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Abstract—This paper describes an alternative approach to
giving people with limited hand and arm movement the ability
to select objects on a computing device using head movement
(head mouse). To allow for better filtering of unintentional head
movement, and to allow for a faster update rate of the head
mouse, the full six-DoF pose of the head is estimated using a
low-cost camera and IR markers, a 3-axis accelerometer, and a
3-axis magnetometer. The pose estimation problem was cast in
a probabilistic fashion in which information from the different
sensors is fused into a single a-posteriori distribution for the
sensor pose. Simulations were run to analyze the influence of the
proposed sensor fusion algorithm on the stability and accuracy
of the pose estimation, and thus on the ability to point a mouse
cursor to a specified location on a screen. Experiments were
then performed validating the results from the simulations on
real sensors. The proposed algorithm was shown to give more
accurate and stable results than using only a camera to estimate
the six-DoF pose.

I. INTRODUCTION

Life with a disability is often challenging, but with help
and support, a large proportion of disabled people can learn
to cope with their disability and face the challenge head on. An
important factor in dealing with a disability is the continuing
struggle for independence [1]. By reducing the effort needed
to control certain basic interactions, the self-reliance of people
with disabilities can be greatly increased [2]. These basic in-
teractions include tasks like operating light switches, electrical
doors and windows, television, etc., but also operating personal
computing devices (PC, tablet, smartphone).

For most of these interactions a solution already exists, but
all of them have their own issues (e.g. too slow, inaccurate,
requiring clutching, etc.), none of them giving a solution that
encompasses the entire problem. The focus of our research is
targeted at people with limited arm and finger mobility and
control who retain sufficient head mobility. Typical examples
are people affected by amyotrophic lateral sclerosis (ALS) [3]
or other quadriplegia.

While it is our goal to provide a solution for all interactions
with home automation systems and computing devices, this
paper will focus on the ability to select objects on a computing
device, or simply put, the ability to control a mouse cursor
through head movement, which we will further refer to as a
head mouse.

A. State of the art

Although the target group is relatively small, a large number
of head mice have already been provided. These head mice
can be classified based on the order of controls [4], i.e.
first-order control (velocity-control (1)) and zero-order control
(position-control). Position-control can be subdivided into
relative position control (2) (where displacement is measured)
and absolute position control (3). Examples from each of
these classifications are (1) joysticks, (2) touch pads, and (3)
touch screens. A more detailed comparison of these systems
is made by the authors in [5]. What can be concluded from
the previously mentioned paper is that using absolute position
control has the advantage of being fast, and not requiring
clutching. Clutching is a break in control-to-display mapping
when the input device can be moved independently of the
cursor (e.g. lifting the finger to reposition it on a trackpad)
[6].

The solution provided in [5] makes use of a low-cost camera
attached near the head (e.g. on a pair of glasses), and IR-LED
markers placed near the screen at known positions. Using
a homography matrix on the detected led pixel coordinates,
the intersection of the principal axis of the camera and the
computer screen can be calculated, and the mouse cursor is
placed on this location. This initial prototype however still has
a few issues. The refresh rate of the mouse cursor coordinate
is limited by the refresh rate of the camera, which for low-
cost camera’s typically is 30Hz. This is too slow to allow
for a smooth control of the mouse cursor [7]. Another issue
is that due to the precision of the system, minimal head
tremors will cause the mouse cursor to jitter. A non-linear
tremor filter (Gaussian attractor) was provided in [5], but it
was not sufficiently effective to allow the selection of very
small objects on the computer screen.

To overcome these issues, we propose a solution where
information from multiple sensors is fused to allow for a
faster refresh rate. To allow for easy sensor fusion, the full
6-DoF pose of the camera is calculated. Although the main
focus of this paper is based on the ability to control a mouse
cursor, knowing the full 6-DoF pose allows for applications
like posture detection, gaming interfaces, etc. It should also
be noted that, although the goal of the proposed solution is to
be able to filter user tremors, the actual tremor filtering will



not be part of this paper.

