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Abstract:

This paper evaluates a variety of technical efficiency measures based on a given nonparametric
reference technology, the Free Disposal Hull (FDH). Specifically, we consider the radial measure
of Debreu (1951) and Farrell (1957) and the nonradial measures of Fire (1975), Fire and Lovell
(1978) and Zieschang (1984). Furthermore, input-based, output-based and graph efficiency versions
of these four measures are computed. Since the theoretical literature remains inconclusive as to the
best choice among these alternative measures, we consider this problem from an empirical viewpoint.
Calculating thirteen different measures of technical efficiency for a sample of U.S. banks, we
investigate whether they yield different distributions and rankings, and examine how well the radial

measure approximates its nonradial alternatives.
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1. INTRODUCTION

Technical efficiency refers to the ability of an organization to operate on the boundary of its
production possibilities set. In recent years a substantial body of literature on the theoretical and
empirical measurement of technical efficiency has been generated by researchers in a wide range of
fields." Two critical issues associated with measuring efficiency are how to specify the underlying
technology relative to which efficiency is assessed and how to quantify the distance between an
observation and the reference technology. The latter issue itself involves two choices: choice of
measure and choice of orientation. Not surprisingly, these issues have received considerable attention
in the literature. However, while the choice of the reference technology has been examined
‘thoroughly from both theoretical and empirical perspectives (¢.g., Grosskopf [1986] showed that the
choice among deterministic nonparametric reference technologies systematically affects the magnitudes
of technical efficiency calculated), the issue of how best to measure distance from the frontier largely
has been confined to the theoretical literature.

This paper is concerned with the second aspect of efficiency measurement—how to measure
an observation’s distance from the reference technology. In empirical work, the (usually input-based)
radial measures of efficiency have become the st;mdard. _The theoretical literature offers a variety of
alternative nonradial efficiency indices (e.g., Fare [1975], Fare and Lovell [1978], Fire et al. [1983],
Russell [1985] and Zieschang [1984]). The primary motive in proposing these alternatives is a
conflict between the radial measures of technical efficiency proposed by Debreu (1951} and Farrell
(1957), and the intuitive Koopmans (1951) deﬁnition of technical efficiency. Debreu-Farrell measures
implicitly define technical efficiency relative to the iscquant, whereas the Koopmans definition equates
technical efficiency with membership of the efficient subset of technology. Despite these theoretical
developments, most of the empirical literature employs radial measures, ignoring the nonradial
alternatives.?

This paper empirically implements and evaluates a variety of radial and nonradial efficiency
measures relative to a given reference technology, the nonparametric-deterministic free disposal hult
(FDH) of Deprins et al. (1984).> The conflict between the radial technical efficiency measures and
the Koopmans (1951) definition of technical efficiency is especially pronounced for the FDH
technology, making it a good case to study. The first goal of this paper is therefore to use the FDH
reference technology to compare the performances of four alternative measures of technical
efficiency—the radial measure of Debreu (1951) and Farrell (1957), and the nonradial measures

'See Lovell (1993) for a discussion and extensive bibliography of this literature.

Deller and Nelson (1991) is a notable exception. They use the efficiency measure proposed by Fire and
Lovell (1978). . -

A similar analysis for data envelopment analysis (DEA) models is reported in Ferrier et al. (1994).



introduced by Fire (1975), Fire and Lovell (1978) and Zieschang (1984). The second, closely
related, goal is to investigate the effect of the orientation of a technical efficiency measure on resulting
efficiency scores. In particular, in addition to the traditional input-based and output-based
orientations, we also consider the graph versions of each of the four efficiency measures mentioned
above. Input-based measures proportionally shrink an observation’s input vector to the point where
the observed output vector is still just feasible, These measures are "oriented” in the input-dimension-
only. Output-based measures expand an output vector radially till it just remains feasible. Graph
measures, by contrast, allow simultaneous decreases in the inputs and increases in the outputs when
projecting an observation to the efficient frontier. The rationale for including graph efficiency
measures in our analysis is to meet Koopmans® definition of efficiency as closely as possible.

The choice of orientation has practical, as well as, theoretical implications. For example,
recent research has voiced concern that restricting attention to input-based efficiency measurement
may neglect major sources of technical inefficiency in the outputs (e.g., Berger et al. [1993] raised
this issue for the banking sector). Because the theoretical literature is inconclusive as to the best
choice among the alternative efficiency measures and orientations of measurement, we consider the
problem from an empirical point of view. By investigating whether these efficiency measures yield
different empirical distributions and rankings, and examining how well the radial efficiency measure
approximates the nonradial alternatives, this research sheds light on the issue of how the choice of
measure affects efficiency evaluation.

The remainder of the paper proceeds as follows. Section 2 reviews the theoretical debate on
the measurement of technical efficiency and defines the efficiency measures considered in the
empirical analysis. Section 3 discusses the FDH reference technology and the calculation of the
various efficiency indices relative to it. Section 4 calculates the technical efficiency of a sample of
U.S. banks using four measures, each under all three different orientations, and compares the
resulting efficiency scores. Further reflections and a conclusion are provided in the final section.
To the best of our knowledge this is the first systematic empirical comparison of such a broad set of

radial and nonradial efficiency measures under different orientations.

2. THE FREE DISPOSAL HULL REFERENCE TECHNOLOGY
The nonparametric approach to efficiency measurement typically makes very weak assumptions on
the underlying reference technology relative to which efficiency is measured. Among the various

possible reference technologies, FDH imposes perhaps the mildest assumptions. Specifically, aside

*These assumptions are generally less restrictive than those used in parametric approaches. See Lovell (1993)
for details.



from the usual regularity axioms (i.e., "no free lunch,” the possibility of inactivity, boundedness, and
closedness), FDH imposes only strong free disposability in inputs (i.e., positive monotonicity) and
in outputs (i.e., nestedness of input requirement sets). The latter two conditions imply that an
increase in inputs can not result in a decrease in output and that any reduction in outputs remains
producible given the same set of inputs. Note that these conditions allow for variable refurns to scale
in production.

A production technology transforms the non-negative inputs x = (x,,x,,... ,x,) € RY into the
non-negative outputs ¥ = (¥y,Yo,--- »¥o) € VR:. For the input-based measures of technical efficiency,
technology can be represented by the input correspondence, y - L(y) € RY, which assigns an output
vector y to the subset of all input vectors x that can produce it. The input correspondence of the FDH
Teference technology defines a piecewise linear technology constructed on the basis of observed input-

output combinations:

LOY™E - {x | xeRY, z'N2y, z'M sz, Liz=1, z,€l0, 1} ).

The k x n matrix N contains the n observed outputs of each on the k observations in the data set, M
is the kK x m matrix of observed inputs, z is a k x 1 vector of intensity parameters, and [, isakx 1
vector of ones. Similarly, the output correspondence maps inpﬁts x € RT into subsets P(x) € R}
of outputs and is in case of the FDH defined as:

PGP - {y | yeR), 2'N2y, 'M<x, Iz=1, z,€10,1} }.

