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ABSTRACT

Cohen’s and Fleiss’ kappa are well-known measures for inter-rater reliability. However, they only
allow a rater to select exactly one category for each subject. This is a severe limitation in some
research contexts: for example, measuring the inter-rater reliability of a group of psychiatrists
diagnosing patients into multiple disorders is impossible with these measures. This paper proposes a
generalisation of the Fleiss’ kappa coefficient that lifts this limitation. Specifically, the proposed κ
statistic measures inter-rater reliability between multiple raters classifying subjects into one-or-more
nominal categories. These categories can be weighted according to their importance, and the measure
can take into account the category hierarchy (e.g., categories consisting of subcategories that are only
available when choosing the main category like a primary psychiatric disorder and sub-disorders; but
much more complex dependencies between categories are possible as well). The proposed κ statistic
can handle missing data and a varying number of raters for subjects or categories. The paper briefly
overviews existing methods allowing raters to classify subjects into multiple categories. Next, we
derive our proposed measure step-by-step and prove that the proposed measure equals Fleiss’ kappa
when a fixed number of raters chose one category for each subject. The measure was developed to
investigate the reliability of a new mathematics assessment method, of which an example is elaborated.
The paper concludes with the worked-out example of psychiatrists diagnosing patients into multiple
disorders.

Keywords Inter-rater reliability · Fleiss’ kappa ·Multiple categories · Hierarchical categories ·Weighted categories

1 Introduction

Inter-rater reliability is the degree of agreement among independent observers who rate, code, or assess the same
phenomenon. These ratings often rely on subjective evaluations provided by human raters, who sometimes differ greatly
from one rater to another (Gwet, 2012; Vanacore & Pellegrino, 2022). Various researchers in many different scientific
fields have recognized this problem for a long time since science requires measurements to be reproducible and accurate.
Ideally, only a change in the subject’s attribute should cause variation in the ratings, while the rater-induced source of
variation should be excluded as it can jeopardize the integrity of scientific inquiries. The resolution to these problems,
or at least the measurement of how big these problems are, is the study of inter-rater reliability.
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Measuring Agreement Among Several Raters Classifying Subjects Into One-Or-More (Hierarchical) Categories

1.1 Cohen’s kappa

Starting from the 1950s, various inter-rater reliability measures have been proposed (Osgood, 1959; Bennett et al.,
1954), from which Cohen’s kappa (Cohen, 1960) is the most well-known chance-corrected measure. This correction for
chance is essential, as two raters may agree by following a clear, deterministic rating procedure, or they may agree by
chance (Gwet, 2012). Thus, by accounting for chance, the kappa coefficient takes into account the difficulty of the
classification task at hand. The formula of Cohen’s kappa (Cohen, 1960) is:

κ =
Po− Pe
1− Pe

, (1)

where Po is the observed agreement and Pe is the expected agreement by chance. Cohen (1960) calls the nominator
the beyond-chance: by subtracting the observed agreement with the expected agreement by chance, you are left with
‘the percent of units in which beyond-chance occurred’; the denominator 1− Pe can be seen as the ‘beyond-chance’ in
the case of perfectly agreeing raters (the observed agreement is replaced with 1). So the kappa-statistic is the proportion
of the observed beyond-chance over the beyond-chance in an ideal world of perfectly agreeing raters. Hence, the
κ-coefficient is the proportion of agreement after chance agreement is removed from consideration. κ-coefficients
always vary between −1 and 1, with 1 indicating perfect agreement (Po = 1), 0 indicating no agreement better
than chance (Pe = Po), and a value below zero indicates the agreement was less than one would expect by chance
(Po < Pe). The exact formulas for Po and Pe for the Cohen’s kappa can be found in Cohen (1960).

1.2 Fleiss’ kappa

Cohen’s kappa only allows to measure agreement between two independent raters, that is why Fleiss came up with the
Fleiss’ kappa in 1971 allowing a fixed number of 2 raters or more. These raters categorise subjects into exactly one of
the available categories. We will now present how Fleiss defined Po and Pe. Let I be the total number of subjects, J is
the (fixed) number of raters and C is the number of categories. Let xic be the number of raters who classified the i-th
subject (i ∈ {1, . . . , I}) into the c-th category (c ∈ {1, . . . C}). Since the categories are mutually exclusive, we know
that every subject i will have received exactly J classifications, so

∑
c xic = J . We start with the observed agreement

Po. The extent of agreement among J raters for the subject i can be calculated as the proportion of agreeing rater pairs(
xic

2

)
out of all the

(
J
2

)
possible rater pairs. This proportion Pi for a subject i can thus be defined as:

Pi =
∑
c

(
xic

2

)(
J
2

)
=
∑
c

xic(xic − 1)

J(J − 1)

=

∑
c x

2
ic − J

J(J − 1).

The overall observed proportion of agreement Po may then be measured by the mean of all Pi’s, so:

Po =
1

I

∑
i

Pi

=

∑
i

∑
c x

2
ic − IJ

IJ(J − 1)
. (2)

We now turn to the formula of Pe, the expected agreement by chance. In total, IJ classifications will have been
performed: all raters select exactly 1 category for each subject. So, the proportion of all assignments to the c-th category
can be expressed as

∑
i xic

IJ , this is thus the probability to assign a subject to category c by chance. Consequently, the

probability that any pair of (independent) raters classify a subject into category c by chance is given by
(∑

i xic

IJ

)2
.

Hence, if the raters made their classifications purely at random, the probability that two raters agree by chance on all
categories is given by:

Pe =
∑
c

(∑
i xic
IJ

)2

, (3)

2



Measuring Agreement Among Several Raters Classifying Subjects Into One-Or-More (Hierarchical) Categories

Plugging the above formulas into the κ statistic expressed in (1), gives the Fleiss’ kappa:

κ =

∑
i

∑
c x2

ic−IJ
IJ(J−1) −

∑
c

(∑
i xic

IJ

)2
1−

∑
c

(∑
i xic

IJ

)2 . (4)

A more elaborate description and an example of psychiatric diagnosis on 30 subjects by six raters into a single disorder
category, can be found in Fleiss (1971).

1.3 Paradoxes

Although both Cohen’s kappa and Fleiss’ kappa are widely popular measures for inter-rater reliability, some scholars
have pointed out that these kappa coefficients are not free from paradoxes and can occasionally yield unexpected results
(Warrens, 2010; Gwet, 2008; Feinstein & Cicchetti, 1990). One paradox arises when both the observed agreement Po
and the expected chance agreement Pe are high: the correction process embodied in kappa’s formula (see (1)) can
return a relatively low or even negative value of κ, whilst the observed agreement Po is high. Another paradox is known
as the prevalence paradox: it can be shown that the probabilities

∑
i xic

IJ produce higher κ-values when they are more
balanced, i.e. when all categories are used about equally often and no particularly common categories exist. According
to Gwet (2012), these probabilities are not suited to correctly measure the expected chance agreement Pe. All ratings
for each category are used in the calculation of Pe, but as we want to say something about expected chance agreement,
this philosophically implies we treat all these ratings as if they were all assigned randomly, which, according to Gwet
(2012), is an unacceptable premise. Kraemer et al. (2002) disagree with Gwet’s view, saying that ‘it is well known that
it is very difficult to achieve high reliability of any measure in a very homogeneous population (of subjects).’

