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Single-cell RNA sequencing (scRNA-seq) has become a popular technique

for interrogating the diversity and dynamic nature of cellular gene expression

and has numerous advantages in immunology. For example, scRNA-seq, in

contrast to bulk RNA sequencing, can discern cellular subtypes within a

population, which is important for heterogenous populations such as T cells.

Moreover, recent advancements in the technology allow the parallel

capturing of the highly diverse T-cell receptor (TCR) sequence with the

gene expression. However, the field of single-cell RNA sequencing data

analysis is still hampered by a lack of gold-standard cell phenotype

annotation. This problem is particularly evident in the case of T cells due to

the heterogeneity in both their gene expression and their TCR. While current

cell phenotype annotation tools can differentiate major cell populations from

each other, labelling T-cell subtypes remains problematic. In this review, we

identify the common automated strategy for annotating T cells and their

subpopulations, and also describe what crucial information is still missing

from these tools.
KEYWORDS
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Introduction

The first single-cell RNA sequencing (scRNA-seq) experiments started in 2009,

and the technique became commercially available in 2014 (1). Single-cell RNA

sequencing has rapidly gained widespread use, as more detailed information can be

acquired using it than using bulk RNA-seq. Additionally, scRNA-seq data are

becoming more accessible as more companies (e.g., 10x Genomics and BD

Rhapsody®) are developing and optimising the technology, leading to a higher

throughput and decreasing costs. With the increasing availability of scRNA-seq
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data, there has been a substantial increase in our understanding of

the functions of immune cells. This has led to discoveries of new

immune cell subpopulations, their dynamic and heterogeneous

nature, and their role in disease (2–5). A particularly useful

advantage of scRNA-seq for the study of the adaptive immune

system is the ability to uncover paired information on the gene

expression and the immune receptor of a single cell [more

extensively reviewed in (6)]. However, defining the cellular

profiles for adaptive immune cells remains a complex task. For

example, the T cells of the adaptive immune system are very

heterogeneous and can adopt a wide variety of phenotypes. In

addition to a wide variety of phenotypes, there is an increased layer

of complexity due to the highly polymorphic nature of the immune

cell receptors they carry, such as the T-cell receptor (TCR) for T

cells. The TCR is created through somatic recombination to create a

highly variable CDR3 sequence containing a variable (V), and

Junction (J) for alpha (a) and gamma (g) chains, or a V,

Diversity (D) and J for beta (b) and delta (d) chains (7). These

unique TCRs can recognise a vast array of epitopes, including

immunopeptides, lipids, and some small molecules [e.g.,

phosphoantigens and Vitamin B metabolites (8)]. The most well-

studied mechanism of epitope recognition is the antigenic peptide

presentation by the major histocompatibility complex (MHC)

protein, encoded in humans via the human leukocyte antigen

(HLA) gene loci, and then to conventional ab T cells (7).

However, there are also unconventional T cells which are thought

not to interact with MHC, such as mucosal-associated invariant T

cells (MAIT), natural killer (NK) T cells, and gd T cells (9). These

unconventional T cells and their cellular profiles remain

poorly understood.

A crucial step in the analysis of scRNA-seq data involves

annotating the cells with the correct cellular phenotype. The

initial manual annotation of the cells in a scRNA-seq dataset,

after (pre-)processing, is time intensive, may contain data entry

errors, and requires expert knowledge of the marker genes specific

to the different cellular subsets. The initial (pre-)processing is

commonly done using the R Seurat package (10) or the Python

Scanpy package (11). For a more comprehensive description of the

different steps in the (pre-) processing of scRNA-seq data, we refer

you to this excellent review by Heumos et al. (2023) (12). In brief,

the manual annotation of cells in scRNA-seq data is typically

approached by clustering the cells and comparing these clusters

to identify the differentially expressed genes (DEGs) among them to

verify if they are known marker genes that are specific to cellular

populations. This is hampered by a number of factors, however,

such as a high gene dropout rate, the free-floating ambient mRNA

of one cell being captured in a droplet together with another cell

(droplet-based methods), or the poor expression of some marker

genes at the RNA level, which would be better identified at the

protein level (13). More recently, this manual annotation process

has been superseded by automatic methods that leverage machine

learning to automate and ease the burden (12). To aid in annotating

cells with their phenotypes in scRNA-seq data, several automated

pipelines have been developed to infer the phenotype based on a

cell’s gene expression profile. However, these tools are often focused

on inferring broader cell types (i.e., annotating a cell as a T cell), and
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it is unknown how well these tools work for inferring the

subpopulations of these broader cell types (i.e., identifying a T

helper [Th] 1 cell). Thus, in this review, we describe the currently

available annotation tools for identifying T-cell phenotypes from

scRNA-seq datasets. We compare their annotation strategies to the

literature to verify whether they are fully capturing these hard-to-

delineate subpopulations. Finally, we reflect on how well some of

the unconventional T-cell populations are currently being captured.
Single-cell annotation tools

To prevent the labour-exhaustive manual annotation of new

datasets, automatic annotation tools have been developed to decrease

time, improve labelling accuracy, and promote consistency.