Finally, technology can be representéd by its graph or transformation set; i.e., the set of all feasible
_input-output vectors. The graph of the FDH reference technology is given by:

GR™E . { (xy) | xeRT, yeR, z/N2y, z/M<x, Lz=1, z,€l0,1} },

and serves as the reference technology for the graph measures of technical efficiency.

Consistent with variable returns to scale, the_ elements of the intensity vector are restricted to
sum to unity. Because the intensity vector contains only zeros or ones, linear'combinations of
multiple observations are excluded and convexity is not imposed on the technology.® This restriction
is the crucial (and only) difference between FDH and the widely used variable returns to scale data
envelopmeni analysis (DEA) technology with strong input and output disposability (Banker et al.
[1984]). To develop an intuition for the FDH reference technology, note that each activity spans one

*While the intensity vector contains only the integers 0 and 1, the mixed integer programming problems for
computing efficiency scores can be easily solved using a data classification algorithm based on simple vector
dominance reasoning (see Tulkens [1993]). A detailed description of the algorithms used to compute the efficiency
measures is provided in the appendix.



orthant, positive in the inputs and negative in the outputs, reflecting free disposal in inputs and
outputs. The FDH reference technology is the boundary of the union of all such orthants. Its graph
and isoquants typically follow stair-step patterns. A typical graph section and an isoquant are shown
in Figures 1 and 2, respectively.

While FDH is very intuitive and attractive for efficiency measurement purposes, the user must
be aware of its drawbacks.® First, strong disposability assumptions preclude the detection of
congestion on the technology. In contrast, some DEA models can accomodate for this phenomenon.’
Furthermore, FDH is little informative regarding the structure of production technology. This is in
contrast with convex DEA models which allow to determine substitution and transformation
possibilities through duality theory.

Although not as popular as DEA in applied work, FDH provides an attractive basis for the
evaluation of the different efficiency measures for three reasons. First, it imposes minimal
assumptions with respect to the production technology. Second, because the conflict between the
radial measure of technical efficiency and Koopmans definition of technical efficiency can be quite
prominent for the FDH reference technology, it provides a good test case for examining empirical
differences across radial and nonradial measures of efficiency. Finally, on FDH the conflict between
the traditional input- and output-based and Koopmans notions of efficiency highlight the need to
reconsider the overwhelming popularity of the input- and output-oriented measures of technical
efficiency. The Koopmans definition, in fact, would give priority to graph efficiency measures.
Thus, a comparison between input-based, output-based and graph measures of technical efficiency on

FDH seems warranted. The second and third reasons will become more evident in the next section.

3 ALTERNATIVE MEASURES OF TECHNICAL EFFICIENCY

Two dlfferent notions of technical efficiency have emerged in the economics 11terature The first, due
to Debreu (1951) and Farrell (1957), is based on radial measures of technical efficiency. In the input-
based case, Debreu-Farrell define technical efficiency as one minus the maximum equiproportionate
reduction in all inputs that still allows production of the given outputs. The second notion, intrpduced
by Koopmans (1951), defines a producer as technically efficient if an increase in any output requires
. a decrease in at least one other output, or if a decrease in any input requires an increase in at least

one other input. The great intuitive appeal of this definition has led to its adoption by several authors,

“The theoretical and empirical advantages and disadvantages of FDH relative to the DEA fainily of nonparametric
reference technologies are extensively discussed by Lovell and Vanden Eeckaut (1994) and Tulkens (1993).

*The known technologies that allow for congestion combine the assumptions of ray-monotonicity and convexity.
Thus, a formulation of congestion for FDH, which does not impose convexity, is lacking.
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including Charnes et al. (1978) and Fire and Lovell (1978).

Input-based, radial efficiency measures shrink the input vector, holding input-mix and the
output vector constant, until it is still just feasible to produce the observed vector of outputs.
Analogous output-based, radial measures also exist. These two measures are each oriented in a single
space—input space or output space. Graph efficiency measures ‘of technical efficiency allow for the
simultaneous adjustment of both inputs and outputs. For ease of exposition, the discussion initially
concentrates on input-based efficiency measures; output-based land graph efficiency measures are
considered near the end of this section.

3.1 Subsets of Technology _

To better understand the distinction between the two notions of technical efficiency, we formalize how
the subsets of the reference technologies are defined. Different measures of technical efficiency relate
observations to different subsets of the input correspondence. Three subsets of L{y) merit particular

attention (see Fire et al. [1985]). First, the input isoquant of the input correspondence:

Isoq LO) = {x | xeL(), Ax¢LO) for A€[0,D));

second, the weak efficient subset of the input correspondence:*

WELf L) = {x | xeL(y), 2'<*x = x' ¢LO)};
finally, the efficient subset of the input correspondence:

Eff L) - {x | xeL@), 2’ sx = 2’ ¢L(y)}.
These subsets are related as follows: Isoq L(y) 2 WEff L() 2 Eff L(y).

The Koopmans notion of efficiency is much more demanding than the Debreu-Farrell
efficiency measure. While the Koopmans definition requires productive activities to be elements of
the efficient subset, the Debreu-Farrell measure requires efficient observations to belong to the
isoquant, though not necessarily to the efficient subset. Consequently, any reference technology for
which the isoquant diverges from the efficient subset highlights the conflict between these two
concepts of technical efficiency. For many of the popular reference 'technologies used in the
programming approach (e.g., the DEA models), the isoquant and the efficient subset diverge (see
Fire et al. [1985]), therefore this problem deserves serious attention. Under FDH the incongruity
between the two notions of technical efficiency is particularly relevant. Due to the strong disposab-
ility of inputs, the isoquant and the weak efficient subset coincide under the FDH reference
technology. However (as is evident from Figures 1 and 2), the efficient subset only contains disjoint
points. In Figure 2, the input efficient subset is simply the set of productive activities {B, C, D, E}.

*Vector inequality conventions used in the text are as follows: x = yifand only if x, = y;andx # y; x > y
if and only if x; > y, for all i; x >" y if and only if x, > y, or x; = y; = 0 for all i.
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The distinction between the isoqualit and the efficient subset is thus very pronounced (especially when
compared to the DEA reference technologies).

In fact, Koopmans (1951: 60 and 80) required simultaneous membership in the efficient
subsets of both the input and the output correspondences (or, synoﬁymously, the graph efficient
subset). The theoretical literature on technical efficiency measures, however, has focused on
membership in either of these efficient subsets. Only for a few nonparametric reference technologies
(e.g., the constant returns to scale DEA model with strong disposability in inputs and outputs of
Charnes et al. [1978]), does membership of either the input or the output efficient subset imply that
~ an observation is in the graph efficient subset.” For most nonparametric reference technologies, FDH
in particular, the divergence between the efficient subsets of the input and output correspondences is
potentially very important. Figure 1 shows that radial measures in either the input or output
orientation will only coincidentally project an inefficient observation onto the graph efficient subset
of FDH. Theréfore, a case can be made in favor of graph efficiency measures, which guarantee
membership in the graph efficient subset of the FDH, so as to meet the Koopmans definition of
technical efficiency as closely as possible.