1.4 Other methods

The literature on chance-corrected inter-rater reliability measures boomed in the 1970s and 1980s, with many proposals
for different measures for different research settings. Surprisingly, only a few papers consider the limitation of mutually
exclusive categories. This section briefly overviews the alternative methods in which a rater can classify a subject into
multiple categories. Most of the methods below were described by Mezzich et al. (1981) but lacked sound mathematical
expressions, which are added in this section.

1.4.1 Averaging or pooling Cohen’s kappas

To calculate the inter-rater reliability among 2 raters who can classify subjects into multiple categories, a commonly
used method is to calculate a Cohen’s kappa (Cohen, 1960) for each category and average them: κ. A problem with
this approach is that when a category has an undefined Cohen’s κ, κ is undefined too (which happens if the expected
agreement by chance Pe is 1, e.g. when any rater did not select the category). A solution for this is pooling the Cohen’s
kappas by calculating the Po and Pe for each category separately and then taking the average Po and Pe. Next, these
averages are plugged in (1).

For example, NVivo (2022) - a popular program for qualitative research - advocates the pooled Cohen’s kappa to
measure the inter-rater reliability among two coders. These two coders (= ‘raters’) can code in NVivo the different
sources (= ‘subjects’) of their research (e.g. text fragments, interviews, pictures) to one-or-more nodes of their codebook
(= ‘categories’). To get an overall κ of this coding process, Cohen’s kappa is not suited: it would only allow the coders
to code a source to exactly one node in their codebook. In contrast, a source is often coded to various nodes of the
codebook. Therefore, Cohen’s kappa is calculated for each node in the codebook separately, and the pooled Cohen’s
kappa is used to get an overall κ of the coding process (Figure 1).

In 2008, De Vries et al. published a simulation study in which they compared ‘true’ Cohen’s kappa values with the
(simulated) averaged kappa and the (simulated) pooled kappa. Results showed that the pooled kappa almost always
deviates less from the true kappa than the averaged kappa, resulting in smaller root-mean-square errors. Especially if
the expected agreement by chance Pe is 0.6 or higher, the pooled Cohen’s kappa outperforms the averaged Cohen’s
kappa. Indeed, when Pe is large, the denominator of the corresponding Cohen’s kappa is small. In the case of the
averaged kappa, the denominator of individual kappas has a multiplicative effect on the outcome (the numerator has an
additive effect), making the method less precise when some individual denominators become small.

An important constraint to averaging or pooling Cohen’s kappas is embodied in the formulas of Cohen’s kappa itself:
while the limitation of only one category for each subject is lifted, it is still limited to measure inter-rater reliability
among exactly 2 raters.

3
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Figure 1: NVivo advocates the pooled Cohen’s kappa approach in the provided Excel sheets to get an overall κ of the
coding process.

1.4.2 Proportional overlap

The proportional overlap method was first introduced by Mezzich et al. in 1981. The method allows the calculation
of a κ statistic in which multiple raters can classify subjects into multiple categories. The proportional overlap κ is
calculated between pairs of raters. Let Aij be the set of categories selected by rater j for subject i. The proportion of
agreement between two raters a and b is then defined as the ratio of #(Aia ∩ Aib) (= the number of categories that
were selected by both raters a and b for subject i) over #(Aia ∪Aib) (= the total number of categories selected by rater
a or b for subject i). For example, if rater a selected categories {blue, yellow, brown} and rater b selected {blue, green}
for a given subject i, their proportional overlap is the ratio of 1 (one agreement on ‘blue’) over 4 (in total, rater a and b
selected 4 different categories for subject i: blue, yellow, brown and green), so we get a proportional overlap of 0.25.
In general, the proportional overlap ranges between 0 (= no overlap between the selected categories) and 1 (= perfect
agreement, all categories match).

Agreement among several raters for a given subject is measured by averaging the proportions of agreement obtained for
all combinations of pairs of raters for that subject. The overall observed proportion of agreement Po is the average of
the mean proportions of agreement obtained for each of the I subjects in the sample:

Po =

∑
i

∑
(a,b)∈(J2)

#(Aia∩Aib)
#(Aia∪Aib)

I J(J−1)
2

with (a, b) ∈ N2

To determine the proportion of chance agreement Pe, compute the proportions of agreement between all combinations
of classifications Aij for all raters and all subjects, and take the average. This can easily be done by using software and
looping over all these combinations. Mathematically, the rather complex formula can be expressed as follows:

Pe =

∑
(x,y)∈(I·J2 )

#[Adx/Je,(x−1 mod J)+1

⋂
Ady/Je,(y−1 mod J)+1]

#[Adx/Je,(x−1 mod J)+1

⋃
Ady/Je,(y−1 mod J)+1]

IJ(IJ−1)
2

with (x, y) ∈ N2

To understand the above formula, imagine an I × J-grid where each cell represents the classifications Aij of subject i
by rater j. This I × J-grid contains I · J cells that can be numbered row by row. An example with 3 subjects and 4
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raters is given in Table 1. The last cell will have number I · J . Now, take a pair (x, y) out of the possible combinations
of two numbers from 1 to I · J . Both x and y refer to a cell in the numbered I × J-grid. We need to translate x (and y)
back to the corresponding subject and rater. To find the subject, take the ceiling of the division of x by J (= dx/Je).
To find the rater, take x− 1 module J and add 1.

Table 1: Numbering an I × J-grid of classifications Aij

Rater 1 Rater 2 Rater 3 Rater 4 Rater 1 Rater 2 Rater 3 Rater 4
Subject 1 A11 A12 A13 A14 → Subject 1 1 2 3 4
Subject 2 A21 A22 A23 A24 Subject 2 5 6 7 8
Subject 3 A31 A32 A33 A34 Subject 3 9 10 11 12

As a number example with 3 subjects and 4 raters (Table 1), take the pair (10, 12). To find the subject belonging
to 10, we calculate d10/4e = d2.5e = 3, so we get subject 3. To find the rater belonging to 12, we calculate
(12− 1) mod 4 = 11 mod 4 = 3 and add 1, so we get rater 4.

The corresponding ‘Mezzich’s κ’ is found by plugging in Po and Pe in Cohen’s formula (1).

The proportional overlap method is an intuitive way to handle multiple raters classifying subjects into one-or-more
categories and is easy to adapt to a varying number of raters (cf. some combinations of raters will not be presented
in this case). However, the method has limitations: it can not handle different weights for categories, nor category
hierarchies. Moreover, the calculation of Pe depends on the number of combinations

(
I·J
2

)
, which makes computation

very demanding if the number of subjects I or the number of raters J is high. Using a random sample of combinations
might solve the computational issue, but it is an open question how large this random sample should be to guarantee
sufficient accuracy.

