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Abstract

The presence of micrometer-level restrictions leads to a decrease of diffusion coefficient with 

diffusion time. Here we investigate this effect in human white matter in vivo. We focus on a broad 

range of diffusion times, up to 600 ms, covering diffusion length scales up to about 30 microns. 

We perform stimulated echo diffusion tensor imaging on 5 healthy volunteers and observe a 

relatively weak time-dependence in diffusion transverse to major fiber tracts. Remarkably, we also 

find notable time-dependence in the longitudinal direction. Comparing models of diffusion in 

ordered, confined and disordered media, we argue that the time-dependence in both directions can 

arise due to structural disorder, such as axonal beads in the longitudinal direction, and the random 

packing geometry of fibers within a bundle in the transverse direction. These time-dependent 

effects extend beyond a simple picture of Gaussian compartments, and may lead to novel markers 

that are specific to neuronal fiber geometry at the micrometer scale.
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Introduction

The unique advantage of diffusion-weighted magnetic resonance imaging (dMRI) arises 

from the sensitivity of water diffusion to the micrometer-level structure of its surrounding 

environment. In biological tissues, restrictions such as cell walls provide the basis for 

contrast in dMRI, and particularly, in diffusion tensor imaging (DTI) (Basser, 1995; 

Beaulieu, 2002). This contrast holds the promise of probing neuronal tissue structure at the 

scales of about three orders of magnitude below the nominal clinical MRI resolution. From 

the physics standpoint, this involves quantifying the relevant length scales, such as the 

compartment (cell) size, or the cell packing correlation length.
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There are two physically distinct ways of being sensitive to the cellular length scale: by 

varying the diffusion wave vector q, or by varying the diffusion time t, as illustrated in Fig. 

1 of (Burcaw et al., 2015). The q-method, based on Callaghan’s “diffusion diffraction” 

effect (Callaghan et al., 1991), measures the diffusion signal (the propagator) in the narrow 

pulse limit as function of q, and the length scale (the fully restricted pore size) is given by 

the inverse of the characteristic q value for which the propagator experiences oscillations. 

Unfortunately, given ~ 1 μm-diameter axons and dendrites, the required q values are 

prohibitively large for in vivo human measurements.

Instead, here our aim is to derive the relevant length scale(s) in human white matter (WM) 

by varying t, and studying the time-dependence D(t) of the diffusion coefficient (more 

generally, of the diffusion tensor eigenvalues). This formally amounts to a q → 0 

measurement as the diffusion coefficient is proportional to a derivative of the dMRI signal at 

q = 0, which thereby makes our approach clinically feasible. Since the diffusion coefficient 

in a given direction x̄ is a measure of the mean squared displacement, i.e. D(t) = 〈(x(t) − 

x(0))2〉/2t, the length scale probed by water molecules may be adjusted by varying t. With 

increasing t, water molecules encounter more hindrances and restrictions to their diffusion 

paths, such as cellular walls and myelin, and therefore the resultant measured diffusion 

coefficient will decrease (Mitra et al., 1992; Novikov et al., 2014).

While time-dependence of the diffusion coefficient in mammalian WM has been clearly 

demonstrated at short times (~ 1 ms) (discussed in more detail below), in vivo evidence for 

the time-dependence using pulse gradient spin echo (PGSE) methods over clinically feasible 

diffusion time ranges (t > 20 ms) has been inconsistent. In vivo studies of brain, such as 

healthy and ischemic feline brain tissue (van Gelderen et al., 1994) yielded no change in the 

mean diffusivity with respect to t for a wide range encompassing 20 – 2000 ms. Nor was 

time-dependence observed in vivo in the mean diffusivity of human genu at relatively short 

times (t = 8 – 80 ms) (Clark et al., 2001) or in the longitudinal or transverse diffusivity 

within the human corticospinal tract for even longer times (t = 64 – 256 ms) (Nilsson et al., 

2009). On the other hand, time-dependent diffusion has been observed in vivo in the corpus 

callosum, corona radiata, and brainstem of human subjects at times ranging from 40 to 800 

ms (Horsfield et al., 1994). Furthermore, ex vivo studies in frog sciatic nerve with diffusion 

times of 2 ms and 28 ms (Beaulieu and Allen, 1996), bovine optic nerve with diffusion times 

ranging from 8 to 30 ms (Stanisz et al., 1997), optic and sciatic nerves with diffusion times 

from 3.7 ms to 99.3 ms (Bar-Shir and Cohen, 2008), as well as bovine optic nerve and rat 

spinal cord and brain with diffusion times from 40 to 250 ms (Assaf and Cohen, 2000) have 

shown a clear dependence of D(t) on time in longitudinal and/or transverse direction. More 

recently, Kunz et al. (Kunz et al., 2013) imaged the rat corpus callosum in vivo at t ranging 

from 9 to 24 ms and found time-dependent diffusion in both longitudinal and transverse 

directions.

Oscillating gradient spin echo (OGSE) diffusion-weighted sequences are able to probe 

shorter diffusion times compared to conventional PGSE, and have demonstrated time-

dependent diffusion in the brain. An in vivo oscillating gradient study of the rat cortex (Does 

et al., 2003) at frequencies up to 500 Hz, which correspond to very short t ≳ 1 ms, shows a 

clear time-dependence in the mean diffusivity in both normal live and post-mortem globally 
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ischemic rat cortex. Later work using OGSE with corresponding effective diffusion times (1 

– 5ms) also demonstrated time-dependence in ex vivo rat WM tracts (Xu et al., 2014). In 

humans, Baron et al. (Baron and Beaulieu, 2014) combined OGSE (25 and 50 Hz) and 

PGSE methods (t = 20 and 40 ms) for a total diffusion time range of 4 to 40 ms, and found 

eight major WM tracts and two deep grey matter areas to exhibit time-dependent diffusion. 

Furthermore, recent work using double PFG MR indirectly points at the possibly non-

Gaussian (time-dependent) nature of diffusion in the extracellular space of WM with 

increasing diffusion times from 25 to 100 ms (Shemesh and Cohen, 2011).

Here we report the observation of time-dependent diffusion in vivo for relatively long 

diffusion times, t = 45 – 600 ms, on a standard clinical scanner using STimulated Echo 

Acquisition Mode (STEAM)-DTI, and discuss the biophysical origin of this phenomenon. 

STEAM-DTI measurements were performed on 5 healthy volunteers and were calibrated on 

a gel phantom over the whole time range. Pronounced time-dependence in the longitudinal 

diffusivity and less pronounced time-dependence in the transverse diffusivity was found in 

both anatomically based WM regions and in fractional anisotropy (FA) thresholded regions.

The biophysical origin of the observed time-dependence, as discussed below, reflects the 

non-Gaussian nature of diffusion in at least one tissue compartment (in either direction). In 

all cases, both longitudinal and transverse diffusivities approach a finite tortuosity limit (i.e. 

diffusion is not anomalous (Bouchaud and Georges, 1990)), with a slow transient part that is 

best described by a power-law behavior (Novikov et al., 2014, Burcaw et al., 2015). We 

argue that the origin of this behavior is likely due to randomly placed (short-range 

disordered) hindrances and restrictions to diffusion in both parallel and transverse directions. 