3.2 Desirable Properties of Efficiency Measures
Addressing the conflict between radial measures of efficiency and the Koopmans definition of
efficiency, Fire and Lovell (1978) initiated a literature on the axiomatic approéch to technical
efficiency measurement. They proposed a set of desirable properties that a measure of technical
efficiency measure should possess. In terms of an input-based measure of technical efﬁciency, Efx.y),
Fire and Lovell’s (1978) list of desirable properties is as follows:
(P1) Input vectors should be judged efficient if and only if they belong to the efficient
subset:

If x € L), y>0, then E(xy) - 1 = x € Eff L();
(P2) Inefficient input vectors should be compared to vectors belonging to the efficient
subset: '

If x € L{y), y>0, and x ¢ Eff L),
then B(x,y) should compare x to some x* € Eff L();

(P3) E.(x,y) should be homogeneous of degree minus one (i.e., a feasible scaling of

*Formally, x € Eff L{y) # y € Eff P(x) # (x,y) € Eff GR requires the existence of a joint efficiency
production function, which imposes strict monotonicity on the production correspondences. See Fire (1983) for
details.



the input vector leads to an inverse scaling of the efficiency measure):

K x € L(y), and Ax € L(y), y>0, then E(Axy) - A'E[(xy)
for all A € [A°,+), where A'x € Isoq L(y);

®4) E(x.y) should satisfy strict negative monotonicity (i.e., increasing one input

-while holding all other inputs and all outputs constant lowers the efficiency measure):

_ If x € L), y>0, and x'> x, then E(x)) > Ex'y).
Properties (P1) and (P2) assure compliance with the Koopmans definition of efficiency. Properties
(P3) and (P4) address the sensitivity of the efficiency measure with respect to input usage. The third
property imposes a direct proportionality between the level of all inputs used and technical efﬁciehcy;
the fourth insures that technical efficiency is sensitive to the level of any single input used.
3.3 The Radial and Nonradial, Input-based Measures -of Technical Efficiency™"

The input-based radial measure of technical efficiency introduced by Debreu (1951) and Farrell (1957)
is given by: | )
DF(xy) = min{A | 220, AxeL(y)).

As is true of all of the measures of technical efficiency discussed in this section, DE(x,y) variés
between zero and one, with efficient production represented by unity. DF(x,y) indicates the
proportion of the observed inputs necessary to produce the observed level of outputs. Note that
DF;(x,y) assumes the isoquant as the relevant subset of technologj for defining technical efficiency.
An observation is judged efficient by the radial input efficiency measure if and only if it belongs to
the isoquant; it is inefficient otherwise. Assuming constant input prices, (1 - 1/DF;(x,y)) gives the
proportion by which observed cost exceeds minimal cost. This straightforward cost interpretation is

one of the advantages of the radial measures of technical efficiency.

®In presenting the efficiency measures we assume strictly positive input and output vectors to reduce notational
clutter. For semipositive input and output vectors the definitions must be modified so as to eliminate the impact of
zeros. See Fare et al. (1983) for details. The empirical application in section 4 takes account of these modifications.

"Note that a multiplicity of technical efficiency measures is possible due to three interrelated factors (see Fire
et al. [1983]). First, there are three subsets of the input correspondence against which the technical efficiency of
‘an activity can be gauged. Second, these subsets are unlikely to be singletons, which in general leaves a choice
among its elements. Third, the size of each of these subsets depends on the assumptions made on the structure of
the production technology. The general problem is therefore how to define "the” measure of technical efficiency
that relates an inefficient observation to an element of a subset of the input correspondence in an economically
meaningful way.



The nonradial, input-based Fire-Lovell (1978) measure of technical efficiency is:?

FL(xy) -min{E lilm | (A,%p0r %) ELO), A,€(0,1]).

This measure looks for the maximum arithmetic mean of proportional reductions in all non-zero
individual inputs. It allows each input to be scaled by a different factor.
Zieschang’s (1984) nonradial, input-based measure of technical efficiency is:

Z(xy) = FL(x-DF,[x)].y) DF(xy)
where DF;'(xy) = min{i |320,AxeL*()-LO)+R7}.

Z(x,y) combines the Debreu-Farrell and Fare-Lovell measures.”® It first radially scales the
inefficient observation down to the isoguant, and then shrinks the resulting input vector until an
element in the efficient subset is reached. _

Finally, the nonradial, input-based asymmetric Fare measure (Fare [1975], Fire et al. [1983])
of technical efficiency is defined as:

AF(xy) = min {AF(xy)} Jj - 1,..m
where AF|(xy) - min {1, | (A% %p.%,) ELO))

AF(xy) = min {4, | GpesEpemshy,) ELO)Y.
AF(x,y) scales down each input in turn, holding outputs and the other inputs fixed, and then takes
the minimum over all m of these scalings."* Note that this measure scales inefficient observations
down to the boundary of L(y), which need not coincide with any of its subsets.

One straightforward way of interpreting the distinction between radial and nonradial efficiency
measures is that the latfer allow for technical inefficiencies resulting from wrong choices of the input
mix, By contrast, the radial efficiency measure evaluates technical efficiency along a ray. It holds
factor proportions fixed and, af least implicitly, assumes the absence of any inefficiencies in the
input mix. | |

A number of relationships among the efficiency measures are worth noﬁng. First, only

Z(x,y) is defined with the specific intention of eliminating slacks. Consequently, if DF,(x,y) scales

ZEL,(x,y) is also known as the Russell efficiency measure (see Fire et al. [1985]). A similar measure has been
proposed in Bardhan et al. (1994). The latter paper also discusses an output and a graph version of the same
efficiency measure (see section 3.4 below).

13The Debreu-Farrell component is calculated on a technology satisfying strong input disposal. Note that radial
measures have been defined for both weakly and strongly disposable technologies (see Fire et al. [1985]).

“Thanassoulis and Dyson (1992) have also proposed the components of AF(x,y), i.e., AFi(x,y).



an inefficient observation down to the efficient subset, then it coincides with Z(x,y) (i.e., the FL,(x,y)
component of Z(x,y) equals unity). Thus, a comparison of DF,(x,y) and Z;(x,y) is an easy way to
detect the presence of slack. Second, FL;(x,y) clearly generalizes both DF;(x,y) and AF;(x,y). For

= A\, = ... = Ap, FLi(x,y) specializes to DF,(x,y); and for \, = 1 for AFJ # min AF, it special-
izes to AF(x,y). Furthermdre, in the case of a single input all measures coincide. Third and finally,
for a given reference technology, a complete ordering among these efficiency measures is possible:
DF(x,y) 2 Z(xy) = FL{x,y) 2 AF(x,y)."”

Figure 2 illustrates these four efficiency measures. The radial measure, DF(x,y), scales
inefficient observations down to the isoguant (e.g., see observation ¢). Thus, only those observations
that lie on a ray through one of the elements of the efﬁcieﬁt subset (e.g., observation d) are scaled
down to the efficient subset. The probability of this occurring in empirical applications is likely to
be remote. FL(x,y) scales the inefficient observation ¢ down to obsérvation E. Z(x,y) relates the
inefficient observation ¢ to observation D by adjusting the radial efficiency measure for the remaining
slack in the first input. Finally, AF,(x,y) selects b as a reference point for observation c, since point
¢’s performaﬁce is worst in the first input diniension, Note that AF,(x,y) leaves slack in the second
input (i.e., the distance from b to E).

