use of a fairness index.Several fairness indi
es are used in the literature (e.g., indi
es based on the 
oeÆ
ient ofvariation of the goodputs [25, 85℄). The following one, whi
h is de�ned by the ATM-Forumin [4℄ and used in e.g., [36, 35, 55℄, is used in Chapter 6.If the goodputs of N virtual 
ir
uits are found to be fT1; : : : ; TNg, where the ideal goodputsa

ording to the 
hosen fairness 
riterion should be fT̂1; : : : ; T̂Ng, thenfairness index =  NXi=1 xi!2� N NXi=1 xi2! ; (4.2)where xi = Ti=T̂i is the relative goodput allo
ation of 
onne
tion i. This fairness indexranges between zero (minimum fairness) and one (maximum fairness) and 
an be given thefollowing interpretation: if N � k of the N xi's are zero, while the remaining k xi's areequal and non-zero, the fairness index will be k=N , or the fra
tion of users favored. Moreproperties of this fairness index 
an be found in [53, 52℄.





Chapter 5An overview of bu�er a

eptan
es
hemes for UBR and GFRA literature overview of the most representative frame aware bu�er a

eptan
e s
hemesde�ned for use with the UBR or GFR ATM servi
e 
ategories is given in this 
hapter.The overview is kept rather des
riptive, but in [91℄ pseudo 
ode of all s
hemes that aredis
ussed, using a uniform notation and level of detail, 
an be found. Also the general 
on-
lusions of performan
e evaluation studies of the s
hemes by simulation or by experimentsare summarized, without going into details 
on
erning the simulation/experimental 
on-�guration, exa
t parameter settings and TCP implementations used in the various studies.These details and the detailed results 
an be found in the referen
es this 
hapter is basedon. At the end of this 
hapter, a summary of the queueing and s
heduling strategy usedin ea
h s
heme, and of the a

ounting information that needs to be kept, is given (seeTable 5.1 for the UBR s
hemes, and Table 5.2 for the GFR s
hemes).
5.1 Bu�er a

eptan
e s
hemes for UBR5.1.1 Some of the �rst bu�er a

eptan
e s
hemes for UBRIn this se
tion three of the very �rst bu�er a

eptan
e s
hemes de�ned for UBR are 
on-sidered: tail drop, partial pa
ket dis
ard and early pa
ket dis
ard. Although tail drop isnot frame aware, and its performan
e is not satisfa
tory at all, the s
heme is in
luded heresin
e it illustrates the problems whi
h need to be resolved by `better' bu�er a

eptan
es
hemes. Partial and early pa
ket dis
ard are important s
hemes sin
e they are widelyimplemented in 
ommer
ial ATM swit
hes, and the prin
iples behind these s
hemes keep
ropping up in almost all of the more sophisti
ated s
hemes dis
ussed in the followingse
tions. 75
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eptan
e s
hemes for UBR and GFRTail dropThe simplest bu�er a

eptan
e s
heme for use with UBR is 
alled tail drop (TD). Thiss
heme a

epts 
ells into a global bu�er as long as the bu�er is not full. Upon bu�erover
ow, 
ells are dropped.Applying tail drop while providing suÆ
iently large bu�ers to minimize 
ell loss, and lettingthe higher layer proto
ol (i.e., TCP) handle re
overy after an o

asional loss, was the initialidea about how to deal with the absen
e of 
ongestion 
ontrol for UBR. However, it hasbeen shown by simulations [84, 36℄ that this approa
h 
an give low eÆ
ien
y results. Mainreasons for this are:� Delivery of useless 
ells. Dropping a single 
ell at a network element results inthe dis
arding at the re
eiver of all other 
ells of the same frame. Although these
ells are thus useless, they are still transmitted over the network, resulting in lowergoodput. Furthermore, these useless 
ells 
onsume bandwidth and bu�er spa
e, su
hthat in times of 
ongestion they may 
ause other frames to lose also some 
ells.This problem be
omes worse with smaller bu�ers, larger frames, in
reased numberof a
tive 
onne
tions and in
reased TCP window sizes [84℄.� Link idle time due to TCP syn
hronization e�e
ts. Be
ause 
ells from several 
onne
-tions usually arrive interleaved at a swit
h, 
ells from all sour
es are dropped whenthe dropping 
ondition is satis�ed, i.e., the bu�er is full. As a result, all sour
estimeout and go through slow start at roughly the same time. This is 
alled TCPsyn
hronization. While the sour
es wait for a timeout, they stop sending data intothe network. So o

asionally, the 
ongested link 
an be idle.Although TCP syn
hronization is an important fa
tor that a�e
ts TCP's performan
e,it is not a signi�
ant problem in the s
enarios explored in [84℄. This is be
ause in thesimulations this paper reports on, the TCP timer granularity was 
hanged to 0.1 ms,whi
h is mu
h lower than the value used in real TCP implementations (100 to 500 ms). A
riti
ism of [36℄ on TCP simulations whi
h use a timer granularity lower than 100 ms isthat the throughput obtained in these simulations is arti�
ially in
reased.TCP syn
hronization does not ne
essarily result in the link being idle for a while. It isalso possible that one or two `lu
ky' sour
es es
ape syn
hronization, and these sour
es 
anthen send their next window and keep �lling up the bu�er while the other sour
es havestopped sending data. The lu
ky sour
es thus get most of the bandwidth, whi
h results inunfairness between the goodput of the various 
onne
tions.Results in [35℄ show that fairness is better if TCP's fast retransmit and re
overy algorithmsare enabled, sin
e those algorithms help in mitigating the TCP syn
hronization e�e
ts. TheeÆ
ien
y 
an however be worse for links with large bandwidth delay produ
ts. Be
ausemultiple segments are dropped during 
ongestion, and fast retransmit and re
overy 
annotre
over from multiple segment losses, some segments are retransmitted during slow start,
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eptan
e s
hemes for UBR 77even though they have already been su

essfully re
eived. In links with large bandwidthdelay produ
ts, the number of retransmitted segments 
an be signi�
ant.TCP performs best when there is zero loss. The 
onne
tions then a
hieve 100% of thepossible throughput and perfe
t fairness. For a swit
h to guarantee zero loss for TCP overUBR with tail drop, [54℄ 
on
ludes from simulation results that the amount of bu�eringrequired is at least equal to the sum of the TCP maximum window sizes for all TCP
onne
tions. This is in parti
ular true for 
onne
tions with small round trip times, sin
efor large round trip times the swit
h has more time to 
lear out the bu�er before data of thenext TCP window arrives. In any 
ase, the in
rease in bu�er requirements is proportionalto the number of sour
es in the simulation. This implies that UBR with tail drop andalmost no loss is thus not s
alable.
Partial pa
ket dis
ardIf a 
ell of an AAL5 frame is dropped be
ause of bu�er over
ow, there is no reason totransmit the remaining 
ells of this frame. The partial pa
ket dis
ard (PPD) s
heme [84℄drops all 
ells of a frame subsequent to a 
ell loss, apart from the last one. The dis
ardis `partial' be
ause at the time of 
ell loss, some 
ells of the 
orrupted frame may alreadybe stored in the bu�er or even be transmitted. The PPD s
heme does not sear
h for 
ellspossibly stored in the bu�er. The implementation of PPD requires per-VC a

ounting,sin
e for ea
h VC a state must be kept to indi
ate if the VC 
urrently has to drop 
ells.The last 
ell of a 
orrupted frame is not dropped, be
ause this 
ell is needed at su

eedingnetwork elements and at the destination to delineate the beginning of a new frame. Ifthe last 
ell is dropped anyway be
ause there is no pla
e left in the bu�er, the 
ells of the
orrupted frame whi
h arrive at the destination get merged there with the next frame. Thismerged frame fails the 
y
li
 redundan
y 
he
k and is dropped. The sour
e thus needs toretransmit both frames. Therefore, if the last 
ell of a frame is dropped, PPD also dropsthe next frame to avoid the useless transmission of the 
ells of this frame.Simulations in [84℄ and experiments in [55℄ 
ompare the eÆ
ien
y obtained when usingPPD with that obtained when using tail drop. Results with PPD are better, but theimprovements are limited be
ause still a signi�
ant amount of useless 
ells is transmittedover the link.The PPD s
heme is often used in 
onjun
tion with bu�er a

eptan
e s
hemes whi
h tryto drop 
omplete frames. These s
hemes start from the prin
iple that 
ells of a frame areonly dropped if the �rst 
ell of the frame to whi
h they belong was dropped. But in 
asea non-�rst 
ell of a frame is dropped be
ause of bu�er over
ow, although the �rst 
ell ofthe frame was not dropped, the PPD s
heme is used to ensure that the remaining 
ells ofthe frame are also dropped.
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eptan
e s
hemes for UBR and GFREarly pa
ket dis
ardEarly pa
ket dis
ard (EPD) is a bu�er a

eptan
e s
heme that has been widely imple-mented in 
ommer
ial ATM swit
hes. It tries to avoid the transmission of useless 
ellsover the network by dropping 
omplete AAL5 frames (i.e., all their 
ells) when the bu�erbe
omes in danger of over
owing. This is implemented by setting a threshold, the EPDthreshold, and dis
arding the �rst 
ell of any in
oming frame if on arrival of this 
ell thebu�er o

upan
y ex
eeds the threshold. On
e the �rst 
ell of a frame has been dis
arded,its remaining 
ells are also dis
arded on their arrival. As with PPD, the implementationof the s
heme requires a state per VC to indi
ate if the VC 
urrently has to drop 
ells.Be
ause frame boundaries are indi
ated by the last 
ell of ea
h frame, a per-VC state toindi
ate if the next 
ell on the 
onne
tion will be the �rst 
ell of a frame is also needed.The EPD threshold splits the 
apa
ity of the bu�er into an e�e
tive and an ex
ess bu�er
apa
ity. The ex
ess bu�er 
apa
ity is used to a

ommodate 
ells from frames whose �rst
ell has arrived before the EPD threshold was ex
eeded. In the worst 
ase, the swit
h
ould have re
eived the �rst 
ell of a frame from all 
onne
tions before rea
hing the EPDthreshold. To make it possible for the bu�er to a

ept all these frames, [36℄ suggests to setthe EPD threshold at (bu�er 
apa
ity - N� maximum frame size), where N is the expe
tednumber of 
onne
tions a
tive at the same time.Simulation results in [36, 84℄ and experimental results in [55℄ show that EPD normallyimproves the eÆ
ien
y of TCP over UBR. However, the results of [55℄ also show that theposition of the EPD threshold is a 
riti
al point for small bu�ers, sin
e in this 
ase theex
ess 
apa
ity has to be 
onsidered as a redu
tion of the e�e
tive bu�er size, whi
h resultsin an in
reasing frame loss. So the worst 
ase setting of the EPD threshold as suggested in[36℄, if possible, is not in all 
ases a good idea, and also not ne
essary, as is shown in [83℄.In that paper it is illustrated by simulations that when all sour
es are highly syn
hronized,an ex
ess bu�er 
apa
ity of 50-75% of the worst 
ase ex
ess bu�er requirement is largeenough to obtain a reasonable performan
e. In the 
ase where no inherent syn
hronizationis present, this number 
an be redu
ed to 25-50%, and in both 
ases the per
entages maybe redu
ed even further if the number of VCs is very large.The reason that EPD normally improves the eÆ
ien
y of TCP over UBR is be
ause thelink now only 
arries 
omplete frames, and be
ause EPD 
on
entrates the 
ell loss to alower number of frames. In this way, EPD in
reases the likelihood that during 
ongestionat least some of the VCs su

eed in transferring a 
omplete frame, and get a 
han
e tofurther in
rease their window. It is however exa
tly this behavior whi
h makes that EPD
annot guarantee fairness. Sin
e EPD does not take the 
urrent rate or bu�er utilization ofthe di�erent VCs into a

ount while dis
arding frames, it is very well possible that framesfrom 
onne
tions 
ausing the 
ongestion are a

epted, resulting in a possible rate in
reasefor these 
onne
tions, while frames of other 
onne
tions are dropped, whi
h for
es these
onne
tions to de
rease their rate.Simulations in [28, 36, 70℄ show that the degree of unfairness in
reases as the bu�er 
a-
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ity is redu
ed. It is also shown in [70℄ that the e�e
tive throughput is mu
h lowerfor 
onne
tions whi
h traverse more 
ongested links than other 
onne
tions. Simulationsin [35℄ show that the 
ombination EPD and fast retransmit and re
overy improves thefairness, but hurts the eÆ
ien
y for links with large bandwidth delay produ
ts.5.1.2 Bu�er a

eptan
e s
hemes for UBR based on FBAAll bu�er a

eptan
e s
hemes dis
ussed in the previous se
tion fail in o�ering fair allo
ationof bandwidth among 
ompeting 
onne
tions. The s
hemes dis
ussed in the 
urrent se
tionare all based on the fair bu�er allo
ation s
heme proposed by Heinanen and Kilkki in [41℄.The prin
iple behind this s
heme is that a 
onne
tion that gets more than its fair shareof bu�er spa
e will also get more than its fair share of the bandwidth. This prin
iple istrue, irrespe
tive of the s
heduling algorithm used, sin
e bu�er spa
e is always limited. Soto provide bandwidth fairness to 
onne
tions, it is ne
essary to at least allo
ate the bu�er
apa
ity fairly among the 
onne
tions. The fairness o�ered in this way is fairness at thetime that �rst 
ells of frames are a

epted in the bu�er. S
heduling 
an add to that byletting the 
ells of the di�erent VCs leave the bu�er in a fair order, su
h that the fair bu�erallo
ation is also maintained throughout transmissions.Fair bu�er allo
ationThe fair bu�er allo
ation (FBA) s
heme proposed in [41℄ attempts to improve bandwidthfairness between 
ompeting VCs by allo
ating the bu�er 
apa
ity fairly among them. Aframe from a 
onne
tion is dis
arded if the bu�er o

upan
y ex
eeds a 
ertain �xed thresh-old while the 
onne
tion takes more than its fair share of the bu�er. As with EPD, thede
ision about the a

eptan
e of a frame is taken upon arrival of its �rst 
ell.FBA is implemented with a global FIFO bu�er and per-VC a

ounting. Besides per-VCstates whi
h indi
ate if the next 
ell on the 
onne
tion will be the �rst 
ell of a frame, andif 
ells on the VC 
urrently have to be dropped, also a 
ounter is kept for ea
h VC. This
ounter represents the number of 
ells that the VC has in the bu�er, and is used to de
ideif the VC ex
eeds its fair share (FS). The fair share of a 
onne
tion is 
al
ulated as theprodu
t of its so 
alled fair allo
ation and the a

eptable load ratio:FS = fair allo
ation� a

eptable load ratio: (5.1)The fair allo
ation indi
ates how many 
ells the VC would have in the bu�er if the totalnumber of 
ells in the bu�er was divided fairly among the various a
tive 
onne
tions, wherea 
onne
tion is 
alled a
tive if it has at least one 
ell in the bu�er. For the FBA s
heme,the fair allo
ation is 
hosen as the average number of 
ells per a
tive 
onne
tion:fair allo
ation = QN ; (5.2)
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Figure 5.1: A

eptable load ratio versus the bu�er o

upan
y for the FBA s
heme.where Q is the total bu�er o

upan
y and N is the number of a
tive 
onne
tions.The ratio of the number of 
ells that a VC has in the bu�er to the fair allo
ation is 
alled theload ratio of the VC, and gives a measure of how mu
h the VC ex
eeds the fair allo
ation.The a

eptable load ratio is the highest load ratio at whi
h frames are still a

epted inthe bu�er. The a

eptable load ratio used in the FBA s
heme is a smooth fun
tion of thebu�er o

upan
y:a

eptable load ratio = Z �1 + Qmax �QQ� L � ; (5.3)where Z is a linear s
aling fa
tor, typi
ally between 0.5 and 1, Qmax is the bu�er 
apa
ity,Q is the bu�er o

upan
y and L is the �xed threshold below whi
h all frames are a

epted.Figure 5.1 shows the a

eptable load ratio versus the bu�er o

upan
y for Z = 0:5 andZ = 1. It 
an be seen from this �gure that if Q is 
lose to the threshold L, a VC 
anex
eed the fair allo
ation 
onsiderably, but the a

eptable load ratio de
reases very fastwhen Q in
reases. For all Z less than one, the a

eptable load ratio be
omes smaller thanone when Q gets larger than Z(Qmax � L) + L. This means that if the bu�er is almostfull, a new frame 
an be dropped even when its 
onne
tion o

upies less of the bu�er thanthe fair allo
ation. As stated in [41℄, this property is desirable sin
e some of the bu�er
apa
ity should be left for the remaining 
ells of already a

epted frames.As expe
ted, simulations [28, 36℄ show that the fairness results obtained with the FBAs
heme are better than those obtained with the EPD s
heme, sin
e now frames of over-loading 
onne
tions are dropped in preferen
e to underloading ones. Most of the time, alsothe eÆ
ien
y results obtained with FBA are better, be
ause the dropping 
ondition is notful�lled for all 
onne
tions at the same time anymore, su
h that TCP syn
hronization iseasier broken. However, it is also shown in [36℄ that the FBA s
heme is sensitive to 
hangesin the parameters L and Z. Higher eÆ
ien
y values have either L or Z high, sin
e higher
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hemes for UBR 81bu�er utilization is allowed in these 
ases. But there is a 
onsiderable variation in thefairness numbers obtained, sin
e not all 
ombinations of the parameter values are equallye�e
tive in breaking the TCP syn
hronization. If for example almost all 
onne
tions ex-
eed their fair share at roughly the same time, the bu�er o

upan
y will presumably be nolonger above the threshold L at the moment that the few 
onne
tions that did not ex
eedtheir fair share earlier �nally do ex
eed it, sin
e the other sour
es have stopped sendingmeanwhile be
ause of dropped segments. The frames of the `lu
ky' sour
es are thus notdropped, resulting in unfairness.Sele
tive dropSele
tive drop (SD) [36℄, also 
alled EPD with per-VC a

ounting [69℄, is a simpler versionof the FBA s
heme. The prin
iple of the SD s
heme is exa
tly the same as that of theFBA s
heme: it is implemented with a global FIFO bu�er and per-VC a

ounting, andnew frames of a 
onne
tion are dis
arded if on arrival of their �rst 
ell the bu�er o

upan
yex
eeds a 
ertain �xed threshold while the 
onne
tion takes more than its fair share of thebu�er. The only di�eren
e with the FBA s
heme is in the de�nition of the `fair share'. Itis again 
al
ulated as the produ
t of the fair allo
ation and the a

eptable load ratio, andthe fair allo
ation is again 
hosen as the average number of 
ells per 
onne
tion, but thea

eptable load ratio is now a simple parameter K independent of the bu�er o

upan
y.FS = fair allo
ation� a

eptable load ratio = QN K: (5.4)Sin
e this s
heme also drops frames of overloading 
onne
tions in preferen
e to underload-ing ones, it improves fairness over the EPD s
heme, as is shown by simulations in [36, 69℄.Also the eÆ
ien
y values obtained are slightly better. Compared to the FBA s
heme (foroptimal parameter values), the eÆ
ien
y results obtained with SD are slightly lower thanwith FBA, while the fairness results are 
omparable. The simulations in [36℄ also showthat the fairness of the s
heme de
reases with an in
reasing number of sour
es, and thosein [69℄ indi
ate that the more hops a VC traverses, the lower its e�e
tive throughput is.EPD with per-VC queueingIn both the FBA and SD s
hemes dis
ussed above, a fair allo
ation of the bu�er 
apa
ityis maintained only at the moments of a

eptan
e of the �rst 
ell of a frame. But sin
ein both s
hemes all VCs share a single FIFO bu�er, this fair bu�er allo
ation 
annot bemaintained throughout transmissions. The EPD with per-VC queueing me
hanism [69℄uses the same 
riteria as the SD s
heme to de
ide about the bu�er a

eptan
e of 
ells,but 
ells from the di�erent VCs are pla
ed into di�erent queues (per-VC queueing). Allthese VC queues are then served using round robin s
heduling, su
h that the a

epted 
ellsare emitted from the bu�er in a fair manner. The EPD with per-VC queueing s
hemethus does not only provide fair bu�er allo
ation at moments of frame a

eptan
e, but also
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hemes for UBR and GFRthroughout transmissions. In this way, throughput fairness 
an be a
hieved as long as ea
hVC has some 
ells in its queue.In [69℄, simulation results obtained by using EPD with per-VC queueing are 
omparedto results obtained by using the SD s
heme. It appears that EPD with per-VC queueinga
hieves almost perfe
t fairness, also for VCs whi
h traverse more hops. However, theeÆ
ien
y obtained with the s
heme is somewhat lower than that obtained with SD, whi
his explained as a syn
hronization e�e
t.5.1.3 Bu�er a

eptan
e s
hemes for UBR based on REDThe random early dete
tion (RED) algorithm was �rst proposed in [30℄, and applies forIP gateways. RED thus deals with IP pa
kets, not ATM 
ells. The RED algorithm hassome attra
tive properties: RED gateways keep the average queue size low, while allowingo

asional bursts of pa
kets in the queue; during 
ongestion, the probability that a pa
ketfrom a parti
ular 
onne
tion is dropped is roughly proportional to that 
onne
tion's shareof the bandwidth through the gateway; RED avoids TCP syn
hronization sin
e pa
ketdropping will probably 
on
ern the most greedy 
onne
tions. Be
ause of these attra
tiveproperties, some adaptations of the RED s
heme for use with ATM were developed: 
ell-based RED (C-RED) [25℄, pa
ket-based RED (P-RED) [25℄ and ATM-RED [85℄.First the RED algorithm is shortly des
ribed. Then the P-RED and ATM-RED proposalsare dis
ussed. The C-RED proposal is not 
onsidered here sin
e it is outperformed in botheÆ
ien
y and fairness results by P-RED, whi
h is also less 
omplex to implement.The RED algorithmThe obje
tive of the RED algorithm as proposed in [30℄ is to keep the throughput of an IPgateway high, but its delay low. This is done by dropping arriving pa
kets with a 
ertainprobability ea
h time the average queue size of the gateway ex
eeds a 
ertain threshold.The RED algorithm is applied on a global FIFO queue, for whi
h only global a

ountinginformation is kept.On ea
h pa
ket arrival, the average queue size is estimated by1Avg = (1� wq)Avg + wqQ; (5.5)where wq is a weight between 0 and 1, and Q is the a
tual queue size. This average queuesize is then 
ompared with two thresholds L (low) and H (high): when it is less than L, thepa
ket is a

epted; when it is greater than H, the pa
ket is dropped; if it is between the1This equation is a
tually used only when the queue is not empty on pa
ket arrival. When it is empty,the average queue size is 
al
ulated based on the number of pa
kets that might have arrived during theidle time.
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ket is dropped with a probability pa. The initial drop probabilitypb is 
al
ulated as a linear fun
tion of the average queue size:pb = maxp Avg � LH � L ; (5.6)where maxp is the maximum value for pb. The �nal drop probability pa is 
al
ulated su
hthat when the average queue size is 
onstant, the random variable des
ribing the numberof pa
kets that arrive after a dropped pa
ket, until the next dropped pa
ket, is uniformlydistributed over f1; 2; : : : ; 1=pbg (assuming that 1=pb is an integer):pa = pb1� pb 
ount: (5.7)The parameter 
ount 
ounts the number of a

epted pa
kets sin
e the last dropped pa
ketor sin
e Avg ex
eeded L.Pa
ket-based REDPa
ket-based RED (P-RED) [25℄ is an AAL5 aware bu�er a

eptan
e algorithm for usewith ATM-UBR. The de
ision about the a

eptan
e of an AAL5 frame is taken upon arrivalof the �rst 
ell of the frame: if the �rst 
ell of a frame is dis
arded, its remaining 
ells arealso dis
arded on their arrival. P-RED is implemented using a global FIFO bu�er and two�xed thresholds L and H. The algorithm implements EPD with the threshold H: if thebu�er o

upan
y Q is above H on arrival of the �rst 
ell of a frame, this frame is dis
arded.Otherwise, the average queue length is estimated by equation (5.5), and 
ompared with thethresholds L and H exa
tly as in the RED algorithm des
ribed above. When the averagequeue size is below L, the frame is a

epted; when it is above H, the frame is dropped.When the average queue size is between L and H, the frame is dropped with a probabilitypa 
al
ulated by equation (5.7) as in the RED algorithm. There is however a di�eren
e inthe 
al
ulation of the initial drop probability pb. If the new pa
ket belongs to VC i, pb isweighted by the load ratio of VC i:pb = maxpAvg � LH � L � load ratio of VC i; (5.8)where the load ratio of VC i is de�ned by QiN=Q as in the FBA algorithm. Remark thatdue to the weights that appear in (5.8), the P-RED algorithm needs to keep per-VC bu�era

