
This item is the archived peer-reviewed author-version of:

Semantic validation of affinity constrained service function chain requests

Reference:
Bouten Niels, Claeys Maxim, Mijumbi Rashid, Famaey Jeroen, Latré Steven, Serrat Joan.- Semantic validation of affinity
constrained service function chain requests
IEEE NetSoft Conference and Workshops (NetSoft) 2016, June 6-10, Seoul, Korea - ISBN 978-1-4673-9486-4 - S.l., IEEE, 2016,
p. 202-210 
Full text (Publishers DOI): http://dx.doi.org/10.1109/NETSOFT.2016.7502414

Institutional repository IRUA

http://anet.uantwerpen.be/irua


Semantic Validation of Affinity Constrained Service
Function Chain Requests

Niels Bouten⇤, Maxim Claeys⇤, Rashid Mijumbi†, Joan Serrat‡, Jeroen Famaey§, Steven Latré§, Filip De Turck⇤
⇤Department of Information Technology, Ghent University - iMinds, Gaston Crommenlaan 8/201, B-9050 Ghent, Belgium

†Telecommunications Software and Systems Group, Waterford Institute of Technology, Ireland
‡Network Engineering Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

§Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
email: niels.bouten@intec.ugent.be

Abstract—Network Function Virtualization (NFV) has been
proposed as a paradigm to increase the cost-efficiency, flexibility
and innovation in network service provisioning. By leveraging
IT virtualization techniques in combination with programmable
networks, NFV is able to decouple network functionality from the
physical devices on which they are deployed. This opens up new
business opportunities for both Infrastructure Providers (InPs)
as well as Service Providers (SPs), where the SP can request
to deploy a chain of Virtual Network Functions (VNFs) on top
of which its service can run. However, current NFV approaches
lack the possibility for SPs to define location requirements and
constraints on the mapping of virtual functions and paths onto
physical hosts and links. Nevertheless, many scenarios can be
envisioned in which the SP would like to attach placement con-
straints for efficiency, resilience, legislative, privacy and economic
reasons. Therefore, we propose a set of affinity and anti-affinity
constraints, which can be used by SPs to define such placement
restrictions. Furthermore, a framework is proposed that allows
the InP to check the validity of a set of constraints and provide
feedback to the SP. To achieve this, the Service Function Chain
(SFC) request and relevant information on the physical topology
are modeled as an ontology of which the consistency can be
checked using a semantic reasoner.

I. INTRODUCTION

In the traditional telecommunications networking approach,
functionality of a network node is strongly tied with the
physical network device it runs on. Typically, the network
operator needs to deploy a dedicated network appliance for
each Network Function (NF) (e.g., Deep Packet Inspection
(DPI), Firewall). In addition, NFs have a strict chaining that
must be adhered to when deploying a specific service. Thus,
service deployments are tightly coupled to the underlaying
network topology. These reasons, together with the ever in-
creasing requirements for high quality and stability have led
to long product cycles, limited service agility and considerable
dependence on specialized hardware. To be able to compete
with Over-The-Top (OTT) service providers, which typically
have much shorter product development cycles, and to limit
the Capital Expenditures (CAPEX) and Operational Expen-
ditures (OPEX) involved with physical network expansions,
the network operators need to devise novel and less expensive
ways to meet the increased capacity requirements and at the
same time reduce the time to market of new services.

The Network Function Virtualization (NFV)-paradigm [1],
[2] has been introduced to alleviate the aforementioned issues

by leveraging IT virtualization technology to decouple the
network functionality from the physical infrastructure. This
allows NFs to run on standard high volume servers, storage
devices and switches. The advantages are manyfold. First there
potentially is a significant reduction in total costs through more
efficient maintenance which can be performed remotely. In
addition, thanks to the increased flexibility offered by virtu-
alization, resources can be shared and used more efficiently.
Finally, NFV has the potential to allow network operators to
deploy novel services cheaper and faster with higher service
agility.

The concepts of NFV open up new business opportunities in
the form of Virtual Network Function Infrastructure Providers
(VNFInPs), acting as brokers between Infrastructure Providers
(InPs) and Service Providers (SPs). These VNFInPs lease the
infrastructure offered by different InPs and deploy, orchestrate
and interconnect Virtual Network Functions (VNFs) to create
Service Function Chains (SFCs) [3], that are run by SPs to
offer value-added services to their customers. InPs can profit
by maximizing resource utilization and optimizing energy
usage by offering their virtualized infrastructure to remote
parties. SPs benefit from the proposed model since it allows
rapid deployment and testing in a real network environment,
thus leveraging faster time to market of new services. The
offered services benefit from the dynamic nature of the net-
work, computing and storage resources offered by the Virtual
Network (VN), which allows them to scale dynamically based
on service requirements and user mobility.

