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ABSTRACT

The framework adopted in the paper is that of the Sraffian theory of the choice of
techniques. Under the assumption that demand is price-independent, the uniqueness of
cost-minimizing techniques is analyzed in terms of relations between square neighbouring
techniques. It is shown that for certain types of economies, uniqueness is guaranteed if
and only if all cost-minimizing techniques have the same ’colour’. The colour of a
technique depends upon the rates of profits and growth, and the characteristics of the
processes which constitute a technique. The result can be extended to economies using

natural resources.



§ 1. Introduction

The non-substitution theorem, valid for economies with constant-returns-to-scale, single-
product activities using a single non-produced resource (labour), contains a double
uniqueness result with respect to the choice of techniques. First it states that, flukes
apart, there never exists more than one ’stable’, ’square’ set of activities, whatever may
the rate of profits, the rate of growth, and final demand. Second, given the rate of
profits, the unique technique (if it exists) does not depend upon the rate of growth or
final demand. Attempts have been made to widen the scope of the non-substitution
theorem, and to extend it for instance to production by means of fixed capital (cf.
Stiglitz, 1970; Salvadori, 1988). Nevertheless, it is now well-established that the non-
substitution theorem does not hold for joint production economies, or for economies
which use several primary factors. As a matter of fact, given the rate of profits, the stable
technique may in these economies be different for different rates of growth or different
vectors of final demand. In other words, the stable technique is demand-dependent. This
is of course hardly a surprising result. A far more curious phenomenon, however, is that
given the rate of profits, the rate of growth and final demand, there may be more than
one stable square set of activities.

The purpose of the paper is to examine this last uniqueness question assuming
demand to be of a 'rigid’ type, i.e. composed of an investment component characterized
by a uniform rate of growth for all methods of production, and a consumption
component characterized by fixed proportions of final demand. The main advantage of
working with these rigid demand regimes is that they allow us to concentrate on ’square’
techniques. The theoretical framework used will be of Sraffian inspiration (cf. Sraffa,

1960), in particular the one that emerges from the works of Bidard (1984, 1990, 1991),
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Salvadori (1982, 1984), Salvadori & Steedman (1988), Schefold (1978, 1988, 1989) and

Steedman (1976). In this literature, relatively few general results with regard to
uniqueness have been obtained; it seems that only in the golden rule case, where the rate
of profits equals the rate of growth, and in the case of "soft technologies" (cf. Bidard,
1990, pp. 850-852 for more details) uniqueness has been proved L I shall demonstrate
a theorem which gives, for economies possessing certain properties, necessary and
sufficient conditions for uniqueness to be guaranteed.

Tﬁe paper is organised as follows. First I assume there is only one non-produced
resource. In §§ 2-7 I enounce the criteria which determine the choice of techniques 2
and I define cost-minimizing techniques. In §§ 8-13, the uniqueness theorem is prepared,
stated and proved. In § 14 I indicate how the framework can be adapted to deal with

certain types of natural resources. 3

§ 2. Methods of production and disposal

As mentioned, I shall start to study economies which do not use natural resources. In this

kind of economies, labour (supposed abundantly available and of homogeneous quality)

! The uniqueness result of Schefold (1988, pp. 102-109) seems to be based on a
definition which rules out non-uniqueness; therefore, I do not take into consideration
here.

? The criteria presented here are not the only ones which can be imagined;
Hinrichsen & Krause (1978, 1981), for example, use another set of criteria, centred
around the notion of labour-minimization.

? With regard to mathematical notation, I shall use the following convention. If
x = [x;]andy = [y, ] are vectors, x Symeansx, <y, VixXx<ymeansx Syandx = y.
A prime ’ denotes transposition. Vectors and matrices completely composed of zeroes
are represented by 0, the unit matrix by I.
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and produced commodities can be used either for the production or for the disposal of
commodities. Each activity (or method, or process) i will be described by a non-negative
[1xk] vector of commodity inputs A; = [ a;;, a;,, ..., 8, ], 4 non-negative scalar labour
input 1, and a [1xk] vector of commodity outputs B, = [ b,;, by, ..., by 1, where k is the
number of commodities which can be produced by the economy. Activity i produces
commodity j if its output of j is positive (b; > 0); it disposes of commodity j if its output
of j is negative (b; < 0). * A method that eliminates a commodity without using inputs
will be called a free disposal method. (By assumption, free production methods cannot
exist.) For each method constant returns to scale prevail. The number of available
processes, A, is finite and at least equal to the number of commodities, & (0 < & < k).
The inputs of all available processes together are described by a [hxk] matrix of
commodity inputs A = [ A, ], a [Ax1] vector of labour inputs 1 = [ |, ], and a [Axk] matrix
of commodity outputs B = [ B; ]. The activity levels of the A processes will be given by

the [Ax1] activity vector x = [ x; ].