ounting information.Simulations in [25℄ 
ompare the performan
e of P-RED with that of EPD using a sim-ulation 
on�guration with di�erent propagation delays for the various TCP sour
es. Itappears 
learly that eÆ
ien
y and fairness obtained with P-RED are better than withEPD, and that both the queue size and the average queue size of P-RED is low 
omparedto EPD. This means that the P-RED algorithm is an attra
tive bu�er a

eptan
e algo-rithm for intera
tive appli
ations like Telnet. Moreover, the drop probability for this typeof 
onne
tions is very low sin
e their load ratio is expe
ted to be very low.
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eptan
e s
hemes for UBR and GFRATM-REDATM-RED [85℄ is also an adaptation of the original RED algorithm for use with ATM. Ituses a global FIFO bu�er and two thresholds L andH. Typi
al to the ATM-RED algorithmis that a drop probability is 
al
ulated on 
ell level. Sin
e the algorithm a

epts or dis
ardsentire AAL5 frames, ea
h dis
ard de
ision 
on
erns the next frame (with relation to the
ell that 
aused the de
ision), ex
ept if the de
ision is made on arrival of the �rst 
ellof a frame. This approa
h allows to obtain smaller values for the overall frame droppingprobability when frames are smaller.ATM-RED 
al
ulates a drop probability when a �rst 
ell of a frame arrives at the bu�erand it has not yet been de
ided if this frame is to be dropped, and when a non-�rst 
ell ofa frame is a

epted in the bu�er and it has not yet been de
ided if the next frame on thesame 
onne
tion will be dropped. To 
al
ulate the drop probability, �rst an average queuesize Avg is 
al
ulated using (5.5). Then, if Avg > L, p
 is 
al
ulated asp
 = 8><>:max
 (Avg � L)=(H � L) if L < Avg � H;1 + (1�max
)(Avg � 2H)=H if H < Avg � 2H;1 if Avg > 2H; (5.9)where max
 is the maximum value for p
 when Avg � H. With a probability p
 it is thende
ided to drop the next AAL5 frame.Remark that from the viewpoint of per-VC 
omplexity, this algorithm needs to keep onlythree bits of state for ea
h VC, while the P-RED algorithm needs also a 
ounter per VC.The pri
e for this is however the requirement to 
ompute the p
 probability upon 
ellarrivals instead of on
e for ea
h pa
ket as in P-RED.In [85℄, the performan
e of ATM-RED has been 
ompared to the performan
e of EPD andFBA in several quite di�erent environments. It is shown by simulation that FBA and ATM-RED are almost always superior to EPD. ATM-RED has in general by far the lowest meanbu�er o

upan
y, whi
h gives low delays, while o�ering high goodputs and link utilization.ATM-RED is also a good solution as regards the fairness among similar sour
es (same
hara
teristi
s, same RTTs, 
rossing the same hops), but is poor at a
hieving fairnessunder a heterogeneous traÆ
 mix. In parti
ular, sour
es with higher RTTs or 
rossingmore hops, have lower goodputs.5.1.4 Related workThe bu�er a

eptan
e s
hemes dis
ussed until now are a number of representative s
hemesfor UBR. Of 
ourse, more s
hemes exist. In [60℄ for example, two drop from front s
hemesare proposed: pure drop from front and partial frame drop at front. These s
hemes aresimilar to the tail drop and partial pa
ket dis
ard s
hemes, but 
ells are dropped at thefront of the bu�er instead of at the end. This poli
y 
auses TCP's 
ongestion 
ontrola
tions being invoked approximately one bu�er drain time earlier.
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tive pa
ket dis
ard (ESPD) s
heme introdu
ed in [21℄ tries to avoid the linkidle time due to syn
hronization by 
on
entrating the frame dis
arding on a few 
onne
tionsonly. Spread over times longer than a frame duration, ESPD makes 
onne
tions to taketurns to a

ess the network resour
es. This is unlike EPD where the dropping/a

eptingstatus of a 
onne
tion is released upon the arrival of the last 
ell of a frame. In [21, 22℄,it is demonstrated that ESPD slightly improves the e�e
tive throughput over EPD andprovides better overall fairness sin
e it provides more throughput enhan
ement to a longround trip time session than to a short round trip time session.In [58℄ the Fair Bu�ering (FB) me
hanism is proposed, whi
h allo
ates bu�er spa
e for thedi�erent 
onne
tions in proportion to their bandwidth delay produ
ts, and spreads out thedis
arding of frames from the same 
onne
tion over time. FB needs to know however ea
h
onne
tion's RTT, a value whi
h in pra
ti
e is not known by the swit
hes [33℄.A modi�
ation of the FBA s
heme for supporting weighted bandwidth allo
ation is pro-posed in [41℄. However, no performan
e evaluation of the s
heme is performed. In themodi�ed FBA version, the fair allo
ation for a 
onne
tion i is 
al
ulated as WiQ=W ,where Wi is a weighting 
oeÆ
ient asso
iated with 
onne
tion i and W is the sum of theweighting 
oeÆ
ients of all a
tive 
onne
tions.Virtual queueing, a te
hnique whi
h is dis
ussed in [97℄, emulates an a

eptan
e s
hemesimilar to the EPD with per-VC queueing s
heme on a global queue. This is done bymaintaining a 
ounterMi for ea
h VC i. Cells leave the bu�er in FIFO order, but regardlessof whi
h VC a transmitted 
ell a
tually belongs to, the 
ounters Mi are de
remented in around robin fashion as if per-VC queueing and round robin s
heduling were implemented.Every time a 
ell of 
onne
tion i is a

epted in the bu�er, the 
ounter Mi is in
remented.To avoid loss of bu�er allo
ation to a
tive 
onne
tions with temporarily empty virtualqueue, the per-VC 
ounters are allowed to be negative. The s
heme a
hieves nearly perfe
tfairness.5.2 Bu�er a

eptan
e s
hemes for GFRIn general, bu�er a

eptan
e s
hemes for GFR 
an be 
lassi�ed in three 
ategories:� s
hemes relying on a tagging fun
tion,� s
hemes using per-VC a

ounting and per-VC queueing,� s
hemes using per-VC a

ounting in a global FIFO bu�er.For ea
h of these 
ategories, an informative example implementation is given in the ATMForum TraÆ
 Management Spe
i�
ation [5℄, while also other s
hemes have been de�nedin the literature. Some of these s
hemes are dis
ussed in this se
tion. Remark that theterminology that is used relies heavily on the terms introdu
ed in Se
tion 4.5.
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eptan
e s
hemes for UBR and GFR5.2.1 Bu�er a

eptan
e s
hemes for GFR relying on a taggingfun
tionThe s
hemes in this �rst 
ategory rely on the fa
t that network based tagging is performedat the entran
e of the network to provide the per-VC minimum rate guarantees to thedi�erent 
onne
tions. The tagging fun
tion, whi
h is typi
ally based on the F-GCRAalgorithm, identi�es the eligible and ineligible frames of ea
h 
onne
tion and sets their CLPbit 
orrespondingly, while the bu�er a

eptan
e s
heme then uses this CLP information totreat the eligible frames preferentially. When de
iding about the a

eptan
e of a new frame,these s
hemes usually take their de
ision based on global bu�er a

ounting information andthe CLP priority of the frame. Remark that be
ause these bu�er a

eptan
e s
hemes relyon network based tagging, they 
annot support GFR.1 
onne
tions.Implementation using tagging and a FIFO queueThe bu�er a

eptan
e s
heme that is 
onsidered here is one of the informative exampleimplementations given in the ATM Forum TraÆ
 Management Spe
i�
ation [5℄. Thea

eptan
e s
heme relies on two �xed bu�er thresholds L (low) and H (high) in a globalFIFO queue. Those thresholds are used as EPD thresholds, L for the CLP=1 frames andH for the CLP=0 frames. The L threshold is used to limit the amount of CLP=1 framesin the bu�er. The s
heme is very simple, but it is immediately 
lear that no attempt ismade to divide the ex
ess bandwidth in a fair manner between the di�erent 
onne
tions.As already mentioned, this s
heme is of no use if it is not pre
eded by a tagging fun
tion.Simulation experiments with this implementation are performed in [81, 14, 15℄. It is shownthat the performan
e of TCP is never satisfa
tory, sin
e not all TCP sour
es are able tobene�t from the minimum guaranteed bandwidth. VCs with higher MCRs get throughputswhi
h are mu
h lower than their MCRs, while the VCs with lower MCRs get bandwidthin ex
ess of their MCRs. The reason is that when the bu�er o

upan
y goes below L, allframes are a

epted into the bu�er. The a

eptan
e rate of 
ells of the di�erent 
onne
tionsinto the bu�er is therefore not proportional to their MCR, implying that their respe
tiveservi
e rates are also not proportional to their MCRs. Whenever the bu�er o

upationex
eeds L, the 
ell a

eptan
e rate into the bu�er is bounded by the rate at whi
h 
ells passthe F-GCRA tagging fun
tion without being tagged. But sin
e TCP traÆ
 is bursty, theF-GCRA tags a large fra
tion of the frames, even when the long term average throughput ofa VC is smaller than its MCR. Furthermore, the F-GCRA has the tenden
y to mark TCPtraÆ
 in bursts. The tagged frames are dropped when the bu�er o

upan
y is above L,and the large number of bursty losses 
ombined with TCP's 
ongestion 
ontrol algorithmsfor
e the 
ongestion window of the TCP sour
es down su
h that less traÆ
 is sent into thenetwork. For sour
es with high MCR, the average 
ongestion window 
an be mu
h lowerthan their on average required value to �ll the minimum reserved throughput. In [15℄ it isshown that the performan
e is mu
h better in s
enarios where ea
h ATM VC 
arries thetraÆ
 of more than one TCP 
onne
tion, sin
e when a burst of frames is marked by the
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hemes for GFR 87F-GCRA, and later on dis
arded by the bu�er a

eptan
e s
heme, not all TCP 
onne
tionsare a�e
ted.Implementation using tagging and per-VC queueingSin
e the results obtained with the GFR implementation using tagging and a FIFO queuewere not satisfa
tory, also an implementation based on tagging and per-VC queueing isinvestigated in [81℄. The same 
riteria as in the �rst s
heme are used to de
ide about thebu�er a

eptan
e of 
ells, but the 
ells from the di�erent VCs are now bu�ered in di�erentqueues (per-VC queueing). These VC queues are s
heduled using round robin s
hedulingor weighted round robin s
heduling with the weights set in proportion to the MCRs of the
onne
tions.The simulation results in [81℄ indi
ate that with round robin s
heduling, the throughput ofall VCs again does not always rea
h the MCR, for the same reasons as when using a FIFObu�er. With the weighted round robin s
heduling, the MCR for ea
h VC is guaranteedin the bu�er region below L be
ause of the s
heduler, and in the region between L andH be
ause only the MCR gets through the F-GCRA tagging fun
tion. In the examplesimulated in [81℄, the throughput of ea
h VC is above its MCR, and it is then 
on
ludedthat a rate guaranteeing servi
e dis
ipline su
h as weighted round robin in 
onjun
tionwith a tagging fun
tion 
an make the guarantees for the GFR servi
e dis
ipline. However,we 
an imagine that the fa
t that the TCP traÆ
 is not able to adapt its behavior to theF-GCRA tagging fun
tion, and the resulting problem as des
ribed above of sour
es havinga too low average window size to use their guaranteed rate, 
ould also o

ur here.5.2.2 Bu�er a

eptan
e s
hemes for GFR using per-VC a

ount-ing and per-VC queueingSin
e per-VC queueing maintains a separate queue for ea
h VC, it isolates frames fromdi�erent VCs. A suitable per-VC s
heduling me
hanism 
an then sele
t between the queuesat ea
h s
heduling instant to provide all a
tive 
onne
tions with their reserved bandwidth.When it is however not sure that ineligible frames are tagged at the entran
e of the network,or if GFR.1 
onne
tions need to be supported, it must be ensured that a single VC isnot able to saturate the swit
h bu�ers. For this, also per-VC a

ounting needs to beimplemented, be
ause if an unbalan
ed distribution of the bu�er o

upan
y is allowed,then the resulting output will also be unbalan
ed sin
e the total bu�er spa
e is limited.Implementation using per-VC a

ounting and WFQ-like s
hedulingThis bu�er a

eptan
e s
heme for GFR is again one of the s
hemes proposed in [5℄. It usesper-VC queueing, per-VC s
heduling and a per-VC 
ounter Ri representing the number ofCLP=0 
ells VC i has in its queue. Individual 
onne
tions are s
heduled at a rate of at
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eptan
e s
hemes for UBR and GFRleast their MCR using a WFQ-like s
heduler. This guarantees that when a
tive, ea
h VCis allo
ated its reserved bandwidth as well as some fair share of the ex
ess bandwidth.The s
heme uses two global thresholds, L (low) and H (high), and a threshold Ti forea
h VC queue, whi
h is typi
ally set to the MBS of 
onne
tion i. The threshold L isused as EPD threshold for CLP=1 frames. CLP=0 frames are a

epted if the total bu�ero

upan
y is below the se
ond threshold H, or if Ri is below Ti for a frame of 
onne
tion i.In [14℄, simulation experiments were performed with this bu�er a

eptan
e s
heme. TheWFQ-like s
heduler used is a virtual spa
ing s
heduler. With GFR.1 
onne
tions, theperforman
e was mu
h better than with the implementation using tagging and a FIFOqueue. The goodput a
hieved by the TCP sour
es is mu
h 
loser to the expe
ted goodput,although sour
es with a high MCR are again somewhat penalized. With GFR.2 
onne
tionswhere the F-GCRA tags frames at the entran
e of the network, the TCP performan
e waslower than with the GFR.1 
onne
tions. This is again be
ause the TCP traÆ
 is bursty,implying that many frames are tagged by the F-GCRA. Further, these CLP=1 frames arealready dis
arded by the bu�er a

eptan
e s
heme when the bu�er o

upan
y is relativelysmall.Global FIFO s
hedulingGlobal FIFO s
heduling (GFS) is proposed in [19℄. In 
ontrast to other bu�er a

eptan
es
hemes for GFR, GFS does not use the CLP information in the 
ells, but integrates thebu�er a

eptan
e s
heme and the eligibility test.GFS uses per-VC queueing, a global FIFO bu�er 
ontaining referen
es from the VC queues,a �xed global threshold L and a threshold Ti for ea
h VC queue. The de
ision about theeligibility of a frame and about the a

eptan
e of the 
ells of the frame in the bu�er istaken on arrival of the �rst 
ell of the frame. When the frame is 
onsidered eligible, orwhen the total bu�er o

upan
y is below the global threshold L, or when the o

upan
y ofthe queue i 
orresponding to the 
onne
tion on whi
h the frame arrives is below Ti, thenthe �rst 
ell of the frame and all its following 
ells are a

epted. Otherwise, all 
ells of theframe are dis
arded. Ea
h time a 
ell arrives from a frame that is a

epted, and this frameis 
onsidered eligible, a referen
e to the VC it belongs to is put into the FIFO bu�er. TheFIFO bu�er thus maintains the order in whi
h the VC queues have to be served a

ordingto the order of the arrivals of 
ells from frames whi
h have been 
hosen eligible for the GFRMCR servi
e guarantee. When the global FIFO queue is empty, a round robin s
hedulings
heme is performed among all VC queues. The ex
ess bandwidth is thus equally sharedamong the ex
ess traÆ
, in 
ontrast to the previous WFQ based s
heme that shares it inproportion to the MCRs of the 
onne
tions.Simulations in [19℄ evaluate the performan
e of GFS. When there are no losses, GFS showsgood performan
e and provides ea
h 
onne
tion with its guaranteed bandwidth. The ex
essbandwidth is shared equally among the di�erent VCs. When 
ell losses o

ur, GFS 
annotalways guarantee the reserved bandwidth in a fair manner, but the results are 
lose to
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ted (MCR plus an equal share of the left over bandwidth).5.2.3 Bu�er a

eptan
e s
hemes for GFR using per-VC a

ount-ing in a global FIFO bu�erFor a servi
e like GFR, the 
ost of per-VC queueing and per-VC s
heduling may be 
onsid-ered too high, making an implementation using a global FIFO bu�er for all VCs desirable.In 
ontrast to per-VC queueing, FIFO queueing 
annot isolate frames from di�erent VCsat the egress of the bu�er, sin
e the 
ells are s
heduled in the order in whi
h they enteredthe bu�er. So an intelligent bu�er a

eptan
e algorithm based on per-VC a

ounting isneeded to provide the minimum rate guarantees to the various 
onne
tions. Several bu�era

eptan
e s
hemes for GFR using per-VC a

ounting in a global FIFO bu�er have beenproposed, but were not able to deliver GFR guarantees. Examples of these are weightedbu�er allo
ation (WBA) in [34℄ and a s
heme based on dynami
 per-VC thresholds in[7℄. In this se
tion, two a

eptan
e s
hemes that are more su

essful in delivering GFRguarantees are 
onsidered.Di�erential fair bu�er allo
ationDi�erential fair bu�er allo
ation (DFBA) is also one of the example GFR implementationsof the ATM Forum TraÆ
 Management Spe
i�
ation [5℄. It is designed for use with a globalFIFO bu�er and tries to allo
ate bu�er 
apa
ity fairly amongst 
ompeting 
onne
tions.This allo
ation is proportional to the MCRs of the 
onne
tions, by assigning to ea
h
onne
tion a weight Wi 
orresponding to its MCR.DFBA uses two thresholds L (low) and H (high). If on arrival of the �rst 
ell of a frame thetotal bu�er o

upan
y Q falls below L, the s
heme attempts to bring the system to eÆ
ientutilization by a

epting the frame. When Q is above L, it drops new CLP=1 frames toensure that suÆ
ient bu�er 
apa
ity is available for CLP=0 frames. The threshold L isthus an EPD threshold for low priority frames. The threshold H does the same for CLP=0frames, so when Q is above H, all new frames are dis
arded. When Q is between L and H,DFBA attempts to allo
ate bu�er spa
e proportional to the MCRs: when Qi, the numberof 
ells of 
onne
tion i in the bu�er, is below its fair share, then new CLP=0 frames of
onne
tion i are a

epted. In DFBA, the fair share of 
onne
tion i equals its fair allo
ation(i.e., the a

eptable load ratio is 1), whi
h is de�ned asfair allo
ation for 
onne
tion i = WiW Q;where W is the sum of the weighting 
oeÆ
ients of all a
tive 
onne
tions. If Qi ex
eedsthe fair share of 
onne
tion i, then new CLP=0 frames of 
onne
tion i are dropped witha 
ertain probability. The purpose of this probabilisti
 drop is to notify TCP sour
es of
ongestion, but in su
h a way that they ba
k o� without a timeout, and thus withouttemporal ina
tivity.



90 5. An overview of bu�er a

eptan
e s
hemes for UBR and GFRThe DFBA drop probability 
onsists of an eÆ
ien
y and a fairness 
omponent. The ef-�
ien
y 
omponent in
reases linearly when Q in
reases from L to H, and the fairness
omponent in
reases linearly with an in
rease of Qi from (Wi=W )Q to Q:p = Pfdropg = Zi��Qi � (Wi=W )QQ(1�Wi=W ) + (1� �)Q� LH � L�: (5.10)In this formula, the parameter � is used to assign appropriate weights to the fairness and ef-�
ien
y 
omponents. The parameter Zi de�nes the maximum drop probability enfor
eablefor 
onne
tion i.Simulations with the DFBA s
heme for GFR.1 VCs 
arrying multiple TCP/IP 
onne
tionsare performed in [33, 16℄. They show that DFBA meets the MCR guarantees, but fails toshare the ex
ess bandwidth among the VCs in proportion to their MCR: the smaller MCRa 
onne
tion has, the larger the proportion `goodput/MCR' for that 
onne
tion be
omes.In [16℄, it is illustrated that the poor fairness obtained with DFBA results from the fa
tthat DFBA fails to provide a fair share of the bu�er to the various VCs. Tuning theparameter Zi 
arefully with respe
t to the MCR of VC i 
an alleviate this problem a bit,but not entirely.Although DFBA treats CLP=0 and CLP=1 frames di�erently, as far as we are aware of, noresults are published with the DFBA s
heme using GFR.2 
onne
tions. The same problemas previously dis
ussed is however to be expe
ted: sin
e TCP is not able to adapt itsbehavior to the F-GCRA fun
tion, a large per
entage of the frames will be tagged. Thesetagged frames are dis
arded by DFBA when Q ex
eeds L, resulting in some sour
es havingfor long times a 
ongestion window smaller than their MCR times their round trip time,whi
h implies that these sour
es 
annot use their minimum bandwidth guarantee.Token-based bu�er allo
ationLike the GFS s
heme, the token-based bu�er allo
ation (TBA) s
heme proposed in [13℄tests the eligibility of the frames at the swit
hing element, without using the CLP informa-tion in the 
ells. A main di�eren
e between the eligibility test used with TBA in [13℄ andthe one used with GFS in [19℄, is that in this last s
heme the bu�er a

eptan
e algorithmuses per-VC 
ounters to 
ount the number of 
ells ea
h VC has in the bu�er, while alsothe eligibility test keeps F-GCRA alike 
ounters for ea
h VC. In TBA, an approximatetoken based solution is used for the eligibility test whi
h in
rements and de
reases one ofthe per-VC 
ounters of the bu�er a

eptan
e algorithm: a 
ounter Ci is asso
iated withVC i and de
reased every time a 
ell of VC i is a

epted in the FIFO bu�er; this 
ounteris in
remented at a rate 
orresponding to the MCR of 
onne
tion i. Further, the ex
essbandwidth is divided among the a
tive VCs by distributing ex
ess tokens whi
h also in-
rement the Ci's. The distribution of these ex
ess tokens 
an be done equally among allVCs, in proportion to their MCRs, but also 
ompletely un
oupled from the MCRs.The bu�er a

eptan
e part of the TBA s
heme is implemented in a FIFO bu�er. Thes
heme takes a di�erent a

eptan
e de
ision for a frame of 
onne
tion i depending on if
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onne
tion i is a GFR.1 or a GFR.2 
onne
tion. The swit
h has this information aboutea
h 
onne
tion available, sin
e it has been signaled during 
onne
tion establishment. Fora GFR.2 
onne
tion, no CLP=0 frames should be dis
arded, so they are always a

epted.CLP=1 frames of a GFR.2 
onne
tion are a

epted based on the RED algorithm, thuswith a 
ertain probability. For GFR.1 
onne
tions, CLP=0 frames are a

epted if the Ci
ounter is positive, or based on the RED algorithm with a 
ertain probability; CLP=1frames are a

epted if the Ci 
ounter is larger than some positive value (e.g., MBSi/2),or again based on the RED algorithm with a 
ertain probability. When the a

eptan
ede
ision is based on the RED algorithm, the average queue length Avg, whi
h is 
al
ulatedusing equation (5.5), is 
ompared to two �xed thresholds L (low) andH (high): the frame isa

epted if Avg is below L; when it is above H, the frame is dropped. When Avg is betweenboth thresholds, a pa
ket dropping probability pb is 
al
ulated. This pb is 
al
ulated as alinear fun
tion of the average bu�er o

upan
y and the Ci 
ounter:pb = �Avg � LH � L � � min(0; Ci)H : (5.11)The relative in
uen
e of the average bu�er o

upan
y and the Ci 
ounter on the droppingprobability depends on the values of � and �2.Simulations in [13℄ 
ompare the performan
e of the TBA s
heme with that of the implemen-tation using tagging and a FIFO queue and the implementation using per-VC a

ountingand WFQ-like s
heduling. For GFR.1 
onne
tions that 
arry the traÆ
 of a single TCP
onne
tion, the performan
e of TBA is rather disappointing and highly dependent on thevalues of the parameters and on the TCP implementations used. Mostly the s
heme doesnot bring any signi�
ant bene�t 
ompared to the the implementation using tagging and aFIFO queue: also with TBA VCs with higher MCRs get throughputs below their reservedbandwidth, while VCs with lower MCR get bandwidth in ex
ess of their MCRs. If ea
h VC
arries the traÆ
 of several TCP 
onne
tions, the performan
e of TBA is better: ea
h VC
an eÆ
iently utilize its minimum bandwidth, and the performan
e does not appear to de-pend heavily on the 
hosen values of the parameters. Compared with the implementationusing per-VC a

ounting and WFQ-like s
heduling, the performan
e of TBA is 
omparableor even slightly better. Although the TBA s
heme provides a di�erent treatment to GFR.1and GFR.2 
onne
tions, no simulations with GFR.2 traÆ
 were performed in [13℄.5.2.4 Related workAs with the a

eptan
e s
hemes for UBR, more s
hemes than the ones presented exist alsofor GFR. In [26℄, three a

