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There exists an example of a set of 40 projective lines in eight-dimensional Hilbert
space producing a Kochen—Specker-type contradiction. This set corresponds to a
known no-hidden variables argument due to Mermin. In the present paper it is
proved that this set admits a finite saturation, i.e., an extension up to a finite set with
the following property: every subset of pairwise orthogonal projective lines has a
completion, i.e., is contained in at least one subset of eight pairwise orthogonal
projective lines. An explicit description of such an extension consisting of 120
projective lines is given. The idea to saturate the set of projective lines related to
Mermin’s example together with the possibility to have a finite saturation allow to
find the corresponding group of symmetry. This group is described explicitely and
is shown to be generated by reflections. The natural action of the mentioned group
on the set of all subsets of pairwise orthogonal projective lines of the mentioned
extension is investigated. In particular, the restriction of this action to complete
subsets is shown to have only four orbits, which have a natural characterization in
terms of the construction of the saturation. 8005 American Institute of
Physics.[DOI: 10.1063/1.1887923

I. INTRODUCTION

The analysis of the foundations of quantum theory has two important regiit®ell's
inequalities; (2) Kochen—-Specker theorem. Both of them show that in quantum mechanics a
statistical model of a physical experiment may not admit a realization by way of a probability
space(),F,P). The first result shows, that even if one assumes the existence of a measurable
space((), F), one might not be able to consruct a probability meaguréhe second result shows
that the assumption about the existencé(®fF) may itself be contradictory.

The Bell-Kochen—Specker thec’;@restricts itself to considering the measuring devices with
only two possible indications. In this case the problem cocerning the existerti€g #) reduces
to a problem about coloring projective lines in a finite dimensional Hilbert space. It is possible to
reformulate this problem as followsLet 7 be a Hilbert space ovet of finite dimensionn
:=dim; H. Suppose one is given a family afie N orthonormal bases ift: {e(")}I —, a= =1,m.
Choose from each basis an eIeme(ﬁ‘f a=1,m, and look at the inner products, g (5)) a,B

=1,m. Is it always p053|ble to make this choice in such a Way, that forxaihd,@t e inner
product of I(“) andei does not vanish, i.e., thgrojective IlnesLei and LefB) arenot orthogo-
nal? ‘ g ‘ g

One says that a collection of projective Iin&bg(“)}i,a produces &ochen-Specker-type con-
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tradiction if the answer to the formulated question is “No.” The original construction by Kochen
and Specker in the proof of their theorem generates the first example of this contradiction. Since
then several other examples of this type have been found, in particular Refs. 7, 6, 9, 4, and 1. In
the present paper we analyze one of them—the example coming from the proof of a no-hidden-
variables theorem given by MermfriNote, that the latter example can be related to the discussion
of Einstein—Podolsky—Rosen paradox and Bell's theorem in Ref. 3.

The original construction of Kochen and Specker is quite sophisticated. This is determined by
the fact that the authors work in a three-dimensional space. The construction of Mermin and the
corresponding proof are much more simple, but the space is eight-dimensional. To be exact, the
original paper of Mermin is written in terms of operators on a Hilbert space and the reformulation
in terms of projective lines is due to Kernaghan and P@ﬂesgeneral, the latter consists in the
following. One defines a set of 40 projective lines’fh The corresponding description is explicit
and quite simple. If one views the elementgi8fas columns of eight complex numbers, then it is
possible to represent each of the 40 projective lines by a column with entries 0, 1 or —=1. Thus in
fact the projective lines can even be viewed as real. The corresponding Kochen—Specker contra-
diction is then established by some simple arithmetic argument. The link with the Mermin’s
formulation is as follows. The described set splits into five distinct tuples, each containing eight
pairwise orthogonal projective lines. Identifyiri§ with (C?)®2 and interpreting each of the five
tuples as coming from an orthonormal basis corresponding to some complete set of pairwise
commuting orthogonal projectors, one arrives at five complete sets playing a key role in Ref. 6.

