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Abstract 22 

Risk matrices and risk diagrams are widely used tools for analyzing, assessing and visualizing risk 23 

in many industries, and are used extensively for risk management purposes. Despite their popularity 24 

and wide application, they have recently become the object of discussion and research in scientific 25 

environments, which can be seen as part of a wider focus on foundational issues in the risk analysis 26 

discipline. Identifying several serious limitations and problems with the risk matrix approach, 27 

various authors have proposed extensions, modifications and recommendations for their use. One 28 

issue which has been raised recently but has attracted relatively limited scientific attention is the 29 

consideration of uncertainty in risk diagrams, i.e. how to visually represent and communicate 30 

uncertainty. This paper first reviews the available proposals for this question. Subsequently, the 31 
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strengths and weaknesses of these proposals are discussed. Finally, some new proposals are made 1 

on how to represent uncertainty in risk diagrams in practical applications.  2 
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1. Introduction 1 

Risk matrices (RMs) are widely used tools for analyzing, assessing and visualizing risk in many 2 

industries, and are used extensively for risk-management purposes. The main benefits attributed to 3 

RMs are their intuitive appeal and simplicity: they are perceived to be easy to construct, explain and 4 

score (Thomas et al., 2014). Belonging to the class of probability-consequence diagrams (PCDS) as 5 

described by Ale et al. (2015), they are easier to interpret than FN-curves
1
. Furthermore, RMs are 6 

recommended by various international standards and industry guidelines (IMO, 2007; 7 

IPIECA/OGP, 2013; ISO, 2010; NHS, 2008). 8 

Notwithstanding its wide application, an increasing body of research has analyzed and discussed the 9 

limitations and inconsistencies of the RM approach. Duijm (2015) summarizes critical comments 10 

by Franks and Maddison (2006), Cox (2008), Smith et al. (2009), (2010), Ni et al. (2010), Flage and 11 

Røed (2012) and Levine (2012). Following issues are discussed: i) the consistency between the risk 12 

matrix and quantitative measures and the corresponding appropriateness of decisions based on risk 13 

matrices, ii) the subjective classification of consequence and probability, iii) the (linear or 14 

logarithmic) definition of risk scores and its relation to the scaling of the categories, iv) the limited 15 

resolution of risk matrices, resulting in “risk ties”, the aggregation of scenarios and consequences 16 

for a single event on different areas of concern, and for multiple hazards originating from a single 17 

activity, and vi) problems with the use of corporate-wide risk matrix designs (Duijm, 2015). Similar 18 

points are made by Hubbard (2009), Kontovas and Psaraftis (2009), Pickering and Cowley (2010) 19 

and Thomas et al. (2014). 20 

In response to these identified problems with RMs, several authors have proposed extensions to the 21 

approach. Markowski and Mannan (2008) propose the use of fuzzy sets to account for vagueness in 22 

the definition of the linguistic ordinal scales. Ni et al. (2010) propose a methodology based on the 23 

Borda count, using the likeliness and consequence ranks as independent scores, as well as other 24 

arithmetic extensions. Garvey (2009) and Meyer and Reniers (2013) discuss a method to adjust the 25 

categorization of the risk ranking, accounting for the decision-makers risk attitude (consequence- or 26 

likeliness averseness). Ruan et al. (2015) propose a method to account for decision-makers risk 27 

attitude based on the utility theory. Duijm (2015) provides a number of recommendations, including 28 

that the coloring should define risk as a monotonously increasing function of consequences and 29 

likeliness, the use of logarithmic scaling and the use of continuous PCDS instead of discrete 30 

categories, the benefits of which are also discussed by Ale et al. (2015). Duijm (2015) also 31 

identifies challenges to the use of continuous probability-consequence diagrams, one of which 32 

concerns how to assess uncertainty in the assigned probability and consequence metrics.  33 

This last issue is the research topic of this paper. In particular, previously proposed methods for 34 

representing uncertainty in PCDS are summarized and their merits and shortcomings discussed. 35 

Subsequently, proposals are made to represent uncertainty in risk diagrams. 36 

This issue strongly relates to risk communication: graphical displays focus attention and serve a 37 

special role in getting the right message across, not in the least because detailed analyses in lengthy 38 

reports may not always be fully read by decision makers (Abrahamsen et al., 2014). Hence, it is of 39 

                                                 
1
 An FN-curve shows the frequency of exceedance (F) of a given number of fatalities (N). 
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considerable importance to develop and present ideas to assess, visualize and communicate 1 

uncertainty in risk diagrams. The relevance of this research is also supported by Fischhoff (1995), 2 

who finds that uncertainties are not always appropriately conveyed in risk communication and by 3 

Spiegelhalter et al. (2011), who find that there has been rather little progress on the issue of 4 

representing uncertainty. 5 

In the remainder of this paper, our focus is exclusively on continuous PCDS, i.e. qualitative risk 6 

matrices are beyond the scope. This limitation follows from arguments from Abrahamsen et al. 7 

(2014), Ale et al. (2015) and Duijm (2015) that these allow for a more accurate risk picture. 8 

Moreover, risk diagrams are here understood as tools for visualizing the risk picture, not as 9 

complete risk analysis tools, see Flage and Røed (2012) and Abrahamsen et al. (2014). 10 

The rest of this paper is organized as follows. Section 2 gives a background for the need for 11 

assessing uncertainty, and introduces uncertainty-based risk perspectives. In Section 3, some earlier 12 

proposals for representing uncertainty in PCDS are outlined. Their elements, strengths and 13 

weaknesses are discussed in Section 4. Section 5 presents two new proposals for visualizing 14 

uncertainty in PCDS. Section 6 concludes. 15 

2. Assessing uncertainty in PCDS: risk perspectives 16 

2.1. Background and justification 17 

Risk is often defined through probabilities, either as an expected value of probabilities and 18 

consequences (Campbell, 2005), or as the combination of scenarios, probabilities and consequences 19 

