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A comparison of partial profile designs for
discrete choice experiments with an
application in software development

Abstract

In a discrete choice experiment, each respondent chooses the best product or service
sequentially from many groups or choice sets of alternative goods. The alternatives,
called profiles, are described by level combinations from a set of predefined attri-
butes. Respondents sometimes make their choices on the basis of only one dominant
attribute rather than making trade-offs among all the attributes. For example, in
studies involving price as an attribute, respondents may always choose the profile
with the lowest price. Also, a choice task including many attributes may encourage
respondent decisions that are not fully compensatory. To thwart these behaviors,
the investigator can hold the levels of some of the attributes constant in every
choice set. The resulting designs are called partial profile designs. In this paper, we
construct D-optimal partial profile designs for estimating main-effects models. We
use a Bayesian design algorithm that integrates the D-optimality criterion over a
prior distribution of likely parameter values. To determine the constant attributes
in each choice set, we provide three alternative generalizations of an approach that
makes use of balanced incomplete block designs. Each of our three generalizations
constructs partial profile designs accommodating attributes with any number of le-
vels and allowing flexibility in the numbers of choice sets and constant attributes.
We show results from an actual experiment in software development performed using
one of these algorithms. Finally, we compare the algorithms with respect to their
statistical efficiency and ability to avoid failures due to the presence of a dominant
attribute.

Keywords: discrete choice experiments, Bayesian D-optimal design, partial pro-
files, lexicographic choice behavior, balanced incomplete block design, coordinate-
exchange algorithm
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1 Introduction

Discrete choice experiments (DCEs) are a standard tool in marketing for quantifying
consumer preferences (Louviere et al. 2003). Given a set of predefined product attri-
butes, DCEs identify those attributes that matter most and indicate the most appealing
levels for these attributes. DCEs are also called conjoint choice or stated choice experi-
ments. The term “conjoint” is à propos because levels of different attributes are combined
or considered jointly in a product profile or alternative. These profiles describe either exis-
ting products or hypothetical and possibly prospective products. A DCE consists of a
select number of profiles grouped into choice sets. Each choice set represents a hypo-
thetical market from which respondents indicate the product they prefer. The statistical
analysis of the respondents’ choices employs discrete choice modeling to estimate the pre-
ference parameters attached to each attribute.

DCEs generally work well when the number of attributes in a profile is not too large.
Green (1974), Green and Srinivasan (1990), Schwabe et al. (2003), Bradlow (2005) and
Chrzan (2010), among others, argue that respondents can process only a limited number
of attributes, loosely speaking, four to seven depending on the application. At the same
time, they recognize the demand for DCEs suitable for investigating larger numbers of
attributes, especially in the case of high-tech durable products. To meet this demand,
Green (1974) originated the idea of constructing profiles based on only a subset of the
attributes. A choice set then consists of profiles that vary only in the levels of a subset
of the attributes called partial profiles. By contrast, profiles that vary the levels of all
attributes in a choice set are called full profiles. The profile strength is the number of
attributes whose levels vary in the partial profiles. These varying attributes differ from
choice set to choice set.

Assuming that the constant attributes do not interact with the varying attributes,
the levels taken by the constant attributes in a choice set do not affect the profile that
is chosen. That is why in a traditional partial profile design that displays the profiles
as columns of words or sentences, the constant attributes are dropped from the choice
sets. However, in many DCEs, especially those that display the profiles as images (e.g.
images of products), it is at least preferable or even required to also show the levels of the
constant attributes to the respondents. In this respect, Dellaert et al. (2012) argue that in
the absence of the levels of the constant attributes, the parameter estimates of the choice
model may not reflect real-world choice behavior. For this reason, we extend the use of
the term “partial” profiles to simply indicate that the levels of some attributes remain
constant in every choice set. In Section 2, we describe a DCE in software development
where showing the levels of the constant attributes is required.

Currently, there is some controversy around the notion that the cognitive burden of a
large number of attributes overwhelms respondents, which has served as the primary rea-
son for using partial profiles. Mainly Louviere (2005) and Louviere et al. (2011) maintain
that profiles with large numbers of attributes may not overburden respondents because
they are faced with complex choices in everyday life. For example, the cereal aisle in
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a supermarket confronts people with many product categories and plenty of attribute
information. Still, most shoppers make their breakfast choices without undo stress. In
opposition to this view, several studies exploring the complexity and cognitive burden as-
sociated with DCEs provide evidence that a large number of attributes has a detrimental
effect on the ability to choose, contributing to an increased error variance and parameter
differences (see, e.g., Swait and Adamowicz 2001; DeShazo and Fermo 2002; Caussade et
al. 2005; Hensher 2006).

Discrete choice models treat the utility of a given profile as the sum of the individual
utilities or part-worths of the attributes. Implicit in this formulation is the expectation
that respondents make compensatory decisions. This means that an attractive level of
one or more attributes can compensate for an unattractive level of another attribute in
the respondent’s mind. However, one consequence of presenting many attributes in a
DCE is that respondents make choices based on a hierarchical or lexicographic preference
ordering of the attributes. In other words, the levels of the most important attribute(s)
may totally dictate the preferred profile in any choice set (see, e.g., Scott 2002; Hensher
2006; Hensher and Rose 2009). This sole focus on the levels of the most important at-
tribute(s) shortcuts the compensatory decision process. This kind of non-compensatory
decision behavior then yields little or no information about the secondary attributes. The
part-worth estimates for the secondary attributes in such cases are rarely useful.

The fact that respondents may resort to simplifying, non-compensatory decision rules
when processing multi-attribute information in a DCE provides a compelling argument
for using partial profiles. Holding the levels of some of the attributes constant in every
choice set makes the choice tasks easier, rendering simplifying decision strategies unneces-
sary. Even better, a single attribute strategy is impossible if the levels of the key attribute
remain constant in some choice sets. Thus, whether a DCE employs many attributes or
just a few, partial profiles can prove useful in the presence of a dominant attribute. For
choice sets in which the level of the dominant attribute is varied, respondents will always
choose the profile with the most attractive level for that attribute. If the level of the do-
minant attribute is, however, constant, then respondents have to trade off the remaining
attributes.

We advocate using partial profiles to help prevent respondents from exploiting non-
compensatory decision strategies, including attribute dominance, so that the compensa-
tory discrete choice models remain valid. This motivation for partial profiles is stronger
than the traditional motivation of reducing the cognitive burden associated with requiring
respondents to evaluate a large number of attributes. There is, however, also a downside
to partial profiles. In theory, if all the respondents employ compensatory decision ma-
king, then fielding DCEs with partial profiles instead of full profiles results in less precise
parameter estimates (Kessels et al. 2010).

Early theoretical development of design for DCEs made use of orthogonal arrays com-
monly associated with models that are linear in the unknown parameters. The discrete
choice model is nonlinear in the parameters leading to an apparent mismatch of design and
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model. However, if one sets all the parameters in a choice model to zero, this transforms
the nonlinear design problem into one that is equivalent to a linear design problem. Zero
parameters result in zero utilities for any prospective profile, which explains the use of the
term, utility-neutral design, for this approach. In their book, Street and Burgess (2007)
compile an extensive set of utility-neutral full profile designs for specific combinations of
numbers of attribute levels and choice sets using optimal design theory for linear models
(see, e.g., Atkinson et al. 2007).

Rose and Bliemer (2009) point out that the Street and Burgess designs may promote
lexicographic choice behavior. This is because their utility-neutral full profile designs
vary the levels of every attribute in each choice set allowing a dominant attribute to go-
vern every choice. This underscores the potential benefit of using partial profile designs.
So far, the literature for DCEs using partial profiles has almost exclusively focused on
utility-neutral designs involving choice sets with two profiles (Grasshoff et al. 2003, 2004;
Grossmann et al. 2006, 2009). Moreover, the most recent utility-neutral optimal designs
created by Grossmann et al. (2009) only allow for two groups of attributes where the
number of attribute levels is fixed in every group. There are also limitations on the al-
lowable numbers of choice sets and varying attributes. This approach is therefore not
applicable for a wide variety of practical problems.

A fundamental aspect of nonlinear models in general and DCEs in particular is that
the information content of any design depends on the unknown parameters (Atkinson and
Haines 1996). DCEs constructed to be optimal for one specific set of parameter values are
said to be locally optimal (Huber and Zwerina 1996). The utility-neutral optimal designs
are optimal for one specific set of parameter values, namely the set of all zero values, so
they belong to the class of locally optimal designs.

Bayesian design methodology provides a solution to the nonlinear design problem that
is robust to misspecification of the parameters. Introduced in the choice design literature
by Sándor and Wedel (2001), Bayesian design methodology assumes a prior distribution
of likely parameter values and optimizes the design over that distribution. In this way,
it incorporates uncertainty about the proposed parameters into the problem formulation,
which is more realistic than any locally optimal design approach. Many researchers have
implemented the Bayesian design approach to construct full profile designs for DCEs (see,
e.g., Sándor and Wedel 2001, 2002, 2005; Kessels et al. 2006, 2008, 2009, 2011b; Ferrini
and Scarpa 2007; Yu et al. 2009, 2011; Bliemer and Rose 2010). Our aim is to extend
this work to partial profile designs, going beyond just blindly applying a full profile design
method to the construction of partial profile designs, as advised by Kessels et al. (2011a).
We adopt a Bayesian D-optimality criterion for the main-effects multinomial logit (MNL)
model and call the resulting partial profile designs DB-optimal to emphasize the fact that
we are making use of the Bayesian design idea.

To generate DB-optimal partial profile designs, we propose three two-stage design al-
gorithms. In the first stage, we generate a master design that determines the attributes
whose levels vary in each choice set, while in the second stage, we generate an attribute
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level design that sets the levels of the varying attributes. The three algorithms differ in
the methods for determining the varying attributes in each choice set. They provide al-
ternative solutions that generalize Green’s (1974) idea to use a balanced incomplete block
design (BIBD) for selecting the varying attributes. As a matter of fact, the algorithms
produce efficient partial profile designs accommodating attributes with any number of
levels and allowing flexibility in the numbers of choice sets and varying attributes. This
offers marketing researchers full flexibility when designing DCEs and breaks the status
quo since Green’s (1974) paper.

The outline of the remainder of the paper is as follows. Section 2 describes an actual
DCE in software development with partial profiles created using one of our design algo-
rithms. Section 3 reviews the multinomial logit model and the DB-optimality criterion
used to construct partial profile designs. In Section 4, we present the partial profile de-
sign algorithms to generate the Bayesian designs. In Section 5, we construct and compare
different DB-optimal partial profile designs for an illustrative problem. We study their
performance relative to full profile testing and also use utility-neutral designs as bench-
marks. Section 6 continues the discussion on the DCE in software development with an
overview of the analysis results and a comparison of follow-up design solutions. Section 7
concludes the paper and highlights some further research possibilities.

