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ABSTRACT

Background: Targeting the immune checkpoint pathway has demonstrated anti-tumor 

cytotoxicity in treatment-refractory head and neck squamous cell carcinoma (HNSC). To 

understand the molecular mechanisms underpinning its anti-tumor response, we 

characterized the immune landscape of HNSC by their tumor and stromal compartments to 

identify novel immune molecular subgroups.

Patients and methods: A training cohort of 522 HNSC samples from the Cancer Genome 

Atlas profiled by RNA sequencing was analyzed. We separated gene expression patterns 

from tumor, stromal, and immune cell gene using a non-negative matrix factorization 

algorithm. We correlated the expression patterns with a set of immune-related gene 

signatures, potential immune biomarkers, and clinicopathological features. Six 

independent datasets containing 838 HNSC samples were used for validation.

Results: Approximately 40% of HNSCs in the cohort (211/522) were identified to show 

enriched inflammatory response, enhanced cytolytic activity and active interferon-γ 

signaling (all, P < 0.001). We named this new molecular class of tumors the Immune Class. 

Then we found it contained two distinct microenvironment-based subtypes, characterized 

by markers of active or exhausted immune response. The Exhausted Immune Class was 

characterized by enrichment of activated stroma and anti-inflammatory M2 macrophage 

signatures, WNT/TGF-β signaling pathway activation and poor survival (all, P < 0.05). An 

enriched proinflammatory M1 macrophage signature, enhanced cytolytic activity, 

abundant tumor-infiltrating lymphocytes (TILs), high human papillomavirus (HPV) 

infection and favorable prognosis was associated with Active Immune Class (all, P < 0.05). 

The robustness of these immune molecular subgroups was verified in the validation cohorts, 
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and Active Immune Class showed potential response to PD-1 blockade (P = 0.01).

Conclusions: This study revealed a novel Immune Class in HNSC; two subclasses 

characterized by active or exhausted immune responses were also identified. These 

findings provide new insights into tailoring immunotherapeutic strategies for different 

HNSC subgroups.

Keywords: head and neck squamous cell carcinoma, tumor-immune microenvironment, 

immune molecular subgroups, virtual microdissection, immune checkpoint blockade

Key Message: In this multiple-cohort study analyzing gene expression profiles of 1,360 

HNSC samples, we identified molecular subgroups (Active, Exhausted & non-Immune) 

with different immunobiological traits using virtual microdissection. The novel immune 

molecular subgroups prognosticate patients and predict immunotherapy response, aiding 

in immunotherapy decision-making for different HNSC patient subgroups.

D
ow

nloaded from
 https://academ

ic.oup.com
/annonc/advance-article-abstract/doi/10.1093/annonc/m

dy470/5165367 by EKU
 Libraries user on 09 N

ovem
ber 2018



INTRODUCTION

Promising responses have been reported recently with anti-PD-1 therapy in advanced head 

and neck squamous cell carcinoma (HNSC) [1-4]. However, these agents benefit only a 

subset of patients [5]. Identifying potential therapeutic markers associated with treatment 

response or resistance would allow tailoring of appropriate immunotherapy for different 

patient subgroups. Still, unfortunately, little is known about the HNSC tumor immune 

milieu and how this information can be leveraged to tailor appropriate immunotherapy for 

different patient subgroups.

The tumor microenvironment of HNSC is comprised of stromal cellular elements that 

are admixed with immune cells, particularly at the tumour-stromal interphase [6]. Non-

negative matrix factorization (NMF) is an approach established to dissect the molecular 

signals deriving from these distinct compartments virtually, aiding the evaluation of the 

complexities of tumor–immune interactions [7, 8]. Using a NMF algorithm, we aimed to 

isolate immune-related genomic signals from bulk gene expression data in HNSC tumors, 

and characterized various immune landscapes in this study. 

METHODS

We analyzed the gene expression profiles from a total of 1,360 HNSC human samples (Fig. 

S1). A training cohort of 522 samples from The Cancer Genome Atlas (TCGA), profiled 

by RNA sequencing was included (Table S1). Six publicly available datasets profiled by 

microarray that included 838 HNSC samples were used for further validation (Table S1). 

Tumor, stromal, and immune cell transcriptome profiling data in the training TCGA set 

were microdissected virtually using unsupervised NMF as previously described [7, 9]. 

Immune-related gene signatures (Table S2) representing different immune statuses or 
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immune cells were used to characterize immune molecular subgroups using single-sample 

gene set enrichment analysis (ssGSEA) and Nearest Template Prediction (NTP). For 

detailed descriptions of all methods, see the Supplementary Materials.