(Kaplan, 1997). Aven (2012) has made a historic analysis of the risk concept, finding that in many 20 

application areas, the predominant definitions are probability-based. This is confirmed in a recent 21 

review of definitions in risk analyses concerned with accidental risk in waterways. This study also 22 

shows that risk perspectives (systematic methods to describe risk) corresponding to probability-23 

based definitions typically do not consider uncertainties beyond the probabilistic descriptions 24 

(Goerlandt and Montewka, 2015a). 25 

The need for considering uncertainties in making scientific claims has been argued for by Douglas 26 

(2009) on grounds that scientists have a responsibility to consider the consequences of error. If 27 

evidence is poor and if this may lead to foreseeable changes to the conclusions of an inquiry, these 28 

uncertainties need to be made explicit
2
. The lack of uncertainty treatment is a relatively common 29 

criticism of especially quantitative risk analysis (QRA), e.g. Shrader-Frechette (1993), O’Brien 30 

(2000) and Aven (2011), and has been confirmed in e.g. the maritime transportation and offshore oil 31 

and gas applications areas (Goerlandt and Montewka, 2015a; Haugen and Vinnem, 2015). 32 

Several authors have argued for perspectives where uncertainty is given a more prominent role than 33 

in traditional probability-based perspectives (Aven and Zio, 2011; Flage et al., 2014; Haugen and 34 

Vinnem, 2015; Montewka et al., 2014). The rationale of such perspectives is outlined next. 35 

                                                 
2
 This is a version of the classical ”error argument”, which is also known as the argument from inductive risk (Douglas, 

2000; Rudner, 1953; Steel, 2010). It constitutes one of the primary reasons why science is not (as often thought), value-

free: non-epistemic values (values which have no bearing on determining whether a claim is true but stem from a 

reflective consideration of what is good in a given context) are needed to consider the consequences of error and to 

identify which uncertainties are relevant to assess (Douglas, 2009). 
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2.2. Uncertainty-based risk perspectives 1 

In uncertainty-based risk perspectives, it is acknowledged that probabilities are tools for 2 

describing/measuring risk, but that these tools are not sufficient to assess and communicate all 3 

possibly decision-relevant uncertainty. This is most easily understood by distinguishing two broad 4 

classes of uncertainty, as distinguished by Levin (2005): outcome and evidence uncertainty. This 5 

distinction is applied in this paper
3
. 6 

Levin (2005) defines outcome uncertainty as a cognitive attitude (i.e. a state of mind) of an 7 

assessor, who, at a given time, simultaneously holds mutually exclusive beliefs about the 8 

occurrence or non-occurrence of an event. This type of uncertainty can be measured using 9 

probabilities understood as a degree of belief (Singpurwalla, 2006; Watson, 1994). This in turn can 10 

be interpreted with reference to an urn standard (Aven and Reniers, 2013; Lindley, 2006): an 11 

assessor’s the degree of belief about the occurrence of an event is compared with the standard of 12 

drawing at random a specific ball from an urn that contains a given number of balls. 13 

In Levin’s (2005) taxonomy, evidence uncertainty focuses on the poor or unreliable evidence base 14 

for making statements about, e.g. the occurrence or not of an event. Assumptions may be poor, 15 

models may be crude and data may be inaccurate or unreliable. Under such conditions, the results of 16 

an analysis can still support decision making, but the uncertainties can change the types of decisions 17 

made. E.g. in case of the presence of important uncertainties, decision makers may justifiably opt 18 

for additional protective measures. It is this type of uncertainty which is often not considered in 19 

applications, see Shrader-Frechette (1993), Aven (2011) and Goerlandt and Montewka (2015a). 20 

Nevertheless, the argument of inductive risk (see Section 2.1 and note 1), provides a strong reason 21 

for assessing evidential uncertainty as part of the risk perspective. 22 

Several variations of uncertainty-based risk perspectives have been proposed. Flage and Aven 23 

(2009) focus on outcome and evidence uncertainty, which is qualitatively assessed, and include 24 

sensitivity in the risk description. Aven (2013) widens this risk perspective with black swans, i.e. 25 

surprises beyond the current knowledge, focuses on the strength of knowledge rather than evidential 26 

uncertainty
4
 and uses an assumption deviation risk scheme as part of the risk description. Montewka 27 

et al. (2014) propose a risk perspective where knowledge and understanding are treated separately. 28 

Goerlandt et al. (2014) extend the perspective taken by Flage and Aven (2009) by also accounting 29 

for evidential biases. The uncertainty-based perspective as applied throughout this paper is 30 

summarized in Appendix A.  31 

                                                 
3

 Other taxonomies for uncertainty classification exist, e.g. distinguishing aleatory and epistemic uncertainty 

(Kiureghian and Ditlevsen, 2009), or endoxastic and metadoxastic uncertainty (Murphy et al., 2011). 
4
 The authors agree with the view expressed in Abrahamsen et al. (2014) that the term ‘strength-of-knowledge’ may be 

less ambiguous than the focus on evidence uncertainty. 
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3. Earlier proposals for visualizing uncertainty in risk diagrams 1 

Despite increasing awareness of the need to assess uncertainty in risk descriptions, there are 2 

relatively few practical proposals for how to visualize uncertainty in risk diagrams. The proposals 3 

found in the literature are briefly outlined below. 4 

3.1. PCDS with family of “risk curves” 5 

A rather well-known method to express uncertainty in risk diagrams is to create a family of “risk 6 

curves”. In such approaches, alternative methods are applied to a risk model to quantitatively bound 7 

the space of probability-consequence combinations. 8 

An early example of the idea of the family of “risk curves” is presented by Kaplan and Garrick 9 