2 A real-life DCE in software development

The JMP software product from SAS Institute is a general-purpose statistical analysis
and graphical visualization tool for scientists and engineers. The JMP software group
performed an online DCE to understand users’ preferences for output displays generated
by JMP. Typically, software developers make numerous product design decisions, but
many of these decisions are not tested to find out whether the customer likes them.
However, in this case, the JMP development team sought feedback from its customers
by asking them to evaluate 15 choice sets of two output displays from a simple linear
regression analysis. In each choice set, the two output displays differed in the levels of
three attributes and respondents had to indicate the output display they liked better.
Figure 1 shows an example of such a choice set.

<Insert Figure 1 about here>

The two output displays in Figure 1 differ as follows. First, the background color of
the picture area around the graph is white in the left output display and creamish in the
right output display. Second, the graph frame is bordered on two sides in the left output
display and on all four sides in the right output display. Finally, an outer graph rectangle
is absent in the left output display and present in the right output display.

The three attributes with different levels for the two output displays in a choice set are,
however, not the same for all 15 choice sets. There were seven attributes under study, so
the attributes whose levels varied in each choice set changed between choice sets. Table 1
shows the seven attributes in the DCE, together with their levels. The first attribute,
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the report background color, has four levels, whereas the remaining six attributes all have
two levels. Note that the picture background color is either the same as or in contrast
with the report background color.

The output displays shown in the 15 choice sets are partial profiles varying the levels
of only three of the seven attributes in each choice set. For example, Table 2 shows the
profiles with the attribute levels for the two output displays in Figure 1. Besides the three
varying attributes, there are four constant attributes with levels that are depicted in gray.
The JMP development team chose a design with partial profiles to keep the choice tasks
manageable for the respondents.

<Insert Tables 1-2 about here>

To obtain precise part-worth estimates, the JMP team generated a Bayesian D-optimal
partial profile design (see Section 3) containing 120 choice sets. For each group of eight
respondents the 120 choice sets were randomly reshuffled into eight surveys of 15 choice
sets each.

The selection of the three varying attributes in each choice set was based on Green’s
(1974) idea to use a balanced incomplete block design (BIBD) for specifying the attri-
butes whose levels vary in each choice set. A BIBD describes how to arrange the t levels
of a single qualitative factor, called treatments, in S blocks of size tv, where tv < t. In a
BIBD, every treatment appears with the same frequency and the number of times each
pair of treatments appear together in a block is the same for all pairs. By analogy, in
the construction of partial profile designs, the choice sets represent the blocks and the
varying attributes represent the treatments within the blocks. A BIBD can therefore be
used as a master design to specify the varying attributes in each choice set. The goal of
the JMP development team was to balance the number of times an attribute varies over
the entire design and the number of times pairs of varying attributes appear together
within a choice set.

To illustrate the BIBD approach, Table 3 shows seven of the 120 choice sets of the par-
tial profile design. The BIBD master design for these seven choice sets appears in Table 4.
The varying attributes form a BIBD because each attribute varies in three choice sets and
each of the 21 possible pairs of varying attributes appears exactly once in the seven choice
sets.

A problem with Green’s BIBD approach is that BIBDs only exist for specific combi-
nations of numbers of blocks and treatments. For instance, it is not possible to generate
a BIBD with 120 blocks containing tv = 3 out of t = 7 different treatments. One way to
get around this problem is to adapt the choice design situation to fit an available BIBD
master design. Fortunately, there is a better solution that adapts the master design to the
choice design situation. Given that a BIBD is a special case of a D-optimal design, the
BIBD approach can be generalized by maximizing the D-optimality criterion for a very
specific ANOVA model. Since a BIBD is D-optimal, this D-optimal design method yields
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a BIBD if one exists for a given situation. Otherwise, the D-optimal design approximates
the balancing structure of a BIBD as closely as possible. Therefore, the JMP team used a
D-optimal design as master design to determine the varying attributes in the 120 choice
sets. In this paper, we use the term attribute balance to describe this D-optimal design
method for determining the varying attributes in each choice set and provide construction
details in Section 4.

<Insert Tables 3-4 about here>

3 The multinomial logit framework

The multinomial logit (MNL) model assumes that respondents to a DCE belong to a
target group of consumers with homogeneous product preferences. The model employs
random utility theory which describes the utility that a respondent attaches to profile j
(j = 1, ..., J) in choice set s (s = 1, ..., S) as the sum of a systematic and a stochastic
component:

Ujs = x′
jsβ + εjs. (1)

In the systematic component x′
jsβ, xjs is a k × 1 vector containing the attribute levels

of profile j in choice set s. We assume all attributes are categorical. The vector β is
a k × 1 vector of parameter values representing the part-worths or main effects of the
attribute levels on the utility. This part-worth vector is the same for every respondent.
The stochastic component εjs is the error term, which is assumed independently and
identically extreme value distributed. Therefore, the MNL probability that a respondent
chooses profile j in choice set s is the closed-form expression

pjs =
exp

(
x′
jsβ

)
∑J

t=1 exp (x
′
tsβ)

, (2)

where β can be estimated using a maximum likelihood approach.

The construction of an optimal design X = [x′
js]j=1,...,J ;s=1,...,S for estimating β in the

MNL model (2) is based on the Fisher information matrix

M (X,β) =
S∑

s=1

X′
s (Ps − psp

′
s)Xs, (3)

withXs = [x′
js]j=1,...,J the submatrix ofX corresponding to choice set s, ps = [p1s, . . . , pJs]

′

and Ps = diag [p1s, . . . , pJs]. Huber and Zwerina (1996), Sándor and Wedel (2001), Kan-
ninen (2002), Kessels et al. (2006, 2009, 2011b) and Scarpa and Rose (2008), among
others, implemented different design criteria or functions of the information matrix (3)
for constructing optimal designs. This task is far from trivial since the information on
β depends on the unknown part-worth values in β through the probabilities pjs so that
part-worth values are required before it is possible to construct optimal designs. To deal
with this dependency on β, one can use a single prior guess, βP , in a locally optimal design
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approach. The most popular design criterion in this approach is the local D-optimality
criterion or DP -optimality criterion, which we define as

DP = log |M (X,βP )| . (4)

The design that maximizes the DP -criterion is the DP -optimal design for the MNL
model (2).

However, as shown by Sándor and Wedel (2001), locally optimal designs may provide
imprecise part-worth estimates if the prior part-worth vector is misspecified. The locally
optimal designs are only guaranteed to work well if the true part-worth vector β is close
to the one specified when constructing the design. A more robust design solution is a
Bayesian strategy that averages the design criterion over a prior distribution of likely
part-worth values, π (β). Often, this distribution is the multivariate normal distribution,
N (β|β0,Σ0), with prior mean β0 and prior variance-covariance matrix Σ0. As opposed
to locally optimal designs, Bayesian optimal designs perform well for a broad range of
part-worth vectors β (Kessels et al. 2011b,c; Rose 2011). To generate them, we use the
Bayesian D-optimality criterion or DB-optimality criterion, which we define as

DB =

∫

Rk

log |M (X,β)| π(β)dβ. (5)

The design that maximizes the DB-criterion is the DB-optimal design for the MNL
model (2). Kessels et al. (2011b) were the first to use this definition of the DB-criterion to
generate DB-optimal designs. It differs from the DB-optimality criterion used in most of
the literature on optimal choice design (see, e.g., Sándor and Wedel 2001, 2005; Kessels et
al. 2006, 2008, 2009; Bliemer and Rose 2010) because of the logarithmic transformation
of the determinant. This transformation ensures that, in a Bayesian information theore-
tic sense, the design that maximizes the DB-optimality criterion (5) also maximizes the
expected Shannon information (Chaloner and Verdinelli 1995; Atkinson et al. 2007). A
practical advantage of the logarithmic transformation is that it makes the DB-criterion
less sensitive to part-worth vectors resulting in very large determinant values.

To compare the estimation performance of a partial profile design to a full profile
design, we compute the relative DB-efficiency. We define the DB-efficiency of a design X
relative to a design X∗ as

EffB (X,X∗) = exp

(DB(X)−DB(X
∗)

k

)
. (6)

Also Holling and Schwabe (2011) proposed using Equation (6) to compute the relative
DB-efficiency of two designs.

Rather than using a Bayesian design approach, some researchers have transformed the
nonlinear design problem for the MNL model (2) into a linear one by creating locally
optimal designs assuming that the probabilities for all J profiles in each choice set are
equal to 1/J , or equivalently that β = 0 (see, e.g., Street and Burgess 2007; Grossmann
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et al. 2009). This assumption reflects the fact that respondents have no preference for
any of the profiles in a choice set. Therefore, the designs are called utility-neutral designs.
The information matrix (3) of such designs is, up to a proportionality constant, equal to

M (X) = X′X−
S∑

s=1

J−1 (X′
s1J) (1

′
JXs) , (7)

where 1J is a J-dimensional vector of ones (see, e.g., Kessels et al. 2011b). To construct
D-optimal utility-neutral designs, we maximize the linear D-optimality criterion,

D =

∣∣∣∣∣X
′X−

S∑
s=1

J−1 (X′
s1J) (1

′
JXs)

∣∣∣∣∣ . (8)

In Section 5, we present a comparison study in which we use D-optimal utility-neutral
designs as benchmark designs.

4 Partial profile design algorithms

In this section, we provide the details of our algorithms for generating partial profile
designs. These algorithms all have the same basic two-stage structure:

Stage 1: Creating a master design to determine the attributes whose levels vary in
each choice set,

Stage 2: Creating an attribute level design to set the levels of these varying attri-
butes.

We present three algorithms for the stage 1 design problem and one algorithm for the
stage 2 design problem. We divide the algorithms for stage 1 into two types:

Attribute balance: A generalization of Green’s BIBD approach for making all attri-
butes vary the same number of times in the design,

Variance balance: A modification of Green’s BIBD approach that ensures an equal
amount of information on, or equivalently, an equal estimation precision of all part-
worths. This modification is especially useful if not all attributes have the same
number of levels. We implemented two slightly different modifications to achieve
balance in the variances of the part-worth estimates.

For creating the master design, both the attribute balance and the two variance balance
methods make use of principles of the optimal design of experiments for linear models.
We introduce these linear design principles and describe their application for creating the
master design in Section 4.1. We discuss the algorithm for creating the attribute level
design in Section 4.2.
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4.1 Stage 1: Creating the master design

4.1.1 An auxiliary two-way ANOVA model

In Section 2, we mentioned Green’s (1974) suggestion to use a balanced incomplete block
design (BIBD) as a master design to determine the varying attributes in each choice set.
To this end, the BIBD must have as many blocks as there are choice sets, and the number
of treatments within each block of the BIBD has to be equal to the number of varying
attributes in a choice set. In other words, the BIBD must have S blocks of tv out of a
total of t treatments each.

