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Abstract

In this paper the concept of variable intensity of utilization is in-
troduced in a multiple machine replacement model. Based on simple
assumptions regarding the behavior of the cost of capacity utilization
over the economic life of equipment, it is demonstrated that the in-
tensity of utilization will fall as age increases. This proces is a formal
representation of the concept of functional degradation.




1 Introduction

Optimal replacement policy is a subject that generated a lot of attention
from economists, mathematicians as well as engineers. The work of Prein-
reich [18] is a standard reference in this area, but is was mainly Terborgh
[22][23] who converted Preinreichs ideas into a manageable tool for business
applications and gave the problem widespread attention. Later, the ma-
chine replacement problem was fine-tuned by Alchian [1] and Smith [21].
Soon, the problem also received attention from a purely mathematical point
of view, since the replacement problem in many cases turns out to be a
prototype of a dynamic programming problem (See among others the work
of Bellman [5], Dreyfus [6] and Hastings [10]). Aside from a vast number
publications on interesting practical applications of the theory, considerable
attention went to further development of theoretical ideas on the subject,
such as:

e the determinations of repair limits (See e.g. Hastings & Drinkwater
[7]11]);

e the effect of technological progress (See e.g. Grinyer [9], Bethuyne [4]);

e the role of uncertainty (See e.g. Mauer & Ott [16], following the
methodology of Dixit & Pindyck [8]).

The ideas developed for the machine replacement problem are also ap-
plied to related problems, such as the forestry problem and housing problem.
The forestry problem is in fact a special case of a replacement problem, often
encountered in agricultural economics. It involves determining the optimal
time to harvest the wood of a growing tree and replace it with a new one. The
problem was described in detail and solved by Hirshleifer [12, pp.82-92] and
Samuelson [19]. The machine replacement problem is also related to housing
problem. The housing problem refers to the decision of a landlord-builder
who owns a house and tries to maximize his net revenue by maintaining the
quality of the building at an optimal level. The relation with the machine
replacement problem is obvious, since the landlord can also decide to demol-
ish the building and replace it with a new one (See e.g. Arnott, Davidson &
Pines [2][3]). Applications of the replacement problem in the housing mar-
ket are of particular interest, because here other interesting variables such
as maintenance and intensity of utilization are introduced in the model.




The importance of intensity of utilization in the single machine replace-
ment model also received attention by the author [4] previously. It was
demonstrated that the concept of a variable intensity of utilization is of
considerable importance in the timing of replacement. It was shown that
even in the case where operating costs do not depend on the past intensity
of utilization (i.e. on the output produced in the past), the economic life of
equipment is a function of the intensity of utilization future tasks impose on
‘the equipment. This implies that a machine that is obsolete for one task,
may still have economic value for another less demanding task - a concept
that was already observed by Terborgh and named functional degradation’.
Unfortunately, a further analysis of the dynamic evolution of the intensity
of utilization over the economic life of equipment is extremely difficult in the
framework of a single machine replacement model. Indeed, in single machine
replacement analysis it is often assumed that production (and hence also the
intensity of utilization) is constant over the economic life, in order not to
confuse replacement investments and capacity investments. Of course, this
rules out any serious analysis of the dynamic behavior of the intensity of
utilization.

Generalizations of the problem to a situation where multiple parallel
machines are operated remained scarce for a long time. The initial analysis
of Preinreich mentioned parallel replacement, but his analysis remained at
a very abstract level. Since then, important contributions came from Lutz
& Lutz [13] (See also Massé for a description [15]) and mainly Malcomson
[14] and Nickell [17]. The process described by Lutz & Lutz, which they
call a ’synchronized process’, contains in fact the bare essence of a mul-
tiple parallel-machine replacement model. However, it has been criticized
strongly (among others by Samuelson [19]), for camouflaging the influence
of the time-value of money on the timing of replacements. We will return
to this point later.