(1981), see Figure 1. Starting from a probability-based risk perspective, which focuses on a 10 

frequentist probability
5
 Pf

*
 of the occurrence of an event A and related consequences C, an assessor 11 

describes his uncertainty about the “correct” value of the frequentist probability Pf
*
 using a 12 

subjective probability
6
 Ps. These subjective probabilities are subsequently propagated through the 13 

model-based analysis, either analytically or using Monte Carlo simulation. The objective is to 14 

obtain a probability distribution for the loss in case of consequence occurrence, such that for each 15 

risk curve represents, on the vertical axis, a fractile of the probability distribution of the frequency 16 

of exceedance of a given loss level. This approach of a family of “risk curves” corresponds to the 17 

highest level of uncertainty treatment in the work of Paté-Cornell (1996). 18 

 19 

Figure 1: Family of “risk curves” method for visualizing uncertainty in PCD, 20 

based on Kaplan and Garrick (1981) 21 

                                                 
5
 A frequentist probability Pf is defined as the fraction of time a specific outcome occurs in an in principle infinite 

number of repeated tests. Strictly speaking, a distinction needs to be made between Pf as a concept and its measurement 

Pf
*
, which is derived from empirical data, a thought-constructed “repeated experiment” or a repeated evaluation of an 

engineering or statistical model (Aven and Reniers, 2013; Watson, 1994). 
6
 A subjective probability Ps is defined as an assessor’s degree of belief (e.g. about the occurrence, or not, of a given 

event). This probability is based on a given background knowledge, and can be interpreted with reference to an 

uncertainty standard (Aven and Reniers, 2013; Lindley, 2006). 
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Variations on this basic approach by Kaplan and Garrick (1981) have been proposed, notably 1 

through other proposed mathematical tools for propagating uncertainty through the model. These 2 

for instance include evidence theory, possibility theory and fuzzy set theory, see (Hayes, 2011; 3 

Helton and Johnson, 2011; Zio and Pedroni, 2013). These mathematical variations represent 4 

uncertainty through a set of quantitative curves in a very similar way as in Figure 1, and are for 5 

reasons of brevity not further described here. 6 

3.2. PCDS with uncertainty boxes 7 

Duijm (2015) proposes to use uncertainty boxes in probability-consequence diagrams, see Figure 2. 8 

It is not specified what type of probability these diagrams are based on (i.e. frequentist Pf
*
 or 9 

subjective Ps). The idea is simple: a box represent an area in which the risk estimate is 10 

calculated/believed to be located. The vertical and horizontal lines indicate the expected value for 11 

the probability-consequence combination, whereas the outer limits of the boxes can correspond to 12 

prediction intervals
78

. 13 

 14 

Figure 2: Uncertainty boxes in PCD, 15 

based on Duijm (2015) 16 

3.3. Bubble diagrams 17 

Bubble diagrams have been presented in slightly modified formats by Abrahamsen and Aven 18 

(2011) and Amundrud and Aven (2012). Here, each risk event is presented by a bubble, which 19 

provides information concerning probability, consequence and evidential uncertainty. The former 20 

two are indicated by the position of the bubble in the diagram, whereas the latter is represented 21 

using the size of the bubble. Figure 3 shows a graphical representation of bubble diagrams. 22 

                                                 
7
 In the work by Duijm (2015), it is not entirely clear what the limits exactly represent. 

8
 A prediction interval for the consequences C is an interval such that C will be in the interval with a certain probability, 

typically 90% or 95%. 
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 1 

Figure 3: Bubble diagram, based on Amundrud and Aven (2012) 2 

In this type of diagram, probabilities are subjective (knowledge-based) probabilities Ps, and the 3 

expected consequences are used as a measure to describe the possible consequences in case the 4 

event occurs, i.e. E[C|A]. The (evidential) uncertainties are categorized using an uncertainty rating 5 

scheme first introduced by Flage and Aven (2009), see Table 1. 6 

Table 1: Uncertainty rating classification scheme, based on Flage and Aven (2009) 7 

Rating Conditions 

Low uncertainty All of the following conditions are met: 

   - The assumptions made are seen as very reasonable 

   - Much reliable data are available 

   - There is broad agreement/consensus among experts 

   - The phenomena involved are well understood; models used are known to give 

predictions with the required accuracy 

High uncertainty One or more of the following conditions are met: 

   - The assumptions made represent strong simplifications 

   - Data are not available, or are unreliable 

   - There is lack of agreement/consensus among experts 

   - The phenomena involved are not well understood; models are non-existent or 

known/believed to give poor predictions 

Medium uncertainty Conditions between those characterizing low and high uncertainty 

Note: A modified version of this scheme is applied in Amundrud and Aven (2012), where the conditions for low and 8 
high uncertainty both use the phrasing “one or more of the following conditions are met” [emphasis added]. In 9 
Goerlandt and Montewka (2015b), the conditions for low and high uncertainty both use the phrasing “all of the 10 
following conditions are met” [emphasis added]. 11 

In Abrahamsen et al. (2014), an additional condition is applied for categorizing the uncertainty as 12 

‘high’ in bubble diagrams. This the case for situations where there is a potential for significant 13 
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deviation between the expected consequences E[C|A] as assessed based on the available evidence 1 

and the consequences as they may actually occur. 2 

3.4. PCDS with prediction intervals and strength-of-evidence assessments 3 

As an alternative to focusing on the evidential uncertainty in bubble diagrams, Aven (2013) and 4 