Interestingly, the biological sources of this short-range disorder may be qualitatively 

distinct: structural disorder along the axons such as, e.g., varicosities for diffusion in the 

longitudinal direction, and the random packing geometry of fibers within a bundle for 

diffusion in the transverse direction. This picture is corroborated by the estimated correlation 

length scales in the range of a few microns in both directions.

Methods

In vivo measurements

Diffusion measurements were performed on 5 healthy volunteers (4 males and 1 female) 

ranging in age from 25 to 41 years old, on a 3T Siemens Tim Trio (Erlangen, Germany) 

equipped with a 32-channel head coil and a maximum gradient strength of 40 mT/m during 

two one-hour scans utilizing the STEAM-DTI sequence as provided by the vendor (WIP 

511E). One volunteer was unable to be present for scan 2. Each diffusion sequence acquired 

b = 0 (5 averages) and b = 500 s/mm2 images along 20 diffusion directions, with an isotropic 

voxel size of (2.7 mm)3, and a field of view (FOV) of (221 mm)2. A slab of 15 axial slices 

was aligned parallel to the anterior commissure (AC) – posterior commissure (PC) line and 

centered such that the entire corpus callosum would be imaged. Both scans were focused on 

varying the diffusion time, t = Δ (interpulse duration) ranging from 45 to 400 ms (scan 1) 

and from 55 to 600 ms (scan 2), while keeping δ, the pulse duration of the diffusion 

gradients, and TE, the echo time, constant. The parameters in these two scans were the 

following: δ = 20 ms, TE = 100 ms, TR = 7000 ms for t between 45 and 400 ms, with TR 

Fieremans et al. Page 3

Neuroimage. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increasing to 10200 ms at t = 600 ms. A summary of the specific parameters for each scan 

session can be found in Table 1.

Our in vivo measurement was calibrated by performing the same measurements on a nickel-

doped agarose gel phantom, made by dissolving 1.4% agarose and 9 g/L of sodium chloride 

in distilled water and adding 2 mM Nickel and 6 g/L sodium azide, as described in (Lavdas 

et al., 2013). The gel was kept in a small cylindrical jar of roughly 10 cm long with a 

diameter of 6.5 cm.

Parameter Map Construction

In order to reduce the effect of Gibbs ringing surrounding the ventricles (Veraart et al., 

2015), Gaussian filtering was applied to the dMRI images with a full width half maximum 

of 1.25 voxels and a window size of 5 × 5 voxels. To avoid cerebrospinal fluid (CSF) signal 

contamination in WM neighboring the ventricles during smoothing, a CSF mask was 

constructed via FSL’s automated segmentation tool, FAST (Zhang et al., 2001) and used to 

separate the CSF from the rest of the brain parenchyma. These two resultant images (CSF 

and brain parenchyma) were smoothed separately using the parameters described above, 

which amounted to reducing the smoothing window size when getting close to the border, 

and recombined post smoothing.

Eigenvalues were calculated from the diffusion tensors that were estimated via a weighted 

linear least squares (WLLS) routine. The weights were derived from the DTI estimation by 

the unweighted LLS estimator (Veraart et al., 2013) and a corrected full b-matrix which 

incorporated the effective gradient from the diffusion, imaging gradients, and 

radiofrequency (RF) pulse magnetization inversions (Lundell et al., 2014; Sigmund et al., 

2013). For the b = 0 image, the actual b-value (obtained from the trace of the b-matrix) 

varied from 2 s/mm2 for Δ = 45 ms, up to 67 s/mm2 for Δ = 500 ms, while the diffusion 

gradients were adjusted for the b = 500 image such that the actual b = 500 s/mm2 (Lundell et 

al., 2014).

Previous work (Veraart et al., 2013) has determined that the WLLS estimator is unbiased if 

the Rician distributed data has SNR > 2. SNR was estimated in the b = 0 image via the ratio 

of a region of interest (ROI) placed in the splenium to an ROI placed in the background 

noise and corrected for the Rician statistics. We found that SNR varied from 15 for our 

shortest time down to 6 for our longest diffusion time at b = 0. Since the observed 

longitudinal and transverse diffusivities did not exceed 2 μm2/s, the SNR on the DW images 

is sufficiently high to avoid a Rician noise bias.

The output parameter maps include the eigenvalues of the diffusion tensor D, the Sb=0 

image, and fractional anisotropy (FA). Given the strong anisotropy of diffusion in major 

fiber tracts, it is natural to define the longitudinal diffusivity

(1)

in terms of the principal eigenvalue λ1 of the diffusion tensor (the DTI eigenvalues are 

sorted according to λ3 ≤ λ2 ≤ λ1), and the transverse diffusivity
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(2)

as the axially symmetric component of the diffusion tensor projected onto the plane 

transverse to its principal eigenvector (tract direction).

ROI Selection

To ensure a consistent ROI selection across all scans, the b=0 images for each scan were 

registered to the b=0 image at t = 55 ms from scan 1 via a 12 parameter affine model using 

the FSL linear image registration tool, FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 

2001). The output transformation matrix was used to register all parameter maps for each 

subject. Two types of ROIs were then outlined to investigate the time-dependence in WM.

The first type of ROI explored the role of increasing fiber alignment in the time-dependent 

diffusion. We created a series of ROIs, each containing all WM voxels within the selected 

volume based on a minimum FA threshold ranging from 0.3 to 0.7. The FA values used to 

define the threshold area were obtained from the mean FA values averaged over all diffusion 

times from scans 1 and 2 for each subject. A selection of FA-thresholded ROIs for a single 

subject are shown in Figure 1, panels a to d.

Second, anatomical WM ROIs were selected from the Johns Hopkins University WM atlas 

(Mori, 2005). The previously linearly registered subject FA maps were registered to the FA 

standard map in FSL using the non-linear registration tool, FNIRT. The warp maps 

produced from this registration were inverted and applied to the WM atlas ROIs to inversely 

register them to the subject space. These six anatomical ROIs include the corpus callosum 

genu and splenium, anterior corona radiata (ACR), superior corona radiata (SCR), posterior 

corona radiata (PCR), and the posterior limb of the internal capsule (PLIC). Examples of 

anatomical WM ROIs for a single subject are shown in Figure 1, panels e to f.

Statistical analysis

Mean longitudinal and transverse diffusivity values, Equations (1) and (2) respectively, were 

calculated for all ROIs. These ROI values were further used to gauge the appropriateness of 

the biophysical models described below (Equations (3)–(9)). To assess the overall 

magnitude of the time-dependence, the D(t) data was transformed to a linear scale with 

respect to 1/t or  as suggested by some models (Equations (3), (4), (6)), and the 

significance of the corresponding model fits was assessed by the Pearson correlation 

coefficient and P-values, both listed in Tables 2 and 3. (These P-values were not used for 

justifying the models (3), (4) and (6), but rather to simply distinguish the observed time-

dependence from a possibility of a noisy time-independent outcome.) Bonferroni correction 

was applied, multiplying the P-values by 22, to correct for multiple comparisons due to 

multiple ROIs (11 in total) and the two different models for the time-dependent diffusion 

coefficient (involving ordered and disordered types of restrictions, as explained below).