§ 3. Extra-profits and extra-costs

Let the [kx1] vector p = [ p; ] represent the pricés of the k commodities, the scalar w the
wage earned by labourers, and the scalar r the rate of profits. If the difference between
the value of the outputs of activity i (= B,p) and the costs to be paid for the inputs, i.e.
the sum of replacement costs, wages and profits (= Ap + Lw + rAp), is positive, activity

i pays extra-profits. If, on the contrary, this difference is negative, activity 7 requires extra-

41 assume that it is for each activity clear which amount of a commodity should be
classified as an input (always a non-negative quantity) and which as output (eventually
a negative quantity). Inputs are typically means (of production), outputs results.
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costs. If there is no difference, the activity breaks even. The Sraffian theory of production
prices is build upon the assumption that all processes which are in operation (x; > 0)
break even. For reasons of stability, it is furthermore required that all processes which
are not in operation (x;, = 0} do not pay extra-profits. Putting C(r) = B-(1+r)A, we must

therefore have :

Cop-lw=0 (1)

xX[Cop-lw] =0 )

§ 4. Supply and demand

In a general equilibrium framework it would be natural to assume demand to be
dependent upon prices, wages, profits and activity levels. As is often done in Sraffian and
von Neumann-like models, however, I shall in this paper adopt the restrictive assumption
that demand is price-independent. Demand will be composed of the following elements :
replacement of the means of production (= x’A), expansion at the uniform rate of growth
g (= gx’A), and consumption according to a fixed final demand vector (= d’), with g a
non-negative scalar and d a semi-positive [kx1] vector of commodities. > Supply is of
course the total (gross) output of the economy (= x’B). As far as quantities are

concerned, equilibrium will be reached if supply equals demand, i.e. in formal terms :

XB=xA+gxA+d (3)

5 Cf. Schefold (1988, p. 97-99) for an attempt to justify this assumption.



or, using the shorthand C(g) = B-(1+g)A :

xXCe) = d (4)

The main advantage of the rigid demand assumption is that it reduces the number of sets
of activities which could be selected by the criteria determining the choice of techniques.
More precisely only sets of activities equal in number to the number of commodities, i.e.
'square’ sets, can be chosen. The reason is that for a given rate of growth and a given
vector of demand, normally (except by fluke) exactly k methods have to be activated in

order to satisfy the system of k equations (4).

§ 5. Techniques

Furthermore, it should be clear that a demand vector chosen at random can normally
only be satisfied by a square set of independent methods. In mathematical terms this
independence means that the matrix composed of the rows C(g) = B-(1+g)A,
corresponding to the methods i of a square set must have full rank. Square sets of
independent methods of which at least one requires a positive labour input, will be called
techniques. © Let Y be a set of k methods, and define Cy(g) as the [kxk] matrix formed
by the rows C;(g) corresponding to the k methods which belong to Y, and 1, and Xy the
[kx1] vectors formed respectively by the scalars |, and x; for the same set of methods. We

then have the following definition :

¢ With regard to economies in which each commodity can be freely and separately
disposed of, the labour input condition prevents that the set composed of the k free
disposal methods would be a technique.



Definition 1 :

A square set of methods Y is a technigue if det C,(g) » 0 and I, » 0.

Given the rate of growth, the set of all demand vectors (not necessarily semi-positive)

which a technique can satisfy will be called its domain :

Definition 2 :
The domain of technique Y, noted Q(Y), is the set of all demand vectors which
the methods of Y can satisfy at the given rate of growth, i.e. :

QF) ={deR | 3Ix,20:xCyp) = &}

The dimension of the domain Q(Y) is equal to the dimension of the matrix Cy(g). Since
it is my purpose to examine general situations, I shall assume that the rate of growth g
is such that for all techniques ¥ matrix Cy(g) has full rank. In other words, I assume that
det Cy(g) * 0, if Y is a technique (this condition can always be assured by a slight move
of g).

As is traditional in Sraffian models, I shall treat the rate of profits as an
exogenous variable. Since by assumption all active methods must break even, each
technique normally fully determines the prices and the wage. More precisely, the k
equations stating that the methods of Y break even together with a numéraire equation

in general suffice to determine the k prices p and the wage w :

Cyp -lyw = 0 (%)



np =1 (6)

where n is a (semi-positive) [kx1] numéraire vector. ’ Problems could occur for the
values of r for which det Cy(r) = 0. Suppose R is a root of det Cy(r) = 0. 1n three cases,
multiple solutions will be obtained : (i) if the rank of the matrix Cy(R) is smaller than
k-1; (ii) if the labour vector 1, is not independent of the matrix Cy(R); and (iii) if the
numéraire vector n is not independent of the matrix C(R). I shall assume that these

*pathological’ cases do not occur. I therefore impose the following regularity condition ® :

Regularity condition 1

Suppose Y is a technique. Then :

(i) all non-negative real roots of det Cy(r) = 0 are simple;

(ii) if R is a non-negative real root of det C{r) = 0 and x and p are vectors

for which X’Cw(R) = 0’ and C«(R)p = 0, we have X'l # 0 and n’p » 0.

This condition ensures that all prices and the wage are uniquely defined even if the rate
of profits happens to be a root of the equation det Cy(r) = 0; in particular, the wage will
be zero for such values of the rate of profits. Moreover, it ensures that the polynomial
det Cy(r) changes sign as r rises and passes such a root. For a given numéraire, the

unique solutions of equations (5)-(6) will be denoted as p(Y,r) and w(¥,n.

7 It may happen that the sign of all prices and the wage changes for different semi-
positive numéraire vectors. To this problem I return in the next section.

