
Topology and its Applications 156 (2009) 2088–2100
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Function spaces in metrically generated theories

E. Vandersmissen a,∗,1, A. Van Geenhoven b,2

a Vrije Universiteit Brussel, Vakgroep Wiskunde, Pleinlaan 2, 1050 Brussel, Belgium
b Universiteit Antwerpen, Middelheimlaan 1, 2020 Antwerpen, Belgium

a r t i c l e i n f o a b s t r a c t

MSC:
18B99
54B30
54C35
54D99

Keywords:
Metrically generated theory
Function space
Completeness
Precompactness
Ascoli theorem

The theory of metrically generated constructs provides us with an excellent setting for the
study of function spaces. In this paper we develop a function space theory for metrically
generated constructs and, by considering different metrically generated constructs, we
capture interesting examples. For instance, for uniform spaces we retrieve the uniformity of
uniform convergence and its generalization to Σ-convergence and for UG-spaces we obtain
a quantified version of these structures. Our theory also allows for many applications, in
particular we are able to characterize the complete subspaces of these function spaces and
we succeed in producing an appropriate Ascoli theorem.
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1. Introduction

The setting for the classical theory of function spaces can be found, for instance, in Bourbaki [2]. Given a set (or topo-
logical space) X and a uniform space Y the uniformity of uniform convergence on Y X is the starting point for a rich theory
including a generalization to Σ-convergence. Here Σ stands for a collection of subsets of X , which, in case X is a topolog-
ical space is often determined by topological properties of X . This theory also includes a study of the complete subsets of
the function space Y X and a characterization of its precompact subsets, where the latter characterization is known as the
classical Ascoli theorem.

By [10] we know that a uniformity on Y can be described by a gauge D of pseudometrics. This gauge has to fulfill the
saturation condition ξU (D) = D, where ξU (D) is defined as the set of all pseudometrics d satisfying

∀ε > 0, ∃d1, . . . ,dn ∈ D, ∃δ > 0:
n

sup
i=1

di(x, y) < δ ⇒ d(x, y) < ε.

Using this description of uniform spaces, the uniformity of uniform convergence on Y X is given by ξU ({γd | d ∈ D}), where
γd is the pseudometric defined as

γd( f , g) = sup
x∈X

d
(

f (x), g(x)
)
.

In this paper we show that this process of producing a natural function space on Y X out of the given saturated gauge
on Y is in fact applicable in more general cases, where the gauge on Y can consist of other kinds of ‘metrics’, and where
the saturation on the gauge can be different from ξU .
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An appropriate setting to deal with this topic is provided by so-called metrically generated theories [5], which will be
explained in the next section. Roughly speaking, metrically generated constructs are topological constructs which are gen-
erated by their metrizable objects. Every metrically generated construct can be seen as a construct with objects structured
by collections of certain generalized metrics which satisfy some saturation condition. This saturation condition moreover
fully determines the construct. We will develop function space structures on Y X where the domain X is an object in one
metrically generated construct X and the codomain Y is an object in another metrically generated construct Y.

The main purpose of this paper is to single out the essential facts on the metrically generated constructs involved
in order to produce an equally rich theory of function spaces allowing a generalization to Σ-convergence, a study of its
complete subsets and a characterization of its precompact subsets. We show that a theory of function spaces with a type
of uniform convergence can be developed imposing only two mild conditions. This generality allows for many applications.
First of all, by considering different kinds of generalized metric spaces one obtains function space theories not only for the
classical case of all (generalized) metrics but also for other classes like for instance the class of all ultrametrics. In particular
the case of non-Archimedean uniformities is captured in this way.

Second, by varying the theories one also captures for example the quantified version of uniform convergence, as well as
the related Σ-convergence, and a new function space theory for Lipschitz spaces [8].

Moreover since the setting of metrically generated theories has proven to be suitable for the study of completeness [6],
under some further conditions we obtain a description of the complete subsets of Y X for uniform or Σ-convergence. In
particular we investigate spaces of morphisms. Finally by introducing suitable notions of “precompactness” and “equicon-
tractivity” which naturally also depend on the theories under consideration, we prove an appropriate Ascoli theorem.

2. Metrically generated theories

The framework we will be working in is that of metrically generated constructs as introduced in [5]. In this section
we gather the preliminary material to explain these constructs. Afterwards, we pay attention to instances of metrically
generated constructs which will frequently appear in the sequel. We use categorical terminology as developed in [1].

A function d : X × X → [0,∞] is called a quasi-pre-metric if it is zero on the diagonal, we will drop “pre" if d satisfies
the triangle inequality and we will drop “quasi" if d is symmetric. Denote by Met the construct of quasi-pre-metric spaces
and contractions (sometimes also called non-expansive maps).

A base category C is a full and isomorphism-closed concrete subconstruct of Met which is closed under initial morphisms
and contains all Met-indiscrete spaces. In this paper we will mainly focus on base categories C consisting of metric spaces,
such as the base category C�,s consisting of all metric spaces and Cμ , the base category consisting of all ultrametric spaces.
Sometimes we will also have to deal with C� , the category of all quasi-metric spaces. If (X,d) is a C -object, we call d a
C -metric and the fibre of all C -metrics on X is denoted by C(X). For any collection D of quasi-pre-metrics on a set X we
put D ↓ := {e ∈ Met(X) | ∃d ∈ D: e � d}. A downset in Met(X) is a non-empty subset D such that D ↓= D. We say that a
subset B of Met(X) is a basis for D if B ↓= D.

Given a base category C , a topological construct X is called C -metrically generated if there exists a concrete functor
K : C → X such that K preserves initial morphisms and K(C) is initially dense in X. All C -metrically generated constructs
have an isomorphic description with objects and morphisms expressed in terms of C -metrics as we will see next.

MC is the construct with objects pairs (X, D) where X is a set and D is a downset in Met(X) with a basis consisting
of C -metrics. D is called a C -meter (on X ) and (X, D) a C -metered space. The fibre of C -meters on X is denoted by MC (X).
If (X, D) and (X ′, D′) are C -metered spaces, then f : (X, D) → (X ′, D′) is a contraction if d′ in D′ implies d′ ◦ f × f ∈ D.
Note that MC is a topological construct. The initial structure of a source ( f j : X → (X j, D j)) j∈ J is given by the meter
{d ◦ f j × f j | j ∈ J ,d ∈ D j}↓.