Automated annotation has become part of the current gold-

standard approach to single-cell RNAseq, along with manual

annotation/inspection of the automated annotations by expert

review (i.e., expert familiarity with the common markers of cellular

populations, which enables accurate annotation) (12). Therefore, a

range of tools have been developed to aid in annotation automation

(Table 1). As highlighted in Table 1, the current tools fall into several

subcategories, each with distinct advantages and limitations. These

annotation methods can also be distinguished by the type of machine

learning (ML) approach, with methods categorized into

unsupervised, supervised, or semi-supervised approaches.

The unsupervised approach is typically clustering-based,

including, for example, k-nearest neighbours (e.g., Seurat

clustering (10)), which groups together cells with similar

expression profiles. Subsequently labelling the clusters then

requires the manual interrogation of the distinct markers per

population. Accurate annotation relies on the expert knowledge

of the user for common genes expressed for each cell type.

The supervised ML classification of scRNA-seq data is available

in SingleR (20), Garnett (14), and CellTypist (16). These tools

enable the prediction of cell-type labels for a novel dataset based on

a prediction model trained on prior datasets. The ability to annotate

a new dataset with high accuracy requires the dataset to have a good

overlap of genes with the prediction model. This method is more

robust in handling missing marker genes in a dataset, as it relies on

the entirety of a cell’s gene expression to classify a cell, rather than

just a few marker genes. However, if there is too much heterogeneity

between the datasets, then the prediction tools fail to identify the

cells correctly. The package scTriangulate aims to overcome this

limitation by using multiple annotation sources (21).

The semi-supervised annotation approach includes models such

as the SCINA (22) tool, which was developed to annotate cells based

on a consensus list of known markers. An alternative tool, scGate

(15), follows a process similar to the gating strategy employed in flow

cytometry experiments, and classifies the markers in a hierarchical

structure of pure and impure cells. The latter includes prelisted

markers, adding to the interpretability of the method. The scGate

researchers also defined common gating strategies on common

cellular markers, and this led to the development of ProjectTILs

(23) to further automate the process. A particular advantage of scGate

is that the user can provide their own list of markers and and is
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advantageous to use in instances that the dataset is dissimilar or not

modelled within the pre-learned supervised models.

Therefore, the researcher will need to consider which method is

most appropriate for their dataset. For instance, if their dataset is

similar to a previous annotated dataset and was obtained using the

same technology, then the reference-based/label transfer may be the

best strategy for annotating the cells. Alternatively, if researchers have a

novel cellular subset from a species that is not human or mouse, the use

of reference-based, gene set-based, and marker-based tools may not be

advisable, as they rely on similarity to previously curated datasets. In

addition, these ML-based label transfer methods are hampered by their

reliance on the quality of the annotation of the original dataset. As such,

we encourage users to carefully review the latest datasets and markers

that were used to define populations, if available.

Although the accuracy of these automated methods has

significantly improved, a two-step annotation process is strongly

recommended. This two-step process involves primary annotations

of the gene expression clusters by automated algorithms, followed

by expert-based manual interrogation of the cell populations. In

general, a combination of both strategies will result in the most

accurate definitions of cell subsets.
T-cell annotations

As highlighted above, the current annotation strategies can

distinguish between populations with large phenotypic differences
Frontiers in Immunology 03
(e.g., B cell vs. T cells), as there are fewer overlapping transcripts.

However, within each cell type there can be subspecialisations. For

instance, T cells have a variety of subtypes. These subtypes are first

stratified into two main lineages based on the TCR, that is, alpha-

beta (ab) and gamma-delta (gd) T cells. Subsequently, ab T cells,

the best-described T-cell subtype, are further delineated into

CD4- or CD8- expressing T cells. However, these can be further

stratified based on their function and capacity for formation of

immunological memory. The most well-described classical

subpopulations relate to the class I (CD8+) and class II (CD4+)

abTCR cells, which are responsible for screening the peptide-

loaded major histocompatibility complex for “self” and “foreign”

antigens (7). Less is known about the unconventional T cells,

which encompass natural killer T (NKT) cells, mucosal invariant

T cells (MAIT), and gd T cells. However, evidence that these

unconventional T cells have important roles in both health and

disease [reviewed in (24–26)] is emerging. Therefore, future work

should consider both classical and unconventional T cells.

Given this plethora of cell subsets, how are these subpopulations

currently defined by common annotation models for humans? To

address this question, we looked at several tools that claim to be able

to annotate for more delineated T-cell subpopulations. These

annotation tools included scGate, CellTypist, and Data2Talk

[online tool], as these had more extensive documentation for the

T-cell subsets. Additionally, we compared these with the common

protein expression panels used to identify T-cell subsets, as these are

well-curated and validated panels. Last, we also included findings
TABLE 1 Common strategies and programs for annotating scRNA-seq datasets.