8 Cf. Schefold’s assumption of a "regular economy" (Schefold, 1978, p. 267).



§ 6. Non-negative prices

Once the question of the determination of prices and wage has been settled, one thing
remains to be clarified : whereas it is natural to require that the wage should be non-
negative (who would be prepared to pay to have to work ?), should prices also be non-
negative ? ° I think a distinction has to be made between commodities which can be
overproduced, and commodities which cannot. Given a technique Y, I shall say that
commodity j can be overproduced if there exists a process i € Y that disposes of
commodity j, i.e. if by < 0. I propose to adopt the following rule : commodities which
cannot be overproduced should have non-negative prices, but commodities which can be
overproduced may have negative prices. The reason to allow a potentially overproduced
commodity to have a negative price is simple : if it is costly to eliminate a good (e.g.
dangerous waste-material) and people do not want to consume this good, then it is only
natural that a price has to be paid to have it removed. In formal terms, let P(Y) be the
set of commodities which cannot be overproduced given that only the methods of ¥ can

be activated :

PY)={j{VieY:b;20} (7)

I require that the prices determined by technique Y are such that Vj € P(Y) : p,(¥,r) 2 0.

A ’freak’ case which I want to exclude is the one where the wage and a
commodity’s price are simultaneously zero. More precisely I want this to be true with
respect to commodities which cannot be overproduced. I therefore impose a second

regularity condition :

% Cf. Franke (1986, pp. 303-305) for a discussion of this problem.



Regularity condition 2

If the rate of profits t is such that w(v,r) = 0, then Vj € P(Y) : pj(¥;r) » 0.

§ 7. Cost-minimizing techniques

We have now introduced all the criteria upon which the choice of techniques is based :
all active processes break even; no known process pays extra-profits; demand is satisfied;
the wage is non-negative; and commodities which cannot be overproduced do not have
negative prices. Techniques which satisfy these criteria will be called cost-minimizing (or
dominant). Two different notions will be distingnished, according to whether the final

demand vector is known or not :

Definition 3
Given the rates of profits and growth, technique Y is cost-minimizing with respect
to demand vector d if there exists a semi-positive numéraire vector r, an activity
vector Xy, a price vector p(¥,r) and a wage w(¥,r) such that :

xyCyig) = &

Cy(op(y) - lyw(¥r) = 0

Cmpr) - lw(yr) <0

n’p(yy) =1

Vj € P(Y) i p¥n) 2 0

w(Y,r) 2 0.

Xy 2 0.
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In what follows, final demand will usually not be specified. Even then, however, it makes

sense to speak of cost-minimizing techniques. I shall use the following definition :

Definition 4
Given the rates of profits and growth, technique Y is a cost-minimizing technique

if it is cost-minimizing with respect to some semi-positive demand vector d.

§ 8. Neighbours and rivals

The central idea of the paper is to tackle the problem of uniqueness in terms of
relationships between neighbouring techniques. What are neighbouring techniques ? In
the present circumstances it would suffice to say they are techniques which have k-1
methods in common. In view of the inclusion of natural resources, however, I prefer to
give a definition which refers to the notion of domain of a technique. I recall that the
domain of a technique is the set of all net output vectors which a technique can satisfy,
given the rate of growth. Mathematically, the domain of a technique is a convex
polyhedral cone, the intersection of & half-spaces bounded by the hyperplanes H(Y,i),

ieY:

HYi)={deR|Ix,:x/Cpl@ = &, x, =0} (8)

The faces of the domain of a technique are the parts of these hyperplanes which

effectively belong to the domain. Formally, the face F(Y,i) of the domain of technique

Y associated to methodi € Y is equal to :
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FYi) ={deR}|Ix,20:x/Cg =, x =0} 9)

This enables us to give the following definition of neighbouring techniques :

Definition 5

Techniques are neighbours if their domains have one face in common.

Next we may wonder whether two neighbouring techniques have more than just a face
in common. For this purpose I define the inferior domain of a technique, noted Q(Y)",

as the domain less its faces, i.e. :

O)' = {deR|3x,>0:xCie) = d" } (10)

If two neighbouring techniques Y and Z have parts of their interior domains in common,

which means Q(Y)" n Q(Z)" # e, then I propose to call them rivalling techniques :

Definition 6

Two neighbouring techniques are rivals if their interior domains overlap.

Overlapping of interior domains can only occur if both domains are on the same ’side’
of the face they have in common (fig. 1).

[ INSERT FIGURE 1 HERE ]

In mathematical terms this property can be expressed as follows :
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Lemma 1
Two mneighbouring techniques Y and Z, with Y= {{} u[¥YnZ] and
Z = {j} v[Y n Z], are rivals if and only if Ci(g)v(¥,2)/Ci(g)¥(¥,Z) > 0, where the

[kx1] vector v(Y,Z) is such that C, ,(gv(v;Z) = 0.
Proof.
Since Cy(g) and C,(g) have by assumption full rank, the homogeneous system of k-1
equations Cy,z(g)v = 0 has, up to a factor of indifference, only one solution, v(Y,Z) say.

The face in common between the two neighbours, i.e. F(Y,i) = F(Z,j), can also be

defined as :

F(Yi) = F(Zj) = {d € R* | 3 Xy,7 2 0: Xy Cyzle) = &' } (11)

Given that Cy,,(g)v(¥,Z) = 0, it follows quite easily that this face is part of the hyperplane

H(Y,Z) :

HYZ) ={deR | dvyz) =0) (12)

Let d be a net output vector which is part of the interior domain of Y. This means there

exists a vector Xy,; > 0 and a scalar x; > 0 such that :

Xrnz Cynz(®) + XCi(p) = @ (13)

Post-multiplication by v(¥,Z) leads to :
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xCiev(%,2) = dv(v,2) (14)