RESULTS

Identification of a novel HNSC Immune Class

We first performed NMF of 522 samples in the training cohort from The Cancer Genome 

Atlas (TCGA) (Fig. S1) to extract gene expression signatures related to immune pathways. 

We confirmed that one of the NMF-identified clusters was linked to inflammatory markers 

and immune cells, which has been corroborated by an observed high immune enrichment 

score as previously reported [8, 10] (Fig. S2A). Therefore, this expression pattern was 

defined as an NMF immune factor. Analysis of the exemplar genes that defined the immune 

factor confirmed immune-related functions and signaling (Fig. S2B). Consensus clustering 

of exemplar genes and random forest refinement (Fig. S3A) identified a new molecular 

immune phenotype present in 40% of the cohort (211/522), which we refer herein as 

“Immune Class” (Fig. S3B). Patients with Immune Class showed significant enrichment 

of signatures  identifying immune cells (e.g., immune cell subsets, T cells, B cells, 

macrophages), immune metagenes (e.g., T.NK. and B.P. metagenes), and enhanced 

cytolytic activity (all, P <0.001) (Fig. 1A); among the signatures, we also observed 

enrichment of the 6-gene interferon (IFN) signature that was previously reported to predict 

for pembrolizumab response in HNSC (P <0.001) [11]. Class comparison identified 115 

genes that were significantly overexpressed in Immune versus non-Immune Classes (Table 

S3). These sets of genes were further defined an immune classifier that included immune-
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related genes such as T cell costimulatory molecules (CD40LG), B cell surface molecules 

(CD19), IFN-γ (IFNG), and chemoattractants (CCL1, CCL25). Similarly, GSEA identified 

immune cell signaling enrichment, immune response signaling, and IFN-related signaling 

(all, FDR <0.05, Fig. S4, Table S4).

Immune Class is highlighted by two distinct microenvironmental conditions

Given that immune system exerts both anti- and pro-tumor activity, we next sought to 

explore the type of immune modulation occurring in response to the tumor 

microenvironment within the Immune Class. Fig. 1B shows that 27% of Immune Class 

(56/211) was characterized by the previously reported activated stromal gene signature that 

captures the activated inflammatory stromal response [7]. Patients with the activated 

stromal gene signature were associated with higher stromal enrichment score and 

macrophage signatures, and low expression of B cell cluster, B/P metagene signatures and 

cytolytic activity (all, P <0.05). Besides, the presence of activated stroma was significantly 

associated with M2  (anti-inflammatory) macrophages and other immunosuppressive 

components, e.g., the WNT/TGF-ß signaling signature (all, P <0.001). Conversely, in 

patients lacking the activated stroma signature, we observed high expression of the 

proinflammatory M1 macrophage signature (P <0.001), although signatures relating to the 

immune enrichment score and IFN signaling did not differ between the subgroups. We 

therefore coined these two clusters Exhausted and Active Immune Classes respectively. 

Analysis of class comparison was shown in Table S5. GSEA confirmed the driver role of 

the WNT/TGF-β signaling pathways, as well as enrichment of epithelial-mesenchymal 

transition-, angiogenesis-, and metastasis-related pathways in the Exhausted subtype 
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(Table S6).

We next sought to integrate these immune molecular subgroups with the four HNSC 

molecular classes. We detected a significantly lower proportion of Immune Class within 

the basal and classical subtypes compared to the mesenchymal and atypical subtypes (18% 

and 10% vs. 58% and 63%, P <0.001; Fig. S5A). We also observed a higher frequency of 

Active Immune Class in the atypical molecular subtypes (61%), while the mesenchymal 

type of tumors harbored a higher proportion of the Exhausted Immune Class (42%) (P 

<0.001). For the integration with the six pan-cancer immune subtypes, we found that about 

99% of HNSC patients belong to the wound healing (25%) or IFN-γ dominant (74%) 

subtypes, while other subtypes only account for 1% of HNSC samples (Fig. S5B). The 

pan-cancer IFN-γ dominant subtype may benefit from immunotherapy, and as expected, a 

significant higher proportion of Active Immune Class (35%) were shown in this subtype. 

Immune Class tumors were associated with tumor-infiltrating lymphocytes (TIL) 

enrichment and lower copy number alteration burden

Next, we performed immunophenotyping to gain further biological insight into the 

immunological nature of the Immune Class. Significantly higher rates of moderate (33% 

vs. 19%) and high (41% vs. 13%) TIL scores were observed in the Immune Class versus 

the non-Immune class tumors (P =0.01) (Fig. S6). Interestingly, patients with Immune 

Class had relatively lower driver gene gain (P =0.001) and loss (P =0.004) burdens (Fig. 