Together with these new opportunities and stakeholders, a
set of new interactions arises as well. For example, the SPs
need a way to express their SFC requests and requirements to
the VNFInP. In traditional network embedding approaches,
only node and link restrictions can be specified. However,
many scenarios can be envisioned where a SP might want to
attach more detailed constraints concerning the placement and
routing between NFs as well as constraints on their affinity. For
example, to increase efficiency, the SP might want to require
the embedding of VNFs within the same datacenter or even
on the same host. Other reasons for more detailed affinity
and anti-affinity constraints could be resilience, economic,
legislative and privacy issues. In this paper, a set of affinity and
anti-affinity constraints is proposed that increases the control



of SPs on the embedding of their SFC requests.
With this newfound ability to add custom constraints, the

possibility arises that conflicting constraints are introduced by
SPs in their SFC requests. Therefore, the VNFInP needs to be
provided with a means to check the validity of SFC requests
and inform the SP on potential conflicts. Since SFC requests
can contain many VNFs, virtual edges and constraints, de-
tecting conflicts within these requests is not a straightforward
task, neither for human operators, nor for computer systems.
Since conflicts can arise between sets of constraints, pairwise
detection will not suffice. Therefore, this paper proposes to
take advantage of semantic modelling to define an ontology
and rule set, which can be enriched with individuals based
on the specific SFC request. Using a semantic reasoner, the
consistency of this entire ontology can be determined and
subsequently the validity of the SFC request can be assessed.

The contributions of this paper are threefold. First, the
sets set of affinity and anti-affinity constraints are defined
that can be attached to a SFC request by the SP. Second,
we extend an existing virtualization description language to
support these constraints. Finally, we propose and evaluate a
semantic conflict detection mechanism that can be employed
by the VNFInP to check the validity of SFC requests.

II. RELATED WORK

NFV has been proposed as a paradigm that allows more
flexible service deployment by leveraging IT virtualization
technology in combination with programmable networks [4],
[5]. To attain the gains promised by NFV, the VNFs and
interconnecting virtual links should be efficiently mapped onto
the physical substrate. To achieve this, several placement algo-
rithms have been proposed in the related fields of virtual net-
work embedding [6] and virtual datacenter embedding [7], as
well as for NFV [8]. A placement algorithm can be formulated
as an optimization problem with a particular objective such
as load balancing, resource utilization, acceptance ratio, etc.
Basta et al. propose a model for placing virtualized Evolved
Packet Core (EPC) functions in a way that minimizes the
network overhead introduced by Software Defined Networking
(SDN) control plane interactions [9]. Mehraghdam et al.
apply Mixed Integer Quadratically Constrained Programming
(MIQCP) to solve the placement problem and conclude that
to obtain efficient use of resources, the placment of functions
should be different according to the desired objective [10].
Moens et al. propose an Integer Linear Programming (ILP)-
based solution in which hybrid scenarios are considered where
part of the functions are provided by dedicated physical
hardware and part of them by virtualized instances [11]. Others
propose a heuristic approach to deal with the intractability
of the aforementioned optimization approaches. Xia et al.
propose a greedy heuristic which sorts VNFs according to the
resource demands and embeds the resource-demanding VNFs
with highest priority [12]. Yoshida et al. propose a multi-
objective resource scheduling algorithm which optimizes si-
multaneously possibly conflicting objectives with multifaceted
costraints [13]. None of the aforementioned approaches offers

support for attaching affinity or anti-affinity constraints to the
SFCs nor do they take into account such constraints when
evaluating the embeddings.

Affinity and anti-affinity restrictions have previously been
studied in the context of grid and cloud computing. Many
argued that the lack of influence on the placement of workflow
or service components is a hindrance for the adoption of
the technology [14], [15]. Even though performance and
economical benefits of cloud computing are clear, potential
users hesitate to use the technology because legal, privacy,
efficiency and resilience aspects are completely out of their
control. Also recent media coverage shows an increased con-
cern by end-users about their data privacy, raising the need
for SPs to take into account privacy and legal issues when
offering their services. These concerns also arise for NFV
when deploying VNFs at certain locations and transferring
data between them over virtual paths. Therefore, we argue
that also in NFV, mechanisms should be designed to allow
SPs to add constraints concerning locality and affinity, both to
VNFs as well as the interconnecting paths.

The solutions proposed in affinity and anti-affinity context
in cloud computing mostly relate to two aspects: develop-
ing models to describe affinity rules and developing service
placement algorithms that can work under the constraints of
these rules. Konstanteli et al. present a set of affinity rules for
cloud computing applications which are added to a Mixed-
Integer Non-Linear Programming (MINLP) [16]. The authors
define constraints that require allocating components/services
in the same subnet or physical node or prevent services to be
federated. Espling et al. propose a model for defining Virtual
Machine (VM) placement in cloud computing supporting a set
of affinity and anti-affinity constraints [17], [18]. We extend
this approach by defining affinity and anti-affinity restrictions
for SFCs. To this end we add support for specification of
constraints on the path between network functions and fur-
thermore a more expressive syntax that allows constraints to
apply to specific VNFs, VNF types, locations and location
types. Furthermore, a semantic framework is proposed which
allows to check the validity of these constraints.