Method Explanation
Labelling

automation
Advantages Limitations Example

Cluster
based

Manually annotating clusters of cells by
expert based on the expression of certain
marker genes

No Transparent

Subjective
Requires substantial prior
knowledge
Does not accord for
sparsity of expression
May miss sub-clustering
patterns depending on
initial chosen residuals

Seurat
clusters (10)

Marker
gene-based

Automated mapping of cell clusters based on
the expression of a small set of marker genes

Yes
Transparent
Requires little prior knowledge

Biased (batch effects)
Quality of the annotation
depends on “proximity” to
the training data

Garnett (14)

Gating-
based

Automated mapping of cell clusters based on
the expression of a small set of marker genes

Yes/no

Transparent
Can be tailorable to dataset
Uses nearest neighbours to fill
in sparsity of gene expression
(i.e., kNN smoothing)

Requires substantial prior
knowledge for new
gating models

scGate (15)

Gene
set-based

Classification based on a large set of gene
expression markers. Typically trained on well
annotated datasets of atlases

Yes
Harmonization of cell type
definitions across studies
Requires little prior knowledge

Not very transparent
Biased (batch effects)
Quality of the annotation
depends on “proximity” to
the training data

CellTypist (16),
clustifyr (17)

Reference-
based/
label

transfer

Map your data to existing reference and
perform label transfer on the
joint embedding

Yes
Allows you to (re)use cell type
annotations from a previous
dataset or experiment.

Impossible to take into
account “new effects”.
Requires strong degree of
similarity between query
and reference.

Azimuth (10),
Symphony (18),
scArches (19)
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from the literature to fill in other annotation gaps. Tables 2–5

highlight the markers used to classify the CD4 ab T cells (Table 2),

CD8 ab T cells (Table 3), gd T cells (Table 4), and miscellaneous T

cell markers (Table 5) that were identified by the documented

annotation models or through literature searches.

The T-cell annotation models include most of the well-defined

effector CD4+ populations, including T helper 1, Th17, follicular Th

(Tfh) and regulatory T cells (Tregs) (Table 2). CellTypist was the

only annotation model to included memory markers for the CD4+

T-cell population, while Data2Talk included Th2 cells, but the

markers were not disclosed. The CD8+ T cells were classified into

cytotoxic T cells (CTL; granzymes [GZMB, GZMK, etc.], perforin

[PFR1], granulysin [GNLY]), NKT cells (KLR gene family, CD160,

etc.), and MAIT cells (Table 3). These CD8+ T-cell subsets were also

broken down into memory features, naive, effector, effector memory

(Tem), terminal memory (TEMRA), resident memory (Trm), and

central memory (Tcm) (Table 3) cells. The three annotation models

cover many of the common classical CD8+ and CD4+ T-cell

populations, except for Th2, Th9, and Th22 cells. The

identification of these populations has relied on cytokine

expression. However, the current technology inadequately

captures the transcription factors and cytokines (e.g., interleukins)

(37). In addition, these populations may also be missed due to a bias

in the experimental choices, that is, no focused Th2 specific single-

cell experiments. Therefore, we need to identify appropriate

markers for the transcriptional level before we can add them to

the label transfer models.

T cells can also be defined by their functional states, which are

not necessarily restricted to T-cell lineage (e.g., gd TCR vs. ab TCR),
or a specific subtype (e.g., CD4, CD8, or DN). These functional

features include activation (e.g., CD69 [early], CD25 [late] and

CD38/HLA-DR [very late]), exhaustion (PD-1, TIGIT, LAG3, and

TIM3) (36), senescent (CD57 and KLRG1) (34), and cell cycling/

proliferation markers (Table 5). However, the current automated

annotation includes only the cell cycling markers. Given that these

functional features are important in determining if a T cell is

functioning properly, they need to be included in annotation

models to identify the most biologically relevant T cell clones. It

should be mentioned that when a cell expresses a marker associated

with activation, senescence, or exhaustion, it does not mean a cell is

activated, senescent, or exhausted. For instance, exhaustion is a

functional state characterized by multiple features, including not

only the expression of a combination of inhibitory genes such as

PD-1, TIGIT, LAG3, and TIM3, and others, but also a lack of

effector capacity, that is, a lack of cytokine production or cytotoxic

activity (38). Defining these states is even further complicated by the

fact that certain genes are associated with multiple states. For

example, sole PD-1 expression can indicate an activated state, but

it can also indicate a differentiation state to exhaustion, or be a

marker of exhaustion if expressed together with other immune

checkpoint genes (39). Similarly, when KLRG1 is expressed together

with CD57, this can point to T-cell senescence; however, KLRG1 can

also be a defining feature of antigen-experienced memory T cells

when expressed by itself (40). Therefore, to accurately annotate the

exhausted and senescent cellular states, identification of the

expression (or lack thereof) of multiple markers is needed.
Frontiers in Immunology 04
TABLE 2 CD4+ ab T cell markers (human).