The family of BIBDs is well-known because a BIBD is D- and A-optimal for estimating
the treatment effects in the two-way ANOVA model of the type

Yis = αi + γs + εis, (9)

where Yis is the response of treatment i in block s, αi represents the average response
for treatment i, γs is the effect of block s and εis is the random error corresponding
to the response for treatment i in block s (where all random errors are assumed to be
independently normally distributed with zero mean and variance σ2). In matrix notation,
the two-way ANOVA model (9) can be written as

Y = Qα+ Zγ + ε, (10)

where Y is a vector of r = Stv responses, Q is an r × t matrix containing the treatment
design, α = [α1, . . . , αt]

′ is the vector containing the average responses for all treatments,
Z is the r × (S − 1) matrix that assigns the treatments to the blocks, γ = [γ1, . . . , γS−1]

′

is the vector containing the block effects, and ε is a random error vector.

A key feature of the BIBD is that it maximizes the determinant of the information
matrix on the ANOVA model’s parameters α and γ, which, up to a proportionality
constant, is equal to

N =

[
Q′Q Q′Z
Z′Q Z′Z

]
. (11)

The BIBD is therefore D-optimal for the ANOVA model. At the same time, the BIBD
minimizes the trace of the inverse of the information matrix, N−1, as well as the sum
of the variances of the ordinary least squares estimates of α1, ..., αt,

∑t
i=1 var(α̂i). The

BIBD is therefore also A-optimal for the ANOVA model.

A technical problem with BIBDs is that they only exist for a limited number of specific
combinations of numbers of choice sets and attributes, which makes them impractical
for general-purpose use. A more general approach to construct a master design for the
varying attributes, which works for any number of choice sets and attributes, is to seek
D-optimal or A-optimal designs for the two-way ANOVA model. We use the former type
of optimal designs for the two-way ANOVA model in scenarios where we want to pay
an equal amount of attention to each attribute. We refer to this situation as attribute
balance. In experimental scenarios where not all attributes have the same number of
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levels, it makes sense, however, to pay more attention to attributes that have many levels.
For these scenarios, we use a weighted A-optimal design for the two-way ANOVA model
as a master design. We refer to this situation as variance balance.

4.1.2 Attribute balance

Our attribute balance approach generalizes Green’s BIBD approach in the sense that it
works for any number of choice sets, any number of attributes and any number of varying
attributes, while paying an equal amount of attention to all attributes, independent of
the numbers of levels of each attribute. To this end, we use a computerized search to find
the master design that maximizes the D-optimality criterion for the two-way ANOVA
model. Such a D-optimal design can always be found, even in situations where a BIBD
does not exist. Hence, by using a D-optimal master design, we are no longer hindered by
the restrictive nature of BIBDs.

The attractive feature of a BIBD is that it balances the number of times an attribute
varies in the choice design (first-order balance). In addition, it also balances the number
of times an attribute varies in the same choice set as another attribute (second-order ba-
lance or pairwise balance). The D-optimal master design which we advocate achieves the
same kinds of balance for suitable choices of the numbers of choice sets (S), attributes (t)
and varying attributes (tv), i.e. in situations where a BIBD exists. If no BIBD exists, the
D-optimal master designs come as close to providing both first- and second-order balance
as possible.

The D-optimal master design maximizes the determinant of the (r+S−1)×(r+S−1)
information matrix (11), |N|, for given values of S, tv and t. To save computing time
when searching for the D-optimal master design, we apply Theorem 13.3.8 in Harville
(1997) to find that

|N| =
∣∣∣∣
Q′Q Q′Z
Z′Q Z′Z

∣∣∣∣ ,

= |Z′Z| |Q′Q−Q′Z (Z′Z)−1
Z′Q| .

(12)

The matrix Z only depends on S and tv, so that it is constant for a given design problem.
Also, |Z′Z| and Z (Z′Z)−1 Z′ are constant, so that we only need to compute them once.
If we denote the r-dimensional identity matrix by Ir, then, to achieve attribute balance,
we can maximize the t-dimensional determinant

|Q′(Ir − Z (Z′Z)−1
Z′)Q| (13)

instead of the (r + S − 1)-dimensional determinant |N|. This approach leads to compu-
tational time savings that increase with the number of blocks, S.

4.1.3 Variance balance

A limitation of attribute balance is that it ignores the fact that attributes may have
differing numbers of levels. In such cases, the part-worths of the attributes with a larger
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number of levels are estimated less precisely than the part-worths of the attributes with
fewer levels. Therefore, it makes sense to vary an attribute with a larger number of
levels in more choice sets than an attribute with fewer levels to obtain similar amounts
of information on each part-worth estimate. To decide how often each of the t attributes
has to be varied in the S choice sets, we start again from the two-way ANOVA model (9).
This time, we create a weighted A-optimal design for the ANOVA model, which we refer
to as an Aw-optimal master design. The Aw-optimal master design minimizes

Aw =
t∑

i=1

wivar(α̂i), (14)

where wi are the weights attached to the variances of the individual parameter estima-
tors, α̂i. These variances are the diagonal elements of the t × t-dimensional upper left
hand submatrix of N−1, which, according to Theorem 8.5.11 in Harville (1997), can be
computed most efficiently as

{Q′(Ir − Z (Z′Z)−1
Z′)Q}−1. (15)

The weights wi in the weighted A-optimality criterion increase with the number of
levels, di, of attribute i. By increasing that weight, we explicitize that we prefer having a
larger amount of information on attribute i. In terms of the two-way ANOVA model, the
larger weight expresses that we want to estimate the treatment effect αi more precisely
than other treatment effects. The resulting master design then uses treatment i more of-
ten than other treatments, which implies that the level of attribute i in the choice design
is varied more often. In general, increasing an attribute’s weight in the Aw-optimality
criterion causes that attribute to vary in more choice sets.

We generate two classes of Aw-optimal master designs and refer to them as variance
balance I and variance balance II designs. The variance balance I and II approaches dif-
fer in the exact weights utilized. The two sorts of weights we use play a crucial role in
optimal design theory for linear models used to construct utility-neutral optimal designs
for DCEs, as was done by Grasshoff et al. (2004) and Grossmann et al. (2006, 2009).
The mathematical justification for the two types of weights is given in the Appendix.

Variance balance I

In the variance balance I approach, the weight wi is proportional to the number of part-
worth values associated with attribute i:

wi =
di − 1∑t
i=1 di − t

=
di − 1

k
. (16)

The intuition behind this weight formula is that this way of selecting the varying attributes
spreads the information losses from the constant attributes equally over all k part-worth
values. In the Appendix, we show that this weight is required to compute the information
matrix of utility-neutral optimal partial profile designs.
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Variance balance II

In the variance balance II approach, each weight is computed as

wi =
(di − 1)2

2di
. (17)

In the Appendix, we show that this weight formula has been derived from the information
matrix of utility-neutral optimal full profile designs.

4.1.4 Illustration of master designs

To provide insight in the stage 1 algorithms, attribute balance and variance balance I
and II, we used them to generate master designs for an illustrative problem. We construc-
ted the D-optimal and Aw-optimal master designs for a partial profile design involving 15
choice sets, three 2-level attributes, two 3-level attributes and one 5-level attribute. At
this stage of the choice design process, the number of profiles, J , in every choice set is
irrelevant, though any value is applicable. The master designs appear in Table 5. Given
six attributes under study, they have four varying attributes in each choice set indicated
by check marks. The remaining two attributes, shown in gray, are constant. The last line
of the table contains the numbers of times each attribute is constant in a choice set.

<Insert Table 5 about here>

The first master design is the D-optimal master design generated using the attribute
balance approach. It perfectly satisfies first-order balance because each attribute varies
in ten choice sets. Also, it perfectly satisfies second-order balance because each of the
15 possible pairs of varying attributes appears in exactly six choice sets. The D-optimal
master design is therefore a BIBD in this example.

The remaining two designs are the Aw-optimal master designs generated using va-
riance balance I and II, respectively. As opposed to the D-optimal master design, the
Aw-optimal master designs take into account the numbers of levels of each attribute.
Both Aw-optimal master designs hold pairs of 2-level and/or 3-level attributes constant
in the choice sets. The level of the 5-level attribute varies all the time. Compared to
variance balance II, variance balance I varies the level of a 2-level attribute in two more
choice sets at the expense of a 3-level attribute.

We will revisit this illustrative example in Section 5 where we present a comparison
study of partial profile designs. To complete the partial profile design construction, we
now describe the stage 2 design algorithm to set the levels of the varying attributes.

4.2 Stage 2: Creating the attribute level design

In the last stage of the partial profile design construction, we determine the levels of the
varying attributes in an attribute level design. We choose the levels of the constant attri-
butes randomly because, for main-effects models, they have no effect on the information
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acquired from the experiment. That is, the information matrix (3) is not a function of
the constant attributes in a choice set.

The algorithm we use to create the attribute level design is Meyer and Nachtsheim’s
(1995) coordinate-exchange algorithm. It starts by randomly generating a level for each
varying attribute in each profile of the design. For each of these levels or “coordinates”,
the algorithm then tries all possible levels and chooses the level corresponding to the best
value of the optimality criterion selected for partial profile design evaluation. We use
the DB-optimality criterion (5) to create Bayesian partial profile designs and the linear
D-optimality criterion (8) to create utility-neutral partial profile designs. The algorithm
runs several times through the attribute level design and restarts for a given number of
times.

Kessels et al. (2011b) also used the coordinate-exchange algorithm with the DB-
optimality criterion (5) as objective function to construct Bayesian full profile designs.
We follow their methods to compute the DB-criterion value of a partial profile design. We
use a multivariate normal prior distribution π (β) = N (β|β0,Σ0) and approximate the
k-dimensional integral related to this distribution using the quadrature scheme of Gotwalt
et al. (2009) and Gotwalt (2010). Yu et al. (2010) showed that this quadrature method
outperforms any other methods for Bayesian objective function evaluation.

Kessels et al. (2011a), however, pointed out a weakness of using the coordinate-
exchange algorithm to generate Bayesian partial profile designs. Because the algorithm
does not require the levels of the varying attributes to actually change, they showed that
the levels of one or more of these attributes remain fixed in certain choice sets of some
partial profile designs. In that case, more than the required number of attributes remain
constant in such choice sets. We modified the coordinate-exchange algorithm so that it
must vary the levels of the varying attributes in the choice sets. This affects the DB-
optimal design outcome in some design situations.