There is another well-known example—the “Penrose dodecahedron”—studied in detail by
Zimba and Penrose in Ref. 9. In this case one again makes use of 40 projective lines, but this time
in C4. In the corresponding construction one considers a dodecahedron and associates in a certain
way to each of its 20 vertices two projective linesth The whole construction has the symmetry
group of a dodecahedron, which naturally acts on the resulting set of 40 projective lines. Com-
paring the examples of Penrose and of Mermin, it is natural to ask, what can one say about the
symmetry of Mermin’s example? An additional motivation for this is given by the two examples
described in Ref. 1 which also have a high degree of symmetry. One of them is associated to a 120
cell (a four-dimensional analog of dodecahedrand the other to a 600 cedk four-dimensional
analog of icosahedrgnlt turns out, that despite of the fact that the projective lines in Mermin’s
case look quite simple, an answer to this question, as was mentioned in Ref. 4, presents a problem.
Its possible solution constitutes the subject of the present paper.

Il. SATURATED KOCHEN-SPECKER

Let A denote a set of projective lines in Hilbert spadedim. H=n<o. The setA is called
saturatedwith respect to orthogonality relation if any of its subset® C A of pairwise orthogo-
nal projective lines can be embedded into a sulBsefA of n pairwise orthogonal projective lines.
Denote P, (A):={BCA|Ox,y e B:x#y x_Ly}. DenoteC(A):={B e P, (A)|#B=n}. The ele-
ments ofC(A) will be calledcompletesubsets oAA. Note thatP, (A) contains an empty set and all
subsets of cardinality 1. Note thatAfproduces a Kochen—Specker contradiction, t6éf) is not
empty.

If one looks at the mentioned example of Mermin, one observes that the corresponding set is
not saturated with respect ta. Intuitively, a saturated set should have a higher degree of sym-
metry than an unsaturated part ofdin example of a saturated set is thel¥gt) of all projective
lines inH]. This leads to the idea of how to investigate the symmetry of Mermin’s example. One
may try to add projective lines to the given set so that to get a saturated set. After that it makes
sense to proceed with the symmetry. Naively, such an attempt should look as follows. One takes
a subset of pairwise orthogonal lines, tries to find a complete set containing it, and in case there is
no such one, invents several other pairwise orthogonal projective lines to make it complete. These
new projective lines are added to the initial set, and the whole process is repeated until one reaches
a saturation. At each step one solves the problem for the chosen subset, but at the same time one
may create other subsets of pairwise orthogonal elements which require a completion. It means,
thata priori the described algorythm is not even finite.
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In the next section we are going to describérdte setA of projective lines inH, dim-H
=8, with the following properties(1) A is saturated with respect to; (2) A contains a set of
Mermin—Kernaghan—Peres projective lines and due to this, in particular, produces a Kochen—
Specker-type contradictioni3) everyelement ofA can be represented by a column with each of
the eight entries being 0, 1 or -1.

After that we proceed with the study of the symmetry of theAseDne looks aBij(A)—a
group of all bijections ofA, and denotes bBij , (A) its subgroup consisting of all bijections which
respect the orthogonality relatian. The setC(A) naturally splits into four disjoint subsets de-
noted asCy(A), k=1,2,4,8, asvill be explained below. We describe a subgragiim Bij , (A) by
giving explicit formulas for a set of its generators and prove, that this group has an act@@pn
such thatC,(A)’s conicide with its orbits. It means that one can take any eleme@{(@) and then
generate all the other complete subsets belon@ié) by applying the elements of this group.
This allows to describe the symmetry of Mermin’s example.

Ill. 120 PROJECTIVE LINES

We shall now describe a sét which will later be proved to be a saturated extension of
Mermin’s example. Set( := (2® (?® (2. Recall that one has denoted the set of all projective lines
in H by P(H). LetV denote a set of four symbol¥={e,f,g,h}. We are going to describe a map

EP(V)* = P(V)\{D} — C(P(H)),

such thatOU,U’ e P(V)*:U#U’'0 &U)N EU’)=. Note that the latter in particular implies
that £ is injective. Since #(V)*=15 and din(#)=8, the union of all the sets from the image of
& must yield 120 projective lines. This will produce the get

The setP(V)* may be visualized as a tetrahedron with vertices labeled, ds g, andh.
Considering the subsets ¥f one identifies the vertices with the subsets of cardinality 1, the edges
with subsets of cardinality 2, faces with subsets of cardinality 3, and the body of the tetrahedron

with V. Assign to the edges of this graph labels of the feror » wheree and ¢ are two symbols

andw is a number 1, 2 or 3. Require, that the edges associated to the same vertex have different
numbersw. This defines the labelling of the edges of the graph up to a permutation of labels of
vertices. Without loss of generality, one may choose and fix the labeling as shown in

h
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5 \—"

[\,
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¥ (1)

Note that this tetrahedron appears in Ref. 8.

