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Abstract

Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an

increasing input of glacial meltwater to the fjords and coastal waters around Green-

land. These high latitude ecosystems are highly productive and sustain important

fisheries, yet it remains uncertain how they will respond to future changes in the

Arctic cryosphere. Here we show that marine-terminating glaciers play a crucial role

in sustaining high productivity of the fjord ecosystems. Hydrographic and biogeo-

chemical data from two fjord systems adjacent to the Greenland ice sheet, suggest

that marine ecosystem productivity is very differently regulated in fjords influenced

by either land-terminating or marine-terminating glaciers. Rising subsurface meltwa-

ter plumes originating from marine-terminating glaciers entrain large volumes of

ambient deep water to the surface. The resulting upwelling of nutrient-rich deep

water sustains a high phytoplankton productivity throughout summer in the fjord

with marine-terminating glaciers. In contrast, the fjord with only land-terminating

glaciers lack this upwelling mechanism, and is characterized by lower productivity.

Data on commercial halibut landings support that coastal regions influenced by large

marine-terminating glaciers have substantially higher marine productivity. These

results suggest that a switch from marine-terminating to land-terminating glaciers

can substantially alter the productivity in the coastal zone around Greenland with

potentially large ecological and socio-economic implications.
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1 | INTRODUCTION

Air temperatures in the Arctic have increased substantially in recent

years leading to a reduction in sea ice and the melting of glaciers at

unprecedented rates (Bamber, Van Den, Ettema, Lenaerts, & Rignot,

2012; Comiso, Parkinson, Gersten, & Stock, 2008). While the

ecological consequences of the decreasing sea ice have received

attention (Wassmann & Reigstad, 2011), the impact of increased gla-

cial melting on Arctic marine ecosystems remains largely unstudied.

The Greenland ice sheet currently discharges ~1000 Gt year�1 of

freshwater into the coastal ocean, originating from both meltwater

runoff and solid ice discharge (Bamber et al., 2012). The fjords and
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shelves surrounding Greenland are strongly impacted by this fresh-

water runoff from Greenland ice sheet, which has doubled over the

last two decades. At the same time, some of these coastal ecosys-

tems sustain a high productivity, and the associated fisheries gener-

ate a large part of Greenland national income (Berthelsen, 2014;

ICES, 2015; Jensen, Pedersen, Burmeister, & Hansen, 1999), thus

calling for a better understanding of the links between coastal pro-

ductivity and glacial melting.

The role of glacial runoff on the productivity of high-latitude

coastal ecosystems is currently the subject of debate. It has been pro-

posed that runoff from the Greenland ice sheet could provide a source

of organic matter and mineral nutrients, thus positively influencing pri-

mary production by providing an additional supply of nitrogen, phos-

phorus, iron and silica throughout the melt season (Bhatia et al., 2013;

Hawkings et al., 2015; Wadham et al., 2016). However, a large propor-

tion of the incoming nutrients are in particulate form (Hawkings et al.,

2016), and so their fate and role in productivity of the fjord systems

remain uncertain. Moreover, a recent study has questioned the direct

fertilization effect, revealing that glacial meltwater is an important

source of dissolved silica, though only supplies low amounts of nitrate

and dissolved phosphate to the photic zone, which are the limiting

nutrients for primary productivity in the fjords (Meire et al., 2016).

The melting of Greenland ice sheet is currently accelerating, and

this freshwater input is expected to substantially increase with ongo-

ing climate change (Fettweis et al., 2013). Yet, our understanding of

how glaciers and glacial meltwater impact the biogeochemistry and

productivity of the coastal region around Greenland is currently lim-

ited, which makes it difficult to predict how this region will be affected

by future climate change. Here we present data from two different

fjord systems adjacent to Greenland ice sheet that are influenced by

either land-terminating or marine-terminating glaciers. We find that

ecosystem productivity during summer is higher in the fjord with mar-

ine-terminating glaciers compared to the fjord which only has land-ter-

minating glaciers. Despite differences in geographical location, sea ice

regime in winter and total meltwater input between fjords, our dataset

demonstrates that nutrient upwelling caused by rising subsurface melt-

water plumes at the marine-terminating glaciers which entrain deep

ambient fjord water, is the critical factor explaining the difference in

ecosystem productivity between these fjords during summer. With the

ongoing melting of the Greenland ice sheet, marine-terminating gla-

ciers are retreating and might eventually transform into land-terminat-

ing glaciers. The resulting impact on the productivity of the coastal

zone around Greenland could have large socio-economic implications.

2 | MATERIALS AND METHODS

2.1 | Sampling sites

Hydrographic and biogeochemical data were collected in two fjord sys-

tems adjacent to the Greenland ice sheet, Godth�absfjord and Young

Sound. Godth�absfjord is a large sub-Arctic fjord system located on the

southwest coast of Greenland with a length of ~190 km and covering

an area of 2013 km2 (Figure 1). The inner-part of the fjord system

(generally from station GF13) is covered by sea ice for ~7 months.

Three grounded marine-terminating glaciers deliver glacial ice and

meltwater to the fjord: Kangiata Nunaata Sermia (KNS), Akullersuup

Sermia (AS) and Narsap Sermia (NS). KNS is the largest marine-termi-

nating glacier in Godth�absfjord and has a grounding depth of ~250 m

(Mortensen et al., 2013; Motyka et al., 2017). The grounding line of

AS is ~140 m and the depth of the NS is ~160 m (Mortensen, Bendt-

sen, Lennert, & Rysgaard, 2014; Motyka et al., 2017). Meltwater also

drains from three land-terminating glaciers: Qamanaarsuup Sermia

(QS), Kangilinnguata Sermia (KS) and Saqqap Sermersua (SS), which

drains through Lake Tasersuaq (LT). Recent hydrological simulations

for the period 1991–2012 estimate a total annual freshwater input of

20 km3 year�1 and a solid ice discharge of 8 km3 year�1 from KNS to

Godth�absfjord (Motyka et al., 2017; Van As et al., 2014). The Young

Sound-Tyrolerfjord is a 90 km long high Arctic fjord system located in

northeast Greenland, which covers an area of 390 km2 (Figure 1).

Young Sound is the outer part of the fjord system connected with the

Greenland Sea via an entrance sill at 45 m depth with a basin depth of

220 m, while the Tyroler fjord is narrow and deeper with a maximum

depth of 360 m. The fjord is covered by sea ice for 8–9 months (Rys-

gaard & Glud, 2007). In summer, two meltwater rivers (Tyroler and

Zackenberg river) are fed by land-terminating glaciers and discharge

into Young Sound with an annual discharge of 0.6 to 1.6 km3 year�1

(Rysgaard & Glud, 2007).