The main reason why we do not allow additional constant attributes selected by the
DB-optimality criterion (5) in Bayesian partial profile designs is that, if the number of
varying attributes is not the same in each choice set, then this results in some choice sets
being easier to evaluate than others so that the error variance is unlikely to be constant
across choice sets. Also, in DCEs where the profiles are displayed as columns of words or
sentences and the constant attributes are dropped, the columns do not all have the same
length if the number of varying attributes differs between choice sets. This is aestheti-
cally jarring. Lastly, it turns out that in cases where DB-efficiency losses are incurred
because all varying attributes have to change, these losses are most often negligible. This
is because the partial profile designs already have tc = t− tv attributes constant so that
the number of additional constant attributes selected by the DB-optimality criterion (5)
is rarely large.

In the next section, we evaluate Bayesian partial profile designs against utility-neutral
partial profile designs. For main-effects utility-neutral designs, the linear D-optimality
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criterion (8) always varies the levels of the varying attributes in the choice sets so that
the partial profiles have exactly tc constant attributes. As a result, there is no need
for a restriction in the coordinate-exchange algorithm that excludes additional constant
attributes from the choice sets. Moreover, the main-effects utility-neutral designs are
level balanced in the varying attributes within and over all choice sets given appropriate
numbers of attribute levels, choice sets and profiles per choice set. For other design
situations, the main-effects designs are level balanced to the largest possible extent.

5 A comparison of partial profile designs for an illus-

trative problem

This section compares a series of DB-optimal partial profile designs to the corresponding
DB-optimal full profile design. Other benchmark designs are the D-optimal utility-neutral
designs with full and partial profiles. All designs are main-effects designs which consist
of a single survey involving 15 choice sets with two profiles, three 2-level attributes, two
3-level attributes and one 5-level attribute. The partial profile designs hold the levels
of one or two attributes constant. We examine the loss in DB-efficiency due to using
partial profiles instead of full profiles. We describe the setup of the comparison study in
Section 5.1, and discuss the optimal designs and their DB-efficiencies in Sections 5.2 and
5.3, respectively.

5.1 Setup of the comparison study

We generated the Bayesian and utility-neutral optimal designs using 2000 random starts
of the coordinate-exchange algorithm. We modeled the attribute levels using effects-type
coding which constrains the part-worths associated with any given attribute to sum to
zero. If di denotes the number of levels for attribute i, i = 1, ..., t, effects-type coding
requires that only the part-worths attached to the first di − 1 levels of that attribute
need to be estimated as the part-worth attached to the last level di automatically results.
Therefore, the vector β contains k = 11 unknown part-worth values in our illustrative
study.

For the construction of the Bayesian designs, we used the multivariate normal prior
distribution π (β) = N (β|β0,Σ0), with prior mean

β0 = [−0.5,−0.5,−0.5,−0.5, 0,−0.5, 0,−0.5,−0.25, 0, 0.25]′ (18)
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and prior variance-covariance matrix

Σ0 =




0.16 0 0 0 0 0 0 0 0 0 0
0 0.16 0 0 0 0 0 0 0 0 0
0 0 0.16 0 0 0 0 0 0 0 0
0 0 0 0.16 −0.08 0 0 0 0 0 0
0 0 0 −0.08 0.16 0 0 0 0 0 0
0 0 0 0 0 0.16 −0.08 0 0 0 0
0 0 0 0 0 −0.08 0.16 0 0 0 0
0 0 0 0 0 0 0 0.16 −0.04 −0.04 −0.04
0 0 0 0 0 0 0 −0.04 0.16 −0.04 −0.04
0 0 0 0 0 0 0 −0.04 −0.04 0.16 −0.04
0 0 0 0 0 0 0 −0.04 −0.04 −0.04 0.16




.

(19)
For the specification of the prior mean β0, we chose to equally space the part-worth

values between −0.5 and 0.5 for each attribute. The first three part-worth values in β0

are the prior mean utilities associated with the first level of each of the three 2-level at-
tributes. The next two sets of two part-worth values reflect the prior mean utilities of the
first and second level of each of the two 3-level attributes. Finally, the last four part-worth
values correspond to the prior mean utilities of the first four levels of the 5-level attribute.
Due to the effects-type coding, a prior mean part-worth value of 0.5 automatically results
for the last level of each attribute. Using this prior mean specification, we assume that
all attributes are equally important and that they are ordinal, where the levels of each
attribute are ordered from least preferred to most preferred.

For the prior variance-covariance matrix Σ0, we specified k = 11 variances that are all
equal to 0.16 and negative covariances between the di− 1 part-worths of each attribute i.
We computed these covariances using a correlation coefficient of −1/(di−1). As explained
by Kessels et al. (2008), this ensures that the variances of all part-worths corresponding
to a given attribute are the same, meaning that the variance associated with the last
implied level di of attribute i also equals 0.16.

5.2 Optimal designs

5.2.1 Full profile design

Table 6 shows the DB-optimal full profile design. This design has seven choice sets with
one constant 2-level attribute. These constant attributes are marked in gray and can
assume any possible attribute level. There are 6 attributes and 15 choice sets giving 90
possibilities for such level overlap. Here, we see about 8% of level overlap.

5.2.2 One constant attribute

Table 7 shows the DB-optimal partial profile designs involving one constant attribute. It
includes the attribute balance design and the variance balance design. We report only one
variance balance design because the variance balance I and II weighting schemes produced
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the same master design. The attribute balance design holds each attribute constant in
either two or three choice sets. It does not satisfy attribute balance perfectly because
the number of choice sets, S = 15, is not a multiple of the number of attributes, t = 6.
Hence, the D-optimal master design used to select the varying attributes is inevitably not
a BIBD. The variance balance design holds each of the 2-level attributes constant in five
choice sets. The levels of the two 3-level attributes and the 5-level attribute vary all the
time. This causes some concern if one of the latter attributes is a dominant attribute. In
that case, the variance balance design does not prevent the selection of profiles governed
by such attribute. The attribute balance design would be a better design option then.

5.2.3 Two constant attributes

Table 8 shows the DB-optimal partial profile designs involving two constant attributes.
The first partial profile design is the attribute balance design. The remaining designs are
the variance balance I and II designs. The three designs are based on the master designs
discussed in Section 4.1.4. Note that the variance balance designs do not hold the 5-level
attribute constant in any choice set. If decision making is based on this attribute only,
the variance balance designs are not preferable.

5.2.4 Utility-neutral designs

Table 9 shows the D-optimal utility-neutral full profile design and Tables 10 and 11 show
the D-optimal utility-neutral partial profile designs involving one and two constant attri-
butes. These designs vary all possible attribute levels in the choice sets. They are level
balanced in the varying attributes within and over all choice sets.

<Insert Tables 6-11 about here>

5.3 DB-efficiencies

To evaluate the estimation performance of the Bayesian and utility-neutral optimal de-
signs, we compared them to the DB-optimal full profile design in terms of DB-efficiency.
By doing so, we learn how much we lose in estimation precision by using a partial profile
design and/or a utility-neutral design. Table 12 shows the DB-optimality criterion values
and DB-efficiencies of the designs.

<Insert Table 12 about here>

Examining the DB-optimal partial profile designs, we observe that the variance balance
designs perform much better than the attribute balance designs in terms of DB-efficiency.
In the case of one constant attribute, the variance balance design hardly loses 2% in
DB-efficiency, while the attribute balance design loses about 10%. This means that, in
order to obtain the same amount of information as from full profile testing, the variance
balance design requires about 2% more respondents (computed as 1/0.9867− 1) and the
attribute balance design about 10% more respondents. In the case of two constant attri-
butes, the attribute balance design loses about 20% in DB-efficiency, requiring 27% more
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respondents compared to full profile testing. The efficiency losses of the variance balance
I and II designs are only half as large. There is a small difference in performance between
the variance balance I and II designs favoring the latter design.

A comparison of the DB-optimal attribute balance designs involving one and two
constant attributes reveals that the efficiency losses roughly double when using two
constant attributes instead of one. Examining the DB-optimal variance balance designs
on this matter, we observe that the efficiency losses increase by a factor of five when
increasing the number of constant attributes from one to two. The efficiency losses thus
increase relatively more rapidly for the variance balance designs. This is due to the fact
that in the case of one constant attribute, the variance balance design only holds 2-level
attributes constant, while in the case of two constant attributes, the two variance balance
designs also hold 3-level attributes constant (see Tables 7 and 8). The use of 3-level at-
tributes as constant attributes has a detrimental effect on the efficiency, illustrating that
efficiency losses are larger when attributes with a larger number of levels are kept constant.

Examining the D-optimal utility-neutral designs, the utility-neutral full profile design
loses about 20% in DB-efficiency compared to the Bayesian full profile design. When
evaluating this efficiency loss, we need to take into account the fact that the outperfor-
mance of Bayesian designs over utility-neutral designs depends on the prior distribution
used. The results of Kessels et al. (2011b), who performed an in-depth comparison of
Bayesian and utility-neutral full profile designs, indicate that the efficiency loss of 20% of
the D-optimal utility-neutral full profile design is not extreme, but rather average.

For the utility-neutral partial profile designs with one and two constant attributes, we
again observe that the variance balance designs outperform the attribute balance designs.
Also, the difference in performance between the variance balance I and II designs is small.
Like the utility-neutral full profile design, the utility-neutral variance balance designs yield
efficiency losses of about 20% compared to the DB-optimal full profile design. As a result,
the estimation performance is unaffected by the constant attributes in the utility-neutral
variance balance designs. Overall, the DB-efficiencies of the utility-neutral full and partial
profile designs are much smaller than those of the Bayesian designs, making the utility-
neutral design options the worst to consider.

To conclude, for this illustrative design problem, the use of variance balance II weights
for constructing Bayesian partial profile designs results in the highest statistical efficiency.
The difference in efficiency from using variance balance I weights is small or nonexistent
depending on the number of varying attributes.

Given there are 15 choice sets in the DB-optimal partial profile designs, the variance
balance designs suffer from the drawback that they do not hold the 5-level attribute
constant in any choice set using one or two constant attributes. Using one constant
attribute, they also do not hold the 3-level attribute constant in any choice set. We
therefore only recommend the variance balance designs if the attributes that vary all the
time are not dominant. Otherwise, an attribute balance design should be used. The next
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section discusses a design study in which the most statistically efficient design using the
variance balance II weights can be used without any problem.

6 Follow-up designs for the software development ex-

periment

In this section, we present three follow-up partial profile designs for the JMP graphics
choice experiment discussed in Section 2. Table 13 shows the likelihood ratio tests of
the attribute effects based on choice data collected from 239 respondents in the origi-
nal experiment. The picture color and the frame line color attributes are not significant
so we drop them from the follow-up experiment. However, the report color attribute is
marginally significant (p = 0.0924). From the part-worth estimates of the simplified mo-
del in Table 14, we can compute the difference in part-worths between the bluish report
color (estimated part-worth −0.112) and the white report color (estimated part-worth
0.125 = −(−0.112 − 0.018 + 0.005)) to be 0.237. While this result is not statistically
significant, it was large enough to matter to the JMP development team assuming the
effect is real. A decision to change the report color to white hung in the balance. Thus,
a follow-up experiment was necessary to reduce the uncertainty about the part-worth
estimates of the report color.