One of the benefits of NFV is that it supports automated
orchestration of services. To achieve this, a number of descrip-
tions are needed for everything that was configured manually
in the past, including VNFs and network requirements. Also
Service Level Agreement (SLA)-related parameters such as
affinity and anti-affinity rules should be transformed into
machine-readable description formats [19]. Huawei mentions
the generation of affinity and anti-affinity policies as a mech-
anism for fault prevention [20]. In the definition of Service
Quality Metrics by ETSI, special attention is brought to the
enforcement of NFV customer anti-affinity rules which can
improve the availability mechanisms [21]. The automatically
generated affinity rules for VNFs in combination with user-
specific affinity requirements could lead to conflicting con-
straints. In this paper a machine-readable format for affinity
and anti-affinity constraints is proposed. Furthermore, we
establish an automated way to detect conflicting constraints

https://www.researchgate.net/publication/273395007_Network_Function_Virtualization_Challenges_and_Opportunities_for_Innovations?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/236158064_Virtual_Network_Embedding_A_Survey?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/260670876_Data_Center_Network_Virtualization_A_Survey?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/281524200_Network_Function_Virtualization_State-of-the-art_and_Research_Challenges?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/266660724_Applying_NFV_and_SDN_to_LTE_mobile_core_gateways_the_functions_placement_problem?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/262877871_Specifying_and_Placing_Chains_of_Virtual_Network_Functions?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/268800292_VNF-P_A_Model_for_Efficient_Placement_of_Virtualized_Network_Functions?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/272590519_Network_Function_Placement_for_NFV_Chaining_in_PacketOptical_Datacenters?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/286428082_MORSA_A_multi-objective_resource_scheduling_algorithm_for_NFV_infrastructure?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/220951667_A_Monitoring_and_Audit_Logging_Architecture_for_Data_Location_Compliance_in_Federated_Cloud_Infrastructures?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/229151024_Admission_Control_for_Elastic_Cloud_Services?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/224253319_Scheduling_and_monitoring_of_internally_structured_services_in_Cloud_federations?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/285445480_Modeling_and_Placement_of_Cloud_Services_with_Internal_Structure?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==
https://www.researchgate.net/publication/297090577_Virtualizing_network_services_-_The_telecom_cloud?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==


based on ontologies. The proposed conflict detection is ap-
plicable for both user-generated as well as automatically
generated affinity constraint sets.

III. AFFINITY AND ANTI-AFFINITY CONSTRAINT MODEL

In an NFV context, SPs have no control over the mapping
of VNFs to physical hosts or SFC edges to physical paths.
Nevertheless, many situations can be envisioned where an SP
might want to attach constraints to the placement of certain
functions or on the routing of traffic, such as:

• Efficiency: VNFs that exchange a lot of data may want to
be positioned close to one another (e.g., within the same
datacenter, or even on the same physical host).

• Resilience: The SP might want to spread instances of
the same VNF across multiple datacenters in order to
improve resilience in case a failure occurs in one of the
datacenters.

• Legislation: The SP might want to avoid hosting VNFs
in certain countries due to legislative restrictions.

• Privacy: SPs or their customers might not want the traffic
to pass through certain domains due to privacy concerns.

• Economic: SPs might have economic reasons (e.g., peer-
ing agreements) to place their functions in or route their
traffic through certain domains.

However, currently there is no way to specify or model
such requirements in an SFC template. In this section, a set
of affinity and anti-affinity constraints for VNFs and their
interconnecting paths are proposed. The affinity constraints
apply to a set of physical locations P , a set of VNF instances
V and a set of edges interconnecting them E. There are
different location granularities g 2 G that can be considered
(e.g., network domains, datacenters, hosts), leading to a hierar-
chical structure of locations. Two hosts in a single datacenter
represent different locations at the granularity of hosts, but
have the same location at the datacenter level. P g ⇢ P is
the set of locations at a certain granularity g. Furthermore,
each VNF instance has an associated VNF type t 2 T (e.g.,
firewall, DPI), forming subsets V t ✓ V of VNFs with type t.
Finally, each virtual edge e = (a, b) 2 E connects two VNFs
a 2 V and b 2 V and maps to a single or path of physical
network links. We propose the following constraints:

• Affinity(p 2 P g, v 2 V or t 2 T ): A specific instance v
or all instances v 2 V t of type t 2 T must be located at
a specific location p with granularity g.

• Anti-Affinity(p 2 P g, v 2 V or t 2 T ): A specific
instance v or all instances v 2 V t of type t 2 T may
not be located at a specific location p with granularity g.

• Affinity(p 2 P g or g 2 G, v 2 V or s 2 T,w 2
V or t 2 T ): A specific instance v or all instances
v 2 V s must be placed together with a specific instance
w or all instances w 2 V t at a specific location p 2 P g

or at the same location at a specific granularity g 2 G.
• Anti-Affinity(p 2 P g or g 2 G, v 2 V or s 2 T,w 2

V or t 2 T ): A specific instance v or all instances v 2
V s may not be placed together with a specific instance

w or all instances w 2 V t at a specific location p 2 P g

or at the same location at a specific granularity g 2 G.
• Affinity(p 2 P g, e 2 E[, c 2 (0, 1]]): A virtual edge

e 2 E must pass through a specific location p 2 P g

with a granularity g 2 G. The parameter c is an optional
percentage, defining the portion of links comprising the
physical path associated with the virtual edge that must
at least be part of p 2 P g . If c = 1, all links must belong
to p 2 P g . If c is omitted, at least one link must be part
of p 2 P g .

• Anti-Affinity(p 2 P g, e 2 E): The physical links com-
prising the virtual edge e 2 E may not pass through a
specific location p 2 P g with a granularity g 2 G.

• Affinity(e 2 E, f 2 E): Two virtual edges e 2 E and
f 2 E must overlap (i.e. one or more physical links
comprising the virtual edges must be part of both e and
f ).

• Anti-Affinity(e 2 E, f 2 E): Two virtual edges e 2 E
and f 2 E may not overlap (i.e. none of the physical
links comprising the virtual edges may be part of both e
and f ).