Since d’v(¥;Z) # 0, we must have either C,(g)v(¥,Z) > 0 or Cy(g)v(¥,2) < 0. In the first case,
we will say that the domain of technique Y lies "above’ the hyperplane H(Y,Z), and in
the second case, that it lies 'underneath’ it. By a similar reasoning we find that the
domain of technique Z lies *above’ the hyperplane H(Y,Z) if C(gv(¥,z) > 0, and that it
lies 'underneath’ it if Ci0)v(y;2) < 0. The domains of two neighbouring techniques
overlap if and only if they are on the same side of the face or hyperplane H(Y,Z) in
common, This leads to the conclusion that the neighbours Y and Z are rivals if and only

if Ci(p)v(1.2)/C()v(¥,2) > 0. m

§ 9. Well-conditioned and connected economies

The next step in the argument consists of linking the notion of uniqueness to that of
rivalry. A few assumptions are necessary to do this. After a formal enunciation of these
assumptions, I interpret them in the light of the problem we are dealing with.

Let D be a non-empty set of techniques. I define the following two properties :

Definition 7

Given the rate of growth, set D will be called well-conditioned if the following two
| conditions are satisfied :

(i) if there exist techniques Y € D and Z € D which are rivals, then there exist
techniques 7, € D and T, € D and a semi-positive vector d such that d € Q(T;)"

and d € Q(T,)";
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(ii) if there exist techniques Y ¢ D and Z € D such that Q(Y)" n Q(Z)" # o, then

there exist techniques 7, € D and T, € D which are rivals.

(Notice that in this definition we may have Y = T, and/or Z = T.)

Definition 8

Given the rate of growth, set D will be called connected if for any pair of
techniques Y ¢ D and Z € D (Y = Z), either Y is a neighbour of Z, or there exists
a chain of techniques T, € D, T}, € D, ..., T, € D such that Y is a neighbour of T},

T, is a neighbour of T, ..., and 7} is a neighbour of Z.

Let us now define the set D(gr) as the set of all cost-minimizing techniques, given the
rate of growth g and the rate of profit 1. For the theorems that follow, I shall assume
either that D(gr) is well-conditioned, or that D(gr) is well-conditioned and connected.
(I shall also use the equivalent expressions that the economy is well-conditioned, or well-
conditioned and connected.)

It may be useful to explain these notions in a less formal way. A well-conditioned
economy possesses the following two essential properties :
1) If there is rivalry among cost-minimizing techniques (i.e. if there exists at least one
couple of rivalling cost-minimizing techniques), at least one semi-positive final demand
vector belongs to the interior domain of more than one cost-minimizing technique. This
assumption excludes that rivalling cost-minimizing techniques have interior domains
which overlap only outside the non-negative orthant. A numerical example may clarify
this problem. Suppose we have 4 processes to produce 3 commodities, and suppose the

rate of growth is such that C,(g) = [-1,-2,2),Cye) = [-2,-1,2], Cs(e) =[5, 1, 1],
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Cig)=[1,5 1] If Y={1,23} and Z = {1,24} were the only cost-minimizing
techniques, the condition would not be verified. It is clear that Y and Z are neighbours;
they are also rivals, because for the vector v(¥,2)) =[2,2,3] we find that
Ci@v(¥,2)/Cygv(¥;2) = 1 > 0.(E.g.thevectord’ = [ -¥, -¥4, 1 ]belongs to bothinterior
domains.) But there exists no semi-positive d which can be produced by both Y and Z.
2) If the interior domains of two cost-minimizing techniques overlap, there is rivalry
among cost-minimizing techniques. The purpose of this condition is to exclude cases
where overlapping of interior domains of cost-minimizing techniques occurs without
rivalry. Again a numerical example may be useful. ° Suppose there exist 4 processes
to produce 2 commodities, with A, = [ 1,2], A, =[2,1),A;,=[0,0),A,=[0,0],
B, =[57],B,=0[792],B,=[-1,0],B,=[0,-1}, 1, =01, =11, =1, = 0. For
r =3 and g = 0, we find that the only cost-minimizing techniques are Y = {1,4} and
Z = {2,3}. Although their interior domains overlap (e.g. 4’ = [ 1, 1 ] can be produced
by both), they are not rival, since they are not even neighbours.

The notion of a connected economy, on the other hand, implies the fundamental
property that in the set of cost-minimizing techniques, each cost-minimizing technique is
directly or indirectly neighbour of every other cost-minimizing technique. The numerical
example which we have just considered is an example of an economy which is not
connected for the rate of growth g = 0 and the rate of profits r = 3. It must of course
be kept in mind that the properties of well-conditionedness and connectedness are "local’
properties : an economy may be well-conditioned and/or connected for some sets of

values of (r, g) but not for others.

10 This is a modified version of an example given by Franke (1936, pp. 306-307).
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§ 10. Uniqueness and rivalry

My purpose is to find necessary and sufficient conditions for uniqueness of cost-
minimizing techniques to be guaranteed. I shall say uniqueness of cost-minimizing
techniques is guaranteed if, exception made for the final demand vectors located on the
boundaries between domains of neighbouring cost-minimizing techniques, no final
demand vector can be satisfied by more than one cost-minimizing technique. In other
words : if there do not exist cost-minimizing techniques Y and Z and a semi-positive
vector d such that d belongs to the interior domains of both Y and Z. ' 1t is now easy

“to proof the following theorem :

THEOREM 1
In a well-conditioned economy the uniqueness of cost-minimizing techniques is
guaranteed if and only if there is absence of rivalry among the cost-minimizing

techniques.