The theoretical literature on these four efficiency measures (see especially Fire et al. [1983]
and Russell [1988]) concludes that, for a broad class of reference technologies, they all fail to satisfy
all four of the desirable properties given above. DF,(x,y) fails to satisfy (P1) and (P2) (fecall the
conflict between the Debreu-Farrell and Koopmans notions of efficiency). However, it does .satisfy
(P3) (homogeneity of degree minus one), and a weaker version of (P4) (i.e., it is weakly, rather than
strictly, negative monotonic'®). FLi(x,y) satisfies (P1) and (P2), but in general it satisfies only
weaker versions of (P3) and (P4). It is subhomogeneous of degree minus one (i.e., the scaling of
the input vector by a factor larger [smaller] than unity leads to an efficiency measure smaller [larger]
than the inverse scaling of the efficiency measure by the same factor) and is weakly negative
monotonic. Z(x,y) satisfies (P1), (P2) and (P3), but in lcrgeneral Z(x,y) is non-monotonic in inputs;
i.e., it can either increase or decrease if a single inpui is increased on some specific technologies.
AF;(x,y) satisfies only (P1). It usually compares inefficient input vectors to the boundary of L(y),
not to any of its subsets. Furthermore, AF;(x,y) is subiomogeneous of degree minus one and weakly
negative monotonic.

In general, the literature fails to check which properties the various efficiency measures satisfy

“See Fire et al. (1983) and Kerstens and Vanden Eeckaut (1995) for details.

1¥Weak monotonicity requires that increasing one input while holding all other inputs and all outputs constant
cannot increase the efficiency measure.



for. the particular reference techndlogy used. . For example, if attention is confined to the FDH
production technology, the list of satisfied properties chaliges slightly.'” Under FDH, FL;(x,y) does
satisfy strict negative monotonicity. But FDH is one of the reference technologies for which Z(x,y)
is non-monotonic in inputs.

It should be noted that two additional considerations regarding the choice among technical
efficiency measures have appeared in the margin of this literature (see Lovell and Schmidt [1988])."*
One argument in favor of the Debreu-Farrell efficiency measure is that, as mentioned above, it has
a straightforward, factor-price-independent, cost interpretation, which is lacking in the nonradial
alternatives. Related to this argument, it is good to point out that there is another "implicit” cost
interpretation possible for the nonradial input efficiency measures. For example, the projection point
of the Fire-Lovell input efficiency measure results from cost minimization under the assumption that
the relative factor prices equal the ratio of the inverse input quantities available to the observation.
Similar "implicit" cost interpretations have been derived for the other nonradial efficiency measures
in Kerstens and Vanden Eeckaut (1995). A second, more theoretical, argument in favor of the
Debreu-Farrell efficiency measure is that there exists an equivalence between this efficiency measure
and the isoquant of the input correspondence (see Lovell [1993]). However, it can be shown that the
nonradial efficiency measures provide similar functional representations of the efficient subset. If the
efficient subset is a more important subset than the isoquant for technical efficiency measurement,
then this argument would favor the nonradial efficiency measures.

Finally, it is worth mentioning a problem that affects the radial efficiency measures in
particular. Thrall (1989) showed that for the input-based, radial efficiency measure, efficiency scores
cannot decrease -if additional inputs are added to the model (i.e., if the input dimensionality of the
reference technology increases). Hence, while efficient observations remain efficient, inefficient
observations may become efﬁcient as the number of input dimension increases.'”” This predictable
change of the radial measure leaves room to manipulate the results of any performaﬁce evaluation
(Nunamaker [1985]). Kerstens and Vanden Eeckaut (1995) show that the FL,(x,y) and Z;(k, ) do not
change in a monotonic way if additional dimensions are added and included in the’ efficiency |
measurement; AF,(x,y) does not share this property in general. This topic requires further attention—

our empirical application indicates its importance.

"See Kerstens and Vanden Eeckaut (1995) for details.

*Both issues are treated in detail in Ferrier et al. (1994) and Kerstens and Vanden Ewbut (1995).

“More generally, Charnes and Zlobec (1989) and Charnes and Neralié (1990) address the stability of
programming efficiency scores as the reference technology changes due to perturbations of the inputs and outputs
in the data set.
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3.4 Radial and Nonradial, OQutput and Graph Measures of Technical Efficiency
As efficiency measurement relative to the graph of technology is very important under FDH, this
section provides the output- and the graph-oriented counterparts of the radial and the nonradial
efficiency measures presented above.

The radial output efficiency measure is formally defined as:
DF,(xy) - max{p | p>1, pyeP@)).

It measures the maximum proportional increase in all outputs producible from given inputs. The Fare-
Lovell output measure of technical éfﬁciency is defined:

FL,(xy) - mu{E B/ m | (1Yot Y,) €PG), 3,211
The Zieschang output measure of technical efficiency can be defined as follows:

Z(xy) = FL (x,DF,[xy]'y) ‘DF, (xy)
whete DF,(x)) - max{p |p21,pyeP*(x)-P(x)+R}}.

Finally, the asymmetric Fire measure of technical efficiency in the outputs is defined as:

AF (xy) = max {AF)xy)} j - 1,..»

where AF!(xy) = max (i, | (1) yedpy,) €PG))

AF,(xy) = max {p, | 0ppeeeidpsslt,y,) EPG)).
For each of these four output efficiency measures the interpretation is similar to their input-based
couterparts.”
There are two graph measures of the Debreu-Farrell type (see Fire et al. [1985: 110-127]).
The first Debreu-Farrell graph measure of efficiency is:

DF (xy) - min{ A | 120, (J.x,l"y)EGR ).
It gives the maximal equiproportionate reduction of all inputs and increase of all outputs. Note that
because inputs and outputs are adjusted simultaneously, the path to the frontier is hyperbolic rather
than radial. The generalized Debreu-Farrell graph measure allows the proportional reduction of all

% In the empirical application in section 4 below all output-based measures are redefined so as to be situated
between zero and one, with unity indicating efficiency. This is quite common in the empirical literature and facilitates
the comparison of the various efficiency measures. For example, the Debreu-Farrell measure becomes:

DR;(xy) - min{p’ | 0<p’s1, y/u'cPM)}.
The definitions of the nonradial efficiency measures can be likewise adapted.
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inputs to differ from the proportional increase of all outputs and averages both scalars:
GDF(xy) - min{% | 20, p20, (Ax,u"'y) €GRY.