Although the model fails to demonstrate clearly the effect of the interest
rate, it has the advantage of relative simplicity compared to the real vintage
models of Malcomson and Nickell. - A brief description of this model will
be presented in this paper as 'the simple static case’. The use of the term
static is inspired by the fact that in this model, all exogenous variables
are assumed constant. It will be demonstrated that even in these static
surroundings where interest has little effect on the timing of replacements,
the introduction of a variable intensity of utilization may cause interesting
dynamic behavior in the use of the equipment. A

The general outline of this paper is as follows. The definition and role
of the intensity of utilization in single machine replacement analysis is ex-




amined in the second paragraph. It contains a generalization of a previous
model of the author, in which only the direct effect of intensity on operating
costs is taken into account. In the model presented here the model is ex-
tended with the concept of wear, which reflects age as well as the past inten-
sity of utilization. In the third paragraph we develop the general structure
and terminology of a multiple machine replacement. Necessary conditions
for optimal replacement timing in steady-state are derived in the fourth
paragraph. Finally, the multiple machine replacement model is extended
with a variable intensity of utilization. Again, necessary conditions for op-
timal replacement are derived and interpreted. The interpretation allows
for a clear graphical representation in two- and three-dimensional pictures.
The paper is concluded with a summary of the main conclusions and some
ideas for further research.

2 The intensity of utilization in the single machine
model

For the single machine replacement problem, it has already been demon-
strated that the intensity of utilization can have an important impact on
economic life [4]. The model presented here can be considered as a gener-
alization of this previous work. Whereas the earlier model only considered
the direct effect of the intensity of utilization on operating costs, the present
analysis considers both direct and indirect effects on operating costs and
salvage value. '

Let ¢ be the intensity of utilization of a certain piece of equipment.
This variable is defined as the rate of output production as a percentage of
the maximum output rate: 0 < ¢ < 1. Most types of equipment can be
used with a variable intensity: locomotives, trucks, ... can perform variable
mileage per day, or they can be used to haul heavy or light cargo, electri-
cal power plants can vary the produced power, machines can produce at
different speeds, etc. The age and past intensity of utilization are both re-
flected in what we call the wear of the machine, noted as W. The wear of
new equipment is assumed to be zero, and wear changes in function of the
intensity of utilization and age:

W= Femnz0 )
W) = 0

At zero intensity (i.e. when the equipment is not used), wear could be
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constant. For strict positive intensity of utilization, wear is assumed to be
strictly increasing®. For simplicity, we will first deal with the case in which
the intensity of utilization is constant over time. In that case, wear can be
expressed as W = W (ip,1) and the total cost of the equipment as:

k(W (,1),¢] (2)

with 2% > 0 (costs are a strictly increasing function of wear) and g—;,’% >0
(increasing marginal cost of wear). The utilization intensity influences the
cost-function in a direct and indirect way. Indirectly, the utilization intensity
determines the wear of the equipment and consequently also its operating
cost and its value on the second-hand market. However, the operating cost
of capital equipment is also directly related to intensity irrespective of wear
(for instance through energy consumption, in the case of a machine).
The objective is to minimize total costs:

. 1 L —il
mmK—m/o kW (0,0) 0] e~ dl 3)

The term after the integral is the present value of all costs of one machine

over its economic life L. The preceeding factor is the limit of an infinite -

geometric series with first term 1 and ratio e~*L'. This factor converts the
integral (the cost of one machine) into the present cost of an infinite chain
of identical machines, each lasting L years. The necessary condition for
optimal timing of replacement now takes the form:

kW (p,L), 0] = ke [W (0, L), 4] (4)

in which:

) L ‘
kW (,1) 6 = ==z | KV (p.D) ¢l 7 d (5)

is the equivalent costflow, i.e. a perpetual constant costflow which with a
present value equal to the objective function: %’a = K. Eq.(4) states that the
optimal time of replacement will be a function of the intensity of utilization:
L(y). The effect of ¢ on the economic life can be clarified by taking the total
differential of the optimality condition. Since dk./dl = 0 in the optimum,
the effect of ¢ on the economic life can be written as:

iw_ (B - () ;

