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Dynamical quantum depletion in polariton condensates

Selma Koghee and Michiel Wouters
Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium

(Received 2 July 2015; revised manuscript received 14 October 2015; published 24 November 2015)

We present a theoretical study of the quantum depletion of microcavity polaritons that are excited with
a resonant laser pulse. The dynamics of the quantum fluctuations are interpreted in the context of quantum
quenches in general and in terms of the dynamical Casimir effect in particular. We compute the time evolution of
the first- and second-order correlation functions of the polariton condensate. Our theoretical modeling is based
on the truncated Wigner approximation for interacting Bose gases. For homogeneous systems, analytical results
are obtained in the linearized Bogoliubov approximation. Inhomogeneous systems are studied numerically by
Monte Carlo simulations.
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I. INTRODUCTION

Interaction quenches in quantum many-body systems have
become an active research field [1,2], mainly thanks to the great
degree of controllability of ultracold atoms with Feshbach
resonances and optical lattices [3]. Recently, a complementary
platform for quantum many-body physics has been developed,
namely, exciton-polariton quantum fluids [4]. The distinctive
characteristic of these systems is that the polaritons are a
superposition of light and matter excitations. A first advantage
of the light component is that it allows for a straightforward
diagnostic of the fluid by means of standard quantum optical
techniques. A second advantage is that polaritons can be
created by an external laser field. It is this feature of polariton
condensates that is of particular interest in the context of
quantum quenches, since it allows one to implement a sudden
change in the many-body system.

The situation that we consider here is an instantaneous
injection of polaritons in a coherent state [5]. Since this state
is not the ground state of a weakly interacting (lossless)
many-body system, a nontrivial time evolution will result due
to interactions, in addition to the decay because of the losses.
In our previous work, we have shown that a dynamical Casimir
effect [6–8] takes place in terms of the Bogoliubov excitations
on top of the coherently created polariton state. Indeed,
the sudden creation of a condensate quenches the vacuum
from the trivial one to the Bogoliubov vacuum, resulting in
an excitation of the system. Part of the motivation for the
study of the dynamical Casimir effect stems from connections
with the Hawking-Unruh effect, whose sonic version [10] is
getting within the reach of experiments with polaritons [9] and
ultracold atoms [11].

The analogy with an interaction quench in cold atom
systems is direct, since our proposal is equivalent to a sudden
increase of the interaction strength, from zero to a finite value.
Such experiments have been performed with ultracold atoms
by Hung et al. [12], who suddenly decreased the interaction
strength in an atomic Bose-Einstein condensate. The resulting
density oscillations were related to Sakharov oscillations in
the early universe [13].

An even closer connection can be made with the splitting
quench by Langen et al. in one-dimensional atomic con-
densates [14]. When a condensate is rapidly split into two
parts, there is initially perfect phase coherence between them.

However, at later times, the two parts start to develop a different
phase. This dephasing due to interactions is entirely analogous
to the one in our dynamical Casimir proposal, showing a
light-cone-like emergence of thermal correlations.

An important difference between polaritonic and atomic
condensates concerns the ratio of the lifetime to the character-
istic time scale of the dynamics. Whereas for ultracold atoms,
this ratio is very large, in polariton systems losses are more
important. Their theoretical modeling should therefore be
carried out in an open system setting. This raises the interesting
issue of the competition between losses and thermalization
dynamics.

We will treat the open system quantum dynamics within
the truncated Wigner approximation, which is a popular tool in
both the study of conservative cold atoms [15,16] and for lossy
polariton systems [4]. When the condensate depletion is small,
the equations of motion can be linearized in the fluctuations,
which is equivalent to the Bogoliubov approximation.

In Sec. II, we use this approximation to obtain analytical
results for the first- and second-order coherence functions in
the homogeneous system. For the inhomogeneous case, we
perform in Sec. IV Monte Carlo simulations of the stochastic
equations of motion. We show that for a large smooth pumping
spot, a local density approximation satisfactorily reproduces
the first-order coherence function. Conclusions are drawn in
Sec. V.