2.2 | Sample collection and analysis

Data from Godth�absfjord was collected during a cruise in August

2013 along a length-transect that covers the entire fjord and the adja-

cent continental shelf (20 CTD stations of which water samples were

collected at 10 stations; Figure 1). The presence of a dense ice

m�elange in inner Godth�absfjord made sampling impossible beyond

station GF15 towards the KNS terminus, though samples were taken

close to the NS terminus (i.e., within ~10 km) (Figure 1). Monthly

sampling at station GF10, located in the inner part of the fjord,

between January 2013 and December 2013 further complemented

the dataset. Samples in Young Sound were collected in August 2011

(30 CTD stations of which water samples were collected at 10 sta-

tions) along a length-transect from the inner fjord to the open sea. In

both fjord systems, conductivity, temperature and depth profiles were

obtained using a CTD (Seabird SBE19plus) equipped with additional

sensors for fluorescence (Seapoint chlorophyll fluorometer), turbidity

(Seapoint) and Photosynthetic Active Radiation (Biospherical QSP-

2350L Scalar sensor). Water samples from discrete depths (1, 5, 10,

20, 30, and 40 m) were collected using 5 L Niskin bottles. To calibrate

the fluorescence sensor, water samples (0.5–1 L) were filtered

through 25 mm GF/F Whatman filters (nominal pore size 0.7 lm) for

chlorophyll a analysis. Filters were placed in 10 ml of 96% ethanol for

18 to 24 hour and chlorophyll a fluorescence in the filtrate was ana-

lyzed using a fluorometer (TD-700, Turner Designs) before and after

addition of 200 ll of a 1 M HCl solution. Subsamples (10 ml) for

nutrients were filtered through 0.45 lm filters (Q-Max GPF syringe

filters) and directly frozen at �20°C until analysis. Nitrate
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concentrations were measured using standard colorimetric methods

on a Seal QuAAtro autoanalyzer.

Primary production (PP) was measured by 14C incubations using

photosynthesis-irradiance (PI) curves and in situ incubations. Euphotic

depth was calculated as 1% of surface irradiance. During the transect

study in Godth�absfjord, PI-curves were obtained from samples at 5,

10, 20 and 30 m depth. Furthermore at station GF10, PI-curves were

recorded monthly at 5 and 20 m depth to assess the seasonality of

productivity. Unfiltered seawater (55 ml) from a given water depth

was transferred to incubation bottles, spiked with 175 lL NaH14CO3

(20 lCi mL�1) and incubated for two hours (ICES incubator, Hydro-

Bios, Germany). At the monitoring station (GF3) in Godth�absfjord and

the Young Sound transect, samples from 5, 10, 20, 30 and 40 m depth

were incubated in situ in glass bottles (two light and one dark bottles

at each depth) for c. 2 hr around mid-day. Samples were filtered

through 25 mm GF/C filters (Whatman), 100 ll of 1 M HCl was added

to remove excess NaH14CO3 and the filters were left open for 24 hr

in a fume hood. Subsequently, 10 ml of scintillation cocktail (Ultima

Gold, Perkin Elmer) was added to the samples before counting them

on a scintillation counter (Liquid Scintillation Analyzer, Tri-Carb

2800TR, PerkinElmer). Gross primary production rates were calculated

based on measured dissolved inorganic carbon concentrations, after

subtracting CO2 fixation rates obtained from the dark incubations. Pri-

mary production rates were calculated from the obtained PI-curves

using the light attenuation coefficient from the measured PAR profile.

Solar irradiance was obtained from the meteorological survey in Nuuk

(Meteorological station 522, Asiaq Greenland Survey). Annual produc-

tivity at station GF10 was estimated by calculating daily productivity

over the entire year assuming that light extinction and PI-curves

remain the same in the two-week period before and after the sampling

dates. For the in situ primary production estimates, daily rates were

calculated by multiplying the production value from the two hours

in situ incubation with the ratio between the incoming PAR during the

deployment period (c. 2 hr) and the entire day of sampling (24 hr).

The stratification parameter (φ, J m�3) was calculated based on

the water density profiles in the upper 60 m and represents the

amount of energy required to homogenize the water column through

vertical mixing (Simpson, Crisp, & Hearn, 1981).
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F IGURE 1 Map of Young Sound and Godth�absfjord indicating the stations (solid dots) along a transect from the Greenland Ice Sheet
(shaded area) towards the mouth of fjord region. Marine-terminating glaciers in Godth�absfjord are indicated by blue triangles (NS, KNS and
AS), major meltwater rivers in Godth�absfjord and Young Sound by red squares (Lake Tasersuaq LT; Zackenberg river ZR; Tyroler river TR)
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2.3 | Statistical analysis of the halibut landings

Greenland halibut (Reinhardtius hippoglossoides) is a common fish

along the west coast of Greenland, and forms a socio-economically

important resource, as it sustains one of the largest commercial fish-

eries in Greenland responsible for 42% of total fishery income (Boje,

Neuenfeldt, Sparrevohn, Eigaard, & Behrens, 2014). Commercial hal-

ibut landing data were retrieved for 37 fjord systems on the west

coast of Greenland based on stock assessments by the Fishery

Department at the Greenland Institute of Natural Resources (GINR).

This dataset consists of the total annual halibut landings for the

years 2012 to 2015, which are specified on a geographical grid for

different regions in Greenland (Fig. S4 shows the different grid cells

in the Ilulissat fjord). The total halibut landing, H, in a fjord was cal-

culated by summation of the landings in all grid cells belonging to

that fjord (for delineation of the fjord systems see Sup. Mat.). The

total area, A, of the fjord was calculated by summation of individual

grid cell areas, accounting only for the sea surface area (due to tor-

tuous fjord geography, some grid cells consist partly out of water

and partly land). The mean area-based halibut landing in a fjord

(kg km�2 year�1) was finally calculated as H/A, and this statistic was

correlated with a set of environmental parameters for each fjord

(presence of glacier termini, length of sea ice period, glacial freshwa-

ter input and bathymetry; supplementary material). As no in-fjord

fishery data were available from East Greenland, the fjord systems

on the East coast were not included in the analysis.

The glacial freshwater input to the different fjord systems was

obtained from a hydrological water-flow model embedded in the

Greenland ice sheet model of Huybrechts et al. (2011). This estimate

only includes runoff from the Greenland ice sheet and not from

peripheral glaciers. Consequently, our values may underestimate the

total meltwater runoff to the fjord systems. The glacial freshwater

input originates from both surface runoff and basal ice melt, with a

minor contribution from summer rainfall (solid ice discharge is not

quantified). Basal melting occurs far inland depending on basal tem-

perature conditions while near the margins surface melt is dominant.

Only a part of the surface melt contributes to surface runoff as a

fraction refreezes (30% of the surface melt averaged over the entire

ice sheet) and is stored in the snowpack (Janssens & Huybrechts,

2000). The hydrological model assumes that all water reaches the

bottom of the ice sheet, where it is routed further towards the ice-

sheet margin according to the steepest gradient of the hydraulic

potential. This allows determining the total basal water flux that

exits at any given location along the margin of the Greenland ice

sheet. The calculations were made on a 5 km numerical grid using

the bedrock topography from Bamber et al. (2013) and a routing

algorithm similar to Le Brocq, Payne, Siegert, and Alley (2009). Fig-

ure S2 shows an example of the integrated meltwater flux to the

Ilulissat fjord. For all selected fjord systems, the hydraulic catchment

(i.e., the collection of grid cells that deliver meltwater to a given

fjord) was delineated based on topography. The meltwater runoff to

individual marine or land terminating glaciers within the fjord catch-

ment was derived based on the delineation of the hydrologic sub-

basin on the ice sheet by Lewis and Smith (2009) (Fig. S3). The total

meltwater runoff to the fjord is the sum over all glaciers in the fjord.

In this way a difference can be made between melt that is routed

towards marine or land terminating glaciers discharging into the

fjord.

Processing of data was done in the open-source programming

language R (R Core Team, 2013). Interpolation of the data and con-

tour plots were produced using the OceanView package.

3 | RESULTS

3.1 | Hydrography during summer

Godth�absfjord (SW Greenland) is a sub-Arctic fjord influenced by

meltwater discharge from three land-terminating and three large

marine-terminating glaciers, while Young Sound (NE Greenland) is a

high Arctic fjord exclusively fed by land-terminating glaciers. The

hydrography and water column chemistry of both fjord systems

were surveyed during hydrographic cruises covering transects from

the inner fjord to the adjacent continental shelf (Figure 1). This was

done in summer, when maximum melting of the ice sheet occurs.