eptan
e s
hemes 
losely related to the ones already dis
ussedare proposed. The �rst one is the implementation using tagging and a FIFO queue, but2When pb needs to be 
al
ulated for a frame from a GFR.1 
onne
tion, it is proposed to use a larger �for the CLP=1 frames than for the CLP=0 frames, su
h that the dis
ard probability for CLP=1 framesis higher than for CLP=0 frames.
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ombined with the drop from front strategy. The se
ond s
heme falls into the 
ategoryof s
hemes using per-VC a

ounting in a FIFO bu�er. It uses a �xed threshold L for theCLP=1 frames and a �xed threshold H for the CLP=0 frames, together with separatea

ounting information about the number of CLP=0 and CLP=1 
ells ea
h VC has inthe bu�er, to de
ide about the a

eptan
e of a CLP=1, resp. CLP=0, frame. The thirds
heme 
ombines the se
ond s
heme with the drop from front strategy. The 
on
lusion ofthe study in [26℄ is that the 
ombination of a bu�er a

eptan
e s
heme with drop fromfront improves its fairness, but 
an negatively impa
t its eÆ
ien
y be
ause when 
ells of agiven frame should be dropped, some 
ells of that frame might already have left the bu�er.In [88℄, a s
heme whi
h belongs to the 
ategory of s
hemes using per-VC a

ounting in aFIFO bu�er is presented. The s
heme relies on the virtual queueing te
hnique of [97℄ anddivides the time in intervals of length T . In ea
h period T , the virtual s
heduling me
hanism
onsists of two phases. In the �rst phase, the s
heduler virtually serves T�MCRi 
ells fromea
h VC i to guarantee to ea
h 
onne
tion its MCR. In the se
ond phase, the s
hedulervirtually serves ea
h VC in a round robin fashion to a
hieve fair allo
ation of the ex
essbandwidth. The a
tual order in whi
h 
ells leave the bu�er is FIFO. Although the prin
iplesbehind the s
heme are sound, we think that a more 
omplex implementation of theseprin
iples than presented in [88℄ is needed, sin
e the implementation of [88℄ 
an lead to theloss of 
onne
tions from the list identifying the a
tive VCs.A pa
ket-dis
ard push-out s
heme whi
h belongs to the 
ategory of s
hemes using per-VCa

ounting in a global FIFO bu�er is proposed in [20℄. As long as a 
ertain dynami
variable C whi
h estimates the available bu�er spa
e is positive, all frames are a

epted.Sin
e C takes the bu�er spa
e needed by 
ells of frames whose �rst 
ell has already beena

epted into a

ount, this poli
y does not hurt already a

epted frames. If C is negative,a new frame of 
onne
tion i arrives at the bu�er, and the 
ells of 
onne
tion i do noto

upy more than a 
ertain share of the bu�er, then the queue manager sele
ts another (ormore than one) 
onne
tion that o

upies too mu
h spa
e in the bu�er, and the last frameof this VC is pushed out of the bu�er su
h that spa
e 
omes available for the new frameof 
onne
tion i. The performan
e of this s
heme is only 
ompared with the performan
eof EPD in [20℄. Simulation results illustrate that the bu�er utilization is kept at 100%with the pa
ket-dis
ard push-out s
heme, while this is not always the 
ase for EPD, andthat the s
heme 
an prevent an ill-behaved sour
e from obtaining an arbitrary share of thebandwidth.5.3 Con
lusionsIn this 
hapter, an overview of the most representative bu�er a

eptan
e s
hemes that havebeen proposed for use with the UBR and GFR ATM servi
e 
ategories was presented.Chara
teristi
 of all s
hemes is their AAL5 frame awareness: if the s
heme de
ides toa

ept, respe
tively dis
ard, the �rst 
ell of a frame, it will try to a

ept, respe
tivelydrop, all 
ells of the same frame, sin
e in
omplete frames are of no use at the destination.



5.3. Con
lusions 93The prin
iples of two of the earliest proposed s
hemes, namely partial pa
ket dis
ard andearly pa
ket dis
ard, are found ba
k in many of the more sophisti
ated s
hemes. To beable to a

ept the non-�rst 
ells of a frame from whi
h the �rst 
ell was a

epted, mosta

eptan
e s
hemes use a threshold, as in EPD, to provide some ex
ess 
apa
ity in thebu�er. If in spite of this ex
ess 
apa
ity a 
ell is lost be
ause of bu�er over
ow, theremaining 
ells of its frame are dis
arded as in PPD.No QoS 
ommitments are made by the network to UBR 
onne
tions, but most re
entbu�er a

eptan
e s
hemes for UBR try to provide a fair allo
ation of the bandwidth to
ompeting 
onne
tions. This is done by aiming at a fair allo
ation of the bu�er 
apa
ityamong the 
onne
tions, using the prin
iple behind the FBA s
heme that a 
onne
tion thatgets more than its fair share of the bu�er spa
e will also get more than its fair share ofthe bandwidth. The same prin
iple is used in some of the bu�er a

eptan
e s
hemes forGFR, although the fairness is an issue then only to the ex
ess 
apa
ity. The �rst 
on
ernof bu�er a

eptan
e s
hemes for GFR is to provide ea
h 
onne
tion with its MCR servi
eguarantee.Relying on the attra
tive properties of the RED s
heme in IP gateways, some s
hemes forATM using the prin
iples behind RED are proposed. The most important feature of theses
hemes is their ability to keep the average bu�er size, and thus also the average queueingdelay, low.Most bu�er a

eptan
e s
hemes proposed to support GFR 
onne
tions 
an be grouped inone of the three main 
ategories, as is done in Se
tion 5.2. The �rst 
ategory 
ontainss
hemes relying on the tagging of ineligible frames by a F-GCRA fun
tion to provide theper-VC minimum rate guarantees to the di�erent 
onne
tions. This implies that thoses
hemes 
an only support GFR.2 
onne
tions. S
hemes that support GFR.1 
onne
tionsare found in the se
ond and the third 
ategory. The s
hemes in the se
ond 
ategory useper-VC a

ounting and per-VC queueing, making per-VC s
heduling possible. With anappropriate per-VC s
heduling algorithm, ea
h VC is, when a
tive, allo
ated its reservedbandwidth. The s
hemes in the third 
ategory use per-VC a

ounting in a FIFO bu�er,sin
e the 
ost of per-VC queueing and per-VC s
heduling may be too high for a servi
e
ategory like GFR.In general, bu�er a

eptan
e s
hemes for GFR have problems in providing GFR.2 
on-ne
tions with their minimum guaranteed bandwidth. This is be
ause the GFR servi
eguarantee applies only to the CLP=0 frames of a 
onne
tion. So the bu�er a

eptan
es
hemes have to treat the CLP=1 frames with a lower priority. But TCP 
ongestion 
on-trol me
hanisms rea
t on the loss of the frames by redu
ing the windows of the sour
es,resulting in some TCP sour
es sending at a rate whi
h is mu
h too low to obtain theirreserved throughput. The main 
ause of this problem is found in the fa
t that TCP is notable to adapt its behavior to the F-GCRA tagging fun
tion used with GFR.2 
onne
tions.It is shown in [13℄ that when the F-GCRA fun
tion is pre
eded by a shaping fun
tion, asigni�
ant gain in performan
e is noti
ed for the GFR implementation using tagging and aFIFO queue. It seems however logi
al to expe
t the same improvement of the performan
e
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eptan
e s
hemes for UBR and GFRwhen the shaping fun
tion is used in 
ombination with other bu�er a

eptan
e s
hemes.For bu�er a

eptan
e s
hemes not only the prin
iples behind the a

eptan
e algorithm areimportant, but also the a

ounting information the algorithm 
an base its de
isions onand the queueing and s
heduling strategy used. In Tables 5.1 and 5.2 a summary of thisinformation for the main bu�er a

eptan
e s
hemes dis
ussed in this 
hapter is provided.Finally, remark that the ATM-Forum has re
ently proposed an optional minimum desired
ell rate (MDCR) indi
ation for UBR [6℄, by whi
h UBR 
onne
tions 
an indi
ate to thenetwork a preferen
e for a minimum bandwidth obje
tive. Regardless of the presen
eand/or value of this MDCR, this does not de�ne a servi
e 
ommitment of the network tothe UBR 
onne
tion. However, network spe
i�
 QoS 
ommitments for su
h 
onne
tionsare not pre
luded. When a network wants to provide su
h QoS 
ommitments, it will needto implement a bu�er a

eptan
e s
heme whi
h relates 
losely to the s
hemes dis
ussed forGFR in this 
hapter.
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Queueing S
heduling A

ounting information: A

ounting information:Bu�er a

eptan
e s
heme strategy strategy per-VC statesa 
ountersbTail drop global FIFO - global (Q)Partial pa
ket dis
ard global FIFO dropi global (Q)dropiEarly pa
ket dis
ard global FIFO new framei global (Q)dropi global (Q,N)Fair bu�er allo
ation global FIFO new framei per-VC (Qi)dropi global (Q,N)Sele
tive drop global FIFO new framei per-VC (Qi)dropi global (Q,N)EPD with per-VC queueing per-VC round robin new framei per-VC (Qi)dropi global (Q,N ,
ount,Avg)Pa
ket-based RED global FIFO new framei per-VC (Qi)dropiATM-RED global FIFO new frame global (Q,Avg)dropnextiTable 5.1: Bu�er a

eptan
e s
hemes for UBR: overview of the queueing, s
heduling and a

ounting strategies.aDropi is a per-VC state that indi
ates if the next 
ell on 
onne
tion i needs to be dropped. On arrival of the last 
ell of a frame on
onne
tion i, it is reset. New framei is a per-VC state whi
h indi
ates that the next 
ell on 
onne
tion i is the �rst one of a frame. Dropnextiis a per-VC state that indi
ates if the next frame on 
onne
tion i needs to be dropped.bQ: total bu�er o

upan
y; N : number of a
tive 
onne
tions; Qi: number of 
ells of VC i in the bu�er; Avg: average bu�er o

upan
y,
al
ulated by equation (5.5); 
ount: number of a

epted frames sin
e the last dropped frame, or sin
e Avg ex
eeded a threshold L.
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5.Anoverv

iewofbu�er
a

eptan
es


hemesforU
BRandGF

R Queueing S
heduling A

ounting information: A

ounting information:Bu�er a

eptan
e s
heme strategy strategy per-VC statesa 
ountersbdropiTagging + FIFO global FIFO new framei global (Q)(weighted) dropiTagging + per-VC queueing per-VC round robin new framei global (Q)Per-VC a

ounting and WFQ-like dropi global (Q)WFQ-like s
heduling per-VC (virtual spa
ing) new framei per-VC (Ri)dropiGlobal FIFO s
heduling per-VC
 FIFO + new framei global (Q)round robind eligiblei per-VC (Qi)dropi global (Q,N ,W )Di�erential fair bu�er allo
ation global FIFO new framei per-VC (Qi,Wi)dropi global(Q,Avg)Token based bu�er allo
ation global FIFO new framei per-VC (Ci)Table 5.2: Bu�er a

eptan
e s
hemes for GFR: overview of the queueing, s
heduling and a

ounting strategies.aDropi is a per-VC state that indi
ates if the next 
ell on 
onne
tion i needs to be dropped. On arrival of the last 
ell of a frame on
onne
tion i, it is reset. New framei is a per-VC state whi
h indi
ates that the next 
ell on 
onne
tion i is the �rst one of a frame. Eligiblei isa per-VC state that indi
ates if the 
urrent frame on 
onne
tion i is 
onsidered eligible.bQ: total bu�er o

upan
y; Ri: number of CLP=0 
ells of VC i in the bu�er; Qi: number of 
ells of VC i in the bu�er; N : number ofa
tive 
onne
tions; Wi: weight of VC i; W : sum of the weights of all a
tive VCs; Avg: average bu�er o

upan
y, 
al
ulated by equation (5.5);Ci: token 
ounter asso
iated with VC i.
Although the name of the s
heme suggests otherwise, 
ells are queued per-VC. There is also a FIFO queue in whi
h referen
es to theper-VC queues are queued.dAs long as the FIFO queue 
ontains referen
es to the VC queues, s
heduling is FIFO. If the FIFO queue is empty, s
heduling is roundrobin.



Chapter 6Transient performan
e analysis of thesele
tive drop bu�er a

eptan
ealgorithm with responsive traÆ
The sele
tive drop and EPD with per-VC queueing bu�er a

eptan
e s
hemes dis
ussedin Chapter 5 use the same frame1 aware bu�er a

eptan
e rules to de
ide about whi
h
ells are allowed to enter the bu�er and whi
h 
ells are dis
arded. A 
ow
hart of theserules is shown in Figure 6.1. In the sele
tive drop s
heme these rules are 
ombined with aglobal queueing strategy and the FIFO s
heduling strategy, while in the EPD with per-VCqueueing s
heme they are used in 
ombination with per-VC queueing and round robins
heduling. In the 
urrent 
hapter we 
onsider them in 
ombination with three s
hedulingalgorithms: FIFO, round robin (RR) and a variant of probabilisti
 longest queue �rst(PLQF). For the sake of simpli
ity, throughout this 
hapter only the term `sele
tive drop(SD)' is used, 
ompleted when needed with the spe
i�
 s
heduling algorithm 
onsidered.The transient performan
e of SD is analyzed when traÆ
 is generated by sour
es whi
hrespond to the presen
e or absen
e of losses (as TCP sour
es do). For this goal a theoreti
almodel is developed, where two responsive sour
es send traÆ
 in �xed-sized pa
kets of
ells, via a bu�er on whi
h the SD bu�er a

eptan
e algorithm is implemented. TransienteÆ
ien
y and fairness results are obtained from the model, most of the time under anunfair start 
ondition, whi
h 
orresponds to a situation where one sour
e alone has beensending traÆ
 for some time, and suddenly the se
ond sour
e starts also sending traÆ
,leading to a bottlene
k.Where performan
e oriented studies typi
ally rely on the assumption that the sto
hasti
pro
ess modeling the phenomenon of interest is already in steady state, transient perfor-man
e results are addressed in this 
hapter. Transient analysis is important when the life
y
le of the phenomenon under study is not long enough, sin
e usually a sto
hasti
 pro
ess1Throughout this 
hapter, the terms `frame' and `pa
ket' are used inter
hangeably.97
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dropi = falsedropi = true

yesno
dropi =true ?no
yes

dis
ardyes
Q < Qmax ?no a

ept 
elldis
ard 
elldropi = true

yesno

�rst 
ell Q � L orQi � FS ?
At arrival of a 
ell of 
onne
tion i: a

ept 
elldis
ard 
ellof pa
ket ?

Figure 6.1: Flow
hart of the a

eptan
e rules used by the SD and EPD with per-VCqueueing s
heme. The following notation is used: Q: bu�er o

upan
y; Qmax: 
apa
ity ofthe bu�er; Qi: number of 
ells of 
onne
tion i in the bu�er; L: a �xed threshold; FS: FairShare. FS is 
al
ulated as (Q=N) �K, where N is the number of a
tive 
onne
tions andK is a �xed parameter of the SD algorithm.
annot rea
h steady state unless time evolves towards in�nity, or when its behavior beforerea
hing steady state is important. So when observing the rea
tion upon an unfair startsituation of a bu�er a

eptan
e s
heme whi
h aims at fairness, a transient approa
h isrequired.The results presented in this 
hapter are an extension to the results we already presentedin [92, 93℄. The stru
ture of the 
hapter is as follows: the theoreti
al model is des
ribedin Se
tion 6.1, and results obtained with the model are presented and dis
ussed in Se
-tion 6.2. This last se
tion is further subdivided in three subse
tions: identi
al s
enariosunder three di�erent start 
onditions are 
onsidered in Se
tion 6.2.1, while the in
uen
eof the responsive traÆ
, resp. of the SD parameters, under an unfair start situation, is
onsidered in Se
tion 6.2.2, resp. Se
tion 6.2.3. Con
lusions are drawn ea
h time at theend of the subse
tions.6.1 Model des
ription6.1.1 System 
on�gurationThe performan
e of the SD bu�er a

eptan
e s
heme will be observed using the 
on�g-uration of Figure 6.2. TraÆ
 is generated in �xed-sized pa
kets of 
ells by two respon-
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Responsive 

source 1

source 2

destination

scheduling
buffer acceptance

algorithm (SD)

buffer

Responsive Figure 6.2: System 
on�guration.sive sour
es, whi
h respond to the presen
e/absen
e of losses of their traÆ
 by de
reas-ing/in
reasing the amount of pa
kets they send in a 
ertain time. All traÆ
 is sent to thesame destination via the output port of a network element. The links in the s
enario allhave the same 
apa
ity, whi
h makes this output port a bottlene
k at whi
h bu�ering isneeded. The de
ision about whi
h pa
kets are allowed to enter the bu�er is made usingthe SD bu�er a

eptan
e algorithm. The queueing in the bu�er 
an be global, or per-VC,and the order in whi
h the 
ells leave the bu�er depends on the s
heduling algorithm used.6.1.2 Sour
e behaviorThe traÆ
 in the system is generated by two independent but identi
al sour
es, whi
hsend their traÆ
 in �xed-sized pa
kets of D ba
k-to-ba
k 
ells (for modeling simpli
ity itis assumed that D is even). The time needed to pla
e D 
ells onto the links is 
onsideredas time unit of the system, and is 
alled a `slot'. On the input links, a slot thus equals thetime to pla
e a pa
ket of 
ells onto the links, while on the output link the D 
ells that maybe put onto the link in a slot 
an belong to both 
onne
tions, depending on the outputof the s
heduling algorithm. The sour
es are persistent sour
es that have always traÆ
 tosend, but the amount of pa
kets they send in a time of x slots (where x is a parameterof the sour
e model) is limited by their window size. The window sizes of the sour
es areupdated every x slots, based on the number of pa
kets a sour
e has lost at the bu�er inthe previous x slots. The following rules are used for the window updates:� if a sour
e did not lose any pa
kets during the previous x slots, then its window sizeis in
reased by one pa
ket, ex
ept if it has already rea
hed its maximum window sizeof x pa
kets,� if a sour
e has lost one pa
ket during the previous x slots, then its window size isapproximately halved, by setting it to the smallest integer not smaller than half its
urrent window size,� if a sour
e has lost two or more pa
kets during the previous x slots, then its windowsize is redu
ed to one pa
ket.
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Further, it is assumed that a sour
e with a window size of r pa
kets (1 � r � x) sendsthese pa
kets during the �rst r slots of an interval of x slots.6.1.3 Bu�er a

eptan
eWhen a pa
ket arrives at the bu�er, the de
ision about if it is allowed to enter the bu�eror not is made based upon the SD bu�er a

eptan
e algorithm. Denote by Q1, resp. Q2,the number of 
ells of 
onne
tion 1, resp. 
onne
tion 2, in the bu�er, by Q = Q1 + Q2the total bu�er o

upan
y, by L the �xed threshold of the SD algorithm, by K the �xedparameter of the SD algorithm, and by N the number of a
tive 
onne
tions. Be
ause ofthe assumption in the model that the sour
es send the D 
ells of a pa
ket ba
k-to-ba
k,pa
ket boundaries 
orrespond to slot boundaries. Sin
e the a

eptan
e rule (Q � L orQi � (Q=N) � K) of the SD algorithm is only tested for the �rst 
ell of a pa
ket (seeFigure 6.1), a de
ision about the a

eptan
e or dis
arding of the 
omplete pa
ket 
an bemade in the model at slot boundaries. If pa
kets from both sour
es arrive at the sametime and they both pass the a

eptan
e rules, but there is only pla
e in the bu�er for onepa
ket, then it is assumed that ea
h pa
ket has equal probability of being the one that isdropped.6.1.4 S
hedulingThree s
heduling algorithms are 
onsidered: FIFO, round robin (RR) and probabilisti
longest queue �rst (PLQF). In a FIFO system, if the D 
ells of a pa
ket arrive ba
k-to-ba
k at the bu�er, D 
ells of one 
onne
tion (when upon arrival of this pa
ket no pa
ketof the other 
onne
tion arrived), or D=2 
ells of ea
h 
onne
tion (when a pa
ket of both
onne
tions arrived at the same time) leave the bu�er in a slot. In a RR system on theother hand, when at departure instants no 
ells of the other 
onne
tions are present, D 
ellsof one 
onne
tion leave the bu�er in a slot. Otherwise, D=2 
ells of ea
h 
onne
tion leavethe bu�er in a slot. The system is also 
onsidered with a PLQF s
heduling dis
ipline, whi
hsele
ts for servi
e a 
onne
tion with a probability proportional to the 
ontribution of this
onne
tion to the total queue length. Where the aim of RR s
heduling is to let an equalamount of 
ells of ea
h 
onne
tion leave the bu�er per s
heduling 
y
le, PLQF s
hedulingstrives to an equal amount of 
ells of ea
h 
onne
tion in the bu�er. Corresponding to theFIFO and RR system, also in the PLQF system we let D=2 
ells of ea
h 
onne
tion orD 
ells of one 
onne
tion leave the system in a slot, and this with the following probabilities:� D=2 
ells of ea
h 
onne
tion, with probability S=Q,� D 
ells of 
onne
tion 1, with probability Q1�S=2Q ,� D 
ells of 
onne
tion 2, with probability Q2�S=2Q ,
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connection 1