II. THE MODEL

We consider a driven dissipative bosonic system, whose
dynamics is governed by a master equation of the Lindblad
type:

d

dt
ρ = − i

�
[H,ρ] + D(ρ). (1)

Here, the Hamiltonian H = HP + HL contains the free Bose
gas dynamics of the polaritons

HP =
∫

dx ψ†(x)

[−�
2

2m
∇2 + g

2
ψ†(x)ψ(x)

]
ψ(x), (2)

with m being the lower polariton effective mass and g the
interaction strength. ψ(x) is the annihilation operator for a
polariton at position x. The Hamiltonian also includes the
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external laser driving,

HL =
∫

dx [FL(x,t)ψ†(x) + F ∗
L(x,t)ψ(x)], (3)

where FL is the laser amplitude.
The polariton losses, which depend on the linewidth γ , are

described by the dissipatorD(ρ), that we take to be of Lindblad
form:

D(ρ) =
∫

dx
γ

2�
[2ψ(x)ρψ†(x)

−ψ†(x)ψ(x)ρ − ρψ†(x)ψ(x)]. (4)

When a microcavity is excited sufficiently close to the lower
polariton branch and all the relevant energy scales (linewidth,
interaction energy) are much smaller than the Rabi splitting, it
is well justified to restrict the dynamics to the lower polariton
branch.

For the quantum quench that we consider, we take the
driving laser to be an ultrashort pulse. When the pulse
duration δt is much shorter than all the other time scales
of the dynamics, shortly after the pulse, the polariton field
is in a coherent state with amplitude ψ0 ≡ 〈ψ(x,t = 0)〉 =∫ 0
−δt

FL(x,t)dt . The external laser drive then only sets the
initial condition and does not affect the polariton dynamics,
which is governed by the free Bose gas dynamics and the
losses only.

We will solve the master equation (1) within the truncated
Wigner approximation (TWA) [16,17], a method that is widely
used for the simulation of weakly interacting one-dimensional
atomic condensates. The addition of losses makes the TWA an
even better approximation to the exact dynamics.

The resulting stochastic equations of motion read [5]

i� dφ(x,t) =
[

− �
2∇2

2m
− i

γ

2
+ g|φ(x,t)|2

]
φ(x,t) dt

+
√

�γ

4�V
dW (x,t), (5)

where �V is the volume of a single cell of the dis-
cretized grid. The complex Gaussian noise dW (x,t) satisfies
〈dW ∗(x,t)dW (x ′,t ′)〉 = 2dtδt,t ′δx,x ′/(�V ), and all other com-
binations average to zero. Since the expectation values of the
stochastic fields are equal to the symmetrized averages of the
quantum fields, the TWA can be used to study the quantum
fields. The relation between the stochastic and quantum fields
also allows us to calculate the initial expectation values of the
former: 〈φ∗(x,t = 0)φ(x,t = 0)〉 = n(x,t = 0) + 1/2, where
n(x,t = 0) is the initial density distribution.

III. HOMOGENEOUS SYSTEM

First we will consider a homogeneous system, where
we assume a homogeneous laser profile, resulting in an
expectation value of the initial density which is equal at every
position, while we still include the random noise related to
vacuum fluctuations.

A. Bogoliubov approximation

As long as the condensate fraction is large, the dynamics
can be treated in the linearized Bogoliubov approximation. The
field φ(x,t) is decomposed in a condensate and fluctuations,
φ(x,t) = φc(t) + δφ(x,t). The evolution of the condensate
density is determined by the equation for the condensate field,

i� dφc(t) =
[
−i

γ

2
+ g|φc(t)|2

]
φc(t) dt, (6)

which yields

|φc(t)|2 ≡ nc(t) = nc(0) exp(−γ t�). (7)

The fluctuations are expanded in Fourier space as

δφ(x,t) = exp

[
− ig

�

∫ t

0
ds nc(s)

]
1√
L

∑
k

φ(k,t)eikx, (8)

where L is the length of the one-dimensional wire con-
sidered here. The linearized equations of motion for the
fluctuations can be written compactly in terms of the vec-
tor �(k) = [φ(k), φ(−k)]T and the noise vector d	(k) =
[dW (k), dW (−k)]T :

i� d�(k) = B(k,t)�(k)dt +
√

� γ

2
d	(k), (9)

where the Bogoliubov matrix equals

B(k,t) =
(

ε(k) + gnc(t) − iγ

2 gnc(t)
−gnc(t) −ε(k) − gnc(t) − iγ

2

)
(10)

and ε(k) = �
2k2/(2m). From the solution of these stochastic

differential equations, we can compute the time evolution of
the correlation functions.