Both Young Sound (August 2011) and Godth�absfjord (August 2013)

are strongly impacted by glacial meltwater during summer, as indi-

cated by the low salinities (<5) in the surface layer (Figure 2a,b). In

both fjords, this surface freshening is most pronounced in the inner

parts of the fjords close to the glacier discharge points and the

incoming meltwater induces a strong stratification, creating a low

saline surface layer that is separated from deeper waters by a pycno-

cline at 5–10 m depth (Figure 2g,h). The meltwater input into

Godth�absfjord (~20 km3 year�1) is considerably larger than for

Young Sound (~1.6 km3 year�1), but the ratio of meltwater discharge

over surface area is similar in both fjord systems, which explains the

comparable freshening and stratification in the two fjords. The

inflow of glacial meltwater at the head of the fjord drives an estuar-

ine circulation (Bendtsen, Mortensen, & Rysgaard, 2014; Mortensen,

Lennert, Bendtsen, & Rysgaard, 2011), where the surface layer is

transported downstream. Despite the higher latitude, maximum sur-

face water temperatures were higher in Young Sound (~11.2°C) than

in Godth�absfjord (~6.3°C) as the melting of icebergs, calved from the

marine-terminating glaciers, reduces the surface water temperature

in Godth�absfjord (Figure 2c,d). While Young Sound exclusively

receives a surface meltwater input, Godth�absfjord is also affected by

subglacial freshwater discharge from its marine-terminating glaciers.

Surface meltwater that percolates to the glacier bed via fractures

and channels enters the fjord at submarine levels (Chu, 2014). When

this freshwater enters the fjord at depth, it rises to the surface as a

buoyant plume and entrains large volumes of ambient saline fjord

water on its way up. These rising buoyant plumes create a region of

turbulent upwelling immediately adjacent to the terminus of the

marine-terminating glaciers (Supplementary Video). We observed the

upwelled water mass originating from subglacial freshwater discharge

as a cold water anomaly (0–1°C) between 10 and 30 m depth in the

inner region of Godth�absfjord (Figure 2c).
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3.2 | Impact of glacial meltwater on turbidity and
light regime

Concomitant with the input of glacial meltwater, both fjord systems

also receive a high input of glacially derived particles, which leads to

a high turbidity close to the glacier outlets (Figure 2e,f). The coarse

particle fraction generally falls out quickly, forming deltas and sub-

marine fans as observed close to the Tyroler river mouth in Young

Sound (Figure 2f). The finer particles are transported further down-

stream before settling out of the surface layer. While land-terminat-

ing glaciers only supply turbid meltwater to the surface layer,

marine-terminating glaciers also increase turbidity at depth due to

subglacial discharge (Figure 2e). The suspended particles in the sur-

face waters strongly impact the light penetration, thus limiting pho-

tosynthesis (Figure 2g,h). In Young Sound, the euphotic depth,

defined as the depth at which the photosynthetic active radiation

equals 1% of the surface value, is shallow (around 5 m) at the melt-

water river inlets. Due to gradual settling of suspended particles,

light penetration increases to 20–30 m in the central and outer part

of the fjord (Figure 2h). Similarly, in Godth�absfjord, input of turbid

meltwater reduces the light penetration in the inner part of the fjord,

especially close to the glacial outlet points as Lake Tarsarsuaq (Fig-

ure 2g). Generally, the euphotic depth lies ~10 m in the inner fjord

but then increases to 30 m towards the mouth of the fjord (Fig-

ure 2g).

3.3 | Impact on biogeochemistry

In Young Sound, meltwater rivers show low nitrate concentrations

(Meire et al., 2016) and observed nitrate concentrations in the sur-

face layer of the fjord were low (Figure 3b). The pronounced stratifi-

cation impedes nutrient supply from deeper waters, while high

turbidity limits light penetration (Figure 2h). This combination of light

limitation and low nutrient supply explains the low chlorophyll a con-

centrations (<0.5 lg L�1) and low primary production (PP) rates

(<40 mg C m�2 day�1) in the inner and central parts of Young

Sound during summer (Figure 3d,f). The light does not penetrate suf-

ficiently deep in the central part of the fjord (i.e., beneath the nutri-

ent-depleted surface layer) to allow the development of a deep

chlorophyll maximum (Figure 3d). Only within the sill region and fur-

ther onto the continental shelf, we observed a slight increase in phy-

toplankton biomass (chlorophyll a of 2–3 lg L�1 and PP of

200 mg C m�2 day�1), likely resulting from an extended euphotic

depth combined with an enhanced nutrient supply, due to a combi-

nation of tidal mixing within the sill region and coastal upwelling at

the shelf break (Figure 3b,d,f).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

F IGURE 2 Hydrographic data from two
fjords in Greenland in summer (Left
column: Godth�absfjord, right column:
Young Sound). Length sections of salinity
(a, b), temperature (°C) (c, d) along fjord
transects showing the upper 40 m of the
water column. Impact of glacial meltwater
on turbidity (NTU) (e, f), euphotic depth
(ED, m) and stratification index (Ψ, J m�3)
(g, h). To enable comparison, the depth
transects in both fjords are plotted in the
same direction (left = downstream, mouth
of fjord; right = upstream, glacier region).
The entrance sills of the fjords, glaciers
and incoming rivers are indicated by the
dashed lines and on the top axis of the
panel
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On the continental shelf adjacent to Godth�absfjord (station

FB3.5 to FB1.5), we observed a similar coastal upwelling and tidal

mixing, resulting in a resupply of nutrients and higher biomass (Fig-

ure 3c,e). However, conditions are different inside Godth�absfjord, as

primary production rates and algal biomass were substantially higher

compared to Young Sound (Figure 3a,c). Matching the cold water

anomaly (Figure 2c), we observed high nitrate concentration and a

high productivity suggesting that the nitrate was supplied by sub-

glacial upwelling. Due to the rising buoyant meltwater plumes from

the marine-terminating glaciers, large volumes of deep nutrient-rich

water are entrained, which settle below the low-saline surface layer

between 10 and 40 m (Figure 3c).

The idea that nutrient upwelling caused by subsurface meltwater

discharge stimulates summer production is further supported by data

from the monthly sampling campaigns at a station in the inner part

of Godth�absfjord (GF10). Figure 4 compares the situation in mid-

May (at the end of the spring bloom and before the glacial melt sea-

son) to mid-August (during peak glacial melt). At the start of the

summer, nitrate was depleted in upper 30 m, after being used up by

the spring bloom (Figure 4d,e). During this period, glacial melting is

limited, so the fjord received limited freshwater runoff (surface salin-

ity ~32.4; Figure 4c) and subglacial freshwater discharge was not yet

active. In contrast, in mid-summer, the fjord was impacted by large

surface runoff (surface salinity ~13.5; Figure 4c) and subglacial dis-

charge causes strong upwelling close to the terminus of the glaciers

(supplementary video). Higher nitrate concentrations coincided with

a pronounced subsurface temperature anomaly between 8 and 35

m, suggesting that subglacial upwelling resulted in an increased

nitrate supply to the surface layers during summer (Figure 4b,e). This

fueled a high primary production, as indicated by the subsurface

chlorophyll maximum of 17 lg chlorophyll a L�1 at 10 m depth in

GF10 (Figure 4d) and similar subsurface chlorophyll maxima along

the transect in inner and central fjord (10–25 lg L�1 between GF9

to GF17; Figure 3c). Productivity was highest at GF10 (PP of

550 mg C m�2 day�1; Figure 3e), where glacially derived silt had

settled and the euphotic depth has increased. In central Godth�abs-

fjord, the subsurface chlorophyll maximum gradually migrated deeper

(~10 lg L�1 at 20 m depth in GF8; Figure 3c) due to nutrient deple-

tion and increasing light penetration. At the mouth of the fjord,

strong tidal mixing creates a density gradient between the outer sill

region and the main fjord (Mortensen et al., 2011). This drives the

intermediate baroclinic circulation which was observed as an inflow

in the depth range between 30 and 60 m and below (Mortensen

et al., 2014) (Figure 4a,c). In the water mass referred to as sill region

water, nitrate concentrations were lower (5–8 lM) compared to the

subglacial discharge layer (10–12 lM) (Figure 4e).