PLQF

output sequences

cells which leave the buffer during the same slot

probability = 1/6

probability = 1/6

probability = 1/2

probability = 1/6

Figure 6.3: In the PLQF system, di�erent output sequen
es o

ur probabilisti
ally.arrs. depts. arrs. depts. arrs. depts. arrs. depts. depts. depts.slot 0 slot 0 slot 1 slot 1 slot 2 slot 2 slot 3 slot 3 slot 4 slot 5Q1 2 0 2 1 1 0 1 2 3 1 2 0 1 0Q2 0 0 2 1 3 2 1 4 3 3 2 2 1 0S 0 0 4 2 2 0 2 4 6 2 4 0 2 0withprob. 1 1 1 1 1 12 12 12 12 13 23 16 56 1Table 6.1: Values of the parameters Q1, Q2 and S (expressed as a multiple of D=2) atdi�erent times for the PLQF system shown in Figure 6.3.where S is the number of 
ells in the bu�er belonging to pa
kets that have been a

eptedat the same time as other pa
kets.To illustrate the probabilisti
 
hara
ter of PLQF s
heduling and to make the meaning ofS more 
lear, a small example is shown in Figure 6.3 and Table 6.1. Figure 6.3 shows forfour slots pa
kets that are a

epted in the bu�er and the possible output sequen
es that
an o

ur when PLQF s
heduling is applied. Table 6.1 shows the values of the parametersQ1, Q2 and S (expressed as a multiple of D=2) at di�erent times.6.1.5 System evolutionDe�ne the following random variables at dis
rete-time slot boundaries k, where k = lx+m,l 2 N and m 2 f0; : : : ; x� 1g, for i = 1; 2:� Qi(k): number of 
ells of 
onne
tion i in the bu�er at time k,� Wi(k): number of pa
kets sour
e i sends in the interval of length x slots that startsat time lx,
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arrivals slot 2arrivals slot 0 arrivals slot 1

count lossescount losses count losses count losses
arrivals slot 3departures slot 0 departures slot 1

adapt windows
departures slot 2

reset loss counters

slot 2slot1slot 00� 1� 2� 3�0+ 1+ 2+ 3+
Figure 6.4: Evolution of the system during the �rst 3 slots for x = 3.� Li(k): number of lost (i.e., not a

epted in the bu�er) pa
kets of sour
e i at time ksin
e the beginning of the interval of length x slots that started at time lx (0, 1, or2, where `2' means `more than one').For the PLQF system, de�ne also� S(k): number of 
ells in the bu�er at time k belonging to pa
kets that have beena

epted at the same time as other pa
ketsRemark that be
ause in a slot 0 
ells, D 
ells of one 
onne
tion or D=2 
ells of both
onne
tions leave the bu�er, and be
ause in a slot 0 or D 
ells of ea
h 
onne
tion enter thebu�er, the number of 
ells of ea
h 
onne
tion in the bu�er at slot boundaries is always amultiple of D=2. So the values the Qi(k)'s 
an take are always multiples of D=2, and thevalues S(k) 
an take are always multiples of D. Further, 
orresponding to the assumptionmade in Se
tion 6.1.2 that the window sizes of the sour
es are updated every x slots, thede�nition of Wi(k) implies that Wi(lx) = Wi(lx + 1) = � � � =Wi(lx+ x� 1).To simplify the des
ription of the evolution over time of the de�ned system, split the timeinstant k virtually into k� and k+, where k� represents the moment just before the arrivals,if any, of slot k o

ur, and k+ represents the moment just before the departures, if any, ofslot k o

ur. The result is an evolution 0� ! 0+ ! 1� ! 1+ ! � � � ! (k � 1)+ ! k� !k+ ! (k + 1)� ! : : : . Two types of evolution over time 
an then be distinguished:1. Evolution of the type k� ! k+: the arrivals in the bu�er during slot k are taken intoa

ount, resulting in a possible in
rease of the random variables Qi(k+), S(k+) andLi(k+) 
ompared to Qi(k�), S(k�) and Li(k�).2. Evolution of the type k+ ! (k + 1)�: the departures from the bu�er during slot kare taken into a

ount, resulting in a possible de
rease of the Qi ((k + 1)�) andS ((k + 1)�) 
ompared to Qi(k+) and S(k+). When k+ 1 is a multiple of x, also thewindow size Wi ((k + 1)�) of ea
h sour
e is updated from Wi(k+), using the valueLi(k+). Further, the loss 
ounters Li ((k + 1)�) are reset to zero.Figure 6.4 illustrates for x = 3 the evolution of the system during the �rst three slots.Remark that the tuple (W1(k�);W2(k�)) provides enough information to know from whi
h
onne
tions pa
kets arrive in slot k, while based on (Q1(k�); Q2(k�)) it 
an be determined
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ription 103by means of the SD algorithm whi
h of these pa
kets are a

epted in the bu�er. Usingthe information (W1(k+);W2(k+); L1(k+); L2(k+)), where k + 1 is a multiple of x, windowupdates 
an be performed. To de
ide whi
h 
ells depart from the bu�er during slot k, theinformation that is needed depends on the s
heduling algorithm used:� RR: (Q1(k+); Q2(k+)),� PLQF: (Q1(k+); Q2(k+); S(k+)).For FIFO, whi
h is one of the simplest s
heduling s
hemes to implement, it is ne
essaryto keep tra
k of the order in whi
h the 
ells of the di�erent 
onne
tions have entered thebu�er. In an analyti
al model this is diÆ
ult to in
orporate, sin
e even for two sour
esthis makes the number of states in the model very large, leading to an unattra
tive model.Be
ause of that, we do not des
ribe the system evolution of the FIFO system theoreti
ally,but obtain it by simulation. In these simulations, the same sour
e behavior and modelingassumptions are used as in the theoreti
al models for RR and PLQF. A formal des
riptionof the system evolution 
orresponding to the informal des
ription above is now given forthe RR and PLQF system.At time k, the state of the PLQF system is given by a seven dimensional element(Q1(k); Q2(k); S(k);W1(k);W2(k); L1(k); L2(k)). The evolution over time of the systemis des
ribed by a multidimensional dis
rete-time random pro
essf(Q1(k); Q2(k); S(k);W1(k);W2(k); L1(k); L2(k)) ; k � 0g ; (6.1)whose future, given the presen
e, is independent of the past for all time instants k. Hen
ethe pro
ess is a Markov 
hain. It is however a nonstationary Markov 
hain, sin
e theprobability of going from one state to another depends on the time at whi
h the transitionis made (multiple of x or not).Analoguously, the state of the RR system at time k is des
ribed by a six dimensional ele-ment (Q1(k); Q2(k);W1(k);W2(k); L1(k); L2(k)), and the evolution over time of the systemis then given by the Markov 
hainf(Q1(k); Q2(k);W1(k);W2(k); L1(k); L2(k)) ; k � 0g : (6.2)In the sequel, when the only di�eren
e between an equation for the RR system and for thePLQF system is that the random variable S(k) needs to be omitted for the RR system, asis the 
ase in equations (6.1) and (6.2), only the equation for the PLQF system is writtenout formally.Denote the state spa
e of the Markov 
hains by 
 and de�neXk = (Q1(k); Q2(k); S(k);W1(k);W2(k); L1(k); L2(k)). The random variables that 
on-stitute the multidimensional states Xk take values in the following range (assume thatQmax is a multiple of D):
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� Q1(k) : 0; D=2; D; 3D=2; : : : ; Qmax,� Q2(k) : (0; D; 2D; : : : ; Qmax �Q1(k); if Q1(k) is an even multiple of D=2;D=2; 3D=2; 5D=2; : : : ; Qmax �Q1(k); if Q1(k) is an odd multiple of D=2;� S(k) : (0; 2D; 4D; : : : ; 2minfQ1(k); Q2(k)g ; if Q1(k) is an even multiple of D=2;D; 3D; 5D; : : : ; 2minfQ1(k); Q2(k)g ; if Q1(k) is an odd multiple of D=2;� Wi(k) : 1; 2; : : : ; x; for i = 1; 2,� Li(k) : 0; 1; 2; for i = 1; 2.Assuming the probabilities that the system is in a 
ertain state (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
 attime k� are known, the probability that the system is in a state (q1; q2; s; w1; w2; l1; l2) 2 
at time k+ is 
al
ulated using the 
omplete probability formula:P fXk+ = (q1; q2; s; w1; w2; l1; l2)g =X(q̂1;q̂2;ŝ;ŵ1;ŵ2;l̂1;l̂2)2
P nXk+ = (q1; q2; s; w1; w2; l1; l2) j Xk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)oP nXk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o : (6.3)For simpli
ity, denote the 
onditional probability in equation (6.3) by P1. Let L be the�xed threshold of the SD algorithm, and denote by FS(q̂1; q̂2) the fair share as 
al
ulatedby the SD algorithm, i.e.,FS(q̂1; q̂2) = K q̂1 + q̂2Ifq̂1 6=0g + Ifq̂2 6=0g ; (6.4)where IA denotes the indi
ator fun
tion of an event A.To 
ompute P1, assume that k = lx + m, l 2 N and m 2 f0; : : : ; x � 1g. Sin
e at time(k � 1)+ the departures of slot k � 1 were taken into a

ount, at time k� there is alwayspla
e in the bu�er for at least D 
ells. Di�erent 
ases 
an be distinguished:1. ŵ1 > m and ŵ2 > m, i.e., arrivals o

ur on both 
onne
tions.(a) q̂1 + q̂2 � L, or �q̂1 + q̂2 > L, q̂1 � FS(q̂1; q̂2) and q̂2 � FS(q̂1; q̂2)�, i.e., bothpa
kets are a

epted.i. q̂1+ q̂2 � Qmax�2D, i.e., there is pla
e in the bu�er for both pa
kets. ThenP1 = 1 if (q1; q2; s; w1; w2; l1; l2) = (q̂1 +D; q̂2 +D; ŝ+ 2D; ŵ1; ŵ2; l̂1; l̂2).ii. q̂1 + q̂2 = Qmax � D, i.e., there is pla
e in the bu�er for only one pa
ket.Ea
h pa
ket has equal probability of being the one that is dropped. ThenP1 = 1=2 if s = ŝ, w1 = ŵ1, w2 = ŵ2, and
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ription 105� q1 = q̂1 +D, q2 = q̂2, l1 = l̂1, l2 = l̂2 + 1 or l2 = l̂2 = 2, or� q1 = q̂1, q2 = q̂2 +D, l1 = l̂1 + 1 or l1 = l̂1 = 2, l2 = l̂2.(b) q̂1 + q̂2 > L, q̂1 � FS(q̂1; q̂2) and q̂2 > FS(q̂1; q̂2), i.e., only the pa
ket of 
onne
-tion 1 is a

epted, that of 
onne
tion 2 is dropped. Then P1 = 1 if q1 = q̂1+D,q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1, l2 = l̂2 + 1 or l2 = l̂2 = 2.(
) q̂1 + q̂2 > L, q̂1 > FS(q̂1; q̂2) and q̂2 � FS(q̂1; q̂2), i.e., only the pa
ket of 
on-ne
tion 2 is a

epted, that of 
onne
tion 1 is dropped. Then P1 = 1 if q1 = q̂1,q2 = q̂2 +D, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1 + 1 or l1 = l̂1 = 2, l2 = l̂2.(d) q̂1 + q̂2 > L, q̂1 > FS(q̂1; q̂2) and q̂2 > FS(q̂1; q̂2), i.e., both pa
kets are dropped.Then P1 = 1 if q1 = q̂1, q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1 + 1 orl1 = l̂1 = 2, l2 = l̂2 + 1 or l2 = l̂2 = 2.2. ŵ1 > m and ŵ2 � m, i.e., only on 
onne
tion 1 an arrival o

urs.(a) q̂1 + q̂2 � L, or �q̂1 + q̂2 > L and q̂1 � FS(q̂1; q̂2)� , i.e., the pa
ket is a

epted.Then P1 = 1 if (q1; q2; s; w1; w2; l1; l2) = (q̂1 +D; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2).(b) q̂1 + q̂2 > L and q̂1 > FS(q̂1; q̂2) , i.e., the pa
ket is dropped. Then P1 = 1 ifq1 = q̂1, q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1 + 1 or l1 = l̂1 = 2, l2 = l̂2.3. ŵ1 � m and ŵ2 > m, i.e., only on 
onne
tion 2 an arrival o

urs.(a) q̂1 + q̂2 � L, or �q̂1 + q̂2 > L and q̂2 � FS(q̂1; q̂2)� , i.e., the pa
ket is a

epted.Then P1 = 1 if (q1; q2; s; w1; w2; l1; l2) = (q̂1; q̂2 +D; ŝ; ŵ1; ŵ2; l̂1; l̂2).(b) q̂1 + q̂2 > L and q̂2 > FS(q̂1; q̂2) , i.e., the pa
ket is dropped. Then P1 = 1 ifq1 = q̂1, q2 = q̂2, s = ŝ, w1 = ŵ1, w2 = ŵ2, l1 = l̂1, l2 = l̂2 + 1 or l2 = l̂2 = 2.4. ŵ1 � m and ŵ2 � m, i.e., no arrivals o

ur. Then P1 = 1 if (q1; q2; s; w1; w2; l1; l2) =(q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2).In all other 
ases, P1 = 0.To 
ompute the probabilities that the system is in a 
ertain state (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
at time k�, again the 
omplete probability formula is used:P nXk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o =X(q1;q2;s;w1;w2;l1;l2)2
P nXk� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) j X(k�1)+ = (q1; q2; s; w1; w2; l1; l2)oP �X(k�1)+ = (q1; q2; s; w1; w2; l1; l2)	 : (6.5)Denote the 
onditional probability in equation (6.5) by P2, and assume that k = lx +m,l 2 N and m 2 f0; : : : ; x � 1g. Remark that when m 6= 0, only the departures of slotk � 1 are taken into a

ount. When m = 0, also the window sizes are adapted and the
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loss 
ounters are reset. De�ne by f the window update fun
tion that 
orresponds to thesour
e behavior rules des
ribed in Se
tion 6.1.2:f(wi; li) = 8><>:minfwi + 1; xg if li = 0;�wi2 � if li = 1;1 if li = 2: (6.6)Again, di�erent 
ases 
an be distinguished:1. q1 + q2 = 0, i.e., the system is empty. Then P2 = 1 if (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) =(q1; q2; s; w1; w2; l1; l2).2. q1 + q2 6= 0, i.e., the system is not empty. If� m 6= 0, ŵ1 = w1, ŵ2 = w2, l̂1 = l1, l̂2 = l2, or� m = 0, ŵ1 = f(w1; l1), ŵ2 = f(w2; l2), l̂1 = 0, l̂2 = 0,then(a) for PLQF s
heduling,i. P2 = s=(q1 + q2), i.e., D=2 
ells of ea
h 
onne
tion leave the bu�er, ifq̂1 = q1 �D=2, q̂2 = q2 �D=2, ŝ = s�D.ii. P2 = (q1 � s=2)=(q1 + q2), i.e., D 
ells of 
onne
tion 1 leave the bu�er, ifq̂1 = q1 �D, q̂2 = q2, ŝ = s.iii. P2 = (q2 � s=2)=(q1 + q2), i.e., D 
ells of 
onne
tion 2 leave the bu�er, ifq̂1 = q1, q̂2 = q2 �D, ŝ = s.(b) for RR s
heduling, P2 = 1 ifi. q1:q2 6= 0, q̂1 = q1 � D=2, q̂2 = q2 � D=2, i.e., the bu�er 
ontains 
ells ofboth 
onne
tions, so D=2 
ells of ea
h 
onne
tion leave the bu�er.ii. q̂1 = q1�D, q̂2 = q2 = 0, i.e., the bu�er 
ontains only 
ells of 
onne
tion 1,so D 
ells of that 
onne
tion leave the bu�er.iii. q̂1 = q1 = 0, q̂2 = q2�D, i.e., the bu�er 
ontains only 
ells of 
onne
tion 2,so D 
ells of that 
onne
tion leave the bu�er.In all other 
ases, P2 = 0.Using alternately the equations (6.3) and (6.5), the probabilities that the system is in a 
er-tain state of 
 at time k� or k+ 
an be 
al
ulated when starting valuesPfX0� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)g at time 0� for all states (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
 aregiven. Remark that by de�nition of the random variables L1(k) and L2(k), L1(0�) =L2(0�) = 0, i.e., the starting probabilities PfX0� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)g should be zerowhen l̂1 6= 0 or when l̂2 6= 0.
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ription 1076.1.6 Transient performan
e measuresFrom the state of the system at time k+, the following random variables (i = 1; 2) areobtained:� Oi(k): number of 
ells of 
onne
tion i that leave the bu�er during slot k.Remark that the Oi(k)'s take values 0, D=2 or D. Further on in this se
tion, E [Oi(k)℄ isused, whi
h is the average over all realizations of the random pro
ess Oi(k), and is thusper de�nition given byE [Oi(k)℄ = (D=2)P fOi(k) = D=2g+DP fOi(k) = Dg : (6.7)For the systems with FIFO and RR s
heduling, due to the fa
t that this are non-probabilis-ti
 s
heduling s
hemes, it is possible that the random pro
esses Oi(k) are deterministi
 (i.e.,have only one realization), su
h that E [Oi(k)℄ = Oi(k). This is the 
ase when the initialstate of the system is deterministi
, and over time it never o

urs that two pa
kets thatarrive at the same time are both a

epted by the a

eptan
e rules, while there is only pla
ein the bu�er for one pa
ket. When the latter would happen anyhow, the sample paths ofthe pro
esses Oi(k) split into two bran
hes at su
h moments.For the PLQF system, the probability that Oi(k) equals D=2 is the probability that duringslot k, D=2 
ells of ea
h 
onne
tion leave the bu�er:P fOi(k) = D=2g = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0 sq1 + q2 P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.8)The probability that Oi(k) equals D with PLQF s
heduling is given by the probabilitythat D 
ells of 
onne
tion i leave the bu�er during slot k:P fOi(k) = Dg = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0 qi � s=2q1 + q2 P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.9)With RR s
heduling, the probability that Oi(k) equals D=2 is the probability that attime k+ the bu�er 
ontains 
ells of both 
onne
tions:P fOi(k) = D=2g = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0; q1:q2 6=0 P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.10)The probability that at time k+ the bu�er 
ontains only 
ells of 
onne
tion i equals theprobability that Oi(k) = D for the RR system:P fOi(k) = Dg = X(q1;q2;s;w1;w2;l1;l2)2
q1+q2 6=0; q1:q2=0; qi 6=0P fXk+ = (q1; q2; s; w1; w2; l1; l2)g : (6.11)
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For the FIFO system, the probability distribution of the Oi(k)'s is obtained by simulation.Both the eÆ
ien
y and fairness performan
e of the system in transient state are of interest,and are obtained from the e�e
tive throughputs Ti(k) of the 
onne
tions after k slots. Sin
ethe e�e
tive throughput of a 
onne
tion is de�ned as the average number of pa
kets of that
onne
tion that have arrived at the destination, divided by the time needed to deliver thesepa
kets, Ti(k) is 
al
ulated asTi(k) = 1Dk k�1Xj=0 E [Oi(j)℄ : (6.12)Remark the fa
tor `D' in the denominator, sin
e we want the throughput to be expressedin pa
kets per slot time.The eÆ
ien
y after k slots is de�ned as the sum of the e�e
tive throughputs of all 
on-ne
tions after k slots, divided by the maximum possible e�e
tive throughput after k slots(whi
h is one pa
ket per slot time), resulting ineÆ
ien
y(k) = T1(k) + T2(k): (6.13)To de
ide about the fairness performan
e of the system, the fairness index of equation (4.2)is used. Sin
e the equal division of the total e�e
tive throughput among both 
onne
tionsis 
onsidered as the perfe
tly fair situation, the fairness index after k slots, denoted byF (k), redu
es toF (k) = (T1(k) + T2(k))22 (T1(k))2 + 2 (T2(k))2 : (6.14)Remark that for two sour
es, F (k) ranges between one half (minimum fairness) and one(maximum fairness).6.2 Numeri
al results and dis
ussion6.2.1 Di�erent start 
onditionsThe s
enarios in this se
tion are all 
onsidered with the following three deterministi
 start
onditions: PfX0� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)g = 1, where1. (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) = (0; 0; 0; 1; 1; 0; 0),2. (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) = (0; 0; 0; x; x; 0; 0),3. (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) = (0; 0; 0; x; 1; 0; 0).
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ussion 109Start 
ondition 1 
orresponds to a set-up where the two sour
es start probing the networkat the same time with a window size of one pa
ket. The bu�er of the system is empty atthat time. Under start 
ondition 2, the two sour
es start also sending traÆ
 to an emptysystem at the same time, but now they do it in a very aggressive way, by both startingat their maximum window size. With start 
ondition 3, the window setting is the mostunfair situation possible, but also the most realisti
 one. Start 
ondition 3 
an be seenas the result of a situation where only one sour
e is sending traÆ
, and be
ause there isno bottlene
k then, all traÆ
 of this sour
e passes through the system without buildingup a queue and without losses. The window size of this sour
e 
an thereby grow untilits maximum. At time 0�, the se
ond sour
e starts also sending traÆ
, starting with awindow size of one pa
ket.S
enario 6.2.1. Consider a system with following parameters:� x = 10 (slots), Qmax = 12�D (
ells), L = 7�D (
ells), K = 1,� PLQF s
heduling.The evolution over time of the mean window size of the two sour
es and the mean bu�ero

upation of the two 
onne
tions under the three start 
onditions is shown in Figures 6.5and 6.6. Be
ause the input traÆ
 in the system is generated by two identi
al sour
es,none of whi
h is o�ered a preferential treatment by the bu�er a

eptan
e or the s
hedulings
heme, the mean window sizes and the mean bu�er o

upations 
oin
ide under identi
alstart values for both 
onne
tions, although of 
ourse the two window sizes and the twobu�er o

upations at time k are often di�erent. This is not only the 
ase in this example,but is true in general, as is shown in the appendix. For start 
ondition 3, there is a di�eren
ein the start value of the two window sizes. In Figures 6.5 and 6.6, a di�eren
e between the
urves of both 
onne
tions is 
learly seen at the beginning, while afterwards the 
urves forboth 
onne
tions be
ome more and more the same (i.e., the di�eren
es between the 
urvesbe
ome invisible on the plots after approximately 500 slots). It is observed very often ins
enarios with PLQF s
heduling that the 
urves for the mean window size and the meanqueue size of both 
onne
tions 
oin
ide more and more when time progresses. This 
anbe explained as follows: when at time k the mean bu�er o

upation and window size ofboth 
onne
tions would be 
al
ulated over only these sample paths on whi
h it o

urredat a 
ertain time instant l before k that the parameters (bu�er o

upation, window size,loss 
ounter) of both 
onne
tions were the same, then these means would be identi
alfor both 
onne
tions (
fr. property 6.3.1). The more time progresses, the more likely itbe
omes that it has happened on more and more sample paths that the parameters ofboth 
onne
tions were the same on
e, and thus that the di�eren
e between the means for
onne
tion 1 and 
onne
tion 2 be
ome smaller. This is of 
ourse true for all s
hedulings
hemes 
onsidered, but sin
e PLQF s
heduling aims at equal bu�er o

upation for all
onne
tions, the probability that the parameters of the 
onne
tions 
ome together at a
ertain time instant is higher with PLQF s
heduling.
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Figure 6.5: Evolution of the mean windowsizes when x = 10, Qmax = 12�D, L = 7�Dand K = 1 under di�erent start 
onditions(PLQF s
heduling). In the two topmostplots, the 
urves of 
onne
tion 1 and 2 
oin-
ide.
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Figure 6.6: Evolution of the mean bu�er o
-
upations when x = 10, Qmax = 12 � D,L = 7�D and K = 1 under di�erent start
onditions (PLQF s
heduling). In the twotopmost plots, the 
urves of 
onne
tion 1and 2 
oin
ide.Figure 6.5 shows 
learly the os
illating behavior of the window size of the sour
es, whi
h is
aused by their responsiveness: the window is allowed to grow as long as no losses o

ur,and it is redu
ed after losses. The window size of a sour
e keeps on os
illating (ex
ept if itis allowed to stay at its maximum value, whi
h o

urs when there is no bottlene
k in thesystem), be
ause the sour
e's behavior is su
h that it keeps on trying to let its window grow.Remark again that Figure 6.5 does not show the evolution of the window sizes Wi(k) overtime, but E[Wi(k)℄. In the beginning, E[Wi(k)℄ is equal toWi(k), sin
e the start 
onditionsused are deterministi
 ones (one start ve
tor with probability 1), but during time moreand more sample paths are explored be
ause of the probabilisti
 
hara
ter of the system.From Figure 6.5 it is also seen that for the di�erent start 
onditions, the mean windowsizes os
illate around the same value (4:7�D 
ells) in the long run.In Figure 6.6 it is seen that the os
illating behavior of the windows of the sour
es is re
e
tedin the low-frequen
y os
illations of the queue sizes. The high-frequen
y os
illations of thequeue sizes have a length of x slots, and are 
aused by the fa
t that when a sour
e has awindow size of r pa
kets, it sends pa
kets during the �rst r slots of an interval of x slots,letting the queue grow during these slots and go down afterwards when pa
kets leave but
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Figure 6.7: Evolution of the throughputswhen x = 10, Qmax = 12 � D, L = 7 � Dand K = 1 under di�erent start 
onditions(PLQF s
heduling). For start 
onditions(0; 0; 0; 1; 1; 0; 0) and (0; 0; 0; x; x; 0; 0), the
urves of 
onne
tion 1 and 2 
oin
ide.
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onditions(PLQF s
heduling).