B. Momentum distribution and first-order coherence

The momentum distribution of the fluctuations is

n(k,t) = 〈ψ†(k,t)ψ(k,t)〉 = 〈φ∗(k,t)ψ(k,t)〉 − 1/2. (11)

For the homogeneous system, the stochastic fields are com-
puted by solving the differential equation (9). In the limit
k → 0 it can be solved exactly, which gives for the momentum
distribution,

lim
k→0

n(k,t) = 2

(
gnc(0)

γ

)2

e−2γ t/�

(
eγ t/� − γ t

�
− 1

)
. (12)

For large momenta, we resort to the sudden approximation
[18], which is applied to a system without losses, but in every
other aspect is the same as the polariton system of interest.
It is valid when the quench occurs much faster than the other
dynamics of the system. Before the quench, the elementary
excitations are the polaritons. After the quench, however,
Bogoliubov excitations are the elementary excitations of the
system. Their evolution can be calculated straightforwardly.
An inverse Bogoliubov transformation is then used to find the
polariton expectation values at later times. Finally, we have
multiplied the result for a lossless system with an exponential
decay. This yields a good description of the average value of
the momentum distribution,

〈ψ†(k,t)ψ(k,t)〉 =
[
gnc(0)]

�ωB(k)

]2

sin[ωB(k)t]2e−γ t/�, (13)
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where �ωB(k) = √
ε(k) [ε(k) + 2gnc(0)] is the Bogoliubov

dispersion. In the next section, we will calculate the second-
order coherence from the momentum distribution and the
anomalous average 〈ψ(k,t)ψ(−k,t)〉. The latter quantity is
calculated following the same procedure as for the momentum
distribution. Thus we first determine 〈ψ(k,t)ψ(−k,t)〉 for
a system without decay, i.e., γ = 0, and reintroduce the
time dependence by letting the expectation values decay
exponentially, which yields

〈ψ(k,t)ψ(−k,t)〉 = gnc(0)

2[�ωB(k)]2
e−γ t/�{�ωB(k) cos[ωB(k)t]2

− [�ωB(k)+ε(k)+gnc(0)] sin[ωB(k)t]2}.
(14)

The Fourier transform of the momentum distribution gives
us the first-order correlation in real space,

g(1)(x,x ′) = 〈ψ†(x,t)ψ(x ′,t)〉√
〈ψ†(x,t)ψ(x,t)〉〈ψ†(x ′,t)ψ(x ′,t)〉

, (15)

in terms of the quantum fields. In terms of the stochastic fields,
the first-order coherence reads

g(1)(x,x ′) =[〈φ∗(x,t)φ(x ′,t)〉 − δx,x ′/(2�V )]

× [〈φ†(x,t)φ(x,t) − 1/(2�V )〉
× 〈φ†(x ′,t)φ(x ′,t) − 1/(2�V )〉]−1/2. (16)

At large distances x − x ′, the value of 1 − g(1)(x,x ′) is equal
to the quantum depletion, which can also be calculated by
integrating over the momentum distribution. The momentum
distribution starts out at an approximately constant value, and

for momenta larger than the crossover momentum,

k∗(t) = γ

2�

√
m

gnc(0)

[
1 − e−γ t/�

(
γ t

�
+ 1

)]−1/2

, (17)

it can be described by the time average of Eq. (13). Integrating
over this two regions, we find [5] for the quantum depletion
δn/nc,

δn(t)

nc(t)
= C

g2nc(0)

γ 2

[
1 − e−γ t/�

(
γ t

�
+ 1

)]
k∗(t), (18)

where the constant C is determined numerically. The smallest
distance at which the first-order coherence reaches its lowest
value is called the coherence length �c, which is inversely
proportional to the crossover momentum,

�c(t) = 2.1/k∗(t), (19)

where the factor 2.1 was determined numerically.