Type of
T cell

Annotation
tool

Feature set

Th1

CellTypist^ CCL5, CXCR3, and TBX21

Data2Talk& ND

Flow panel# TNFa, IFNg, IL-2, CXCR3, and TBX21

Flow panel€

CCR1, CCR5, CD3, CD4, CD8-, CD14-,
CD19-, CXCR3, IFNgR1, IFNgR2, IL-12Rb2,
IL-18Ra, IL27Ra, STAT1, STAT4, T-bet,
IFNg, IL-2, TNFa, and TNFb

Th1/
GZMK

scGate GZMK, EOMES, and CRTAM

Th2

Flow panel# IL-4, IL-5, CCR4, and GATA3

Data2Talk& ND

Flow panel€

CCR3, CCR4, CCR8, CD3, CD4, CD8-,
CD14-, CD19-, CXCR4, IL-4Ra, IL17, RB,
ST2/IL-33R, TSLPR, GATA-3, IRF4,
STAT5, STAT6, IL-4, IL-5, IL-9, IL-10,
IL-13, and IL-21

Th9

Flow panel# IL-9, IL-10, and IRF4

Flow panel€
CD3, CD4, CD8-, CD14-, CD19-, IL-4Ra,
IL-17RB, TGF-b RII, IRF4, PU.1, CCL17,
CCL22, and IL-9

Th17

scGate
IL17A, IL17F, RORC, CTSH, KLRB1,
CCL20, and IL26

CellTypist IL7R, CCR6, and ZBTB16

Data2Talk& ND

Flow panel#
CCR6, CD161 (KLRB1), IL-17, IRF4, and
RORgt (RORC)

Flow panel€

CCR4, CCR6, CD3, CD4, CD8-, CD14-,
CD19-, IL-1RI, IL-6Ra, IL-21, IL-23, TGF-b
RII, Batf, IRF4, RORa, RORgt/RORC2,
STAT3, CCL20, IL-17A, IL-17F, IL-21,
IL-22, and IL-26

Tfh
or Th21

scGate IL21, CD200, CXCL13, TOX, and TOX2

CellTypist^ PDCD1, ICOS, and CXCR5

Data2Talk& ND

Flow panel# IL-21

Flow panel€

BTLA, CD3, CD4, CD8-, CD14-, CD19-,
CD40 Ligand, CD57, CD84, CXCR4,
CXCR5, ICOS, IL-6 R a, IL-21 R, CD10,
OX40, PD-1 (PDCD1), SLAM, CD150,
Bcl-6, c-Maf, STAT3, CXCL13, IFNg IL-4,
IL-10, IL-17A, IL-17F, and IL-21

Th22

Flow panel# IL-22, CCR10

Flow panel€

CCR4, CCR6, CCR10, CD3, CD4, CD8-,
CD14-, CD19-, CD161-, IL-6Ra, TGF-b RII,
TNFRI, AHR, Batf, STAT3, CCL7/MCP-3,
CCL15/MIP-1d, FGFs, IL-10, IL-13, IL-21,
IL-22, and TNF-a

Regulatory
T cells

scGate FOXP3

CellTypist^ CTLA4, IL2RA, and FOXP3

(Continued)
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Researchers need to carefully design their annotation panels

and be transparent about what markers were used to identify

the subpopulations.

Currently, gd T cells have limited representation in the

annotation models (Table 4). The gd T-cell population is

subdivided into innate (Vd2g9+) and adaptive-like (e.g., Vd1+,
Vd2+Vg9-, Vd3+) gd T cells. The most studied gd T-cell

subpopulation is that of the invariant innate Vd2g9+ T cells that

respond to (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate
TABLE 2 Continued

Type of
T cell

Annotation
tool

Feature set

Flow panel€

CD73, CD3, CD4, CD5, CD14-, CD19-, IL-
2Ra, ENTPD1, CD103, IL-7Ra low, CCLA-
4, Folate Receptor 4, GITR, CD223, LAP,
GARP, BDCA-4, CD134, CD62L, FOXP3,
Helios(+/−), STAT5, Galectin-1, IL-10, IL-
35, and TFG-b