do not arrive.Figure 6.7 shows the evolution over time of the throughput of the di�erent 
onne
tions.Be
ause of the identi
al mean output of the two 
onne
tions under start 
onditions 1 and 2,their throughput 
urves 
oin
ide. Under start 
ondition 1, the throughput of a 
onne
tionis lower than under start 
ondition 2, espe
ially in the beginning. This di�eren
e is mainly
aused by the di�eren
e in the mean number of pa
kets that leave the system during the�rst slots. This number is 
learly larger with start 
ondition 2, sin
e then the window sizesand 
onsequently the bu�er o

upations are larger. Under start 
ondition 1, the system isunder-utilized in the beginning (remark from Figure 6.6 that the mean bu�er o

upationbe
omes often zero then), be
ause the sour
es need time to build up their window. Inline with de�nition (6.12), this di�eren
e in output of the system at the beginning staysper
eptible for some while in the throughput values. When 
omparing the throughput ofthe two 
onne
tions under start 
ondition 3, it is seen that in the beginning the throughputof 
onne
tion 1 is higher than that of 
onne
tion 2, sin
e then sour
e 1 sends more pa
ketsthan sour
e 2, and they are all a

epted, at least until Q > L. Figures 6.6 and 6.7together illustrate 
learly how an initial di�eren
e between the output from the systemof both 
onne
tions stays per
eptible in the throughput values: the bu�er o

upations ofboth 
onne
tions 
oin
ide from a 
ertain moment on, while this is not the 
ase for thethroughput values. It is however the bu�er o

upation whi
h determines with some delaythe output values, sin
e all pa
kets that are a

epted in the bu�er also leave the bu�er(pa
kets that do not pass the a

eptan
e rules of the a

eptan
e s
heme do not enter thebu�er either).
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Figure 6.9: Evolution of the fairness index when x = 10, Qmax = 12 � D, L = 7 � Dand K = 1 under di�erent start 
onditions (PLQF s
heduling). For start 
onditions(0; 0; 0; 1; 1; 0; 0) and (0; 0; 0; x; x; 0; 0) the 
urves 
oin
ide.The evolution of the eÆ
ien
y over time under the three start 
onditions is shown inFigure 6.8. The eÆ
ien
y obtained with start 
ondition 3 is the highest, while that obtainedwith start 
ondition 1 is the lowest. Remark that for start 
onditions 1 and 2 the eÆ
ien
yis exa
tly twi
e the throughput of a 
onne
tion, sin
e the throughput for both 
onne
tions
oin
ides. This explains why the eÆ
ien
y is higher under start 
ondition 2 than understart 
ondition 1. Under start 
ondition 3, the eÆ
ien
y is even higher in the beginning,be
ause while the window of sour
e 2 is still growing, sour
e 1 sends enough traÆ
 into thesystem to keep its utilization high. When the window of sour
e 1 needs to go down, that ofsour
e 2 is large enough to keep the system at high utilization. The fa
t that the eÆ
ien
y
urves are below one from a 
ertain moment on indi
ates that on some of the sample pathsthe system gets temporarily empty with a stri
t positive probability: formulas (6.12) and(6.13) indi
ate that for eÆ
ien
y(k) to be equal to one, the mean output of the systemneeds to be D 
ells in all slots until slot k, and sin
e the maximum output per slot isD 
ells, the mean 
an only be D 
ells if the output is D 
ells with probability 1 (i.e., thesystem is always non-empty with probability 1). The moment that the eÆ
ien
y dropsbelow one o

urs �rst for start 
ondition 1, then for start 
ondition 2 and the latest forstart 
ondition 3. This explains why the �rst dropping of the eÆ
ien
y is the largest forstart 
ondition 1 and the smallest for start 
ondition 3: the longer the eÆ
ien
y stays one,the smaller the di�eren
e between the numerator and the denominator of equation (6.12)and 
onsequently the larger the eÆ
ien
y is when the average output be
omes smaller thanone for the �rst time.The evolution of the fairness index is shown in Figure 6.9. For start 
onditions 1 and 2this index is 
onstantly one, sin
e under these start 
onditions the throughput of the two
onne
tions is exa
tly the same. With start 
ondition 3, some time is needed to approa
h
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ussion 113a fairness index 
lose to one. Remark that the results are only shown for the �rst 500 timeslots, sin
e as soon as the system re
overs from the unfairness 
aused by the unfair startsituation, the fairness index approa
hes one, sin
e the behavior of the two sour
es is thesame, and they are treated equally by the bu�er a

eptan
e and the s
heduling algorithm.This illustrates the importan
e of a transient analysis when observing the behavior of theSD s
heme towards an unfair start situation. In real systems, unfair (start)situations are
onstantly 
reated when 
onne
tions appear and disappear.Figures 6.8 and 6.9 illustrate that the eÆ
ien
y and the fairness of a s
enario give 
omple-mentary information about the throughput of the di�erent 
onne
tions. EÆ
ien
y looks athow well the outgoing 
apa
ity of the system is used, without 
aring by whi
h 
onne
tionit is used, while fairness looks at how fair the outgoing 
apa
ity is used by the di�erent
onne
tions, independent of how mu
h or how little of the outgoing 
apa
ity is used.To illustrate that the observations made about s
enario 6.2.1 under the three di�erent start
onditions are more generally valid, a lot of other s
enarios were 
onsidered, two of whi
hare added here for further illustration.S
enario 6.2.2. Consider a system with following parameters:� x = 13 (slots), Qmax = 15�D (
ells), L = 7�D (
ells), K = 1,� RR s
heduling.In this s
enario, the evolution of the system is deterministi
 under the third start 
ondition.Under the �rst and se
ond start 
ondition, there are ea
h time two sample paths that aresymmetri
 with respe
t to 
onne
tion 1 and 2. These two sample paths 
oin
ide until the�rst time that the bu�er over
ows, be
ause the SD a

eptan
e rules are always ful�lleduntil then due to the identi
al behavior of both 
onne
tions. When the bu�er over
ows, thesample path splits into two symmetri
al sample paths with equal probability. Afterwards,the behavior of the two 
onne
tions di�ers, and the SD algorithm is always able to for
e thewindow of one of the 
onne
tions to go down on time su
h that the bu�er never over
owsagain and the sample paths never split again. A problem of the SD algorithm is illustratedhere: when there are 
onstantly a fair amount of 
ells of ea
h 
onne
tion present in thebu�er, the SD algorithm does not dis
ard pa
kets, and so it 
annot be avoided that thebu�er o

upation grows until the bu�er over
ows. Of 
ourse this problem is less severe inreality than in the model. In the model it is assumed that pa
kets arrive at slot boundariesand that the windows of both sour
es are updated at the same time, whereas in realitythere will be some jitter in the arrival of the pa
kets at the network elements and in theupdating of the windows of the sour
es.Figure 6.10 shows the evolution of the mean window sizes of the sour
es, and Figure 6.11that of the mean bu�er o

upations of the 
onne
tions. As 
an be seen from these �gures,the evolutions of the average window and queue sizes with the �rst and se
ond start
ondition be
ome the same after a while. More in parti
ular, the average behavior of thesystem with start 
ondition 1 at time k is identi
al to the average behavior of the system
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Figure 6.10: Evolution of the mean windowsizes when x = 13, Qmax = 15�D, L = 7�Dand K = 1 under di�erent start 
onditions(RR s
heduling). In the two topmost plots,the 
urves of 
onne
tion 1 and 2 
oin
ide.
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Figure 6.11: Evolution of the mean bu�ero

upations when x = 13, Qmax = 15 � D,L = 7�D and K = 1 under di�erent start
onditions (RR s
heduling). In the two top-most plots, the 
urves of 
onne
tion 1 and 2
oin
ide.
with start 
ondition 2 at time k�104, for all k � 157. From Figures 6.12 and 6.13 it is seenthat the throughput of the 
onne
tions and the eÆ
ien
y is higher under start 
ondition 2than under start 
ondition 1. Sin
e the behavior of both systems be
omes the same withsome delay, this illustrates again the in
uen
e of a di�eren
e in output from the system atthe beginning. The eÆ
ien
y is the highest with start 
ondition 3, sin
e then it o

urs onlyrarely that the bu�er is empty, and there is thus only rarely no output during some slots.Figure 6.14 shows the evolution of the fairness index. Again, the fairness is 
onstantlyone for equal start values, and approa
hes one after some time when the start values arenot equal. Remark that the fairness index always approa
hes one when the behavior ofthe two sour
es is the same, and they are treated equally by the bu�er a

eptan
e andthe s
heduling algorithm. So one 
ould wonder what the in
uen
e of the SD algorithmis. Be
ause of that, the evolution of the fairness index with the third start 
ondition, butnow without the implementation of the SD algorithm, is also shown in Figure 6.14. As 
anbe seen, when SD is not implemented, it takes mu
h more time before the fairness indexapproa
hes one.
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Figure 6.12: Evolution of the throughputswhen x = 13, Qmax = 15 � D, L = 7 � Dand K = 1 under di�erent start 
ondi-tions (RR s
heduling). For start 
onditions(0; 0; 1; 1; 0; 0) and (0; 0; x; x; 0; 0), the 
urvesof 
onne
tion 1 and 2 
oin
ide.
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omparisonwith the fairness index when SD is not implemented is shown.
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Figure 6.15: Evolution of the mean win-dow sizes when x = 10, Qmax = 20 � D,L = 13�D and K = 1 under di�erent start
onditions (FIFO s
heduling). In the twotopmost plots, the 
urves of 
onne
tion 1and 2 
oin
ide.
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Figure 6.16: Evolution of the mean bu�ero

upations when x = 10, Qmax = 20 � D,L = 13�D and K = 1 under di�erent start
onditions (FIFO s
heduling). In the twotopmost plots, the 
urves of 
onne
tion 1and 2 
oin
ide.S
enario 6.2.3. Consider a system with following parameters:� x = 10 (slots), Qmax = 20�D (
ells), L = 13�D (
ells), K = 1,� FIFO s
heduling.Figures 6.15 until 6.18 show the evolution of the window sizes, the bu�er o

upations, thethroughput and the eÆ
ien
y obtained with this system under the three start 
onditions.Again it 
an be seen from the �gures that under start 
ondition 3, the throughput of
onne
tion 1 is higher than that of 
onne
tion 2, be
ause of its initial higher window,whi
h makes that sour
e 1 
an send more pa
kets than sour
e 2 during the initial periodwhere all pa
kets are a

epted be
ause the total bu�er o

upation is not yet above L. Asame explanation 
an be given to the fa
t that the eÆ
ien
y is the highest under start
ondition 3, and the lowest under start 
ondition 1. Remark that the eÆ
ien
y stays equalto one under the se
ond and third start 
ondition for a mu
h longer time in this s
enariothan in the previous s
enarios, be
ause enough pa
kets (more than x per x slots) are sentin the beginning to let the queue grow, and sin
e L and Qmax are larger here than in
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Figure 6.17: Evolution of the throughputswhen x = 10, Qmax = 20 � D, L = 13 � Dand K = 1 under di�erent start 
ondi-tions (FIFO s
heduling). For start 
ondi-tions (0; 0; 1; 1; 0; 0) and (0; 0; x; x; 0; 0), the
urves of 
onne
tion 1 and 2 
oin
ide.
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the other s
enarios, whi
h means that more pa
kets 
an be bu�ered to keep the eÆ
ien
ylonger equal to one.Figure 6.19 shows the evolution of the fairness index under the three start 
onditions,and also for the same system without SD implemented under the third start 
ondition.It is again seen that under start 
onditions 1 and 2 the fairness is perfe
t be
ause of theequal throughput of both 
onne
tions. Under the third start 
ondition, the fairness indexapproa
hes one sooner when SD is implemented. So the SD algorithm 
learly in
uen
esthe fairness results in a positive way. However, the problem of the SD algorithm mentionedalready in s
enario 6.2.2 (when there are a fair amount of 
ells of ea
h 
onne
tion presentin the bu�er, the SD algorithm 
annot dis
ard pa
kets, and so it o

urs that the bu�ergrows until it over
ows) appears also in this s
enario, as 
an be seen from Figure 6.16. Ithappens that the mean bu�er o

upation of both 
onne
tions together equals Qmax, whi
hmeans that on all sample paths the bu�er o

upation of both 
onne
tions together equalsQmax at these times. This suggests that the bu�er has over
owed on these times, whi
h isonly possible when there are a fair amount of 
ells of ea
h 
onne
tion present in the bu�erfrom the moment that Q ex
eeds L until it rea
hes Qmax.Con
lusionsThe 
on
lusions of this se
tion are that when the input traÆ
 is generated by two identi
alsour
es, none of whi
h is o�ered a preferential treatment by the bu�er a

eptan
e or thes
heduling s
heme, then� The mean window sizes and the mean bu�er o

upations 
oin
ide under identi
alstart values for both 
onne
tions, resulting in equal throughput for both 
onne
tionsand thus perfe
t fairness.� The fairness index approa
hes one as soon as the system has re
overed from theunfairness 
aused by an unfair start situation. This illustrates the importan
e of atransient analysis when observing the behavior of the SD s
heme towards an unfairstart situation.� A di�eren
e in the amount of output from the bu�er at the beginning due to di�erentstart 
onditions for the system stays per
eptible in the eÆ
ien
y values. A di�eren
ein the amount of output of the two 
onne
tions at the beginning due to unequal startvalues for both 
onne
tions stays per
eptible for some while in the throughput andfairness values.From now on, all s
enarios are 
onsidered with start 
ondition 3, to observe the behaviorof the SD s
heme towards an unfair start situation.
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uen
e of the responsive traÆ
In this se
tion it is illustrated with numeri
al examples that due to the responsiveness ofthe sour
es, it is not ne
essarily true anymore that being more 
onservative in a

eptingpa
kets implies a lower eÆ
ien
y, as would be the 
ase when non-responsive sour
es wouldbe used. As a result, there is not ne
essarily a trade-o� between eÆ
ien
y and fairness, asis also illustrated by the examples. All examples are 
onsidered with start 
ondition 3 ofthe previous subse
tion.S
enario 6.2.4. Consider the two systems with following parameters:� x = 10 (slots), Qmax = 12�D (
ells),� FIFO s
heduling,� (1) with SD implemented: L = 7�D (
ells), K = 1, (2) without SD implemented.When pa
kets arrive at the �rst system, they are a

epted as long as the SD a

eptan
erules are ful�lled, while in the se
ond system they are a

epted as long as there is pla
e inthe bu�er. Figure 6.20 shows the eÆ
ien
y obtained with both systems. The highest eÆ-
ien
y is obtained when SD is implemented, so when being more 
onservative in a

eptingpa
kets. The evolution of the �rst system is deterministi
, while that of the se
ond systemis not. So the eÆ
ien
y of the system without SD is the average eÆ
ien
y over all samplepaths. The eÆ
ien
y of two su
h sample paths is shown in Figure 6.21. One of these pathsis a most-likely path, whi
h is a path obtained by following always the bran
h that hasthe highest probability asso
iated with it (or one of these bran
hes when there are moreof them) when the sample path of the system evolution splits.The evolution of the window sizes 
orresponding to the two sample paths of Figure 6.21is shown in Figures 6.22 and 6.23. Figure 6.24 shows the evolution of the mean windowsizes for the system without SD implemented, and Figure 6.25 that for the system withSD. Figure 6.24, together with the Figures 6.22 and 6.23, illustrates 
learly that althoughthe mean window sizes of both 
onne
tions 
oin
ide after a while and stay almost 
onstantin the long run, this is 
ertainly not the 
ase on the single sample paths. That the meanwindow sizes for both 
onne
tions stay di�erent and highly variable for the system withSD implemented (Figure 6.25) is be
ause this system is deterministi
, su
h that the meanwindow sizes 
orrespond to the window sizes on the single sample path that o

urs. It 
anbe seen that in the system with SD, when the window of a sour
e goes down, it is mostof the time only halved, whi
h indi
ates that only one pa
ket of the sour
e was droppedduring the previous x slots. In the system without SD on the other hand, the windowsgenerally 
an grow larger, but both windows afterwards go down at the same moment,often both to a size of one, whi
h indi
ates that two or more pa
kets per 
onne
tion werelost during the previous x slots. The result of this is that during the time the windowsneed to grow again, the bu�er whi
h �rst over
owed be
omes empty, whi
h results in ade
rease of eÆ
ien
y, sin
e there is no output during some slots.
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Figure 6.20: Evolution of the eÆ
ien
y whenx = 10, Qmax = 12 � D, with and withoutSD implemented (FIFO s
heduling). SD pa-rameters: L = 7�D, K = 1.
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Figure 6.21: Average eÆ
ien
y and eÆ-
ien
y obtained on two sample paths whenx = 10, Qmax = 12�D, SD not implemented(FIFO s
heduling).
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Figure 6.22: Evolution of the window sizes
orresponding to the most likely path shownin Figure 6.21 (system without SD, x = 10,Qmax = 12�D, FIFO s
heduling).
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Figure 6.23: Evolution of the window sizes
orresponding to the `other' sample pathshown in Figure 6.21 (system without SD,x = 10, Qmax = 12�D, FIFO s
heduling).
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Figure 6.24: Evolution of the mean windowsizes when x = 10, Qmax = 12 �D, SD notimplemented (FIFO s
heduling).
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Figure 6.26: Evolution of the fairness index when x = 10, Qmax = 12�D, with and withoutSD implemented (FIFO s
heduling). SD parameters: L = 7�D, K = 1.From the fairness results in Figure 6.26 for the two systems it is seen that the fairness ismu
h better when the SD algorithm is applied. This is a result that also appeared fromthe s
enarios in Se
tion 6.2.1, and that is to be expe
ted, sin
e the SD algorithm aimsat fairness. In the very beginning, the two fairness 
urves are the same, sin
e as long asthe a

eptan
e rules of the SD algorithm are ful�lled, the output of the systems dependsonly on the s
heduling algorithm and on the traÆ
 that is o�ered, whi
h is equal thensin
e the traÆ
 that is o�ered stays the same for both systems as long as no losses o

ur.Be
ause both the eÆ
ien
y and fairness are larger for the system with SD implemented,this s
enario illustrates that there is not ne
essarily a trade-o� between eÆ
ien
y andfairness.Remark that no fairness 
urves are shown for single sample paths, as was done for theeÆ
ien
y, sin
e the global fairness is not just the mean of the fairness obtained on alldi�erent sample paths, whereas for the eÆ
ien
y this relation is true, as 
an be seen fromthe de�nitions in Se
tion 6.1.6.S
enario 6.2.5. Consider the two systems with following parameters:� x = 10 (slots), Qmax = 12�D (
ells), L = 9�D (
ells),� PLQF s
heduling,� (1) K = 1:2, (2) K = 1:4.Figure 6.27 shows the average eÆ
ien
y obtained with these systems. The highest eÆ
ien
yis obtained when K is set to 1.2, so when being more 
onservative in a

epting pa
kets.The same �gure shows also for both settings of K the eÆ
ien
y of a single sample path.
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Figure 6.27: Evolution of the average eÆ-
ien
y and the eÆ
ien
y obtained on twosample paths when x = 10, Qmax = 12�D,L = 9 � D, K = 1:2 or K = 1:4 (PLQFs
heduling).
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Figure 6.28: Evolution of the fairness indexwhen x = 10, Qmax = 12 � D, L = 9 � D,K = 1:2 or K = 1:4 (PLQF s
heduling).
As 
an be seen, although the average eÆ
ien
y is the highest with K = 1:2, a samplepath obtained with K = 1:4 does not have to lie the whole time below one obtained withK = 1:2. Figures 6.29 and 6.30 show the evolution of the window sizes and queue sizesof the two 
onne
tions 
orresponding to the sample paths whose eÆ
ien
y is shown inFigure 6.27. It 
an be seen from the plots that a de
rease in eÆ
ien
y o

urs at momentsthat the bu�er be
omes empty, and these moments o

ur with some delay after momentson whi
h the sum of both windows was low. The delay is 
aused by the fa
t that thewindows are for
ed to go down due to losses, and losses only o

ur when the queue size isat least 9 � D 
ells, sin
e L = 9 � D. During the time the windows need to grow again,the queue 
an 
ow empty.On the sample path shown for K = 1:2, the queue does not be
ome empty during ap-proximately the �rst 160 slots, keeping the eÆ
ien
y equal to 1. The reason is that in thebeginning, the queue o

upation is 
ompletely unfair, due to the unfair start situation, sothe SD algorithm drops pa
kets from the �rst 
onne
tion. As a result, the window of the�rst sour
e is for
ed to one, but the in
ux of pa
kets into the queue keeps assured sin
e these
ond sour
e was able to grow its window by that time. Later on, the queue size of both
onne
tions is more equal over time, making that losses o

ur then due to bu�er over
ow.As 
an be seen from Figure 6.29, most of the time one of the windows is for
ed down 
om-pletely, while the other is only halved. This window is then mostly for
ed down furtherat the next window adaptation by the SD algorithm, sin
e its 
orresponding 
onne
tionhas more pa
kets in the queue. For K = 1:4, the a

eptan
e rules of the SD algorithmare less 
onservative, su
h that in the beginning only one pa
ket of the �rst 
onne
tionis dropped, and the window of that 
onne
tion is halved. Afterwards, also losses due to
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Figure 6.29: Evolution of the window andqueue sizes 
orresponding to the samplepath shown in Figure 6.27 for K = 1:2(x = 10, Qmax = 12�D, L = 9�D, PLQFs
heduling).
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Figure 6.30: Evolution of the window andqueue sizes 
orresponding to the samplepath shown in Figure 6.27 for K = 1:4(x = 10, Qmax = 12�D, L = 9�D, PLQFs
heduling).
bu�er over
ow o

ur, su
h that the windows of the two 
onne
tions need to go down (thatof 
onne
tion 2 less than that of 
onne
tion 1). While the windows grow again, the queuebe
omes empty, resulting in a drop of the eÆ
ien
y. When looking at the average eÆ
ien
yin Figure 6.27, the moment of the �rst drop of eÆ
ien
y o

urs at approximately the sametime for K = 1:2 and K = 1:4, whi
h indi
ates that for both K's there are sample pathsfor whi
h the queue be
omes empty at that time. However, the total probability mass ofthe sample paths on whi
h this o

urs when K equals 1.2 is mu
h less than when K = 1:4.From Figure 6.28 it is seen that the unfairness of the start situation is solved a bit earlier forK = 1:2 than for K = 1:4. This is be
ause with K = 1:2, pa
kets of the 
onne
tion whi
hhas most 
ells in the bu�er are dropped sooner than with K = 1:4, sin
e the a

eptan
e
ondition Qi � FS is sooner not ful�lled anymore. Also this s
enario illustrates that thereis not ne
essarily a trade-o� between eÆ
ien
y and fairness, be
ause the eÆ
ien
y and thefairness are higher for K = 1:2 than for K = 1:4.The two previous examples have illustrated that being more 
onservative in a

eptingpa
kets does not ne
essarily result in lower eÆ
ien
y, due to the responsiveness of thesour
es. That this is not always the 
ase is illustrated by many of the examples in the nextse
tion, and by the following example:
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S
enario 6.2.6. Consider the two systems with following parameters:� x = 10 (slots), Qmax = 12�D (
ells), K = 1,� RR s
heduling,� (1) L = 3�D (
ells), (2) L = 5�D (
ells).The eÆ
ien
y obtained with these systems is shown in Figure 6.31. The evolution of thewindow sizes is shown in Figures 6.33 and 6.34. Both system evolutions are deterministi
,sin
e the queue o

upation never rea
hes the maximum bu�er size and RR s
heduling isapplied. It is seen from Figure 6.31 that the highest eÆ
ien
y is obtained for L = 5�D.The reason is that for L = 3 � D, both windows are at nearly the same time large, andat nearly the same time small, while when the windows are large, their sum is never verylarge (never larger than 13 pa
kets) be
ause the low setting of L 
auses already losses atlow bu�er o

upations. So the queue is often empty during the times that both windowsare small, as 
an be seen from Figure 6.35, be
ause then there are not enough pa
kets sentto keep the bu�er full, and before when the windows were high, only a small reserve 
ouldbe 
olle
ted. When L equals 5 � D on the other hand, the �rst window is large whenthe other is small, and vi
e versa, su
h that the bu�er be
omes only rarely empty (seeFigure 6.36), so the eÆ
ien
y remains high.The fairness obtained for both settings of L is already very soon high. This is be
ause thefairness 
ondition of the SD algorithm is already tested very soon, and the RR s
hedulingalgorithm lets the 
ells leave the bu�er in a very fair way as long as there are 
ells ofboth 
onne
tions present in the bu�er. The reason that the fairness 
urve for L = 5�Dslowly os
illates around that of L = 3 � D is that for L = 5 � D there are alternatelyperiods that there are no 
ells of the �rst, respe
tively the se
ond, 
onne
tion in the bu�erwhen the window of that parti
ular 
onne
tion is low. During su
h period, more 
ells ofone 
onne
tion leave the bu�er, su
h that the fairness goes slightly down, but during thefollowing period more 
ells of the other 
onne
tion leave the bu�er, su
h that the fairnessin
reases again.Con
lusionsFor this se
tion, the 
on
lusions are that� Due to the responsiveness of the sour
es, it is not ne
essarily true anymore that beingmore 
onservative in a

epting pa
kets implies a lower eÆ
ien
y, as would be the 
asewhen non-responsive sour
es would be used.� There is not ne
essarily a trade-o� between eÆ
ien
y and fairness, so it should bepossible to �nd parameter settings for the SD s
heme that result in both good eÆ-
ien
y and good fairness results.
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Figure 6.31: Evolution of the eÆ
ien
y whenx = 10, Qmax = 12�D, K = 1, L = 3�Dor L = 5�D (RR s
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heduling).
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Figure 6.33: Evolution of the window sizeswhen x = 10, Qmax = 12 � D, K = 1 andL = 3�D, (RR s
heduling).
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upa-tions when x = 10, Qmax = 12 � D, K = 1and L = 3�D, (RR s
heduling).
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x (slots) Qmax (
ells) Qmax=x6 5�D 0.837�D 1.1712�D 2.0010 5�D 0.508�D 0.8012�D 1.2020�D 2.0013 7�D 0.5410�D 0.7716�D 1.2326�D 2.00Table 6.2: Parameter settings for the s
enarios 
onsidered in Se
tion 6.2.3.6.2.3 In
uen
e of the SD parametersIn this se
tion the in
uen
e of the parameters of the SD algorithm on the eÆ
ien
y andfairness results, when starting from the unfair start 
ondition 3 of Se
tion 6.2.1, is studied.Be
ause of the unfair start situation, all fairness 
urves have a typi
al shape: in thebeginning they go very fast down, be
ause then an unfair amount of pa
kets of ea
h
onne
tion is o�ered to the system; sin
e the bu�er is empty then, all pa
kets are a

epteduntil Q ex
eeds L, so also the output of the system is unfair in the beginning. Afterwards,the fairness in
reases again in a rather steep and 
u
tuating way, and �nally it slowlygrows towards one. When dis
ussing fairness results further on, this last part of a fairness
urve is 
alled the `horizontal' part, the other part the `steep' part.S
enarios that are 
onsidered in this se
tion have parameters as shown in Table 6.2. Theseparameters are 
hosen su
h that the ratio of Qmax to x approximately takes the same values(0.50, 0.80, 1.20 and 2.00) for the di�erent settings of x. Remark that during x slots, xpa
kets may leave the bu�er. So ideally, the windows of both sour
es should be �xed a littlebelow x=2. But this is not how responsive but greedy sour
es work: they always try to lettheir window grow, and de
rease it only when losses o