Abrahamsen et al. (2014) propose probability-consequence diagrams with prediction intervals and 5 

strength-of-evidence assessments (PCD-PISEA). Such diagrams visualize risk through the 6 

following three dimensions): i) the assigned probability for the event occurrence, ii) a 90% (or any 7 

other meaningful percentage) prediction interval for the consequence given the occurrence of the 8 

events and iii) a measure of the strength-of-evidence on which the probability and consequence 9 

assignments are based. In such a PCD-PISEA, probabilities are subjective (knowledge-based), 10 

while the strength-of-evidence assessments are used to overcome the inability of the probabilities 11 

and prediction intervals to communicate the strength of the evidence on which these measurements 12 

are based. 13 

Aven (2013) proposes a 3-dimensional PCS-PISEA visualization as shown in Figure 4. It shows the 14 

probabilities P and prediction intervals for the consequences C on the horizontal axes, and the 15 

strength-of-evidence SE on the vertical axis using different lengths of the vertical bars. The rating 16 

for the strength-of-evidence assessment applies the same criteria as for the uncertainty rating for the 17 

bubble diagrams of Section 2.2.3, see Table 1. Here, low and high uncertainty correspond to strong 18 

and weak knowledge, respectively. 19 

 20 

Figure 4: 3-dimensional PCD-PISEA, 21 

based on Aven (2013) 22 

An alternative, 2-dimensional PCS-PISEA is proposed by Abrahamsen et al. (2014), see Figure 5. 23 

Here, the different risk events are depicted using subjective probabilities and predictions intervals, 24 

where the strength of evidence is indicated by bubbles of different sizes. The same criteria for 25 

categorizing the strength of evidence are applied as in the 3-dimensional PCD-PISEA above. 26 
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 1 

Figure 5: 2-dimensional PCD-PISEA, 2 

based on Abrahamsen et al. (2014) 3 

4. Discussion on the existing proposals  4 

In this section, the proposals for visualizing uncertainty in risk diagrams are discussed, focusing on 5 

the types of features included in the various risk diagrams and their strengths and weaknesses. The 6 

obtained insights from this discussion are subsequently used in Section 5 to present a number of 7 

new proposals for visualizing uncertainty in PCDS. 8 

4.1. Elements of PCDS with uncertainty treatment 9 

When inspecting the proposals of Section 3.1. for visualizing uncertainty in PCDS, following 10 

elements are considered: 11 

 markers of risk events, showing their probability and consequence dimension 12 

 indicators of the uncertainty / strength-of-evidence for assessing the risk events 13 

 indicators of the potential for large deviations / surprises between the assessed risk events 14 

and the risk events as they may actually occur 15 

4.1.1. Markers for probability and consequences of risk events 16 

Various markers for the probability and consequences of risk events are used: expected values 17 

E[C|A] (Section 3.2, 3.3 and 3.4) , 90%-prediction intervals (Section 3.4) and probability 18 

distributions over the consequence dimension (Section 3.1). 19 
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Expected values are convenient metrics to summarize the information about the severity of the 1 

consequences. Its meaningfulness as a measure can be derived from the law or large numbers, i.e. 2 

that the average of a number of random quantities can be accurately approximated by the expected 3 

value when the number of quantities is high, see e.g. (Faber, 2009). However, expected values can 4 

be very misleading if the underlying distribution is known or believed to be heavily skewed, i.e. 5 

when it is highly asymmetrical. The limitations of expected values have been stressed also 6 

elsewhere, e.g. Abrahamsen and Aven (2011) and Fenton and Neil (2012). 7 

Prediction intervals provide more flexibility to communicate the range in which the consequence is 8 

expected to occur, and can, in combination with other measures of the distribution provide more 9 

insight in the possible consequences in case the risk event occurs. 10 

The use of different risk curves, which represent probability distributions over the consequence 11 

range, is conceptually similar to prediction intervals. However, an important drawback in their 12 

application is that it is not easy to explain how to interpret these. From Section 3.1, it is found that 13 

the family of “risk curves” is derived from assigning subjective probabilities Ps to model parameters 14 

Pf
*
, see also Figure 1. First, it is difficult to provide a meaningful interpretation to the parameters 15 

Pf
*
, see e.g. Aven and Reniers (2013). Second, the measurement Ps(Pf

*
) is a second-order 16 

probability. This concept has been intensely debated in the literature, with many researchers finding 17 

it a meaningless construct (Apostolakis, 1990; Mosleh and Bier, 1996). Finally, in practical 18 

applications, only a selection of parameters Pf
*
 will be made for assessing a second-order 19 

probability. This obscures the meaning of the curves as these do not capture all uncertainty, but only 20 

part of it (Aven, 2010). 21 

In the bubble diagrams and the PCD-PISEA, subjective probabilities Ps are used for the probability-22 

dimension. These have the benefit that these can be easily interpreted, e.g. based on an uncertainty 23 

standard, see Section 2.2. 24 

4.1.2. Indicators for uncertainty / strength-of-evidence 25 

For assessing the evidential uncertainty, two approaches are available, see Section 3.3 and 3.4. The 26 

evidence uncertainty assessment uses a qualitative scale (Table 1) to categorize the uncertainty 27 

about the evidence on which the probability and consequence assessments are made. The strength-28 

of-evidence assessment is its logical counterpart, categorizing how good the evidence is for these 29 

assessments. Both are feasible concepts to communicate some key aspects of the evidence. 30 

However, the authors agree with Aven (2013) that the strength-of-evidence is likely easier to 31 

understand in practical applications. The label “uncertainty” could cause confusion what it is one is 32 

uncertain about. As argued e.g. by Aven and Reniers (2013), the subjective probability Ps as a 33 

measure of one’s uncertainty about the occurrence of an event A is not uncertain for the assessor. 34 

However, various probability assignments with a same numerical value can be based on a very 35 

different evidential support, which can be important for a decision maker to appreciate. See also 36 