Choose an arbitrary orthonormal basis,}.-01 in C2 It will be convenient to view the
possible values 0 and 1 of the inde»as elements of the groufy with the group operation written
additively (addition modulo 2 Consider a matri>u==||u(a,,8)||a,[,zex2 with entriesu(a, 8)=-1 if
(a,B)=(1,1) andu(a,B)=1 otherwise. Note that it can be viewed as a character matri.of
There exist the following properties:

(1) u(a,p)=u(B.a) € R,
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(2) E u(a, B)U(B,7) = 28,

2
3) ula,l+a)=1,

(4 u(a,B+7v) =u(a,B)ula,y),

wherea, B, y run overZs,. Denoteu§== u(a, B)/+2 and define another orthonormal baisjs},, in
€2 o= Egugqoﬁ.

We shall associate to the mentioned graph and a fixed choice of an orthonormdkhisis
setA of 120 projective lines iri{ expressed via the functions, and the matrixu. It means that
there will be a complete set associated to every vertex of the dtajshgives four complete sets
to every edgédthis gives six more complete sgtto every facethis gives four complete sgtand
to the whole tetrahedrofthis gives one complete getn what follows we use the notation: write
e instead of{e} to refer to a vertex, writef instead of{e, f} to denote an edge, writefgor h to
denote the facge, f,g}, and writeefghinstead of{e, f,g,h}.

Let us start with the description of the complete sets corresponding to vertices. Denote a set of
all edges having a common vertexe V by E,, and consider a set

S; = MapsE, — 7,), veV.

This set is not empty and contains eight elements. Takevasglyv =€, and take anyr e &. The
labels of the edgeeh, eg andef from E, are of the forme?, ¢2 andy?, respectively. Associate
to this fact a vectoﬂf = @g(eh) @ Yo(eg ® Yoen- The vectorsIf v for othery e V are defined in a
similar way. As a result one gets for every vertexan orthonormal baS|$‘If(”)}(,Es, Denote

wY -F‘If(”) It follows, that one has four complete sets of projective lines assouated to each
vertex One defined(v): -{‘If”},,esv, veV.

The complete sets associated to edges make use of a slightly more sophisticated indexing. We
denote byE:={ef,eg,eh,fg,fh,gh} the set of all edges. To define a complete set of projective
lines corresponding to an edge, one first takes an arbitettgred pair of two distinct vertices
(v,w). Let z andt denote the remaining two vertices of the graph. Consider a disjoint union of a
one-element s€vw} and a two-element séf,t} and denote

Kow := Mapg{ow} U {zt} — 7Z,).

Note, that#K,,=8. The complete set of projective lines corresponding to the edgwill be
indexed by the elements &f,,,. Takev=e, w=f and take arbitrary € K¢s. Recall that the labels
of the edgesh eg, andef from E, are of the forme?, ¢, andy?, respectively. Denote

X(e—>f) 2 uﬂu%(h)u%(g)@ ® 1, ® Yyen
a,ue’ly

One defines the vectobsﬁfﬁw), x € K, corresponding to every ordered p&r,w), v #w, in a
similar way. Using the properties of the mattix one can prove that

(1) the vectorsX(”ﬂW), x e Ky, are palr\lee orthogonal,
(2)  the projective lineX" "™ and (X"~ coincide.

The latter fact motivates the notatioff":= ijﬂw). The first fact implies, tha{le{‘”}%EKUW is a
complete set of projective lines. It follows, that one gets six complete sets of projective lines
associated to each edge of the graph. One defi(@s= {X;}xeKE, ecE.