1A possible functional form for wear could be W o< [ Ol © (6) df, which reduces to ¢l in
the case where the intensity of utilization is constant. Wear is then proportional to the
cumulated output, expressed as a fraction of the potential output.
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Since the second-order condition of the replacement problem implies that
total costs have to be rising in the optimum, the sign of the derivative
is solely determined by the sign of the numerator of (6). However, since
EQ;—,I% > 0, we can state that:

Ok [W (p,L),¢]
515%
‘ L
— v / 8k [W (‘107 l) 3 90] e—ildl
1—e i oW )

0
L
( " Ok [W (Spa L) 790] —il
< _ .
—1—eil 0/ oW e dl

_Ok[W (L), ¢

Also, if we assume that ae‘igw >0, then:

ke [W (0, L), ¢

Op
. 1 / ok [W (QD,Z) ,90] e-ildl
1— —iL
e ) Oy
L
7 / ok [W (QD,L),(,D] —1l
< di
1—6”L0 O

= | | (8)

Hence the numerator of (6) is negative, meaning that a decrease in the
intensity of utilization will increase the economic life of the equipment, based
on the assumption we made about the sign of the second cross-partial deriva-
tive of the operational cost function. Of course we have to wonder if this
assumption is reasonable. If we rewrite the derivative as 9 (—g%) JOW >0,
we can see that our assumption implies that marginal cost of the intensity
of utilization has to increase in function of wear. Provided that opera-
tional costs are proportional to the rate of intensity, the second cross-partial
derivative will be positive. Indeed, if k(W,¢) = f(¢)M (W), where f(y) is a
positive monotonic function and M (W) is the operational cost of a machine
with wear W when it is used at full intensity, the derivative will be positive
since M (W) is a positive function of wear.
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Costs

Figure 1: The single-machine model

The problem can be visualized as in figure 1. Suppose that in the initial
situation, the intensity is 100%. Optimality implies equal total costs and
equivalent costflow (point a). If the equipment is operated over its entire
economic life at a reduced intensity, the economic life will increase and costs
will be reduced, i.e. the minimum of the equivalent costflow will shift down
and to the right as the intensity falls. We will call the path along the
optimality condition when ¢ is falling the cost-reduction path (CRP); it
shows how optimal life and minimal costs evolve as intensity of utilization
falls. A three-dimensional representation of the problem (as in [4]) is an
- easy exercise. ‘

We can now also address the issue of different intensities of utilization
over economic life. Assume for instance that an operator used his equipment
at full intensity over its economic life L,. It would be suboptimal to continue
using this equipment at the same intensity, but it may still be optimal to
continue using it at a lower intensity. However, by doing so the intersection




of k and k. (point a in figure 1) will not shift along the cost-reduction path,
since this would imply that the reduction of the utilization intensity in the
future (i.e. after L,) would also reduce the wear, caused by the use of the
machine before L,. Of course such retro-active effect of a reduction of the
intensity never occurs. To describe the actual movement of the optimal
point a, we reconsider the total differential of the optimality condition (6).
This time however, since we only change the future values of ¢, the wear at
L, is unaffected and the indirect effect of ¢ through W will vanish: %Vg- =0.
Hence:

0 (9)

(ake B ak)aw_
ow 0w/ 9p

In that case a negative term in de numerator of (6) disappears and:

dL

dL
— >
dyp

aw_q ~ dp

(10)

The costs will now change along the path ac. Notice that the path ac is local
to the original optimum a since the assumption %—V: = 0 can not be main-
tained over non-infinitesimal periods of time. If so, for longer. periods the
optimum will be situated somewhere in the region between de cost reduction
path and the path ac.