For both the longitudinal and transverse diffusion, when the fit was found to be significant 

(P < 0.05), the two different model fits were then compared using the R2 values since the 
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appropriate models (ordered/disordered restrictions, intra/extra-axonal) have the same 

number of independent parameters, or degrees of freedom (dof).

Theory

Our recent framework for revealing mesoscopic structural universality classes via diffusion 

(Burcaw et al., 2015; Novikov et al., 2014) shows that the disorder class of the structure, 

represented by the structural exponent p, together with its effective spatial dimensionality d, 

dictates the functional form of how D(t) approaches its bulk diffusion coefficient, D∞. The 

exponent p determines the qualitative long-distance behavior of the density correlation 

function Γ(r) of the restrictions to diffusion, formally defined via the asymptotic behavior of 

the Fourier transform (power spectrum of the restrictions) Γ(k) ~ kp as k → 0.

Practically, depending on p and d, the diffusion coefficient will have long time asymptotic 

behavior of the form D(t) ~ D∞ + const/tϑ, with the dynamical exponent ϑ = (p + d)/2, as 

long as ϑ < 1; D(t) ~ D∞ + const · (ln t)/t if ϑ = 1; and D(t) ~ D∞ + const/t if ϑ > 1 or if 

water molecules are fully confined in-between impermeable walls (Burcaw et al., 2015; 

Novikov et al., 2014).

In either longitudinal (d = 1) or transverse direction (d = 2), the time-dependence of the 

overall D(t) will be qualitatively different depending on whether the structural disorder is 

playing a role or not. In each case, we contrast the most common class of short-range 

disordered restrictions (p = 0) (whose effect was not considered in WM previously), with 

(pseudo-) ordered arrangements characterized by reduced long-range fluctuations (p > 0), or 

with the fully confining arrangements. We will then use the measured time-dependence and 

the estimated model parameters in both directions to identify whether the disorder is 

relevant, and based on that, suggest the biophysical interpretation of our observations.

Diffusion along the fiber tract, d = 1: Order or disorder?

Had the diffusion along axons been completely uniform along the tract, such as aligned 

hollow tubes, D|| would be constant. Time-dependence of D|| then should arise due to the 

structural “imperfections”, or the deviations from the picture of hollow straight tubes. 

Indeed, the presence of varicosities or beads, resulting in varying axon diameters along their 

length (Perge et al., 2009; Shepherd and Raastad, 2003; Shepherd et al., 2002; Wang et al., 

2003), or wave-like undulations (Nilsson et al., 2012), should hinder both intra- and extra-

axonal diffusion (Budde and Frank, 2010). Other possible obstacles, such as mitochondria 

and oligodendrocytes, could also slow down the diffusion in the intra- and extra-axonal 

spaces, respectively.

If restrictions along the axonal direction are periodic (p=∞), it follows from Equations (5) 

and (S25) in (Novikov et al., 2014), that D||(t) will approach its long time limit D∞ as

(3)
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where a is the period and D0 is the free axoplasmic diffusion coefficient. More generally, the 

behavior (3) will also apply for any hyperuniform disorder with sufficiently strongly 

suppressed long-range fluctuations (p > 1), with a then corresponding to average spacing 

between the restrictions. In addition, any fully restricting domains along the axons of size ~a 

would also contribute as ~a2/t to D||(t) Hence, identifying the ~1/t behavior in D||(t) would 

prove that restrictions along the fibers are sufficiently strongly correlated (ordered) and/or 

fully confining (impermeable).

The histological evidence, however, typically points at a short-range disorder, characterized 

by a finite correlation length lc. Physically, the correlation length reflects the distance from 

a given restriction, after which the “memory” about the positions of other restrictions 

disappears; formally, it gives the scale on which the correlation function Γ(r) decays with r 

(in any spatial dimension d). For the d = 1 example of axonal beads (varicosities), the 

variance in their number within a window has been found to grow in proportion to the length 

of the window (Shepherd et al., 2002), which is a signature of a finite correlation length lc||, 

in accord with the central limit theorem.

The short-range disorder would correspond to the structural exponent p = 0. In this case, 

from Equations (4) and (9) in (Novikov et al., 2014), D||(t) will behave as

(4)

where  is the k → 0 limit of the Fourier transform of the two-point 

correlation function of the spatially varying coarse-grained diffusivity D(x) (see Appendix 

A). It should be noted that while the power-law tail  in Equation (4) is scale invariant, 

its prefactor c2 is sensitive to the disorder correlation length . Precise determination of this 

length scale depends somewhat on the shape of the restrictions, therefore the above relation 

between the correlation function limit ΓD(k → 0) and  is approximate, but is still useful for 

making estimates; see Appendix A for more details about assumptions and practical limits. 

Note also that Equation (4) is equivalent to  measured in cortical 

rat brain gray matter (Does et al., 2003; Novikov et al., 2014).

From the above constant, c2, we estimate the disorder correlation length as

(5)

A more in-depth discussion of our estimation of lc|| can be found in Appendix A. Provided 

the diffusion time t ≫ δ, as in our case, the asymptotic inverse square root behavior (4) of 

D||(t) should qualitatively hold irrespective of the influence of finite-width diffusion gradient 

pulses (Lee et al., 2015).
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Diffusion transverse to the fiber tract, d = 2: Intra- or extra-axonal?

The time-dependence of diffusion transverse to a WM tract has been previously considered 

as arising solely from the intra-axonal compartment, while diffusion in the extra-axonal 

compartment has been assumed Gaussian (Alexander et al., 2010; Assaf et al., 2008; Assaf 

et al., 2004; Barazany et al., 2009; Zhang et al., 2011). Recently, we suggested that the 

extra-axonal contribution to the overall D⊥(t) dominates (Burcaw et al., 2015) due to the 

disordered packing geometry of axons. Here we compare the two pictures: the conventional 

“intra-axonal” one (with Gaussian extra-axonal diffusion), and the “extra-axonal” picture 

where for simplicity we assign all time-dependence to the extra-axonal space while the intra-

axonal contribution to the overall diffusion signal attenuation is neglected in comparison.

In the intra-axonal picture, the intra-axonal space is treated as that within impermeable 

cylinders. The exact signal attenuation to the lowest order, G2, in the applied diffusion 

gradient G is found by (Murday and Cotts, 1968; van Gelderen et al., 1994). For studying 

the functional dependence with respect to t and δ, here we consider the two simpler limits: 

the narrow pulse limit δ ≪ τD and the wide pulse, or the Neuman’s limit δ ≫ τD, where τD 

= r2/D0 is the characteristic time to diffuse across an axon with radius r.

In the narrow pulse limit, the intra-axonal contribution to D⊥(t) decreases as r2/(4t), which 

follows from the exact result (Callaghan and Stepišnik, 1995; Stepišnik, 1993) for t ≫ δD 

(this condition practically always holds for our very long times t). When averaged over a 

voxel during measurement, the overall D⊥(t) is a weighted average (Burcaw et al., 2015),

(6)

where fint and fext are the intra- and extra-axonal water fractions, and r becomes a typical 

inner axonal radius such that r2 ≡ 〈r4〉/〈r2〉. The term  in Equation (6) comes from 

the Gaussian diffusion assumption for the extra-axonal space.