The graph efficiency counterparts of the three nonradial measures presented above are as
follows. The Fire-Lovell graph measure is (see Fire et al. [1985: 153-154]):*

FL,(x3) - m{(ﬁx,+121 I +0) | (yZprd ool Vbt v € GR, 3, 1, € Q11
the Zieschang graph measure is:

Z(xy) - FL(x'DF,[xy],y DF;[xy]™") -DF; (xy)

where DF;(.t,y) - min{} |1 20,(Ax,1'y) eGR*},
and GR* is the graph of a technology satisfying strong input and output disposability. Finally, the
asymmetric Fire graph measure of technical efficiency is given by:

AFg(xy) - min {AFj(xy)} j = L..m+n
where AF"(x,y) = min {i, | (XXX yp--¥,) EGR}

AF;(xy) = min {3 | (ysd X o¥psee,) €GR]

AFF*'(xy) = min {p; | (et pphty Yypa¥,) EGR)

AFT(x3) = min {y, | (s dyerell; y,) €GRI
“and 4,611 for j = 1,..m and ;' €©,1] for k = 1,..n. .

Several characteristics of the graph measures are worth noting. First, the graph efficiency
measures are slightly more difficult to 'mterpret than their input- (or output-) oriented counterparts.
In physical terms, they indicate the simultaneous input saving and output expansion potential available
to inefficient observations. In value terms, they measure a simultaneous reduction in cost and
increase in revenue, though no straightforward profit interpretation is possible (see Fire et al. [1985:
107-111] for details). _ '

Second, several special cases are worth noting. If m = n = 1, the GDF,(x,y) = DF,(x,y).
Whileifm=nr=1andA =N = .. =\, and p = g, = ... =y, then GDF (x,y) (= DF(x,y))
= FL,(x,y). Furthermore, GDF(x,y) < DF,(x,y) for A # u, and GDF(x,y) eliminates slack in at
least one input and one output dimension;, while DF,(x,y) can leave slacks in up to m+n-1
dimensions. Finally, remark that DF (x,y) = max {DF(x,y), [DF (x,y)]"} and that DF (x,y) = 1

*'Thanassoulis and Dyson (1992) generalize FL,(x,y) by allowing for a different weighting of each dimension.
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either if DF(x,y) = 1, or if DF,(x;y) = 1.2 This illustrates in a condensed way the remark at the
end of the previous subsection that the radial efficiency measure is sensitive to the number of
dimensions evaluated. .

Finally, the nonradial graph efficiency measures satisfying (P2) (i.e., FL,(x,y) and Z (x,y))
project inefficient activities to the graph efficient subset, thereby fully complying with the Koopmans
definition of efficiency. Thus, under FDH, FL (x,y) and Z(x,y) relate inefficient observations
directly to an observed activity when assessing their performance. From a practical standpoint, this
givm FL,(x,y) and Z (x,y) an advantage for policy-oriented and managerial purposes, since inefficient
observations would have an actual (efficient) observation available to serve as a role model. In
general, the other efficiency measures refate inefficient observations to some unobserved projection
point on the frontier, For example, in Figure 1 the inefficient observation b will be projected by
FL,(x,y) or Z(x,y) onto one of the ddminating observations spanning an orthant (C, D or E). In
contrast, for example, the radial input measure would project point b to the unobserved point e, which
has the same level of input as observation C but produces less output than C.

3.5 An Embarrassment of Riches? The Choice Among Efficiency Measures

None of the measures considered possesses clear theoretical superiority over the others. Furthermore,
it is unclear whether any of the arguments made in the literature tips the balance in favor of any of
the measures for use in empirical work. This lack of consensus as to the "best" measure of efficiency
could pai‘tly explain why practitioners have ignored the theoretical debate and have stuck with the
traditional either input-based or output-based radial efficiency measures. However, it is precisely
~ because a theoretical solution to the problem of defining an ideal technical efficiency measure has not
yet been provided that it is worth asking whether the choice among efficiency measures makes any
difference in practice. Given the widespread use of radial l.ﬁeasur% in empirical work, there seems
tobea strong presumption that any differences in the empirical efficiency scores obtained by thesé
various measures are negligible. We think it is worthwhile to give serious consideration to this issue
and therefore provide an empirical illustration of these measures om the specific reference
technology, FDH.

4. AN EMPIRICAL COMPARISON OF EFFICIENCY MEASURES ON AN FDH
TECHNOLOGY |

This section systematically explores whether the choice among the various efficiency measures
discussed above makes any difference in practice by studying the technical efficiency of a sample of
U.S. banks using an FDH reference technology.

2This is noted in Fire, Grosskopf and Lovell (1985),
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4.1 The Sample Data

Data on a sample of 575 U.S. depository institutions operating in 1984 are used to calculate the
thirteen efficiency measures. The data were collected under the Federal Reserve System’s Functional .
Cost Analysis (FCA) program. The FCA program’s aim is to help participating banks to increase
their operating efficiency by providing them with -average performance figures for similar banks. This
feedback assures that participating institutions have a self-interest in reporting data accurately.

The appropriate'deﬁnition and measurement of banking inputs and (especially) outputs is a
subject of debate in the literature on bank costs (see Berger and Humphrey [1992] for a discussion).
Most empirical studies now adopt one of two approaches, tﬁe "production” or the "intermediation”
approach. The production approach regards banks as producers of deposit and loan accounts using
only traditional inputs (e.g., capital and labor). It measures outpﬁts by the numbers of deposit and
loan accounts of various types, or by the numbers of transactions carried out on each of these
products. Under the intermediation approach, banks collect deposits and purchased funds and
intermediate them into various types of loans and other assets. Demand and time deposits are thus
viewed as intermediate inputs. In this case the inputs include traditional economic inputs, as well as
the interest costs of purchased funds. Therefore, outputs are specified as monetary volumes.?

Each of these approaches has its advantages and drawbacks and both have been used in the
recent empirical literature on bank performance, For example, Aly et al. (1990), Berger et al. (1987)
and Berger and Humphrey (1991) follow the intermediation approach; Ferrier and Lovell (1990) and
Fried et al. (1993) opt for the production approach.?* We adopt the production appfoach, measuring
6utputs in terms of numbers of accounts. The outputs specified are the numbers of demand (y,) and
time (y,) deposit accounts, and the numbers of real estate (y,), instalment (y,) and commercial (y5)
loans. The inputs used are the total number of employees (x,), occupancy and equipment costs (x,),

and expenditures on materials (x;).” Table 1 contains descriptive statistics of these variables.”

#See Colwell and Davis (1992) for a more thorough discussion of these two approaches.

In addition to adopting various approaches to defining and measuring bank inputs and oﬁtputs, these studies
use a variety of reference technologies. For example, Aly et al. (1990) use variable returns to scale DEA; Ferrier
and Lovell (1990) utilize both stochastic parametric frontiers and DEA; Fried et al. (1993) choose the FDH
approach. Surveying the empirical literature on bank efficiency, Colwell and Davis (1992) report as a main result
that technical efficiency is more important than any other type of inefficiency.

BNote that the measures of capital (x,) and materials (x;) are less than ideal. Unfortunately, information on the
physical quantities of these inputs is not available.