ur. So on one hand the bu�er isneeded to a

ommodate pa
kets that arrive simultaneously, and on the other hand to buildup some reserve of pa
kets to keep the eÆ
ien
y high when the windows of the sour
es arelow. With a setting of Qmax=x equal to 0.50 and two sour
es, in the ideal situation there isonly pla
e in the bu�er to a

ommodate pa
kets that arrive simultaneously. With a settingof Qmax=x larger than 0.50, some reserve 
an be built up. When Qmax=x equals 2, in theworst 
ase s
enario that both sour
es send together at their maximum rate, the bu�er 
ana

ommodate their pa
kets during 2x slots. Remark however that it are the parametersof the SD algorithm whi
h determine in a large way how many pa
kets eventually area

ommodated in the bu�er.
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uen
e of the threshold LConsider the systems of Table 6.2 and set the SD parameter K equal to 1. The threshold Lis varied between L = 1� D and L = Qmax �D. Remark that the maximal setting of L
orresponds to the 
ase where the SD algorithm is not implemented, sin
e at the momentsthat pa
kets arrive, there is always pla
e in the bu�er for at least one pa
ket, be
auseD 
ellshave just left it. So when L is set at D 
ells before Qmax, it is always true that Q � Lwhen pa
kets arrive, and the test Qi � FS is never performed. First the observations madebased on this extensive set of s
enarios are summarized. Afterwards they are illustratedby representative examples.The following observations are made:� For RR and PLQF s
heduling, the eÆ
ien
y generally in
reases when L in
reases.This seems natural be
ause in
reasing L implies that more pa
kets are a

epted, butas has been mentioned before, this is not always true due to the responsiveness ofthe sour
es. The ex
eptions to this general rule are:{ There are always settings of L through whi
h higher eÆ
ien
y values are ob-tained than when L is set to its maximal value Qmax�D (i.e., SD is not imple-mented). With RR s
heduling, there are more of these settings than with PLQFs
heduling. Sometimes even perfe
t eÆ
ien
y values (i.e., 
onstantly equal to 1)are obtained with RR. With the implementation of the SD algorithm, whosemain intention is to in
rease the fairness, there are thus settings of L that allowto obtain also a higher eÆ
ien
y than when SD is not implemented.{ With RR s
heduling, in 
ase that the eÆ
ien
y results obtained are very high,it is possible that a larger L leads to a lower eÆ
ien
y. Probably be
ause theseresults are so 
lose to optimal, a 
hange of L be
omes less signi�
ant.{ With PLQF s
heduling, for eÆ
ien
y results whi
h are among the highest ob-tained with a parti
ular s
enario, sometimes a larger L gives lower eÆ
ien
yresults.{ A few examples are found with RR s
heduling where the eÆ
ien
y is drasti
allylower than what would be expe
ted when looking at the results obtained withneighboring examples (i.e., examples where the di�eren
e in the setting of L isonly D 
ells). In these examples the windows of both sour
es syn
hronize aftera while, but in su
h a way that the bu�er be
omes often empty, whi
h pulls theeÆ
ien
y down. None of su
h examples o

ur with PLQF s
heduling, be
auseof the probabilisti
 
hara
ter of su
h systems.� With FIFO s
heduling, the statement that the eÆ
ien
y in
reases when L in
reasesis true when x is small (x = 6), and for very small values of L for the other x's. In theother 
ases, no real relation 
an be found between a 
hange of L and the 
orresponding
hange of the eÆ
ien
y, but in general large L values (a few pa
ket sizes before the
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end of the bu�er) give better eÆ
ien
y results than small L values. As with RRand PLQF s
heduling, also with FIFO s
heduling there are always settings of L withwhi
h higher eÆ
ien
y values are obtained than when SD is not implemented, butsometimes these results are not the whole time above these obtained when no SDis implemented, but only in the long run. As with RR s
heduling, also with FIFOs
heduling some examples are found where the windows of both sour
es syn
hronizein su
h a way that the bu�er be
omes often empty, implying de
reasing eÆ
ien
yresults.� A main observation that 
an be made about the fairness for the systems with RRand PLQF s
heduling is that it is always mu
h better when SD is implemented thanwhen SD is not implemented, irrespe
tive of the exa
t setting of L. For all settingsof L su
h that L < Qmax � D (i.e., SD implemented), no spe
i�
 setting of L 
anreally be judged to give results that are the whole time better than with another L.With FIFO s
heduling, in general the same observation 
an be made. However, afew ex
eptions are found now where the fairness is worse in a s
enario where SD isused than when it is not used.� In the very beginning, the fairness 
urves 
oin
ide for all L, sin
e the behavior of allsystems is the same as long as Q � L. Later, the 
urves split. The smaller L, thesooner a 
urve splits from the other 
urves, sin
e the smaller L, the sooner the SDs
heme starts to solve the initial unfairness.� In general, the larger x, the longer the steep part lasts, when time is expressed inmultiples of x. This indi
ates that the longer between adapting the windows, thelonger it takes before the initial unfairness is more or less solved.The observations summarized above are now illustrated by numeri
al examples. Fig-ures 6.37 until 6.39 show some of the eÆ
ien
y results obtained with RR s
heduling. In Fig-ure 6.37 results obtained with the system with parameters x = 13 slots and Qmax = 10�D
ells are shown. As 
an be seen, the eÆ
ien
y in
reases when L in
reases, ex
ept forL = 3�D 
ells and L = 9�D 
ells. L = 9�D 
ells is the s
enario in whi
h the SD algo-rithm is not applied. A higher eÆ
ien
y than in this s
enario is obtained with L larger orequal to 5�D 
ells. The s
enario with L set equal to 3�D 
ells is one of the few exampleswhere the eÆ
ien
y 
urve is di�erent than expe
ted. Analyzing the results obtained withthis s
enario learns that in this s
enario the windows of both sour
es syn
hronize after awhile, but in su
h a way that the sum of both windows is always mu
h smaller than x.This means that every x slots, there will be some slots that the bu�er is empty, whi
h pullsthe eÆ
ien
y down. Figure 6.38 shows results obtained with the s
enario where x = 13slots and Qmax = 16 � D 
ells. Again values for L 
an be found su
h that the eÆ
ien
yis larger than when SD is not implemented (L = 15 �D 
ells). In general, the eÆ
ien
yin
reases when L in
reases, but for L = 12 � D 
ells, the eÆ
ien
y is smaller than whenL = 10�D 
ells, ex
ept in the beginning. But for both settings of L the eÆ
ien
y is high(above 0.98). The results shown in Figure 6.39 are all obtained with the s
enario where x



6.2. Numeri
al results and dis
ussion 129

1 650 1300 1950
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time (slots)

ef
fic

ie
nc

y

L = 2 x D
L = 3 x D
L = 4 x D
L = 5 x D
L = 6 x D
L = 7 x D
L = 8 x D
L = 9 x DFigure 6.37: EÆ
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y results obtainedwhen x = 13, Qmax = 10�D and K = 1 fordi�erent settings of L (RR s
heduling).
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y results obtainedwhen x = 13, Qmax = 16�D and K = 1 fordi�erent settings of L (RR s
heduling).
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Figure 6.39: EÆ
ien
y results obtainedwhen x = 10, Qmax = 20�D and K = 1 fordi�erent settings of L (RR s
heduling).
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L = 19 x DFigure 6.40: Fairness results obtained whenx = 13, Qmax = 20 � D and K = 1 fordi�erent settings of L (RR s
heduling).equals 10 slots and Qmax equals 20�D 
ells. When L is set between 8�D and 17�D, theeÆ
ien
y obtained is always perfe
t (i.e., 
onstantly equal to one), whi
h means that thebu�er never be
omes empty. Also the bu�er never over
ows under these s
enarios. ForL = 18�D, the eÆ
ien
y 
urve is a little below one, so this is again an example where theeÆ
ien
y is very high, but smaller than with a s
enario where L is smaller (i.e., smallerthan all s
enarios that lead to a perfe
t eÆ
ien
y).Some fairness results obtained with the systems with RR s
heduling are shown in Fig-ures 6.40 and 6.41. In these �gures only a few 
urves are shown to keep the �gures 
lear,
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Figure 6.42: EÆ
ien
y results obtainedwhen x = 13, Qmax = 16�D and K = 1 fordi�erent settings of L (PLQF s
heduling).
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y results obtainedwhen x = 6, Qmax = 7 � D and K = 1 fordi�erent settings of L (FIFO s
heduling).but all fairness 
urves for L 6= Qmax � D lie in the same region as the 
urves shown inthe �gures. This illustrates that the fairness is mu
h better when SD is implemented thanwhen it is not implemented. Remark also the dips (around 60-100 slots in Figure 6.40, 78-130 slots in Figure 6.41) in the fairness 
urves when SD is not implemented. Before losseso

ur, the se
ond sour
e is allowed to let its window grow and sends more and more 
ellsin the system, su
h that the initial unfairness is slowly solved. Be
ause the SD algorithmis not implemented, losses o

ur due to bu�er over
ow, and the most likely situation isthat both 
onne
tions experien
e losses, and have to redu
e their window. This makes that
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ussion 131the fairness goes down again (the dip), be
ause the �rst 
onne
tion still has the largestreserve of 
ells in the queue from before, and be
ause the window of the �rst sour
e wasstill the largest when losses o

urred, it is very likely that this window now still is largerthan that of the se
ond sour
e, although not as extremely anymore as in the beginning.The �gures illustrate also that the 
urves 
oin
ide in the beginning, and one by one bran
ho�. The smaller L, the sooner this happens. Comparing Figure 6.40 with Figure 6.41shows that in Figure 6.41, where x is 13, it takes longer (approximately 10 times x slots)before the horizontal part of the 
urves starts than in Figure 6.40 where x = 10 and ittakes approximately 7 times x slots.Figures 6.42 and 6.43 show some results obtained when PLQF s
heduling is used. InFigure 6.42, eÆ
ien
y results are shown for x = 13 slots and Qmax = 16 � D 
ells. This�gure illustrates that also with PLQF s
heduling there are settings of L with whi
h highereÆ
ien
y values are obtained than when SD is not implemented (L = 15 � D). Furtherit 
an be seen from the �gure that in general, the eÆ
ien
y in
reases when L in
reases,although this is not always the 
ase. For example, for L = 11�D the eÆ
ien
y is largerthan for L = 13�D. When looking at the most-likely path for this last 
ase, it is seen thatfrom a 
ertain time on (around 420 slots) approximately on
e every 520 slots, the windowof one 
onne
tion is for
ed down until its minimum, while that of the se
ond 
onne
tion,whi
h at that time was not too large, is halved, su
h that both 
onne
tions end up witha small window. Some time is needed to let these windows grow again, during whi
h thebu�er 
ows empty for a few slots. Figure 6.43 shows fairness results when x equals 10 slotsand Qmax is 20 � D. The �gure illustrates 
learly that the fairness obtained when SD isnot implemented (L = 19�D) is worse than when it is implemented and that the fairness
urves 
oin
ide in the beginning, and bran
h o� one by one, �rst for the smallest L. Thisbran
hing o� happens sooner here than in the 
orresponding 
ase with RR s
heduling(Figure 6.40), sin
e with RR a di�eren
e in fairness o

urs only from the moment thatthere is a di�eren
e in the output for the s
enarios with di�erent L. This happens whenthere is a di�eren
e in whi
h queue is empty at the parti
ular moment.Results obtained when FIFO s
heduling is used are shown in Figures 6.44 until 6.46.Figure 6.44 shows eÆ
ien
y results obtained when x = 6 and Qmax = 7 � D. Here it istrue that the eÆ
ien
y in
reases when L in
reases, and that again there are settings of L(L = 4 � D and L = 5 � D) su
h that higher eÆ
ien
y values 
an be obtained whenSD is implemented than when SD is not implemented. In Figure 6.45, eÆ
ien
y resultsobtained for x = 13 and Qmax = 10 � D are shown. It 
an be seen from the �gure thatfor small values of L, the eÆ
ien
y in
reases when L is larger. For larger values of L,no real relation seems to exist between a 
hange of L and a 
orresponding 
hange of theeÆ
ien
y, but ex
ept for L = 8�D, all settings of L above 5�D give reasonable eÆ
ien
yresults. Analyzing the results obtained when L equals 8�D learns that all sample pathswill eventually rea
h a state in whi
h the windows of both sour
es syn
hronize, and on
ethe system has rea
hed this state, it keeps returning to it. During su
h a 
y
le, whi
h lasts117 slots, in 31 of these slots the bu�er is empty, implying that the eÆ
ien
y keeps goingdown. No �gure is shown here where no setting of L is found su
h that the 
orresponding
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y 
urve lies the whole time above that obtained when SD is not implemented. Butfor example when x = 10 and Qmax = 8 � D, only eÆ
ien
y 
urves whi
h lie in the longrun above that obtained when L = 7 �D (no SD implemented) exist. Figure 6.46 showsfairness results obtained when x = 6 and Qmax = 12 � D. Mostly, the fairness obtainedwhen SD is implemented is better than when SD is not implemented (L = 11 � D), butthis �gure shows also one of the very few ex
eptions found. When L = 7 � D, it looksfrom the �gure that the fairness 
urve does not approa
h one. Investigating the numeri
alresults learns however that it does, but mu
h slower than normal. The reason is that inthis parti
ular s
enario, the following o

urs frequently: the window of 
onne
tion twoshows with a slight delay the same behavior as that of 
onne
tion one; at the moment thatpa
kets of 
onne
tion one are dropped by the SD algorithm (obviously, W1 has rea
heda maximum at that time, and the bu�er 
ontent is above L), then also the window of
onne
tion two is fairly high, su
h that Q will stay above L; during the following intervalof x slots, W2 rea
hes its maximum, but W1 is low now, and thus 
onne
tion one sendsmu
h less than 
onne
tion two, implying that 
onne
tion two will loose a lot of pa
kets;the result is that the window of 
onne
tion two has to go down, su
h that 
onne
tion two
an send less than 
onne
tion one; be
ause this o

urs repeatedly, the unfairness is highernow than in other s
enarios.In
uen
e of the parameter KFor the s
enarios of Table 6.2 with x = 10 and di�erent settings of L, K will now be 
hosenfrom K = 1, K = 1:2 and K = 1:4. The larger K, the less severe the SD algorithm is indropping pa
kets. The following observations are made based on the results:
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heduling, it is true in general that when K in
reases, then the eÆ
ien
ystays equal or in
reases also. The larger L, the smaller the positive e�e
t of in
reasingK be
omes. Some ex
eptions are found where the eÆ
ien
y obtained with K = 1:2or K = 1:4 is the lowest. This o

urs when the eÆ
ien
y results are very large orin s
enarios where the windows syn
hronize in su
h a way that the bu�ers be
omeoften empty. On the fairness results almost no in
uen
e of K is noti
ed. The steepparts of the fairness 
urves for the di�erent K mostly 
oin
ide, sin
e as long as 
ellsare present in both queues, the output of the RR s
heduling algorithm is the samefor the di�erent s
enarios.� With PLQF s
heduling, for small L (approximately L < x=2) a larger K gives alarger eÆ
ien
y. The larger Qmax is, for the larger L values this stays true. WhenL is in
reased, the results evolve through the following situations: (i) a larger Kgives still a larger eÆ
ien
y in the long run, but in the transient phase the eÆ
ien
y
urves 
ross. (ii) K = 1:2 gives a higher eÆ
ien
y than K = 1, but for K = 1:4the eÆ
ien
y is below that obtained with K = 1, (iii) a larger K implies a lowereÆ
ien
y. For the fairness, some di�eren
es are noti
ed when 
hanging K, but thedi�erent fairness 
urves still stay very 
lose to ea
h other. The largest di�eren
e isnoti
ed in the steep parts of the 
urves, where the smallest K value gives the bestresult.� When FIFO s
heduling is applied, as with PLQF s
heduling the eÆ
ien
y in
reaseswhen K in
reases for small L. The more L grows, an evolution towards the fa
t thata larger K gives a lower eÆ
ien
y is seen. Con
erning the fairness results, 
urvesobtained for di�erent K values 
oin
ide in the beginning, after whi
h they one byone bran
h o�. In the steep part the best fairness is obtained when K equals 1. Inthe long run, it is diÆ
ult to judge whi
h K value gives best results in a s
enario.What is seen often in the horizontal parts of the fairness 
urves is a slowly os
illatingbehavior. Curves whi
h show this behavior 
orrespond often to s
enarios with whi
hperfe
t eÆ
ien
y values are obtained.In Figure 6.47 some eÆ
ien
y results are shown for di�erent settings of L and K whenx = 10, Qmax = 12�D and RR s
heduling is applied. The 
urves for K = 1 and K = 1:2when L = 5 � D, and those for the three K values when L = 7 � D or L = 9 � D
oin
ide. For all L, ex
ept L = 1 � D, the eÆ
ien
y in
reases when K grows, but thedi�eren
es between the 
urves for K = 1 and these of K = 1:4 de
rease when L in
reases.For L = 1 � D and K = 1 or K = 1:2, the evolution of both systems is deterministi
,sin
e the queue o

upation never rea
hes the maximum bu�er size. The eÆ
ien
y 
urveobtained when K equals 1.2 lies below that when K equals 1, sin
e in the �rst 
ase thebu�er be
omes more often empty. Some fairness results obtained with di�erent K forx = 10, Qmax = 20�D and L = 3�D 
an be found in Figure 6.48. The steep part of the
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ien
y results obtainedwhen x = 10, Qmax = 12 � D for di�erentsettings of L and K (RR s
heduling).
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Figure 6.48: Fairness results obtained whenx = 10, Qmax = 20� D and L = 3 �D fordi�erent settings of K (RR s
heduling).
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L = 9 x D, K = 1.4Figure 6.49: EÆ
ien
y results obtainedwhen x = 10, Qmax = 20 � D for di�erentsettings of L and K (PLQF s
heduling).
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L = 16 x D, K = 1.4Figure 6.50: EÆ
ien
y results obtainedwhen x = 10, Qmax = 20 � D for di�erentsettings of L and K (PLQF s
heduling).three 
urves 
oin
ides, in the horizontal part a slight di�eren
e is seen.Figures 6.49 and 6.50 show eÆ
ien
y results obtained with PLQF s
heduling when x = 10and Qmax = 20 � D. The �gures illustrate the evolution from `a larger K gives a largereÆ
ien
y' for small L towards `a larger K gives a smaller eÆ
ien
y' for large L. ForL = 5 �D or L = 7 �D, the eÆ
ien
y in
reases when K in
reases. For L = 9� D andL = 11�D, in the long run this stays true, but in the transient phase the largest eÆ
ien
yis obtained when K = 1:2. When L equals 13 � D, the largest eÆ
ien
y is obtainedwith K = 1:2, the lowest with K = 1:4. Finally, with L = 16 � D, a larger K gives a
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Figure 6.51: Fairness results obtained whenx = 10, Qmax = 20�D and L = 5�D for dif-ferent settings of L and K (PLQF s
hedul-ing).
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y results obtainedwhen x = 10, Qmax = 12 � D for di�erentsettings of L and K (FIFO s
heduling).
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Figure 6.53: Fairness results obtained when x = 10, Qmax = 12 � D and L = 9 � D fordi�erent settings of L and K (FIFO s
heduling).smaller eÆ
ien
y. Figure 6.51 shows some fairness results when PLQF s
heduling is usedfor x = 10, Qmax = 20�D and L = 5�D. As the �gure illustrates, no large di�eren
eso

ur between the fairness 
urves for di�erent K. The dip in the fairness around 100-150slots 
orresponds to the �rst moment that the window of 
onne
tion 2 is for
ed down (untilthen it has been growing). Be
ause 
onne
tion 2 still has to make up some of its initialarrears, and now temporarily 
an send less than 
onne
tion 1, the fairness goes a bit downagain.
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Figures 6.52 and 6.53 show results for the di�erent values of K when FIFO s
heduling isapplied. In Figure 6.52 eÆ
ien
y values are shown for a s
enario in whi
h x = 10 andQmax = 12�D. As 
an be seen, when L equals 3�D, then the eÆ
ien
y in
reases whenK in
reases. For L = 7�D, the eÆ
ien
y is the largest (i.e., perfe
t) when K = 1:2. TheeÆ
ien
y obtained with K = 1 is larger than that obtained with K = 1:4, while in thetransient phase 
urves 
ross. When L equals 9�D, the lowest eÆ
ien
y is obtained whenK = 1:4. Figure 6.53 shows fairness results for di�erent K when L equals 9 � D for thesame s
enario as used in Figure 6.52. The three fairness 
urves 
oin
ide in the beginningand then bran
h o� one by one. In the horizontal part, the 
urves for K = 1 and K = 1:2show an os
illating behavior 
aused by the fa
t that the window of one 
onne
tion is highwhile that of the other 
onne
tion is low. Be
ause of the FIFO s
heduling, this implies thatduring a period more 
ells of 
onne
tion one will leave the bu�er, su
h that the fairnessgoes down. During a following period, more 
ells of 
onne
tion two leave the bu�er, su
hthat the fairness grows again, and so on. Comparing with Figure 6.52 learns that perfe
teÆ
ien
y values are obtained when L = 9�D and K = 1 or K = 1:2.Con
lusionsThe most important 
on
lusion of this se
tion is that the presen
e of the SD algorithmhas a large positive e�e
t on the fairness results, irrespe
tive of the exa
t setting of theparameters of the algorithm. On the eÆ
ien
y results however, these parameters havemore in
uen
e.With RR and PLQF s
heduling, the eÆ
ien
y generally in
reases when the threshold Lin
reases, and 
hoosing L at a few pa
ket sizes less than the size of the bu�er resultsin a good setting. With RR s
heduling, the 
han
e is rather high that the eÆ
ien
yvalues obtained are then even above these obtained when SD is not implemented (sothere is no trade-o� between eÆ
ien
y and fairness then). With PLQF s
heduling, this
han
e is reasonable. Remark however that with RR s
heduling, sometimes the eÆ
ien
y islower than expe
ted be
ause of syn
hronization e�e
ts. When using PLQF s
heduling, nolasting syn
hronization will o

ur be
ause of the probabilisti
 
hara
ter of the s
hedulingalgorithm in these s
enarios. Also with FIFO s
heduling, syn
hronization 
an o

ur. WithFIFO s
heduling it is mu
h harder to make a 
on
lusion about the best setting of thethreshold L, sin
e no real relation was found between a 
hange of L and a 
orresponding
hange of the eÆ
ien
y. But 
hoosing it a few pa
ket sizes less than the size of the bu�eras with RR and PLQF s
heduling gave in most s
enarios rather good results.The parameter K of the SD algorithm has also more in
uen
e on the eÆ
ien
y resultsthan on the fairness results. In
reasing K has prin
ipally a positive e�e
t on the eÆ
ien
ywhen L is set at a small value. When the setting of L is larger, this positive e�e
t is stillseen with RR s
heduling, but with PLQF and FIFO s
heduling the probability is ratherhigh that the eÆ
ien
y will be lower than when K is 
hosen equal to one.As a general 
on
lusion, it is re
ommended to implement SD to in
rease the fairness, but
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using on the eÆ
ien
y results.6.3 AppendixIn this appendix it is shown that under identi
al start values for both 
onne
tions (i.e.,Q1(0�) = Q2(0�), W1(0�) = W2(0�), L1(0�) = L2(0�)), the mean window size and themean bu�er o