In the opposite, wide pulse limit δ ≫ τD, the intra-axonal contribution to the overall signal 

attenuation is described by Neuman’s formula (Neuman, 1974), . 

Therefore, the overall diffusion coefficient, defined via −ln S/S0 = bD⊥(t) + O(b2), where 

, is a weighted average

(7)

Unfortunately, the measured diffusion coefficient does not allow us to determine fint and fext 

separately (for that, one would need to measure higher-order diffusion cumulants). Hence, if 

the conventional intra-axonal picture is correct, at the DTI level we can only determine the 

combination  for the narrow pulse limit, Equation (6), or the combination r(fint/D0)1/4 

for the case of wide pulses, Equation (7), where now r4 ≡ 〈r6〉/〈r2〉 after averaging over the 

voxel. Setting fint → 1, we can obtain the lower bound on typical axonal diameters 2r in 
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either limit, assuming the diffusion time-dependence arises solely from the intra-axonal 

compartment.

In the extra-axonal picture, extra-axonal contribution to the overall D⊥(t, δ) is nontrivial and 

dominates. Here, we will also distinguish between narrow and wide pulse limits. Instead of 

the intra-axonal diffusion time τD, the relevant time scale to be compared with the pulse 

width δ is the correlation time tc. This is the time to diffuse across the correlation length 

, d = 2, of the axonal fiber packing in the tract cross-section.

Assuming short-range disorder (p = 0) in the axonal placement within a fiber bundle cross-

section, the extra-axonal contribution to the overall transverse diffusion coefficient should 

follow a logarithmically enhanced time-dependence (Burcaw et al., 2015):

(8)

where the coefficient A is proportional to the limit Γ(k→0) of the power spectrum Γ(k) of 

the axonal fiber density in cross-section (Burcaw et al., 2015; Novikov et al., 2014).

In Equation (8) we neglected the ~1/t intra-axonal contribution (cf. Equations (6) and (7) 

above) since it decays faster with t than the extra-axonal (ln t)/t term. Effectively, the 

neglected contribution could modify the parameter t̃c under the logarithm during fitting. 

Fitting simultaneously intra- and extra-axonal contributions is quite challenging, since fitting 

to smoothly decaying curves becomes unstable with an increase in the number of degrees of 

freedom, and it is especially difficult to obtain robust estimates for parameters under the 

logarithm. We also note that, depending on the relation between δ and tc (the latter a priori 

unknown), Equation (8) has either 2 or 3 degrees of freedom.

In the narrow pulse limit δ ≪ tc, the result (8) is independent on the pulse width, dof = 3, 

and  can be estimated from tc as pointed above. However, in the wide pulse limit δ ≳ tc, 

the diffusion measurement acts as a low-pass filter, the result becomes insensitive to the 

correlation time, dof = 2, and D⊥(t) instead follows (Burcaw et al., 2015)

(9)

where t = Δ is the inter-pulse duration. The second term of Equation (9) has an asymptotic 

fextA ln(t/δ)/t behavior for t ≫ δ, cf. Equation (8). Thus, if an actual tc ≲ δ, we would 

practically determine δ instead of tc using Equation (8), and the intrinsic value of tc will be 

“washed out” by the wide pulses. In this case, the correlation length  can only be 

determined from the amplitude A of the transient contribution, similar to the longitudinal 

case, cf. Equations (4) and (5). In (Burcaw et al., 2015), we empirically estimated

(10)
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The scaling of A with  is justified by the dimensional considerations (see Appendix A of 

(Burcaw et al., 2015), similar to the longitudinal case above), and the numerical coefficient 

0.2 is an empirical number depending on the random packing geometry used in our 

numerical simulations. This coefficient might have a somewhat different value for axons 

packed in vivo; unfortunately, there is no way to know their precise packing geometry at 

present. So, much like the factor  in Equation (5), the coefficient 0.2 in Equation (10) is 

approximate, reflecting a non-universal dependence of the correlation length on the 

correlation function limit ΓD(k → 0).

As we do not a priori know how tc relates to δ, our strategy in the transverse case is to first 

use Equation (8) in order to determine t̃c. Then, depending on its value, we either identify tc 

= t̃c if t̃c > δ which would justify a posteriori the use of Equation (8) with dof = 3; or, in the 

opposite case t̃c ≲ δ, we will have to revert to Equation (9) with dof = 2, and rely on the less 

accurate relation (10) in order to estimate  from the transient amplitude A. Since fext is 

unknown, and it is only the combination fext A that can be determined from a fit, we can 

estimate the combination  that practically sets the lower bound on .

Results

We ran the scan 1 and 2 STEAM protocols on a gel phantom and the resulting diffusivities 

with respect to time are shown in Figure 2, demonstrating no substantial change with time. 

The values for T1 and T2 of the phantom were measured to be 364.3 ±34 ms and 63.6 ± 5.6 

ms, respectively.

Results from the anatomical WM ROIs for scans 1 and 2 show time-dependence in the 

longitudinal diffusivity D||(t) as seen in Figure 3 for all WM ROIs investigated. The overall 

decrease in D||(t) in all ROIs is also supported by significant P-values in Table 2 for either 

model. For ROIs outside the corpus callosum, the transverse diffusivity D⊥(t) also exhibits 

time-dependence. While the decrease is less pronounced, it is still significant in the WM 

ROIs outside the corpus callosum (as supported by the significant P-values in Table 3).

Results for the ROIs based on FA thresholding are presented in Figure 4, which shows D||(t) 

and D⊥(t) averaged over all subjects and over both scans 1 and 2. Overall we see a slight 

decrease with time for D⊥(t) and a more pronounced decrease in D||(t) in absolute terms, 

however the relative change for D⊥(t) is greater than that for D||(t) as evidenced by the 

percentage change in Tables 2 and 3. As the FA threshold is increased, D||(t) becomes more 

strongly time dependent, while D⊥(t) decreases overall and its time-dependence becomes 

weaker. Similarly to the results for the anatomical WM ROIs, D||(t) decreases significantly 

with time for all FA thresholded ROIs. On the other hand, D⊥(t) shows observable time-

dependence for FA ≤ 0.5, but this dependence is not pronounced in those voxels selected 

based on a higher FA threshold, that correspond mostly to voxels in the corpus callosum. 

This observation agrees with the anatomical WM results of the genu and splenium of the 

corpus callosum that also do not exhibit clear time-dependence in the transverse direction.
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Model Selection and Parameter Estimation

Longitudinal diffusion—For both the anatomical WM ROIs and FA thresholded ROIs, 

D||(t) from scans 1 and 2 averaged over all subjects for each diffusion time are plotted in 

Figure 5 along with the fit (dashed lines) of Equations (3) and (4). Corresponding fit 

parameters are shown in Table 2. Assuming ordered (or hyperuniform) restrictions, Equation 

(3) results in a mean spacing of restrictions a ~ 3–5 μm for both WM and FA ROIs. On the 

other hand, assuming short-range disordered restrictions, Equation (4) results in correlation 

length values on the order of lc|| ~ 3–7 μm.