1.4.3 Chance-corrected intraclass correlations

Mezzich et al. (1981) also proposed a method to use intraclass correlation coefficients as an intermediate step for
the determination of a kappa statistic to allow the selection of multiple categories for each subject by multiple raters.
To calculate the intraclass correlations, let xij = (xij1, xij2, . . . , xijC) represent the classification vector of the i-th
subject (i ∈ {1, . . . , I}) for the j-th rater (j ∈ {1, . . . , J}), with xijc = 1 when subject i was classified by rater j into
category c (c ∈ {1, . . . C}), and xijc = 0 otherwise. A measure of agreement is obtained by computing an intraclass
correlation coefficient ρi between all xij for a given subject i for all raters using a one-way ANOVA. If all the raters
classified subject i in the same categories, perfect agreement is obtained, ρi = 1. Po can be computed by taking the
average of ρ1, ρ2, . . . , ρI . Pe is determined by computing the intraclass correlation coefficient between all classification
vectors xij for all raters and all subjects. Plugging Po and Pe in (1) gives the value of the ‘chance-corrected intraclass
correlations.’ Although the method is powerful by it simplicity, it can not handle different weights for categories, nor
category hierarchies.

1.4.4 Chance-corrected rank correlations

The method proposed by Kraemer in 1980 is the only method we found in the literature were multiple raters classify
subjects into an ordered lists of categories: e.g., the best-fitting category for the subject according to the rater is ranked
first, the second best-fitting category second, etc.

To calculate the corresponding kappa statistic, Kraemer uses classification vectors x′ij that contain ranks of the
classifications drafted by rater j for subject i. For example, if for a given subject i, rater j made an ordered list of k
categories (k ≤ C), a 1 is assigned to the first category mentioned, a 2 to the second category, etc. Finally, categories
that were not on the ordered list of rater j for subject i get rank C+k+1

2 assigned in vector xij, which equals the average
of the remaining ranks. If raters can not decide the order between some selected categories, tied ranks can be placed in
vector x′ij.

Assume, for example, that rater j made the following ordered classifications for subject i : 1. green 2. brown 2. orange
2. red 3. yellow., based on the 8 available categories {blue, brown, green, pink, purple, orange, red, yellow} . Then,
green would have a rank of 1, and brown, orange and red get rank 3 (i.e., the average of the ranks 2, 3, 4). Yellow
receives rank 5. The unchosen categories (blue, pink, purple) get rank 8+5+1

2 = 7 (i.e., average of the remaining ranks
6, 7 and 8). The resulting x′ij equals (7, 3, 1, 7, 7, 3, 3, 5).

The chance-corrected rank correlations κ is calculated between pairs of raters. In this case, the Spearman correlation
coefficient measures the agreement between two ranked classification vectors. Perfect agreement is obtained only if the
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two vectors are exactly the same. Let ri be the average Spearman correlation coefficient between all pairs of raters for
subject i, then Po is the average of r1, . . . , rI :

Po =

∑
i

∑
(a,b)∈(J2)

rxia,xib

I J(J−1)
2

Pe is calculated by averaging the Spearman correlation coefficient among all pairs of raters, for all subjects:

Pe =

∑
(c,d)∈(I·J2 )

rxdc/Je,(c−1 mod J)+1,xdd/Je,(d−1 mod J)+1

IJ(IJ−1)
2

The corresponding κ is found by plugging in Po and Pe in Cohen’s formula (1). While the method is the only
chance-corrected inter-rater reliability measure known in the literature allowing ranked classifications from raters, it can
not handle different weights for categories nor category hierarchies. However, these probably do not appear in ranked
classifications. The computational intensity for calculating Pe is the same as in the proportional overlap method.

2 Derivation of the proposed κ statistic

2.1 Non-hierarchical categories

Suppose a sample of I subjects has been classified by the same set of J raters into C categories. The C categories are
not mutually exclusive: a subject can be classified by a rater into multiple categories. Let xij = (xij1, xij2, . . . , xijC)
represent the classification vector of the i-th subject (i ∈ {1, . . . , I}) for the j-th rater (j ∈ {1, . . . , J}), with xijc = 1
when subject i was classified by rater j into category c (c ∈ {1, . . . C}), and xijc = 0 otherwise. Let xic =

∑
j xijc

denote the number of raters classifying subject i into category c, with J − xic representing the number of raters that did
not classify subject i into category c. We can assemble all xic’s in an I × C-matrix X , containing all classifications.
Some scholars would call X the ‘agreement table.’

Furthermore, consider a weight vector w = (w1, . . . , wC) where wc indicates the relative importance of category
c proportional to the weights of the other categories. The choice of w depends entirely on the research context in
which the ratings took place. It is often conceptually convenient to impose

∑
c wc = 1, but this is not required. In the

unweighted case where all categories are equally important, we can take both wc =
1
C ,∀c as well as wc = 1,∀c.

In case the categories are non-hierarchical, the selection of a category is independent from the (non-)selection of the
other categories. Intuitively, we first derive a kappa statistic like the one described by Cohen (1960) for each category c:

κc =
Poc − Pec
1− Pec

, (5)

where Poc is the observed agreement for category c and Pec is the proportion of agreement expected by chance for
category c.

We will calculate Poc pairwise (Conger, 1980). Two raters a and b agree on subject i when they both classified subject
i into category c (so xiac = xibc = 1) or when they both did not classify subject i into category c (so xiac = xibc = 0).
Hence, the extent of agreement for subject i and category c, can be seen as the proportion of rater pairs with agreement
for category c to the total number of rater pairs. So, for subject i and category c, the nominator exists of the sum of(
xic

2

)
and

(
J−xic

2

)
, while the denominator is the amount of all possible rater pairs

(
J
2

)
. The proportion Pic that denotes

the extent of agreement for subject i and category c can thus be defined as:

Pic =

(
xic

2

)
+
(
J−xic

2

)(
J
2

)
=

(xic)(xic − 1) + (J − xic)(J − xic − 1)

J(J − 1)

=
2x2ic − 2Jxic + J2 − J

J(J − 1)
.
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The overall observed proportion of agreement Poc for category c may then be measured by taking the mean of all Pic’s
so:

Poc =
1

I

∑
i

Pic

=
∑
i

2x2ic − 2Jxic + J2 − J
IJ(J − 1)

. (6)

Pec denotes the probability that two raters agree on (not) selecting category c by chance. For each category c, IJ
decisions of (not) selecting c will have been performed. As xic denotes the number of raters classifying subject i into
category c,

∑
i xic represent the total number of classifications into category c. Hence, the proportion

∑
i xic

IJ equals the
probability that a rater randomly classifies a subject into category c. In case of two (independent) raters, the probability

that both raters classify a subject into category c by chance is thus
(∑

i xic

IJ

)2
. If xic raters classified subject i into

category c, J − xic raters did not. As such, the proportion
∑

i(J−xic)

IJ represents the probability that a rater did not
classify a subject into category c by chance. In case of two (independent) raters, the probability that both raters did not

classify a subject into category c by chance is thus
(∑

i(J−xic)

IJ

)2
. Hence, the probability that two raters agree on (not)

selecting category c by chance equals:

Pec =

(∑
i xic
IJ

)2

+

(∑
i(J − xic)
IJ

)2

=

(∑
i xic
IJ

)2

+

(
IJ −

∑
i xic

IJ

)2

=

(∑
i xic
IJ

)2

+
I2J2 − 2 · IJ ·

∑
i xic + (

∑
i xic)

2

I2J2

= 2

(∑
i xic
IJ

)2

− 2

(∑
i xic
IJ

)
+ 1 (7)

We now aggregate all Po1, . . . , PoC and Pe1, . . . , P eC into one kappa-statistic, including each category according to
their weights wc

1:

κ =

∑
c

wc(Poc − Pec)∑
c

wc(1− Pec)
. (8)

If
∑

c wc = 1 is imposed, this reduces to:

κ =

∑
c

wcPoc −
∑
c

wcPec

1−
∑
c

wcPec
.