A wide range of languages could be used to define the
constraints outlined above, depending on the language used
to define the SFC template. As an SFC is generally a directed
acyclic graph structure, the specification language should be
capable of modelling this. To model the constraints, we
use an extension of the DTMF Open Virtualization Format
(OVF) version 2.1.11. The OVF descriptor is an XML-based
language for annotating software to be run in virtual machines,
such as product details, virtual hardware requirements and
licensing. Espling et al. [18] expanded the OVF descriptor
with additional constructs for defining constraints in structured
cloud services. We expanded upon this work to additionally
model the affinity and anti-affinity constraints for both node
and edge mapping for SFCs. Figure 1 shows how the affinity
constraint subtypes could be defined.

To further clarify the presented constraint formulations and
syntax, an example of an SFC request with both affinity
and anti-affinity constraints will be presented next. Given a
set of location types {Autonomous System (AS), Datacenter
(DC), Host} and a set of network function types {Firewall,
DPI, Cache, StreamingServer}. An example SFC is depicted
in Figure 2, where a streaming server is connected to two
DPI functions (for tagging data packets), which in turn are
connected to a firewall (for filtering) and a content cache. The
DPI functions may either directly forward content to the cache
or may send it to the firewall for filtering. Suppose a SP wants
to offer a Video on Demand (VoD) service in Belgium where
two major telecom providers are active: Telenet (AS6848)
and Proximus (AS6774). Let us consider the following set of
affinity and anti-affinity constraints:

• Affinity(AS6848, c1)
• Affinity(AS6774, c2)

1DMTF - OVF Specification - https://www.dmtf.org/sites/default/files/
standards/documents/DSP0243 2.1.1.pdf

https://www.researchgate.net/publication/285445480_Modeling_and_Placement_of_Cloud_Services_with_Internal_Structure?el=1_x_8&enrichId=rgreq-908ed396c7b409fbef5d1551ddf42111-XXX&enrichSource=Y292ZXJQYWdlOzI5ODE2NzkzMDtBUzozMzk0NjgzNTY3MzQ5NzZAMTQ1Nzk0Njk3MTkyNw==


<xs:element name="Affinity" type="Constraint">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:choice>
<xs:element name="locType" type="LocationType" />
<xs:element name="loc" type="Location" />

</xs:choice>
<xs:choice>

<xs:element name="funcTypeA" type="FunctionType" />
<xs:element name="funcA" type="NetworkFunction" />

</xs:choice>
<xs:choice minOccurs="0">

<xs:element name="funcTypeB" type="FunctionType" />
<xs:element name="funcB" type="NetworkFunction" />

</xs:choice>
</xs:sequence>
<xs:sequence>

<xs:element name="connC" type="Connection" />
<xs:choice>

<xs:element name="connD" type="Connection" />
<xs:choice>

<xs:element name="locType" type="LocationType" />
<xs:element name="loc" type="Location" />

</xs:choice>
</xs:choice>
<xs:element name="perc" type="Percentage" minOccurs="0" />

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

Fig. 1: OVF specification extension for modelling Affinity
node and link constraints.

c1:Cache

c2:Cache

f1:Firewall

f2:Firewall

d1:DPI

d2:DPI

s:StreamingServer
e1

e2

e3

e4

e5

e8 e6

e7

Fig. 2: An example SFC.

• Affinity(DC, e3, 1)
• Affinity(DC, e6, 1)
• AntiAffinity(e1,e2)
• AntiAffinity(DC, DPI, DPI)
Specifically, the first two constraints state that the caches

need to be located in the Telenet and Proximus AS respectively
(e.g., because they should be close to the end user and limit
uplink traffic through other networks). The third and fourth
constraint define that the edges e3 and e6 between firewall
and DPI functions should be completely embedded within
a single DC, automatically forcing the DPI and connected
firewall to be deployed within that DC. Finally, to improve
fault tolerance, it is stated that edges e1 and e2 can not have
any links in common and that functions with type DPI should
not be deployed within the same DC. Using the XSD schema
defined above, the constraints can be represented as shown in
Figure 3.

IV. SEMANTIC SFC REQUEST CHECKER

Since SPs are now free to specify their custom constraints
during the SFC request, it is possible that conflicting con-
straints are introduced. For example, extending the previous
example and adding the constraints Affinity(DC, c1, f1) (i.e.
specifying that c1 and f1 should be colocated in the same

<Affinity>
<location>AS6848</location>
<functionA>c1</functionA>

</Affinity>
<Affinity>

<location>AS6774</location>
<functionA>c2</functionA>

</Affinity>
<Affinity>

<locationType>DataCenter</locationType>
<connectionC>e3</connectionC>
<percentage>1</percentage>

</Affinity>
<Affinity>

<locationType>DataCenter</locationType>
<connectionC>e6</connectionC>
<percentage>1</percentage>

</Affinity>
<AntiAffinity>

<connectionC>e1</connectionC>
<connectionD>e2</connectionD>

</AntiAffinity>
<AntiAffinity>

<locationType>DataCenter</locationType>
<functionTypeA>DPI</functionTypeA>
<functionTypeB>DPI</functionTypeB>

</AntiAffinity>

Fig. 3: A simplified constraint specification for the example
SFC

AS4

AS3

AS2

AS1
AS5

DC2

DC3

DC4

DC1
DC5

NFV	Manager

SFC	
Requests

SFC	Embedding	
Algorithm

SFC	Request	
Checker

SDN	Controller Cloud	
Manager

Fig. 4: An overview of the NFV architecture with support for
semantic SFC request checking.