For all regions in both the anatomical WM and FA thresholded ROIs, the fit to short-range 

disorder model (4) results in higher R2 values, indicating a higher fit quality (with the same 

number of degrees of freedom). Besides, the curves become closer to straight lines when 

plotted as function of t−1/2 than t−1. This finding agrees with histology evidence of short-

range disorder along axons, as discussed in more detail below.

Transverse diffusion—Figure 6 shows models of D⊥(t), for either intra-axonal or extra-

axonal picture, fit to the transverse diffusivities averaged over both anatomical WM and FA 

thresholded ROIs. The left column shows the fits assuming time-dependence due to intra-

axonal diffusion, either in the narrow pulse limit (dashed line, Equation (6)) or for wide 

pulse limit (solid line, Equation (7)). The fits for the narrow and wide pulse limits are 

similar and in fact are hard to distinguish. This is not surprising, since for t ≫ δ both 

Equations (6) and (7) yield the same functional dependence on t.

The right column shows the fits assuming time-dependence due to extra-axonal diffusion 

through a disordered 2-dimensional packing geometry, either in the narrow pulse limit 

(dashed line, Equation (8)), or for finite pulse width (solid line, Equation (9)). For both the 

anatomical WM and FA thresholded ROI data, the resultant fit parameters for Equations 

(6)–(7), and (8)–(9), are shown in Table 3.

In the case of extra-axonal diffusion determining the time-dependence, cf. Equation (8), the 

estimated values for t̃c appear fairly close to the pulse width δ set to 20 ms. Therefore, if the 

disordered picture is correct, it is more appropriate to use Equation (9) to determine tissue 

parameters, i.e. we are here in the “wide-pulse” limit which washes out the correlation time 

under the logarithm. The corresponding fit values of fext A and  based on 

Equation (9) are presented in Table 3. We then use Equation (10) to estimate  that 

sets the lower bound on the transverse correlation length .

Having selected the wide-pulse limit (9) for the extra-axonal picture, we now can compare it 

with the fits for intra-axonal models (Equations (6) and (7)). While all these equations 

appear to fit the data with respect to t well, when the data is replotted with respect to t−1, 

Equations (6) and (7) fail to fully capture the systematic non-linear downward bending 

(concavity) in the time-dependence of D⊥(t) (Figure 6c–d, g–h). We can also compare the 

R2-values of Equations (6), (7) and (9) since they all have the same dof = 2, which shows 

that the R2-values for model (9) are consistently higher. We can interpret this increased fit 
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quality in terms of taking into account the systematic ~ ln t deviations from the 1/t behavior 

presumably occurring due to the short-range disorder in the extra-axonal space.

We discuss and contrast the apparent values of axonal diameters and of the disorder 

correlation lengths in the following Section.

Discussion

With this study, we aimed to measure time-dependent diffusion in WM in vivo using clinical 

PGSE MR methods, and to provide a plausible interpretation of this effect in terms of the 

cellular length scales. Our results show that for both anatomical and FA-thresholded WM 

ROIs, a pronounced longitudinal time-dependence and a weaker (in absolute terms) 

transverse time-dependence of the diffusion coefficient are observed for the 45 – 600 ms 

diffusion times measured here using a STEAM sequence in 5 healthy volunteers.

The main benefit of the STEAM sequence is the elimination of T2 relaxation effects during 

the mixing time TM, that allows us to go to relatively long diffusion times without losing 

signal from T2 dephasing. Additionally, the elimination of T2 effects in the STEAM 

sequence will alleviate the possible effect of unequal T2 pools (Szafer et al., 1995). By 

fixing TE and δ, we strive to eliminate any effect which varying these parameters may have, 

such as surface relaxation or dephasing via exchange with myelin.

Below, we first list potential confounding effects, and subsequently provide arguments why 

the observed time-dependence could at least in part be an effect of diffusion gradually 

slowed down due to the microstructural environment. Next, we provide a biophysical 

interpretation of both the observed longitudinal and transverse time-dependence and discuss 

the estimated correlation length scales as obtained from the appropriate tissue models that 

include effects of randomly placed restrictions on the amplitude of the power-law 

contributions to D(t).

Potential confounding effects

SNR decrease with increasing mixing time due to the T1 relaxation—To derive 

the diffusion coefficient from the diffusion weighted signals, we normalize them by the b=0-

signal with the same STEAM preparation. This eliminates contamination by the T1-weighted 

signal decrease with the mixing time TM under the assumption of monoexponential T1 

relaxation (Merboldt et al., 1985; Tanner, 1970). Our measurements on an isotropic gel 

phantom with similar T1 and T2 relaxation times as observed in vivo, also confirmed no 

demonstrable effect of T1 relaxation on the diffusion coefficient for increasing TM. 

Furthermore, as reported above, we have an SNR > 2 for Δ = 600 ms which exceeds the 

required SNR threshold to allow for unbiased estimation of the diffusion tensor from Rician 

distributed data in logarithmic space (Salvador et al., 2005).

Multiple T1 components—These can correspond to intra- and extra-axonal spaces (both 

NMR visible), and to myelin water (NMR invisible, because of short myelin T2). We consider 

these two cases separately. Furthermore, the physics depends on whether exchange is able to 
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occur on the time scale of our measurement (Fieremans et al., 2010; Stanisz, 2003; Szafer et 

al., 1995).

Different T1 values for intra/extra axonal water (both compartments are NMR 
visible)—While multiple long T1 components (850 and 2800 ms), respectively attributed to 

the intra-axonal space of myelinated axons, and to the mixture of extra-axonal space and 

intra-axonal space of non-myelinated axons, have been reported in (Lancaster et al., 2003), 

more evidence in literature can be found for a single long T1 relaxation component, as 

measured in rat corpus callosum (Does and Gore, 2002), bovine corpus callosum (Bjarnason 

et al., 2005; Henkelman et al., 1994), and mouse WM (Stanisz et al., 2005). (Mulkern et al., 

2000) specifically studied the effect of T1 relaxation on the fast and slow component of 

ADC in human WM and found that the corresponding (long) T1 components were not 

significantly different. Assuming similar T1 values in both components and a fairly low 

exchange rate due to layers of myelin, the overall diffusivity is then given by the weighted 

average of the two pools (Fieremans et al., 2010), and therefore does not depend on time. In 

case of different T1 in each compartment, the resulting ADC would depend on the mixing 

time through the exponentially varying compartment weights.

Effect of myelin water with short T1 (exchange with an NMR invisible 
compartment)—Biexponential T1 relaxation has been reported, with a short T1 

component of about T1
short ≈ 50 ms, originating, presumably, from water in-between myelin 

sheets (Does and Gore, 2002; Rioux et al., 2015). By itself, this compartment is NMR-

invisible, since the relatively long TE of 100 ms in our experiment greatly exceeds myelin 

water T2 value, measured around 10–20 ms (Does and Gore, 2002; Stanisz et al., 1999; 

Whittall et al., 1997).