The construction of DB-optimal designs for the follow-up experiment requires the
input of a prior mean and variance-covariance matrix for the parameters. We used the
part-worth estimates in Table 14 and their variance-covariance matrix in Table 15 as the
mean and variance of the multivariate normal prior distribution π (β) = N (β|β0,Σ0).
The prior mean vector of part-worth estimates, β0, and its covariance matrix, Σ0, are
7-dimensional.

<Insert Tables 13-15 about here>

For the sake of illustration, we show three partial profile designs generated using our
algorithms each consisting of one survey of 15 choice sets of two profiles. The designs
have three varying attributes and two constant attributes. They appear in Table 16. The
first attribute in the designs represents the report color having four levels. The remaining
four attributes concern the graph color, frame all sides, outer graph rectangle and Y-axis
title, each having two levels. The first partial profile design is the attribute balance design
for which a D-optimal master design has been generated to select the varying attributes.
The D-optimal master design perfectly satisfies first-order balance because each attribute
is constant in six choice sets. It, however, does not satisfy second-order balance perfectly,
because the number of choice sets, S = 15, is not a multiple of the number of possible
attribute pairings, which is 10. The D-optimal master design is, therefore, inevitably not
a BIBD.

The remaining partial profile designs in Table 16 are the variance balance designs.
In these designs, the 4-level attribute varies in many more choice sets than each of the
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2-level attributes. The variance balance I design holds the 4-level attribute constant in
two choice sets, while the variance balance II design does not hold the 4-level attribute
constant in any choice set.

To evaluate the estimation performance of the DB-optimal partial profile designs, we
also generated the DB-optimal full profile design, which is shown in Table 17. The full
profile design does not hold any of the attributes constant. Table 18 shows the estimation
performances of the Bayesian partial profile designs. Like in the illustrative study of
Section 5, the variance balance II design has the highest DB-efficiency, closely followed
by the variance balance I design. The attribute balance design is the least efficient.

<Insert Tables 16-18 about here>

Though the variance balance II design has the highest statistical efficiency, as men-
tioned previously, it does not hold the 4-level attribute constant in any choice set. We
would recommend the variance balance I design or the attribute balance design if this
was a preliminary study. In that case, we would advise against varying any attribute in
every choice set to avoid a failed study due to a dominant attribute. However, this is
a follow-up experiment and the 4-level attribute is one that was least significant in the
original study. It makes sense, therefore, to allow this attribute to vary in every choice set
of the follow-up study. For the software development case study, we thus recommended
using the most statistically efficient design using the variance balance II weights.

7 Summary and future research

We presented and compared three flexible algorithms for constructing DB-optimal main-
effects partial profile designs for DCEs. Green (1974) originated the idea of partial profile
designs to reduce the complexity of the choices that a respondent must make by varying
the levels of only a subset of the attributes within each choice set. Using verbal descrip-
tions of the attributes, the attributes whose levels are assumed constant, were dropped
from the choice sets. Dellaert et al. (2012), however, argue that in the absence of the
levels of the constant attributes, the parameter estimates of the choice model may not re-
flect real-world choice behavior. Also by construction, many DCEs use images or real-life
prototypes as profiles requiring the levels of the constant attributes. For these reasons,
we use the term “partial” profiles in this paper to simply indicate that the levels of some
attributes remain constant in every choice set.

The motivation for partial profile designs is twofold. First, by reducing the complexity
of the choices, partial profiles have the potential to prevent respondents from resorting
to non-compensatory approaches towards making their choices, which would violate the
implicit assumption of compensatory decision making in discrete choice models. Second,
whether choices are complex or not, partial profiles can prove useful in the presence of
a dominant attribute. For choice sets in which the level of the dominant attribute is
varied, respondents will always choose the profile with the most attractive level for that
attribute. If the level of the dominant attribute is, however, constant, then respondents
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have to trade off the remaining attributes.

The three partial profile design algorithms we propose all have the same basic two-stage
structure. In the first stage, we generate a master design that determines the attributes
whose levels vary in each choice set, while in the second stage, we generate an attribute
level design that sets the levels of the varying attributes. The three algorithms differ in
the methods for constructing the master design. They provide alternative generalizations
of Green’s (1974) approach that makes use of balanced incomplete block designs (BIBDs)
to select the varying attributes. We call our approaches attribute balance, variance ba-
lance I and variance balance II. The attribute balance approach pays an equal amount of
attention to each attribute. It generates a BIBD in the event a BIBD exists for the design
situation under study. Otherwise, it produces a master design that reflects the balancing
structure of a BIBD as much as possible. The variance balance approaches, on the other
hand, pay an equal amount of attention to each attribute level, which makes sense in ex-
perimental scenarios where not all attributes have the same number of levels. They vary
an attribute with a larger number of levels more often than an attribute with fewer levels
to stabilize the variances of the individual part-worth estimates. The two variance ba-
lance approaches differ in the way attributes with different numbers of levels are weighted.

The partial profile design algorithms are flexible in that they can accommodate ar-
bitrarily many attributes, each with any number of levels. Choice sets may have any
number of profiles and, though the number of choice sets must be adequate to fit the
underlying model, there can be as many choice sets as desired. These can be divided
into separate surveys that are assigned to different respondents so that the respondents
are not overburdened by having to make too many choices. Sándor and Wedel (2005)
call such a design with different surveys a heterogeneous design and showed that it is
statistically more efficient than a single homogeneous design that is assigned to every
respondent. The efficiency gain from using a heterogeneous design accrues from different
respondents being given different surveys, which causes more variation in the attributes,
which in turn enables the variation in the part-worths to be captured more effectively. For
the sake of illustration, the partial profile designs discussed in the comparison studies in
this paper are small, consisting of 15 choice sets only, and are therefore homogeneous. For
real-life DCEs, however, we recommend using heterogeneous designs. The design used in
the original software development experiment discussed in this paper is a heterogeneous
design.

Another reason for using heterogeneous choice designs with partial profiles is that, in
the case of attribute dominance, a homogeneous design with partial profiles may not be
adequate to estimate all part-worths of the remaining attributes. Consider, for example,
the DB-optimal attribute balance design with one constant attribute in Table 7. In this
design, the first attribute is kept constant in only two of the 15 choice sets. If this attribute
is dominant, then the two choice sets will not be sufficient to estimate the part-worths of
the remaining attributes. It is therefore necessary to use a number of surveys that each
consist of 15 different choice sets so that the part-worths of the remaining attributes can
be estimated when the first attribute turns out to be dominant.
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Keeping certain attributes constant in each choice set also has a cost. It reduces the
theoretical information content of each choice set compared to full profile testing. The
results of the two comparison studies discussed in this paper revealed that the losses
in estimation precision are the smallest using variance balance II, closely followed by
variance balance I. Attribute balance results in considerably higher losses in estimation
precision. However, this theoretical drawback vanishes if using full profile testing causes
respondents to short cut the compensatory choice process. We should, however, be cau-
tious when using the variance balance approaches because it is possible that they do not
hold every attribute constant in at least one choice set. In that case, the investigator is
not protected against the impact of a potentially dominant attribute among the set of
attributes that vary all the time. Because the attribute balance approach holds every
attribute constant the same number of times, this approach can be used in any design
situation. We verified that the results obtained from the two comparison studies hold for
other design problems as well.

A number of extensions of this work are worth investigating. First, the partial profile
design algorithms consider main-effects models only. Examining the use of partial profiles
when possible two-attribute interactions are present would be an interesting research
topic. Second, the Bayesian design algorithms only allow for a multivariate normal prior
distribution of the parameters. Extending the method to support other distributions
would be a useful contribution. Finally, the algorithms only apply to the multinomial
logit model assuming homogeneous preferences of the respondents. Exploring the use
of more sophisticated nonlinear models that take into account respondent heterogeneity
would be a challenging topic for future research. For example, the work by Bliemer and
Rose (2010) and Yu et al. (2011) on full profile design construction methods for the panel
mixed logit model could be extended to partial profiles.

Appendix. Motivation of variance balance methods

We show that the weight formulas in (16) and (17) for variance balance I and variance
balance II, respectively, are derived from utility-neutral D-optimal design theory for DCEs
with J = 2 profiles per choice set. We verified, however, that the same weight formulas
apply regardless of the value of J .

Variance balance I

Using variance balance I, each weight, wi, i = 1, ..., t, is proportional to the number of part-
worth values associated with attribute i, as defined in (16). In a study using approximate
design theory, Grossmann et al. (2006, 2009) found that the information matrix of a
utility-neutral D-optimal partial profile design with choice sets of size two is based on a
similar weight formula. In approximate design theory, the number of times a given choice
set appears in a design is allowed to be fractional rather than being required to be an
integer. This aids in proofs but limits applicability to very restrictive cases where the
relative numbers of different choice sets exactly match their optimal fractions. Given that
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the design matrix of an experiment with two profiles per choice set contains effects-type
coded difference vectors, that is, X = [x′

1s − x′
2s]s=1,...,S, the information matrix of the

D-optimal approximate design is block diagonal and equal to

M(X) =
tv
k




(d1 − 1)M1 0
. . .

0 (dt − 1)Mt


 , (A.1)

where

Mi =
2

di − 1




2 1 · · · 1

1 2
. . .

...
...

. . . . . . 1
1 · · · 1 2


 . (A.2)

The matrix Mi has di−1 rows and columns where di is the number of levels of attribute i.
Ignoring the constant, tv, the multiplier of eachMi is (di−1)/k, which is the weight defined
in (16).

Variance balance II

Using variance balance II, each weight, wi, i = 1, ..., t, is computed as

wi =
(di − 1)2

2di
.

This weight formula is based on the work of Grasshoff et al. (2004) who, again using
approximate design theory, provided the information matrix of a utility-neutral D-optimal
full profile design with choice sets of size two. Assuming X = [x′

1s − x′
2s]s=1,...,S, the

information matrix is block diagonal and given by

M(X) =
1

4




M1 0
. . .

0 Mt


 . (A.3)

The weight formula is derived from the diagonal elements of the inverse of Mi:

M−1
i =

(di − 1)

2di




di − 1 −1 · · · −1

−1 di − 1
. . .

...
...

. . . . . . −1
−1 · · · −1 di − 1


 . (A.4)

Each weight, wi, corresponds to the diagonal elements of matrix M−1
i , which are all

identical.
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Caussade, S., Ortúzar, J. de D., Rizzi, L. I. and Hensher, D. A. (2005). Assessing the
influence of design dimensions on stated choice experiment estimates, Transportation
Research B 39: 621–640.