Let us construct the complete sets associated to faces of the tetrahedron. Actually, every face
is determined by an opposite vertex of the tetrahedron, and in this sense the complete sets to be
constructed can be viewed as associated to vertices. It is simply natural to view them as associated
to faces since the role of complete sets associated to vertices is already occupied. Denote
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R,:= MapdE\E, — 7Z,), v eV.

This set is not empty, contains eight elements, and moreover, there is a natural hije&jon
—S; established by the formula,(p)(vw)=p(zt), wherez andt are the vertices complementing
{v,w} up toV. If there is no risk of confusion, we writg" instead ofv,(p), p € R;; as well ass”
instead ofvgl(cr), o € S;: Now takev =e and anyp € R Recall that the labels of the edgelg eg,
andef from E, are of the forme?, ¢2, and ¢?, respectively. Denote

. ol . .
q)i)e_> ). 2 Uz (eh+p (ef)uﬁ (eg+p (ef)<pa ® ‘/’,u ® l:[/Ap+0z+,u’

a,ue’y
whereA ;=2 gg p(e) The vectorsI)(”_’W corresponding to other choiceswfwe V,v #w are
defined |n a S|m|Iar way. The propertles of the matrikmply that the vectorsp” W ,pERv, are
pa|rW|se orthogonal and thatd (=W Goes not depend on the ch0|cepwf Denote, &)
ccp(”—"”) It follows, that to every face one associates a complete set of projective lines
{‘I)U}peR; One defines(v) :={®” ppers U EV.
Let us finally associate a complete set of projective lines to the whole tetrahedron. Denote

veV

A= {W:V—>Zz|2 W(U):l}.

Note, that A =8. Take anorderedpair (e, f) e VX V. Recall that the labels of the edgek, eg,
andef from E, are of the formg?, 2, and 7, respectively,

F(we—)f) = E uggﬁg+ﬂuz(g)+ﬂ‘»‘7a ® dlﬂ ® ¢W(e)+a+w
a,ue’ly
Note, that using the properties of the matiiene can prove that the expressigff“ul"* remains
invariant under the transpositiqa, @) = (m, «). The vectorsF(LH” correspondlng to other or-
dered pairs are defined in a similar way. Using the propertleus ofie can prove, that

(1) the vectorsF(”HW), 7TE A, are pairwise orthogonal,
(2) the projective lineCF ©=W does not depend on the choice of the ordered @awv).

The latter fact motivates the notatién),:= CFTW). The first fact implies, thafF _},._, is a
complete set of projective lines. One defigsfgh :={F .} ... ». This completes the definition of
3

Note that the projective lines of the ford!, andF . have been introduced in Ref. 8, but the
set{F .}, was not viewed as a complete set associated to the whole tetrah@dly@ince the
projective lines of the fornX®" and®? did not exist. One can find the calculations illustrating the
mentioned properties df . in Ref. 8. The definition oX’" and ) is new.

Now we have a mag: P(V)* — C(P(H)). One verifies, that all the described projective lines
are distinct. It means, that one gets 15 disjoint complete sets of projective lirtésfor every
vertexv e V a set{¥?} . s,y for every edgecc E a set{X}}.ck_ for every facev, v eV, a set
{‘I)Z}peR,;J and for the whole tetrahedron a gét,},. . The setA:=Ll, mpU has a cardinality

#A=120. We claim, that the s&& is saturated with respect to the orthogonality relatiorand
produces a Kochen—Specker-type contradiction.

IV. RELATIONS BETWEEN THE PROJECTIVE LINES

Let us describe the orthogonality relations between the elements of th&. #dt these
relations follow from the propertie®) of the matrixu. Recall that ifp € R;; then one denotes by

p its image under the natural bijectiox;]:R;;&. Simillarly, if o€ S;, one writeso” instead of
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v, 0) Ry If oeS;, letV,=3, ¢ ofe). If xeK, saye=ef, then lefx denote an element &
deflned byx(ef)= 1+%(ef)+%(g)+x(h) %(g)=x(h), %(h) %(g). For othere the notationz for
x € K, is defined in a similar way. Note that™ =p, ¢ =0, and Z=»x.