PD-1+
Tem/
Effector Th

CellTypist^ PDCD1, CD4, and CTLA4

Tcm/
Effector Th

CellTypist^ CD4, CCR7, and SELL

Memory
CTL

CellTypist^ GZMK, CD4, and IL10

Tem/
Effector Th

CellTypist^ KLRB1, AQP3, and ITGB1

Naive Literature (27)
CD25− (IL2RA), CD45RA, CD45RO−,
and CD127

Teff Literature (27)
CD25, CD45RA(+/−), CD45RO(+/−),
and CD127-

Tem Literature (27) CD25−, CD45RA−, CD45RO, and CD127

Tcm Literature (27) CD25, CD45RA−, CD45RO, and CD127

MAIT
Literature (28) TRAV1-2 and CD161 (KLRB1), and

IL-18Ra
Th, T helper; NK, Natural Killer; CTL, Cytotoxic T cells; Tfh, Follicular helper T cells; Tcm,
Central memory; Tem, Effector memory.
#Flow cytometry protein expression panel markers from: https://www.biocompare.com/
Editorial-Articles/569888-A-Guide-to-T-Cell-Markers/
€Marker summary from https://www.rndsystems.com/resources/cell-markers/immune-cells
&Bioturing can predict cell types based on 80,574,317 cells https://talk2data.
bioturing.com/predict
^Curated markers from CellTypist (V2 list of markers).
ND, Not disclosed.
TABLE 3 CD8+ Markers (human).

Type of
T cell

Annotation
tool

Feature set

CTL

scGate HAVCR2, LAYN, LAG3, GZMB,
and ENTPD1

Data2Talk& ND

Native

Literature (27) CD45RA, CD45RO-, CD62L, and CCR7

Literature (29)* CCR7, SELL, IL7R, and TCF7

scGate LEF1, CCR7, TCF7, SELL, TOX-,
and CXCL13-

Data2Talk& ND

Tcm/
naive CTL

CellTypist^ CD8A, CCR7, and SELL

Tcm

Data2Talk& ND

Flow Panel# CCR7, CD127, CD62L, and IL2RA

Literature (27) CD45RA−, CD45RO, CD62L, and CCR7

(Continued)
TABLE 3 Continued

Type of
T cell

Annotation
tool

Feature set

TEMRA
scGate FCGR3A, CX3CR1, and FGFBP2

Data2Talk& ND

Tem/
TEMRA
CTL

CellTypist CX3CR1, GZMB, and GNLY

Tem

scGate GZMK and CXCR3

Data2Talk& ND

Literature (27) CD45RA−, CD45RO, CD62L−, and CCR7−

Teff
Literature (27) CD45RA, CD45RO−, CD62L−, and CCR7−

Literature (29)* CD8A, GZMB, NKG7, GNLY, and GZMH

Tem/Teff Flow Panel# HLA-DR, CCR5, TBX21, and GZMA

Trm
scGate ZNF683 and ITGAE

CellTypist^ ITGA1, ITGAE, and CXCR6

Tem/
Trm CTL

CellTypist^ GZMK, CD8A, and CCL5

Tscm Literature (27) CD45RA, CD45RO, CD62L, and CCR7

Innate
scGate FCER1G, IKZF2, TYROBP, KIR2DL3,

KLRC3, KIR3DL2, and KLRC2

NKT

CellTypist NKG7, GNLY, and CD8A

Literature Va24-Ja18 (TRAV10-TRAJ18) and
Vb11 (TRBV25)

MAIT

scGate TRAV1-2 and SLC4A10

CellTypist^ KLRB1, SLC4A10, and TRAV1-2

Literature (28) TRAV1-2 and CD161, and IL-18Ra

CD8aa
T cells

CellTypist^ ZNF683, GNG4, and PDCD1

CD8a/
b (entry)

CellTypist^ TOX2, SATB1, and CCR9

Precursor-
exhausted

scGate XCL1, XCL2, TOX, GNG4, and CD200
CTL, Cytotoxic T cell; Tcm, central memory; Tem, effector memory; Teff, effector; Tscm,
memory stem T cell; MAIT, Mucosal invariant T cells; NK, Natural Killer; Trm, Tissue
resident memory; TEMRA, Terminally differentiated effector memory T cells.
#Flow cytometry protein expression panel markers from: https://www.biocompare.com/
Editorial-Articles/569888-A-Guide-to-T-Cell-Markers/
&Bioturing can predict cell types based on 80,574,317 cells https://talk2data.bioturing.com/predict
^Curated markers from CellTypist (V2 list of markers).
*Based on Figure 1 top associated markers from a single-cell study.
ND, Not disclosed.
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(HMB-PP). However, the models fail to adequately differentiate

between these innate and adaptive-like gd T-cell subpopulations.

For instance, the scGate general annotation model classifies gd T

cells into the innate T-cell population along with NKT cells.

CellTypist classifies gd T cells as gd TCR or CRTAM+ gd T cells.

Only Talk2Data includes gd T cell sub-populations, but the markers

used for the classifications are unknown (Table 4). Therefore, at this

point in time, fully capturing the diversity of gd T-cell subsets in

scRNAseq data analysis requires expert knowledge of marker genes.

From the literature we know that there are difficulties obtaining

data from the adaptive gd T cells. gd T cells are challenging to study

as no antigen-specific culturing methods (41) exist for them, they

have a minority fraction in the blood (comprising up to 10% of all T
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cells) (40), and have a high prevalence in mucosal membranes (e.g.,

skin, liver, and intestines) (42). Nevertheless, we are slowly defining

adaptive gd T cells that have overlapping phenotypes with the ab T

cells. For instance, functional information derived from mouse

models has been used to identify several phenotypes, including

T17+ (IL-17 and Th17-like) and T1 (IFNg and Th1-like) cells (43).