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review, Statistical
Science 10: 273–304.

Chrzan, K. (2010). Using partial profile choice experiments to handle large numbers of
attributes, International Journal of Market Research 52: 827–840.

Dellaert, B. G. C., Donkers, B. and van Soest, A. (2012). Complexity effects in choice
experiment-based models, Journal of Marketing Research, in press.

DeShazo, J. R. and Fermo, G. (2002). Designing choice sets for stated preference methods:
the effects of complexity on choice consistency, Journal of Environmental Economics
and Management 44: 123–143.

Ferrini, S. and Scarpa, R. (2007). Designs with a priori information for nonmarket va-
luation with choice experiments: a Monte Carlo study, Journal of Environmental
Economics and Management 53: 342–363.

Gotwalt, C. M. (2010). Addendum to “Fast computation of designs robust to parameter
uncertainty for nonlinear settings”, Technometrics 52: 137.

Gotwalt, C. M., Jones, B. A. and Steinberg, D. M. (2009). Fast computation of designs
robust to parameter uncertainty for nonlinear settings, Technometrics 51: 88–105.

25



Grasshoff, U., Grossmann, H., Holling, H. and Schwabe, R. (2003). Optimal paired com-
parison designs for first-order interactions, Statistics 37: 373–386.

Grasshoff, U., Grossmann, H., Holling, H. and Schwabe, R. (2004). Optimal designs for
main effects in linear paired comparison models, Journal of Statistical Planning and
Inference 126: 361–376.

Green, P. E. (1974). On the design of choice experiments involving multi-factor alterna-
tives, Journal of Consumer Research 1: 61–68.

Green, P. E. and Srinivasan, V. (1990). Conjoint analysis in marketing: new develop-
ments with implications for research and practice, Journal of Marketing 54: 3–19.

Grossmann, H., Grasshoff, U. and Schwabe, R. (2009). Approximate and exact optimal
designs for paired comparisons of partial profiles when there are two groups of factors,
Journal of Statistical Planning and Inference 139: 1171–1179.

Grossmann, H., Holling, H., Grasshoff, U. and Schwabe, R. (2006). Optimal designs for
asymmetric linear paired comparisons with a profile strength constraint, Metrika 64:
109–119.

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective, New York: Sprin-
ger.

Hensher, D. A. (2006). How do respondents process stated choice experiments? Attri-
bute consideration under varying information load, Journal of Applied Econometrics
21: 861–878.

Hensher, D. A. and Rose, J. M. (2009). Simplifying choice through attribute preservation
or non-attendance: Implications for willingness to pay, Transportation Research E 45:
583–590.

Holling, H. and Schwabe, R. (2011). Discussion on “The usefulness of Bayesian optimal
designs for discrete choice experiments”, Applied Stochastic Models in Business and
Industry 27: 189–192.

Huber, J. and Zwerina, K. (1996). The importance of utility balance in efficient choice
designs, Journal of Marketing Research 33: 307–317.

Kanninen, B. J. (2002). Optimal design for multinomial choice experiments, Journal of
Marketing Research 39: 214–217.

26



Kessels, R., Goos, P. and Vandebroek, M. (2006). A comparison of criteria to design
efficient choice experiments, Journal of Marketing Research 43: 409–419.

Kessels, R., Goos, P. and Vandebroek, M. (2010). Optimal two-level conjoint designs with
constant attributes in the profile sets, Journal of Statistical Planning and Inference
140: 3035–3046.

Kessels, R., Jones, B., Goos, P. and Vandebroek, M. (2008). Recommendations on the
use of Bayesian optimal designs for choice experiments, Quality and Reliability Engi-
neering International 24: 737–744.

Kessels, R., Jones, B., Goos, P. and Vandebroek, M. (2009). An efficient algorithm for
constructing Bayesian optimal choice designs, Journal of Business and Economic Sta-
tistics 27: 279–291.

Kessels, R., Jones, B. and Goos, P. (2011a). Bayesian optimal designs for discrete choice
experiments with partial profiles, Journal of Choice Modelling 4: 52–74.

Kessels, R., Jones, B., Goos, P. and Vandebroek, M. (2011b). The usefulness of Bayesian
optimal designs for discrete choice experiments, Applied Stochastic Models in Business
and Industry 27: 173–188.

Kessels, R., Jones, B., Goos, P. and Vandebroek, M. (2011c). Rejoinder: The usefulness
of Bayesian optimal designs for discrete choice experiments, Applied Stochastic Models
in Business and Industry 27: 197–203.

Louviere, J. J. (2005). Comment on “Current issues and a ‘wish list’ for conjoint analy-
sis”, Applied Stochastic Models in Business and Industry 21: 325–326.

Louviere, J. J., Pihlens, D. and Carson, R. (2011). Design of discrete choice experiments:
A discussion of issues that matter in future applied research, Journal of Choice Mo-
delling 4: 1–8.

Louviere, J. J., Street, D. J. and Burgess, L. (2003). A 20+ years retrospective on choice
experiments, in Marketing Research and Modeling: Progress and Prospects, Ch. 8,
Wind, Y. and Green, P. E., eds. New York: Kluwer Academic Press, 201–214.

Meyer, R. K. and Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for
constructing exact optimal experimental designs, Technometrics 37: 60–69.

Rose (2011). Discussion on “The usefulness of Bayesian optimal designs for discrete choice
experiments”, Applied Stochastic Models in Business and Industry 27: 193–196.

27



Rose, J. M. and Bliemer, M. C. J. (2009). Constructing efficient stated choice experimen-
tal designs, Transport Reviews 29: 587–617.

Sándor, Z. and Wedel, M. (2001). Designing conjoint choice experiments using managers’
prior beliefs, Journal of Marketing Research 38: 430–444.

Sándor, Z. and Wedel, M. (2002). Profile construction in experimental choice designs for
mixed logit models, Marketing Science 21: 455–475.

Sándor, Z. and Wedel, M. (2005). Heterogeneous conjoint choice designs, Journal of Mar-
keting Research 42: 210–218.

Scarpa, R. and Rose, J. M. (2008). Design efficiency for non-market valuation with choice
modelling: how to measure it, what to report and why, The Australian Journal of
Agricultural and Resource Economics 52: 253–282.

Schwabe, R., Grasshoff, U., Grossmann, H. and Holling, H. (2003). Optimal 2K paired
comparison designs for partial profiles, in PROBASTAT2002, Proceedings of the Fourth
International Conference on Mathematical Statistics, Smolenice 2002, Tatra Moun-
tains Mathematical Publications, Vol. 26, Stulajter, F. and Wimmer, G., eds., 79–86.

Scott, A. (2002). Identifying and analysing dominant preferences in discrete choice expe-
riments: An application in health care, Journal of Economic Psychology 23: 383–398.

Street, D. J. and Burgess, L. (2007). The Construction of Optimal Stated Choice Experi-
ments: Theory and Methods, Hoboken, New Jersey: Wiley.

Swait, J. and Adamowicz, W. (2001). Choice environment, market complexity and consu-
mer behavior: A theoretical and empirical approach for incorporating decision com-
plexity into models of consumer choice, Organizational Behaviour and Human Decision
Processes 86: 141–167.

Yu, J., Goos, P. and Vandebroek, M. (2009). Efficient conjoint choice designs in the pre-
sence of respondent heterogeneity, Marketing Science 28: 122–135.

Yu, J., Goos, P. and Vandebroek, M. (2010). Comparing different sampling schemes for
approximating the integrals involved in the efficient design of stated choice experi-
ments, Transportation Research B 44: 1268–1289.

Yu, J., Goos, P. and Vandebroek, M. (2011). Individually adapted sequential Bayesian
conjoint-choice designs in the presence of consumer heterogeneity, International Jour-
nal of Research in Marketing 28: 378–388.

28



Tables

Table 1: Attributes and attribute levels for the JMP graphics choice experiment.

Attributes Attribute levels
1. Report background color bluish creamish light gray white
2. Picture background color contrast same
3. Graph background color light gray white
4. Frame line color black gray
5. Frame all sides no yes
6. Outer graph rectangle no yes
7. Y-axis title horizontal above vertical left

Table 2: Partial profiles with attribute levels for the two output displays of the example
choice set in Figure 1.

Attributes Profile 1 Profile 2
1. Report background color creamish creamish
2. Picture background color contrast same
3. Graph background color light gray light gray
4. Frame line color black black
5. Frame all sides no yes
6. Outer graph rectangle no yes
7. Y-axis title vertical left vertical left
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Table 3: Subset of seven choice sets from the 120 choice sets of the partial profile design
used in the JMP graphics choice experiment.

Choice Report Picture Graph Frame Frame Graph Y-axis
set color color color line color all sides rectangle title

1 bluish same white gray no no vertical
1 bluish same light gray gray yes no horizontal

2 light gray contrast light gray gray yes no horizontal
2 light gray contrast white black yes yes horizontal

3 creamish contrast light gray black no no vertical
3 creamish same light gray black yes yes vertical

4 light gray same white gray yes no horizontal
4 light gray contrast white black yes no vertical

5 creamish contrast white black no no vertical
5 bluish contrast white black no yes horizontal

6 light gray contrast white gray yes no horizontal
6 creamish contrast white black no no horizontal

7 light gray same white black no yes horizontal
7 white contrast light gray black no yes horizontal

Table 4: BIBD master design for the seven choice sets in Table 3. The three varying
attributes in each choice set are indicated by check marks and form a BIBD. The four
constant attributes are shown in gray.

Choice Report Picture Graph Frame Frame Graph Y-axis
set color color color line color all sides rectangle title
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
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Table 5: Master designs generated with attribute balance and variance balance I and II.
They involve 15 choice sets, three 2-level attributes, two 3-level attributes and one 5-level
attribute. They have four varying attributes, indicated by check marks, and two constant
attributes, shown in gray.

Attribute balance Variance balance I Variance balance II
Choice Attributes with levels Attributes with levels Attributes with levels
set 2 2 2 3 3 5 2 2 2 3 3 5 2 2 2 3 3 5
1 X X X X X X X X X X X X
2 X X X X X X X X X X X X
3 X X X X X X X X X X X X
4 X X X X X X X X X X X X
5 X X X X X X X X X X X X
6 X X X X X X X X X X X X
7 X X X X X X X X X X X X
8 X X X X X X X X X X X X
9 X X X X X X X X X X X X
10 X X X X X X X X X X X X
11 X X X X X X X X X X X X
12 X X X X X X X X X X X X
13 X X X X X X X X X X X X
14 X X X X X X X X X X X X
15 X X X X X X X X X X X X

# cst 5 5 5 5 5 5 7 7 8 4 4 0 8 8 8 3 3 0
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Table 6: DB-optimal full profile design involving 15 choice sets with 2 profiles, three
2-level attributes, two 3-level attributes and one 5-level attribute.