However, exchange or surface relaxation with the “silent” myelin compartment can 

potentially affect the measured ADC, which no longer is given by the weighted average 

between myelin and free water diffusivities. A single exchange event will not contribute to 

the observed ADC, as the protons exchanged with myelin become invisible due to its short 

T2. However, water molecules undergoing multiple exchange events (e.g. spending some 

time inside myelin and coming back), or equivalently, temporarily relaxing at the myelin 

surface, may still contribute to the diffusion signal if the exchange or surface relaxation 

happens during the mixing period when spins are aligned with the main magnetic field and 

therefore do not undergo T2, but rather T1 relaxation. As we vary TM, these exchanged or 

relaxed protons will contribute to the measured signal, weighted by different T1’s in each 

compartment. Assuming they diffuse more slowly inside myelin or when relaxing on the 

surface, this will also lead to a decrease of the ADC with TM. While modeling this effect is 

beyond the scope of this work, we note that this temporary residence inside myelin or 

myelin water would also have to slow down the diffusion in both longitudinal and the 

transverse directions, contrary to our observation that with increasing FA threshold 

(presumably equivalent to keeping voxels with more myelin), the longitudinal D(t) becomes 

more pronounced while the transverse D(t) becomes less pronounced (Figure 4).
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Longitudinal Diffusion

The existence of longitudinal time-dependence suggests restrictions are present along the 

axons, making the commonly used “hollow tube” model for modeling diffusion inside and 

outside axons (Assaf et al., 2004; Behrens et al., 2003; Jespersen et al., 2007; Kroenke et al., 

2004; Ong et al., 2008) incomplete as long as the longitudinal diffusion is not in the 

tortuosity limit. While both periodic and disordered models (with the same dof) fit the 

longitudinal data well, the fits of the disordered model demonstrate higher R2 values for all 

ROIs examined, suggesting the longitudinal restrictions are more likely to be short-range-

disordered rather than ordered or hyperuniform along fibers. It is of interest to note that a 

similar phenomenon has recently been invoked to explain the apparent  frequency 

dependence of previously measured OGSE diffusion in rat cortical grey matter (Does et al., 

2003; Novikov et al., 2014). While there, the effectively one-dimensional diffusion has been 

occurring presumably mostly along the dendrites rather than axons, it may as well be that 

here we are observing a similar phenomenon from the diffusion physics standpoint and 

witnessing, at much longer times, what remains of the more pronounced  quasi-

one-dimensional behavior seen with OGSE. It would be interesting to study how universal 

this time/frequency dependence due to short-range disorder is along neurites (axons and 

dendrites) in vivo.

Which anatomical features could restrict the diffusion along the axons over the observed 

time scale? Nodes of Ranvier are very low in density (typical internodal length is 300–400 

μm (Perrot et al., 2007)), and are therefore not likely as significant source of restrictions. 

Intriguingly, the correlation length scales lc|| are on the order of 3–6 μm which are similar to 

those reported in the literature for varicosities along axonal fibers (Debanne et al., 2011; 

Shepherd and Raastad, 2003; Shepherd et al., 2002; Wang et al., 2003), suggesting them as 

potential sources for the reduction in D||(t) over time. Varicosities are found to be often rich 

in mitochondria and therefore could form obstacles for the diffusion along the fibers. The 

disordered geometry in the extra-axonal space due to varicosities would also slow down the 

extra-axonal contribution to D||(t). It is natural to assume that the correlation lengths inside 

and outside axons would be similar, as the corresponding restrictions mirror each other. 

Other potential sources for the short range disorder could be axonal undulations (Nilsson et 

al., 2012), or the functional gap junctions, which are found to be unevenly spaced between 

20 and 60 μm along the myelin sheath in sciatic nerve (Schain et al., 2014). At present, we 

cannot separate the intra- and extra-axonal contributions to the overall D||(t); identifying 

which one is dominant, or whether they are similar, remains an exciting unresolved 

question.

Transverse Diffusion

In addition to the decrease of the longitudinal diffusion with time, a decrease in transverse 

diffusivity is also observed in WM regions outside the corpus callosum. What is the 

mesoscopic origin of the transverse time-dependence? In principle, one could speculate that 

the transverse time-dependence may just be that of the diffusion along the elementary fibers 

within a bundle, projected onto the plane transverse to the main fiber tract direction, if we 

assume some orientational fiber dispersion, as illustrated in Figure 7. As such effect could 
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potentially explain the weakening of the transverse time-dependence for increasing FA 

(Figure 4), we tried to estimate its contribution in Appendix B. Assuming an axially 

symmetric orientational dispersion of fiber segments at an angle θ to the overall fiber tract, 

we calculate segments’ eigenvalues λ||(t) and λ⊥(t) based on the overall observed diffusion 

tensor eigenvalues D||(t) and D⊥(t) as functions of θ. We then determine the angle θ needed 

to eliminate the time-dependence in λ⊥(t) under the hypothesis that all the transverse time-

dependence for the segments is artificial, and the observed voxel-wise D⊥(t) is caused by 

λ||(t) combined with the orientational dispersion. We find that θ for all anatomical WM ROIs 

and FA thresholds is notably greater (Table B1) than reported values of axon dispersion of 

about 18° (Ronen et al., 2014) (for more details see Appendix B). Therefore we conclude 

that orientational fiber dispersion alone cannot explain the time-effect in the transverse 

diffusion, and the time dependent diffusion presumably has a significant “microstructural”, 

or “mesoscopic” component, presumably due to the structural disorder, as outlined in the 

Results Section.

As the transverse D(t) effect cannot be explained by the longitudinal D(t) and orientational 

dispersion alone, the choice is then essentially between intra-axonal (confinement) and 

extra-axonal (structural disorder) pictures, Equations (6)–(7) versus Equation (9), 

respectively. Based on the fitting, the R2 parameter selects the “disordered” extra-axonal 

model (9) in all anatomical and FA-based ROIs. To determine the more appropriate model, 

we should also consider the plausibility of the values of biophysical parameters resulting 

from both models.

The intra-axonal picture of Equations (6) and (7) sets lower bounds on the inner axonal 

diameters 2r in the range of 10–13 μm (when setting fint → 1, Table 3). With realistic values 

of water fraction fint closer to 0.5 (this estimate is based on excluding myelin volume), the 

apparent axonal diameters 2r will be around at least 15 μm in either narrow-pulse limit (6) 

or Neuman’s limit (7); for the latter one, we take D0 ≳ 2 μm2/ms (Beaulieu, 2002). With the 

estimated r ~7 μm, the diffusion time across an axon τD ~ δ, which falls in-between the 

narrow-pulse and Neuman’s limits (6) and (7); however, as the estimate for r is practically 

the same for both limits, the full van Gelderen’s formula interpolating between them should 

provide the same estimate, which we checked using reasonable values for fint and D0. 

However, fitting the data directly with van Gelderen’s formula was very imprecise since it 

has dof = 3.

The apparent axonal diameter values obtained in the intra-axonal picture are a factor of 10 

greater than the inner diameter values ≲ 1 μm reported in (Aboitiz et al., 1992) in the human 

corpus callosum; 99% of all axons there have diameters below 3 μm (Innocenti et al., 2015). 