S7A, B). However, immune molecular subgroups did not have significantly different 

mutation and neoantigen numbers (Fig. S7C, D), suggesting other molecular mechanisms 
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may drive anti-tumor immunity in tumors like HNSC. We also correlated Immune Class 

with copy number alterations of specific driver genes (Fig. S7E). 

Active Immune Class is linked with Favorable Prognosis

We then explored the prognostic implications of immune molecular subgroups by 

correlating them with clinicopathological variables (Table 1). The Active Immune Class 

was associated with early pathologic T-status (P =0.01), primary site of oropharynx (P 

<0.001), and human papillomavirus (HPV) infection (63% vs. 13% in Exhausted by p16 

status, P <0.001; 51% vs. 0% in Exhausted by ISH status, P <0.001). 

Survival analysis according to immune molecular subgroups showed that, patients with 

Immune Class had significantly better overall survival (OS) than the non-Immune Class (P 

=0.03; Fig. 2A); we also observed a trend for better disease-free survival (DFS) (P =0.11; 

Fig. 2B). Patients with the Active Immune Class had a tendency to have better OS (P =0.07) 

and DFS (P =0.06) (Fig. 2C, D) than the Exhausted and non-Immune Classes. Compared 

with non-Active Immune Class, Active Immune Class was associated with significantly 

better OS (P =0.03) and DFS (P =0.02) (Fig. 2E, F). In multivariate analyses, immune 

molecular subgroups was retained as independent prognostic factor for OS (P =0.04), and 

was marginally significant for DFS (P =0.05) (Table S7). A relatively higher area under 

the curve was shown for immune molecular subgroups versus IFN signature (Fig. S8).

Validation of the novel immune molecular subgroups 

The presence of Immune Class was further evaluated in six additional datasets (n = 838 
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HNSC samples) using the 115 gene-expression based immune classifier (Table S3). 

Similar to our training cohort, the percentage of patients allocated to Immune Class was 

~30–40% across the datasets (range 27–43%) (Fig. S9). We take GSE65858, the largest 

dataset, as an example. 27% of HNSC samples were predicted within the Immune Class, 

and we confirmed the enrichment of immune-related signatures identifying immune cells 

(e.g., 13 T-cell signature, B-cell cluster; all, P < 0.001), IFN signature (P <0.001) and 

enhanced cytolytic activity (P < 0.001) in the Immune Class (Fig. S9F). In addition, 21% 

of the Immune Class showed presence of the activated stroma signature, along with over-

expression of stromal enrichment score, M2 macrophages and WNT/TGF-β signatures, 

recapitulating the Exhausted Immune Class (Fig. S9F). Correlation with clinical outcomes 

confirmed that patients within the Active Immune Class had significantly better OS (P 

=0.02) and progression-free survival (P =0.03) (Fig. S10A, B). In other datasets, molecular 

characterization also showed the enrichment of the immune-related signatures in Immune 

Class, and distribution features among Exhausted and Active Immune Classes. Survival 

analyses perform in other two datasets with available data showed that Active Immune 

Class shows significantly better OS and had a tendency to have better metastasis-free 

survival (Fig. S10C, D).

Finally, we tested the capacity of the immune molecular subgroups to predict response 

to immunotherapy. We compared the gene expression profile of our immune molecular 

subgroups with that of a recently published melanoma cohort [12]. Subclass mapping 

revealed that Immune Class, in particular the Active Immune Class, was similar to the 

melanoma tumors responding to PD-1 blockade (P=0.04 and P=0.01, respectively; Fig. 
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S11).

DISCUSSION

Recently early reports from trials with immunotherapy, especially checkpoint inhibitors, 

have shown promising results with the potential for improved disease control in advanced 

HNSC patients [1-4, 13]. However, their inconsistent results in exploratory biomarker 

analyses highlight the need to identify ideal subgroups for immunotherapy in HNSC, which 

remains a major challenge in the era of immuno-oncology. 