upation at an arbitrary time instant l is identi
al for both 
onne
tions.For the PLQF and the RR system, this is a spe
ial 
ase of the property below, whi
h isproven formally. For the FIFO system, only an intuitive explanation is given. Be
ause theresults in this 
hapter for the FIFO system are obtained by simulation, no mathemati
aldes
ription of the evolution over time of this system was developed before. Developing ithere would only introdu
e more notation to des
ribe the order in whi
h the 
ells of thedi�erent 
onne
tions have entered the bu�er, after whi
h a formal proof would be almostanalogue to that for the PLQF and RR system.Property 6.3.1. Let k be an element of the ordered set f0�; 0+; 1�; 1+; 2�; 2+; : : : g. Forthe PLQF and the RR system as de�ned in Se
tion 6.1, if for all (q1; q2; s; w1; w2; l1; l2) 2 
for whi
h PfXk = (q1; q2; s; w1; w2; l1; l2)g 6= 0, it is true that q1 = q2, w1 = w2 and l1 = l2,then E [Q1(l)℄ = E [Q2(l)℄ and E [W1(l)℄ = E [W2(l)℄, for all l � k.Remark that the random variable S is only present in the states of 
 when needed, i.e.,when PLQF s
heduling is applied.Proof. From the 
omputations in Se
tion 6.1.5 ofP1 = P nXh+ = (q1; q2; s; w1; w2; l1; l2) j Xh� = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o ; and (6.15)P2 = P nXh� = (q1; q2; s; w1; w2; l1; l2) j X(h�1)+ = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o ; (6.16)it is easily seen that when P1 = p1, then alsoP nXh+ = (q2; q1; s; w2; w1; l2; l1) j Xh� = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)o = p1; (6.17)and when P2 = p2, then alsoP nXh� = (q2; q1; s; w2; w1; l2; l1) j X(h�1)+ = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)o = p2: (6.18)By indu
tion it is now shown that for all l � k,P fXl = (q1; q2; s; w1; w2; l1; l2)g = P fXl = (q2; q1; s; w2; w1; l2; l1)g : (6.19)
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For l = k, (6.19) is trivially true by the assumption in property 6.3.1. Assume that (6.19)is also true for l > k (indu
tionhypothesis). If l = h�, then de�ne l� = h+. If l equals h+,then de�ne l� = (h+ 1)�. So it should be shown now that (6.19) is also true for l�:P fXl� = (q1; q2; s; w1; w2; l1; l2)g =X(q̂1;q̂2;ŝ;ŵ1;ŵ2;l̂1;l̂2)2
P nXl� = (q1; q2; s; w1; w2; l1; l2) j Xl = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)oP nXl = (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2)o= X(q̂2;q̂1;ŝ;ŵ2;ŵ1;l̂2;l̂1)2
P nXl� = (q2; q1; s; w2; w1; l2; l2) j Xl = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)oP nXl = (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1)o = P fXl� = (q2; q1; s; w2; w1; l2; l1)g ; (6.20)where the �rst and third equalities use the 
omplete probability formula, and the se
ondequality uses that when (q̂1; q̂2; ŝ; ŵ1; ŵ2; l̂1; l̂2) 2 
, then also (q̂2; q̂1; ŝ; ŵ2; ŵ1; l̂2; l̂1) 2 
,together with equations (6.15) and (6.17) when l� = h+, or equations (6.16) and (6.18)when l� = h�, and the indu
tionhypothesis.By de�nition of the mean, it follows now immediately that for ea
h l � k,E [Q1(l)℄ = 2Qmax=DXt=0 tD2 X(q1;q2;s;w1;w2;l1;l2)2
q1=tD=2 P fXl = (q1; q2; s; w1; w2; l1; l2)g= 2Qmax=DXt=0 tD2 X(q2;q1;s;w2;w1;l2;l1)2
q1=tD=2 P fXl = (q2; q1; s; w2; w1; l2; l1)g = E [Q2(l)℄ ; (6.21)and analogously that E [W1(l)℄ = E [W2(l)℄. �Under identi
al start values for both 
onne
tions, property 6.3.1 
an be applied for k = 0�,su
h that for the PLQF and the RR system the mean window size and the mean bu�ero

upation at an arbitrary time instant l is identi
al for both 
onne
tions.Property 6.3.1 is also valid for the FIFO system under the extra 
ondition that the equalamounts of 
ells in the bu�er of 
onne
tion 1 and 
onne
tion 2 at time k are in su
h anorder present in the bu�er that D=2 
ells of ea
h 
onne
tion leave the bu�er per slot underFIFO s
heduling. Be
ause the 
ondition of property 6.3.1 and this extra 
ondition stayful�lled until the �rst time instant later than time k that the bu�er over
ows on one ofthe sample paths, property 6.3.1 is already 
ertainly true until that time instant. Be
ausewith FIFO s
heduling a sample path only splits at times that bu�er over
ow o

urs, and itwas assumed that then ea
h 
onne
tion has equal probability of being the one from whi
hthe pa
ket is lost, for ea
h sample path there is always another sample path with identi
alprobability su
h that the number of 
ells of 
onne
tion 1 in the bu�er on the �rst sample
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ells of 
onne
tion 2 in the bu�er on the se
ond sample path,and vi
e versa, and the same is true for the window sizes and the values of the loss 
ounters.So property 6.3.1 stays also true after the �rst time instant that the bu�er over
ows on asample path.





Chapter 7Extensions to the SD modelIn this 
hapter two extensions to the model developed in Chapter 6 are 
onsidered. InSe
tion 7.1 the parameter x of the sour
e model, whi
h represents the time after whi
hthe responsive sour
es update their window, is taken di�erently for both sour
es. Themotivation behind this extension is to introdu
e another aspe
t of unfairness in the modelthan the unfair start situation, and observe the behavior of the SD s
heme under thiskind of unfairness. Where in Chapter 6 the SD bu�er a

eptan
e rules were 
onsidered, inSe
tion 7.2 the de�nition of the fair share is 
hanged su
h that now the fair bu�er allo
ation(FBA) a

eptan
e rules are 
onsidered. A 
omparison with the results obtained in this
ase and the results obtained before using SD is made. Se
tion 7.3 
on
ludes this 
hapterwith a short overview of other methods used in the literature to model frame aware bu�era

eptan
e s
hemes.
7.1 Use of a di�erent parameter x for both sour
esWith real TCP sour
es, there is an inherent unfairness to 
onne
tions with longer roundtriptimes [29℄. This unfairness originates from the fa
t that in the absen
e of 
ongestion, ea
h
onne
tion in
reases its window every roundtrip time, so the window and thus also thethroughput in
reases at a faster rate for 
onne
tions with shorter roundtrip times.In the model developed in the previous 
hapter, a sour
e in
reases its window after x slotswhen no losses o

urred during these x slots. Sin
e two identi
al sour
es were 
onsidered,both sour
es used the same value for x. In this se
tion we extend the sour
e model su
hthat both 
onne
tions use a di�erent value for x, i.e., x1 for the �rst sour
e and x2 for these
ond sour
e, with x1 6= x2. The sour
e behavior stays the same, ex
ept that the windowsize of sour
e i (i = 1; 2) now 
an take values in the range 1; : : : ; xi.A s
enario with identi
al start 
onditions for both 
onne
tions is 
onsidered:141
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Figure 7.1: Fairness results obtained whenx1 = 10, x2 = 13, Qmax = 16�D and K = 1for di�erent settings of L (RR s
heduling).Identi
al start 
onditions.
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L = 15 x D, connection 2Figure 7.2: Throughput results obtainedwhen x1 = 10, x2 = 13, Qmax = 16 � Dand K = 1 for di�erent settings of L (RRs
heduling). Identi
al start 
onditions.S
enario 7.1.1.� Start 
ondition: PfX0� = (q̂1; q̂2; ŵ1; ŵ2; l̂1; l̂2)g = 1, where (q̂1; q̂2; ŵ1; ŵ2; l̂1; l̂2) =(0; 0; 1; 1; 0; 0),� x1 = 10 (slots), x2 = 13 (slots), Qmax = 16�D (
ells), K = 1,� RR s
heduling,� (1) L = 12�D (
ells), (2) L = 13�D (
ells), (3) L = 14�D (
ells), (4) L = 15�D(
ells).Remark that when identi
al start 
onditions were 
onsidered in the previous 
hapter, thisresulted in equal throughputs for both 
onne
tions and thus perfe
t fairness. But sin
enow both sour
es are not identi
al anymore, this does not need to be true anymore (i.e.,Property 6.3.1 does not need to hold). Setting the threshold L equal to 15 � D 
ells isagain the same as not implementing the SD algorithm.Figure 7.1 shows fairness results. In the beginning, when the bu�er 
ontent has not yetrea
hed the threshold L, the behavior of all systems is the same: the fairness goes downfor the �rst time after the �rst sour
e in
reases its window, and thus sends new pa
kets;be
ause x2 > x1, the se
ond sour
e 
annot send traÆ
 at that time, so the fairness goesdown; after the se
ond sour
e has also in
reased its window, it also sends new pa
kets,and after they have left the queue the fairness equals 1 again. This goes on until these
ond sour
e 
annot 
at
h up anymore with the amount of pa
kets the �rst sour
e hasalready sent. So when both sour
es have di�erent intervals after whi
h they update their
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Figure 7.4: EÆ
ien
y results obtained whenx1 = 10, x2 = 13, Qmax = 16�D, andK = 1 for di�erent settings of L (RRs
heduling). Identi
al start 
onditions.window, fairness is not perfe
t anymore. But with SD implemented, fairness again is betterthan when SD is not implemented. So SD partially resolves the bias against the shorterupdating interval x1 of 
onne
tion 1. Figure 7.2 translates the unfairness to the di�eren
ein throughput for both 
onne
tions. As 
an be seen, although the maximum window sizeof the �rst sour
e is smaller than that of the se
ond sour
e, the �rst 
onne
tion obtainsa higher throughput than the se
ond one. This is be
ause the �rst sour
e 
an send moretraÆ
 over time than the se
ond one, sin
e the window of the �rst sour
e re
uperates fasterafter it needed to go down.Figure 7.3 shows the evolution of the window and queue sizes for both 
onne
tions whenL = 13�D. Remark that both window settings are the same at the start, but the windowof the �rst sour
e grows faster. Be
ause the �rst sour
e 
an thus send more traÆ
, theSD algorithm drops pa
kets of the �rst 
onne
tion on
e the threshold L is ex
eeded, andthe window of the �rst sour
e is for
ed down. Meanwhile, the se
ond sour
e 
an let itswindow grow further, and thus sends more traÆ
, su
h that the next time pa
kets of these
ond 
onne
tion are dropped. Remark however that the se
ond sour
e 
an never let itswindow grow until its maximum window size of 13 pa
kets, while that of the �rst sour
e atregular times rea
hes its maximum window size of 10 pa
kets. The reason is that the �rstsour
e bene�ts from a small window of the se
ond sour
e, sin
e then the se
ond 
onne
tionsends only a few pa
kets, plus after it has sent them, it takes a long time before the nextpa
kets arrive. So the �rst sour
e has for a long period the bu�er almost for its own, withperiods where there is no bottlene
k, su
h that the total bu�er o

upan
y will be below thethreshold L. Quite the reverse happens when the window of the �rst sour
e is small. These
ond 
onne
tion bene�ts from this, but only for a short time, sin
e the time before newpa
kets from the �rst sour
e arrive is not so long. And when then the queue o

upan
y
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ond 
onne
tion looses pa
kets and has to redu
e its window, su
hthat it never rea
hes its maximum value.In Figure 7.4 the evolution of the eÆ
ien
y for the four systems is shown. In the beginningthe eÆ
ien
y is low, sin
e both sour
es still have to let their windows grow. After bothwindows are large enough to keep the bu�er non-empty, the eÆ
ien
y in
reases. Remarkthat all settings of L 
onsidered were 
hosen a few pa
ket sizes before the end of the bu�er.These settings of L were found in the previous 
hapter to be good settings for the thresholdto obtain good eÆ
ien
y and good fairness results. Also here this is the 
ase: both theeÆ
ien
y and fairness results obtained with them are better than the results obtained whenSD is not implemented (L = 15�D).7.2 Comparison with fair bu�er allo
ationFrom Chapter 5 it is known that the sele
tive drop bu�er a

eptan
e s
heme is a simplerversion of the fair bu�er allo
ation (FBA) bu�er a

eptan
e s
heme. The di�eren
e be-tween both s
hemes is in the 
al
ulation of the fair share (FS), and more in parti
ular inthe a

eptable load ratio. For both s
hemes the FS is 
al
ulated as the produ
t of the fairallo
ation and the a

eptable load ratio, but for SD the a

eptable load ratio is a simpleparameter K, while for the FBA s
heme it is given bya

eptable load ratio = Z �1 + Qmax �QQ� L � ; (7.1)where Z is a s
aling fa
tor, Qmax the bu�er 
apa
ity, L a �xed threshold and Q the bu�ero

upan
y. Be
ause this is the only di�eren
e between both s
hemes, the 
ow
hart of thea

eptan
e rules shown in Figure 6.1 is also valid for the FBA s
heme, where the FS isnow 
al
ulated using the a

eptable load ratio given above. As a 
onsequen
e, if in themodel developed in Chapter 6 for the SD s
heme the de�nition of the FS in equation (6.4)is repla
ed byFS(q̂1; q̂2) = Z �1 + Qmax � q̂1 � q̂2q̂1 + q̂2 � L �� q̂1 + q̂2Ifq̂1 6=0g + Ifq̂2 6=0g� ; (7.2)then this model 
an also be used for the FBA s
heme.In Table 7.1 the meaning of the a

eptable load ratio is illustrated with a small example.The table shows for Qmax = 6�D and for di�erent values of the bu�er o

upation Q anddi�erent settings of the threshold L the FBA a

eptable load ratio when Z equals 1. Forother values of Z, the numbers in this table need to be multiplied by Z. The meaning ofthe a

eptable load ratio is the following: when a new pa
ket of 
onne
tion i arrives at thebu�er, it is a

epted in the bu�er if the number of 
ells Qi of 
onne
tion i in the bu�er atthat moment is not larger than the number in the table 
orresponding to Q and L, timesQ=N , the average number of 
ells per a
tive 
onne
tion in the bu�er. Remark that thepa
ket is always a

epted if Q � L, so the value `1' is put in the table on these positions.
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ation 145L = 1�D L = 2�D L = 3�D L = 4�D L = 5�DQ = 2�D 5 1 1 1 1Q = 3�D 5/2 4 1 1 1Q = 4�D 5/3 2 3 1 1Q = 5�D 5/4 4/3 3/2 2 1Q = 6�D 1 1 1 1 1Table 7.1: A

eptable load ratio for the FBA s
heme when Qmax = 6�D (
ells) and Z = 1for di�erent values of the bu�er o

upation Q and di�erent settings of the threshold L.From the 
olumns of the table it is read that the 
loser Q is to the threshold L, the moretimes a 
onne
tion is allowed to ex
eed the fair allo
ation before its pa
ket is dropped. The
loser Q is to Qmax, the smaller this value be
omes. When Z = 1, the values in the tablenever be
ome smaller than 1, while when Z < 1, the values de
rease when Q in
reases andbe
ome smaller than 1 before Qmax is rea
hed. On the rows of the table it is seen that fora 
ertain bu�er o

upation Q, the value in the table in
reases for in
reasing L, meaningthat the 
loser L is to Qmax, the more times a 
onne
tion's o

upation of the bu�er mayex
eed the fair allo
ation before 
ells of its new pa
kets are dropped. For the SD s
heme,a similar table would have the value of K on all positions where now a number stands.So with SD the threshold L is only indi
ating from whi
h bu�er o

upation level on thes
heme should test on the fairness before a

epting 
ells of a new pa
ket, while with FBAthe threshold is also used in the 
al
ulation of the a

eptable load ratio.The goal of this se
tion is to 
ompare the performan
e obtained when using the FBAa

eptan
e s
heme with the performan
e obtained when using the SD a

eptan
e s
heme.The starting point is again the unfair start situation used in the previous 
hapter whereat time 0� the window of sour
e 1 is at its maximum, while the window of sour
e 2 isat its minimum. As for SD, the FBA s
heme is originally de�ned with a global queueingand FIFO s
heduling strategy, but we 
onsider it also in 
ombination with RR and PLQFs
heduling.Consider systems with parameters as shown below:� x = 10 (slots), Qmax = 12�D (
ells),� x = 10 (slots), Qmax = 20�D (
ells),� x = 13 (slots), Qmax = 16�D (
ells).Similar results as in the previous 
hapter (evolution of the throughputs, eÆ
ien
y, fairnessindex over time) are obtained when 
onsidering these systems with FBA. To make an easy
omparison of the results with these for the SD s
heme possible, we present the results in aslightly di�erent way as before. Figures 7.5 until 7.10 show the results. In ea
h �gure one ofthe systems mentioned before 
ombined with one of the s
heduling s
hemes is 
onsidered,for di�erent settings of the threshold L and for three settings of the FBA parameter Z,
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Figure 7.5: EÆ
ien
y and fairness results obtained with RR s
heduling when x = 10 andQmax = 12�D.
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Figure 7.6: EÆ
ien
y and fairness results obtained with RR s
heduling when x = 13 andQmax = 16�D.



7.2. Comparison with fair bu�er allo
ation 147i.e., Z = 1, Z = 0:8 and Z = 0:5. Results obtained with SD when K = 1 are also shown.Subplots in the �gures on the same 
olumn show results obtained after a 
ertain �xednumber N of pa
kets of 
ells (N = 10x; 30x or 100x pa
kets) have left the bu�er. Theheight of the bars represents the eÆ
ien
y obtained with a s
enario at that time, while thedark, resp. light gray areas represent the throughput of 
onne
tion 1, resp. 
onne
tion 2at that time. The higher the bars, the less time was needed to su

essfully deliver the Npa
kets to the destination. When the height of the bar is 1, this means that the N pa
ketshave left the bu�er after the minimum time possible of N slots. The horizontal part of thewhite plus-sign in ea
h bar indi
ates half the height of the bar. Sin
e the eÆ
ien
y afterk slots is the sum of the throughputs of the two 
onne
tions after k slots, the plus-signindi
ates what the throughputs of both 
onne
tions should be to have perfe
t fairness. Thenumbers on the horizontal axis of ea
h subplot indi
ate the setting of the threshold in thebu�er, expressed as a multiple of D 
ells. Remark that for 
omparison, the leftmost barin ea
h plot gives results obtained when neither SD, neither FBA is implemented. So insubplots in the same 
olumn of a �gure, the leftmost bar is always the same.From Figures 7.5 until 7.10, and based on the main observations already made in theprevious 
hapter about the SD algorithm, the following similarities and di�eren
es betweenthe FBA and SD a

eptan
e s
hemes are noti
ed:� Like the SD algorithm, also the FBA algorithm has a large positive e�e
t on thefairness results, irrespe
tive of the exa
t settings of the parameters L and Z of thealgorithm. In the �gures this is mainly seen when N = 10x pa
kets and whenN = 30x pa
kets. Afterwards also the system without a

eptan
e s
heme approa
hesperfe
t fairness be
ause the two sour
es 
onsidered are equal. The fairness obtainedwith FBA is 
omparable to that obtained by SD.� Also for the FBA s
heme the parameter setting has more in
uen
e on the eÆ
ien
y,although not so extreme as for the SD s
heme. With SD, the eÆ
ien
y generallyin
reases with in
reasing L, as is also 
learly seen on the �gures in this se
tion. ForSD it was 
on
luded that a setting of L a few pa
ket sizes before the end of the bu�erresulted most of the time in good eÆ
ien
y, so the results obtained with FBA shouldbe 
ompared with the results obtained in this 
ase. For the FBA s
heme, no stri
trelation between the setting of L and the eÆ
ien
y appears from the results. Mostsettings give eÆ
ien
y results that are 
omparable with good results obtained withthe SD algorithm.� With RR s
heduling, the eÆ
ien
y obtained when FBA is used is in most 
ases abovethat obtained when no a

eptan
e s
heme is implemented, and also often perfe
t (i.e.,
onstantly equal to 1). So FBA with RR s
heduling results in both good eÆ
ien
yand fairness. When FBA is 
ombined with FIFO or PLQF s
heduling, the eÆ
ien
yvalues obtained are often above these obtained without a

eptan
e s
heme, but notalways. With PLQF s
heduling, usually the highest eÆ
ien
y results are obtainedwhen a higher L is 
ombined with a lower Z, or vi
e versa.
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Figure 7.7: EÆ
ien
y and fairness results obtained with FIFO s
heduling when x = 10and Qmax = 12�D.
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Figure 7.8: EÆ
ien
y and fairness results obtained with FIFO s
heduling when x = 10and Qmax = 20�D.
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Figure 7.9: EÆ
ien
y and fairness results obtained with PLQF s
heduling when x = 10and Qmax = 12�D.
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Figure 7.10: EÆ
ien
y and fairness results obtained with PLQF s
heduling when x = 10and Qmax = 20�D.



150 7. Extensions to the SD model7.3 Con
lusions and related workIn this 
hapter two extensions to the model developed in Chapter 6 were 
onsidered. Firstthe model was adapted su
h that the interval after whi
h the sour
es update their windowis di�erent for both sour
es. This implies that a kind of inherent unfairness is introdu
edin the model, sin
e the window of the sour
e with the smallest update interval 
an growfaster and thus this sour
e 
an re
uperate faster after its window is for
ed down due tolosses. The s
enario we 
onsidered illustrated 
learly that be
ause the two sour
es are nowdi�erent, some unfairness in the throughputs of the two 
onne
tions stays present for ever.However, SD 
an partially resolve the bias that exists against the sour
e with the shorterupdating interval and improve the fairness results.Se
ondly the de�nition of the fair share was modi�ed su
h that the fair bu�er allo
ation(FBA) s
heme 
ould be 
onsidered. Results obtained with this s
heme show that as the SDs
heme, also the FBA s
heme has a large positive e�e
t on the fairness results, irrespe
tiveof the exa
t setting of its parameters. These parameters have, again as with the SD s
heme,more in
uen
e on the eÆ
ien
y results, although their in
uen
e is not so large as with theSD s
heme. Both the fairness and the eÆ
ien
y results obtained with the FBA s
hemeare 
omparable with the results that are obtained with the SD s
heme, for well-
hosenparameters.Most theoreti
al models of frame aware bu�er a

eptan
e s
hemes in the literature areabout partial pa
ket dis
ard (PPD) and early pa
ket dis
ard (EPD). In [17℄ the behaviorof the EPD s
heme is studied by 
onsidering the evolution of the bu�er level over timeusing a deterministi
 model where r sour
es 
ontinuously send pa
kets of 
ells, whoseboundaries are o�set from one another by an equal amount. [83℄ analyzes the worst-
aseex
ess bu�er 
apa
ity requirement for the EPD and for SD-like s
hemes (the di�eren
e isin the 
al
ulation of the fair share (FS), whi
h is 
al
ulated as FS = KL=N instead ofFS = KQ=N) that use global queueing and FIFO s
heduling, or per-VC queueing and RRs
heduling. An upperbound value on the total bu�er o

upan
y is derived for all s
hemes.With EPD this upper bound is rea
hed when all sour
es begin sending a new pa
ket justone 
ell time before the queue o

upation ex
eeds the EPD threshold. With the SD-likes
hemes the upper bound is rea
hed with the staggered input s
hedule where VC j beginssending a new pa
ket just before the bu�er o

upation of VC j � 1 rea
hes its maximumvalue.In [63℄, PPD and EPD are 
ompared with tail drop (TD) using a single sour
e. TheTD system is modeled as an M/M/1/N queueing system. Ea
h of the Poisson arrivalsrepresenting a 
ell is assumed to belong to the same pa
ket as the previous arrival with a
ertain probability p, and is the �rst 
ell of a new pa
ket with probability 1� p. The samesystem is 
onsidered to model PPD and EPD, by distinguishing between two modes: thenormal mode 0 in whi
h pa
kets are admitted to the system and the dis
arding mode 1in whi
h pa
kets are dis
arded. The states of the M/M/1/N system representing that a
ertain number j of 
ells are present in the system are now split into two states (j; 0) and



7.3. Con
lusions and related work 151(j; 1), where 0 and 1 indi
ate the mode the system is in. With PPD, when the systemis in state (N; 0), the bu�er is full. A 
ell that arrives at this state is dis
arded and thesystem enters state (N; 1). Sin
e the following 
ells belonging to the same pa
ket mustbe dis
arded, the system stays in mode 1 until a new pa
ket starts and the system isnot full on arrival of its �rst 
ell. The EPD s
heme is modeled analoguously, ex
ept thatan additional threshold K is de�ned. If a �rst 
ell of a pa
ket arrives when the systemo

upation is j � K, the 
ell is not admitted to the system and the system enters state(j; 1) in dis
arding mode.An exa
t analysis of the pa
ket loss probability obtained with TD, PPD and EPD forM homogeneous sour
es is 
arried out in [57℄. Ea
h sour
e generates 
ells a

ording to atwo state dis
rete-time Markovian on/o� sour
e, where a pa
ket is 
ompounded of 
ellsthat are generated in the same on period. An o� period represents the ina
tive periodbetween adja
ent pa
kets. For pa
ket level performan
e analysis ea
h two state Markovsour
e is expanded into a three state sour
e by adding an on� state, in order to distinguishsu

essful pa
kets from 
orrupted/lost pa
kets while the sour
e is a
tive. A very similaranalysis is performed in [59℄, ex
ept that now 
ontinuous time on/o� sour
es are used.In [90℄ we developed a model with similar input sour
es as in [57℄, in a �rst attempt tomodel the SD s
heme with per-VC queueing and RR s
heduling. Remark that importantdi�eren
es from the modeling point of view between this s
heme and EPD or PPD are thatthis s
heme uses per-VC a

ounting information to de
ide if 
ells of a new pa
ket may enterthe bu�er or not, and that the queues are served a

ording to a 
y
li
 servi
e strategy. Theanalysis we made was approximate in the sense that a queueing system with one taggedqueue and repeated server va
ations together with the o

upation of all per-VC queueswas 
onsidered. Although the results of this approximate model are in a

ordan
e withresults obtained by simulating the exa
t model (i.e., the model that 
onsiders all queuestogether and exa
t RR s
heduling), this model la
ks the possibility to obtain other resultsthan pa
ket dis
ard ratios, queue length distributions and 
ell loss ratios. So an importantaim of the a

eptan
e s
heme 
onsidered, namely fairness, 
ould not be assessed with themodel. Furthermore, as in the other models des
ribed above, the sour
es were also notresponsive to losses.