The production during summer plays an important role for the

annual primary production. Figure 5 shows the annual primary pro-

duction for Godth�absfjord and Young Sound. Seasonal measure-

ments in station DNB in Young Sound show an annual pelagic

primary production of ~10 g C m�2 year�1. Annual pelagic primary

production in Godth�absfjord was 139 g C m�2 year�1 at station

GF3 in 2011 with an average of 104 � 7 g C m�2 year�1 for the

period 2008–2012 (Juul-Pedersen et al., 2015). For station GF10, in

the inner part of the fjord, the annual production in 2013 was 120 g

C m�2 year�1.

(a) (b)

(c) (d)

(e) (f)

F IGURE 3 Biogeochemical data from
two fjords in Greenland in summer (Left
column: Godth�absfjord, right column:
Young Sound). (a, b) Length sections of
nitrate (NO3

�, lmol L�1) and (c, d)
fluorescence calibrated by chlorophyll a
(Chl a, lg L�1) along the fjord transect
showing the upper 40 m of the water
column. Gross primary production
(mg C m�2 day�1) and area-integrated
chlorophyll a inventory (mg m�2) along the
fjord transects (e, f). To enable comparison,
both fjords are plotted in the same
direction (left = downstream, mouth of
fjord; right = upstream, glacier region). The
entrance sills of the fjords are indicated by
the dashed lines
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(a)

(b) (c)

(d) (e)

F IGURE 4 (a) Conceptual scheme of hydrodynamic circulation during summer months in inner part of Godth�absfjord as described earlier by
Mortensen et al. (2013). The lines indicate the border between different water masses in the surface layer during summer (glacial melting
season) (FW: Freshwater, SgFW: Subglacial Freshwater). (b, c, d, e) Data for station in inner part of Godth�absfjord (Station GF10) in May 2013
and August 2013. Depth profiles of temperature (°C) (b), salinity (c), fluorescence (lg L�1) (d) and nitrate (lM) (e)
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3.4 | Halibut landings

When inspecting the geographical distribution of the halibut landing

data in Greenland, it is noticeable that regions close to the marine-ter-

minating glaciers termini show important fisheries activity (e.g., Disko

Bay and Uummannaq in Figure 6). The resulting hypothesis that mar-

ine-terminating glaciers correlate with high productivity and important

fisheries was quantitatively examined via statistical analysis. Halibut

landings (HL) differed significantly (Wilcox test; p-Value = .002)

between fjords with marine-terminating glaciers (HL = 1029 �
376 kg km�2 year�1) compared to fjords with only land-terminating

glaciers (HL = 131 � 44 kg km�2 year�1).

Furthermore, halibut landings showed a significant positive corre-

lation with meltwater runoff of marine-terminating glaciers (Pearson

p-Value < 10�4, df = 16; Figure 6). The correlation between halibut

landings and runoff of land-terminating glaciers was not significant

(Pearson p-value = 0.3, df = 35). Halibut landings for fjords with only

land-terminating glaciers are low and do not increase with increasing

total meltwater runoff (Figure 6e).

A multiple regression analysis was used to investigate the corre-

lation of the halibut landings with available environmental parame-

ters for each fjord (presence of glacier type, length of sea ice period,

meltwater runoff to land- terminating glaciers, runoff to marine ter-

minating glaciers and bathymetry) (Supp. Material). This showed that

the runoff originating from the marine terminating glacier, which can

be regarded as a proxy for subglacial discharge, is the most impor-

tant explanatory variables for halibut landings (Figure 6d) (Model

F-statistic: 26.3, p < 10�4). Although the meltwater runoff to the

marine-terminating glaciers includes both surface and subglacial dis-

charge, marine-terminating glaciers characterized by a high total

meltwater runoff are likely also characterized by a larger subglacial

discharge, which can then sustain a higher productivity in the fjord

through nutrient upwelling.

4 | DISCUSSION

4.1 | Glaciers impact on the nutrient dynamics in
fjords

Our data suggest that fjords only influenced by land-terminating gla-

ciers (like Young Sound) show a distinct nutrient dynamics and pri-

mary production compared to fjords with large marine-terminating

glaciers (like Godth�absfjord) (Figure 7). During the summer months,

Godth�absfjord is characterized by intense summer bloom with high

primary production, while in contrast, Young Sound has a low sum-

mer productivity. These summer blooms in Godth�absfjord suggest an

additional input of nitrate to the surface waters, which is the limiting

nutrient for primary production (Juul-Pedersen et al., 2015; Meire

et al., 2016). Following the spring bloom, nitrate is depleted in the

photic zone (Figure 4e), and consequently, a high summer production

must be fueled by an additional input of nitrate. Both Young Sound

and Godth�absfjord are steep-side fjords, and so nutrient effluxes

from sediments to the surface waters are small, implying that nitrate

must be supplied either from lateral input by meltwater rivers or by

upwelling from below (Tremblay & Gagnon, 2009). It has been sug-

gested that meltwater runoff from Greenland ice sheet contains sig-

nificant concentrations of specific bioavailable nutrients (Hawkings

et al., 2015, 2016), and that such a direct input of these nutrients

along with the glacial meltwater could stimulate primary production

during the melt season in summer. However, direct measurements

of nutrient concentrations in glacial ice and meltwater rivers show

that they are an important source of silica, but only to a limited

extent of nitrate (Meire et al., 2016). This idea that glacial meltwater

does not stimulate production through direct nutrient fertilization is

corroborated by our data from Young Sound, which only receives

surface meltwater input from land-terminating glaciers. The freshen-

ing of the surface waters (Figure 2b) coincided with low nitrate

(a) (b)

F IGURE 5 Seasonal evolution of the gross primary production (GPP, mg C m�2 day�1) in Godth�absfjord (a) and Young Sound (b; redrawn
from Rysgaard et al., [1999]). GPP was recorded at two separate stations in Godth�absfjord: GF3 (mouth of the fjord) measured in situ (redrawn
from Juul-Pedersen et al., [2015], year 2011) and GF10 (close to marine-terminating glaciers, year 2013). In Young Sound, GPP was recorded
at one station (DNB, close to the mouth of the fjord) and the period with sea-ice cover is indicated
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concentrations (Figure 3b) and low productivity (Figure 3d), suggest-

ing a limited nitrate input in summer. In addition to low meltwater

nitrate concentrations, surface runoff will tend to decrease primary

productivity, because it induces a poor light climate due to high tur-

bidity resulting from the high suspended material in the meltwater

(Murray et al., 2015; Figure 2f), and it enhances stratification

(Figure 2h) which prevents a nitrate supply from deeper water. The

absence of suitable supply mechanism for nitrate explains why sum-

mer production remains low in Young Sound after the exhaustion of

the surface nitrate by the spring bloom.