Concretely coreflective subconstructs of MC can be described by means of expanders. We call ξ an expander on MC

if for any set X and any C -meter D on X , ξ provides us with a C -meter ξ(D) on X in such a way that ξ is extensive
(D ⊂ ξ(D)), monotone (D ⊂ D′ ⇒ ξ(D) ⊂ ξ(D′)), idempotent (ξ(ξ(D)) = ξ(D)) and if f : Y → X and D ∈ MC (X), then
ξ(D) ◦ f × f ⊂ ξ(D ◦ f × f ↓). Given an expander ξ on MC , we define MC

ξ as the full concretely coreflective subconstruct

of MC with objects those C -metered spaces (X, D) for which ξ(D) = D. All concretely coreflective subconstructs of MC

are captured in this way. For an MC -object (X, D), its MC
ξ -coreflection is exactly given by (X, ξ(D)). Given an MC

ξ -object

(X, D), we will say that B ⊂ C(X) is a ξ -basis for D if ξ(B ↓) = D.
If we have an MC

ξ -object (X, D), and a subset A of X , the MC
ξ -subspace structure on A is given by ξ(D|A×A), where

D|A×A = {d|A×A | d ∈ D}.
The main result of [5] states that a topological construct is C -metrically generated if and only if it is concretely iso-

morphic to MC
ξ for some expander ξ on MC . In this paper we will only consider expanders implying saturation for finite

suprema. We will now discuss the theories which will appear in the sequel.

2.1. The expander ξU on MC

Uniform theories are essentially determined by the expander ξU , defined as follows. Let (X, D) ∈ MC .
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d ∈ ξU (D) ⇔ ∃e ∈ C(X): d � e and ∀ε > 0, ∃d1, . . . ,dn ∈ D, ∃δ > 0, ∀x, y ∈ X:
n

sup
i=1

di(x, y) < δ ⇒ e(x, y) < ε.

If we apply ξU to MC�,s
, we find a category which is concretely isomorphic to the construct of uniform spaces Unif. Applying

the expander ξU to the base categories C = C� and Cμ leads to isomorphic descriptions of the construct of quasi-uniform
spaces qUnif [7] and the construct of non-Archimedean uniform spaces naUnif [14].

The isomorphism between Unif and MC�,s

ξU
gives occasion to a characterization of uniform spaces by means of ξU -

saturated C�,s-meters. Given a uniform space (X, U ), the corresponding MC�,s

ξU
-structure on X is given by

{
d ∈ C�,s(X)

∣∣ Ud ⊂ U
}↓ .

Conversely, with an MC�,s

ξU
-object (X, D) we associate the uniform space (X, U ) where the uniformity U is generated by

taking

V d
ε = {

(x, y) ∈ X × X
∣∣ d(x, y) < ε

}

with d ∈ D and ε > 0 as subbasic sets. By replacing C�,s and Unif by C� and qUnif, we obtain the transitions which
describe the isomorphism between qUnif and MC�

ξU
.

In the sequel we will make no distinction between Unif and MC�,s

ξU
(resp. qUnif and MC�

ξU
) and we will frequently describe

uniform spaces by means of ξU -saturated C�,s-meters (resp. quasi-uniform spaces by means of ξU -saturated C�-meters).

2.2. The expander ξT on MC

Topological theories are essentially determined by the expander ξT , defined as follows. Let (X, D) ∈ MC .

d ∈ ξT (D) ⇔ ∃e ∈ C(X): d � e and ∀x ∈ X, ∀ε > 0, ∃d1, . . . ,dn ∈ D, ∃δ > 0, ∀y ∈ X:
n

sup
i=1

di(x, y) < δ ⇒ e(x, y) < ε.

When applied to MC respectively with C = C� , C�,s and Cμ , the expander ξT gives rise to constructs MC
ξ that are iso-

morphic to the construct of all topological spaces Top, the construct of completely regular topological spaces CReg and
the construct of zero-dimensional topological spaces ZDim. For a topological space (X, T ), its isomorphic copy in MC�

ξT
is

given by the C�-metered space (X, {d ∈ C�(X) | Td ⊂ T }↓). Conversely, the topological space associated with an MC�

ξT
-object

(X, D) is given by (X, T ) where T = ∨
p∈P T p when P is a C�-basis of D. By replacing C� and Top by C�,s and CReg, we

obtain the transitions which describe the isomorphism between CReg and MC�,s

ξT
.

In the sequel we will frequently use the equivalent characterization of topological spaces (resp. completely regular topo-
logical spaces) by means of ξT -saturated C�-meters (resp. C�,s-meters) to denote the objects of Top (resp. CReg).

2.3. The expanders ξA and ξU G on MC

The category of all approach spaces Ap and the construct of uniform approach spaces UAp, both with contractions,
were introduced in [11] as quantified counterparts of the constructs Top and CReg. The constructs qUnif and Unif have as
quantified counterparts the construct of all quasi-uniform gauge spaces qUG and the construct of all uniform gauge spaces
UG in the sense of [13,16]. These constructs are all metrically generated, and are given by the expanders ξA and ξU G . Let
(X, D) ∈ MC .

d ∈ ξA(D) ⇔ ∃e ∈ C(X): d � e and ∀x ∈ X, ∀ε > 0, ∀ω < ∞, ∃d1, . . . ,dn ∈ D, ∀y ∈ X:

e(x, y) ∧ ω � n
sup
i=1

di(x, y) + ε,

d ∈ ξU G(D) ⇔ ∃e ∈ C(X): d � e and ∀ε > 0, ∀ω < ∞, ∃d1, . . . ,dn ∈ D, ∀x, y ∈ X:

e(x, y) ∧ ω � n
sup
i=1

di(x, y) + ε.

When applied to MC�
and MC�,s

, ξA gives rise to Ap and UAp. If we apply ξU G to MC�
and MC�,s

we retrieve isomorphic
descriptions of qUG and UG.
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2.4. The expander ξD on MC

The theories of generalized metric spaces are given by the following expander. Let (X, D) ∈ MC .

d ∈ ξD(D) ⇔ ∃e ∈ C(X): d � e and e �
∨

D,

where
∨

D = supd′∈D d′ . By applying ξD on MC with C = C� , C�,s and Cμ , we get isomorphic descriptions of the constructs
C� , C�,s and Cμ themselves.

2.5. The expander ξL on MC

The category of Lipschitz spaces is built on the definition of Lipschitz structures as given by Fraser in [8]. Fraser in-
troduces Lipschitz structures in two different equivalent ways. A first description is given by collections of C�,s-metrics,
a second one is given by means of sequences of entourages of the diagonal. His description by means of collections of
C�,s-metrics is already very similar to our representation of objects of metrically generated constructs.

Definition. A Lipschitz structure on a set X is a non-empty collection L of C�,s-metrics on X for which

• d1,d2 ∈ L ⇒ d1 + d2 ∈ L,
• d ∈ L, e is a C�,s-metric for which e � d ⇒ e ∈ L,
• min{d,1} ∈ L ⇒ d ∈ L.

We call (X, L) a Lipschitz space.

We define a relation on the set C�,s(X) as follows:

e � d ⇔ ∃δ, K > 0, ∀x, y ∈ X: d(x, y) < δ ⇒ e(x, y) � Kd(x, y).