There are important advantages of this model-specification. First, it
resolves the debate about the correct measure to determine the time of
replacement. In the model, time is chosen as the main variable, but the
solution to the problem is contingent upon the intensity of utilization. This
new variable captures the influence that the rate of production exercises on
the timing of replacement. The model can also be applied to illustrate the
principle of functional degradation. This last point requires some further
explanation. Suppose a new machine were acquired which can be used at
different degrees of intensity. If the new equipment is used at full intensity,
its economic life will end at L, (see figure 1). In the basic replacement
model without variable intensity of utilization, the equipment was necessar-
ily abandoned at this age. However, in this model there is an alternative,
since the equipment can be maintained for lighter duty. For instance, if
the equipment is used with an intensity of ¢ < 1, the economic life can be
prolonged to L.. This principle is often observed in real-life production ap-
plications and has been verbally described by Terborgh [22], as mentioned
before. In formal models however, this principle seems to be neglected.

The model presented here also implies that if two separate tasks with
different intensity were to be performed by two machines with different age,




but otherwise identical, it is optimal to perform the least intensive task by
the oldest machine. This can be demonstrated as follows. Suppose the
intensity of the first task is ¢, the one of the second task is ¢+ Ap. Assume
also that the age of the first machine is [, and that the second machine
is Al older. If in that case the newest machine performed the task with
the lowest intensity and vice versa, the total cost of operation would be:
k(L @) + k(L + Al, o+ Ayp). A second-order approximation of this cost is:

. Ok ok 10% 1 0% 0%k

2E(L @)+ 5 Al 5 Apts G (A +5 25 (A + 7 (A (A) (1)

If on the other hand the newest machine performed the most intensive task
and vice versa, the total cost of operation would be: k(I 4+ Al, ) + k(l, 0 +
Ay). This can be approximated as: ‘

ok ok 18% 10%k
T ta (A% + —Q(Ago)z (12)

Oy 2 012 2 9p
The cost-difference between both approaches is the term al a‘p E(AD(Ag).
This term vanishes only in the case where the difference in age and in inten-
sity are marginal. Since both differences in this expression are positive and
non-marginal, the sign of the cost difference depends solely on the cross-

2.k, )+ =

2k __ 9%k oW
partial derivative, which is assumptlon positive since oy = BWop ol and
we assumed 63,5 > 0 and 2¥ > 0. Hence producers will use the most

recent equlpment for the most intensive tasks, which agaln is compatible
with the concept of functional degradation.

An important consequence is that the economic life depends on the spe-
cific task a piece of equipment has to perform. Machines that are obsolete
for one task may still have economic value to perform other tasks. Of course,
this is hard to demonstrate in a situation where only one machine performs
a task with a specific and fixed intensity of utilization. To make the prin-
ciple work in a single-machine production environment, we have to assume
that another operator is willing to buy the machine after its first economic
life, to use it for lighter duty. Apparently, the introduction of a variable
intensity of utilization calls for a replacement model in a multiple machine
environment. In what follows, we will concentrate on the direct effect of the
intensity of utilization on operating costs and omit indirect effect through
wear (%—‘Z = 0). If wear is not affected by the past intensity of utilization,
the path ac will coincide with the cost-reduction path. This specification
still allows for functional degradation to appear and will allow us to find
optimality conditions for a parallel replacement process, using simple static
optimization techniques.




3 General multiple-machine model

Before addressing the problem of finding optimality conditions in a multiple
machine environment, some basic relations need to be clarified. Let m(l) be
the operating cost of a machine of age {. For the moment, we do not include
the intensity of utilization explicitly as a variable. Also, let n(l,t) be the
number of machines with age ! at time ¢. In that case, if T(t) is the age
of the oldest equipment in service at time t, the total operating cost of all
equipment in a time interval dt is:

()
oft) = / a(l, t).m(l) dl (13)
0

The present value of total operating costs over an infinite period of time is
therefore:

oo oo [ T(t)
K= / oft).e~itdt = / / n(l,8).m() dl b e~itdt (14)
0 0 0 :

The acquisition of new equipment and the scrapping of old equipment
generates additional costs K5. Let a(t) the number of new machines installed
at time ¢ and s(t) the number of old machines scrapped at time t. Let V(1)
be the salvage value of a machine with age [, the initial cost of a new machine
is V(0). Then K5 can be expressed as follows:

Ko = / {a®)V(0) - s(t).V [T(@)]} edt (15)
/ |

Notice that we assume that only new equipment will be purchased.