II. PROPOSED SYSTEM

We start off from a low-cost short-wave infrared camera,
with four IR LEDs placed around the screen [5]. In addition
a 3-axis accelerometer and 3-axis magnetometer are added.
Since pose estimation using only a camera is very sensitive
to measurement errors due to the ill-posed nature of the
inverse problem, we propose using a probabilistic approach
for estimating the pose of the system. This approach has the
advantage of being more robust against outliers (among the
measurements) when compared to a deterministic method, and
is also better at handling missing or incomplete measurements,
due to allowing for the use of recursive Bayesian filtering tech-
niques such as particle filters and extended Kalman filters. We
therefore cast the pose estimation problem in a probabilistic
fashion in which information from different sensors is fused
into a single a-posteriori distribution for the sensor pose. Each
sensor can present its sensor data as it becomes available and
that data will be used to refine the estimated pose. We define
the sensor’s pose ~P as:

~P =
[
x y z α β γ

]T
(1)

where the rotational component (α, β, γ) stands for the Euler
angles ZY ′X ′′ with γ the rotation around the Z-axis, β the
rotation around the new Y-axis, and α the rotation around the
new X-axis.

A. Camera

We define the likelihood of a camera measurement Mc given
a certain pose ~P as

Lc(Mc|~P ) = exp(−1

2
· ( ~Mc − ~Cc)

T ·Σ−1c · ( ~Mc − ~Cc)) (2)

where ~Mc is the vectorized version of the matrix Mc which
defines the sorted coordinates of the blobs created by the n
markers on the camera image:

Mc =

[
x1 x2 . . . xn
y1 y2 . . . yn

]T
(3)

and ~Cc is the vectorized version of the calculation matrix
Cc which represents the calculated blob coordinates given a
certain pose

Cc =

[
xc1 xc2 . . . xcn
yc1 yc2 . . . ycn

]T
(4)

The covariance matrix Σ is set to be a scaled identity matrix,
since we assume normally-distributed independent measure-
ments:

Σc = σc · I2n×2n (5)

with σc experimentally set to 10 pixels. For realistic results,
each measured blob center must be compared to the correct
corresponding projected marker. This was done by putting the
markers in a predefined pattern from which the individual
markers can be deducted. Another possible way of identifying

each marker would be by modulating each marker in a unique
manner, e.g. with simple On-off keying modulation.

To calculate Cc we need a model of the camera to transform
the marker positions in world coordinates into projected points
onto the camera sensor. This can be achieved using the
following equation defined in [8]

CT
c = K · R · [I3×3| − C̃] · Xw (6)

with Xw a 4 × n matrix containing the marker positions in
homogeneous coordinates, C̃ the coordinates of the camera
center in the world coordinate frame, and R a 3× 3 rotation
matrix representing the orientation of the camera coordinate
frame. The vertical line | denotes matrix concatenation. The
matrix K is called the camera calibration matrix and is defined
as

K =

αx s x0
αy y0

1

 (7)

where αx and αx define the focal distance in pixel coordinates,
x0 and y0 define the principal point, and s is the skew factor.
To make the modeled data more realistic, non-linear radial
and tangential lens distortion is then applied to the calculated
camera coordinates.

The camera intrinsics and the radial and tangential lens
distortion parameters can be estimated using the Matlab Image
Calibration Toolbox [9]. However, due to the IR bandpass filter
placed in front of the camera used herein, which blocks the
view of a checkerboard pattern required by the calibration
toolbox, a ledboard was created with 30 IR LEDs equally
spaced in a 6 by 5 grid which can be seen in Fig. 1. The
detected blob centers could then be used as input for the
camera-calibration functions.

B. Accelerometer and magnetometer

We define the likelihood of the accelerometer and mag-
netometer measurements in a similar fashion as the camera
measurements

La( ~Ma|~P ) = exp(−1

2
· ( ~Ma− ~Ca)

T ·Σ−1a · ( ~Ma− ~Ca)) (8)

Lm( ~Mm|~P ) = exp(−1

2
· ( ~Mm − ~Cm)T ·Σ−1m · ( ~Mm − ~Cm))

(9)
with ~Ma =

[
xa ya za

]T
and ~Mm =

[
xm ym zm

]T
the measurements from the respective three-axis accelerometer
and magnetometer, and ~Ca =

[
xca yca zca

]T
and ~Cm =[

xcm ycm zcm
]T

the calculated values from the respective
accelerometer and magnetometer models for a certain pose ~P .
The covariance matrix Σ is again set to be a scaled identity
matrix:

Σa = σa · I (10)

Σm = σm · I (11)

with σa experimentally set to 6mg and σm experimentally set
to 10mT.