2.1.1 The proposed κ statistic is a generalisation of Fleiss’ kappa

When the requirements of the Fleiss’ kappa are fulfilled, our proposed κ-static reduces to it:

Theorem 1. In case of equally weighted, mutually exclusive and non-hierarchical categories, the proposed kappa-
statistic in (8) reduces to the Fleiss’ kappa.

1Note that the proposed kappa-statistic in (8) is not a weighted average of the individual kc’s (see (5)). In a yet-to-be-published
simulation study, we can show that pooling the Poc’s and Pec’s in this way leads to smaller root-mean-square errors than using a
weighted average of the kc’s. This simulation study is similar to the study De Vries et al. (2008) did to compare averaging or pooling
Cohen’s kappa (see subsubsection 1.4.1). In addition to the smaller root-mean-square errors, this aggregation mechanism makes the
κ-statistic insensitive to undefined κc (e.g., when any rater did not select it, see the worked-out example in subsection 3.2). Moreover,
we can prove that the proposed formula in (8) reduces to Fleiss’ kappa when the data follow its requirements.
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Proof. As the categories are mutually exclusive, we know that
∑

c xijc = 1 for every combination of i and j. Hence:∑
i

∑
c

xic =
∑
i

∑
c

∑
j

xijc =
∑
i

∑
j

1 = IJ. (9)

Because the categories are equally weighted, take wc =
1
C for equally weighted categories, so we get:

κ =

∑
c

1

C
(Poc − Pec)∑

c

1

C
(1− Pec)

=

∑
c

(Poc − Pec)∑
c

(1− Pec)
.

First, we rewrite the denominator. Based on (7) and (9) we get that:∑
c

(1− Pec) =
∑
c

(
1− 2

(∑
i xic
IJ

)2

+ 2

(∑
i xic
IJ

)
− 1

)

= −2
∑
c

(∑
i xic
IJ

)2

+ 2
∑
c

(∑
i xic
IJ

)

= −2
∑
c

(∑
i xic
IJ

)2

+ 2

(∑
c

∑
i xic

IJ

)

= −2
∑
c

(∑
i xic
IJ

)2

+ 2. (10)

Second, based on (6) and (7), the nominator equals:∑
c

[Poc − Pec] =
∑
c

[∑
i

2x2ic − 2Jxic + J2 − J
IJ(J − 1)

− 2

(∑
i xic
IJ

)2

+ 2

(∑
i xic
IJ

)
− 1

]

=
∑
c

∑
i

2x2ic − 2Jxic + J2 − J
IJ(J − 1)

− 2
∑
c

(∑
i xic
IJ

)2

+ 2
∑
c

(∑
i xic
IJ

)
− C

Applying (9):

=
2(
∑

i

∑
c x

2
ic)− 2JIJ + CIJ2 − CIJ
IJ(J − 1)

− 2
∑
c

(∑
i xic
IJ

)2

+ 2− C

=
2(
∑

i

∑
c x

2
ic)− 2IJ2 + CIJ2 − CIJ + 2IJ(J − 1)− CIJ(J − 1)

IJ(J − 1)
− 2

∑
c

(∑
i xic
IJ

)2

=
2(
∑

i

∑
c x

2
ic)− 2IJ

IJ(J − 1)
− 2

∑
c

(∑
i xic
IJ

)2

. (11)

Finally, we divide (11) by (10) and get the well-known Fleiss’ kappa (see (4)):

κ =

(
∑

i

∑
c x2

ic)−IJ
IJ(J−1) −

∑
c

(∑
i xic

IJ

)2
1−

∑
c

(∑
i xic

IJ

)2 .

Remark the apparent difference between Poc (6) and Pec (7) in the proposed measure and Po (2) and Pe (3) in Fleiss’
kappa: as Fleiss’ kappa presumes mutually exclusive categories, two raters a and b can only agree on a subject i if they
both classified the subject into the same category c, and there are

(
xic

2

)
such agreeing rater pairs. Everything else can be

regarded as a disagreement.2 This no longer holds when a subject i can be classified into multiple categories by the
2In fact, the calculation of κc (see (5)) is equal to the calculation of the Fleiss’ kappa with two categories: ‘selected category c’

and ‘not-selected category c.’

8



Measuring Agreement Among Several Raters Classifying Subjects Into One-Or-More (Hierarchical) Categories

same rater: when raters a and b do not select category c for subject i, they agree that from all C categories that can be
selected, category c should not be. So the number of agreeing pairs is the sum of

(
xic

2

)
and

(
J−xic

2

)
; meaning that the

agreement on not classifying subject i into category c, is valued equally as the agreement on an actual classification
of subject i into category c by both raters a and b. This is a philosophical premise of this proposed κ statistic, and
every user should consider whether this premise is appropriate in a specific context. If the proposed κ statistic is used
with mutually exclusive, equally weighted, and non-hierarchical categories, Theorem 1 shows that all these terms of
agreement on non-classification are cancelled out.

2.1.2 Handling missing data or a varying number of raters

Until now, we only considered the case of a fixed number of raters J . However, in practice, raters may only have
classified a proportion of the participating subjects or even used only a proportion of the available categories. Two
possibilities can be distinguished:

1. Missing data: some classifications of raters are lost due to unforeseen circumstances. However, the experiment
was not designed not to collect this data.

2. Varying number of raters: raters only had the opportunity to rate a portion of the participating subjects or
use only some of the categories. The experiment was intentionally designed to collect only this data (for
example, for feasibility reasons).

The proposed κ statistic in (8) can easily be adapted to handle both missing data and a varying number of raters by
replacing the fixed number of raters J . Define the I × C-matrix J ′, with the elements jic representing the number of
raters that had the opportunity to classify subject i into category c. We then need to change Poc (6) and Pec (7) in the
following way:

Poc =

∑
i(2x

2
ic − 2jicxic + j2ic − jic∑

i jic(jic − 1)
,

and:

Pec =

(∑
i xic∑
i jic

)2

+

(∑
i (jic − xic)∑

i jic

)2

= 2

(∑
i xic∑
i jic

)2

− 2

(∑
i xic∑
i jic

)
+ 1

In the case of missing data, these formulas imply the ‘Missing Completely at Random (MCAR)’-assumption, as we
estimate the values based on the available data and therefore see the available data as representative for the full data
(Little, 1988).