Flage et al. (2014) for further discussions on subjective probability and its underlying background 37 

knowledge in a risk analysis and communication context. 38 

One issue which has not been addressed in earlier work on uncertainty treatment in risk diagrams is 39 

the potentially different strength of the evidence for assessing the probability and the consequences 40 
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of risk events. The classification scheme of Table 1 combines all evidence into one 1 

uncertainty/strength-of-evidence rating. In some contexts, it may be advisable to separate these, e.g. 2 

when the consequence severity can be accurately calculated using advanced engineering models, 3 

but when the occurrence probability is highly uncertain
9
. Following the conditions of Table 1, this 4 

would result in medium uncertainty, but this is not an accurate reflection of the status of the 5 

underlying evidence. 6 

Another issue with the classification scheme of Table 1 is the ambiguity in the definitions of the 7 

rating scheme as proposed in Flage and Aven (2009) and Amundrud and Aven (2012). In particular, 8 

there is linguistic ambiguity
10

 in relation to the delineation of the conditions under which each 9 

category is to be applied. This is due to fact that the combinations of the phrases “all of the 10 

following conditions…” and “one or more of the following conditions…” for low and high 11 

uncertainty and the phrase “conditions between those characterizing low and high…” in Table 1 12 

lead to not mutually exclusive categories. This is illustrated in Table 2, where the various 13 

combinations of the evidential support (assumptions, data, expert judgment and models) are varied 14 

in turn in relation to their level of support (good or poor evidence). For each combination, the 15 

uncertainty classification is determined based on the guidelines in different phrasings by Flage and 16 

Aven (2009), Amundrud and Aven (2012) and Goerlandt and Montewka (2015b). It is seen that in 17 

the former two, ambiguities arise as soon as one evidence category is rated as ‘poor’ or ‘good’. This 18 

undesirable ambiguity is removed by the phrasing applied in the latter phrasing, but then all but two 19 

combinations lead to a ‘medium’ rating, which diminishes the usefulness of the assessment. Finally, 20 

in all variations of the classification scheme, it is not clear how to deal with cases where not all 21 

evidential categories are available as a basis for the probability or consequence assessment
11

. 22 

Table 2: Uncertainty rating classification scheme, based on Flage and Aven (2009) 23 

Case A D EJ M U1 U2 U3 Case A D EJ M U1 U2 U3 

1 G G G G L L L 9 P G G G M/H L/M/H M 

2 G G G P M/H L/M/H M 10 P G G P M/H L/M/H M 

3 G G P G M/H L/M/H M 11 P G P G M/H L/M/H M 

4 G G P P M/H L/M/H M 12 P G P P M/H L/M/H M 

5 G P G G M/H L/M/H M 13 P P G G M/H L/M/H M 

6 G P G P M/H L/M/H M 14 P P G P M/H L/M/H M 

7 G P P G M/H L/M/H M 15 P P P G M/H L/M/H M 

8 G P P P M/H L/M/H M 16 P P P P H H H 

Note: A: assumptions | D: data | EJ: expert judgment | G: good evidence | M: model | P: poor evidence | U1: uncertainty 24 
rating as in Flage and Aven (2009) | U2: uncertainty rating as in Amundrud and Aven (2012) | U3: uncertainty rating as 25 
in Goerlandt and Montewka (2015b), interpretations and notes as in Table 1 26 

 27 

                                                 
9
 One example of such a case is waterway risk analysis: the accident probability and the conditions under which 

accidents occur are highly uncertain, but advanced time-domain simulation models exist for accurately determining the 

consequence (Goerlandt and Kujala, 2014; Ståhlberg et al., 2013). 
10

 Linguistic ambiguity concerns a statement which can be interpreted in two or more possible ways. It is one of the 

ambiguity types identified in risk assessments, see Johansen and Rausand (2015). 
11

 One could argue that the ambiguity in the phrasing for the evidence rating is a minor issue. The authors however 

disagree with such a view. Considering the intense debates about the nature and interpretation of probabilities as tools to 

measure risk (Aven and Reniers, 2013; Watson, 1994), it should be evident that all elements of a risk description should 

have a clear interpretation, not only the probabilities. The need for clear interpretation of qualitative measurement 

schemes is also stressed by e.g. Trochim and Donnely (2008). 
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4.1.3. Indicators for surprises / potential for large deviations 1 

Abrahamsen et al. (2014) account for the potential for large deviations between the risk as assessed 2 

based on the available evidence and the consequences as they may actually occur. Thus, this 3 

corresponds to the perspective of Appendix A to account for the potential for surprises in risk 4 

descriptions. Abrahamsen et al. (2014) consider these cases through assigning a “high” uncertainty 5 

in bubble diagrams. The other proposals of Section 3 do not consider this element. 6 

4.2. Strengths and weaknesses of earlier proposals 7 

Table 3 summarizes a number of strengths and weaknesses of the proposals outlined in Section 3. 8 

Reference is made to the above sections where the relevant issues are discussed in more detail.  9 

Table 3: Strengths and weaknesses of earlier proposals for visualizing uncertainty in risk diagrams 10 

Strength Weakness 

PCD with family of “risk curves” 

(Kaplan and Garrick, 1981; Paté-Cornell, 1996) 

 Simple visual representation.  Pf
*
, the focus of the risk analysis, is difficult to 

interpret (Section 4.1.1). 

 The use of second-order probabilities Ps(Pf
*
) is 

disputed, with many thinkers finding it a meaningless 

construct (Section 4.1.1). 

 Risk curves give impression that all uncertainty can 

be quantified, which is misleading. (Section 4.1.1.) 

 The evidential uncertainties beyond the quantification, 

e.g. due to poor assumptions or unreliable data, are 

not reflected in the risk picture. 

 The potential for deviations between the presented 

risk quantifications and the possible actual outcomes 

are not communicated. 

PCD with uncertainty boxes 

(Duijm, 2015) 

 Simple visual representation. 

 Communicates both expected values and uncertainty 

bounds for probabilities and consequences. 

 Not clear exactly which probabilities (Pf
*
 or Ps) are 

used as a basis of the PCD (Section 3.2). 