The accelerometer and magnetometer models are much
simpler, and simply transpose the corresponding gravity and
magnetic field vector according to the rotational component
(α, β, γ) from the pose ~P .

Ca = R · ~G (12)

Cm = R · ~B (13)

where ~G =
[
0 0 1

]T
, R is the rotation matrix to the

corresponding Euler angles (α, β, γ), and ~B is defined by the
local magnetic field. The magnetic field can be calculated for
the assumed position using a model of the Earth magnetic field
(e.g. using the NCEI Geomagnetic Calculators [10]). The time-
varying accelerometer biases and magnetometer biases where
neglected in this model. It is the authors’ view that these will
only have a minor effect on the variance of the estimated pose.
This however requires further investigation.

C. Sensor fusion

The likelihood from the combined measurements M can
then be defined as

L(M|~P ) = Lc · La · Lm (14)

We can derive a posterior probability function for the pose
~P given measurement M using Bayes rule:

P (~P |M) =
L(M |~P ) · P (~P )

P (M)
(15)

with P (~P ) the prior distribution for the pose ~P and P (M) the
marginal distribution of the product in the numerator. The prior
P (~P ) allows constraining the solution space to sensible poses
(e.g. the sensors will never be behind the IR LED markers).
We will minimize the negative logarithm of the posterior
distribution to arrive at a pose estimate for the sensors:

~Pest = argmin(−log(P (~P |M)) (16)

The posterior is minimized using an unconstrained non-linear
minimization method (Nelder-Mead).

III. EXPERIMENTAL RESULTS

To analyze the proposed algorithm we performed extensive
simulations. First we looked at the influence of noise on
the effectiveness of the pose estimation, then we analyzed
the influence of the sensor locations. Both experiments were
performed with and without sensor fusion. To analyze the
effectiveness of the algorithm on controlling a mouse cursor,
we simulated pointing the camera at the screen for 441 coor-
dinates evenly spread out between the markers, from the same
locations as the previous simulation. We then proceeded with
some real-life experiments where the sensors were mounted
on a robot arm, to validate the effectiveness of the algorithm
is a real-life application.

The coordinate system used throughout this paper is based
on a world coordinate system with the origin at the center of
the base of the robot arm as depicted in Fig. 1.

Fig. 1. Example of the calibration setup where the camera was placed on a
ST Robotics R17 robot arm.

Markers

Screen

(-365, 1070,695)

(-65, 1070,695)

(-65,1070,595)

(-215,320,645)

(-365,1070,595)

Fig. 2. Camera and marker positions in world coordinate system as defined
in Fig. 1

A. Simulations

To simulate sensor measurements, we built a model for
each of the sensors to which we can add zero-mean Gaus-
sian noise. To define a base noise level for the sensors,
10000 measurements were taken with each of the sensors
from which a standard deviation of the Gaussian noise was
deducted (σc = 0.1 px, σa = 0.78mg, σc = 2.2mT). These
measurements were also used to define the magnetic field
vector ( ~B =

[
−0.0755 −0.1617 −0.4615

]
) which was

validated to have a similar inclination as calculated by the
NCEI Geomagnetic Calculators [10]. To analyze the effect
of noise on the results, we simulated 100 measurements for
each of 30 logarithmically spaced noise levels. An arbitrarily
defined pose and location of the markers where chosen as
depicted in Fig. 2.