We note that a similarly strong overestimation of axonal diameters has been previously 

reported based on the same physical picture as that employed to derive Equations (6) and (7) 

(Alexander et al., 2010). Outside the corpus callosum, axonal diameters are generally of the 

same order of ~1 μm. For instance, Tang et al. reported an average outer diameter for 

myelinated axons in the WM of one complete human brain hemisphere as 1.14 μm using 

stereology of light microscopy (Tang and Nyengaard, 1997), which would put average inner 

diameter well below 1 μm given typical myelin g-ratio of about 0.6 – 0.7. As a result, 

comparing the parameters of the models (6)–(7) and (9), we suggest that the interpretation of 
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time dependent diffusion as originating solely from the finite axonal diameter values is most 

likely insufficient, at least for human brain measurements. Our suggestion is also supported 

by recent ex vivo rat spinal cord measurements (Xu et al., 2014) that provided evidence in 

favor of incorporating the linear-in-frequency extra-axonal OGSE diffusivity dependence, a 

counterpart of Equations (8) and (9) in the time domain (Burcaw et al., 2015; Novikov et al., 

2014).

The extra-axonal picture, on the other hand, yields the 2-dimensional disorder correlation 

length  (Table 3). This value is three-fold smaller than the inner diameter 

estimate from the intra-axonal picture, and approaches the outer axonal diameter values 

(including myelin). Also, local short-range order in the axonal packing could make 

notably exceed the typical outer diameter. Hence, this estimate for the relevant length scale 

seems more biologically plausible, and together with higher R2 fit values, our parameter 

estimation results support the extra-axonal picture. Our findings are also in agreement with 

our recent modeling and phantom experiments (Burcaw et al., 2015), although our values of 

 and A are notably larger than those determined from Monte Carlo simulations in that 

work. This could be due to using somewhat smaller monkey corpus callosum axon diameter 

values, as well as due to strong sensitivity of  and A to the axonal packing geometry (cf. 

Fig. 4 of Burcaw et al., 2015) that is unknown in vivo.

Overall, we show here that the disordered packing geometry, essential for diffusion in the 

extra-axonal space, is more relevant in the overall time-dependence of the diffusion 

coefficient, thereby underscoring a higher sensitivity of the low-b DW signal to the extra-

axonal arrangement than to the intra-axonal compartment size at clinically feasible diffusion 

times. This suggests a possible novel kind of contrast to the mesoscopic structural 

correlations and fiber packing geometry within axonal tracts.

Outlook and open questions

While the observed t-dependent effects are subtle, our results point at exciting non-Gaussian 

effects of mesoscopic structure of axonal fibers on diffusion, able to provide relevant tissue 

length scales corresponding to different physical origins in the parallel and in the transverse 

directions. The current protocol focused on relatively low diffusion weighting (b = 0.5 

ms/μm2) and long diffusion times (45 ms – 600 ms). Our results are suggesting to explore 

the crossover to shorter times, where the time dependence is likely to be more pronounced; 

to establish which compartment contributes most to the observed time-dependence, 

especially to the less explored one in the longitudinal direction (e.g. by increasing the 

diffusion weightings); as well as to quantify the relative importance of exchange with 

myelin. We also believe Monte Carlo simulations of diffusion in a realistic axonal geometry 

can shed light on the dependence of the mesoscopic parameter values, such as the disorder 

correlation length and the amplitude of the power-law tails, on the WM tract geometry. 

Finally, since the acquisition scheme is clinically feasible, we think it could be very 

interesting to evaluate the time-dependence and the derived structural parameters in clinical 

applications.
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Conclusions

We report here a pronounced longitudinal time-dependence and a weaker (in absolute terms) 

transverse time-dependence of diffusion tensor eigenvalues in white matter regions observed 

between 45 ms and 600 ms on a clinical scanner using a STEAM sequence in five healthy 

volunteers. The observation of time-dependence in both longitudinal and transverse 

directions is interpreted as an effect of structural disorder at the mesoscopic scale, which is 

beyond the commonly used physical picture of Gaussian tissue compartments. It also 

highlights the non-Gaussian nature of diffusion in at least one of the compartments in the 

longitudinal direction, and unexpectedly, in the extra-axonal compartment in the transverse 

direction.

In particular, the longitudinal time-dependence suggests that the “hollow-tube” model of 

neurites (axons) is incomplete, and should be complemented by the disordered restrictions 

along the fibers, with the correlation length of a few micrometers. Furthermore, the radial 

time-dependence seems to be dominated by the extra-axonal water diffusion, due to the 

short range packing disorder of the axons within the bundle, rather than from the intra-

axonal water diffusion. Overall, these mesoscopic effects, first reported here in an in vivo 

human diffusion MRI measurements on a clinical scanner, may enable a novel kind of 

structural contrast at the micrometer scale, and open up exciting possibilities of monitoring 

subtle changes of structural arrangements within neuronal tracts in disease, aging, and 

development.
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Appendix A Estimating the Disorder Correlation Length from D||(t)

As we increase diffusion time, the diffusion coefficient reflects an effective coarse-graining 

of the mesoscopic structure over increasing diffusion length. This will result in a reduction 

of the spatially varying coarse-grained diffusivity component, δD(r) = D(r) − D∞. In 

dimension d = 1, the effect of this residual spatial variance on the time dependent diffusion 

along the fibers can be calculated via the Fourier transform ΓD(k) = ∫ exp(−ikx) ΓD(x) dx of 

the two point-correlation function, ΓD(k) = 〈δD(x0 + x)δD(x0)〉. Defining the instantaneous 

diffusion coefficient as , where δx = x(t) − x(0), the temporally varying 

contribution δDinst = Dinst(t) − D∞ to the instantaneous diffusion coefficient (Novikov et al., 

2014) is given by

(A1)

(Note that the relevant limit ΓD(k → 0) is not equal to the value ΓD(k = 0) which is 

physically unimportant, see Appendix B of (Burcaw et al., 2015)). Thus, Dinst(t) is given by

(A2)

The instantaneous diffusion coefficient is related to the MRI measured diffusion coefficient, 

D(t), via , which when combined with Equation (B2) will yield

(A3)

We can hence determine the limit ΓD(k → 0) from the measured D∞ and c2 as

(A4)

with the units of μm5/ms2. We can then roughly estimate the limit ΓD(k → 0) of the power 

spectrum ΓD(k) for the Poissonian disorder as  based on the fact that in 

the real space, ΓD(x) ≃ 〈[δD]2〉 δ(x) has a sharp peak with amplitude given by the sample 

variance 〈[δD]2〉 ≡ 〈[δD(x)]2〉, and that this variance  because typical 
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fluctuations of the local coarse-grained diffusivity δD(x) cannot be too different from the 

long time limit D∞. Hence, we can estimate  as

(A5)

that has the desired units of μm, cf. Equation (5) of the main text.