Likewise, the summer bloom in Godth�absfjord cannot be

explained by surface meltwater runoff. In addition to surface

(a)

(d) (e)

(b)

(c)

F IGURE 6 (a) Halibut landings for different fjord systems in West Greenland impacted by marine and/or land-terminating glaciers. (b, c)
Location of large halibut fishery in two different regions (b: Uummannaq 70°400N 52°070W, c: Ilulissat 69°130N 51°060W). Halibut landings
from 2013 are shown in the different regions together with the presence of marine-terminating glaciers (blue triangles) and land-terminating
glaciers (red squares). Grey shading of the Greenland Ice Sheet shows ice velocity (m year�1). (d) Relation between meltwater runoff
originating from the marine-terminating glaciers in the fjord (in Gt year�1) and fishery catchment (ton km�2) in the different areas indicated as
dots on overview map (a, dots) (e) Relation between meltwater runoff originating from land-terminating glaciers in the fjord (in Gt year�1) and
fishery catchment (ton km�2) in different areas indicated as dots on overview map (a, dots)

MEIRE ET AL. | 9



runoff, fjords with marine-terminating glaciers are influenced by

subglacial discharge (Kjeldsen et al., 2014; Straneo & Cenedese,

2014). Here we argue that subglacial discharge could be an impor-

tant mechanism to resupply nutrients to the surface layer, hereby

sustaining summer primary production in fjords with marine-termi-

nating glaciers. Hydrographic observations have previously shown

that during summer months, subglacial freshwater discharge drives

a strong upwelling in the inner part of Godth�absfjord (e.g., Bendt-

sen, Mortensen, Lennert, & Rysgaard, 2015; Bendtsen, Mortensen,

& Rysgaard, 2015; Kjeldsen et al., 2014; Mortensen et al., 2013).

This leads to a buoyant plume (Figure 2c), which entrains large vol-

umes of nutrient rich saline ambient fjord water on its way up (typ-

ically 10 to 30 times the initial volume of the subglacial freshwater

plume) (Bendtsen et al., 2015; Mortensen et al., 2013; Sciascia,

Straneo, Cenedese, & Heimbach, 2013). In Godth�absfjord, this

buoyant water mass settles below the low saline surface layer

(Mortensen et al., 2013) and generates a subsurface cold water

anomaly as it is advected out of the fjord (Figure 2c). Our study

links this subglacial upwelling to a resupply of nitrate to the surface

layers, which results in elevated nitrate concentrations in the water

layer between 10 and 30 m depth (Figures 3a, 4e), and pronounced

subsurface chlorophyll maxima (Figure 3c), thus explaining the sus-

tained phytoplankton bloom from July to September (Figure 5). An

artificial upwelling experiment performed in Norwegian fjords

resulted in a similar strong increase in chlorophyll concentrations

(Aure, Strand, Erga, & Strohmeier, 2007), of which the subglacial

discharge observed here forms the natural analogue. Note that

nitrate concentrations in the deeper waters of Godth�absfjord

(~11 lM) and Young Sound (~12 lM) are similar (Fig. S1). Accord-

ingly, both fjords have a similar overall nitrate content, and hence a

similar potential to stimulate primary production, if a suitable

upwelling mechanism were present. Yet only in Godth�absfjord,

such nutrient upwelling is realized by subglacial freshwater dis-

charge taking place throughout summer.

A nutrient budget confirms that the nitrate upwelling induced by

subglacial freshwater discharge can account for the observed sum-

mer production in Godth�absfjord. The rate of subglacial discharge

(QSD) can vary substantially during summer months and generally

consists of a lower baseline discharge rate, on top of which rapid

increases occur over short periods of time. Analysis of the subglacial

plume at the KNS glacier in Godth�absfjord provides a baseline sub-

glacial discharge rate of ~10 m3 s�1 (Bendtsen et al., 2015). Glacial

lake drainage induces strong percolation of meltwater to the glacier

bedrock, and during such episodic events, the QSD in Godth�absfjord

has been observed to increase by a factor of 10 to 100 (Kjeldsen

et al., 2014). Details on the frequency and amplitude of such episo-

dic drainage are, however, lacking, and consequently, the mean QSD

of the different glaciers in Godth�absfjord is currently not well con-

strained. Here, we use a range of 10 to 100 m3 s�1 for the QSD of

KNS. This is likely a conservative estimate as other studies estimated

a much larger average discharge for KNS (Slater et al., 2017) and

even a discharge of ~100 m3 s�1 for a smaller glacier (Mankoff et al.,

2016). When the subglacial freshwater enters the fjord, it rises to

the surface and entrains large volumes of ambient fjord water. Previ-

ously, entrainment factors (ratio of total upwelling over subglacial

freshwater discharge) have been proposed in the range of 10 to 30

(Bendtsen et al., 2015; Mankoff et al., 2016; Mortensen et al.,

2013). A recent heat budget model at the KNS glacier in Godth�abs-

fjord estimated an entrainment factor of 14, thus generating an

upwelling rate of 140 to 1400 m3 s�1 (Bendtsen et al., 2015). For

the other two marine-terminating glaciers in Godth�absfjord (NS and

AS), no information on subglacial discharge is available, but these

glaciers are similar in size as KNS, and so we adopted the same

parameter values as for KNS.

F IGURE 7 Conceptual model of the hydrodynamic circulation and its impact on the biogeochemistry in a fjord affected by marine-
terminating glaciers (e.g., Godth�absfjord) and a land-terminating glacier (e.g., Young Sound)
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The deep water in Godth�absfjord has nitrate concentration of

~11 lM (Fig. S1), thus providing an upwelling flux of nitrate:

JNO3 = 0.4 9 106 to 4.0 9 106 mol N day�1.

New production takes place in central and inner part of

Godth�absfjord, (surface area ~650 km2), of which 20% is covered by

icebergs during summer (Mortensen et al., 2013), yielding a surface

area of 520 km2 available for light penetration and primary produc-

tion. Using the Redfield ratio (106C:16N), the upwelling nitrate

JNO3 = 0.4 9 106 to 4.0 9 106 mol day�1 thus provides an area-

based rate of potential new production of 70–700 mg C m�2 day�1,

which aligns with the values measured at station GF10

(~550 mg C m�2 day�1).

The importance of subglacial discharge can be illustrated by

upscaling to all 210 marine-terminating glaciers in Greenland with

calving fronts wider than 1 km (Howat & Eddy, 2011). Assuming

subglacial freshwater discharge is active for approximately two

months per year and using a subglacial discharge of 10–100 m3 s�1

per glacier, this results in a nitrate flux of 1.7–17 Gmol year�1 to

the surface layer. Comparing this to the direct input of dissolved

inorganic nitrogen with glacial meltwater of 0.3–0.7 Gmol year�1

(Hawkings et al., 2015), the entrainment associated with subglacial

discharge has potentially a far larger impact on the nitrogen supply

to the surface layer of Greenland coastal waters.

The transport of icebergs through fjord systems with marine ter-

minating glaciers could add an additional nutrient supply, as iceberg

movement leads to local upwelling and increased productivity (Smith,

Sherman, Shaw, & Sprintall, 2013; Vernet et al., 2012). Yet, the rela-

tive importance of iceberg-induced nutrient upwelling is currently

unconstrained, and hence, its impact on productivity is not further

quantified here. In addition to the impact of glaciers, other mecha-

nisms such as tidal mixing at the fjord mouths and coastal upwelling

at the continental shelf break can also resupply nutrients to the sur-

face layer that sustains productivity on the shelf (Figure 3e,f).