The objective will be to minimize K = K + K3, subject to the con-
straint that the productive capacity at time ¢ has to allow a given amount
of production ¢(t). This can be expressed as:

T(t)
[ntoazay (16)
0

We assume that only the oldest equipment is scrapped, and that it is
always decided to scrap an entire vintage, i.e. all machines of the same age
are scrapped at the same time. Finally we also assume that once a machine
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is scrapped, it is definitively lost and can not be put back in operation at
a later time. Consequently, the number of production units of age [ at
time ¢ (n(l,t)) equals the number of machines acquired at time (¢ —[), for
0 <! < T(t). Formally:

= DL 51 ET o

Furthermore, the number of machines scrapped at time ¢ can also be ex-

pressed as:
s(t) = n[T(2),8] = alt — T(2) (18)

Taking all these considerations into account, the objective becomes to min-
imize: ’
oo [ T(t)
K= / / a(t —1).m(l)dl +a(t).V(0) —a[t — T(t)] .V [T(t)] » .e”"dt
o Lo

(19)
subject to the constraint:
T(t)
[ att=ndiz o (20)
0

In what follows we will examine the characteristics of the steady-state equi-
librium of this dynamic model.

4 The simple static case

In its simplest form (i.e. without variable intensity of utilization), the mul-
tiple machine replacement model can be defined as a synchronized process,
as in Lutz & Lutz [13]. If the quantity ¢(t) to be produced is constant and
that there is an equal number of machines of each age I < T'(t) at time ¢,
n(l,t) does not depend on t. This implies constant acquisitions a(t) = a and
an invariable scrapping age T'(t) = L. In these static conditions, optimal
values for ¢ and L can be found solving:

L
min 2 { / m(l)dl + V(0) - V (L)} (21)
0

sub a.L=g¢q
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The constraint has been altered to an equality constraint, since it will never
be optimal in a steady-state to maintain machines in operation above the
number strictly necessary for production. Hence, we can substitute a in the
objective function by £, to obtain first-order conditions for the optimal time
of replacement:

L
L m(z) - (1) - 2 O/ m)di+V(0) -V (L) =0 (22

where v(l) = Cfi—‘l/. Rearranging gives us the first-order condition as:

Ofm(l) dl+V(0)-V (L)

m(L) — v(L) 7

(23)
In words, the optimality condition states the equipment has to be replaced
at an age, when the marginal cost of operating the equipment one extra
period of time equals the average cost of operating the equipment per unit
of time. Notice that the interest-rate has no influence at all on-the optimal
replacement age, a result that was strongly criticized by Samuelson, since

it seems to suggest that the time-value of money is of no interest in the
replacement problem.

However, such a conclusion would be overhasty. First of all, the fact that
the timing of the replacement is not influenced by the interest-rate is purely
a consequence of the steady-state nature of the solution. Since all costs are
evenly smoothed over time and changes in the optimal age of replacement
cause no variations of the distribution of costs over time, the time-value of
money is not relevant for optimal replacement timing. However, when we
leave the steady-state conditions, it will no longer be possible to cancel out
interest, as demonstrated by Malcomson [14] and Nickell [17]. The absence
of the interest-rate in the optimality condition seems to be an exception,
rather then the rule. Furthermore, the minimum value of the cost function
still depends on the interest-rate, even in steady-state. Although the out-
come of the model may lead the inattentive researcher astray, the model is

‘fundamentally correct. Since this paper does not primarily deal with the
effects of the interest-rate on the optimal timing of replacement, we see no
harm in the further use of this model.
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5 The static case with variable intensity of utiliza-
tion