Proof.

If the uniqueness of cost-minimizing techniques is guaranteed, there cannot be found two
cost-minimizing techniques which are rivals, otherwise the set D(gr) could not possess
property (i} of Definition 7. Alternatively, if there is no rivalry between the cost-

minimizing techniques, there cannot be found two cost-minimizing techniques which have

' As “points of substitution’ between neighbouring techniques, the final demand
vectors situated on the boundaries (i.e. the faces) of the domains represent exceptional
cases. There is little harm in ignoring them; the set of all final demand vectors located
on the boundaries is negligible in comparison to the set of all final demand vectors which
can be satisfied by the cost-minimizing techniques. For a numerical example of such
’points of substitution’, cf. Salvadori (1988, pp. 12-13, Example 3).
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overlapping interior domains, otherwise D{gr) could not possess property (ii) of

Definition 7. Hence uniqueness is guaranteed. [

§ 11. Colour of a technique

A new concept will allow us to derive a sharper result. This new concept is what I call

the ’colour’ of a technique :

Definition 9
Given the rates of profits and growth, technique Y is called whife if one of the
following conditions is satisfied :
(i) det Cy{r) / det C(g) > O
(ii)  det Cyr) = 0and there exists an arbitrarily small scalar € such that
the sign of det Cyr+e) / det C{g) is equal to the sign
w(¥;r+e) / p(Yir+e) for all j e P(Y).

If none of these conditions is verified, technique Y is called black.

A few words may be in place to explain condition (ii). Its sole purpose is to determine
the colour of a technique in case the wage is zero. We shall need it in the following
situation. Suppose R > 0 is a root of the equation det Cy(r) = 0. Suppose that for the
rate of growth g = G and a rate of profits r € ] R, R’ [, where R < R’, technique Y is
cost-minimizing and det Cy{r) does not change sign. Then condition (ii) ensures that,
given the rate of growth g = G, technique Y has the same colour for all rates of profits

r € [ R, R’ [; in addition, it will be cost-minimizing for g = G and r = R. (A similar
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reasoning would be valid if R’ < R instead of R < R’.)

Manifestly, the colour of a technique depends upon the rates of profits and
growth. In the case of several non-negative roots of the equation det Cy(r) = 0, the map
of the values of r and g for which a technique is black or white resembles a deformed
chequerboard (fig. 2).

[ INSERT FIGURE 2 HERE ]

§ 12. The main theorem

We are now in a position to state and demonstrate the main result of the paper.

THEOREM 2
In a well-conditioned and connected economy the uniqueness of cost-minimizing
techniques is guaranteed (flukes apart) if and only if all cost-minimizing

techniques have the same colour.

Proof.

I) The ’flukes’ of the theorem are the finite number of cases where the rate of profits
is such that there is ’switching’ (or indifference) between cost-minimizing techniques.
Rates of profits for which there is switching are those for which two neighbouring cost-
minimizing techniques pay the same wage (measured in a common numéraire). Without
loss of generality, I therefore assume that any two neighbouring cost-minimizing
techniques pay a different wage.

II) According to theorem 1, we have to proof that there is absence of rivalry among
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cost-minimizing techniques. To do this, I will concentrate on an arbitrary couple of
neighbouring cost-minimizing techniques Y and Z, and determine under what conditions
they are rivals. [ take YnZ =M, Y = {i} uM, and Z = {j} u M. By assumption
w(Y,r) * w(Z;); I assume that 0 € w(¥r) < w(Z,r). © Since Y'is cost-minimizing, we know
that s(¥;r) = Cp(:n) - hw(xr) < 0; likewise, we have s,(Z,r) = C(Op(Zr) - Lw(Zr) < 0.

Define e(¥,zr) as follows :
e(¥.zr) = S(ZIWEr)/5,(Y,0W(Z,r) (15)
It is clear that w(Y,r) > 0 = e(¥;Zr) > 0 and w(¥;r) = 0 = e(¥,Zr) = 0.

III) By assumption Y and Z are neighbours; we have seen earlier that they would be

rivals if and only if :

Ci@v(,2)/Ciegvxz) > 0 (16)
Let us for a moment assume that the rate of profits is equal to the rate of growth

(r = g). Prices and wage associated to technique Y and Z would then be determined by

the following equations (jointly with the numéraire equation) :

Cygp(Yg) - lyw(¥g) = 0 17

CzepZg) - 1;w(Zg =0 (18)

12 Throughout this proof I assume that only one numériare n is used, and that it is
such that p(¥,») 2 0, Vf € P(Y) and pgzr) 2 0, V f € P(Z).
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Let us concentrate on the k-7 methods which Y and Z have in common, and which are

grouped in the set M. It is not difficult to check that :

Cu(® [ WZRP(e) - W¥.0PZe) ] = 0 (19)

The vector [ w(Z,0p(Y.e) - W(¥,g)P(Z,g) ] is therefore proportional to the vector v(¥,z)
which I have used to determine whether Y and Z are rivals. It is also easy to deduce

that :
Cie) [ wZgp(Y8) - W¥g)P(Z,) ] = - W(Y.g)5i(Z.2) (20)
C@® [ wzepe) - wTePZe) ] = W(Ze)s(Ye) (21)
Knowing that e(¥,Zg) = s(ZgW(¥,g)/s{(Y.eW(Zg), we conclude that there is rivalry
between Y and Z if and only if e(Y;Zg) < 0.
IV) We should therefore know how the sign of e(Y,Zr) behaves as r changes. Let us try
to express e(Y,Zr) in a more transparant way.