4.2 | Importance of marine-terminating glaciers for
the marine ecosystem

Young Sound has an overall annual pelagic primary production of

~10 g C m�2 year�1 (Rysgaard, Nielsen, & Hansen, 1999), which is

12 times lower than Godth�absfjord, which has an estimated annual

primary production of ~120 g C m�2 year�1 (Juul-Pedersen et al.,

2015; Meire et al., 2015). One factor that could explain this large dif-

ference is the presence of sea ice in fjords, which reduces the produc-

tive period window, thus leading to a lower annual production

(Arrigo, Van Dijken & Pabi, 2008; Rysgaard & Glud, 2007). Although

Young Sound experiences a longer and more extensive sea ice cover

than Godth�absfjord, this only explains part of the observed differ-

ences in annual primary production as production during the ice-free

summer is substantially lower than in Godth�absfjord. Sea ice is typi-

cally present in Young Sound until early July, after which there is a

single short phytoplankton bloom (Figure 5) (Rysgaard et al., 1999).

The predicted increase in the ice-free period from 80 days at present

to 160 days by the end of the twenty-first century, potentially can

lead to a threefold increase in annual production to

~30 g C m�2 year�1 as projected by Rysgaard and Glud (2007). So

even without sea ice limitation, the annual primary production in

Young Sound would remain substantially lower than in Godth�absfjord.

In addition to the typical spring bloom, the inner part of Godth�abs-

fjord also shows a sustained summer productivity (Figure 3a), which

accounts for 35%–40% of the annual production (Juul-Pedersen et al.,

2015; Meire et al., 2015). This summer bloom has been observed to

reoccur annually and coincides with the maximum meltwater runoff

from Greenland ice sheet (Calbet et al., 2011; Juul-Pedersen et al.,

2015) As substantiated above, this increased summer productivity is

not due to a direct fertilization from nutrients contained in glacial

meltwater, but runs through an indirect impact of the meltwater input

on the physical oceanography, as nutrient upwelling is stimulated by

rising meltwater plumes from marine-terminating glaciers.

The high productivity in Godth�absfjord during both spring and

summer has a direct effect on higher trophic levels, as confirmed by

the sustained zooplankton production that is observed throughout

summer (Arendt, Juul-Pedersen, Mortensen, Blicher, & Rysgaard,

2013; Tang et al., 2011). This high zooplankton biomass is an impor-

tant food source for crustaceans (krill) and small pelagic fish (polar

cod, arctic cod and capelin) (Bergstrøm & Vilhjalmarsson, 2007),

which are preyed upon by Greenland halibut, seals and whales that

seasonally migrate into Godth�absfjord (Boye, Simon, & Madsen,

2010). In contrast, Young Sound is characterized by low pelagic bio-

mass (Arendt, Agersted, Sejr, & Juul-Pedersen, 2016), and instead,

the limited primary production is mainly channeled to slow growing

benthic filter-feeding organisms (Sejr, Blicher, & Rysgaard, 2009).

Consequently, the dominant top predators in Young Sound (walruses

and eider ducks) rely primarily on benthic biomass that has accumu-

lated over decades (Sejr et al., 2002). These observations hence sug-

gest that subglacial discharge, or equally the presence of marine-

terminating glaciers, acts as a structuring factor for the marine food

web in the fjords.

The coastal and fjord waters of west Greenland are productive

with net primary production rates of 70–320 mg C m�2 day�1 (Jen-

sen et al., 1999) and this productivity sustains important fisheries,

which contributes up to 92% of Greenland’s total export income,

and forms the basis for the traditional hunting of marine mammals.

Halibut fisheries occur within or at the mouth of the fjord systems

(ICES, 2015) and are of particular economic importance for Green-

land (Berthelsen, 2014), accounting for 42% of the total fisheries

income. Our statistical analysis reveals that high halibut landings spa-

tially correlate with the presence of large marine-terminating outlet

glaciers (Figure 6b,c). Moreover, in fjords with marine-terminating

glaciers, the halibut landings correlate with the glacial freshwater

input, while this is not the case for fjords with only land-terminating

glaciers (Figure 6d). To explain this, we hypothesize that larger gla-

ciers systems induce a higher subglacial discharge, which in its turn

sustains a higher productivity. Major inshore halibut fishing grounds

are found in the inner Disko Bay, where primary production rates of

1200 to 3200 mg C m�2 day�1 have been recorded in summer

(Andersen, 1981; Jensen et al., 1999), as well as in the Uummannaq
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and Upernavik regions. These are all areas with major marine-termi-

nating glaciers (Figure 6). Notwithstanding the risks and difficulties

of fishing in these areas (calving glaciers and icebergs), fishermen do

sail into these glacier fjords, as these are known to provide rich fish-

ing grounds, generating high landings (Nygaard, 2014). A similar rea-

soning could explain the foraging behavior of narwhals, which feed

on squid, shrimp and fish, and are found close to the marine-termi-

nating glaciers during summer (Laidre et al., 2016). The connection

between subglacial discharge and sustained summer productivity is

not limited to Greenland, but has been observed in other parts of

the Arctic. Earlier works have observed similar upwelling events in

other marine-terminating glacier fjords in the Arctic (Greisman, 1979;

Hartley & Dunbar, 1938). Tracking data of sea-birds and marine

mammals (seals and whales) in Svalbard also reveal that regions near

marine-terminating glaciers are important feeding grounds (Lydersen

et al., 2014).

4.3 | Outlook

Our results indicate that glaciers strongly impact the biogeochem-

istry and productivity of marine fjord ecosystems in Greenland. The

impact of glaciers on marine productivity is not direct, in the sense

that meltwater is not a significant source of nitrate which is the main

limiting nutrient. Rather, the effect on productivity is indirect via the

impact of glaciers and icebergs on the hydrography. Marine-termi-

nating glaciers drive substantial upwelling of nutrient-rich deep

water, thus sustaining a high primary production throughout the

summer while this mechanism is absent for land-terminating glaciers.

In recent decades, a widespread retreat and thinning of marine-ter-

minating glaciers has been observed along the Greenland ice sheet,

with an average retreat of 110 m year�1 over 2000–2010, resulting

from increasing submarine and atmospheric melt (Carr, Stokes, &

Vieli, 2013; Howat & Eddy, 2011). Glaciers along the northeast and

north coast of Greenland typically have submerged beds that extend

far inland, and are less likely to become land-terminating. However,

marine-terminating glaciers in other parts of Greenland may well

retreat above sea level in the near future (Howat & Eddy, 2011), a

transition that as shown here, may drastically reduce summer pro-

ductivity. Yet, as long as glaciers remain marine-terminating,

increased surface melting may stimulate increased meltwater perco-

lation, leading to higher subglacial discharge, enhanced nutrient

upwelling and increased summer productivity. Overall, we expect

that the shrinking of the Greenland ice sheet will cause fundamental

changes in the hydrography, biogeochemical cycling and marine pro-

ductivity of the fjord ecosystems around Greenland.

ACKNOWLEDGEMENTS

This research was supported by the Research Foundation Flanders

(FWO aspirant grant to L.M.). S.R. was funded by the Canada Excel-

lence Research Chair program. F.J.R.M. received funding from the

European Research Council under the European Union’s Seventh

Framework Programme (FP7/2007-2013) via ERC grant agreement

n° [306933]. This study was conducted in collaboration with the

marine monitoring program MarineBasis, part of the Greenland

Ecosystem Monitoring (GEM). This work is a contribution to the Arc-

tic Science Partnership (ASP) and the ArcticNet Networks of Centers

of Excellence programs. We would like to thank Flemming Heinrich,

Thomas Krogh, Egon Frandsen, Jan Sinke and the crew of RV

SANNA for laboratory and field assistance.