 Not clear exactly what the limits of the boxes mean 

(Section 3.2). 

 The evidential uncertainties beyond the quantification, 

e.g. due to poor assumptions or unreliable data, are 

not reflected in the risk picture. 

 The potential for deviations between the presented 

risk quantifications and the possible actual outcomes 

are not communicated. 

Bubble diagram 

(Abrahamsen and Aven, 2011; Amundrud and Aven, 2012) 

 Simple visual representation 

 Focus on subjective (knowledge-based) probabilities 

Ps allows for an easy interpretation (Appendix A) 

 The evidential uncertainties beyond the quantification, 

e.g. due to poor assumptions or unreliable data, are 

reflected in the risk picture in a simple way. 

 The potential for deviations between the presented 

risk quantifications and the possible actual outcomes 

are incorporated in a simple way. 

 Communicates only expected values of probabilities 

and consequences, while these may provide poor 

insight in the range of possible values (Section 4.1.1). 

 Uncertainty categorization system of Table 1 can lead 

to ambiguity and unclear grounds for selecting an 

uncertainty rating (Section 4.1.2). 

 Uncertainty categorization system of Table 1 does not 

differentiate between evidential uncertainties related 

to the probabilities and consequences (Section 4.1.2.) 

 Uncertainties related to the evidence and uncertainties 

related to the potential for surprises are mixed, which 

can conceal disputes about the locus of uncertainty. 
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PCD with prediction intervals and strength-of-evidence assessment (PCD-PISEA) 

(Abrahamsen et al., 2014; Aven, 2013) 

 Simple visual representation (2-dimenstional version) 

 Focus on subjective (knowledge-based) probabilities 

Ps allows for an easy interpretation (Appendix A) 

 Communicates both expected values and uncertainty 

bounds (prediction interval) for the consequences. 

 The evidential uncertainties beyond the quantification, 

e.g. due to poor assumptions or unreliable data, are 

reflected in the risk picture in a simple way. 

 The 3-dimensional representation can easily become 

visually cluttered if axis labels and markers, risk event 

identification numbers are shown in addition to the 

prediction intervals and strength-of-evidence bars. 

 Only communicates prediction interval for 

consequences, not for probabilities. 

 Strength-of-evidence categorization system of Table 1 

can lead to ambiguity and unclear grounds for 

selecting a rating (Section 4.1.2). 

 Strength-of-evidence categorization system of Table 1 

does not differentiate between evidential uncertainties 

related to the probabilities and consequences (Section 

4.1.2.) 

 The potential for deviations between the presented 

risk quantifications and the possible actual outcomes 

are not communicated (Section 4.1.3). 

 1 

Overall, it is found that the PCDS with family of “risk curves” has most drawbacks, whereas 2 

uncertainty boxes, bubble diagrams and PCDS-PISEA have attractive features, but also some 3 

weaknesses. The most favorable tool, which best captures the uncertainty-based risk perspectives as 4 

outlined in Appendix A, is the PCD-PISEA. However, some inconsistencies in the definition of the 5 

categories for the strength-of-evidence assessment and the lack of consideration for the potential for 6 

surprises leave room for improvements to these proposals. This is considered next. 7 

5. Proposals for representing uncertainty in risk diagrams 8 

Starting from an uncertainty-based risk perspective, justified in Section 2.2. and outlined further in 9 

Appendix A, following aspects are found necessary in the design of PCDS. First, clarity is needed 10 

about the type of probability applied in the diagrams. Here, use is made of subjective probabilities 11 

as these can be easily interpreted, see Appendix A. Second, consequences can be measured using 12 

nominal, ordinal or ratio scale numbers, and should be defined according to a suitable scale, see 13 

Trochim and Donnely (2008) for the issue of scaling. It is found advisable to use separate diagrams 14 

for different consequence groups (environmental, financial, injuries/fatalities), see Flage and Røed 15 

(2012) and Abrahamsen et al. (2014). In the proposals in Section 5.1 and 5.2, the consequence 16 

dimension applies an arbitrary scale. Third, expected consequences can be used to locate the risk 17 

event on the diagram, but it is advisable to apply additional markers (boxes, prediction intervals or 18 

similar) to communicate that these expected values do not appreciate the space of possible 19 

outcomes very well. Fourth, while they provide a similar message, a strength-of-evidence 20 

assessment is preferred over an uncertainty assessment, primarily because it is clearer what the 21 

focus of this assessment is. The evidence assessment can be made separately for the probability and 22 

consequence dimension, should allow for an unambiguous categorization and give consideration to 23 

the fact that not all evidence types are necessarily used for a given risk event. Finally, consideration 24 

can be given to the potential for surprises, i.e. to the possibility of a significant deviation between 25 

the assessed probability and consequence and the consequences as they really may occur. This can 26 

be considered through the assessment of ‘assumption deviation risk’ as described by Aven (2013), 27 

see Appendix B. 28 



15 

 

In addition to the above, further recommendations for using PCDS can be found in Duijm (2015) 1 

and Ale et al. (2015), e.g. the benefits of using continuous (i.e. ordinal or ratio) scales and the 2 

additional attractive features of logarithmic scales. It is reminded that PCDS are here intended to be 3 

used for visualizing as the result of an analysis, not as complete risk analysis tools, see Flage and 4 

Røed (2012) and Abrahamsen et al. (2014). 5 

5.1. Proposal 1: PCDS with Tukey box plots and strength-of-evidence 6 

assessments (PCDS-USEA1) 7 

A first proposal for visualizing uncertainty in probability-consequence diagrams is shown in 8 

Figure 6. It applies Tukey box plots for communicating the uncertainty about the consequences 9 

and/or about the event occurrence, combined a qualitative strength-of-evidence assessment. 10 