DC) and AntiAffinity(DC, Cache, Firewall) (i.e. specifying
that a VNF of type Cache can not be colocated with a
VNF of type Firewall in the scope of a DC) leads to a
conflicting constraint set. Also more complex conflicts can
appear when multiple constraints are involved in the con-
flicting set that can only be detected as a conflict when
considering the full set. For example, returning to the base
example from the previous section and adding the constraints
Affinity(AS, c1, f1) and Anti-Affinity(AS6848, d1) would lead to
a conflict set {Affinity(DC, c1, f1), Anti-Affinity(AS6848, d1),
Affinity(AS6848, c1), Affinity(DC, e3, 100)}. Since d1 and f1
should be colocated in the same DC due to the link affinity
constraint and f1 and c1 are colocated at the DC level, d1 and
c1 should be colocated at the AS level as well. Furthermore,
since c1 should be located in AS6848, d1 should be located in
the same AS. However, this inferred constraint conflicts with
the defined constraint Anti-Affinity(AS6848, d1).

When the VNFInP tries to deploy the requested SFC,
none of the resulting embedding configurations will lead to



Location LocationType

AS

DC

Host

isSubLocationOf

hasLocationType

VirtualNode VirtualLink

isNodeEmbeddedOn

isLinkEmbeddedOn

VNFType

hasNodeType

hasLinkNode

hasLinkIngressNode

hasLinkEgressNode

isLinkEmbeddedWithLink

NodeNodeRestriction

NodeNodeTypeRestriction

NodeTypeNodeTypeRestriction

hasNode

hasNodeType

hasNodeType

isNodeNodeEmbeddedOn

isNodeNodeTypeEmbeddedOn

isNodeTypeNodeTypeEmbeddedOn

isSubLocationTypeOf

isNodeNodeTypeEmbeddedOnLocationType

isNodeNodeEmbeddedOnLocationType

isNodeNodeTypeEmbeddedOnLocationType

isDirectSubLocationOf isDirectSubLocationTypeOf

hasNode

Fig. 5: Graphical representation of ontology.
a feasible realisation of the SFC request. The VNFInP should
however be able to differentiate between a non-acceptance of
the SFC request caused by a shortage of appropriate resources
and conflicting request constraints in order to inform the SP
on the reason why the SFC deployment failed. The previous
example shows the need for the VNFInP to check the validity
of an SFC request upon reception in order to exclude any
conflicting constraints when trying to provision the requested
SFC.

A. NFV Architecture for SFC Request Checking
Figure 4 depicts how the SFC request checking system

could be integrated into the NFV Manager. In this architecture,
the SFC Embedding Algorithm is responsible for assigning
physical hardware and resources to the SFC requests. Con-
cretely, it decides on which VNFs should be deployed on
which physical hosts and how many resources should be
assigned to them. The Cloud Manager performs the man-
agement of deployed VNFs and server resources. Moreover,
the algorithm selects the forwarding paths interconnecting the
VNFs and assigns network resources to them through the SDN
Controller. Before the SFC request is forwarded to the SFC
Embedding Algorithm it needs to be checked by the SFC
Request Checker to confirm the validity.

B. Ontology for SFC Request Modelling
This paper proposes to exploit ontology representations for

the purpose of modelling the physical substrate, the SFC re-
quest and defining a set of rules that can be used to infer addi-
tional information. Figure 5 represents the proposed semantic
model. The SFC request is modelled as a set of VirtualNodes
with a certain VNFType and VirtualLinks containing an ingress
and egress VirtualNode. The physical resources are modeled
at the granularity level of Hosts, DCs and ASs. Each of these
Locations has a certain LocationType (i.e., AS, DC or Host).
The hierarchical relations between these Locations and Lo-
cationTypes are modeled by isSubLocationOf and isSubLoca-
tionTypeOf respectively. To model affinity (respectively anti-
affinity) constraints for single virtual nodes and edges, positive

(respectively negative) object property assertions of the type
isNodeEmbeddedOn and isLinkEmbeddedOn are attached to
VirtualNodes and VirtualLinks respectively.

To be able to model more complex affinity and anti-
affinity relationships between two VirtualNodes, two VN-
FTypes or between a VirtualNode and VNFType, the addi-
tional concepts NodeNodeRestriction, NodeNodeTypeRestric-
tion and NodeTypeNodeTypeRestriction were added to the
ontology. By adding the respective positive (respectively neg-
ative) property isNodeNodeEmbeddedOn or isNodeNodeEm-
beddedOnType, one is able to model affinity (respectively
anti-affinity) restrictions for more complex constraints on the
Location or LocationType. By using the isLinkEmbeddedWith
relationship, affinity and anti-affinity constraints between links
can be modeled.

The Protégé editor2 was used to develop the SFC re-
quest modelling ontology using the Web Ontology Language
(OWL)3.

C. Rules

To be able to infer new information out of existing knowl-
edge, a set of rules is defined. For example, a new relationship
is defined in Rule (1) and (2), which is called isSubLocOrE-
qualOf that checks if a certain Location a is either equivalent
to b or a isSubLocationOf b is valid. This relationship will be
used later on to infer knowledge on affinity and anti-affinity
characteristics at a certain LocationType.