REFERENCES

Andersen, O. (1981). The annual cycle of phytoplankton primary produc-

tion and hydrography in the Disko Bugt area, West Greenland. Medd

om Grønland, 6, 3–65.

Arendt, K. E., Agersted, M. D., Sejr, M. K., & Juul-Pedersen, T. (2016).

Glacial meltwater influences on plankton community structure and

the importance of top-down control (of primary production) in a NE

Greenland fjord. Estuarine, Coastal and Shelf Science, 183, 123–135.

Arendt, K. E., Juul-Pedersen, T., Mortensen, J., Blicher, M. E., & Rysgaard,

S. (2013). A 5-year study of seasonal patterns in mesozooplankton

community structure in a sub-Arctic fjord reveals dominance of

Microsetella norvegica (Crustacea, Copepoda). Journal of Plankton

Research, 35, 105–120.

Arrigo, K. R., Van Dijken, G., & Pabi, S. (2008). Impact of a shrinking Arc-

tic ice cover on marine primary production. Geophysical Research Let-

ters, 35, 1–6.

Aure, J., Strand, Ø., Erga, S., & Strohmeier, T. (2007). Primary production

enhancement by artificial upwelling in a western Norwegian fjord.

Marine Ecology Progress Series, 352, 39–52.

Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A.,

Gogineni, S. P., Howat, I., . . . Steinhage, D. (2013). A new bed eleva-

tion dataset for Greenland. The Cryosphere, 7, 499–510.

Bamber, J., Van den Broeke, M., Ettema, J., Lenaerts, J., & Rignot, E.

(2012). Recent large increases in freshwater fluxes from Greenland

into the North Atlantic. Geophysical Research Letters, 39, 8–11.

Bendtsen, J., Mortensen, J., Lennert, K., & Rysgaard, S. (2015). Heat

sources for glacial ice melt in a West Greenland tidewater outlet glacier

fjord: The role of subglacial freshwater discharge. Geophysical Research

Letters, 42, 4089–4095.

Bendtsen, J., Mortensen, J., & Rysgaard, S. (2014). Seasonal surface layer

dynamics and sensitivity to runoff in a high Arctic fjord (Young

Sound/Tyrolerfjord, 74 N). Journal of Geophysical Research: Oceans,

119, 6461–6478.

Bendtsen, J., Mortensen, J., & Rysgaard, S. (2015). Modelling subglacial

discharge and its influence on ocean heat transport in Arctic fjords.

Ocean Dynamics, 65, 1535–1546.

Bergstr€om, B., & Vilhjalmarsson, H. (2007). Cruise report and preliminary

results of the acoustic/pelagic trawl survey off West Greenland for

capelin and polar cod 2005. Pinngortitalerriffik, Greenland Institute

of Natural Resources (No. 6). Nuuk. Technical Report.

Berthelsen, T. (2014). Coastal fisheries in Greenland. KNAPK report,

Nuuk.

Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B.,

& Charette, M. A. (2013). Greenland meltwater as a significant and

potentially bioavailable source of iron to the ocean. Nature Geo-

science, 6, 274–278.

Boje, J., Neuenfeldt, S., Sparrevohn, C., Eigaard, O., & Behrens, J. (2014).

Seasonal migration, vertical activity, and winter temperature experi-

ence of Greenland halibut Reinhardtius hippoglossoides in West

Greenland waters. Marine Ecology Progress Series, 508, 211–222.

Boye, T. K., Simon, M., & Madsen, P. T. (2010). Habitat use of humpback

whales in Godthaabsfjord, West Greenland, with implications for

commercial exploitation. Journal of the Marine Biological Association of

the United Kingdom, 90, 1529–1538.

12 | MEIRE ET AL.



Calbet, A., Riisgaard, K., Saiz, E., Zamora, S., Stedmon, C., & Nielsen, T. G.

(2011). Phytoplankton growth and microzooplankton grazing along a

sub-Arctic fjord (Godthbsfjord, west Greenland). Marine Ecology Pro-

gress Series, 442, 11–22.

Carr, J. R., Stokes, C. R., & Vieli, A. (2013). Recent progress in under-

standing marine-terminating Arctic outlet glacier response to climatic

and oceanic forcing: Twenty years of rapid change. Progress in Physi-

cal Geography, 37, 436–467.

Chu, V. W. (2014). Greenland ice sheet hydrology: A review, Progress in

Physical Geography, 38, 19–54.

Comiso, J. C., Parkinson, C. L., Gersten, R., & Stock, L. (2008). Accelerated

decline in the Arctic sea ice cover., 35, 1–6.

Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T.

M., vanden Broeke, M. R, & Gall, H. (2013). The Cryosphere Estimat-

ing the Greenland ice sheet surface mass balance contribution to

future sea level rise using the regional atmospheric climate model

MAR. The Cryosphere, 7, 469–489.

Greisman, P. (1979). On upwelling driven by the melt of ice shelves and

tidewater glaciers. Deep Sea Research Part A, Oceanographic Research

Papers, 26, 1051–1065.

Hartley, C. H., & Dunbar, M. J. (1938). On the hydrographic mechanism

of the so-called brown zones associated with tidal glaciers. Journal of

Marine Research, 1, 305–311.

Hawkings, J. R., Wadham, J. L., Tranter, M., Lawson, E., Sole, A., Cowton,

T., . . . Telling, J. (2015). The effect of warming climate on nutrient

and solute export from the Greenland Ice Sheet. Geochemical Perspec-

tives Letters, 1, 94–104.

Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A.,

. . . Nienow, P. (2016). The Greenland Ice Sheet as a hot spot of

phosphorus weathering and export in the Arctic. Global Biogeochemi-

cal Cycles, 30, 191–210.

Howat, I. M., & Eddy, A. (2011). Multi-decadal retreat of Greenland’s
marine-terminating glaciers. Journal of Glaciology, 57, 389–396.

Huybrechts, P., Goelzer, H., Janssens, I., Driesschaert, E., Fichefet, T.,

Goosse, H., & Loutre, M. F. (2011). Response of the Greenland and

Antarctic ice sheets to multi-millennial greenhouse warming in the

earth system model of intermediate complexity LOVECLIM. Surveys

in Geophysics, 32, 397–416.

ICES. (2015). Report of the North-Western Working Group (NWWG), 28

April-5 May 2015, Vol. ICES CM 20. 717 pp.

Janssens, I., & Huybrechts, P. (2000). The treatment of meltwater reten-

tion in mass-balance parameterizations of the Greenland ice sheet.

Annals of Glaciology, 31, 133–140.

Jensen, H. M., Pedersen, L., Burmeister, A., & Hansen, B. W. (1999). Pela-

gic primary production during summer along 65 to 72 N off West

Greenland. Polar Biology, 21, 269–278.

Juul-Pedersen, T., Arendt, K., Mortensen, J., Blicher, M., Søgaard, D., &

Rysgaard, S. (2015). Seasonal and interannual phytoplankton produc-

tion in a sub-arctic tidewater outlet glacier fjord, west Greenland.

Marine Ecology Progress Series, 524, 27–38.

Kjeldsen, K. K., Mortensen, J., Bendtsen, J., Petersen, D., Lennert, K., &

Rysgaard, S. (2014). Ice-dammed lake drainage cools and raises sur-

face salinities in a tidewater outlet glacier fjord, west Greenland.