Although the proposed κ statistic is flexible enough to handle missing classifications in some categories with the
formulas above, this is often scientifically unacceptable: when raters do not have an overview of all categories, they will
be forced to classify some subjects into different categories than they would have done with all categories available.
Normally, only a varying number of raters for each subject is desirable. In that case, the matrix J ′ can be replaced by a
vector j = (j1, j2, . . . , jI) with ji the number of raters who classified subject i, and Poc (6) and Pec (7) need to be
changed accordingly:

Poc =

∑
i(2x

2
ic − 2jixic + j2i − ji)∑

i ji(ji − 1)
, (12)

Pec = 2

(∑
i xic∑
i ji

)2

− 2

(∑
i xic∑
i ji

)
+ 1 (13)

2.2 Hierarchical categories

2.2.1 Actual classifications versus possible classifications

Let us now consider the case when categories have some kind of hierarchical structure. For example, the categories to
which a rater classifies subjects can have main categories and subcategories; with a subcategory only be selectable if the
main category was chosen. Also more complex hierarchical structures are possible: think of decision graphs in which
some subcategories can only be chosen when some condition is met (e.g., a category can be selected when only 1 of
two other categories is selected, a category can only be selected when another is not selected,...).
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No matter how the hierarchical structure of the categories is constructed, all these hierarchies have one thing in common:
based on the classifications rater j already made for subject i, some (sub)categories will (not) be selectable. In other
words: where in the non-hierarchical case every subject i could be classified J times into category c, in the hierarchical
case the upper limit of possible classifications of subject i into category c will depend on the number of raters who
could select category c. Let S be an I × C-matrix, with elements sic defined as the number of possible classifications
of subject i into category c with ∀i,∀c : sic ∈ [0, J ] and sic can never exceed the number of actual classifications xic of
subject i in category c, so sic ≥ xic,∀i,∀c.
In the following section we will show that taking into account the hierarchy of the categories only depends on these sic’s
to compute the κ statistic. To give an impression on how to calculate the sic’s: all main categories could be selected by
all J raters for every subject i, so sic = J for all main categories. In a simple parent-child hierarchical structure, a
child category c′ can only be selected if the parent category p was selected so sic′ = xip, i.e. the number of possible
classifications of child category c′ for subject i equals the number of actual classifications in parent category p for
subject i. For more complex hierarchical structures, the calculation of sic can depend on a couple of different xijc’s;
apprehensive of the inclusion-exclusion principles of combinatorics (for an example, see the worked-out example in
subsection 3.1).

It is important to understand the difference between the sic’s and xic’s for a given category c: xic denotes the number
of actual classifications of subject i into category c; so the number of times category c was selected for subject i,
while sic indicates the number of possible classifications of subject i into category c. This means that sic corresponds
to the number of times category c was available for selection in case of subject i, which directly follows from the
hierarchical structure of the categories. The calculation of sic for a given category c and subject i can depend on actual
classifications of higher-order categories for subject i, but never on xic itself.

2.2.2 The kappa-statistic

With the introduction of matrix S, the construction of Poc and Pec is straightforward: just replace every occurrence of
J by the respective sic’s (6) and (7) . We get for Poc:

Poc =

∑
i

(
xic

2

)
+
(
sic−xic

2

)∑
i

(
sic
2

)
=

∑
i(xic)(xic − 1) + (sic − xic)(sic − xic − 1)∑

i sic(sic − 1)
, (14)

and for Pec:

Pec =

(∑
i xic∑
i sic

)2

+

(∑
i sic − xic∑

i sic

)2

= 2

(∑
i xic∑
i sic

)2

− 2

(∑
i xic∑
i sic

)
+ 1. (15)

If we would aggregate Poc and Pec in the same way as in (8), then we would have adjusted the contribution of
category c according to the context-related weights wc. However, in our aggregation, we would not have adjusted for
the total possible classifications

∑
i sic of category c. This is not desirable, which can be illustrated by the following

example: suppose unweighted categories and assume that for a subject i only two raters could select subcategory c′, so
sic′ = 2. Rater 1 classified subject i into subcategory c′ and rater 2 did not. Moreover, due to the category hierarchy, the
subcategory c′ was not available for all the other subjects for all raters, so

∑
i sic′ = 2. This will lead to a Poc = 0 and

Pec = 0.5. With no additional scaling for the total possible occurrences of a category (and thus using formula (8) for
aggregating Poc and Pec), the subcategory will contribute −0.5 to the nominator and 0.5 to the denominator. In other
words, if we do not adjust for possible classifications, we pull the value of κ down for an almost negligible category that
was only a possible classification on two occasions. In contrast, the main categories had IJ possible classifications.

To solve the problem and adjust for the total possible classifications sic of category c, we introduce a scaling factor for
each category c, to scale the terms Poc − Pec in the nominator and the terms 1− Pec in the denominator:

φc =

∑
i sic
IJ

. (16)

This scaling factor contrasts the total possible occurrences of a category with the IJ possible classifications of main
categories. As a result, main categories always have φc = 1. With the expressions in (14), (15) and (16), we are now
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ready to define the kappa-statistic for the hierarchical case:

κ =

∑
c

wcφc(Poc − Pec)∑
c

wcφc(1− Pec)
. (17)

2.2.3 Handling missing data or a varying number of raters

Note that in the calculation of the proposed kappa-statistic for hierarchical categories (17), only the scaling factors φc
still refer to the assumption of a fixed number of raters J . A varying number of raters or missing data should therefore
be handled within the calculation of matrix S of possible classifications, with respect to the hierarchy of the categories.
As in subsubsection 2.1.2, we again introduce the I × C-matrix J ′ with the elements jic representing the number of
raters that could have classified subject i into category c, irrespective of the hierarchy of the categories. This means
that sic is only equal to jic in the case that c is a main category that is available under all circumstances to raters. In
other words: jic represents the number of possible classifications of subject i into category c without prior knowledge
of the other categories the raters have selected (in contrast, this knowledge is definitely required to calculate the matrix
S). Hence, matrix J ′ is what we need to adjust the denominator of (16). The scaling factors φc adjusted for a varying
number of raters are defined as:

φc =

∑
i sic∑
i jic

,

If the number of raters only varies over subjects (and not over categories), matrix J ′ can be replaced by vector
j = (j1, j2, . . . , jI) with ji defined as the number of raters who classified subject i; the adapted κ statistic appears by
changing matrix S and the scaling factors φc’s accordingly.

3 Worked-out examples

In this section, we apply our proposed κ statistic and the appropriate other methods from subsection 1.4 on two
applications: one on the assessment of mathematics exam for which our proposed κ statistic was initially developed,
the other is an example from Mezzich et al. (1981) in which 30 child psychiatrists diagnose patients into multiple
psychiatric disorders.

Solution key

Solution key

Part 2: Space geometry

Question 5 (1.5 points)

a) Find a set of parametric equations for the plane . 

Attention: other possible solutions exists (other point and/or other direction
vectors) 

Question 6 (1 point)

a) Give a set of cartesian equations of the line  through  and parallel
with the -axis.

Question (Max: 3 points)

Draw the line segment  with 
and  in the given axis system. 

Pay attention to the correct height!
 Can only be assessed when  and  are 

correct.