Intriguingly, on average ~30% of gd T cells express the CD8 marker

(40). Importantly, recent studies show CD8+ gd T cells exhibit

peptide restriction, similar to classical ab T cells (44, 45).

Consequently, gd T cells express the same cytotoxic T-cell

markers as CD8+ ab T cells (30). Therefore, CD8+ gd T cells may

be functionally indistinguishable from CD8+ ab T cells. We also

note that gd T cells can interact with CD1 and MR1, but their
TABLE 4 gd T cell Markers (human).

Type of
T cell

Annotation
tool

Feature set

gd T cell

scGate TRDC, TRGC1, TRGC2, and TRDV1

CellTypist^ TRDC, TRGC1, CCL5

Literature (29)* TRDV1, TRGV3, TRDV2

Innate
(CD8
panel)

scGate
TRDC, TRGC1, TRGC2, TRDV1, TRDV2

Activated
Vd1+

Literature (30)
NKp44 (NCR2), NKp46 (NCR1), and
NKp30 (NCR3)

Activated Literature (31) NKp30 (NCR3), CCL3, CCL4, and CCL5

Vd2g9+ Literature (30) TRGV9, TRDV2, and NKG2D

Activated
Vd2g9+

Literature (30)
TRGV9, TRDV2, NKG2D, TNFa (TNF),
CD16, and CCL4/CCL5

T17
Literature
(30, 32)

TRDC, TRGC1, IL-17, and IFNg

CTL Literature (30)
NKG2D, PFR1, GZMB, GNLY and possibly
express: CD95L TRAIL, CD27

Regulatory Literature (32) FOXP3

Naive
Literature (30) IFNg in presence of IL-2/IL-15

Data2Talk& ND

Tcm Data2Talk& ND

Tem Data2Talk& ND

Eff Data2Talk& ND

Exhausted Data2Talk& ND

MAIT Data2Talk& ND

Cycling gd
T cells

CellTypist
MKI67, TOP2A, and TRDC

CRTAM+
gd T cells

CellTypist
ITGAD, TRDC, and IKZF2
CTL, Cytotoxic T cells; Tcm, central memory; Tem, effector memory; CRTAM, Cytotoxic And
Regulatory T Cell Molecule; Eff, effector; Trm, Tissue resident memory; MAIT, mucosal
invariant T cells.
&Bioturing can predict cell types based on 80,574,317 cells https://talk2data.
bioturing.com/predict
^Curated markers from CellTypist (V1 list of markers).
*Based on Figure 1 top associated markers from a single-cell study.
ND, Not disclosed.
TABLE 5 Miscellaneous T cell markers (human).

Type of
T cell

Annotation
tool

Feature set

ETP CellTypist^ ACY3, CD34, and SPINK2

DN
thymocytes

CellTypist^ FXYD2, HES1, and CD99

Treg(diff) CellTypist^ CD27, CCR7, and IKZF2

T(agonist) CellTypist^ MIR155HG, BIRC3, and SMS

Early
activation

Flow panel% CD69

Later
activation

Flow panel% CD25 (IL2RA)

Very
late
activation

Literature (33)
and flow Panel%

HLA-DR% (HLA-DRA, HLA-DRB5, and
HLA-DRB1), CD38

Senescence
Literature (33) CD57 (B3GAT1)

Literature (34) CD57 and KLRG1

Exhaustion

Literature (33) PD1 (PDCD1)

Literature (35) TIGIT, CD279, LAG3, and PDCD1

Literature (36)

Transcription factors panel of markers:
TOX, NR4A, T-bet, EOMES, NFAT, IRF4,
and BATF
Inhibitory receptors: PD-1 (PDCD1), LAG-
3 and HAVCR2 (TIM-3)

Literature (29)*
HAVCR2, PDCD1, LAYN, TOX, ITGAE,
CTLA4, LAG3, ENTPD1, TIGIT,
and CXCL13

Cycling
T cells

CellTypist^ MKI67, TOP2A, and CD3D

Proliferation

Literature (35) MKI67 and TYMS

Literature (29)*
ASPM, TOP2A, UBE2C, MKI67, CDKN2A,
CD70, CDK4, and CDK6
DN, Double negative; ETP, Early thymic progenitors; Treg, regulatory T cell.
^Curated markers from CellTypist (V2 list of markers).
%Flow cytometry protein expression panel markers from: https://www.sartorius.com/en/
applications/life-science-research/cell-analysis/flow-cytometry/immune-cell-function/t-
cell-activation
&Bioturing can predict cell types based on 80,574,317 cells https://talk2data.
bioturing.com/predict
^Curated markers from CellTypist (V2 list of markers).
*Based on Figure 1 top associated markers from a single-cell study.
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molecular signature is not well defined (46). Overall, the innate gd T
cells can be readily identified by their TCR arrangement in single-

cell experiments. To bridge the adaptive gd T cells annotation gap,

therefore, we need to use TCR information along with what is

known about classical and unconventional ab T cells.