C. Second-order coherence in momentum space

Since the particles are predicted to be produced in pairs with
opposite momentum, we expect to find a correlation between
polaritons with momentum k and those with momentum −k.
Therefore we study the second-order coherence in momentum
space:

g(2)(k, − k,t) = 〈ψ†(k,t)ψ†(−k,t)ψ(−k,t)ψ(k,t)〉
〈ψ†(k,t)ψ(k,t)〉〈ψ†(−k,t)ψ(−k,t)〉 .

(20)

By applying Wick contraction, we can write the denominator
as a product of quadratic expectation values. The
nonzero terms are those containing the momentum
distribution 〈ψ†(k,t)ψ(k,t)〉 and the anomalous average
〈ψ†(k,t)ψ†(−k,t)〉. In terms of the stochastic fields, the
expression becomes

〈ψ†(k,t)ψ†(−k,t)ψ(−k,t)ψ(k,t)〉 = 〈φ∗(k,t)φ(k,t)〉〈φ∗(−k,t)φ(−k,t)〉 + 〈φ∗(k,t)φ∗(−k,t)〉〈φ(−k,t)φ(k,t)〉
− 1

2 〈φ∗(k,t)φ(k,t)〉 − 1
2 〈φ∗(−k,t)φ(−k,t)〉 + 1

4 . (21)

In the limit k → 0, an exact solution of Eq. (9) can be found, which yields for the second-order coherence,

lim
k→0

g(2)(k, − k,t) = 2 + (γ t/�)2 exp(−2γ t/�)

4(gnc(0)/γ )2[(1 + γ t/�)2 exp(−4γ t/�) − 2(1 + γ t/�) exp(−3γ t/�) + exp(−2γ t/�)]
. (22)

The fraction in this expression diverges both at short times
(t 
 �/γ ), when limk→0 g(2)(k, − k,t) ≈ 2 + (gnc(0)t/�)−2,
and for long times (t � �/γ ), when limk→0 g(2)(k, − k,t) ≈
2 + [γ 2t/�gnc(0)]2. However, for good cavities with γ 

gnc(0), there is a large time window when limk→0 g(2)(k,

−k,t) ≈ 2.
For large momenta, an expression for the second-order

coherence can be calculated from the Wick contracted version
of (20) and the results obtained with the sudden approximation
(13) and (14). Combining these solutions gives

g(2)(k, − k,t) = 2 +
[

�ωB(k)

gnc(0)]

]2 1

sin[ωB(k)t]2
, (23)

and replacing the squared sine function by its average value of
one-half yields the following expression for the second-order
coherence:

g(2)(k, − k,t) = 2 + 2

[
�ωB(k)

gnc(0)]

]2

. (24)

Here we recognize the inverse of the momentum distribution
without the exponential decay. This analytical result can
be well understood from the assumption that the particles
are indeed produced in pairs. In this case, a polariton with
momentum k will always be accompanied by a polariton
with momentum −k. For large momenta, we expect very few
particles. When the expected value is much smaller than 1,
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only in few of the realizations will a polariton be present,
and the cases with more than one polariton with the same
momentum will be negligible. Therefore we find that when
the polaritons are produced in pairs with opposite momentum,
when ψ†(k,t)ψ(k,t) 
 1, and neglecting the exponential
decay,

〈ψ†(k,t)ψ†(−k,t)ψ(−k,t)ψ(k,t)〉 ≈ 〈ψ†(k,t)ψ(k,t)〉. (25)

As a result, the second-order coherence is the inverse of the
momentum distribution,

g(2)(k, − k,t)|large k = 1

〈ψ†(k,t)ψ(k,t)〉 , (26)

in good agreement with (23). It is interesting to note that the
large k limit of the nonequilibrium g(2) from Eq. (23) has the
same behavior as in the zero-temperature equilibrium case.