Ferrier and Lovell (1990) analyze the same set of data used in this paper; however, they also include
- environmental variables in their analysis. Under the nonparametric approach, increasing the number of dimensions
reduces the number of technically inefficient observations. To highlight differences across the various efficiency
measures as clearly as possible, we choose a specification of the production technology that includes only the inputs
and outputs. Therefore, in our analysis environmental variables are neglected, yielding a higher number of technical
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4.2 Results

FDH uses a vector dominance algorithm to classify observations as either efficient or inefficient (see
Tulkens [1993] for details). An efficient observation is given a score of 1; an inefficient observation’s
score is calculated relative to the particular observation that dominated it. Of the 575 banks in our
data set, 409 are "undominated;" that is, they are techmically efﬁcient relative to the other
observations in the data set. All of the efficient observations belong to the efficient subset of the
- graph correspondence. The remaining 166 observations are "dominated" by any other observation
and therefore are classified as techniczmy inefficient. All of the inefficient observations are in the
interior of the graph correspondence.

The empirical efficiency scores generated by the various measures are compared in three
ways. First, their empirical distributions are examined. Second, the efficiency scores are correlated
across the different measures to determine the effect of the choice of measure on individual
observations’ rankings. Finally, the degree to which the traditional radial efficiency measure
approximates the nonradial efficiency measures is examined. _

Table 2 reports descriptive statistics of input-based, output-based and graph efficiency
measures for the full sample (N=575). In general, the distributions are as expect_ed: DF;(x,y) has
the largest mean, followed by the Z(x,y), FLi(x,y) and AF;(x,y), respectively. The same ordering
of means holds true for output and graph measures. This simply reflects the complete ranking
between efficiency measures mentioned above. DF(x,y) also has the smallest standard deviation and
the smallest range, again followed by the Z(x,y), FLi(x,y) and AF;(x,y). The same observations can
be made for output and graph orientations. All of their distributions are negatively skewed and have
positive kurtoses. DF,(x,y) is the most pronouncedly skewed and also has the largest kurtosis. The
positive kurtosis for all efficiency measures indicates that their distributions have fat tails relative to
the normal distribution.” ' ' |

Note that the radial efficiency measures project all 166 inefficient observations on the isoquant
or the weak efficient subset; therefore, the radial and the Zieschang measures never coincided.
However, the Fiare-Lovell and the Zieschang input-based, output-based and graph efficiency measures
were identical in about 63% to 68% of the inefficient cases. None of the other efficiency measures
coincided for any observations. This in part explains why the Fire-Lovell and Zieschang measures
have such similar distributions.

inefficient observations.
The distributions of the same input efficiency measures on the same data set using DEA are shifted strongly

downwards. This likely is due to a small number of highly specialized banks (see Ferrier et al. [1994]). The FDH-
based efficiency scores are clearly less vulnerable to such observations. '
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Figures 3 to 5 present the density distributions of the input, output and graph efficiency
measures based on the inefficient observations only, respectively. The distributions appear to differ
markedly. These differences are corroborated by two simple nonparametric tests. A Friedman test
indicates that for none of the orientations the efficiency measures together follow a common
distribution. Furthermore, with the exceptions of the pairs DF;(x,y)-DF,(x,y), FL;(x,y)-FL.(x,y),
Z(x,YFZ(x,y), AF(xy)-AF,(x,y), FL(x,y)-FL(x,y), Zi(x.y)-Z(x,y) and Z,(x,y)-FL,(x.y), the
Wilcoxon signed-rank test indicates that no pair of efficiency measures shares the same distribution.
As these results are reasonable, details on these test statistics are suppressed in the interest of space
limitations.

Our results also illustrate the sensitivity of the efficiency measures to the dimensionality of
the data, a problem discussed earlier. When comparing the input-based and graph efficiency
measures, for instance, the total number of dimensions per se does not change, but the graph
measures do evaluate efficiency over a largér number of dimensions than do the input measures. On
the one hand, it is clear that the radial measure can not decrease and the asymmetric Fire measure
can not increase as variable dimensions are added. The mean of the former increases and its range
decreases, while the mean of the latter decreases and its range increases. On the other hand, for the
Fire-Lovell and the Zieschang efficiency measures the impact of adding dimensions in the
computation of efficiency measures is unclear from the aggregated results. Additional insight,
especially for these nonradial efficiency measures, is achieved by a detailed accounting of the number
of decreasing, constant and increasing efficiency scores among the inefficient observations. Adding
dimensions in the calculation of the efficiency measures, for instance moving from the input-based
to the graph measures, has the following effects in the FDH analysis. The Debreu-Farrell efficiency
measure increases in about 70% of the cases and is constant for the other inefficient observations.
The asymmetric Fire efficiency measure decreases for about 50% of the inefficient activities and is
constant otherwise. Both the Fare-Lovell and the Zieschang efficiency measures are likely to increase
in about 58% of the cases and decrease in the remaining cases. These results confirm our
expectations, though the véry strong similarity between the Fare-Lovell and the Zieschang efficiency
measures is somewhat surprising. The latter result, which may be peculiar to our data set, requires
further reflection, especially if one takes account of the earlier observation that the pairs FL,(x,y) and
Z(x,y) and FL,(x,y) and Z(x,y) follow a common distribution.

Table 3 contains the Pearson product-moment correlations across efficiency measures. Since
the correlations based on the full sample are very high due to the high number of efficient
observations, the correlations are only described for the inefficient observations only. In this case,
the correlations are lower, though still relatively high. The highest correlations are those between
the two radial graph efficiency measures and between the Fire-Lovell and Zieschang efficiency
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measures. The latter high correlation is explained in part by the fact that the Fire-Lovell and
Zieschang efﬁciéncy measures coincide if they relate an observation to a common projection point
in the efficient subset. This is not too surprising since both measures partly share the same structure,
though it is not obvious a priori that this would imply such similar rankings. Compared with the
other measures, the asymmetric Fire efficiency measure has the lowest correlation coefficients. It
correlates fairly well with the Fire-Lovell measure, not as well with the Zieschang measure, and the
correlation between it and the Debreu-Farrell measure is the weakest in the table.

Finally, it should be noted that like efficiency measures correlate fairly well across the three
orientations, though the correlation between input and output orientation is rather low; e.g., the
" correlation between AF{x,y) and AF,(x,y) is only .334. However, unlike measures correlate much
better within an orientation than they do across orientations. The correlations across orientations aré
again lowest when comparing the ranking of input and output orientations. Overall, this indicates
that, at least under the FDH reference technology, both choice of measure and choice of orientation
impact efficiency rankings. Thus, if performance ranking is a primary objective or if there is
uncertainty about organizational objectives, it seems advisable to perform a sensitivity analysis with
regard to the choice of measure and the orientation of efficiency measurement.