A Lipschitz function between Lipschitz spaces is then defined as a function f : (X, L) → (X ′, L′) for which ∀e ∈ L′ , ∃d ∈ L:
e ◦ f × f � d. Since it is straightforward to check that d ∈ L and e � d, with e a C�,s-metric, implies e ∈ L, we can see that
f is a Lipschitz function if and only if ∀e ∈ L′: e ◦ f × f ∈ L.

It turns out that Lip is a C�,s-metrically generated theory with the following expander. Let (X, D) ∈ MC .

d ∈ ξL(D) ⇔ ∃e ∈ C(X): d � e and ∃d1, . . . ,dn ∈ D, ∃δ, K > 0, ∀x, y ∈ X:
n

sup
i=1

di(x, y) < δ ⇒ e(x, y) < K
n

sup
i=1

di(x, y).

The corresponding concrete functor K is given by

K : C�,s → Lip : (X,d) �→ (
X, M(d)

)
,

where M(d) := {e ∈ C�,s(X) | e � d}.

2.6. The expander β on MC

In the course of our investigations we will, for technical reasons, need to consider the expander β on MC which is a
further adaptation of ξU G . Let (X, D) ∈ MC .

d ∈ β(D) ⇔ ∃e ∈ C(X): d � e and ∀ε > 0, ∃d1, . . . ,dn ∈ D, ∀x, y ∈ X:

e(x, y) � n
sup
i=1

di(x, y) + ε.

3. Uniform convergence on Y X

In this section we will develop a technique to construct function space structures of “uniform convergence” in metrically
generated constructs MC

ξ with C ⊂ C�,s . We will study the relationship between this function space structure and the

uniformity of uniform convergence. Therefore we consider the expanders ξU and ξT on MC�,s
and we make use of the

natural transition which interprets an MC
ξ -object (X, D) as an MC�,s

-object and sends it to the uniform space (X, ξU D).
This transition is given by the functor GU , which is defined as follows:
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GU : MC
ξ Unif,

(Y , D) (Y , ξU ◦ e(D)),

(Y , D)
f−→ (Y ′, D′) (Y , ξU ◦ e(D))

f−→ (Y ′, ξU ◦ e(D′)),

where e(D) equals the meter D itself, but interpreted as a C�,s-meter, so that we can apply the MC�,s
-expander ξU on it

to obtain a uniformity.
Note that ξT ◦e(D) represents the underlying topology of the uniformity ξU ◦e(D). Whenever it is clear from the context,

we write ξU D and ξT D instead of ξU ◦ e(D) and ξT ◦ e(D).
Given sets X and Y and a function d ∈ [0,∞]Y ×Y , we define

γ X
d : Y X × Y X → [0,∞]: ( f , g) �→ sup

x∈X
d
(

f (x), g(x)
)
.

Note that if (Y ,d) belongs to Met, then the source

(
evx : (Y X , γ X

d

) → (Y ,d): f �→ f (x)
)

x∈X

is a product in Met. When no confusion can occur we simply denote the function γ X
d by γd .

In order to rely on this construction to build a function space structure in a metrically generated category MC
ξ , we restrict

to those base categories C ⊂ C�,s for which the following assumption holds:

[A1] for sets X, Y and for d ∈ [0,∞]Y ×Y : d ∈ C(Y ) ⇒ γd ∈ C
(
Y X )

.

The base categories C�,s and Cμ satisfy this condition.

Definition 3.1. Let a base category C ⊂ C�,s which satisfies [A1] and an expander ξ on MC be given. If X is a set and
(Y , D) ∈ MC

ξ , then we define (Y X , D X,ξ
u ) to be the MC

ξ -object, with D X,ξ
u the ξ -saturation of the meter {γ X

d | d ∈ D}↓.

Whenever it is clear from the context, we omit the superscripts ξ and X and write Dξ
u or Du instead of D X,ξ

u .

In general we cannot restrict to a ξ -basis of D when constructing the function space structure D X,ξ
u . In order to remedy

this we put an assumption on the expander ξ :

[A2] for sets X, Y , for B ⊂ C(Y ) and e ∈ C(Y ): e ∈ ξ(B ↓) ⇒ γe ∈ ξ
({γd | d ∈ B}↓)

.

The following result shows that the space (Y X , D X,ξ
u ) is unambiguously determined by the choice of a ξ -basis for D if the

expander ξ satisfies [A2].

Proposition 3.2. Let C ⊂ C�,s be a base category which satisfies [A1] and let ξ be an expander on MC which satisfies [A2]. If X is a
set and (Y , D) ∈ MC

ξ has ξ -basis B, then

D X,ξ
u = ξ

({γd | d ∈ B}↓)
.

Proof. By [A2] we have that {γd | d ∈ D} ⊂ ξ({γd | d ∈ B}↓). Using the fact that ξ is idempotent and monotone the result
follows. �
Examples 3.3.

(1) ξD , ξU , ξU G , ξL and β on MC�,s
all satisfy condition [A2], but ξT and ξA do not satisfy [A2].

(2) If C ⊂ C�,s is a base category which satisfies [A1] and ξ is an expander on MC�,s
which satisfies [A2], then the

modification of ξ to MC also satisfies [A2]. Hence the expanders ξD , ξU , ξU G , ξL and β on MCμ
, with Cμ the base

category consisting of ultrametrics, also satisfy [A2].

As we will see now, for most theories MC
ξ there exists a strong relationship between the structure D X,ξ

u on Y X and

the uniformity of uniform convergence (ξU D)
X,ξU
u on Y X derived from the uniformity ξU D on Y . For this purpose, we first

recall the following proposition concerning uniform spaces.

Proposition 3.4. For any set X and (Y , D) ∈ Unif we have that the uniformity D X,ξU
u on Y X is precisely the uniformity of uniform

convergence on Y X derived from the uniformity D on Y .
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Proof. Let U be the collection of entourages corresponding to the uniform space (Y , D). Recall from [2] that the uniformity
of uniform convergence Uu on Y X derived from the uniformity U on Y is generated by the subbase {W (V ) | V ∈ W }, where
W is a subbase of U and

W (V ) = {
( f , g) ∈ Y X × Y X

∣∣ ∀x ∈ X:
(

f (x), g(x)
) ∈ V

}
.

Since {V d
ε | d ∈ D, ε > 0} is a subbase of U and W (V d

ε/2) ⊂ V γd
ε ⊂ W (V d

ε ) for all d ∈ D and ε > 0, it follows that the meter

D X,ξU
u and the collection of entourages Uu define the same uniformity. �

Now consider for every theory MC
ξ and every set X the following functor:

FX
ξ : MC

ξ MC
ξ ,

(Y , D) (Y X , D X,ξ
u ),

(Y , D)
f−→ (Y ′, D′) (Y X , D X,ξ

u )
FX
ξ f−−−→ (Y ′X , D′ X,ξ

u ),

where FX
ξ f (g) := f ◦ g , for any g ∈ Y X . The following proposition states that for every theory MC

ξ and every set X the
diagram

MC
ξ

GU

FX
ξ MC

ξ

GU

Unif
FX
ξU

Unif

commutes. Recall that ξU is considered as an expander on MC�,s
.