For the homogeneous system, the approximations on top
of the Bogoliubov approximation have been checked against
numerical calculations that were performed using the Green’s
function. In terms of the Green’s function,

Gk(t,t ′) =
N∏

j=1

exp[−i�tBk(tj )/�], (27)

the second-order coherence can be written

g(2)(k,−k,t) = 1+1

4
|[G†

k(t,0)]1,2[Gk(t,0)]1,1+[G†
k(t,0)]2,2

× [Gk(t,0)]1,2 + γ

�

∫ t

0
ds{[G†

k(t,s)]1,2

× [Gk(t,s)]1,1 + [G†
k(t,s)]2,2[Gk(t,s)]1,2}|2

× [〈ψ†(k,t)ψ(k,t)〉〈ψ†(−k,t)ψ(−k,t)〉]−1,

(28)

where the x,y of [Gk(t,s)]x,y indicate the matrix component.
This result is depicted in Fig. 1, together with the analytical
expression Eq. (23) derived from the sudden approximation.
It can be seen that the analytical expression describes the
overall behavior of g(2)(k, − k,t) very well. The maxima of

FIG. 1. (Color online) Second-order coherence in momentum
space for a homogeneous system calculated with the Green’s function
method. Solid lines show the numerical results, whereas the dotted
line represents Eq. (23). Here, ξ = �/

√
mgnc(0), and we have chosen

g = 0.01 μm meV, γ = 0.05 meV,� = 1, m = 1, gnc(0)/γ = 10.

the oscillations are described by two times this expression.
From the analytic expression, it can be seen that the period of
the oscillations depends both of the time and the momentum.
Therefore all osculations at large momenta are fast, whereas
the increase of the period as time progresses is more clearly
visible for small momenta. These oscillations are expected
to be more averaged in experimental data, which would then
become closer to the analytically calculated average.

IV. INHOMOGENEOUS SYSTEM

A. Monte Carlo simulation

Although the Green’s function method provides a good de-
scription of the homogeneous system, it has some limitations.
First, the interaction energy should not be too high, since
the Bogoliubov approximation is no longer valid when the
quantum depletion becomes too large. Secondly, the Green’s
function method becomes cumbersome for inhomogeneous
systems. In order to overcome these problems, we have also
implemented a Monte Carlo simulation algorithm [19].

In the truncated Wigner–Monte Carlo algorithm, the
expectation values are calculated by averaging over many
realizations of the system. For the initial situation, an average
density is chosen and random noise is added to account
for the stochastic nature of the fields. As opposed to the
Green’s function method, where Eq. (9) was solved, the Monte
Carlo algorithm uses both the real- and momentum-space
representation of the stochastic fields. The evolution due to
interactions and decay, which are the time-dependent parts of
the Hamiltonian, is calculated in real space, whereas the effect
of the kinetic term is calculated in momentum space. This
method has the advantage that we do not have to distinguish
between condensate and excitations in the interaction term. In
order for the algorithm to work, the time steps for which the
evolution is calculated should be small, in order for the effect
of sequentially calculating the evolution in real and momentum
space to be small. For the homogeneous system we have used
a system length of 200 μm and 0.4 μm as the size of a unit
cell. For the inhomogeneous systems, we adapted the length
and grid size in order to have sufficient detail, the boundaries
of the system distant enough with respect to the width of the
Gaussian distribution, while keeping the number of grid points
equal to 256 for computational efficiency.

First we verified the results of the Green’s function
method for the homogeneous system (see Fig. 2). For small
momenta, the two methods show a good agreement for all
times. However, for larger momenta, the Monte Carlo method
predicts more particles than the Green’s function method.
Nevertheless, both methods still predict few particles with
large momenta. The reason why the difference is larger for
large momenta and late times is that when few particles are
present, the noise becomes relatively more important. Since
for the (very) large momenta, the results of the Monte Carlo
simulations are mainly due to the noise, this provides a good
indication of the overall error in the momentum distribution.
Furthermore, in the homogeneous case, we have seen that
the difference between the latest times is very small, t = 105
and 39 ps [5]. Therefore we have chosen to calculate up to
t = 39 ps with the Monte Carlo method.
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FIG. 2. (Color online) Momentum distribution for a homo-
geneous system calculated with the Greens’ function method
(red dotted) and Monte Carlo simulations (blue solid), aver-
aged over 40 000 realizations. Here, ξ = �/

√
mgnc(0), and we

have chosen g = 0.01 μm meV, γ = 0.05 meV,L = 200 μm,� =
1, m = 1, gnc(0)/γ = 10.