We explicitly describe part of the relations. The others are obtained by permutation of the
symbolse, f, g, andh,
(1) \If‘;L\Ifi, iff o(-)# o' ("),
(2 WS LW iff a(ef)=1+ay(ef),
3 q)eLCDe, iff p()vﬁp ),
4 <I>eL<I> iff p’(ef)=1+p;(ef),
) xiuxj, iff s() # ' (1),
) xiux;ig iff s(ef)+x(h)=1+x,(eg+x(h),
(7) XSTLXENIff () + () = 1 (€) + 21(f),
) FrLlF.iff #()#@'(),
) W5 LT iff V=14V
(10 qfuqi; iff V +a(eﬂ 1+v ~+p(ef),
(1) e L XEiff a(ef)=1+x(ef),
(12 qfe xfg iff o(ef)+o(eg=1+%(e),
(13 cb‘uxef iff p'(ef=1+%(ef),
(14) cpe ng iff p'(ef)+p (eg)=1+x(e),
(15 q,e“: iff V,=1+m(e),
(16) <1>eJ_F iff V,=1+m(e),
17) XL, iff #(g)+xh)=1+m(g)+ m(h).

Note, that there is no 1 in the formul@). Note that these relations have a self-duality
property. Namely, the condition for orthogonality () is equivalent t&(-) # %’ (-), the condition
in (6) is equivalent tox(ef)+x(h)=1+x;(eg +x,(h), the condition in(7) is equivalent tox(g)
+%(h)=%,(e)+s,(f), and the condition in(17) is equivalent tox(g)+x(h)=1+m(g)+w(h). It
follows, that if one has a set of pairwise orthogonal projective lines of the form
{llf”'},e,U{XEJ}JEJU{CID‘,;T'},ELU{F Jmem, Wherel, J, L, M are some index sets;,wi eV, ¢

e E, then by replacmglf"I with (I)”' CIJ"V' with \IfW' andxfl with XSJ one obtains a set of projective
lines {(I)”' Yicl U{XEJ}JEJU{\IfW'},ELU{FW”}mEM, wh|ch are still palrW|se orthogonal. It follows,

that one has a maw A*)A &°=id, which respects the orthogonality relatioh. Call &
e Bij, (A) the duality map

V. LINK TO MERMIN'S EXAMPLE

Let us prove that the s& produces a Kochen—Specker-type contradiction and establish the
link with the example of Mermin. Denote

T(A) := {¢:C(A) — A|OB € C(A):¢(B) B},

A(A):={¢p e T(A)|OB,B" € C(A):B#B' 0 —(4(B) L ¢(B'))}.

One must show, thah(A)=@. Suppose the contrarp(A) # @. DenoteB, =={\Iff,}c,ésB (v
eV), B:= ={F }-car. Take ¢ € A(A). The definition ofl'(A) D A(A) implies, that for everyw eV
one has an element(B,) € B,, i.e., ¢(B,) =¥’ e wherea‘/’ is some element o§;. Simillarly,
qb(B) F.+, Where 7% is some element oA. The definition ofA(A) implies, thatw” o is not
orthogonal to\P (for any v#w). Using the orthogonality relations one concludes that

a?(ow) = d(vw). It means, that a set of functioge?}, . induces a function:E— 7, by the
formula #*(vw) := ¢(vw) o (vw) (for anyvw € E). Now invoke the fact, that the definition of
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A(A) also implies, that for every e V the line qb(é) should not be orthogonal t#(B,), i.e.,
—(F,¢LW,9). It follows, that Ov € V:V +=7%v). Taking the sum over abb € V and invoking
the definition ofA, one getsS, .V, +=2, .y7m#(v)=1. On the other hand,

2 V=2 3 ole=2 (e +1%e) =0.

veV veVeecE, ecE

Thus one arrives to a contradiction 0=1. It means g A(A), i.e., A(A)=Q.
The link with Mermin’s example is established as follows. Let the standard basis ptay
the role of the basisé%}aezz involved in the construction oA. Note, that in the proof oA(A)

=@ we have used only five complete subsés,(v=e,f,g,h) andB. The proof of no-hidden-
variables theorem by Mermin is given in terms of operator§im C?® (2. There are five com-

plete sets of pairwise commuting orthogonal projectors present in that proof. If one looks at the
one-dimensional eigenspacé®., the projective lingsassociated to each of these sets, one ob-

tains BeLIB;LIBy LB, LIB.