SameAs(a, b) ! SubLocOrEqualOf(a, b) (1)
SubLocOf(a, b) ! SubLocOrEqualOf(a, b) (2)

Rule (3) stipulates that if a certain VirtualNode x is em-
bedded on a Location y and if y is a sublocation of z, this
node is also embedded on Location z. When a VirtualNode
x of a certain VNFType y is embedded on a Location z, the
VNFType y is also embedded on that Location z (Rule (4)).
Rule (5) determines that if two VirtualNodes x and y are both

2Protégé - http://protege.stanford.edu/
3OWL2 - http://www.w3.org/TR/owl-features/



embedded on a Location a, then the NodeNodeRestriction z
containing x and y is embedded on the same Location a.
Similar rules can be determined for NodeNodeTypeRestriction
and NodeTypeNodeTypeRestriction, which are omitted due
to space restrictions. Rule (6) stipulates the opposite: if a
NodeNodeRestriction z containing VirtualNodes x and y is
embedded on Location a, then both VirtualNode x and y are
embedded on Location a. Similar rules can be determined for
NodeNodeTypeRestriction and NodeTypeNodeTypeRestriction.
Rule (7) determines that if VirtualNodes x and y are embedded
on Location a and Location b respectively and if both a and b
are either sublocations of or equal to Location c with Location-
Type l and x is not equal to y, then the NodeNodeRestriction
z containing both x and y is embedded on LocationType l.
Similar rules can be determined for NodeNodeTypeRestriction
and NodeTypeNodeTypeRestriction. If a VirtualLink z contains
a VirtualNode x embedded at Location a, this VirtualLink z is
embedded at Location a as well (Rule (8)). Rule (9) states that
if two VirtualLink x and y have a VirtualNode v in common,
they are overlapping.

isNodeEmbeddedOn(x, y) ^ isSubLocOf(y, z)

! isNodeEmbeddedOn(x, z) (3)

hasNodeType(x, y) ^ isNodeEmbeddedOn(x, z)

! isNodeTypeEmbeddedOn(y, z) (4)

hasNode(z, x) ^ isNodeEmbeddedOn(x, a) ^ hasNode(z, y)

^isNodeEmbeddedOn(y, a) ^ Different(x, y)

! isNodeNodeEmbeddedOn(z, a) (5)

isNodeNodeEmbeddedOn(z, a) ^ hasNode(z, x) ^ hasNode(z, y)

! isNodeEmbeddedOn(x, a) ^ isNodeEmbeddedOn(y, a) (6)

hasNode(z, x) ^ isNodeEmbeddedOn(x, a) ^ hasNode(z, y)

^isNodeEmbeddedOn(y, b) ^ isSubLocOrEqualOf(a, c)

^isSubLocOrEqualOf(b, c) ^ hasLevel(c, l) ^ Different(x, y)

! isNodeNodeEmbeddedOnType(z, l) (7)

hasLinkNode(z, x) ^ isNodeEmbeddedOn(x, a)

! isLinkEmbeddedOn(z, a) (8)

hasLinkIngressNode(x, v) ^ hasLinkEgressNode(y, v)

! isLinkEmbeddedWithLink(x, y) (9)

Semantic Web Rule Language (SWRL)4 was used to express
the aforementioned rules using concepts from the ontology
defined in Section IV-B. The Protégé editor was also used to
define the rules using the Manchester syntax5.

D. Conflict Detection

When a new SFC request arrives at the VNFInP, this request
is parsed and the set of virtual nodes and links are added as
individuals to the OWL ontology using the OWL API6. Next,
the set of affinity and anti-affinity constraints are also added
by either creating new individuals (i.e. NodeNodeRestriction),
adding property assertions (i.e. isNodeEmbeddedOn) or both.

4SWRL - http://www.w3.org/Submission/SWRL/
5Manchester Syntax - http://www.w3.org/2007/OWL/wiki/

ManchesterSyntax
6OWL API - http://owlapi.sourceforge.net

TABLE I: Overview of the evaluation parameters.
Network Size # Affinity and # VNFs

#AS #DC #Hosts Anti-Affinity
Constraints

A
ll

In
di

vi
du

al
s 1 4 100 5 5

2 8 200 10 10
4 16 400 20 20
8 32 800 40 40

16 64 1600 80 80
32 128 3200 160 160

R
el

ev
an

t

In
di

vi
du

al
s 5 50 25000 5 5

10 100 50000 10 10
20 200 100000 20 20
40 400 200000 40 40
80 800 400000 80 80
160 1600 800000 160 160
320 3200 1600000 320 320

The HermiT OWL Reasoner7 was used to check the con-
sistency and the classification of the ontology. HermiT is a
semantic reasoner for ontologies written in OWL. It is able to
determine whether or not the ontology is consistent, identify
subsumption relationships between classes, etc. The reasoner
is based on a hypertableau calculus which provides efficient
reasoning. The output of the reasoning process allows us to
determine whether the SFC request at hand is valid or not.
In the case of an invalid request, this is communicated to
the requesting SP, otherwise the request is passed on to the
embedding engine.