B. Numerical results

In addition to the homogeneous systems, Monte Carlo sim-
ulations were applied to study systems with an initial Gaussian
density distribution, given by ni exp(−x2/s2), where the time
evolution was determined by Eq. (5). The results presented
here are obtained from 10 000 realizations. The values s = 100
and 20 μm have been chosen for the width of the distribution,
and ni = 50 μm−1 for the initial central density. With this
initial density, the Bogoliubov approximation and truncated
Wigner approximation were still valid for the homogeneous
system. For s = 100 μm, the behavior in real space can be
well understood. The density at the center of the Gaussian
decreases faster than the overall exponential decay, whereas
the density at the sides of the distributions shows a small
relative increase (see Fig. 3). This would be expected from
the repulsive interactions. As a result, the density distribution
becomes more homogeneous. In the case of a smaller Gaussian

FIG. 3. (Color online) Density calculated with Monte Carlo sim-
ulations, initial Gaussian profile given by ni exp(−x2/s2), with s =
100 μm. We have chosen g = 0.01 μm meV, γ = 0.05 meV,� =
1, m = 1, gni/γ = 10.

FIG. 4. (Color online) Density calculated with Monte Carlo sim-
ulations, initial Gaussian profile given by ni exp(−x2/s2), with s =
20 μm. We have chosen g = 0.01 μm meV, γ = 0.05 meV,� =
1, m = 1, gni/γ = 10.

distribution, where s = 20 μm, this effect is even stronger
(see Fig. 4). At the latest depicted time, t = 39 ps, the central
region is very homogeneous and shows a fast decrease at the
edges of the distribution. Since the background is completely
homogeneous, the oscillations on top of the smooth density
curves are related to the errors due to the noise that has not
completely been averaged out.

The first-order coherence for the s = 100 μm system can
be described by the results obtained from the homogeneous
system [5]. At short distances, the shape of the first-order
coherence is similar for the homogeneous and the Gaussian
system. However, at larger distances, the first-order coherence
goes back to 1 for the inhomogeneous system, whereas for
the homogeneous system it remained constant. Since the two
systems are similar at short distances, we still use the term
coherence length to refer to the distance at which the first-order
coherence is minimal and use the depletion as 1 minus this
minimal value. Using the expressions from the homogeneous
case with the density at the maximum of the distribution
ni , we see that the coherence length and the depletion
of these analytical expressions are close to the numerical
results. Furthermore, there is still a linear relation between
the coherence length and the depletion. Therefore a simple
correction to the numerical constants would give an even
better description of these quantities. The overall shape of
g(1)(x,−x,t) is a direct result from the Gaussian shape of
the density. For the homogeneous system, a formula for the
depletion at very large times as a function of the blueshift
gnc(t) was derived [see Eq. (18)]:

lim
t→∞ δn(t)/nc(t) ≈ 0.77 g/(ξγ ). (29)

In the inhomogeneous system the healing length ξ =
�/

√
mgnc(0) becomes position dependent. Consequently, the

final depletion will also depend on the position. When nc(t =
0) is simply replaced by the initial Gaussian distribution,
ni exp(−x2/s2), the black dashed lines from Figs. 5 and 6
are found. For the wider Gaussian, with s = 100 μm, this
describes the behavior of the first-order coherence very well
at late times. Therefore the fact that the coherence returns to
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FIG. 5. (Color online) First-order spatial coherence g(1)(x,−x,t)
for an initial Gaussian distribution [ni exp(−x2/s2)] with width s =
100 μm, calculated with Monte Carlo simulations. The (red) dots
correspond to �c(t) as given in Eq. (19), and δn(t)/ni(t) in Eq. (18)
at the same times as the (blue) solid lines, where ni was used instead
of nc(0). The (black) dashed lines depicts g(1)(x,−x,t → ∞), based
on Eq. (29), with ni exp(−x2/s2) instead of nc(0). Same parameters
as Fig. 3.

1 for distances comparable to the width of the distribution is
due to the small density, which leads to a smaller depletion.