VI. SATURATION PROPERTY, PART 1

The proof that the seA is saturated with respect to is more bulky. Recall that we have an
injective mapé: P(V)*»— C(P(H)), whereV is a set of 4 symbol¥={e,f,g,h}. This map has a
property DU, U’ e P(V)*,U# U’ &U) N EU")=D. It follows, that one can define a map A
—P(V) as follows: one choosas € P(V)* to be the valuey(l) of the map» on a projective line
| e A wheneverl € &U), i.e., » is defined from the requirementU e P(V)*:1 € &U) = #(l)
=U. Note, thaty induces a surjection ontB(V)*.

The projective lines constituting may be classified as follows. Caflip(l) the type of the
projective linel € A. There are four types of projective lines. The imag® is termed thekind of
the linel. There are 4 kinds in type 1, 6 kinds in type 2, 4 kinds in type 3, and 1 kind in type 4.
We shall also refer to projective lines of the types 1, 2, 3, 4, as being projective linEsyqfe,

X type, ® type, andF type, respectively. In a similar way, if(l) =8, the linel is said to be of¥®
kind, if #(1)=ef, the linel is said to be ofX¢' kind, etc.

Naively, in order to prove the saturation property forone may think of having to do the
following: one must take every sub$®tof A and test if its elements are pairwise orthogonal; if it
happens to be so, one must find a complete subs®ontainingB. All this appears to be a very
boring problem sinc&P(A)=2'%C. There is of course a group of permutatidsacting onP (A)
and an observation about the existence of the duality fmdpt the #5, is just 4!=24 and the
order of § as an element oBij , (A) is just 2, i.e.,6°=id. It means, that one must find a more
sophisticated approach to prove the saturation.

We have a mapg:A—P(V). It inducg(s )a ma(n): P(A)—L:=P(P(V)). How to describe an

7

image of the compositiof®, (A) — P(A) — L, where the first arrow is the canonical injection?

There exists a natural monomorphism of groopij(V) — Bij(P(V)), B—P(B). There also
exists a natural monomorphispa: Bij(V)— Bij(A), such that for evenyg e Bij(V) there is a
commutative diagram

The monomorphisnu is defined as follows. Take ange P(V) and describe explicitly the values
of w(B)(:) on the elements of the fornk?’, X¢, d)f), andF_, whereveV, eeE, 0§, xeK,,

peR; andme A. Let u(B)(¥):=¥",, wherev'=g(v) and De, € E, ;0" () =a(P(B)(er));
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H(B)(X) == XZ',, where e’ =P(B)(e) and »'(¢')=x(€), Ovy e V\e' 1% (v) =x(B(v1)); w(B)(PY)
= @Z:, where v’ =8(v) and Oe; € E, :p' " (e)=p (P(B)(ey)); finally w(B)(F,):=F,, where
Ovy e V:7'(v,)=m(B %(v,)). Note, that for every e Bij(V) the mapu(B) respects the orthogo-

nality relation L on A, and the fact that this relation has a symmetry with respect to the group of
permutations ok, f, g, andh can be expressed as

OB eBiiV)OLI e Al LI'D w(B)(D) L w(B").

It follows, that whenever an eleme@te L stems from some elemeBte P, (A), the element of
the form P(m(B))(Q), BeBij(V), also stems from an element o?, (A), namely from
P(u(B))(B). FactorizeL with respect to the equivalence relatieninduced by permutations,

Q~Q't = UB e Bij(V):P(M(B)(Q) =Q".

Denotel':=L/~. The problem of the description of the image7f(A) in L is then reduced to
describing the image of the composition