The distinction between the isoquant and the efficient subset is important in theory.
Furthermore, differences among the various efficiency measures exist m both theory and in practicé.
However, it may the case that in practice the Debreu-Farrell measures serve as "good”
approximations to the nonradial efficiency measures. If Debreu-Farrell measures scale down the
inefficient observations "close” to the efficient subset, then the choice to use them over one of the
alternatives may not be of much consequence. It is therefore worthwhile to assess the Debreu-Farrell
measures’ powers of approximation relative to the efficient subset for the banks in our sample. For
this purpose we use the terminology of Fried et al. (1993), Lovell (1992, 1993) and Lovell and
Vanden Eeckaut (1994) who suggest reporting any remaining "slacks” when using radial efficiency
measures on the FDH technology. "Total slack® per dimension is deﬁned.as the difference in input
and output usage between the evaluated observation and its most dominating observation (i.e., the
dominating observation in the efficient subset against which its efficiency is measured). Slacks
therefore refer to the excessive utilization of inputs and/or the underprovision of outputs. This "total
slack” can be decomposeﬂ into radial and nonradial components. The "radial slack” denotes the
difference between the evaluated observation and the projection point of the radial efficiency measure
on the isoquant. The "nonradial slack" equals the "total slack” minus the "radial slack.” These
notions of slack are illustrated in Figure 2. Note that because slack is measured in the original units
of the input and output variables, meaningful comparisons are made possible by expressing slack as

a percentage of the observed values.
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Table 4 illustrates the problem of slacks for the radial input-based measure of techmcal
efficiency.® Observe that on FDH this radial input measure may leave "nonradial slacks™ in up to
m-1 input and in all n output dimensions. As all 166 inefficient observations are scaled down to the
isoquant (or weak efficient subset) of the input correspondence, the “total slacks" are rather important,
averaging 40% of the initial input dimensions and 110% of the initial output dimensions. In general
the range is wide, especially in the output dimensions. The radial measure partially eliminates the
" total slack.” "Radial slack"” averages only 19% of the "total slack” in each input dimension, with
a maximum value of about 61%. The "nonradial,” or remaining, slack is more important in two of
the‘ three input dimensions, Only for the second input dimension (i.e., capital) does the radial
efficiency measure manage, on average, to eliminate most of the "total slack” in production.

This result is in line with what one would expect, and it is consistent with the findings of
pervasive remaining slacks reported in Fried et al. (1993) and Lovell (1992). It appears that the
- radial efficiency measure poorly bridges the gap between inefficient observations and the efficient
subset, It is therefore serves Ias a poor approximation of the nonradial efficiency measures.
Furthermore, it is ctear that in the case of the FDH reference technology, restricting attention to the
input orientation of measurement may leave a lot of unmeasured slack in the output dimensions. This

result clearly illustrates the usefulness of graph efficiency measurement on FDH.

5. SUMMARY AND CONCLUSIONS

The purpose of this paper was twofold. First, the choice among measures as well as orientation for
assessing technical efficiency was analyzed from a theoretical viewpoint. A review of the axiomatic
literature provided a list of desirable properties that an "ideal” measure of technical efficiency would
possess. It also suggested three nonradial alternatives to the standard radial measure of Debreu-
Farrell. Both the Debreu-Farrell measure and its rivals were presented for input, output and graph.
orientations. Unfortunately, none of these measures satisfies all of the desirable properties. The case
against the Debreu-Farrell measure is based on its failure to comply with the Koopmans definition
of technical efficiency. The second purpose of the paper was to illustrate these various measures of
technical efficiency for a set of data on U.S. banks using the FDH approach. FDH is an attractive
deterministic-nonparametric reference technology for the evaluation of productive efficiency.
Furthermore, FDH accentuates the shortcomings of "radial" efficiency measurement, therefore

providing a good test case for examining the practical importance of the choice among alternative

-2 As pointed out by a referee, if the computation of an efficiency measure yields alternate optima, then it is
important to compute the associated slacks so as to determine the correct projection point (see also Bardhan et
al. [1994]). In this sample, there were alternative optima for the radial output and/or graph efficiency measures of
two observations only.
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efficiency measures and orientations, The empirical example reveals wide differené&s in the
distributions of efficiency scores and in the resulting correlations across alternative measures and
orientations, It also demonstrates that the Debreu-Farrell efﬁciehcy measure is not a very close
substitute for the nonradial alternatives, as, on average, it scales inefficient observations down to
projection points far removed from the efficient subset.

Two final conclusions emerge from the analysis. First, because the efﬁcient subset is
relatively small for the FDH reference technology, the choice among various efficiency measures is
of crucial importance in measuring technical efficiency. In particular, our empirical example indicates
that the radial efficiency measure does a poor job of closing the distance between imefficient
observations and the efficient subset. For the FDH reference technology, the graph oriented measures
of efficiency appear to be helpful in complying with Koopmans definition. Second, both a priori
theoretical arguments and the empirical evidence resulting from analyzing a sample of U.S. banks
suggest that the Fire-Lovell and Zieschang efficiency measures provide valuabie alternatives to the
standard radial measure of Debreu-Farrell.
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APPENDIX
For the FDH input correspondence the radial efficiency measure in the inputs (i.e., DF(x,y)) may be
calculated by solving the following mixed integer programming problem for each observation (x°,y°):
min, A
st Yizz2y
X'zsx'A
Lz -1
z, €10,1} fori - 1,k
Az2022>0.

An easy approach for solving this problem is to use a siinple vector dominance procedure. This
procedure has been discussed in detail in Tulkens (1993) for the case of the radial efficiency
measurement. For convenience, we outline this 'procedure and then proceed to adapt the algorithm
for the computation of the nonradial efficiency measures.
_ For the radial Debreu-Farrell efficiency measure the algorithm proceeds in two steps:
(i) For each observation to be evaluated, (x*,y*), define an index set DO(x°,y") containing the
observations that dominate (x°,y) in the sense that ihey produce at least as much of each

output with no more of any input. Formally:

DOGx°y?) - {(xy) | x, s x°% 3 2%
(ii) Calculate the radial efficiency measure in the inputs, DF,(x,y), by applying the following
algorithm:

DF(xy) = min, . poqe,s MAK [—], I-1,..m.

The input ratios between the inefficient observation and the dominating observation are maximized
to allow for a common reduction in all input dimensions. The minimum of these ratios is then found
over the set of weakly dominating observations to conform to the minimization formulation in the
mixed integer programming formulation. Remark that if this minimum is not unique, thea it is
necessary to maximize the slacks and to select the one with the maximal slacks as a projection point.
This same remark applies for the calculation of all efficiency measures discussed beloiv. .

Calculating the non-radial efficiency measures requires only a small change in the second step
of the vector dominance procedure. The computation of the Fare-Lovell, the Zieschang and the
asymmetric Fiire input efficiency measures are discussed in turn.

The Fire-Lovell efficiency measure in the inputs, FL,(x,y), can be calculated by applying the



following algorithm:

F.[.a,l(x,y) - min(“")emo"ﬂ 5 I‘, -

m

The Zieschang efficiency measure in the inputs, Z;(x,y), requires the computation of a pair
of efficiency measures for each observation (",y"). First, the radial efficiency measure in the inputs
(i.e., DF,(x,y)) is calculated in two steps as described above. Second, the Fire-Lovell efficiency
measure (i.e., FL/(x,y)) is calcu.lated' for the modified observation (i.e., the input-output pair
DF,(x,y) %, ¥*). Note that the latter calculation again involves two steps. The first step determines
the subset ‘of the set DO(x°,y") containing the observations which weakly dominate (DF,(x,y) °,y°) in
the inputs and which are not dominated in the outputs by (DF;(Jé,y) x°,y") (this subset is denoted
DODF;(x,y)x",y")). The second step applies the above mentioned algorithm for determining the
Fire-Lovell efficiency measure on DO(DF(x,y)x°,y).” The Zieschang efficiency measure is
simply the product of these two efficiency measures.