Choice Attributes
set 1 2 3 4 5 6
1 1 2 ∗ 2 3 1
1 2 1 ∗ 3 1 5
2 ∗ 1 2 3 2 2
2 ∗ 2 1 2 1 5
3 ∗ 1 2 2 3 2
3 ∗ 2 1 3 2 1
4 2 1 1 1 3 3
4 1 2 2 3 1 2
5 1 1 ∗ 2 2 5
5 2 2 ∗ 1 3 1
6 1 2 1 3 3 2
6 2 1 2 2 2 4
7 1 2 2 1 2 5
7 2 1 1 3 1 3
8 2 1 1 2 3 5
8 1 2 2 1 2 3
9 1 2 ∗ 1 1 4
9 2 1 ∗ 3 2 1
10 1 1 2 1 3 5
10 2 2 1 2 1 4
11 2 ∗ 1 1 3 4
11 1 ∗ 2 2 1 1
12 2 1 2 1 1 1
12 1 2 1 3 2 3
13 2 2 1 2 2 2
13 1 1 2 3 1 4
14 1 1 1 3 3 4
14 2 2 2 1 1 3
15 2 ∗ 1 1 2 2
15 1 ∗ 2 2 3 3

# cst 2 2 3 0 0 0
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Table 7: DB-optimal partial profile designs involving 15 choice sets with 2 profiles, three
2-level attributes, two 3-level attributes and one 5-level attribute. The designs have five
varying attributes and one constant attribute. Variance balance I and II lead to the same
design in this scenario.

Attribute balance Variance balance
Choice Attributes Attributes
set 1 2 3 4 5 6 1 2 3 4 5 6
1 ∗ 1 1 2 3 4 ∗ 1 1 3 3 2
1 ∗ 2 2 1 1 2 ∗ 2 2 1 2 5
2 ∗ 2 1 3 1 1 ∗ 1 2 2 2 3
2 ∗ 1 2 1 2 3 ∗ 2 1 1 1 5
3 1 ∗ 1 3 3 2 ∗ 1 2 3 1 2
3 2 ∗ 2 1 1 1 ∗ 2 1 1 2 4
4 1 ∗ 2 1 3 2 ∗ 2 1 2 1 3
4 2 ∗ 1 3 2 3 ∗ 1 2 3 3 1
5 2 ∗ 1 1 1 4 ∗ 1 2 3 1 4
5 1 ∗ 2 2 2 1 ∗ 2 1 2 3 2
6 1 2 ∗ 2 3 3 2 ∗ 1 3 1 5
6 2 1 ∗ 3 2 4 1 ∗ 2 1 3 1
7 1 1 ∗ 3 3 5 1 ∗ 2 1 3 3
7 2 2 ∗ 2 1 4 2 ∗ 1 2 2 1
8 1 2 ∗ 2 1 5 1 ∗ 2 2 1 5
8 2 1 ∗ 1 3 1 2 ∗ 1 3 2 4
9 1 2 1 ∗ 2 4 1 ∗ 1 3 3 3
9 2 1 2 ∗ 1 5 2 ∗ 2 1 2 2
10 1 1 2 ∗ 3 4 1 ∗ 2 2 1 4
10 2 2 1 ∗ 2 2 2 ∗ 1 1 3 5
11 2 1 1 ∗ 1 3 1 2 ∗ 3 2 1
11 1 2 2 ∗ 2 4 2 1 ∗ 1 3 4
12 1 2 1 1 ∗ 5 2 1 ∗ 2 3 1
12 2 1 2 2 ∗ 2 1 2 ∗ 3 2 2
13 2 1 1 2 ∗ 5 1 1 ∗ 2 2 5
13 1 2 2 3 ∗ 3 2 2 ∗ 1 1 1
14 1 1 2 2 2 ∗ 2 1 ∗ 1 2 3
14 2 2 1 3 3 ∗ 1 2 ∗ 2 3 4
15 1 1 2 3 1 ∗ 2 2 ∗ 2 1 3
15 2 2 1 1 3 ∗ 1 1 ∗ 1 2 5

# cst 2 3 3 3 2 2 5 5 5 0 0 0
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Table 8: DB-optimal partial profile designs involving 15 choice sets with 2 profiles, three
2-level attributes, two 3-level attributes and one 5-level attribute. The designs have four
varying attributes and two constant attributes.

Attribute balance Variance balance I Variance balance II
Choice Attributes Attributes Attributes
set 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 ∗ ∗ 2 1 1 5 ∗ ∗ 1 2 3 5 ∗ ∗ 2 2 2 1
1 ∗ ∗ 1 3 3 3 ∗ ∗ 2 1 1 4 ∗ ∗ 1 1 3 3
2 ∗ 1 ∗ 2 3 5 ∗ ∗ 1 3 1 3 ∗ ∗ 2 1 1 5
2 ∗ 2 ∗ 3 1 1 ∗ ∗ 2 1 3 1 ∗ ∗ 1 3 2 4
3 ∗ 2 1 ∗ 2 1 ∗ 2 ∗ 1 1 5 ∗ ∗ 2 2 3 2
3 ∗ 1 2 ∗ 1 2 ∗ 1 ∗ 2 2 3 ∗ ∗ 1 3 1 5
4 ∗ 2 2 2 ∗ 2 ∗ 2 ∗ 1 2 1 ∗ 1 ∗ 2 3 4
4 ∗ 1 1 3 ∗ 5 ∗ 1 ∗ 3 3 2 ∗ 2 ∗ 3 2 3
5 ∗ 2 1 2 1 ∗ ∗ 1 ∗ 3 3 1 ∗ 2 ∗ 3 1 1
5 ∗ 1 2 3 3 ∗ ∗ 2 ∗ 2 2 4 ∗ 1 ∗ 2 2 5
6 1 ∗ ∗ 2 3 1 ∗ 2 1 ∗ 3 1 ∗ 2 ∗ 1 2 2
6 2 ∗ ∗ 1 2 3 ∗ 1 2 ∗ 2 5 ∗ 1 ∗ 3 1 4
7 2 ∗ 1 ∗ 1 3 ∗ 1 1 3 ∗ 4 ∗ 2 ∗ 2 1 4
7 1 ∗ 2 ∗ 2 4 ∗ 2 2 2 ∗ 2 ∗ 1 ∗ 3 3 1
8 1 ∗ 2 2 ∗ 3 1 ∗ ∗ 2 3 3 ∗ 1 2 ∗ 2 3
8 2 ∗ 1 3 ∗ 2 2 ∗ ∗ 3 2 2 ∗ 2 1 ∗ 3 2
9 2 ∗ 1 1 3 ∗ 2 ∗ ∗ 2 1 1 2 ∗ ∗ 1 2 4
9 1 ∗ 2 3 1 ∗ 1 ∗ ∗ 1 3 4 1 ∗ ∗ 2 3 3
10 2 1 ∗ ∗ 1 4 1 ∗ ∗ 2 1 4 2 ∗ ∗ 1 3 1
10 1 2 ∗ ∗ 2 2 2 ∗ ∗ 1 2 3 1 ∗ ∗ 3 1 2
11 1 2 ∗ 3 ∗ 5 1 ∗ 1 ∗ 2 5 1 ∗ 1 ∗ 2 5
11 2 1 ∗ 1 ∗ 4 2 ∗ 2 ∗ 1 3 2 ∗ 2 ∗ 1 3
12 2 1 ∗ 2 2 ∗ 2 ∗ 1 1 ∗ 2 2 ∗ 1 2 ∗ 5
12 1 2 ∗ 1 3 ∗ 1 ∗ 2 3 ∗ 1 1 ∗ 2 1 ∗ 4
13 1 2 1 ∗ ∗ 4 2 1 ∗ ∗ 1 5 1 ∗ 2 3 ∗ 5
13 2 1 2 ∗ ∗ 1 1 2 ∗ ∗ 2 2 2 ∗ 1 2 ∗ 3
14 2 2 2 ∗ 1 ∗ 1 2 ∗ 3 ∗ 3 2 1 ∗ ∗ 1 2
14 1 1 1 ∗ 2 ∗ 2 1 ∗ 2 ∗ 4 1 2 ∗ ∗ 3 4
15 1 1 2 1 ∗ ∗ 1 1 2 ∗ ∗ 2 2 1 ∗ 3 ∗ 2
15 2 2 1 2 ∗ ∗ 2 2 1 ∗ ∗ 4 1 2 ∗ 2 ∗ 1

# cst 5 5 5 5 5 5 7 7 8 4 4 0 8 8 8 3 3 0

34



Table 9: D-optimal utility-neutral full profile design involving 15 choice sets with 2 pro-
files, three 2-level attributes, two 3-level attributes and one 5-level attribute.

Choice Attributes
set 1 2 3 4 5 6
1 2 1 2 1 2 3
1 1 2 1 3 1 5
2 1 1 1 3 1 2
2 2 2 2 2 2 1
3 2 2 1 1 1 1
3 1 1 2 3 2 3
4 1 1 1 2 3 3
4 2 2 2 3 2 2
5 1 2 1 1 3 2
5 2 1 2 3 1 5
6 1 1 2 1 3 4
6 2 2 1 2 1 3
7 1 1 2 2 1 1
7 2 2 1 1 2 5
8 1 2 1 2 2 4
8 2 1 2 3 3 1
9 1 2 2 1 3 5
9 2 1 1 2 2 2
10 1 1 2 2 2 5
10 2 2 1 3 3 3
11 1 1 1 1 2 1
11 2 2 2 2 3 4
12 2 1 2 1 1 2
12 1 2 1 3 2 1
13 1 2 2 3 1 4
13 2 1 1 2 3 5
14 1 2 2 1 1 3
14 2 1 1 3 3 4
15 1 2 2 2 3 2
15 2 1 1 1 1 4

# cst 0 0 0 0 0 0
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Table 10: D-optimal utility-neutral partial profile designs involving 15 choice sets with
2 profiles, three 2-level attributes, two 3-level attributes and one 5-level attribute. The
designs have five varying attributes and one constant attribute. Variance balance I and II
lead to the same design in this scenario.