α ↔ 3x − 2y − 11 = 0

Set of parametric equations is correct +1.5

 is missing. α ↔

The curly bracket  is missing. -0.5{

 is missing. -0.5k, l ∈ R

a A(1, −2, 6)
z

Set of cartesian equations is correct +1.0

 is missing. α ↔

The curly bracket  is missing. -0.5{

The student's answer also contains a set of parametric equations. It is unclear which set (cartesian or
parametric) is meant as the answer to the question. no points

[AB] co(A) = (−3, 4, 0)
co(B) = (−3, 4, 5)

(1) Point  is drawn correctly +1.0A

(2) One or more auxilary lines are drawn for point B

(3) Point  is drawn correctly +1.5B

A B

(4) Line segment  is drawn correctly 
+0.5 if  and  are drawn correctly

AB
A B

(5) Line  is drawn 
-0.5 if ,  and  are drawn 

AB
A B [AB]

Figure 2: Example question of the math assessment tool
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3.1 Assessing mathematics exams

3.1.1 Context

The proposed κ statistic was initially developed to measure the inter-rater reliability of multiple assessors assessing
students with a new mathematics assessment method (Moons et al., in preparation; Moons & Vandervieren,2022)
for handwritten high-stakes exams called ‘checkbox grading.’ The method allows exam designers to preset a list
of feedback items with partial scores for each question; so that assessors should just tick the items (= categories)
relevant to a student’s answer. Hierarchical dependencies between items can be set, so items can be shown, disabled, or
adapted whenever a previous item is ticked, implying that assessors must follow the preset point-by-point feedback
items from top to bottom. This adaptive grading approach resembles a flow chart that automatically determines the
grade. Moreover, checking the items that are relevant to a student’s answer might at the same time lead to several
other envisioned benefits: (1) a deep insight into how the grade was obtained for both the student (feedback) as well
as the exam designers and (2) a straightforward way to do correction work with multiple assessors where personal
interpretations are avoided as much as possible.

An example of checkbox grading is given in Figure 2. With this drawing question, a student can gain a maximum score
of 3 points. If point A is drawn correctly (1st bullet), the student gains 1 point; the correct drawing of point B (3rd

bullet) is worth 1.5 points. The 2nd bullet does not change the score but shows assessors that the presence of auxiliary
lines is perfectly fine. The last two feedback items, bullets 4 and 5, can only be selected if items 1 and 3 were selected.
As the drawing of the line AB implies the drawing of the line segment AB, the 5th bullet can only be selected if the 4th

was. This is a clear example of hierarchical items (= categories).

During the project, one of the main research questions concerned the inter-rater reliability of this new assessment method
under two conditions: blind versus visible grading. As the computer automatically calculated the grade associated with
the selected checkboxes, it was possible to hide the grades and calculation from the assessors, which was the blind
condition. In the visible condition, teachers could see how the items influenced the grade and how the total grade was
calculated. From the literature on rubrics (Dawson, 2017), we know that judges often change the selection of criteria
when the resulting grade does not align with their holistic appreciation of the work, which can affect the instrument’s
reliability. As such, the research question was: ‘Does blind checkbox grading enhance inter-rater reliability compared
to visible checkbox grading?’

The traditional measures for inter-rater reliability such as intraclass correlations fell short because these can only
measure the agreement between asssessors on grades, while the method also provides feedback to students. Hence, it is
not enough to agree on grades; the resulting feedback to the students must also be as equal as possible. Score agreement
by no means guarantees agreement on feedback items, which is especially clear for feedback items not influencing
the score (e.g., bullet 2 in the example). Other examples can be given as well: in Figure 2, 2.5 points can be obtained
by solely drawing points A and B correctly (only bullets 1 and 3 apply, possibly bullet 2) or by drawing the line AB
correctly (all bullets apply, possibly bullet 2). Conversely, the inverse is true: agreement on feedback items implies
score agreement.

Our proposed κ statistic of subsection 2.2 does meet all requirements:

• It will assess the agreement of the raters in selecting multiple feedback items (= categories) for each student (=
subjects)

• These items are hierarchical: the selectability of some items depends on the selection of other items

• Score agreement can naturally be measured by weighing the items according to their partial scores.

3.1.2 Example

We start with a worked-out example, in which our proposed κ statistic is calculated step-by-step. We consider 3
assessors (i.e., the number of raters J equals 3) assessing 6 students’ solutions (i.e., the number of subjects I equals
6) on the question in Figure 2. The teachers classified every student’s solutions into the 5 items (i.e., the number of
categories C equals 5). The classifications by the three assessors of the six students’ answers can be found in Table 2.
Although the example consists of a simple question, the tree assessors (raters) did sometimes select different items
(categories) for the students’ solutions (subjects).

Specification of the weight vector w

We start by specifying the weight vector w. The associated scores for each item will evidently play a crucial role in
defining these. However, note the second (blue) item does not influence the final grade on the question. If our weights
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Table 2: Assessments by 3 teachers of 6 student’s answers on the example question

Teacher 1 Teacher 2 Teacher 3

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

(1) X X X X X X X X X X X X X X X X
(2) X X X X X X X X X X X
(3) X X X X X X X X X X
(4) X X X X X X X X X
(5) X X X

Score 3 1 1 3 2.5 1 2.5 0 1 3 2.5 1 3 0 1 3 2.5 3

would only represent the associated scores, then w2 = 0; meaning that item 2 would not play any role in the calculation
of our kappa-statistic, while the presence/absence of the item changes the feedback a student receives. Hence, instead
of using the (absolute value) of the associated score to define the weights, we add the maximum absolute value of the
associated scores over all items. This means that the weights will be defined based on |scorec|+max{|scorec| |∀c}. To
get weights between 0 and 1, we divide this sum by the doubled maximum associated score over all items:

wc =
|scorec|+max{|scorec| |∀c}}

max{|scorec| |∀c}}
. (18)

These weights have a nice interpretation: the minimum weight is always 0.5, accounting for the (non-)selection of the
item, everything between 0.5 and 1 depends on the (absolute value of) the associated score of the item. As such, items
that do not influence the final score, will have weight of 0.5, while items with the maximum (absolute value of the)
associated score will have weight 1. These weights do not sum to 1, considering their interpretation is more intuitive
this way. Based on formula (18), the calculated weights for the example are given in Table 3.

Table 3: Specification of the weight vector w
Item (1) (2) (3) (4) (5)
|scorec| (associated score) 1 0 1.5 0.5 0.5
max{scorec|∀c}}s (selection) 1.5 1.5 1.5 1.5 1.5
Sum 2.5 1.5 3 2 2

Weight wc 0.833 0.5 1 0.667 0.667

Determining the matrix of possible classifications S and scale factors φc based on the hierarchical structure of
the categories

We see that the first three items are all main categories: there are no conditions for (not) selecting them, so si1 = si2 =
si3 = J = 3 for every student i. For a possible classification into item 4, item 1 and item 3 must be selected first;
for example, student 6 has only the third teacher selecting these, so s6,5 = 1. Item 5 can only be selected if item 4
was selected so si5 = xi4; for example, student 1 has 2 classifications for item 4 (teacher 1 & teacher 3), so s1,5 = 2.
Matrix S can be found in Table 4.

The scale factors φc can be found by applying formula (16): for each category c, loop over all subject i and take the
sum of the sic’s (sum up the columns of Table 4), and divide this sum by IJ = 6 · 3 = 18.

Calculating Poc and Pec

We give the full calculation of Po1 and Pe2 in this paragraph. The other Poc’s and Pec’s can be calculated in a similar
way. The required si1 values were already calculated in the previous step, we still need to count how many times item 1
was selected for each student i to get the xi1 values; the results can be found in Table 5.