The asymmetric Fire efficiency measure in the inputs AF,(x,y) is obtained by the following
algorithm:

. p
AR(xy) = mif, ) cnoee,ys il [x—:] I-1,..m.

The output efficiency measures are defined relative to the FDH output correspondence, The
computation of the output efficiency measures simply requires a change in the dimensions considered
in the second step of the vector dominance procedure. The Debreu-Farrell output efficiency measure,
DF,(x,y), is calculated as follows: '

DF,(xy) - maX,) cpoge 5 mm,[:—:} jelom.

As to the nonradial efficiency measures in the output orientation, these are defined by an
analogous modification of the second step in the algorithm. First, the Fire-Lovell cutput efficiency

2¥Note that if the optimal salution for DF(x,¥) i8 not unique, then the caiculation of the second component (i.c., the Fire-Lovell
- efficiency measurs) must be repeated for each of these solutions.
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measure, FL (x,y), requires solvmg:
-~ [

FL (xy) - max, ) cpogeys 1 Yog).
"

Second, the Zieschang output efficiency measure, Z (x,y), again requires the computation of
a pair of efficiency measures for each observation (x°,y°). First, the radial output efficiency measure
(i.e., DF,(x,y)) is calculated in two steps as described above. Second, the Fire-Lovell output |
efficiency measure (i.e., FL,(x,y)) is calculated for the modified observation (x*,DF,(x,y) ¥°}). Note
that the outputs of the observation (x°,y*) are expanded by an amount indicated by the radial output
efficiency measure DF (x,y).

Third, the asymmetric Fire output efficiency measure AF (x,y) is obtained by means of the
following algorithm:

AFo(x.\y) - mnx("',') em‘.f’) m [:_:], j_l,...,u.

To obtain an efficiency measure in the outputs which is no larger than unity, it is only
required that the second step outlined above is slightly adjusted. For instance, in the case of the
radial output efficiency measure the second step becomes: '

DF,(xy) - ming, ) cpogeeys WA, [;—:} i1

For the other output-oriented efficiency measures similar adjustments can be made;

The graph efficiency measures are defined relative to the FDH graph correspondence. The
computation of the graph efficiency measures simply extends the number of dimensions involved in
the second stép of the vector dominance algorithm. The Debren-Farrell graph efficiency measure,
DF,(x,y), is calculated by applying the following formula:

. X ¥ .
DF'(x,y) = M, pogeys DXy [Z,i]. 1=-1,.m, j=1,.n;
and the generalized Debreu-Farrell graph efficiency measure, GDF‘(x,y), is similarly obtained as:

)l

GDF(xy) = mitl, ;) enowe.y) 2

The nonradial graph efficiency measures are defined in very similar fashions. First, the



Fare-Lovell graph efficiency measure, FL (x,y), results from applying the following algorithm:

a g 2y

\ (25

FL'(I,)?) - minc'””em..'.) -1 | Xy 1 \Yy).
m+n

Second, the Zieschang graph efficiency measure, Z,(x,y), again requires the computation of
a pair of efficiency measures for each observation (x*,y°). First, the radial graph efficiency measure
(i.e., DF,(x.y)) is calculated in two steps as described above. Second, the Fiare-Lovell graph
efficiency measure (i.e., FL/(x,))) is calculated for the modified observation
(DF,(x,y) 2°,(DF (x,y))* 9). Note that the inputs and the outputs of the observation (x°,y°) are
reduced respectively expanded by an amount indicated by the radial graph efficiency measure
DF,(x,y). _

“Third, the asymmetric Fire graph efficiency measure AF,(x,y) is obtained by implementing
the foliowing algorithm:

, . X3 Yoy ,
AF'(IJ) - mﬁ..yﬂébﬂ:'.y') mmu [x—d. 'y—v], ‘-1,-..,.'!, ]-l,._,n.
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Table 1: Descriptive Statistics on the Sample of U.S. Banks

Inputs/ Mean Standard Minimum Maximum
Ouiputs Deviation , _
% 11.17 130.0 5.10 1165.79
% 533145.05 790336.7 2260.13 7608838
% 1034901.77 1372993.0 36806.48 1155379.05
» 12334.50 15819.4 136 151029
¥ 25470.81 34238.0 26 404045
¥ 2764.97 23965.5 0 570385
Ye 5949.33 10332.9 0 151828
s 1476.99 3822.2 0 84515
Table 2: Efficiency Measures on an FDH Reference Technology (N=575)
E(x,y) Mean Standard  Skewness Kurtosis Minimum Maximum
Deviation '
—
DF{x.y) 944 114 2.338 8.285 391 1.000
FL{(x,y) 879 206 1372 3.416 1.000
Zi(x,y) 888 192 .1.448 3.755 225 1.000
AF{(x,y) 798 338 -1.253 2.868 1.000
DF,(x,y) 949 107 2.410 8.784 37 1,000
FL,(x,y) .879 205 | -1.376 3.480 223 1.000
Z,(x,y) 885 .196 1411 3.623 205 1:000
AF,(5y) 797 33 -1.161 2.595- 005 1.000
DF,(x,y) o7 065 2932 13.337 486 1.000
GDF,(x,y) 954 086 2,050 7216 440 1.000
- FL(xy) 885 .190 -1.244 2.982 306 1.000
Z,(xy) 893 178 127 3.127 306 1.000
AF(x,y) an 369 -1.081 2.328 .005 1.000
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Figure 3: Densities of input technical efficiency measures on the FDH (inefficient observations only)
30

25

2

2

Frequency

107

1]

0.1

0.05 015 025 035 045 055 0.65 075 0.85 085
Efficiency Meaeuree

[—-—lnp Farrell ~a- Inp Aoym Fére -®--Inp Fére-Lovell -5~ Inp Jeschang ]

Figure 4: Densities of output technical efficiency measures on the FDH (iliefﬁcient observations
only)
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Figure 5: Densities of graph technical efficiency measures on the FDH (inefficient observations only)
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Table 4: Slacks and Radial Efficiency in the Inputs (N=166)

Dimension " Mean Standard Maximum Minimum
Deviation o
Total Slack (%)
Input 1 | 54.31 24.93 1 99.32
Input 2 21.70 14.11 : 09 60.91
Input 3 40,07 21.00 . 02 94.68
Output 1 : 23.97 27.47 o4 190.10
Output 2 85.57 105.78 53 1023.00
Output 3 174.82 364.82 o 3018.00
Cutput 4 105.92 183.70 78 1418.00
Output § . © 153.66 461.68 0 5348.00
Slack Eliminated by the Radial Efficiency Measure (%)
All Inputs 19.33 13.71 .03 60.90

Slack Not Eliminated by the Radial Efficiency Measure (%)

Input 1 399 : 24.54 0o 94.51
Input 2 2.38 5.75 0 27.41
Input 3 20.74 17.44 ' 0 7523
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