In addition to the issues with gd T-cell classification, there are

also issues with annotating other unconventional populations, such

as MAIT and NKT cells. MAIT cells exhibit MR1 restriction and the

semi-invariant TCR arrangement of TRAV1-2 with TRAJ33,

TRAJ12, or TRAJ23, often paired with either the TRBV6 or

TRBV20 gene families. In flow cytometry experiments, TRAV1-2

and CD161 (KLRB1), IL-18Ra or CD26 are commonly used to

identify the MAIT population; however, there can be individual

variability (28). MAIT cells can also exhibit the expression of Th17

markers (RORgt and IL-17), in addition to Th1-like features (T-bet,

IFNg) (28). Moreover, the semi-invariant type I NKT cells are

identified by an invariant pairing of Va24Ja18 (TRAV10-TRAJ18)

with Vb11 (TRBV25) and exhibit CD1d restriction, while the type II
NKT cells have highly variable TCR combinations, and little is

known about what their lipid-restriction is (9). It appears that there

may be many subtypes of NKT cells, including Th17-like, Th2-like
Frontiers in Immunology 07
(GATA3), and Th1 (T-bet) cells (9). Therefore, both MAIT cells

and NKT cells cannot be distinguished from other T-cell

subpopulations based on gene expression alone. The easiest way

to identify MAIT cells and Type I NKT cells will be to utilise the

scTCR-seq data layer in combination with the gene expression

layer. However, the type II NKT cells cannot be accurately identified

until we can identify if they have specific gene(s) that are distinct

from the other T-cell subsets.

Other considerations for annotation at the single-cell

transcriptome level concern the gene sparsity, low abundance of

transcripts captured, and poor correlation of mRNA expression to

protein expression for several markers. To illustrate these problems,

we highlight a common issue with the identification of the CD4+ T-

cell population due to the abundance and sparsity of CD4 cells

being lower than those of CD8A and CD8B cells (Figure 1). For this,

we used the publicly available dataset GSE145370 (47), which was

derived from CD45+ sorted cells from oesophageal tumour and

adjacent tissue. The 14 available samples (~108,000 single cells)

were then processed through the STEGO.R pipeline (48). The low

abundance and high sparsity of CD4 cells makes it difficult to

distinguish the double negative (CD4−CD8−) T-cell population
FIGURE 1

Marker sparsity of common T cell markers. represent the (top row) CD8+ T cells, (middle row) CD4+ T cells and (bottom row) double negative. The
(left column) represents the scGate annotations, while the (middle and right columns) show the scaled expression of the markers of individual
transcripts with the name listed above. The data was derived from an esophageal cancer set: GSE145370 (47), with the data processed and figure
made with the aid of STEGO.R (48).
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from the true CD4+ population (Figure 1, left column). As an

illustration of missing populations, we looked at a common marker

associated with CD4+ Tregs, FOXP3. The semi-automated method

may miss many of the CD4+ T regulatory cells if CD4 is used in the

annotation model. Therefore, other common CD4-specific markers,

in the absence of CD8, may need to be used as a surrogate for

correctly annotating CD4 subpopulations. Alternatively, the sorting

of pure CD4+ T-cell subpopulations (i.e., Th1 and Th2), followed by

bulk RNA-seq and differential expression analysis, may be required

to identify new population specific transcriptional markers. This

would aid in finding alternative transcriptional markers to identify

CD4 subpopulations without the need to use the CD4 transcript for

annotation purposes.

A combination of gene and protein expression layers could be

used to resolve several of these annotation problems. This inclusion

of a protein expression layer has been made possible by the cellular

indexing of transcriptomes and epitopes through sequencing (CITE-

seq), allowing the use of protein-specific antibodies within scRNA-

seq. For instance, the issue of identifying CD4+ T cells that stems

from low mRNA abundance could be resolved by the addition of

CD4-specific antibodies to capture CD4 protein expression. Another

such problem that could be resolved by CITE-seq is the identification

of memory subsets within T-cell populations. CITE-seq resolves this

by capturing the expression of two CD45 protein isoforms that

originate from alternative splicing, CD45RO and CD45RA, to

differentiate between naive T cells (CD45RA+/CD45RO−) and

memory T cells (CD45RA−/CD45RO+) (10). However, while the

inclusion of protein antibodies is easily able to resolve isoform

expression, this task is not as simple as relying on RNA expression

alone. The sequencing of isoforms typically requires full-length

transcripts, and the read lengths required to cover these transcripts

are not obtained by the commonly used short-read methods for

scRNA-seq (49, 50). To illustrate this limitation, using CellTypist to

annotate cells in a scRNA-seq experiment, we are currently unable to

differentiate between a naive T cell and central memory T cell

(Table 3). However, scRNA-seq with the CITE-seq has been able to

identify the memory populations (51). Alternatively, long-read

sequencing, for example by Oxford Nanopore Technologies (ONT)

or PacBio, can be used for scRNA-seq, and can readily resolve

splicing/isoform information. For instance, ONT-based single-cell

RNA sequencing led to the detection of multiple CD45 isoforms,

consistent with CITE-seq data (52). Thus, to properly annotate

memory T-cell populations or other T-cell populations that are

defined by protein markers with poor mRNA expression

correlation, we will either need to include protein expression (e.g.,

CITE-seq), or sequence isoforms using techniques that capture the

full length of a transcript, such as long-read sequencing.