V. EVALUATION

We created a Java-based simulation framework in which we
are able to model the physical substrate and the SFC requests.
The components contained in the physical infrastructure are
added as individuals to the ontology using the OWL API.
Upon reception of an SFC request, the required individuals
for the VNFs and their interconnecting links are added to
a copy of this ontology. The affinity constraints defined in
the SFC request are parsed and the necessary individuals and
rules are instantiated. Using the HermiT OWL Reasoner, the
consistency of the resulting ontology is checked. The execution
time and resulting consistency are logged. We evaluate two
implementations of the validation component. In the first
version, all locations of the physical topology are instantiated
in the ontology. In the second version, rather than including
all physical locations into the ontology, only the physical
locations that occur in the SFC request are added to the
ontology as individuals, as well as the hierarchy of their parent
locations. This is done so to reduce the size of the ontology
as it is known that semantic approaches suffer from scalability
issues when ontology sizes increase. The evaluations were
performed using the Flemish Supercomputer Center (VSC)
which contains nodes with 2x8-core Intel E5-2670 (Sandy
Bridge @ 2.6 GHz) processors and 32 GB RAM.

To evaluate the performance of the proposed semantic
validation framework, a number of random network topologies
and SFC requests are generated. To generate the network
topology, multiple interconnected hierarchical structures are
generated where each host is part of a DC which is in turn

7HermiT OWL Reasoner - http://hermit-reasoner.com



part of an AS. Each of the hosts has a specific physical
location that can be seen as a hierarchical combination of
AS, DC and host identification. The total number of hosts,
DCs and ASs are listed in Table I for both the case where we
include all individuals and where only relevant individuals are
considered. The number of interconnections for each node are
uniformly distributed between 2 and 10. The SFC requests are
randomly generated as well where the number of VNFs and
the number of Affinity and Anti-Affinity constraints is varied.
The type of the constraints is uniformly distributed among
the constraints defined in Section III. The parameter values
for both the number of VNFs and the number of constraints
per SFC request are shown in Table I. For each parameter
configuration, 1000 random SFC requests are generated and
fed to the semantic request checker. The execution times are
averaged and the 95% confidence intervals are shown in the
graphs.

(a)
(b)

Fig. 6: Impact of physical network size

A. Impact of physical network size

To evaluate the impact of the physical network size, we
use a fixed number of 5 virtual nodes and 5 (affinity or anti-
affinity) constraints in the requested SFC, and vary the number
of physical hosts as shown in Table I. For the case where we
include an individual in the ontology for each physical location
in the topology, it can be seen from Figure 6(a) that the
execution time grows exponentially with increasing physical
network size as was expected. Even for a network of only
3200 physical hosts, the semantic request validation already
takes about 15s. When we include only an individual for
each physical location that is used in a constraint, there is no
significant impact on the evaluation time, since the number of
constraints is fixed in this case as demonstrated in Figure 6(b).
These results demonstrate that it is indeed beneficial to only
consider the relevant physical locations when semantically
validating an SFC request.

Fig. 7: Impact of virtual network size

B. Impact of virtual network size
To evaluate the impact of the size of the requested virtual

topology in the SFC, a fixed number of 5 constraints and a
network size of 25000 hosts is used, while the number of
virtual nodes in the SFC request is varied as shown in Table I.
Figure V-A shows an exponential increase of the execution
time when the number of requested VNFs in the SFC request
increases. For 320 VNFs in a single request, which is quite
high, the execution time is 0.5s, which could be considered as
an acceptable calculation delay for SFC requests of that size.

#Constraints #Consistent
5 910

10 714
20 296
40 14
80 0
160 0
320 0

(a)

(b)

Fig. 8: Impact of number of constraints on number of consis-
tent SFC requests (a) and execution time (b)

C. Impact of number of constraints
To evaluate the impact of the number of constraints in the

SFC, a fixed virtual network size of 5 VNFs and a physical
network size of 25000 hosts is used, and the number of
constraints in the SFC request is varied as shown in Table I.
Figure 8(b) shows how the total execution time is affected
by increasing the number of constraints in the request. Two
additional lines are plotted differentiating between the execu-
tion times for consistent and inconsistent SFCs. As can be seen
from Table 8(a), when the number of constraints increases, the
number of consistent SFCs is reduced significantly since the
probability of conflicting constraints is increased. When the
number of constraints exceeds 40, all generated SFC requests
are inconsistent. Figure 8(b) shows a linear increase of the
execution time when the number of constraints increases.

(a) (b)

Fig. 9: Combined impact of increasing physical network size,
requested virtual network size and number of constraints

D. Combined impact of relevant parameters
Finally we evaluated the combined impact of all parameters

as stated in Table I, both for the case when all physical
locations are considered and for the case when only relevant
physical locations are taken into account. For both approaches,
an exponential increase can be observed in Figure 9 when



the physical network size, requested virtual network size and
the number of constraints increase. When considering all
physical locations as individuals, Figure 9(a) shows that for
a physical network of 3200 hosts, a virtual network of 160
VNFs and 160 constraints, the execution time is as high as
21.76s. When reducing the ontology size by only including
relevant locations, the execution time can be reduced to 0.34s.
Figure 9(b) shows the results for larger network topologies
and when only relevant locations are added to the ontology.
Also here, an exponential increase in execution times can be
observed. However, when considering the size of the SFC
request in both number of virtual nodes (320) and affinity
constraints (320), a total execution time of 1.5s can be
considered acceptable. Bearing in mind that increasing the size
of the physical topology has a very limited impact on the total
execution time since only the relevant individuals are added.