5.1 First-order conditions

The synchronized process as described before is in many ways an oversim-
plification of any realistic situation. One crucial element is the implicit
assumption that each machine produces constant output over its entire eco-
nomic life. Since it seems logical to assume that it becomes increasingly
more difficult (or better, more expensive) to maintain the same intensity of
utilization as a machine becomes older, it is necessary to allow for variabil-
ity in the intensity of utilization in the multiple machine model, as it was
demonstrated before in a single machine environment. Therefore, suppose
that the equipment can be operated at different intensities and let intensity
vary with age: 0 < ¢(l) < 1. Notice that in this model, the intensity for a
given age does not depend on chronological time. The operating cost will
now be a function of the age of the equipment as well as the intensity the
equipment is used with: m [l, ¢(1)]. We consider only the direct effect of the
intensity of utilization on the operating cost, without using the concept of
wear. _

Strictly speaking, the indirect effect of intensity of utilization on oper-
ating cost through wear could also be introduced in the model. However,
such generalization would force us to use dynamic optimization techniques
to determine necessary conditions for optimality. At this stage of the expo-
sition it is preferred to rely only on non-linear programming techniques. Not
only will this provide us with very simple and understandable optimality-
conditions, but it will also demonstrate the possible use of ’static’ non-linear
programming techniques for modeling dynamic behavior. Indeed, it will be
demonstrated that although the model and the optimization technique are
both essentially static, distinct dynamic behavior may still result from the
analysis. '

The objective is now:

L
MIN K=12 / m [l, (1)) dl + V(0) - V (L) (24)
. 0 . ;
SUB q=ua | ¢(l)dl
/

First-order conditions can be found setting the first derivatives of the La-
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grangian £ equal to zero () is the Lagrange-multiplier):

g_é = mlLp@)] - o(D)} ~ Aap(L) =0 (25)
L L ,
% _ %{/m[l,cp(l)] dl+V(0)—v(L)}—A/cp(l)dl=0(26)
0 0
ot . a,am[l,(p(l)] _
3ol ~ 7 oe T 0
L
% - a/go(l)dl—q:O (28)
0

Notice that eq.(27) is in fact a set of equations for all possible values of
! € [0,L]. The marginal cost caused by an extra unit of output g can be
found as follows:

_OKOL, | 0Ka, /L [ 0K Bp(l)

i = S5 %
3L 5" T 5q 9™ 50(l) 8q

Where dg; is the change in output caused by a change in j € {a, L, ¢(I)}. It
follows that:

LT 8K
dx 2K —a—fai 0
ok 1A% A T LG
6L da 0 8p(l)

Where f; = %Iqj-, i.e. the fraction of the extra capacity, caused by an increase
in j € {a,L,p(l)}, so that f + fo + fOL foydl = 1. A marginal unit of
capacity can be provided in three different ways: by increasing the economic
life of the equipment, by increasing the number of parallel machines or by
increasing the intensity of utilization at different stages of the economic life.
The marginal cost of such extra capacity can then be expressed as the sum
of the marginal costs of each of the previous capacity expansions. Now, we
can derive that:

1 m[L,p(L)] - v(L)

d o(L) = (31)

SRS
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frmll o) di+V(0) - V(L)

)
=

Ba 1p
%{ = - - =) (32)
da : Je)dl
0
8K
5 - T =
sy b 9el)

The first equality in each equation follows directly from differentiating K
and g with respect to the appropriate variables. The second equality follows
from the first-order conditions (25) to (27).