Proposition 3.5. If C ⊂ C�,s is a base category which satisfies [A1] and if ξ is an expander on MC for which ξU ◦ e ◦ ξ = ξU ◦ e then
for any set X and (Y , D) ∈ MC

ξ we have that

(1) ξU (D X,ξ
u ) coincides with the uniformity of uniform convergence on Y X derived from the uniformity ξU D on Y ;

(2) ξT (D X,ξ
u ) coincides with the topology of uniform convergence on Y X derived from the uniformity ξU D on Y .

Proof. It is sufficient to prove the first statement. From the condition on ξ it follows that ξU (D X,ξ
u ) = (ξU (D))

X,ξU
u and the

result follows. �
For ξ = ξU G , ξL or β on MC the condition that ξU ◦ e ◦ ξ = ξU ◦ e is satisfied. If ξ = ξU G we retrieve function space

structures which were studied before in [12,16]. For general ξ on MC we call D X,ξ
u the MC

ξ -structure of uniform convergence

on Y X derived from (Y , D).

4. Σ-convergence on Y X

From now on C always denotes an arbitrary base category contained in C�,s , satisfying [A1], and ξ stands for an arbitrary
expander on MC , satisfying [A2].

Given sets X and Y and a subset A of X , consider the restriction map rA : Y X → Y A defined by rA( f ) = f |A . For a given
function d ∈ [0,∞]Y ×Y , let γd,A : Y X × Y X → [0,∞] be defined as

γd,A = γ A
d ◦ rA × rA .

Lemma 4.1.

(1) For sets X and Y , for A ⊂ X and for d ∈ [0,∞]Y ×Y we have that

d ∈ C(Y ) ⇒ γd,A ∈ C
(
Y X )

.

(2) For sets X and Y , for A ⊂ X and for B ⊂ C(Y ) and e ∈ C(Y ) we have that

e ∈ ξ(B ↓) ⇒ γe,A ∈ ξ
({γd,A | d ∈ B}↓)

.
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Proof. In order to prove (1) note that rA : (Y X , γd,A) → (Y A, γ A
d ) is initial in Met. By condition [A1] the space (Y A, γ A

d )

belongs to C . Since C is closed under Met-subobjects also (Y X , γd,A) belongs to C .
In order to prove (2) let B ⊂ C(Y ), e ∈ C(Y ) and e ∈ ξ(B ↓). Again consider the function rA : Y X → Y A . Further let

D = {γ A
d | d ∈ B}↓. Since ξ is an expander we have ξ(D) ◦ rA × rA ⊂ ξ(D ◦ rA × rA ↓). By condition [A2] we have γ A

e ∈ ξ(D),
hence in view of γe,A = γ A

e ◦ rA × rA we can conclude that γe,A ∈ ξ({γ A
d ◦ rA × rA | d ∈ B}↓) = ξ({γd,A | d ∈ B}↓). �

Definition 4.2. If X is a set, Σ ⊂ 2X is a cover of X , and if (Y , D) is an MC
ξ -object then we define (Y X , Dξ

Σ) to be the

MC
ξ -object with Dξ

Σ the initial lift of the source (rA : Y X → (Y A, D A,ξ
u ))A∈Σ in MC

ξ .

Whenever it is clear from the context we write DΣ instead of Dξ
Σ .

The meter Dξ
Σ can be described in terms of an arbitrary ξ -basis of D.

Proposition 4.3. Given a set X , a cover Σ ⊂ 2X of X and an MC
ξ -object (Y , D) with ξ -basis B, we have that

Dξ
Σ = ξ

({γd,A | d ∈ B, A ∈ Σ}↓ )
.

Proof. Since the meters (D A,ξ
u )A∈Σ do not depend on the choice of a particular ξ -basis for D, without loss of generality we

can use the same ξ -basis B for the construction of each of them. The initial structure Dξ
Σ is the ξ -saturated meter

Dξ
Σ = ξ

({
e ◦ rA × rA

∣∣ A ∈ Σ, e ∈ D A,ξ
u

}↓ )

= ξ
({

γ A
d ◦ rA × rA

∣∣ A ∈ Σ, d ∈ B
}↓ )

= ξ
({γd,A | d ∈ B, A ∈ Σ}↓ )

. �
We write 〈Σ〉 for the ideal in (2X ,⊂) generated by Σ, i.e. the smallest subset of 2X containing Σ and closed under the

operations of taking finite unions and subsets. Since the expander ξ saturates for finite suprema it follows that D〈Σ〉 = DΣ .
This means that, without loss of generality, we can suppose that Σ is an ideal in (2X ,⊂). From now on we will also require
that Σ is a cover of X .

Remarks 4.4.

(1) If we choose Σ to be {X} (or equivalently Σ = 2X ), then Dξ
Σ = Dξ

u .
(2) If Σ ⊂ Σ ′ ⊂ 2X , then idY X : (Y X , DΣ ′ ) → (Y X , DΣ) is a morphism in MC

ξ since clearly DΣ ⊂ DΣ ′ . In particular, we

have that DΣ ⊂ Du for all Σ , hence idY X : (Y X , Du) → (Y X , DΣ) is a morphism.

(3) If we take for ξ the expander ξU on MC�,s
, then the structure DΣ corresponds to the uniformity of Σ-convergence.

In Proposition 3.5 we showed that the underlying uniformity (resp. topology) of the MC
ξ -structure D X,ξ

u is the unifor-
mity (resp. topology) of uniform convergence derived from the uniformity ξU D on Y . We are now able to prove a similar
proposition which states that Dξ

Σ corresponds to Σ-convergence.

Proposition 4.5. Let ξ be an expander on MC such that ξU ◦ e ◦ ξ = ξU ◦ e, with ξU the usual expander on MC�,s
. For any set X , for

any cover Σ ⊂ 2X and for any (Y , D) ∈ MC
ξ we have that

(1) ξU (Dξ
Σ ) coincides with the uniformity of Σ-convergence derived from the uniformity ξU (D) on Y .

(2) ξT (Dξ
Σ ) coincides with the topology of Σ-convergence derived from the uniformity ξU (D) on Y .