Fig. 3 shows the simulation results for varying values of
camera noise by either using only the camera, or using sensor
fusion, for estimating the pose ~P . The experimentally defined
base noise levels were added to the other sensors. One of
the major issues when using a single camera to calculate the
pose of the camera is the ill-posedness of the inverse problem.
This is due to ambiguities resulting from different camera
poses generating a very similar projected image. This effect
can be noticed in Fig. 3.c and Fig. 3.d where the standard
deviation of the estimated pose is plotted. It can also be seen
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Fig. 3. Simulation results for varying values of camera noise by using
either only the camera, or sensor fusion, for estimating the pose ~P . 100
measurements were taken for each varying value of camera noise. The true
pose of the camera is defined in Fig. 2. (a) Mean value of the position error.
(b) Mean value of the orientation error, calculated as the angular value of the
axis-angle transformation between the true rotation and the estimated rotation.
(c) Standard deviation of the position error. (d) Standard deviation of the
orientation error. (e) Mean value of the target-coordinate estimation error,
calculated as the intersection between the principal axis of the camera and
the plane created by the marker coordinates. (f) Standard deviation of the
target-coordinate estimation error.

that the sensor fusion algorithm greatly reduces the number of
ambiguities leading to a much smaller standard deviation of
estimated poses. However, due to accelerometer and magne-
tometer noise, the mean estimation error is somewhat larger
for very small noise values on the camera measurements.

Since the goal of this paper is to analyze the effectiveness
of the algorithm to calculate a mouse coordinate, Fig. 3.e and
Fig. 3.f depict the mean and standard deviation of the differ-
ence between the true target coordinate, and the intersection
between the camera’s principal axis and the plane formed by
the marker coordinates. Both the camera and sensor fusion
systems perform reasonably well, even for high values of
the camera noise. It is however clear that there is still room
for improvement, which could be achieved by a recursive
Bayesian filter which includes a motion model and sensor data
from a gyroscopic sensor.

Fig. 4 shows the simulation results for varying values of
camera noise, accelerometer noise, and magnetometer noise,
all using sensor fusion for estimating the pose ~P . It is clear
from Fig. 4.a-d that high magnetometer noise has the biggest
impact on the performance of the sensor fusion algorithm.
However, using noise values near the measured noise values
of the prototype, gives very satisfactory results for the pose
estimation. The same can be concluded for the estimated
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Fig. 4. Simulation results for varying values of either camera noise,
accelerometer noise, or magnetometer noise, all using sensor fusion for
estimating the pose ~P . 100 measurements were taken for each varying value
of sensor noise. The true pose of the camera is defined in Fig. 2. σ̄c, σ̄a,
and σ̄m signify the mean measured values of the respective sensors. (a) Mean
value of the position estimation error. (b) Mean value of the rotation estimation
error, calculated as the angular value of the axis-angle transformation between
the true rotation and the estimated rotation. (c) Standard deviation of the
position estimation error. (d) Standard deviation of the rotation estimation
error. (e) Mean value of the target-coordinate estimation error, calculated as
the intersection between the principal axis of the camera and the plane created
by the marker coordinates. (f) Standard deviation of the target-coordinate
estimation error.
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Fig. 5. Camera positions for the simulated and real-life experiments.

intersection point.
To analyze the influence of the camera position on the

algorithm, we simulated camera positions in analogy to [5], as
depicted in Fig. 5. For each of these positions 200 simulations
were performed. First we used only the camera to estimate
the pose, the results of which can be found in Fig. 6.a-b. The
same simulations were then run using sensor fusion, the results
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Fig. 6. The pose estimation error using only the camera measurements for
the four locations defined in Fig. 5. The camera was aimed at the top left
marker in all cases. (a) Quiver plot of the estimated position errors. The
arrows are of true size with respect to the axis scale. (b) Standard deviation
of the rotation estimation error, calculated as the angular value of the axis-
angle transformation between the true rotation and the estimated rotation.

of which can be found in Fig. 7.a-b. These figures show the
pose estimation error for the four locations defined in Fig.
5. The camera was aimed at the top left marker in all cases.
Comparing Fig. 6 with Fig. 7 clearly shows the impact of the
sensor fusion algorithm on the effectiveness of estimating the
camera pose.