- The prices p(Y,r) and the wage w(Yr) associated to technique Y are determined by

the following k+1 equations :
Cy(mpr) - lyw(@r) = 0 (22)

n'p(y,s) = 1 (23)
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Let us again concentrate on the k-1 methods which Y and Z have in common, and let

us define :
F(r) = " - | (24
0=t . - © 8= 1, )
On the basis of (22} and (23) we can deduce that :
F(r)p(yy) - gw(vyr) = I! (25)
where (I'Y =[ 1,0, 0, ..., 0 . It easily follows that we have :
P(Yr) = [FoI'gwn) + [FOI'T (26)
Since sy (Yyr) = C(pYr) - Lw(v,r) = 0, we finally arrive at :
Co[Fm'T
W) = (27)
I - GOIFe)"e
By analogy we obtain :
pn) = [FoI'gwzs + [FoI'T (28)
CoFmI'T
w(Zr = (29)

L - CIFm)'g

Given that s,(Z,r) = C(n)p(Z,r) - Lw(Z,r) and 5{%r) = Cp(y) - Lw(Yr), we then have :
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sZn) = { I, - COIFOI'g } [ w¥yr) - w(Z) ]

svn) = - { ] - GOF®I'g } [ w¥in) - wzn) ]

As w(Y,r) » w(Z,r), this means that :

S{Z1) 1, - C[Fm]'e

5;(Y,0) L - CGOIFDI'e
and so we find that :

C(n[Fm]'T

eV,Zr) = -
Cm[FmI'T

This allows us to conclude that :

e(Y,Zr) CFOI'T/CEFEIT

e(Y.Zg) C;o[F0]'TI/C@[F@]'T

(30)

(31)

(32)

(33)

(34)

V) We have seen that e(v,zr) is either positive or zero. Let us begin by assuming that

e(Y,Zr) is positive.

The sign of e(Y;z,g) - either positive or negative - will be equal to the sign of the

right-hand side of expression (34). From (27) it follows that :

wn =0 = COFOI'T =0

(35)

Since w(Y,r) « det Cy(r) = 0, this means that the polynomial Cyr)[F(r)]"'I' changes sign
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whenever det C\(r) changes sign, and therefore that the sign of the numerator of the
right-hand side of (34) is equal to the sign of [ det Cy{(r) / det Cy(g) ]. By analogy we find
that the sign of the denominator is equal to the sign of [ det C,(r) / det Cx(g) ]. We can
therefore conclude that the sign of e(¥,zg) is positive if and only if Y and Z have the
same colour (either both black or both white). The sign of e(Y,2,g) is negative if and only
if they have a different colour (either Y black and Z white, or ¥ white and Z black).

VI) Next let us examine the special case e(¥,Zr) = 0. The appropriate way to do this is
to observe the system for a value of the rate of profits r+ € close to r, keeping the rate
of growth fixed at g. Let € be such that w(Y,r+¢) > 0; since Y is by assumption cost-
minimizing for the rate of profits r, this choice of € ensures that w(Y,r+e)/p(Y,r+¢) > 0,
Vfe P(Y).™ In addition, let e (positive or negative) be small enough to have
w(Y,r+e) < w(Zr+e¢) and [ det C,(r+¢) / det C,(r) ] > 0. So doing, we know on the basis
of (15) that the sign of e(Y;Z,r+¢) is equal to the sign of w(Y;r+¢), that is : positive. Two
cases must now be distinguished. First suppose that for the rate of profits r, technique
Y is white. According to definition 9, this means that [ det Cy(r+¢) / det Cy(g) ] and
w(¥r+e)/pYr+e), V f € P(Y), have the same sign. Given our choice of €, this implies
that [ det Ci{(r+¢) / det Cy(g) ] is positive. Hence, the sign of e(¥;Z,r+¢)/e(Y,Zg) is equal
to the sign of [ det Cx(r+¢) / det C(g) ]. It follows that the sign of e(Y,Zg) is positive if
Z is white, and negative if Z is black. In the second place, suppose that for the rate of
profits r, technique Y is black. Then [ det Cy(r+¢) / det Cy(g) ] and w(Yr+e)/p(Y.r+e),
V f € P(Y), have opposite sign, and therefore the sign of e(¥,Zr+¢)/e(Y;Zg) is opposite

to the sign of [ det C,(r+¢) / det C,(g) ]. Now the conclusion is that the sign of e(Y;Zg)

3 Regularity condition 2 guarantees that p{Y;r) > 0, V f € P(Y); by continuity, this
property remains valid for rates of profits close to 1.
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is positive if Z is black, and negative if Z is white.