Next, we calculate Po1 based on formula (14):

Po1 =
[3 · 2 + 0 · −1] + [1 · 0 + 2 · 1] + [3 · 2 + 0 · −1] + [3 · 2 + 0 · −1] + [3 · 2 + 0 · −1] + [3 · 2 + 0 · −1]

3 · 2 + 3 · 2 + 3 · 2 + 3 · 2 + 3 · 2 + 3 · 2
= 0.889,

13



Measuring Agreement Among Several Raters Classifying Subjects Into One-Or-More (Hierarchical) Categories

Table 4: Determining the matrix of possible classifications S and scale factors φc

si1 si2 si3 si4 si5
s1c 3 3 3 3 2
s2c 3 3 3 0 0
s3c 3 3 3 0 0
s4c 3 3 3 3 3
s5c 3 3 3 3 3
s6c 3 3 3 1 1

Sum 18 18 18 10 9

Scale factors φ1 φ2 φ3 φ4 φ5

1 1 1 0.556 0.5

Table 5: Determining the xi1’s and si1’s

Student S1 S2 S3 S4 S5 S6
xi1 3 1 3 3 3 3
si1 3 3 3 3 3 3

For the computation of Pe1, we use formula (15):

Pe1 = 2 ·
(
3 + 1 + 3 + 3 + 3 + 3

3 + 3 + 3 + 3 + 3 + 3

)2

− 2 ·
(
3 + 1 + 3 + 3 + 3 + 3

3 + 3 + 3 + 3 + 3 + 3

)
+ 1

= 0.802,

Although not necessary for the calculation of our proposed κ statistic, it is possible to calculate the partial κc to have an
indication of the reliability of each item. For item 1, this becomes (see formula (5)):

κ1 =
Po1 − Pe1
1− Pe1

=
0.889− 0.802

1− 0.802
= 0.438.

Although item 1 was selected for most students (only assessor 2 and 3 did not select it for student 2), we get a relatively
low κ1-value. How can this be explained? Item 1 was chosen for almost all students by almost all assessors, leading to
a high agreement by chance Pe1(= 0.802). This means that without even looking at a student’s solution, there is a high
probability that an assessor selects item 1. The fact that student 2 has two non-classifications for item 1 while assessor 1
did select item 1 for this student leads, therefore, leads to a pretty severe penalisation in the partial kappa κ1. This is a
concrete example of the ‘prevalence paradox’ described in subsection 1.3.

The other Poc’s and Pec’s can be calculated analogously. The result can be found in Table 6.

Table 6: Poc, Pec, Po− Pe, 1− Pe and partial kappa κc for every item (=category)

Items (1) (2) (3) (4) (5)
Poc 0.889 0.889 0.889 0.778 1.00
Pec 0.802 0.525 0.506 0.820 0.556
Poc − Pec 0.086 0.364 0.383 -0.042 0.444
1− Pec 0.198 0.475 0.494 0.180 0.444
κc 0.438 0.766 0.775 -0.235 1.00

Calculation of the kappa-statistic

With the specification of weight vector w, and the computation of the scale factors φc, the ‘beyond-chance’ Poc − Pec
and the ‘beyond-chance in case of perfectly agreeing raters’ 1− Pec, we are ready to calculate the kappa-statistic for
the hierarchical case (see formula (17)):

κ =
0.833 · 1 · 0.086 + 0.5 · 1 · 0.364 + 1 · 1 · 0.383 + 0.667 · 0.556 · (−0.042) + 0.667 · 0.5 · 0.444
0.833 · 1 · 0.198 + 0.5 · 1 · 0.475 + 1 · 1 · 0.494 + 0.667 · 0.556 · 0.180 + 0.667 · 0.5 · 0.444

= 0.692.
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We get a relatively high κ-value, that would be labelled by the benchmark scale of Landis & Koch (1977) as ‘Substantial’
agreement.

3.1.3 Comparison with other methods

We also calculated this example through the other methods described in subsection 1.4. Averaging/pooling Cohen’s
kappas is no possibility as we have more than two raters. The proportional overlap method is possible and returns
κ = 0.602. However, the method is based on some questionable premises in this context: (1) it assumes all items are
equally weighted (so there is no correction for the associated scores), (2) it assumes all categories are always available
to all raters (so the hierarchy of the items is ignored). Besides, the method fails to measure potential observed agreement
for student 2 as A22 = A23 = ∅, no proportional overlaps can be calculated. Problems (1) and (2) also occur with the
chance-corrected intraclass correlations that return a κ-value of 0.379. The problem of failing to measure potential
observed agreement for student 2 emerges in another guise: while the proportional overlap method leaves student 2 out
of the calculation of Po, the chance-corrected intraclass correlations do include student 2 with an intraclass correlation
coefficient of almost zero, pulling down the Po value in an unacceptable way. While our proposed κ statistic entails the
philosophical premise that two raters not selecting category c is equally valued in terms of agreement than two raters

Table 7: Multiple diagnostic formulations from 27 child psychiatric cases using DSM-III Axis I Broad Categories*

Raters
Cases 1 2 3 4

1 9, 11 11, 9, 14 16, 9 11, 9
2 16 16, 14 12 14, 5
3 17 12 7, 8 13
4 16, 13 13, 16, 14 16
5 7 7, 12, 13 13
6 10 10 10
7 7, 16 13 16
8 1, 14 13 16, 13
9 5 20 13, 14
10 12, 13, 14 12, 14, 13 12, 11 14
11 13 18 16
12 5, 18 1, 5, 18 1
13 14, 13 14, 7 14, 16
14 11, 16 14, 11, 16 11, 13
15 10 3, 18 10, 11
16 14, 5 5, 16 14
17 12 12, 11 12
18 20 16 16
19 13 14 14
20 9, 14, 10 9, 11, 14 10, 9
21 12, 11 11, 14 11
22 17 12 12 12, 17, 15
23 16, 13 12 14 13
24 12 12 16 12
25 13 20 13 13
26 13 13, 16 13 16
27 10, 9 9, 10 9 9, 10

* 1. Organic mental disorders, 2. Substance use disorders, 3. Schizophrenic and paranoid disorders, 4. Schizoaffective
disorders, 5. Affective disorder, 6. Psychoses not elsewhere classified, 7. Anxiety factitious, somatoform and
dissociative disorders, 8. Pyschosexual disorder, 9. Mental retardation, 10. Pervasive developmental disorder, 11.
Attention deficit disorders, 12. Conduct disorders, 13. Anxiety disorders of childhood or adolescence, 14. Other
disorders of childhood or adolescence, speech and stereotyped movement disorders, disorders characteristic of late
adolescence, 15. Eating disorders, 16. Reactive disorders not elsewhere classified, 17. Disorders of impulse control
not elsewhere classified, 18. Sleep and other disorders, 19. Conditions not attributable to a mental disorder, 20. No
diagnosis on Axis I.
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who do select category c; these examples show that the opposite - completely exclude agreement in non-selections -
also can lead to unsatisfactory results. Finally, the calculation of chance-corrected rank correlations are not relevant in
this context as raters do not make ordered classifications in checkbox grading.

3.2 Diagnosing psychiatric cases

We now revisit an example from Mezzich et al. (1981). It consists of a diagnostic exercise in which 30 child psychiatrist
made independent diagnoses of 27 child psychiatric cases. Each psychiatrist rated 3 cases, and each case turned out to
be rated by 3 or 4 psychiatrists upon completion of the study. Table 7 shows the 90 multiple diagnostic formulations.
Each diagnostic formulation presented was composed of up to three from the twenty broad diagnostic categories taken
from Axis I (clinical psychiatric syndromes) of the American Psychiatric Association’s Diagnostic and Statistical
Manual of Mental Disorders (DSM-III). We are well aware that DSM-III is outdated (American Psychiatric Association,
2022), but the example remains excellent as it can be contrasted with the other measures in the literature.