The recent single-cell analysis suggests that HNSC tumors are complex mixtures of 

stromal cellular elements [6]. NMF is a virtual separation approach that could help separate 

molecular signatures of tissue compartments from measurements of bulk tumor samples. It 

is well suited for biological data as it constrains all sources to be positive in nature, and 

reflect the goal of identifying positive gene expression exemplars [7]. In this study, we use 

NMF to deconvolute the gene expression data of HNSC samples, and present a new 

characterization of the HNSC tumor immune landscape. Close to 40% of HNSCs were 

found to belong to the Immune Class, whose molecular characteristics, including the 

presence of inflammatory response, high immune cell infiltration, enhanced cytolytic 

activity, and active IFN signaling, highly resemble those of cancers most responsive to 

immunotherapy [14, 15]. Nonetheless, the presence of an immune phenotype does not 

absolutely predict immunotherapy response. Further dissection of the Immune Class gene 

expression profile allowed us to elucidate such interactions and identify the Active and 

Exhausted subtypes. While T cell–related immune signatures did not differ between the 

two subtypes, the Active Immune Class showed enrichment of B cell–related immune 
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signatures, cytolytic activity and proinflammatory M1 macrophages, suggesting that the 

humoral immune response may play an important role in influencing intratumoral immune 

response activation and exhaustion in HNSC. Conversely, the Exhausted Immune Class 

was characterized by tumor-promoting signals (e.g., activated stroma, anti-inflammatory 

M2 macrophages). In particular, WNT/TGF-β signaling pathway activation was 

significantly enriched in the Exhausted subtype; TGF-β regulates tumor–stroma 

interactions, EMT, angiogenesis, and metastasis, and can suppress the host immune 

response. The IFN signature [11] did not differ between the Active and Exhausted subtypes, 

suggesting that it may not fully satisfy the need to tailor immunotherapy in HNSCs.

As expected, patients with the Active Immune Class had a significantly favorable 

prognosis. Integration of immune molecular subgroups with the four known HNSC 

molecular subtypes, which were classified mainly based on genome-wide profiling [16, 17], 

revealed that the Active subtype was more common in the less aggressive atypical subtype. 

This may partially explain the different features between the four molecular subtypes. 

Recently, the Pan-Cancer Atlas of TCGA identified six pan-cancer immune subtypes [18]. 

When we integrated these immune subtypes in this study, we observed most of HNSCs 

belong to the wound healing (25%) or IFN-γ dominant (74%) subtypes, while other four 

subtypes only account for 1% of HNSCs. Thus, it seems that the pan-cancer immune 

subtypes may not be fully applicable to HNSC.

Interestingly, neither mutational burden nor neoantigen load was associated with the 

immune molecular subgroups. We previously also observed no correlation between PD-

L1, CD8A, or cytolytic activity expression and mutation or neoantigen number in HNSC 
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and other tumors (e.g. glioblastoma, prostate cancer) [19]. Similar lack of such correlation 

has been described in pancreatic cancer and hepatocellular carcinoma as well [8, 20, 21]. 

These results suggest that, unlike melanoma or lung cancer, other molecular mechanisms 

may drive anti-tumor immunity in tumors like HNSC. In these settings, neoantigen quality 

or clonality, rather than quantity, may influence the immune reactivity [22]. We also 

observed that Immune Class was associated with lower copy number alteration burden of 

driver genes (e.g., PIK3CA, NSD1, NOTCH1). This indicates that tumor aneuploidy in 

specific oncogenic pathways may play a role in regulating the immune response in HNSC 

[23]. Other mutation-independent mechanisms, such as HPV infection, might also affect 

the immune infiltrate. We found significantly more HPV-positive tumors in the Active 

Immune Class. Trials evaluating nivolumab or pembrolizumab in advanced HNSC have 

also reported relatively higher response rates in HPV-positive patients [1-3]. That HPV-

positive tumors have a higher degree of tumor inflammation may explain this [24]. These 

results suggest that the immune response in HNSC is more likely to be regulated by a 

combination of tumor-intrinsic factors, based on the tumor genetic make-up (e.g. 

aneuploidy, activation of specific signaling, immune-related molecule expression), and 

tumor-extrinsic factors present in the tumor microenvironment (e.g., TIL, HPV infection). 

Successful replication in six independent datasets supported the robustness of the 

immune molecular subgroups. When tested in a melanoma cohort, our HNSC Immune 

Class, particularly the Active Immune Class was associated with the melanoma tumors 

responding to PD-1 blockade, confirming its predictive value. Nevertheless, it should be 

noted that our findings require further validation in immunotherapy-treated HNSC tumors 
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(both locoregional and advanced). Our findings should be interpreted with this limitation 

in mind.