Journal of Geophysical Research: Earth Surface, 119, 1310–1321.

Laidre, K. L., Moon, T., Hauser, D. D. W., McGovern, R., Heide-Jørgensen,

M. P., Dietz, R., & Hudson, B. (2016). Use of glacial fronts by nar-

whals (Monodon monoceros) in West Greenland. Biology Letters, 12,

20160457.

Le Brocq, A. M., Payne, A. J., Siegert, M. J., & Alley, R. B. (2009). A sub-

glacial water-flow model for west Antarctica. Journal of Glaciology,

55, 879–888.

Lewis, S. M., & Smith, L. C. (2009). Hydrologic drainage of the Greenland

Ice Sheet. Hydrological Processes, 23, 2004–2011.

Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M., Reig-

stad, M., . . . Walczowski, W. (2014). The importance of tidewater

glaciers for marine mammals and seabirds in Svalbard, Norway. Jour-

nal of Marine Systems, 129, 452–471.

Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., &

Singh, H. (2016). Structure and dynamics of a subglacial discharge

plume in a Greenlandic fjord. Journal of Geophysical Research: Oceans,

121, 8670–8688.

Meire, L., Meire, P., Struyf, E., Krawczyk, D. W., Arendt, K. E., Yde, J.

C., . . . Meysman, F. J. R. (2016). High export of dissolved silica from

the Greenland Ice Sheet. Geophysical Research Letters, 43, 9173–

9182.

Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K.,

Arendt, K. E., . . . Rysgaard, S. (2015). Glacial meltwater and primary

production are drivers of strong CO2 uptake in fjord and coastal

waters adjacent to the Greenland Ice Sheet. Biogeosciences, 12,

2347–2363.

Mortensen, J., Bendtsen, J., Lennert, K., & Rysgaard, S. (2014). Seasonal

variability of the circulation system in a west Greenland tidewater

outlet glacier fjord, Godth�absfjord (64 N). Journal of Geophysical

Research: Earth Surface, 119, 2591–2603.

Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahne-

stock, M., & Rysgaard, S. (2013). On the seasonal freshwater stratifi-

cation in the proximity of fast-flowing tidewater outlet glaciers in a

sub-Arctic sill fjord. Journal of Geophysical Research: Oceans, 118,

1382–1395.

Mortensen, J., Lennert, K., Bendtsen, J., & Rysgaard, S. (2011). Heat

sources for glacial melt in a sub-Arctic fjord (Godth�absfjord) in con-

tact with the Greenland Ice Sheet. Journal of Geophysical Research,

116, C01013.

Motyka, R. J., Cassotto, R., Truffer, M., Kjeldsen, K. K., Van As, D., Kors-

gaard, N. J., . . . Rysgaard, S. (2017). Asynchronous behavior of outlet

glaciers feeding Godth�absfjord (Nuup Kangerlua) and the triggering

of Narsap Sermia’s retreat in SW Greenland. Journal of Glaciology, 63,

288–308.

Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., &

Bruhn, A. (2015). The influence of glacial melt water on bio-optical

properties in two contrasting Greenlandic fjords. Estuarine, Coastal

and Shelf Science, 163, 72–83.

Nygaard, R. (2014). Assessment Greenland Halibut Stock Component in

NAFO Division 1A Inshore. NAFO SCR 14/0 Serial no. N6338.

R Core Team. (2013). R: A language and environment for statistical com-

puting. Vienna, Austria: R Development Core Team.

Rysgaard, S., & Glud, R. N. (2007). Carbon cycling in Arctic marine

ecosystems: Case study – Young Sound. Medd Greenland, Bioscience,

58.

Rysgaard, S., Nielsen, T. G., & Hansen, B. W. (1999). Seasonal variation in

nutrients, pelagic primary production and grazing in a high-Arctic

coastal marine ecosystem, Young Sound, Northeast Greenland. Mar-

ine Ecology Progress Series, 179, 13–25.

Sciascia, R., Straneo, F., Cenedese, C., & Heimbach, P. (2013). Seasonal

variability of submarine melt rate and circulation in an East Greenland

fjord. Journal of Geophysical Research: Oceans, 118, 2492–2506.

Sejr, M. K., Blicher, M. E., & Rysgaard, S. (2009). Sea ice cover affects

inter-annual and geographic variation in growth of the Arctic cockle

Clinocardium ciliatum (Bivalvia) in Greenland. Marine Ecology Progress

Series, 389, 149–158.

Sejr, M. K., Sand, M. K., Jensen, K. T., Petersen, J. K., Christensen, P. B.,

& Rysgaard, S. (2002). Growth and production of Hiatella arctica

(Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland).

Marine Ecology Progress Series, 244, 163–169.

Simpson, J. H., Crisp, D. J., & Hearn, C. (1981). The shelf-sea fronts:

Implications of their existence and behaviour [and discussion]. Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 302, 531–546.

Slater, D., Nienow, P., Sole, A., Cowton, T. O. M., Mottram, R., Langen,

P., & Mair, D. (2017) Spatially distributed runoff at the grounding line

MEIRE ET AL. | 13



of a large Greenlandic tidewater glacier inferred from plume mod-

elling. Journal of Glaciology, 63, 309–323.

Smith, K. L., Sherman, A. D., Shaw, T. J., & Sprintall, J. (2013). Icebergs as

unique lagrangian ecosystems in polar seas. Annual Review of Marine

Science, 5, 269–287.

Straneo, F., & Cenedese, C. (2014). The dynamics of greenland’s glacial

fjords and their role in climate. Annual review of marine science, 7,

89–112.

Tang, K. W., Nielsen, T. G., Munk, P., Mortensen, J., Møller, E. F., Arendt,

K. E., . . . Juul-Pedersen, T. (2011). Metazooplankton community

structure, feeding rate estimates, and hydrography in a meltwater-

influenced Greenlandic fjord. Marine Ecology Progress Series, 434, 77–

90.

Tremblay, J. É., & Gagnon, J. (2009). The effects of irradiance and nutri-

ent supply on the productivity of Arctic waters: a perspective on cli-

mate change. In Influence of climate change on the changing arctic and

sub-arctic conditions (pp. 73–93). Dordrecht: Prairie Springer.

Van As, D., Andersen, M. L., Petersen, D., Fettweis, X., Van Angelen, J.

H., Lenaerts, J., . . . Steffen, K. (2014). Increasing meltwater discharge

from the Nuuk region of the Greenland ice sheet and implications for

mass balance (1960–2012). Journal of Glaciology, 60, 314–322.

Vernet, M., Smith Jr, K. L., Cefarelli, A. O., Helly, J. J., Kaufmann, R. S.,

Lin, H., . . . Shaw, T. (2012). Islands of Ice: Influence of Free-Drifting

Antarctic Icebergs on Pelagic Marine Ecosystems., 25, 2011–2012.

Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O’Don-

nell, E., . . . Nienow, P. (2016). Sources, cycling and export of nitrogen

on the Greenland Ice Sheet. Biogeosciences, 13, 6339–6352.

Wassmann, P., & Reigstad, M. (2011). Future arctic ocean seasonal ice

zones and implications for pelagic-benthic coupling. Oceanography,

24, 220–231.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Meire L, Mortensen J, Meire P, et al.

Marine-terminating glaciers sustain high productivity in

Greenland fjords. Glob Change Biol. 2017;00:1–14.

https://doi.org/10.1111/gcb.13801

14 | MEIRE ET AL.

https://doi.org/10.1111/gcb.13801