It may seem unexpected that one can determine a length scale, the correlation length , from 

the scale-invariant power-law behavior (B3). Fortunately, the prefactor c2 of the inverse 

power law behavior (B3) contains the information about . To gain more intuition about 

how this length scale enters c2, we can rewrite the time-dependent part of D(t) as

(A6)

Equation (B6) reflects the effect of a gradual coarse-graining of the medium over increasing 

diffusion  when , and is asymptotically valid when the relative 

deviation [D(t) − D∞]/D∞ is small. At shorter times, i.e. times of the order of diffusion time 

 across the correlation length, the power-law behavior (B6) breaks down and 

crosses over to the short-time limit, where D(t) is close to the free diffusivity D0. The cross-

over time scale tc between the two regimes would give the most reliable way to determine 

the correlation length; however, diffusion times of the order of a few ms are very difficult to 

access directly using clinical gradients. Quantifying the amplitude of the power-law tail (B3) 

seems to be the only available method to estimate the correlation length without employing 

either high q values or very short diffusion times, and it is what makes our approach 

different from earlier studies. Luckily, the correlation length of the relevant restrictions, of a 

few micrometers, is not much smaller than the diffusion lengths probed in our study, so the 

tail (B6) of about 10–20% is not too small and can still be experimentally observed; had 

these restrictions been sub-micrometer, given the experimental noise, we would have only 

seen the constant tortuosity limit of D(t).

Appendix B The Effect of Orientational Dispersion on D⊥(t)

Consider the geometry of Figure 7. Let us assume axial symmetry in the fiber orientational 

distribution, as well as axial symmetry of the diffusion tensor

(B1)

for each elementary fiber segment in its natural basis. Each elementary fiber segment, 

defined by the polar and azimuthal angles θ and ϕ with respect to the fiber tract axis, 
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contributes δD = RΛR−1 to the overall diffusion tensor D. The rotation matrix R is a 

combination of the tilt via the polar angle and the rotation by the azimuthal angle,

(B2)

Summing up the elementary contributions δD from all segments in order to obtain the 

overall diffusion tensor D involves averaging over the azimuthal angle ϕ. Under the 

symmetry assumption of all ϕ being equally probable, the resulting tensor D becomes 

diagonal in the fiber tract basis, as expected. This gives us the relations between its 

eigenvalues D⊥ and D||, and the segments’ eigenvalues λ⊥ and λ|| for any θ,

(B3)

Applying Equation (B3) to the WM ROIs and the FA thresholded data averaged over all 

subjects, and finding θ, which corresponds to , such that λ⊥ becomes 

independent of t, results in the azimuthal angle values θ shown in Table B1. An example of 

the resultant λ⊥ over a range of θ is shown in Figure B1.

From the figure, it can be seen that the values of θ required to eliminate the radial time-

dependence are much greater than that reported in the literature for axon dispersion for all 

WM and FA thresholded ROIs. Therefore, we conclude that the time-dependence observed 

in D⊥(t) is not (solely) due to fiber orientation dispersion in the principal eigenvector.

Table B1

The rotation angle required to eliminate the radial time-dependence. Both WM ROI and FA 

thresholded data used is averaged over all subjects.

WM ROI θ FA Floor θ

Genu 28° 0.3 49°

Splenium 23° 0.4 46°

ACR 46° 0.5 41°

SCR 53° 0.6 33°

PCR 50° 0.7 0°

PLIC 49°
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Figure B1. 
An example of the calculated λ⊥ for various θ for the FA > 0.4 ROI. The original measured 

D⊥(t) is shown by the blue circles. Calculated λ⊥ for a range of θ are shown by the triangles, 

with increasing θ indicated by the colors ranging from blue to red. Note that at a moderately 

large angle of θ = 36° (green triangles) there is still a relatively marked decrease in λ⊥ with 

respect to t.
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Highlights

• We measure time-dependent DTI (55 ms – 600 ms) in vivo in human white 

matter

• Pronounced longitudinal and weaker transverse time-dependent diffusion is 

observed

• Longitudinal time-dependence is attributed to axonal varicosities

• Transverse time-dependence is attributed to the random axon packing geometry

• Varying diffusion time may provide a novel microstructural contrast
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Figure 1. 
Examples of ROIs used in this study displayed on a single subject. a–d). FA thresholded 

ROIs. e–f). Anatomical WM ROIs. a). FA > 0.3 b). FA > 0.4 c). FA > 0.5 d). FA > 0.6. e). 

Various anatomical WM ROIs including genu (blue), splenium (cyan), posterior limb of the 

internal capsule (purple), and the anterior corona radiata (red). f). Same as e), but a more 

superior slice to show the remaining ROIs including the superior corona radiata (yellow) and 

the posterior corona radiata (green). The red ROI is a continuation of the anterior corona 

radiata as seen in e).
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Figure 2. 
Diffusion tensor eigenvalues in the agarose-nickel phantom from scan 1
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Figure 3. 
The longitudinal and transverse diffusivities, D||(t) and D⊥(t), for the 6 WM ROIs as a 

function of the diffusion time t shown for all subjects. Squares indicate scan 1 data, and 

triangles denote scan 2.
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Figure 4. 
The longitudinal and transverse diffusivities, D||(t) and D⊥(t), averaged over all subjects for 

each FA thresholded ROI as a function of the diffusion time t.
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Figure 5. 
D||(t) for anatomical WM and FA thresholded ROIs for all subjects. The left column shows 

the fit for longitudinally ordered restrictions (Equation (3)) and the right column shows the 

fit for longitudinally disordered restrictions (Equation (4)). The top two and bottom two 

rows show the data from the anatomical WM ROIs and the FA thresholded ROIs, 

respectively. a). WM D||(t) fit with time-dependence coming from ordered restrictions 

(Equation (3)) plotted with respect to t. b). WM D||(t) fit assuming disordered restrictions 

(Equation (4)) plotted with respect to t. c). The same as for a). but plotted with respect to t−1. 
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d). The same as for b). but plotted with respect to t−1/2. e–h). The same as for a–d). but with 

FA thresholded ROIs.
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Figure 6. 
D⊥(t) for both anatomical WM and FA thresholded ROIs for all subjects. The left column 

shows the fits with time-dependence arising from intra-axonal diffusion (Equations (6) and 

(7)), while the right columns shows the fits with time-dependence arising from extra-axonal 

diffusion (Equations (8) and (9)). As in Figure 5, the top two and bottom two rows show the 

data from the WM and FA ROIs, respectively. Similar to the longitudinal diffusivity, data 

from scans 1 and 2 are averaged over all subjects and shown by the circles. a). Anatomical 

WM D⊥(t) fit with time-dependence coming from intra-axonal diffusion (dashed: narrow 

pulse limit Equation (6); solid: wide pulse limit Equation (7)) plotted with respect to t. b). 

Fieremans et al. Page 32

Neuroimage. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anatomical WM D⊥(t) fit with time-dependence originating from extra-axonal diffusion 

within a disordered structure (dashed: narrow pulse limit Equation (8); solid: wide pulse 

limit Equation (9)) with respect to t. c). The same as for a). but plotted with respect to t−1. 

d). The same as for b). but plotted with respect to t−1. e–h). The same as for a–d). but FA 

thresholded ROI data
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Figure 7. 
Schematic illustrating the axially symmetric set of elementary fiber segments with 

eigenvalues λ⊥ and λ|| contributing to the overall voxel-wise diffusion tensor eigenvalues 

D⊥ and D||.
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