Understanding the landscape of tumor-immune microenvironment is critical for 

improving the efficacy of current immunotherapies. For example, patients with the Active 

Immune Class may benefit from single-agent immune checkpoint blockades, while patients 

with the Exhausted Immune Class may benefit from TGF-β inhibition plus immune 

checkpoint blockade. In this regard, a phase 1b/2 clinical trial testing the novel TGF-β 

inhibitor galunisertib in combination with nivolumab in advanced solid tumors is ongoing 

(NCT02423343). For the remaining patients who lack detectable immune reactions, 

combination therapy designed to attract T cell infiltration into the tumor microenvironment 

and avoid their being turned off, e.g., combined anti–CTLA-4 and anti–PD-1/PD-L1 

therapy, might be prioritized [25, 26]. Inducing a type I IFN response would also be an 

approach [15]. Further dissection of the oncogenic mechanisms responsible for immune 

exhaustion or ignorance could aid in modifying the tumor immune profile and yield 

additional combination strategies.

In summary, we introduce novel immune molecular subgroups in HNSC. Classification 

of HNSC into these novel subgroups might aid the identification of ideal candidates and 

tailor optimal immunotherapeutic strategies. These findings warrant further investigations 

in larger HNSC cohorts receiving immune checkpoint therapies.
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Figure legends 

Fig. 1. Identification of head and neck squamous cell carcinoma (HNSC) immune 

molecular subgroups. (A) Consensus-clustered heat map of HNSC samples (TCGA 

dataset, n = 522) using exemplar genes of the non-negative matrix factorization (NMF) 

immune factor and refined by Random Forest; 211/522 (40%) samples were classified into 

Immune Class. (B) Nearest Template Prediction (NTP) using a signature capturing 

activated stroma identified two distinct immune response subtypes: Exhausted (56/211, 

27%; purple bar) and Active (155/211, 73%; blue bar). In the heat map, high and low 

single-sample gene set enrichment scores are represented in red and blue, respectively. 

Positive prediction of activated stroma signature as per NTP is indicated in red and its 

absence is in grey. IFN, interferon; TLS, tertiary lymphoid structure.

Fig. 2. Kaplan–Meier survival analysis according to immune molecular subgroups. 

Kaplan–Meier plots of overall survival (A, C, E) and disease-free survival (B, D, F) 

according to Immune and non-Immune Classes (A and B), Active Immune, Exhausted 

Immune, and non-Immune Classes (C and D), and the Active Immune and non-Active 

Immune Classes (E and F). P-values were calculated by log-rank test.
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Table 1. Correlation between microenviroment-based immune molecular subgroups and clinicopathological variables in TCGA set 

Variable* 

Exhausted Immune Class  

(n = 56) 

Active Immune Class 

(n = 155) 

non-Immune Class 

(n = 311) P value 

Median age (IQR) 65 (58-73) 60 (55-69) 60 (52-67) 0.02 

Gender, male 41 (75%) 109 (70%) 234 (75%) 0.52 

Primary site    < 0.001 

Oral Cavity 36 (65%) 76 (49%) 203 (65%)  

Oropharynx 6 (11%) 44 (28%) 31 (10%)  

Larynx & Hypopharynx 13 (24%) 35 (23%) 77 (25%)  

Smoking     

Non-smoker 8 (15%) 43 (28%) 66 (22%) 0.09 

Former & current smoker 46 (85%) 108 (72%) 237 (78%)  

Alcohol history    0.98 

No 18 (33%) 48 (31%) 96 (32%)  

Yes 37 (67%) 105 (69%) 206 (68%)  

Pathologic T    0.01 

T1-2 17 (35%) 67 (52%) 101 (36%)  

T3-4 32 (65%) 61 (48%) 181 (64%)  

Pathologic N    0.66 

N0-1 25 (52%) 67 (60%) 151 (58%)  

N2-3 23 (48%) 45 (40%) 110 (42%)  

Pathologic Tumor Stage    0.25 

Stage I-II 13 (27%) 31 (26%) 54 (19%)  

Stage III-IV 36 (73%) 88 (74%) 224 (81%)  
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HPV status P16 IHC    < 0.001 

Negative 14 (88%) 15 (37%) 43 (80%)  

Positive 2 (13%) 26 (63%) 11 (20%)  

HPV status ISH    < 0.001 

Negative 13 (100%) 17 (49%) 35 (92%)  

Positive 0 (0%) 18 (51%) 3 (8%)  

Events     

Progression 20 (45%) 35 (28%) 89 (40%) 0.04 

Death 25 (45%) 52 (34%) 145 (47%) 0.02 

Abbreviations: HPV, human papillomavirus; IHC, immunohistochemistry; ISH, in-situ hybridization. 

*Variables included in this table had < 20% of available values except for HPV P16 IHC, HPV status ISH, and disease progression. 
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