An additional inconsistency between the protein expression and

transcriptional profiling pertains to the degree of expression. With

flow cytometry, protein expression can readily capture dose,

including low, moderate, and high, based on arbitrary cut-offs.

However, due to fewer transcripts being captured, there is limited

capacity to have these grades of expression in scRNA-seq, and they

can mostly only be differentiated by binary (e.g., present or absent)

thresholds. For instance, CD127low protein expression is a marker

for Tregs; however, this would be an inappropriate transcriptional
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marker (Table 2). Therefore, when designing a panel of

transcriptional phenotyping markers, the expert will need to

consider this technological limitation.

Overall, the above analysis identified inconsistencies with marker

choice (Tables 2–5), which represents a concerning issue regarding the

reproducibility of these T-cell studies. Additionally, there was a

plethora of missing annotations (e.g., for Th2 cells, gd T cell

phenotypes, and functional features). Consequently, if these missing

annotations are essential to identifying the T cell associated with a

particular disease(s)/pathology (e.g., infection, cancer, autoimmune

disease, and transplantation), using the automated models will lead

to the T-cell subset of interest being missed. Therefore, filling in the

missing annotations will need to be donemanually or by way of a semi-

automated process using custom gene sets.
Identifiable needs for future T-cell
annotation strategies

T cells remain a challenging subset of immune cells to

interrogate due to their complex and variable subspecialisations,

together with the diversity of the TCR repertoire. There has been

some progress made in the development of T cell-specific

annotation strategies and in TCR repertoire interrogation

[reviewed in (6)]. Technology has progressed to now include

simultaneous scRNA-seq and scTCR-seq, which can capture both

the abTCR and gdTCR genes (e.g., 10x Genomics and BD

Rhapsody). Both these layers of data are likely needed to identify

the role individual T-cell clones are performing at a given time

point. For example, scTCR-seq can capture the paired abTCR or

gdTCR sequence and identify if the clone was expanded. Clonal

expansion may indicate whether or not a particular TCR has

responded to an epitope/antigen. The functional state will also

further indicate if it is worth undertaking further analysis of the T

cell and enable bystander clones to be ruled out. This information is

needed for functional validation so that sorting based on

phenotype-specific biomarkers and TCR genes can be done,

which in turn can eventually be used as immunotherapies (e.g.,

CAR-T or TCR-T) (53). Having access to both layers in the initial

discovery single-cell experiment will decrease the time needed to

identify the most biologically relevant T-cell clones.

A deep dive into the current annotation strategies identified that

inconsistences exist in the subclassification of T cells, along with

missing T-cell subsets. To rectify these phenotyping inconsistencies,

we will need a central resource of well-curated classifications so we

can estimate the robustness of the markers for any given T-cell

subpopulation. We may need to consider not segregating the

classification based on gdTCR vs. abTCR, as new understanding

is showcasing overlapping, if not identical, markers (Tables 2–4).

To achieve this database, the T-cell community requires the

development of a public repository for protein markers, bulk

RNA-seq derived markers, and, if possible, scRNA-seq with

scTCR-seq and protein antibody information. Once this is built,

we can determine the most robust markers per T-cell subset. We

believe this literature review provides a useful reference and may

serve as a foundation in the realization of this effort.
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Once a consistent gene-set list of markers is established, we

need to tackle the remaining problems regarding how to efficiently

interrogate scRNA with paired scTCR-seq data. To achieve this,

expert T-cell functional knowledge and computational expertise

will be needed. This could help in determining which T cells should

be functionally tested, and may lead to groundbreaking discoveries

that lead to novel T cell-based therapeutics or help guide patient

management in current immunotherapy protocols.
Conclusions

In this study, we presented a comprehensive review of the tools

used to annotate T cells from scRNA-seq datasets and also analysed

the single-cell derived TCR repertoire. There are a multitude of

automated strategies used to annotate T cells. However, the biggest

shortcomings are a lack of consistency among tools concerning the

markers used to annotate the T cell subsets, leading to severe issues

with reproducibility. To overcome this challenge, collation of the

currently available T cell-based data should be stored in a single

repository, and development of new tools that make use of this

harmonised framework is needed. Without this progress, there will

continue to be issues with reproducibility, which will hamper

progress in the development of T cell-based therapies.
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