VII) In each case, it turns out that there is rivalry between neighbouring techniques (i.e.
e(¥,zg) < 0)if and only if the techniques in question are not of the same colour. Since
we assume that the economy is connected, this means that there is absence of rivalry

among cost-minimizing techniques if and only if they are all of the same colour. |

§ 13. The golden rule regime

In the literature on choice of techniques, special attention has often been given to the
case where the rate of growth equals the rate of profits (g = r), which reflects the
situation where labourers do not save and capitalists do not consume (cf. Abraham-Frois
& Berrebi, 1987, pp. 268-278; Bidard, 1986; 1990, pp. 844-845; Salvadori, 1982, p. 286;
Schefold, 1978; Steedman, 1976). One of the conclusions of this research is that the
golden rule regime has a lot in common with single-product systems; in particular,
uniqueness always seems to be guaranteed. Theorem 2 allows us to draw a similar
conclusion. Observing that for g = r all cost-minimizing techniques are white, we

immediately obtain the following result :

THEOREM 3
Under golden rule conditions, if the economy is well-conditioned and connected,

the uniqueness of cost-minimizing techniques is (flukes apart) guaranteed.
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§ 14. Natural resources

Finally and as promised, I shall indicate how the previous results can be extended to
economies which use natural resources. To keep things simple, I shall confine myself to
resources which are available in fixed supply and ’indestructible’, i.e. do not undergo
qualitative change irrespective of whether they are used for production or disposal, or
left unused ™. I assume there are m (m > 0) such natural resources. Let the positive
scalar t; represent the fixed supply of resource j (j=1,2,...,m), and let the [mx1} vector
t = [t ] be the vector representing the supplies of all m natural resources. The
description of the methods of production and disposal will now include a component
which specifies how much each of them uses of the m natural resources. Let T; = [ t; ]
be the [1xm] vector of natural resource inputs of method i; method i can then be
schematically described as (A;, T, L) - B

The usual assumption with regard to natural resources (and this distinguishes
them from the other primary factor of the model, labour) is that a positive rent can be
paid for their use only if they are scarce. In other words, if part of the available supply
of resource j is lying ’fallow’, i.e. is not being used for the production or disposal of
commodities, the rent z; to be paid for their use will be zero. In addition, all rents should
be non-negative.

These two requirements allow us to express the fact that a portion of the available
supply of a resource is idie as if a fictituous process were used at a positive level. The
process in question has only one positive input (one unit of a resource) and no outputs.

It simply describes what happens if a unit of a resource is not used for the production

14 Natural resources of this type prevent the economy from growing steadily at a
positive balanced growth rate. It therefore seems necessary to assume a zero growth rate

(g =0).
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or the disposal of commodities. There will be m such fictituous processes; let the process
corresponding to the idleness of resource j be represented as the (A +))-th process. With

respect to resource 1, for instance, we then have :
Apy1 =0, Tpyy=[10.,0] l;;,; =0 By =0 (36)

The economy is now composed of i +m processes; accordingly, the information relevant
to the m fictituous processes will be included in the matrices A, B and T, and the vectors
l and x.

Let us briefly consider how the natural resources and the fictituous processes
enter into the price and quantity systems. The price equations (1)-(2) must now be

written as follows :
Cop-Tz-lws<0 37)
X[CEp-Tz-lw] =0 (38)

where z = [ z ] is the [mx1] vector of rents. Notice that the m last equations of (37)
express that rents must be non-negative. With regard to the quantity equations, we now
have to look for activity vectors x which satisfy demand and use up exactly the available
supplies of the natural resources (‘exactly’ because of the inclusion of the m idleness

processes). We must therefore replace (3) by :

xXC = d (39)
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xT = ¢ (40)

It is easy to see that techniques must now be composed of (k+m) processes instead of
k processes; if not, equations (39)-(40) could only be verified by fluke. A ’square’
technique is in the present circumstances a technique composed of processes equal in
number to the sum of the number of commodities and the number of natural resources
(cf. Sraffa, 1960, p. 78).

For economies using indestructible, fixed supply natural resources the definition

of a cost-minimizing technique then becomes :

Definition 10
Given the available amounts of the natural resources t as well as the rates of
profits and growth, technique Y is cost-minimizing with respect to demand vector
d if there exists a semi-positive numéraire vector n, an activity vector Xy, a price
vector p(¥;r), a rent vector z(Y;r) and a wage w(Y,r) such that :

xyCy(g) = @’

Xy Ty = ¢

Cymp¥r) - Tyz(vr) - lyw(vyr) = 0

Cop@ir) - Tz(vyr) - w(rr) £ 0

n'p(¥y) = 1

Vj e P(Y):p¥n) 2 0

w(¥r) 20

xy 2 0.
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The question is : do these manipulations permit the extension of the analysis of §§ 2-13
to economies with natural resources ? The answer is yes, provided we replace in the
appropriate places the matrix C()) and the vectors d, p and n respectively by C(), d, p
and i, defined as follows: C()=[C() -T], d=[d -], F=[p 2] and

= 2

=[n

b

0’ ]. © For instance, the domain of a technique Q(¥) must now be defined

as |
O) = {de B [3x,20:x7Cy = & } (41)

In essence, this is all that is required to incorporate natural resources.

The existence and uniqueness of cost-minimizing techniques in economies with
natural resources have been studied by Bidard (1987), D’Agata (1983, 1984), Salvadori
(1986, 1987), Saucier (1981, 1984), and others. It has been pointed out that in these
economies the uniqueness of cost-minimizing techniques is not even guaranteed in the
special case where all available methods of production are single-product processes (cf.
D’Agata, 1983, 1984). For uniqueness to be guaranteed in that case three additional
assumptions seem to be required : (i) natural resources enter into the production
equations of only one of the k commodities (typically corn); (ii) each process which
produces that commodity uses only one natural resource; and (iii) each natural resource
is used by only one production process. It should by now be clear - and I think the
integration of natural resources suggested above confirms this - that even a very

’moderate’ presence of natural resources makes economies behave as if they were joint

B Likewise, vector v(¥,Z) of Lemma 1 must be replaced by the [(k+m)x1] vector
V(Y,Z) which satisfies Cy,,(g)¥(v;2) = 0.
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production economies.