Before engaging in a rigorous interpretation of all previous equations,
it is useful to elaborate on the true meaning of cé—Iq{. Although time plays
an important role in virtually every replacement model, it is essential to
understand that the present model is basically static. After all, we assumed
that all parameters were constants. Consequently, the optimal values of all
variables found in this analysis can be considered as optimal steady-state
values of an underlying dynamic model. It would be wrong to pry some
interpretation about the dynamic behavior of the variables considered out ‘
of the optimality conditions. More in particular, it would be wrong to assign
a dynamic interpretation to . The marginal cost function considered here
does not give any 1nformat10n about the dynamic behavior of costs when
confronted with variations in ¢. The analysis is limited to the comparison
of the steady-state before and after the adjustment and is thus simply an
exercise in comparative static analysis. The evolution of costs and costflows
under dynamic behavior of parameters like g needs to be examined in a true
dynamic model. Before engaging in such effort a full comprehension of the
steady-state will prove useful.

From eq.(30) and conditions (31) to (33) it follows 1mmed1ately that
%‘1— = ), the usual interpretation of the Lagrange-multiplier. The left-hand
side of eq.(31) can be interpreted as the marginal cost (in steady-state) of an
extra unit of capacity, caused by an increase of the economic life of existing
equipment. In the numerator we find the marginal cost per unit of increment
in L. This cost consists of the extra operating cost in the marginal period of
operation and the extra depreciation caused by maintaining the equipment
in operation for an extra period of time. The deneminator measures the
marginal capacity of a unit of increment in L. The preceding factor %
simply converts constant flows in their present value. ’

The left-hand side of eq.(32) is the marginal cost (again in steady-state)
of an extra unit of capacity if the existing equipment were expanded with
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one new extra unit. An extra unit of capacity would cause extra operating
costs (the first term of the numerator) and its acquisition would cost a net
price of V(0) — V (L) in steady-state. The denominator is equals the total
capacity added by one extra unit of equipment. Finally, the left-hand side of
eq.(33) determines the optimal intensity of utilization of equipment of age [.
It states that the marginal effect of an increase of the intensity of utilization
on costs has to be equal, irrespective of the age of the equipment.

In the optimum, these terms are all equal to A. This can be explained
as follows. Suppose the outputflow ¢ increased with one unit over the entire
time-horizon. In that case, the extra capacity could be found in three dif-
ferent ways: the existing equipment could be held in operation for a longer
period of time, new equipment could be installed or finally the intensity
of utilization of the existing equipment of age ! could be increased. The
extra costs of each of these three measures can be found in eq.(31) to (33)
respectively. The fact that the three equations share the same right-hand
side simply means that in optimum, no extra cost-reductions can be made
by reducing the capacity in one way and compensating in another way. In
the optimum, the operator of the equipment is indifferent between changes
of capacity caused by prolonged lifetime, additional equipment .or increased
intensity of utilization.

It is also important to notice that a does not appear in the optimality
conditions (31) to (33). This means that the marginal cost of a capacity
expansion does not depend on the number of machines already in operation.
This conclusion is of particular importance, since it implies that d’\ ‘;2‘ =
0. Since X is independent of the rate of production or the number of machines
in operation, it follows that economic life L and the intensity-function (1)
are also independent of the production-rate é_md the number of machines
in operation. This is an important observation, because it says that the
characteristics of operation do not depend on the size of the production
system. In fact, such a conclusion follows from the implicit assumption that
there are no (dis)economies of scale associated with parallel production.
There are indications that economic life is prolonged in periods of capacity-
expansion (See e.g. Smith [20, p.32]), but this kind of behavior is of a
typically dynamic nature and does not correspond with the steady-state
conditions employed here.

Using some further assumptions on the nature of the cost-function m
allows us to draw some interesting conclusions about the progress of ¢ over
time. Assume the general outline of the relation between m and ¢ is as
depicted in figure 2. Operating costs equal zero when there is no produc-
tion but increase rapidly when intensity rises. The rate of increment first
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Figure 2: Operating costs at different levels of age and intensity of utilization