SummaryAs its title suggests, this thesis 
onsists of two parts, sin
e it fo
uses on two separate topi
sthat are related to the performan
e evaluation of tele
ommuni
ation network elements:(i) the superposition of Markovian traÆ
 sour
es, and (ii) frame aware bu�er a

eptan
es
hemes.Part I: Cir
ulant mat
hing of the superposition of D-BMAPsA basi
 problem in the dimensioning and performan
e evaluation of tele
ommuni
ationnetwork elements is the 
omputation of the bu�er o

upan
y and waiting time distributionof a single server queue, whose input 
onsists of a superposition of pro
esses modeling traÆ
streams. Starting from the assumption that a traÆ
 stream is modeled by a D-BMAP(dis
rete-time bat
h Markovian arrival pro
ess), whi
h is a quite general dis
rete-timeMarkov model, a representation of the aggregation or superposition of D-BMAPs is needed,sin
e the input to network elements generally 
onsists of multiple traÆ
 streams. In theory,this aggregation is exa
tly des
ribed by a new D-BMAP. A major problem however is theexplosion of the state spa
e of this new D-BMAP when the number of input streams takesvalues that are typi
al for real life situations. In the �rst part of the thesis, a method
alled 
ir
ulant mat
hing is proposed, whi
h 
onstru
ts another D-BMAP with a smallerstate spa
e to repla
e the exa
t superposition.Chapter 1 reviews some de�nitions and results about �nite-state stationary Markov 
hainsand their eigenstru
ture, that are used in the following 
hapters. It also gives the de�nitionand some properties of the D-BMAP and the D-BMAP/D/1/K queue and motivates whythe exa
t superposition of D-BMAPs should be avoided.Chapter 2 presents the details of the 
ir
ulant mat
hing method. The purpose of thismethod is to 
onstru
t another D-BMAP to repla
e the exa
t superposition of independentD-BMAPs, while mat
hing the auto
orrelation sequen
e (
hara
terized in the frequen
ydomain by the power spe
trum) and the stationary 
umulative distribution of the inputrate pro
ess of the exa
t superposition. The transition matrix of the D-BMAP is 
hosen tobe 
ir
ulant, in order to avoid solving an inverse spe
trum problem. First expressions forthe auto
orrelation sequen
e, power spe
trum and stationary 
umulative distribution of asingle D-BMAP are derived. For the auto
orrelation sequen
e and the power spe
trum,153



154 Summarythese expressions are written as a fun
tion of the eigenvalues and eigenve
tors of the tran-sition matrix of the D-BMAP. Then the 
ir
ulant D-BMAP is introdu
ed, and based onthe results obtained before, formulas for its auto
orrelation sequen
e, power spe
trum andstationary 
umulative distribution are obtained. Also the 
ondition for a 
ir
ulant tran-sition matrix to be irredu
ible and some properties about periodi
 
ir
ulants are proven.Finally expressions for the power spe
trum and stationary 
umulative distribution of theexa
t superposition of independent D-BMAPs, that 
an be 
al
ulated without expli
itely
onstru
ting the exa
t superposition, are derived. All these results lay the foundationfor the des
ription of how the 
ir
ulant D-BMAP that repla
es the exa
t superposition is
onstru
ted. This 
onstru
tion 
onsists of two steps: the mat
hing of the power spe
traand the mat
hing of the stationary 
umulative distribution of the input rate pro
ess ofthe 
ir
ulant D-BMAP and of the exa
t superposition of D-BMAPs. First the transitionmatrix of the 
ir
ulant D-BMAP is 
onstru
ted, in su
h a way that it has as eigenval-ues among others all eigenvalues of the D-BMAPs in the superposition, sin
e it are theseeigenvalues whi
h 
ontribute to the power spe
trum of the superposition. Then the fa
-tors by whi
h ea
h eigenvalue of the 
ir
ulant 
ontributes to the power spe
trum of the
ir
ulant D-BMAP are �xed, su
h that the power spe
trum of the 
ir
ulant mat
hes thatof the exa
t superposition. Se
ondly the input rate ve
tor of the 
ir
ulant D-BMAP is
onstru
ted, taking into a

ount the parameters that were already �xed in the previousstep, su
h that also the stationary distribution of the 
ir
ulant D-BMAP mat
hes that ofthe exa
t superposition.The 
ir
ulant mat
hing method for D-BMAPs is based on a 
omponent of a measurement-based tool developed by San-qi Li et al. [46℄. An important di�eren
e with the method ofSan-qi Li is that he works in 
ontinuous time, while a D-BMAP is a dis
rete-time model.So to repla
e the superposition of D-BMAPs by a new 
ir
ulant D-BMAP, we had toadapt the method for dis
rete time. Simultaneously, the method was extended su
h thatthe periodi
ity whi
h is present in the transition matrix of D-BMAPs that model periodi
traÆ
 streams, and whi
h is thus also noti
ed in their superposition, is preserved.The 
ir
ulant mat
hing method allows us to solve some realisti
 queueing problems, asis illustrated in Chapter 3. But it also has its limitations. A �rst problem is in the
onstru
tion of the 
ir
ulant transition matrix, and more in parti
ular in the numberof possible 
hoi
es that need to be investigated for its dimension and the indi
es of itseigenvalues. When the prede�ned set of eigenvalues the 
ir
ulant should have be
omes large(say more than 10, after some redu
tions we proposed), it might take a long time beforea 
ir
ulant with these values as eigenvalues is found. So the 
ir
ulant mat
hing method isonly useful when all D-BMAPs in the superposition are identi
al, or 
an be divided intoa limited group of identi
al ones, sin
e then many of their eigenvalues are identi
al. Apositive point on the other hand is that the same 
ir
ulant transition matrix 
an be usedwhen 
onsidering a superposition of another number of the same D-BMAPs. The di�eren
eis in the rate ve
tor asso
iated with the 
ir
ulant D-BMAP, not in its transition matrix. Ase
ond possible problem is in the 
onstru
tion of this rate ve
tor when a large part of theprobability mass of the rate distribution of the exa
t superposition is situated at the value



Summary 155zero, or very 
lose to it, as 
an o

ur when 
onsidering the superposition of on/o� sour
es.In that 
ase, it 
an happen that no solution for a 
onstrained minimization problem thatneeds to be solved when 
onstru
ting the rate ve
tor of the 
ir
ulant D-BMAP, exists.Chapter 3 presents numeri
al examples and appli
ations of the 
ir
ulant mat
hingmethod. First the rather theoreti
al des
ription of the di�erent steps of the method in theprevious 
hapter is illustrated by 
ommenting upon a numeri
al example where a 
ir
ulantD-BMAP is 
onstru
ted to repla
e the superposition of 50 identi
al 16-state D-BMAPs ofperiod 3. Then the superposition of identi
al two dimensional MMBPs (Markov modu-lated Bernouilli arrival pro
esses) is 
onsidered. For these types of sour
es, it is possibleto 
ompare the system lengths obtained when using either the 
ir
ulant approximationof the superposition or the exa
t superposition as input to a queueing system, be
ausethe exa
t superposition of M identi
al two dimensional sour
es is also exa
tly des
ribedby an (M + 1)-dimensional Markov sour
e. First general MMBP sour
es are 
onsidered,and the system length distribution obtained with a 
ir
ulant as input mat
hed the exa
tsystem length distribution rather well. Then a spe
ial type of MMBP sour
es is 
onsid-ered, namely on/o� sour
es. For these type of sour
es the agreement between the systemlength distribution obtained with the 
ir
ulants as input and the exa
t distribution is bad.The reason is that the rate distribution of the 
ir
ulant very badly mat
hes that of theexa
t superposition, be
ause a large part of the probability mass of the rate distribution islo
ated at rate zero. The same fa
t sometimes even 
auses the 
ir
ulant mat
hing methodto fail in �nding a valid rate distribution for the 
ir
ulant. Using the two dimensionalsour
es it is also illustrated that it is ne
essary for a mat
hing method to take both �rstand se
ond order statisti
s of the arrival pro
ess into a

ount, sin
e when 
onsidering onlyone of both, the result of the mat
hing pro
ess might badly re
e
t the queueing behaviorof the sour
es it repla
es. Another appli
ation that is 
onsidered in Chapter 3 is the su-perposition of a periodi
 MPEG sour
e model. Using the 
ir
ulant mat
hing method, weobtained a theoreti
al CAC boundary for a mix of two types of MPEG sour
es. Remarkthat due to the dimension of the MPEG sour
e models (52 and 65 states) and the realisti
number of su
h sour
es 
onsidered, it is impossible to obtain the exa
t queueing resultsusing the exa
t superposition. So we 
ompared the theoreti
ally obtained results with ex-perimentally obtained results. The results 
on�rm the a

ura
y of the 
ir
ulant mat
hingmethod.Part II: Frame aware bu�er a

eptan
e s
hemesIn the se
ond part of the thesis frame aware bu�er a

eptan
e s
hemes are 
onsidered.When pa
ket or frame based data is transported over an ATM (asyn
hronous transfermode) network, these pa
kets are segmented into 
ells. A bu�er a

eptan
e s
heme in anetwork element de
ides about whi
h 
ells are allowed to enter its bu�er, and whi
h 
ellshave to be dropped. Be
ause the loss of a single 
ell of a frame leads to a 
orrupted framethat is in any 
ase dis
arded at the destination, bu�er a

eptan
e s
hemes that are frameaware, i.e., try to a

ept or dis
ard all 
ells of a same frame, thus improve the eÆ
ien
y.



156 SummaryNot only eÆ
ien
y is an issue, but also the fairness among the e�e
tive throughputs of thedi�erent 
onne
tions. So also s
hemes that preferentially drop frames from 
onne
tionsthat use more bandwidth than one would 
all fair have been de�ned.Chapter 4 reviews some 
on
epts related to bu�er a

eptan
e and gives a more exa
tde�nition of a frame. Sin
e most non-real-time pa
ket based data traÆ
 in a network isTCP traÆ
, also a short introdu
tion on TCP and on the two ATM servi
e 
ategories thatare most suited to transport TCP traÆ
, i.e., unspe
i�ed bit rate (UBR) and guaranteedframe rate (GFR), is given. Also the de�nition of some performan
e measures that are
onsidered in the following 
hapters is given.Chapter 5 gives an overview of the most representative bu�er a

eptan
e s
hemes thathave been proposed in the literature for use with the UBR and GFR ATM servi
e 
ate-gories. Chara
teristi
 of all s
hemes is their AAL5 frame awareness: if the s
heme de
idesto a

ept, respe
tively dis
ard, the �rst 
ell of a frame, it will try to a

ept, respe
tivelydrop, all 
ells of the same frame, sin
e in
omplete frames are of no use at the destina-tion. The prin
iples of two of the earliest proposed s
hemes, namely partial pa
ket dis
ard(PPD) and early pa
ket dis
ard (EPD), are found ba
k in many of the more sophisti
ateds
hemes. To be able to a

ept the non-�rst 
ells of a frame from whi
h the �rst 
ell wasa

epted, most a

eptan
e s
hemes use a threshold, as in EPD, to provide some ex
ess
apa
ity in the bu�er. If in spite of this ex
ess 
apa
ity a 
ell is lost be
ause of bu�erover
ow, the remaining 
ells of its frame are dis
arded as in PPD.No QoS 
ommitments are made by the network to UBR 
onne
tions, but most re
ent bu�era

eptan
e s
hemes for UBR try to provide a fair allo
ation of the bandwidth to 
ompeting
onne
tions. This is done by aiming at a fair allo
ation of the bu�er 
apa
ity among the
onne
tions, using the prin
iple behind the fair bu�er allo
ation (FBA) s
heme that a
onne
tion that gets more than its fair share of the bu�er spa
e will also get more than itsfair share of the bandwidth. The same prin
iple is used in some of the bu�er a

eptan
es
hemes for GFR, although the fairness is an issue then only to the ex
ess 
apa
ity. The�rst 
on
ern of bu�er a

eptan
e s
hemes for GFR is to provide ea
h 
onne
tion with itsminimum 
ell rate servi
e guarantee.Relying on the attra
tive properties of the random early dete
tion (RED) s
heme in IPgateways, some s
hemes for ATM using the prin
iples behind RED are proposed. Themost important feature of these s
hemes is their ability to keep the average bu�er size, andthus also the average queueing delay, low.Most bu�er a

eptan
e s
hemes proposed to support GFR 
onne
tions 
an be grouped inone of three main 
ategories. The �rst 
ategory 
ontains s
hemes relying on the tagging ofineligible frames to provide the per-VC minimum rate guarantees to the di�erent 
onne
-tions. The s
hemes in the se
ond 
ategory use per-VC a

ounting and per-VC queueing,making per-VC s
heduling possible. With an appropriate per-VC s
heduling algorithm,ea
h VC is, when a
tive, allo
ated its reserved bandwidth. The s
hemes in the third 
at-egory use per-VC a

ounting in a FIFO bu�er, sin
e the 
ost of per-VC queueing andper-VC s
heduling may be too high for a servi
e 
ategory like GFR.



Summary 157For bu�er a

eptan
e s
hemes not only the prin
iples behind the a

eptan
e algorithmare important, but also the a

ounting information the algorithm 
an base its de
isionson and the queueing and s
heduling strategy used. In Chapter 5 also a summary of thisinformation for the main bu�er a

eptan
e s
hemes dis
ussed is provided.Chapter 6 
onsiders one of the s
hemes dis
ussed in the previous 
hapter, namely sele
tivedrop (SD), that aims at dis
arding frames in a fair way. The transient performan
e of SDis analyzed when traÆ
 is generated by sour
es for whi
h the amount of traÆ
 they 
ansend is 
ontrolled by a window that responds to the presen
e or absen
e of losses (as TCPsour
es do). For this goal a theoreti
al model is developed, where two responsive sour
essend traÆ
 in �xed-sized pa
kets of 
ells, via a bu�er on whi
h the SD bu�er a

eptan
ealgorithm is implemented. Transient eÆ
ien
y and fairness results are then obtained fromthe model.First some identi
al s
enarios are 
onsidered under di�erent start 
onditions, among whi
han unfair start 
ondition, whi
h 
orresponds to a situation where one sour
e alone hasbeen sending traÆ
 for some time, and suddenly the se
ond sour
e starts also sendingtraÆ
. Con
lusions are that: (i) When the input traÆ
 is generated by two identi
alsour
es, none of whi
h is o�ered a preferential treatment by the bu�er a

eptan
e or thes
heduling s
heme, then the mean window sizes and the mean bu�er o

upations 
oin
ideunder identi
al start values for both 
onne
tions, resulting in equal throughput for both
onne
tions and thus perfe
t fairness. (ii) The fairness approa
hes perfe
t fairness as soonas the system has re
overed from the unfairness 
aused by an unfair start situation. Thisillustrates the importan
e of a transient analysis when observing the behavior of the SDs
heme towards an unfair start situation. (iii) A di�eren
e in the amount of output fromthe bu�er at the beginning due to di�erent start 
onditions for the system stays per
eptiblein the eÆ
ien
y values. A di�eren
e in the amount of output of the two 
onne
tions atthe beginning due to unequal start values for both 
onne
tions stays per
eptible for somewhile in the throughput and fairness values.Then it is illustrated with some examples that due to the responsiveness of the sour
es, itis not ne
essarily true anymore that being more 
onservative in a

epting pa
kets impliesa lower eÆ
ien
y, as would be the 
ase when non-responsive sour
es would be used. Thereis also not ne
essarily a trade-o� between eÆ
ien
y and fairness.Also the in
uen
e of the parameters of the SD algorithm (SD has two parameters, a thresh-old L and another parameterK) on the eÆ
ien
y and fairness results is studied when start-ing from the unfair start situation. The most important 
on
lusion of this study is that thepresen
e of the SD algorithm has a large positive e�e
t on the fairness results, irrespe
tiveof the exa
t setting of the parameters of the algorithm. On the eÆ
ien
y results however,these parameters have more in
uen
e. The SD algorithm is 
onsidered in 
ombination withthree s
heduling algorithms. With round robin (RR) and probabilisti
 longest queue �rst(PLQF) s
heduling, the eÆ
ien
y generally in
reases when the threshold L in
reases, and
hoosing L at a few pa
ket sizes less than the size of the bu�er results in a good setting.With RR s
heduling, the 
han
e is rather high that the eÆ
ien
y values obtained are then



158 Summaryeven above these obtained when SD is not implemented (so there is no trade-o� betweeneÆ
ien
y and fairness then). With PLQF s
heduling, this 
han
e is reasonable. Remarkhowever that with RR s
heduling, sometimes the eÆ
ien
y is lower than expe
ted be
auseof syn
hronization e�e
ts. When using PLQF s
heduling, no lasting syn
hronization willo

ur be
ause of the probabilisti
 
hara
ter of the s
heduling algorithm in these s
enarios.Also with FIFO s
heduling, syn
hronization 
an o

ur. With FIFO s
heduling it is mu
hharder to make a 
on
lusion about the best setting of the threshold L, sin
e no real relationwas found between a 
hange of L and a 
orresponding 
hange of the eÆ
ien
y. But 
hoos-ing it a few pa
ket sizes less than the size of the bu�er as with RR and PLQF s
hedulinggave in most s
enarios rather good results. The parameter K of the SD algorithm hasalso more in
uen
e on the eÆ
ien
y results than on the fairness results. In
reasing K hasprin
ipally a positive e�e
t on the eÆ
ien
y when L is set at a small value. When thesetting of L is larger, this positive e�e
t is still seen with RR s
heduling, but with PLQFand FIFO s
heduling the probability is rather high that the eÆ
ien
y will be lower thanwhen K is 
hosen equal to one. As a general 
on
lusion, it is re
ommended to implementSD to in
rease the fairness, but with a parameter setting fo
using on the eÆ
ien
y results.Chapter 7 
onsiders two extensions to the model developed in Chapter 6. First themodel was adapted su
h that the interval after whi
h the sour
es update their window isdi�erent for both sour
es. This implies that a kind of inherent unfairness is introdu
edin the model, sin
e the window of the sour
e with the smallest update interval 
an growfaster and thus this sour
e 
an re
uperate faster after its window is for
ed down due tolosses. The s
enario we 
onsidered illustrated 
learly that be
ause the two sour
es are nowdi�erent, some unfairness in the throughputs of the two 
onne
tions stays present for ever.However, SD 
an partially resolve the bias that exists against the sour
e with the shorterupdating interval and improve the fairness results.Se
ondly the de�nition of the fair share was modi�ed su
h that also the fair bu�er allo
ation(FBA) s
heme, another frame aware bu�er a

eptan
e s
heme that aims at fairness, 
ouldbe 
onsidered. Results obtained with this s
heme show that as the SD s
heme, also the FBAs
heme has a large positive e�e
t on the fairness results, irrespe
tive of the exa
t settingof its parameters. These parameters have, again as with the SD s
heme, more in
uen
e onthe eÆ
ien
y results, although their in
uen
e is not so large as with the SD s
heme. Boththe fairness and the eÆ
ien
y results obtained with the FBA s
heme are 
omparable withthe results that are obtained with the SD s
heme, for well-
hosen parameters.
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Nederlands overzi
htZoals gesuggereerd wordt door de titel, bestaat deze thesis uit twee delen. Twee afzon-derlijke onderwerpen die gerelateerd zijn met de prestatieanalyse van tele
ommuni
atie-netwerkelementen worden bes
houwd: (i) de superpositie van Markov verkeersbronnen, en(ii) pakketbewuste bu�era

eptatie.Een fundamenteel probleem bij het dimensioneren en de prestatieanalyse van tele
ommu-ni
atienetwerkelementen is het berekenen van de distributie van de wa
htrijbezetting envan de wa
httijd in een dis
rete-tijd wa
htrijsysteem met als input een superpositie vanpro
essen die verkeersstromen modelleren. Een belangrijke klasse van veelgebruikte ver-keersmodellen zijn de Markov verkeersbronnen, enerzijds omdat deze bronnen het grillig(`bursty') en variabel karakter van netwerkverkeer kunnen bes
hrijven, en anderzijds om-dat ze analytis
h bruikbaar zijn. Omdat de input van een netwerkelement meestal uitmeerdere verkeersstromen bestaat, moet ook de superpositie van Markov verkeersstromengekarakteriseerd kunnen worden. In theorie wordt deze superpositie exa
t bes
hreven dooreen nieuw Markov model. Een probleem is e
hter de explosie van de toestandsruimte vandit Markov model indien het aantal inputstromen realistis
he waarden aanneemt.Het eerste deel van deze thesis stelt een methode voor, 
ir
ulant mat
hing genoemd, die eennieuwe Markov aankomststroom met een kleinere toestandsruimte 
onstrueert ter vervan-ging van de exa
te superpositie. Twee statistis
he fun
ties van het exa
te inputsnelheids-pro
es die de prestaties van wa
htrijen be��nvloeden, namelijk de auto
orrelatiesequentieen de stationaire distributie, worden gemat
ht door dit nieuwe Markov model. De tran-sitiematrix van de Markov keten is een 
ir
ulante matrix, om het oplossen van een omge-keerdspe
trumprobleem te vermijden. Deel I van de thesis bestaat uit drie hoofdstukken.Hoofdstuk 1 illustreert het probleem van de explosie van de toestandsruimte en introdu
eertenkele de�nities en resultaten. Een gedetailleerde bes
hrijving van de `
ir
ulant mat
hing'methode is te vinden in Hoofdstuk 2. Hoofdstuk 3 bespreekt numerieke voorbeelden en toe-passingen van de methode, waaronder de superpositie van een model voor MPEG bronnen.Het tweede deel van de thesis handelt over pakketbewuste bu�era

eptaties
hema's. In-dien pakketgebaseerde data getransporteerd wordt over een ATM (`asyn
hronous transfermode') netwerk, dan worden deze pakketten opgedeeld in 
ellen, de kleine data-eenhedenmet een vaste lengte waarin ATM per de�nitie alle data verstuurt. Een bu�era

eptatie-167



168 Nederlands overzi
hts
hema beslist welke 
ellen de bu�er van een netwerkelement binnen mogen, en welke niet.Omdat het verlies van een enkele 
el van een pakket al resulteert in een 
orrupt pakketdat sowieso weggegooid wordt aan de bestemming, verbeteren pakketbewuste bu�era

ep-taties
hema's de eÆ
i�entie. Niet enkel eÆ
i�entie is belangrijk, maar ook hoe re
htvaardigde totale e�e
tieve `throughput' onder de vers
hillende verbindingen verdeeld is. Daaromwerden ook s
hema's gede�nieerd die bij voorkeur pakketten van verbindingen die meerbandbreedte gebruiken dan wat eerlijk is, laten verloren gaan.Deel II van de thesis bestaat uit vier hoofdstukken. Hoofdstuk 4 de�nieert wat exa
t onderde term pakket moet verstaan worden. Omdat het overgrote deel niet-tijdskritis
h pakket-gebaseerd dataverkeer in een netwerk TCP verkeer is, wordt ook een korte inleiding overTCP en over de twee ATM servi
e
ategorie�en die het meest ges
hikt zijn om TCP verkeerte transporteren, toegevoegd. Hoofdstuk 5 maakt een overzi
ht van de belangrijkste pak-ketbewuste bu�era

eptaties
hema's die voorgesteld worden in de literatuur voor gebruikin 
ombinatie met deze twee servi
e
ategorie�en. In Hoofdstuk 6 wordt een theoretis
hmodel opgesteld en toegepast om de vergankelijke (`transient') prestaties te bestuderenvan �e�en van deze s
hema's, namelijk `sele
tive drop'. Sele
tive drop is een voorbeeld vaneen s
hema dat probeert om het verloren gaan van pakketten eerlijk te verdelen onder devers
hillende verbindingen. Door het aanbrengen van een kleine wijziging aan het modeluit Hoofdstuk 6, wordt in Hoofdstuk 7 de prestatie van het `fair bu�er allo
ation' s
he-ma, een ander s
hema dat streeft naar een re
htvaardige verdeling van de totale e�e
tieve`throughput' onder de vers
hillende verbindingen, bestudeerd.
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