Proof. Let B be a ξ -basis of D. Since C is a subcategory of C�,s , it is obvious that the source

(
rA : (Y X , {γd,C | d ∈ B, C ∈ Σ}↓) → (

Y A,
{
γ A

d

∣∣ d ∈ B
}↓))

A∈Σ

is initial in MC�,s
. The category Unif is concretely coreflectively embedded in MC�,s

. Hence

(
rA : (Y X , ξU {γd,C | d ∈ B, C ∈ Σ}↓) → (

Y A, ξU
{
γ A

d

∣∣ d ∈ B
}))

A∈Σ

is initial in Unif. By the assumption on ξ this is exactly the source

(
rA : (Y X , ξU

(
Dξ )) → (

Y A, ξU
(

D A,ξ
u

)))
.
Σ A∈Σ
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So by Proposition 3.5 it follows that ξU (Dξ
Σ ) is the initial structure on

(
rA : Y X → (

Y A, (ξU D)
A,ξU
u

))
A∈Σ

,

where (ξU D)
A,ξU
u is the uniformity of uniform convergence on Y A derived from the uniform space (Y , ξU D). �

Again we can formulate this in terms of a commutative diagram of functors. For a particular set X and Σ ⊂ 2X , consider
the functor

FX,Σ
ξ : MC

ξ MC
ξ ,

(Y , D) (Y X , Dξ
Σ),

(Y , D)
f−→ (Y ′, D′) (Y X , Dξ

Σ )
FX,Σ
ξ f−−−−→ (Y ′X , D′ξ

Σ ),

where FX,Σ
ξ f (g) := f ◦ g , for any g ∈ Y X .

Then the diagram

MC
ξ

GU

FX,Σ
ξ MC

ξ

GU

Unif
FX,Σ
ξU

Unif

commutes. Because of this proposition we will call Dξ
Σ the MC

ξ -structure of Σ-convergence on Y X derived from the space
(Y , D).

We can now prove that (Y , D) is embedded in the function space (Y X , DΣ).

Proposition 4.6. Let X be a set, let Σ ⊂ 2X be a cover of X and let (Y , D) be an MC
ξ -object. If c : Y → Y X : y �→ y, where y is the

constant map X → Y : x �→ y, then the subspace c(Y ) of (Y X , DΣ) is isomorphic with (Y , D).

Proof. Clearly c is an injective map. Since γd,A ◦ c × c = d for any d ∈ D and A ∈ Σ , we find that DΣ ◦ c × c = D, from
which it follows that c is an initial morphism in MC

ξ . �
Proposition 4.7. If X is a set, if Σ ⊂ 2X covers X and if (Y , D) is an MC

ξ -object, then the evaluation map evx : (Y X , DΣ) → (Y , D):
f �→ f (x) is a morphism in MC

ξ , for any x ∈ X.

Proof. This is immediate, since for any d ∈ D and any f , g ∈ Y X we have d(evx( f ), evx(g)) = d( f (x), g(x)) � γd,A( f , g) if
x ∈ A, which proves that d ◦ (evx × evx) ∈ DΣ . �
5. Complete subsets of (Y X ,DΣ)

In this section we will characterize the uniformly and the metrically complete subsets of MC
ξ -spaces of Σ-convergence.

Again let ξU and ξT be the usual expanders on MC�,s
and suppose that e sends a C -meter D on the meter D itself

interpreted as a C�,s-meter. Recall from [6] the definitions of uniform and metric completeness.

Definition 5.1. An object (X, D) in MC
ξ is uniformly complete if the associated uniform space (X, ξU ◦ e(D)) is complete in

the usual sense.

Definition 5.2. An object (X, D) in MC
ξ is metrically complete if the uniform space (X, ξU ({∨ D}↓)) is complete in the usual

sense.

In order to avoid repetition of the arguments, we will use a common notation for the two constructions which lie at
the basis of these completeness notions. We denote by hD the transformation of D, by ξU hD the associated uniformity
and by ξT hD its associated topology. Hence for uniform completeness h = e and for metric completeness h stands for the
transformation which sends a ξ -saturated C -meter D to the C�,s-meter {∨ D}↓. The terminology “h-complete” will be
used to describe either uniform completeness or metric completeness.

In [6] and [15] it turned out that for those expanders ξ which satisfy
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[A3] ξT ◦ h = ξT ◦ h ◦ ξ,

there exists a completion theory which is firm in the sense of [3,4]. This extra assumption on ξ will also play an important
role in the study of h-complete subsets of function space structures of Σ-convergence. Among other things it enables us to
generalize the classical result which states that a closed subset of a complete uniform space is again complete.

Proposition 5.3. Let ξ be an expander which satisfies [A3]. If (Y , D) is an h-complete MC
ξ -object, then each subset Z of Y which is

closed in the topology ξT hD is also h-complete.

Proof. Denote by D′ the MC
ξ -subspace structure on Z induced by (Y , D). By the assumption on the expander ξ , the topology

ξT hD′ coincides with the subspace topology of ξT hD on Z . Let F be a filter on Z which is ξU hD′-Cauchy. Then stackY F
is ξU hD-Cauchy and hence converges to a point x of Y in ξT hD. Moreover x ∈ Z , since Z is closed in ξT hD and hence F
converges to x in the topology ξT hD′ . �
Examples 5.4.

(1) In the case that h = e, the condition [A3] is fulfilled by the expanders ξU , ξU G , ξL and β on MC , but ξD on MC does
not satisfy [A3].

(2) If h sends a meter D on a set X to the meter {∨ D}↓, then [A3] is satisfied by the expanders β , ξU G and ξD on MC ,
but not by ξU and ξL on MC .

Once we require ξ to satisfy [A3], we are also able to characterize the convergent filters of the function space Y X with
respect to the topology ξT hDΣ . If Φ is a filter on Y X , we denote by Φ(x) the filter base on Y formed by the sets evx(H)

as H runs through Φ .

Proposition 5.5. Let a set X , (Y , D) ∈ MC
ξ and a cover Σ ⊂ 2X be given. If Φ is a filter on Y X and f ∈ Y X , then the following

conditions are equivalent:

(1) Φ converges to f in (Y X , ξT hDΣ);
(2) Φ is ξU hDΣ -Cauchy and for every x ∈ X : stack Φ(x) converges to f (x) for ξT hD.

Proof. The proof of (1) ⇒ (2) is straightforward. To see (2) ⇒ (1) we first consider the case h = e. Let Φ be a ξU DΣ -
Cauchy filter on Y X such that, for every x, stack Φ(x) converges to f (x) with respect to ξT D. Due to the assumption
on ξ is the collection {Bγd,A (g, ε) | g ∈ Y X , ε > 0,d ∈ D, A ∈ Σ} a basis for the collection of open sets of the topology
ξT DΣ on Y X . Let d be a C -metric in D, A ∈ Σ and ε > 0. From the ξU DΣ -Cauchyness of Φ it follows that there exists a
g ∈ Y X such that Bγd,A (g, ε/4) ∈ Φ . Hence Bd(g(x), ε/4) ∈ stack Φ(x), for all x ∈ A, what induces that γd,A(g, f ) < ε/2. So
Bγd,A (g, ε/4) ⊂ Bγd,A ( f , ε) from which we obtain that Bγd,A ( f , ε) ∈ Φ . We can conclude that Φ converges to f for ξT DΣ .