diminishes as ¢ increases, but as the intensity approaches unity, costs rise
quickly and eventually approach infinity. The idea behind this is, that it
is nearly impossible to operate a machine at full capacity for 100% of the
time. The cost of operating a machine at a certain level of intensity is also
assumed to rise with age. In figure 2 three cost functions for different ages
are represented. For the interpretation of the first-order conditions we will
use the corresponding marginal and average cost-functions, as depicted in
figure 3. To facilitate the graphical interpretation, lets assume v(L) = 0, i.e.
suppose the equipment has lost all its value above the scrap-value before the
age of replacement. Such an assumption can be well motivated, since the
operator of the equipment can (and will) reduce the intensity of utilization
in function of age, in order to prolong the economic life. Hence there is no
need for a second-hand market to find an other operator who is willing to
use the equipment at lower intensity, as it was the case in the single machine
model. Since the operator will be able to reduce the intensity until it has
reached a point where economic life cannot be prolonged any more, depre-
ciation of the equipment will be complete and the remaining value will be
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the scrap-value.
In that case, bringing together eq.(31) and (33) gives us:

m L, (L)) _ dm[L, (L))
(L) dp(L)

Hence, if L is the optimal age of replacement, the average cost of capacity
has to equal the marginal cost. This means that [L,¢(L)] will be found
at the minimum of an average cost-function. Let the average and marginal
cost-curves at the time of replacement be represented by the highest curves
in figure 3. In that case, the minimum intensity of utilization (i.e. at the
moment of replacement) is fr, in figure 3. Since the marginal cost of intensity
has to be equal at all ages, the intensity of utilization at each specific age
will be found at the intersection of line AB and the marginal cost curve at
age I. From this we can conclude that the initial intensity of utilization at
age 0 in figure 3 will be fy. Since the marginal cost of intensity rises with
age, the intensity of utilization will fall as age increases from fo to fr.

(34)
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Figure 3: Marginal and average cost of intensity at different levels of age
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The information contained in figure 3 can also be represented in three
dimensions. This can give a better insight about the intensity of utilization
of a piece of equipment over time. Such a representation can be found in
figure 4. Intensity is represented on one of the horizontal axes, the average
and marginal cost of intensity is on the vertical axis. In order not to overload
the figure, only the maximum of average and marginal cost is represented.
To the left of line DE the marginal cost is smaller than the average cost,
so the average cost is represented. To the right, the opposite. Hence DE
connects all minima of the average cost function. Now, consider the relation
between ¢ and [. We know that at the time of replacement L, the intensity
of utilization must satisfy eq.(34), so the average cost at [L,(L)] has to
be located on line AB. Suppose for instance that C' represents the optimal
average and marginal cost at the time of replacement. Since the marginal
cost of each piece of equipment has to be equal, irrespective of age, all
optimal combinations of ¢ and ! will be located at the contour line of the
marginal cost through C. Consequently the evolution of the intensity of
utilization over time will start at a point near B and follow the contour
until it reaches C. Of course, the exact location of the ending-point C' and
the corresponding contour AB can only be determined with knowledge of
the exact functional form of the underlying cost-function.

Finally, figure 5 gives a two-dimensional view of figure 4 from above.
Line AB, connecting all minima of the average cost-function, and line CD,
representing the relation between intensity of utilization and age, can again
be recognized. Notice the apparent fall in intensity of utilization as age
increases, especially near the end of the economic life of the equipment.

5.2 Second-order conditions

The bordered Hessian of the minimization problem is:

[0 ap(L) Jo eyl a ]
ap(l) © {&gj(zL) _ 615(,{‘)] m(L)i—v(L) ~ ap(L) 0
JEema mE=E (L) 0 1528~
Bm!l! a 82m(l
| @ 0 Tapm — Top02

For brevity, m[l, ¢(1)] is noted as m(l). Substituting the first-order condi-
tions in this matrix simplifies it to:
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Figure 4: Maximum of average and marginal cost of intensity

Second-order conditions require that all border-preserving minors are
negative. For most of these this follows directly from the assumptions about
the characteristics of m [l,¢(l)] and V' (t). However, one of them deserves

further attention:
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dynamic behavior of wear.
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