VI. CONCLUSION

In this paper we propose a means for Service Providers
(SPs) to attach location constraints to the mapping of Service
Function Chains (SFCs) onto the physical substrate. The
SP’s main interests to do this are for efficiency, resilience,
legislative, privacy and economic reasons. We propose and
define a set of affinity and anti-affinity constraints which allow
the SP to define whether certain Virtual Network Functions
(VNFs) or instances of certain VNF types are allowed to
reside in the same host or the same part of the network.
Furthermore, specific locations or sets of locations can be
defined where certain VNFs or VNF types may or may not be
placed. To allow the Virtual Network Function Infrastructure
Provider (VNFInP) to check the validity of these requests, a
semantic request checking framework is proposed. This allows
the VNFInP to model both its physical substrate and the SFC
request as an ontology of which the consistency is checked
using a semantic reasoner. We propose an optimization where
only the relevant physical locations are modeled as individuals
of the ontology. This ensures that the execution times are not
subject to increasing topology sizes and that for reasonable
SFC request and constraint sizes, the validations of the SFC
request can take place in less than a second.

ACKNOWLEDGMENT

Niels Bouten and Maxim Claeys are funded by a Ph.D.
grant of the Agency for Innovation by Science and Technology
(IWT). This work was partly funded by Flamingo, a Network
of Excellence project (318488) supported by the European
Commission under its Seventh Framework Programme. The
computational resources (Stevin Supercomputer Infrastructure)
and services used in this work were provided by the VSC
(Flemish Supercomputer Center), funded by Ghent Univer-
sity, the Hercules Foundation and the Flemish Government
- department EWI.

REFERENCES

[1] ETSI, “Network functions virtualization: An introduction, benefits,
enablers, challenges and call for action,” Cloud Computing, IEEE
Transactions on, October 2012. [Online]. Available: http://portal.etsi.
org/NFV/NFV White Paper.pdf

[2] ——, “Network functions virtualization: Network operator perspectives
on industry progress,” Cloud Computing, IEEE Transactions on,
October 2013. [Online]. Available: http://portal.etsi.org/NFV/NFV
White Paper2.pdf

[3] S. Boucadair, D. Lopez, I. Telefonica, D. Guichard, and C. Pignataro,
“Service function chaining: Framework & architecture draft-boucadair-
sfc-framework-00,” 2014.

[4] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Denf et al., “Network functions
virtualisation: An introduction, benefits, enablers, challenges and call
for action,” in SDN and OpenFlow World Congress, 2012, pp. 22–24.

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” Communications
Magazine, IEEE, vol. 53, no. 2, pp. 90–97, 2015.

[6] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys Tuto-
rials, IEEE, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[7] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
Communications Surveys Tutorials, IEEE, vol. 15, no. 2, pp. 909–928,
Second 2013.

[8] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” Communications Surveys Tutorials, IEEE, vol. PP,
no. 99, pp. 1–1, 2015.

[9] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying nfv and sdn to lte mobile core gateways, the functions
placement problem,” in Proceedings of the 4th Workshop on All Things
Cellular: Operations, Applications, &#38; Challenges, ser. AllThings-
Cellular ’14. ACM, 2014, pp. 33–38.

[10] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” CoRR, vol. abs/1406.1058, 2014.

[11] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in Network and Service Management
(CNSM), 2014 10th International Conference on, Nov 2014, pp. 418–
423.

[12] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for nfv chaining in packet/optical datacenters,”
Lightwave Technology, Journal of, vol. 33, no. 8, pp. 1565–1570, April
2015.

[13] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku, “Morsa:
A multi-objective resource scheduling algorithm for nfv infrastructure,”
in Network Operations and Management Symposium (APNOMS), 2014
16th Asia-Pacific, Sept 2014, pp. 1–6.

[14] S. Benkner and C. GEMSS, “Report on cots security technologies
and authorisation services,” Project Report, February 2004. [Online].
Available: http://eprints.cs.univie.ac.at/3311/

[15] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and
M. Villari, “A monitoring and audit logging architecture for data
location compliance in federated cloud infrastructures,” in Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, May 2011, pp. 1510–1517.

[16] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou, “Admission
control for elastic cloud services,” in Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, June 2012, pp. 41–48.

[17] L. Larsson, D. Henriksson, and E. Elmroth, “Scheduling and monitoring
of internally structured services in cloud federations,” in Computers
and Communications (ISCC), 2011 IEEE Symposium on, June 2011,
pp. 173–178.

[18] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling
and placement of cloud services with internal structure,” Cloud Com-
puting, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[19] H. Basilier, M. Darula, and J. Wilke, “Virtualizing network
services–the telecom cloud,” Ericsson Review, 2014. [Online].
Available: http://www.ericsson.com/res/thecompany/docs/publications/
ericsson review/2014/er-telecom-cloud.pdf

[20] H. Technologies, “White paper - huawei observation to nfv,” 2014.
[Online]. Available: www.huawei.com/ilink/en/download/HW 399662

[21] E. I. S. G. I. NFV, “Network functions virtualisation (nfv); service qual-
ity metrics,” 2014. [Online]. Available: http://www.etsi.org/deliver/etsi

gs/NFV-INF/001 099/010/01.01.01 60/gs nfv-inf010v010101p.pdf