In the case that h sends a C -meter D to the C�,s-meter {∨ D}↓, we have that ξT {∨ DΣ }↓ is the underlying topology
of the metric γ∨ D,X and ξT {∨ D}↓ is the underlying topology of the metric

∨
D. Since the uniformity ξU {∨ DΣ }↓ is

finer than the underlying uniformity of the metric γ∨ D,X , we find the result by analogous reasoning as in the case that
h = e. �

This result leads to a characterization of the h-complete subsets of (Y X , DΣ).

Theorem 5.6. Let a set X , (Y , D) ∈ MC
ξ and a cover Σ ⊂ 2X be given. A subspace H of (Y X , DΣ) is h-complete if and only if for every

ξU hDΣ -Cauchy filter Φ on H there exists an f ∈ H such that stack Φ(x) converges to f (x) in ξT hD for every x ∈ X.

This proposition enables us to formulate a condition under which h-completeness of a subset H of Y X for DΣ implies
h-completeness with respect to DΣ ′ , with Σ and Σ ′ subsets of 2X .

Corollary 5.7. Let a set X and (Y , D) ∈ MC
ξ be given. If Σ ⊂ Σ ′ ⊂ 2X are covers of X , then every H ⊂ Y X which is h-complete in

(Y X , DΣ) is also h-complete in (Y X , DΣ ′ ).

Proof. This follows from Theorem 5.6 since every ξU hDΣ ′ -Cauchy filter is also ξU hDΣ -Cauchy. �
Corollary 5.8. If H ⊂ Y X is such that for every x ∈ X the ξT hD-closure of evx(H) is h-complete in (Y , D), then the ξT hDΣ -closure
of H is h-complete in (Y X , DΣ).

Corollary 5.9. Let X be a set with a cover Σ , and let (Y , D) be an MC -object. If (Y , D) is h-complete, then also (Y X , DΣ) is h-complete.
ξ
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Proof. This follows by combining Proposition 5.3 and the preceding corollary. �
Examples 5.10.

(1) If we take for ξ = ξU and C = C�,s (or Cμ), we obtain that whenever (Y , U ) is a complete (non-Archimedean) uniform
space, also the uniform space of Σ-convergence (Y X , UΣ) is a complete (non-Archimedean) uniform space.

(2) If we take for ξ = ξU G and C = C�,s , then when (Y , G) is a uniformly (resp. metrically) complete uniform gauge space,
also the uniform gauge space of Σ-convergence (Y X , GΣ) is uniformly (resp. metrically) complete.

(3) If we take for ξ = ξL and C = C�,s , then when (Y , L) is a uniformly complete Lipschitz space, also the Lipschitz space
of Σ-convergence is uniformly complete.

6. Spaces of contractions

If (X, T ) is a topological space and (Y , U ) a complete uniform space with underlying topology T ′ , then it is well known
(see for example [2]) that the collection of continuous maps between (X, T ) and (Y , T ′) endowed with the uniformity
of uniform convergence, is complete as well. In this section we will see that this is merely a special case of a far more
general result for metrically generated theories. We consider an h-complete MC

ξ -object instead of a complete uniform space

and an MC
η -object instead of a topological space, with η an arbitrary expander on MC . Recall that C is supposed to be a

base category contained in C�,s which satisfies [A1] and MC
ξ is a theory which satisfies [A2] and [A3]. To state that for an

MC
η -object (X, D) and an h-complete MC

ξ -object (Y , G), the collection

{
f ∈ Y X

∣∣ f : (X, D) → (Y , ηG) is a morphism in MC
η

}

endowed with the MC
ξ -subspace structure of Gξ

u is h-complete, we will need to put an extra condition on η. It turns out to

be sufficient to require that every MC
η -object (X, D) is closed under taking C -metrics on X which are “almost” contained in

D, in the sense that a C -metric d on X is contained in D if for all ε > 0: (d −ε)∨0 ∈ D, where (d −ε)∨0 : X × X → [0,∞]:
(d(x, y) − ε) ∨ 0. This condition on the expander η is equivalent with the expression β � η on MC and is satisfied by the
expanders ξU G , ξU , ξD , ξT and ξA on MC . Nevertheless an MC

ξL
-object does not have to be β-saturated.

Proposition 6.1. Given a theory MC
η such that β � η on MC , an MC

η -object (X, D) and an MC
ξ -object (Y , G),

MC
η

(
(X, D),

(
Y , η(G)

)) = {
f ∈ Y X

∣∣ f : (X, D) → (
Y , η(G)

)
is a morphism in MC

η

}

is a closed subset of (Y X , ξT hGξ
u ).

Proof. Denote by MC
η ((X, D), (Y , η(G))), the closure of MC

η ((X, D), (Y , η(G))) in ξT hGξ
u . Let f ∈ MC

η ((X, D), (Y , η(G))) and

let d be a C -metric contained in G . For every ε > 0 we have that Bγd ( f , ε) is open in the topology ξT hGξ
u on Y X and hence

there exists a g ∈ MC
η ((X, D), (Y , η(G))) such that γd( f , g) < ε. By applying the triangle inequality and the symmetry of

d we find that ∀x, y ∈ X : d( f (x), f (y)) � d(g(x), g(y)) + 2ε. Since d ◦ g × g ∈ D, it follows that (d ◦ f × f ) − 2ε ∨ 0 ∈ D.
By arbitrariness of ε, it follows that d ◦ f × f ∈ βD = D. So G ◦ f × f ⊂ D. Since η is an expander, we can conclude that
η(G) ◦ f × f ⊂ D, hence f : (X, D) → (Y , η(G)) is a morphism in MC

η . �
Together with Proposition 5.3 and Corollary 5.9 we can conclude:

Corollary 6.2. Let MC
η be a theory for which β � η on MC , let (X, D) ∈ MC

η and let (Y , G) be an h-complete MC
ξ -object.

Then MC
η ((X, D), (Y , η(G))) equipped with the subspace structure of (Y X , Gξ

u ) is h-complete.

Examples 6.3.

(1) Let X be a set, (Y , U ) a uniform space which is complete in the classical sense (hence uniformly complete) with
underlying topology (Y , T ) and let Uu be the uniformity of uniform convergence on Y X derived from (Y , U ).
(a) If (X, T ′) is a topological space, then the collection of continuous functions Top((X, T ′), (Y , T )) equipped with the

subspace uniformity of (Y X , Uu) is complete.
(b) If (X, U ′) is a uniform space, then the collection of uniformly continuous functions Unif((X, U ′), (Y , U )) equipped

with the subspace uniformity of (Y X , Uu) is complete.
(2) Let X be a set, (Y , G) a uniformly complete (resp. metrically complete) UG-space with underlying approach space (Y , δ)

and let Gu be the UG-structure of uniform convergence on Y X derived from (Y , G).
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(a) If (X, δ′) is an approach space, then the collection of contractions Ap((X, δ′), (Y , δ)) equipped with the subspace
UG-structure of (Y X , Gu) is uniformly complete (resp. metrically complete).