Tukey box plots are exploratory graphics for showing the distribution of a variable. They are quick 11 

to interpret, easy to understand and provide insight in some main characteristics of a distribution, 12 

including the minimum and maximum (excluding outliers), the median and lower and upper 13 

quartile, see McGill et al. (1978) for further details. The use of box plots is especially useful if the 14 

results of the quantitative analysis are derived by a probabilistic model such as Bayesian Networks, 15 

such that distributions over the outcomes are inherent in the modeling approach. In the left pane of 16 

Figure 6, the box plots are one-dimensional over the consequences, whereas in the right pane, the 17 

box plot information is 2-dimensional. As such, the Tukey box plots are similar to the uncertainty 18 

boxes (Section 3.2) and the prediction intervals (Section 3.4), but provide more detailed insight in 19 

the distributions. 20 

 21 

Figure 6: PCD with Tuckey Box Plots and strength-of-evidence assessment 22 
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The qualitative strength-of-evidence assessment is performed using a 3-level categorization of each 1 

applicable evidence category, namely data, expert judgments, models and assumptions. A simple 2 

traffic light symbolism is applied to rate each evidence category separately, whereas non-applicable 3 

evidence categories are marked in gray. In the left pane of Figure 6, the evidence for probability and 4 

consequence is combined, whereas in the right pane these are kept separate. Separating these 5 

evidence types serves three purposes. First, the ambiguities in defining a categorization which 6 

combines all three, as discussed in Section 4.1.2., are avoided. Second, it is clarified which 7 

evidential types are available for the judgment of the various risk events, a feature which is 8 

obscured in the PCDS-PISEA of Section 3.4. Third, it allows the decision maker, rather than the 9 

analyst, to judge the overall evidential strength for each risk event. This can be important, because it 10 

is known that certain people choose to rely more readily on data and models than on judgments, and 11 

vice versa (Glendon et al., 2006).  12 

The selection of the appropriate rating for the evidence category is done using following procedure. 13 

For each risk event, each evidence type is assessed using a set of evidential qualities. These 14 

qualities are described in Table 4 for the data and model evidence types, based on suggestions by 15 

Goerlandt and Montewka (2015b). Table 5 shows the qualities of the judgments and assumptions 16 

evidence types, based on Flage et al. (2014) and Boone et al. (2010). 17 

Table 4: Evidential characteristics and criteria for strength-of-evidence rating 18 

for data and model evidence types 19 

Evidence type Strong evidential characteristics Weak evidential characteristic 

Data   

 Quality Low number of errors 

High accuracy of recording 

High reliability of data source 

High number of errors 

Low accuracy of recording 

Low reliability of data source 

 Amount Much relevant data available Little data available 

Models   

 Empirical validation Many different experimental tests 

performed 

Existing experimental tests agree well with 

model output 

No or little experimental confirmation 

available 

Existing experimental tests show large 

discrepancy with model output 

 Theoretical viability Model expected to lead to good predictions Model expected to lead to poor predictions 

 20 

Table 5: Evidential characteristics and criteria for strength-of-evidence rating 21 

for judgment and assumption evidence types 22 

Evidence type Strong Medium Weak 

Judgments Broad intersubjectivity: 

more than 75% of peers 

support the judgment 

Moderate intersubjectivity: 

between 25% and 75% of 

peers support the judgment 

Predominantly subjective: 

less than 25% of peers 

support the judgment 

Assumptions    

 Agreement among peers Many (more than 75%) 

would have made the same 

assumption 

Several (between 25% and 

75%) would have made 

the same assumption 

Few (less than 25%) 

would have made the same 

assumption 

 Influence on results The assumption has only 

local influence 

The assumption has wider 

influence in the analysis 

The assumption greatly 

determines the results of 

the analysis 

 23 
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Using the characteristics of the data (quality and amount) and models (empirical validation and 1 

theoretical viability), a strength of evidence rating for these evidence types is determined as follows. 2 

First, it is decided based on the descriptions of strong and weak evidential characteristics, which 3 

categories apply for the quality, amount, empirical validation and theoretical viability. Then, the 4 

strength of evidence is determined as the average rating of the relevant characteristics of the data 5 

and models evidence categories, respectively. 6 

A similar approach is taken for the judgments and assumptions. Here, the evidence characteristics 7 

are rated as strong, medium or weak. For the assumptions, the average of the ratings is taken as the 8 

strength of evidence. Combinations involving ‘medium’ and another rating (‘strong’ or ‘weak’), get 9 

the rating of the latter as the rating of the strength of evidence. 10 

5.2. Proposal 2: PCDS with uncertainty intervals, strength-of-evidence 11 

assessments and assessments of assumption deviation risks (PCDS-12 

USEA2) 13 

A second proposal for visualizing uncertainty in probability-consequence diagrams is shown in 14 

Figure 7. It applies uncertainty intervals, strength-of-evidence assessments and assessments of 15 

assumption deviation risks. These are visualized using bubbles, which are positioned on the location 16 

of the expected value of probability and consequence. These bubbles are segmented, where each 17 

segment is colored using a simple traffic light analogy. In the left pane of Figure 7, the evidence for 18 

probability and consequence is combined, whereas in the right pane these are kept separate in two 19 

concentric segments. At the center of the bubble, a colored star-shaped icon is used to convey 20 

information concerning the assumption deviation risk assessment. 21 

Together, these graphical elements provide a clear insight in the uncertainty of event occurrence 22 

and consequence, the strength of the evidence base for assessing these uncertainties, and the 23 

potential deviations compared to the assessed uncertainties. 24 

Uncertainty intervals have already been introduced in Section 3.4. The strength-of-evidence 25 

assessments for data, models and judgments are performed using the classification schemes 26 

proposed in Section 5.1. The assumption deviation risk methodology (Aven, 2013) is outlined in 27 