Since this sensor fusion algorithm will be used in an
Assistive Technology application meant to control a mouse
cursor, a simulation was run pointing the camera at 441
coordinates equally distributed over an area mimicking a
screen. The intersection point between the camera’s principal
axis and the plane created by the markers was calculated,
based on the proposed algorithm for 100 measurements per
coordinate, the results of which can be found in Fig. 8. The
top row of Fig. 8.a shows the mean error of the calculated
intersection point for each target coordinate, the bottom row
shows the standard deviation of the calculated intersection
point for each target coordinate. While the mean value of the
error is included for completeness, it is the authors’ view that
a relatively constant, smoothly changing bias error is of lower
importance due to users automatically correcting for this bias
due to seeing the screen cursor position [5]. A more important
parameter is the standard deviation. The standard deviation is
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Fig. 7. The pose estimation error using sensor fusion for the four locations
defined in Fig. 5. The camera was aimed at the top left marker in all cases.
(a) Quiver plot of the estimated position errors. The arrows are of true size
with respect to the axis scale. (b) Standard deviation of the rotation estimation
error, calculated as the angular value of the axis-angle transformation between
the true rotation and the estimated rotation.

small for most points on the simulated screen, with a couple
of outliers when the camera is positioned to the far left and
right of the screen. These outliers in the standard deviation
are caused by outliers in the calculated target coordinate. This
is shown in Fig. 8.b, which shows a boxplot of 1000 new
target coordinate calculations from the pose with the highest
standard deviation from position D. It can be seen that for a
small number of target coordinate calculations, the estimated
target coordinate is very inaccurate. It is the authors’ view
that these outliers are caused due to numerical instability of
the posterior minimization. This issue could be solved by
introducing recursive Bayesian filter techniques which include
a motion model and sensor data from a gyroscopic sensor.

B. Experiments

To validate the proposed algorithm in a real-life test case
we mounted the sensors on an ST Robotics R17 robot arm,
allowing us to repeatably put the sensors in a specific pose.
We performed the same accuracy test for the poses similar
to the simulated test. The exact same poses were unreachable
due to the limited range of the robot arm. The results of this
experiment can be found in Fig. 9

While the range of the pose estimation error is slightly larger
for the real measurements, compared to the simulated measure-
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ments, it is still a very similar and satisfactory result. Mainly
the positional error along the Z-axis, and the corresponding
orientation error along the Y-axis are significantly larger than
during simulation. This would indicate that the estimated noise
levels for the accelerometer were estimated a little too low.
This is confirmed when validating the standard deviation of
the accelerometer during the real measurements, which came
to a mean value of 2mg, compared to the value of 0.78mg
used in the simulations.

To gain a better understanding of the spread of the estimated
pose values, a boxplot is shown in Fig. 10. The boxplots
show that although the spread of the estimated pose values
is relatively large, most of the estimated values are grouped
really close to each other (the Q1, median, and Q3 lines are
drawn on top of each other).

While accurate pose estimation is desirable for the filtering
of the actual head pose movement, the main objective is still to
be able to accurately point the mouse cursor on the screen. The
accuracy of the calculation of the intersection point between
the principal axis of the camera and the plane formed by the
markers is visualized in Fig. 11. The calculated intersection
points for the 100 measurements from each of the tested
locations are plotted on top of a small icon of 16x16 pixels
(=3.9667mm for a 21inch screen with resolution 1920x1080).
It is clear that the calculated intersection point is accurate
enough to allow for the selection of very small objects on a
computer screen.

IV. CONCLUSION AND FUTURE WORK

In the introduction we explained the need for stable Six-
DoF head-pose estimation for a specific Assistive Technology
application. We provided a proposed Bayesian sensor-fusion
algorithm for pose estimation based on the maximization of a
posterior probability function. This algorithm was extensively
tested using both simulated and real-life experiments. The
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transformation between the true rotation and the estimated rotation.
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probabilistic approach to sensor fusion proves quite promising
for the specific use-case of controlling a mouse cursor through
head movement.

In future work the current posterior minimization using
an unconstrained non-linear minimization method (Nelder-
Mead), will be replaced by recursive Bayesian filtering tech-
niques which include a motion model for the estimated head
movement, and a better estimation of the prior distribution
of the system states. Furthermore a gyroscopic sensor will
be added for more stable measurements over short time

frames to counteract the jitter caused by the accelerometer
and magnetometer readings.
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