§ 15. Concluding remarks

The uniqueness result obtained in this paper, dealing with the theory of choice of
techniques from a Sraffian perspective and assuming demand to be price-independent,
can be summarized as follows : in a well-conditioned and connected economy, the
uniqueness of cost-minimizing techniques is guaranteed if and only if all cost-minimizing
techniques are of the same colour. This result remains valid for economies using
indestructible, fixed-supply natural resources. Both the colour of 2 technique and the
properties of well-conditionedness and connectedness depend upon the rates of profits
and growth, The colour of a technique can be determined quite easily : all that is
required is a description of the processes which make up the technique. It is far more
difficult to ascertain whether an economy is well-conditioned or connected, since
information is needed about alf cost-minimizing techniques. To enhance the usefulness
of the uniqueness theorem, further research should therefore try to clarify under which

conditions an economy possesses these properties.



30
REFERENCES

ABRAHAM-FROIS, G. & E. BERREBI (1987), Prix, Profits, et Rythmes d’Accumulation,

Paris, Economica.

BIDARD, Ch. (1984), "Choix techniques en production jointe", in : Ch, BIDARD (Ed.),
La Production Jointe. Nouveaux Débats, Paris, Economica, pp. 186-207.

BIDARD, Ch. (1986), "Is Von Neumann square ?", Zeitschrift fiir Nationalokonomie, vol,
46(4), pp. 407-419.

BIDARD, Ch. (1987), "Il n’y a plus de rente", in : Ch. BIDARD (Ed.), La Rente.
Actualité de I'Approche Classique, Paris, Economica, pp. 187-207.

BIDARD, Ch. (1990}, "An algorithmic theory of the choice of techniques", Econometrica,
vol. 58(4), pp. 839-859.

BIDARD, Ch. (1991), Prix, Reproduction, Rareté, Paris, Dunod.

D’AGATA, A. (1983), "The existence and unicity of cost-minimizing systems in intensive
rent theory", Metroeconomica, vol. 35(1), pp. 147-158.

D’AGATA, A. (1984), "Molteplicita di merci agricole e rendita differenziale estensiva”,
Richerche Economiche, vol. 38(1), pp. 78-94.

FRANKE, R. (1986), "Some problems concerning the notion of cost-minimizing systems
in the framework of joint production", The Manchester School, vol. 54(3), pp. 298-307.

HINRICHSEN, D. & U. KRAUSE (1978), "Choice of techniques in joint production
models”, Operations Research Verfahren, vol. 34, pp. 155-171.



31

HINRICHSEN, D. & U. KRAUSE (1981), "A substitution theorem for joint production
models with disposal processes’, Operations Research Verfahren, vol. 41, pp. 287-291.

SALVADORI, N. (1982), "Existence of cost-minimizing systems within the Sraffa
framework", Zeitschrift fiir Nationalokonomie, vol. 42(3), pp. 281-298.

SALVADORYI, N. (1984), "Le choix de techniques chez Sraffa : le cas de la production
jointe", in: Ch. BIDARD (Ed.), La Production Jointe. Nouveaux Débats, Paris,
Economica, pp. 175-185.

SALVADORI N. (1986), "Land and choice of techniques within the Sraffa framework",
Australian Economic Papers, vol. 25(46), pp. 94-105.

SALVADORYI, N. (1987), "Les ressources naturelles rares dans la théorie de Sraffa”, in :
Ch. BIDARD (Ed.), La Rente. Actualité de I’Approche Classique, Paris, Economica, PP-
161-176.

SALVADORI, N. (1988), "Fixed capital within the Sraffa framework", Zeitschrift fir
Nationalbkonomie, vol. 48(1), pp. 1-17.

SALVADORI, N. & 1. STEEDMAN (1988), "Joint production analysis in a Sraffian
framework", Bulletin of Economic Research, vol. 40(3), pp. 165-195.

SAUCIER, Ph. (1981), Le Choix des Technigues en Situation de Limitations de Ressources,
Thése pour le doctorat d’Etat, Université de Paris IL

SAUCIER, Ph. (1984), "L’évolution des rentes dans une économie en croissance”, in :
G. ABRAHAM-FROIS (Ed.), L'Economie Classiqgue. Nouvelles Perspectives, Paris,
Economica, pp. 165-179.

SCHEFOLD, B. (1978), "On counting equations”, Zeitschrift fiir Nationaldkonomie, vol.
38(34), pp. 253-285.



32

SCHEFOLD, B. (1988), "The dominant technique in joint production systems",
Cambridge Journal of Economics, vol. 12(1), pp. 97-123.

SCHEFOLD, B. (1989), Mr Sraffa on Joint Production and Other Essays, London, Unwin
Hyman.

SRAFFA, P. (1960), Production of Commodities by Means of Commodities, Cambridge,

Cambridge University Press.

STEEDMAN, 1. (1976), "Positive profits with negative surplus value : a reply to
Wolfstetter", Economic Journal, vol. 86(344), pp. 873-876.

STIGLITZ, J.E. (1970), "Non-substitution theorems with durable capital goods", Review
of Economic Studies, vol. 37(4), no. 112, pp. 543-553.



33

4a2

0 dl

(a) no overlapping (b) overlapping
Legend : %, domain of technique Y

domain of technique Z

m face in common between Y and Z

Figure 1



34

Figure 2
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