Appendix B. It focuses on the magnitude of the deviations which could occur to the results of the 28 

risk analysis, due to the assumptions made in the analysis. In the context of this paper, it is applied 29 

as follows. First, all main assumptions on which the assessment of the quantification of the risk 30 

event is based, are identified. Subsequently, these assumptions are rated using the assumption 31 

deviation risk method. Finally, the maximum rating of all assumptions underlying the measurement 32 

of a specific risk event is taken, as this can cause most deviation to the basic risk picture. This rating 33 

is visually represented as in Figure 7. 34 
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 1 

Figure 7: PCD with strength of evidence and assumption deviation risk assessment 2 

 3 

6. Conclusions 4 

In this paper, the assessment and visualization of uncertainty in PCDS has been considered. After 5 

justifying why uncertainty needs to be considered in such diagrams, a relatively recently proposed 6 

uncertainty-based risk perspective is adopted as the basis for considering the issue of uncertainty 7 

visualization. 8 

A review of existing proposals for representing uncertainty in PCDS is made, including the family 9 

of “risk curves” approach, uncertainty boxes, bubble diagrams and PCDS with prediction intervals 10 

and strength-of-evidence assessments (PCD-PISEA). A discussion on the elements found in these 11 

proposals has revealed a number of strengths and weaknesses of these. Overall, the PCS-PISEA 12 

approach was found most favorable. However, due to some inconsistencies in the strength-of-13 

evidence rating and the lack of inclusion of the potential for surprises, some modifications to this 14 

approach have been suggested. 15 

The new approaches focus directly on the strength-of-evidence, which is treated separately for 16 

different evidence types. This is done to alleviate the inconsistencies in earlier proposals, and 17 

especially to provide more direct insight in the types of evidence supporting the quantitative 18 
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uncertainty assessments of probabilities and consequences. In another proposal, an assumption 1 

deviation risk assessment is visualized along with a segmented strength-of-evidence assessment. 2 

Abbreviations 3 

A: event | ADR: assumption deviation risk | C: consequence | E[C|A]: expected consequences in 4 

case an event occurs | FN-curve: curve showing the frequency of exceedance (F) of a given number 5 

of fatalities (N) | K: knowledge on which the analysis is based | PCD: probability-consequence 6 

diagram | PCD-USEA1: probability-consequence diagram with Tukey box plots and strength-of-7 

evidence assessments | PCD-USEA2: probability-consequence diagram with uncertainty intervals, 8 

strength-of-evidence assessments and assessments of assumption deviation risks | PCD-PISEA: 9 

probability-consequence diagram with prediction intervals and strength-of-evidence assessments | 10 

Pf: frequentist probability | Ps: subjective (knowledge-based) probability | Q: measure of uncertainty 11 

| QRA: quantitative risk analysis | RM: risk matrix | SE: strength-of-evidence | U: uncertainty 12 
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Appendix A 38 

In an uncertainty-based risk perspective, focus is on events A, consequences C and the uncertainties 39 

U related to their occurrence. A risk description is made by specifying the relevant events and 40 

consequences, and by measuring the uncertainties using an uncertainty measure Q. The most 41 

commonly used quantitative tool for describing the uncertainties is probability P, but others exist, 42 

e.g. imprecise (interval) probabilities and representations based on theories of evidence, see Zio and 43 

Pedroni (2013) for an overview. Other descriptors of uncertainty can e.g. be the possibility of 44 

surprises or deviations from the quantified uncertainty measures (Qqu), which can be described 45 

using qualitative uncertainty measures (Qql). The specification of the events and consequences leads 46 

to a set of quantities of interest Z, e.g. the societal costs or the number of fatalities. The entire 47 

analysis is conditional to the available knowledge K, which contains uncertainties U as well. This 48 

knowledge base can be described in different ways, e.g. by measures expressing the strength of 49 

evidence SE. 50 
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In the current proposals for visualizing uncertainty in PCDS, following risk perspective is used: 1 

    (          |    (Eq. A.1) 2 

    (              |    (Eq. A.2) 3 

Where Ps is a subjective (knowledge-based) probability, which is a measure of an assessor’s degree 4 

of belief (e.g. about the occurrence, or not, of a given event). This probability is a subject-bound 5 

measurement based on a given background knowledge, and can be interpreted with reference to an 6 

uncertainty standard (Aven and Reniers, 2013; Lindley, 2006). Depending on the strength of the 7 

knowledge base, the probability can be understood as entirely subjective to broad intersubjectively 8 

objective. 9 

Appendix B 10 

The assumption deviation risk assessment is introduced in Aven (2013), based on which the below 11 

outline is made. The identified assumptions on which the analysis is based are converted to a set of 12 

uncertainty factors. These uncertainty factors are given an assumption deviation risk score, which 13 

represents the criticality/importance of the assumption. This assessment captures following aspects: 14 

i) the deviation of the analysis due to the assumptions, ii) a measure of the uncertainty of this 15 

deviation and iii) the knowledge on which this assessment is based. 16 

The magnitude of deviation is classified in low, medium and high. These respectively correspond to 17 

situations where maximum plausible changes in base values result in outcome changes of less than 18 

an order of magnitude (low), about an order of magnitude (medium) and two or more orders of 19 

magnitude (high). The degree of belief about the deviation occurring is assessed in low (negligible), 20 

medium (Ps=0.01) and high categories (Ps=0.5). Finally, the strength-of-knowledge for assessing 21 

the magnitude of deviation and the probability of deviation occurrence is rated in low, medium and 22 

high. 23 

Based on the rating for the magnitude of deviation and its occurrence probability, a low, medium or 24 

high criticality rating is assigned to the assumption. If the strength-of-knowledge for this 25 

assumption assessment is low or medium, the basic rating of the assumption criticality is moved up 26 

one category, i.e. from low to medium and from medium to high. 27 