(b) If (X, D) is a UG-space, then the collection of uniform contractions UG((X, D), (Y , G)) equipped with the subspace
UG-structure of (Y X , Gu) is uniformly complete (resp. metrically complete).

Proposition 6.1 can also be extended to MC
ξ -spaces of Σ-convergence.

Proposition 6.4. Let η be an expander on MC such that β � η on MC , (X, D) ∈ MC
η , Σ ⊂ 2X a cover of X and (Y , G) ∈ MC

ξ . Denote

the collection of all f ∈ Y X for which

∀A ∈ Σ: f |A : (A, η(D|A×A)
) → (

Y , η(G)
)

is an MC
η -morphism

as MorΣη (X, Y ). Then MorΣη (X, Y ) is a closed subset of (Y X , ξT hGξ
Σ).

Proof. This goes along the same lines as the proof of Proposition 6.1. �
Corollary 6.5. Let MC

η be a theory such that β � η on MC , (X, D) an MC
η -object, Σ a cover, and (Y , G) an h-complete MC

ξ -object.

Then MorΣη (X, Y ) equipped with the subspace structure of (Y X , Gξ
Σ ) is h-complete.

7. An Ascoli theorem in metrically generated constructs

Since we have developed a satisfying notion of function space structures of Σ-convergence for metrically generated
constructs MC

ξ (which satisfy [A1] and [A2]), it is important now to investigate whether we can formulate an Ascoli theorem
in this setting and to investigate which conditions, if any, we hereto need to impose on a metrically generated construct.

Theorem 7.1. ([2, Bourbaki version of Ascoli’s theorem]) Let (X, T ) be a topological space (resp. uniform space), let Σ be a cover of
X , let (Y , U ) be a uniform space, and let H be a set of functions of X into Y such that for each function u ∈ H and each A ∈ Σ , the
restriction of u to A is continuous (resp. uniformly continuous). If the sets A ∈ Σ are compact (resp. precompact), then H is precompact
with respect to the uniform structure of Σ-convergence if and only if the following conditions are satisfied:

(1) For each A ∈ Σ , the set H|A of restrictions to A of functions of H is equicontinuous (resp. uniformly equicontinuous);
(2) For each x ∈ X, the set evx(H) is precompact.

Before a study of Ascoli’s theorem in the setting of metrically generated theories is possible, it is necessary to develop
suitable counterparts of the concepts of (uniform) equicontinuity and (pre-)compactness for arbitrary metrically generated
constructs. An extension of the concept of uniform equicontinuity to the metrically generated category UG is already known:
in [12] the concept of uniform equicontractivity was introduced for uniform gauge spaces. Given two uniform gauge spaces
(X, G X ) and (Y , GY ), a subset H of Y X is called uniformly equicontractive if ∀d ∈ GY , ∃e ∈ G X , ∀ f ∈ H: d ◦ ( f × f ) � e. For
uniform spaces this concept coincides with uniform equicontinuity.

The possibility to represent the objects of metrically generated constructs by means of metered spaces allows for a
unifying treatment of the concepts of equicontinuity for topological spaces, uniform equicontinuity for uniform spaces and
uniform equicontractivity for uniform gauge spaces by means of the concept ζ -equicontractivity in a metrically generated
category ME

ζ .

Definition 7.2. Let E be a base category and let ζ be an expander on ME . Further let (X, D) be an ME
ζ -object and let (Y , D′)

be an ME -object. A subset H of Y X is called ζ -equicontractive if for all d ∈ D′: sup f ∈H d ◦ f × f ∈ D.

We note that when a subset H of Y X is ζ -equicontractive, then for any f ∈ H the map f : (X, D) → (Y , ζ(D′)) is a
contraction in ME

ζ .

If we apply the notion of ζ -equicontractivity to the case that ζ = ξT on MC�
, we retrieve the classical notion of equicon-

tinuity for topological spaces. If ζ = ξU (resp. ξU G ) on MC�,s
, we recover the notion of uniform equicontinuity (resp. uniform

equicontractivity).
A concept of precompactness for metrically generated constructs is also needed. Recall that a quasi-uniform space (X, U )

is called precompact if ∀U ∈ U , ∃A ⊂ X finite:
⋃

x∈A U (x) = X [7]. A C�-metric d on X is called precompact if the quasi-
uniformity induced by the metric d is precompact i.e. if ∀ε > 0,∃A ⊂ X finite:

⋃
x∈A Bd(x, ε) = X . If D is the corresponding

meter of the quasi-uniformity U , then precompactness of U is equivalent with the claim that D has a basis of precom-
pact C�-metrics. This formulation leads us to an adequate notion of precompactness for objects of metrically generated
constructs ME with E ⊂ C� , which we call ζ -precompactness.
ζ
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Definition 7.3. Given a base category E ⊂ C� and a theory ME
ζ , an object (X, D) of ME

ζ is called ζ -precompact if D has

a basis of precompact C�-metrics. A subset A of X is called ζ -precompact if the ME
ζ -subspace object (A, ζ(D|A×A)) is

ζ -precompact.

It is clear that when an object (X, D) of ME
ζ is ζ -precompact, we have that for all d ∈ D : ∀ε > 0,∃A ⊂ X finite:

⋃
x∈A Bd(x, ε) = X . If ξU is the usual expander on MC�

and e′ associates with a C -meter D the meter itself interpreted
as a C�-meter, then it is obvious that an ME

ζ -object (X, D) is ζ -precompact if and only if the associated quasi-uniform
space (X, ξU ◦ e′(D)) is precompact in the classical sense. Hence a topological space (X, T ) is ξT -precompact if and only if
its fine quasi-uniformity is precompact, which exactly means that the topological space (X, T ) is compact [7].

These definitions of equicontractivity and precompactness for metrically generated constructs allow us to formulate an
appropriate Ascoli theorem. Therefore we consider:

• a base category C ⊂ C�,s which satisfies [A1];
• a base category E such that C ⊂ E ⊂ C�;
• an expander ξ on MC satisfying [A2] and for which ξU ◦ e ◦ ξ = ξU ◦ e;
• a theory ME

η for which β � η.

Note that we do not impose any relation between the two expanders ξ and η. The assumption ξU ◦ e ◦ ξ = ξU ◦ e on ξ is
strictly stronger than condition [A3] and guarantees that a subset A of an MC

ξ -object (X, D) is ξ -precompact if and only if
D|A×A has a basis of precompact C -metrics.