Attribute balance Variance balance
Choice Attributes Attributes
set 1 2 3 4 5 6 1 2 3 4 5 6
1 ∗ 2 2 2 3 1 ∗ 1 2 3 1 2
1 ∗ 1 1 1 1 3 ∗ 2 1 1 3 1
2 ∗ 1 1 2 3 5 ∗ 2 2 2 3 2
2 ∗ 2 2 1 1 2 ∗ 1 1 3 1 5
3 2 ∗ 2 2 2 2 ∗ 1 2 1 3 3
3 1 ∗ 1 1 1 1 ∗ 2 1 2 2 5
4 2 ∗ 2 1 3 3 ∗ 1 2 1 3 5
4 1 ∗ 1 3 2 2 ∗ 2 1 2 2 3
5 1 ∗ 2 2 1 4 ∗ 2 2 2 1 5
5 2 ∗ 1 3 2 5 ∗ 1 1 3 2 1
6 2 1 ∗ 2 1 1 1 ∗ 1 1 3 2
6 1 2 ∗ 3 3 4 2 ∗ 2 2 1 1
7 2 1 ∗ 1 3 2 1 ∗ 1 1 1 4
7 1 2 ∗ 3 2 3 2 ∗ 2 3 2 3
8 1 2 ∗ 2 1 5 1 ∗ 2 1 2 4
8 2 1 ∗ 3 3 4 2 ∗ 1 2 3 2
9 1 2 1 ∗ 3 2 2 ∗ 1 1 1 3
9 2 1 2 ∗ 2 4 1 ∗ 2 3 2 4
10 1 1 2 ∗ 3 3 2 ∗ 1 3 3 4
10 2 2 1 ∗ 1 4 1 ∗ 2 1 2 1
11 2 2 2 ∗ 1 5 2 2 ∗ 1 1 4
11 1 1 1 ∗ 2 1 1 1 ∗ 2 3 5
12 2 2 2 3 ∗ 1 2 2 ∗ 1 2 5
12 1 1 1 2 ∗ 4 1 1 ∗ 2 1 1
13 1 1 2 1 ∗ 5 1 2 ∗ 3 1 2
13 2 2 1 2 ∗ 3 2 1 ∗ 2 3 4
14 2 2 1 1 2 ∗ 2 2 ∗ 3 3 1
14 1 1 2 3 1 ∗ 1 1 ∗ 2 2 3
15 1 2 2 1 2 ∗ 1 2 ∗ 3 3 3
15 2 1 1 3 1 ∗ 2 1 ∗ 1 2 2

# cst 2 3 3 3 2 2 5 5 5 0 0 0
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Table 11: D-optimal utility-neutral partial profile designs involving 15 choice sets with
2 profiles, three 2-level attributes, two 3-level attributes and one 5-level attribute. The
designs have four varying attributes and two constant attributes.

Attribute balance Variance balance I Variance balance II
Choice Attributes Attributes Attributes
set 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 ∗ ∗ 2 1 3 3 ∗ ∗ 2 1 1 1 ∗ ∗ 2 1 2 1
1 ∗ ∗ 1 2 1 2 ∗ ∗ 1 3 3 2 ∗ ∗ 1 2 1 4
2 ∗ 1 ∗ 2 3 4 ∗ ∗ 2 1 3 4 ∗ ∗ 2 1 2 4
2 ∗ 2 ∗ 1 1 1 ∗ ∗ 1 3 1 3 ∗ ∗ 1 3 3 1
3 ∗ 1 2 ∗ 2 2 ∗ ∗ 2 3 2 3 ∗ ∗ 1 3 2 3
3 ∗ 2 1 ∗ 1 4 ∗ ∗ 1 2 1 2 ∗ ∗ 2 2 3 2
4 ∗ 1 1 2 ∗ 3 ∗ 2 ∗ 3 3 1 ∗ 1 ∗ 3 2 2
4 ∗ 2 2 1 ∗ 4 ∗ 1 ∗ 2 2 3 ∗ 2 ∗ 2 1 1
5 ∗ 1 1 3 1 ∗ ∗ 1 ∗ 2 3 1 ∗ 1 ∗ 3 1 4
5 ∗ 2 2 2 2 ∗ ∗ 2 ∗ 1 1 4 ∗ 2 ∗ 2 3 3
6 1 ∗ ∗ 3 2 5 ∗ 1 ∗ 3 2 1 ∗ 1 ∗ 2 2 1
6 2 ∗ ∗ 1 3 2 ∗ 2 ∗ 2 3 3 ∗ 2 ∗ 3 1 5
7 2 ∗ 2 ∗ 1 3 ∗ 2 1 ∗ 2 5 ∗ 1 2 ∗ 3 4
7 1 ∗ 1 ∗ 3 1 ∗ 1 2 ∗ 1 3 ∗ 2 1 ∗ 2 2
8 1 ∗ 1 1 ∗ 5 2 ∗ ∗ 2 1 5 ∗ 2 2 3 ∗ 2
8 2 ∗ 2 3 ∗ 1 1 ∗ ∗ 1 3 3 ∗ 1 1 1 ∗ 5
9 2 ∗ 1 1 2 ∗ 2 ∗ ∗ 3 1 4 1 ∗ ∗ 1 3 3
9 1 ∗ 2 2 1 ∗ 1 ∗ ∗ 1 2 5 2 ∗ ∗ 2 2 5
10 1 1 ∗ ∗ 2 4 2 ∗ ∗ 2 2 4 2 ∗ ∗ 1 1 3
10 2 2 ∗ ∗ 3 5 1 ∗ ∗ 1 1 5 1 ∗ ∗ 3 3 5
11 2 1 ∗ 2 ∗ 1 2 ∗ 1 1 ∗ 1 2 ∗ ∗ 1 3 5
11 1 2 ∗ 3 ∗ 2 1 ∗ 2 3 ∗ 5 1 ∗ ∗ 3 1 1
12 1 1 ∗ 1 1 ∗ 2 1 ∗ ∗ 3 5 2 ∗ 1 ∗ 3 4
12 2 2 ∗ 3 3 ∗ 1 2 ∗ ∗ 2 2 1 ∗ 2 ∗ 1 5
13 2 1 2 ∗ ∗ 5 1 2 ∗ 2 ∗ 1 1 ∗ 1 1 ∗ 2
13 1 2 1 ∗ ∗ 3 2 1 ∗ 1 ∗ 2 2 ∗ 2 3 ∗ 3
14 1 1 2 ∗ 3 ∗ 1 1 2 ∗ ∗ 2 1 2 ∗ ∗ 2 4
14 2 2 1 ∗ 2 ∗ 2 2 1 ∗ ∗ 3 2 1 ∗ ∗ 1 2
15 2 1 1 3 ∗ ∗ 1 1 1 ∗ ∗ 4 1 1 ∗ 2 ∗ 3
15 1 2 2 2 ∗ ∗ 2 2 2 ∗ ∗ 2 2 2 ∗ 1 ∗ 1

# cst 5 5 5 5 5 5 7 7 8 4 4 0 8 8 8 3 3 0
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Table 12: DB-optimality criterion values and DB-efficiencies of the optimal designs.

Number of
Criterion cst attributes Balance DB-value DB-efficiency

DB-optimal 0 11.24378 100.00%
DB-optimal 1 attribute 10.20127 90.96%
DB-optimal 1 variance 11.09641 98.67%
DB-optimal 2 attribute 8.64183 78.94%
DB-optimal 2 variance I 10.03448 89.59%
DB-optimal 2 variance II 10.24672 91.33%

D-optimal utility-neutral 0 8.77159 79.87%
D-optimal utility-neutral 1 attribute 7.16088 68.99%
D-optimal utility-neutral 1 variance 8.59738 78.62%
D-optimal utility-neutral 2 attribute 6.36122 64.15%
D-optimal utility-neutral 2 variance I 8.33708 76.78%
D-optimal utility-neutral 2 variance II 8.63521 78.89%
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Table 13: Likelihood ratio tests of the attribute effects.

Attribute L-R ChiSquare DF Prob>ChiSq
Graph color 133.339 1 <.0001*
Frame all sides 110.715 1 <.0001*
Y-axis title 34.173 1 <.0001*
Graph rectangle 12.707 1 0.0004*
Report color 6.432 3 0.0924
Frame line color 0.641 1 0.4234
Picture color 0.001 1 0.9779

Table 14: Part-worth estimates and standard errors for the JMP graphics choice expe-
riment obtained using a maximum likelihood approach for the simplified model.

Model term Estimate Standard error
Report color[bluish] -0.112 0.057
Report color[creamish] -0.018 0.054
Report color[light gray] 0.005 0.067
Graph color[light gray] -0.313 0.028
Frame all sides[no] -0.306 0.030
Graph rectangle[no] -0.098 0.028
Y-axis title[horizontal] -0.164 0.027

Table 15: Variance-covariance matrix of the part-worth estimates in Table 14 for the JMP
graphics choice experiment.

Report color Report color Report color Graph color Frame Graph Y-axis title
[bluish] [creamish] [light gray] [light gray] all sides[no] rectangle[no] [horizontal]

Report color[bluish] 0.00329 -0.00083 -0.00168 -0.00004 0.00022 0.00000 -0.00010
Report color[creamish] -0.00083 0.00290 -0.00097 0.00013 -0.00022 0.00012 0.00002
Report color[light gray] -0.00168 -0.00097 0.00453 -0.00005 -0.00001 0.00003 0.00004
Graph color[light gray] -0.00004 0.00013 -0.00005 0.00077 -0.00009 0.00002 -0.00005
Frame all sides[no] 0.00022 -0.00022 -0.00001 -0.00009 0.00088 -0.00009 -0.00004
Graph rectangle[no] 0.00000 0.00012 0.00003 0.00002 -0.00009 0.00076 -0.00008
Y-axis title[horizontal] -0.00010 0.00002 0.00004 -0.00005 -0.00004 -0.00008 0.00072
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Table 17: DB-optimal follow-up full profile design for the JMP graphics choice experiment.

Choice Report Graph Frame Graph Y-axis
set color color all sides rectangle title
1 creamish white no yes horizontal
1 white light gray yes no vertical
2 creamish white no no vertical
2 white light gray yes yes horizontal
3 white white no yes vertical
3 light gray light gray yes no horizontal
4 creamish white no no horizontal
4 light gray light gray yes yes vertical
5 creamish light gray yes yes vertical
5 light gray white no no horizontal
6 bluish white yes no vertical
6 white light gray no yes horizontal
7 light gray white yes yes horizontal
7 white light gray no no vertical
8 bluish light gray no yes vertical
8 light gray white yes no horizontal
9 bluish light gray yes no horizontal
9 white white no yes vertical
10 bluish white no yes horizontal
10 creamish light gray yes no vertical
11 bluish light gray yes no horizontal
11 light gray white no yes vertical
12 white white no no horizontal
12 bluish light gray yes yes vertical
13 light gray light gray no yes vertical
13 white white yes no horizontal
14 bluish white yes yes horizontal
14 light gray light gray no no vertical
15 bluish white no no vertical
15 creamish light gray yes yes horizontal

# cst 0 0 0 0 0
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Table 18: DB-optimality criterion values and DB-efficiencies of the optimal designs.

Number of
cst attributes Balance DB-value DB-efficiency

0 13.82160 100.00%
2 attribute 10.65028 63.57%
2 variance I 11.29531 69.70%
2 variance II 11.46489 71.41%

Figures

Figure 1: Example choice set used in the JMP graphics choice experiment.
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