We start with the calculation of our proposed κ statistic. The example consists of 27 child psychiatric cases (i.e., the
number of subjects I equals 27), to be classified into 20 broad diagnostic categories (i.e., the number of categories C
equals 20) with a varying number of raters, expressed in vector j with ji = 3 or ji = 4, depending on the case (see
Table 8).

Table 8: Number of psychiatrists (= raters) for each case i (= subject)

Cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
ji 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4

We assume all diagnostic categories are equally important and thus use unweighted categories (wc = 1,∀c). Moreover,
the diagnostic categories on Axis I have no hierarchy. Hence, we can use the formulas described in subsection 2.1.
First, we calculate matrix X by counting how many times a diagnostic category c appeared for a subject i (e.g.,
x1,1 = 0, x12,1 = 2, x6,10 = 3, . . .). Next, we combine the xic’s and the ji’s to determine the Poc’s (12) and the Pec’s
(13). As an example, we calculate Po1 and Pe1:

Po1 =
9
[
2 · 02− 2 · 4 · 0+ 42− 4

]
+16

[
2 · 02− 2 · 3 · 0+ 32− 3

]
+1

[
2 · 12− 2 · 3 · 1+ 32− 3

]
+1

[
2 · 22− 2 · 3 · 2+ 32− 3

]
9 [4(4− 1)] + 16 [3(3− 1)] + 1 [3(3− 1)] + 1 [3(3− 1)]

= 0.963

Pe1 = 2

(
9 · 0 + 16 · 0 + 1 · 1 + 1 · 2
9 · 4 + 16 · 3 + 1 · 3 + 1 · 3

)2

+ 2

(
9 · 0 + 16 · 0 + 1 · 1 + 1 · 2
9 · 4 + 16 · 3 + 1 · 3 + 1 · 3

)
+ 1

= 0.936.

The other calculations can be found in Table 9.

Table 9: Poc, Pec, Po− Pe, 1− Pe and partial kappa κc for every diagnostic category

Diagnostic category 1 2 3 4 5 6 7 8 9 10
Poc 0.963 1.000 0.981 1.000 0.917 1.000 0.917 0.972 1.000 0.935
Pec 0.936 1.000 0.978 1.000 0.876 1.000 0.895 0.978 0.785 0.802
Poc − Pec 0.027 0.000 0.003 0.000 0.041 0.000 0.022 -0.006 0.215 0.133
1− Pec 0.064 0.000 0.022 0.000 0.124 0.000 0.105 0.022 0.215 0.198
κc 0.425 NaN 0.157 NaN 0.330 NaN 0.206 -0.264 1.000 0.672
Diagnostic category 11 12 13 14 15 16 17 18 19 20
Poc 0.898 0.824 0.694 0.759 0.972 0.713 0.935 0.944 1.000 0.935
Pec 0.753 0.694 0.620 0.642 0.978 0.654 0.936 0.915 1.000 0.936
Poc − Pec 0.145 0.130 0.075 0.117 -0.006 0.059 0.000 0.029 0.000 0.000
1− Pec 0.247 0.306 0.380 0.358 0.022 0.346 0.064 0.085 0.000 0.064
κc 0.588 0.426 0.197 0.327 -0.264 0.170 -0.006 0.346 NaN -0.006

Note that κ2, κ4, κ6 and κ19 equal NaN, due to a division by zero. Such division by zero will always happen if no
rater chooses a category. As Poc = Pec = 1 in those categories and thus Po− Pe = 1− Pe = 0, these unchosen
categories do not play any role in the calculation of the proposed κ statistic. Hence, the κ statistic is independent of
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unused alternative categories, meaning it can not be inflated by adding unchosen categories; we get from formula (8):

κ =

∑
c

(Poc − Pec)∑
c

(1− Pec)
= 0.375.

We get a relatively low kappa-value, which should not come unexpected: Table 7 shows that the various psychiatrists
diverge rather vehemently in their diagnoses. The proposed κ statistic yields a much lower value than the proportional
overlap method (κ = 0.27), but is almost equal to the chance-corrected intraclass correlation method (κ = 0.35) and
the rank correlation method (κ = 0.34).

4 Further research

The story of the proposed κ statistic is not finished by publishing this preprint. First, the publication of an R package
is envisioned containing ready-to-use functions to calculate all described measures. Such a package would allow
researchers without an overly statistical background to use the measure in their research and can greatly facilitate the
adoption of the proposed measure.

In addition, more can be told about the proposed measure. Based on De Vries et al. (2008), we envision publishing
the simulation study to show that our proposed kappa statistic exhibits smaller root-mean-square errors than taking a
weighted average of Fleiss’ kappas. Moreover, the large-sample variance of the proposed κ statistic still needs to be
determined. An expression for the variance would enable statistical inference using the measure without bootstrapping.
It especially paves the way for performing robust power analysis: researchers wishing to set up an experiment in which
raters classify subjects into one-or-more categories would be able to calculate in advance the number of raters and
subjects required to reach a certain confidence level. Finding the large-sample variance of our proposed κ statistic is
by no means an easy quest: it took the scientific community 50 years to develop a general expression for the Fleiss’
kappa! Indeed, it was Gwet (2021) who finally came up with a correct formula for the variance of the Fleiss’ kappa.
The variance described in Fleiss (1971) is simply wrong; the standard error of Fleiss et al. (1979) is valid only under
the assumption of no agreement among raters; as such, it can only be used to test the hypothesis of zero agreement
among the raters. Unfortunately, as many statistical software programs provide the standard error of Fleiss et al. (1979)
along with the calculation of Fleiss’ kappa, it is immensely misused for all kinds of statistical inference. Let us avoid
making the same mistakes when searching a large-sample variance of our proposed measure that presumably entails a
generalisation of the formula found by Gwet (2021).

To conclude: now that we have established the idea of the proposed κ statistic, the same idea may be suitable to create
other long-needed measures. For example, the literature on rubrics (Dawson, 2017) lacks a unified way to compare the
inter-rater reliability of two rubrics assessing the same phenomenon (e.g. book reviews of students, PhD proposals).
Should such a measure exists, it would be possible to compare the impact of including/excluding specific criteria. Such
a measure can possibly be constructed by the calculation of the Po and Pe of the Fleiss kappa (or the Krippendorff’s
alpha, see Gwet (2012)) for groups of criteria assessing the same aspect and weighting them according to the maximum
score of the aspect.

5 Conclusion

This paper has presented a generalisation of Fleiss’ kappa, allowing raters to select multiple categories for each subject.
Categories can be weighted according to their importance in the research context, and the measure can account for
possible hierarchical dependencies between the categories. A crucial assumption of the proposed κ statistic is that
two raters selecting a specific category for a given subject count equally in agreement as two raters not selecting the
category. Other methods, like proportional overlap, chance-corrected intraclass correlations and chance-corrected
rank correlations, do not make this assumption; instead, they ignore the agreement in the non-selection of categories.
We have shown that this ignorance can give unexpected and unwanted results depending on the research context. By
introducing this generalisation of Fleiss’ kappa and comparing and contrasting it to the existing comparable methods,
we hope to inspire further researchers in need of a chance-corrected inter-rater reliability measure that allows measuring
the agreement among several raters classifying subjects into one-or-more (hierarchical) nominal categories.
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