Under these assumptions on the theories MC
ξ and ME

η we are able to characterize the precompact subsets of MC
ξ -

structures of Σ-convergence.

Theorem 7.4 (Ascoli theorem for metrically generated constructs). Suppose we have an ME
η -object (X, G X ), an MC

ξ -object (Y , GY ), a

cover Σ of X and a collection of functions H ⊂ Y X , such that for each function f ∈ H and each A ∈ Σ : f |A : (A, G X |A) → (Y , η(GY ))

is an ME
η -morphism.

If every element A of Σ is η-precompact, then H is ξ -precompact as a subspace of (Y X , (GY )Σ) if and only if

(1) for every A ∈ Σ ; H|A ⊂ Y A is η-equicontractive;
(2) for every x ∈ X : evx(H) is ξ -precompact.

This result can be deduced from the following three propositions.

Proposition 7.5. Let an ME
η -object (X, G X ), an MC

ξ -object (Y , GY ), a cover Σ of X and a collection of functions H ⊂ Y X be given. If
H is ξ -precompact then so for any x ∈ X is evx(H).

Proof. Let x ∈ X,d ∈ GY , ε > 0. Choose A ∈ Σ such that x ∈ A. Since H is ξ -precompact, there exists a finite subset F ⊂ H
such that H ⊂ ⋃

f ∈F Bγd,A ( f , ε). Now it follows that evx(H) ⊂ ⋃
f ∈F Bd( f (x), ε). �

Proposition 7.6. Given an ME
η -object (X, G X ), an MC

ξ -object (Y , GY ), a cover Σ of X and a collection of functions H ⊂ Y X , then for
each A ∈ Σ , H|A is η-equicontractive, if the following conditions are fulfilled:

(1) for every f ∈ H, A ∈ Σ : f |A ∈ MC
η ((A, η(G X |A×A)), (Y , η(GY )));

(2) H is ξ -precompact.

Proof. Let A ∈ Σ , d C -metric in GY and ε > 0. Since H is precompact, there exists a finite subset F ⊂ H such that H ⊂⋃
f ∈F Bγd,A ( f , ε/2). So for an arbitrary g ∈ H, there exists an f g ∈ F such that γd,A( f g , g) < ε/2. By applying the symmetry

and the triangle inequality we find for every x, y ∈ A that

d
(

g(x), g(y)
)
� d

(
g(x), f g(x)

) + d
(

f g(x), f g(y)
) + d

(
f g(y), g(y)

)

� d
(

f g(x), f g(y)
) + ε.

Hence we deduce that supg∈H d ◦ g|A × g|A � sup f ∈F d ◦ f |A × f |A + ε, so supg∈H d ◦ g|A × g|A − ε ∨ 0 ∈ η(G X |A×A). Since
an η-saturated meter is supposed to be β-saturated, we can conclude that supg∈H d ◦ g|A × g|A ∈ η(G X |A×A). �

All we still have to do is to prove the other implication of Theorem 7.4.
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Proposition 7.7. Let an ME
η -object (X, G X ), an MC

ξ -object (Y , GY ), a cover Σ of X and a collection of functions H ⊂ Y X be given.
If each set A ∈ Σ is η-precompact, if for each set A ∈ Σ the collection H|A is η-equicontractive and if for each x ∈ X, evx(H) is
ξ -precompact, then H is ξ -precompact too.

Proof. It is sufficient to verify that for any d C -metric in GY , for any A ∈ Σ : γd,A |H×H is a precompact C -metric in
order to conclude ξ -precompactness of H. Let d be a C -metric in GY , A ∈ Σ,ε > 0. H|A is η-equicontractive, hence e :=
sup f ∈H d ◦ f |A × f |A ∈ η(G X |A×A). From the symmetry of d it follows that e is also symmetric. Since (A, η(G X |A×A)) is
η-precompact, there exists a finite subset B of A such that A = ⋃

x∈B Be(x, ε/5). Hence Z := ⋃
x∈B evx(H) is a finite union

of ξ -precompact subsets of (Y , GY ), so Z is ξ -precompact too. If follows that there exists a finite subset C of Z such that
Z ⊂ ⋃

y∈C Bd(y, ε/5). Consider for every function h ∈ C B , the set B(h) := { f ∈ H | ∀b ∈ B: d( f (b),h(b)) < ε/5}. For f ∈ H,
choose a function h f : B → C such that d( f (b),h f (b)) < ε/5, for any b ∈ B . Clearly f ∈ B(h f ) and hence

⋃
h∈C B B(h) = H.

For every function h : B → C for which B(h) is not empty we can choose an element gh ∈ B(h). Then {gh f | f ∈ H} is finite,

since C B is finite. Take f ∈ H and a ∈ A, then there exists an element x of B such that e(x,a) < ε/5. Then

d
(

f (a), gh f (a)
)
� d

(
f (a), f (x)

) + d
(

f (x),h f (x)
) + d

(
h f (x), gh f (x)

) + d
(

gh f (x), gh f (a)
)

� e(a, x) + d
(

f (x),h f (x)
) + d

(
h f (x), gh f (x)

) + e(x,a)

< 4ε/5.

So γd,A( f , gh f ) < ε and we can conclude that {Bγd,A |H×H (gh f , ε) | f ∈ H} is a finite cover of H. �
Example 7.8. If we apply Theorem 7.4 to C = C�,s , ξ = ξU , E = C� (resp. C�,s) and η = ξT (resp. ξU ) we retrieve the
Bourbaki version of Ascoli’s theorem.

Theorem 7.4 can also be used to characterize the ξU G -precompact subsets of UG-structures of Σ-convergence. So
far it is not known whether 0-compactness of an approach space (X, δ) (see [11]) coincides with ξA -precompactness,
i.e. precompactness of (X, U D) with D the fine qUG-space of (X, δ), but in [9] it is proved that 0-compactness implies
ξA -precompactness.

Example 7.9. Let a set X , a UG-space (Y , G), a cover Σ of X and a subset H of Y X be given, and let GΣ be the UG-structure
of Σ-convergence derived from (Y , G).

(1) If (X, δ) is an approach space, if for any A ∈ Σ , f ∈ H: f |A is a contraction and if for any A ∈ Σ : (A, δ|A) is 0-compact
(or even ξA -precompact), then H is ξU G -precompact for GΣ if and only if for any A ∈ Σ: H|A ∈ Y A is ξA -equicontractive
and for any x ∈ X , evx(H) is ξU G -precompact.

(2) If D is a qUG-structure on X , if for any A ∈ Σ , f ∈ H: f |A is a qUG-morphism and if for any A ∈ Σ the space
(A, ξU G(D|A×A) is ξU G -precompact, then H is ξU G -precompact for GΣ if and only if for any A ∈ Σ: H|A ∈ Y A is ξU G -
equicontractive and for any x ∈ X , evx(H) is ξU G -precompact.
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