However, for the smaller Gaussian, where s = 20 μm, the
local density approximation is no longer valid. Nevertheless,
the initial decay of the first-order coherence, until x ≈
20 μm, is still described by the linear relation found in the
homogeneous case.

In momentum space, on the other hand, the system with
a Gaussian density is very different from a homogeneous
system. This is in accordance with expectations, since for
an initial Gaussian distribution, many momentum states are
occupied from the start. Moreover, the inhomogeneous density
profile leads to an expulsion of the polaritons away from the
region where they were created. This acceleration corresponds
to a shift of the momentum distribution. Hence, momentum

FIG. 6. (Color online) First-order spatial coherence g(1)(x,−x,t)
for an initial Gaussian distribution [ni exp(−x2/s2)] with width s =
20 μm, calculated with Monte Carlo simulations. �c(t) is given in
Eq. (19), and δn(t)/ni(t) in Eq. (18), where ni was used instead of
nc(0) and the values for t are the same as for the (blue) solid lines. The
(black) dashed lines depicts g(1)(x,−x,t → ∞), based on Eq. (29)
with ni exp(−x2/s2) instead of nc(0). Same parameters as Fig. 4.

FIG. 7. (Color online) Momentum distribution for an initial
Gaussian distribution [ni exp(−x2/s2)] with width s = 100 μm,
calculated with Monte Carlo simulations. Same parameters as Fig. 3.

conservation in the interactions no longer results in pair
production of polaritons with opposite momentum. In Figs. 7
and 8 we see an increase of the particle number with respect
to the homogeneous case at small yet finite momentum, which
indicates that the distribution is expanding, which is indeed
what was seen in the evolution of the density. The wider and
the smaller distribution both display very similar behavior,
where the smaller density distribution has a peak in the
momentum distribution at larger momenta, as compared to the
wider density distribution. At larger momenta, the momentum
distribution follows that of the homogeneous system more
closely for the s = 100 μm case. However, the particle number
at these momenta is very small.

The second-order coherence, depicted in Figs. 9 and 10, is
even more different from the homogeneous case. In these fig-
ures, the (red) dotted line represents the analytically calculated
g(2)(k, − k,t) − 1 from Eq. (23) for the homogeneous system.
One is subtracted, since for small momenta, the numerically
calculated second-order coherence is close to 1, the value that
corresponds to a coherent system. We see that the second-order
coherence remains close to this value, even for momenta
at which the momentum distribution seems to resemble the

FIG. 8. (Color online) Momentum distribution for an initial
Gaussian distribution [ni exp(−x2/s2)] with width s = 20 μm, cal-
culated with Monte Carlo simulations. Same parameters as Fig. 4.
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FIG. 9. (Color online) Second-order coherence in momentum
space for initial Gaussian distribution [exp(−x2/s2)] with width s =
100 μm, calculated with Monte Carlo simulations. Same parameters
as Fig. 3.

homogeneous case for the wider density distribution. This
suggests that even for these momenta, most particles are
part of the condensate. For the system with s = 20 μm, the
second-order coherence, is either close to 1 or it contains too
much noise for a good description.

V. CONCLUSIONS

We have studied a quantum quench consisting of a sudden
injection of polaritons in a microcavity. Both a homogeneous
and a Gaussian initial density distribution have been examined.
The homogeneous case has been related to the dynamical
Casimir effect previously. Where the correlation functions in
the homogeneous case could still be calculated analytically,
we performed truncated Wigner–Monte Carlo simulations for
the Gaussian excitation pulse. The first-order spatial coherence

FIG. 10. (Color online) Second-order coherence in momentum
space for initial Gaussian distribution [exp(−x2/s2)] with width s =
20 μm, calculated with Monte Carlo simulations. Same parameters
as Fig. 4.

is well approximated by the local density approximation for
a sufficiently wide pulse. The second-order coherence in
momentum space evidences the production of excitations in
pairs in the homogeneous system. For a system with an initial
Gaussian density distribution, multiple momentum states are
significantly occupied from the start. Here, the second-order
coherence indicates that many of these particles are coherent,
so that evidence of quantum correlations is highly suppressed.
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