P(n)
P.(A)—PA) — LT,

where the first arrow is the canonical injection and the last arrow is the canonical surjection.
It is convenient to introduce graphical notation for the elementt aind I'. Consider an

example. LetQ:{é,?,Eeg,efgr} e L. It is represented by a graph,

*f
A g
The general principle is the following. A graph may have up to four vertices labeled by the
symbolse, f, g or h. If Q containsy, introduce a vertex labeled by the symbahnd mark it with
*. if Q containsy, introduce a vertex and draw a circle around it; if there isv € Q, introduce
two verticesv andw and connect them by an edge; finallyQfcontainsefgh set a lettef~ near
the corresponding figure. Thus to ea@re L a graph is associated. Note, that if an elem@nt
e L stems from some elemeBte P(A), i.e., P(7)(B)=Q, then by looking at a graph that repre-
sentsQ one cannot tell everything aboBt but the kinds of projective lines that are presenBin
can be understood.
The graphs representing the element§ @fre similar to the graphs representing the elements
of L. They are obtained by omitting the labedsf, g, andh of the vertices. For instance, @
e L is as in the example given above, diad  I' is its image under the natural surjectiba» T,
then[Q] is represented by the graph

..
F

Whenever one has an elementlbbf the form[P(%)(B)], whereB is some subset &4, the graph
that represents this element is calledredowof B.

Let us introduce more terminology. A graph representing an elemdnitalledadmissible
iff by definition it represents an element of the imageRf(A) —T'; otherwise it is callechon-
admissible One would like to describe all the admissible graphs. Whenever a graph represents an
image of som&) e L under the canonical surjectidn—I', the cardinality#Q is called thedegree
of this graph. Whenever a graph represents an image of &a18, (A) underP (A)—T, one
says thaB hangs ovethis graph. AnyB’ € P, (A) containingB is called anextensiorof B. It is
called apure extension, iff by definitionB’ and B hang over the same graph. An extension
satisfyingB’ =B is calledtrivial. An extensionB’ of B is calledcompleteiff by definition #B’
=8 [recall that 8=dim(H), ACP(H)].



052109-9 120 projective lines J. Math. Phys. 46, 052109 (2005)

Proposition 1:(1) The graph* is admissible and any element Bf, (A) hanging over this
graph admits a pure complete extension

(2) The graph=* is admissible and any element Bf (A) hanging over this graph admits a
pure complete extension

(3) The graphA is not admissible

(4) The graph=** is admissible and any element®f (A) hanging over this graph admits a
pure extension up to a set of cardinality 6. Any elemerP ofA) of cardinality 6, which hangs
over this graph, has a complete extension hanging evef.

(5) The graph=**Q© is admissible and any element®f (A) hanging over this graph admits
a pure complete extension

(6) The graph#=+* is admissible and any element®f (A) hanging over this graph does not
have nontrivial pure extensions. Any elemenfof(A) hanging over this graph has a complete
extension hanging ovep®®®.

(7) The graph=*#*F is not admissible

Proof: (1) A set consisting of one projective link®, whereo is some element df, gives an
example of a set hanging over Every set hanging over this graph is of the foBw{¥'}, s,
wherewv is some element o and S is some nonempty subset 8f. This subseB is always a
subset of a complete sé{ff,}(,gsv.

(2) Take anyaeZ, and choose any € & such thato(ef)=a, and anyo; € § such that
ai(ef)=1+a. Then the projective line¥$ and\Iff,l are orthogonal and one can take them two as
a set which hangs over the graph. An arbitrary seB hanging over this graph is always of the
form B={¥?},.sU {\P‘(’Tvl}gle s whereS andS; are some nonempty subsetsSfandS;, respec-
tively, v, we V, v #w. One associates tB a parameten:= oc(vw)=1+0;(vW), whereo is any
element of S and o, is any element ofS;. Denote S :={ce S|o(vw)=a} and Sj:={o;
€ Sy o1(vw)=1+a}. Since # =#S|=4, the setB’:= {\I'f,}oesru{‘lf‘(’fvl}(,le% gives the required
pure complete extension &.

(3) If the graphA is admissible, then there should exist three pairwise orthogonal projective
lines of the formX®', X‘f}i’ and XLQS wherex, »;, and », are some elements #fer, Koy, and Ky,
respectively. The orthogonality relations yield three equations,

XL X0 el + xh) = L+x(eg + x(h),
X' L XIS el +x(h) = 1 +5,(fg) + (),

XL X[« xy(eg + () = 1 +(fg) + ().

Taking the sum of these three equations one arrives to a contradiction 0=1. This means, that the
mentioned triangle is not admissible.

(4) One can construct an example of three pairwise orthogonal lines of thelf@rrﬂrfrl, quz
as follows: take any, b, c e Z, and chooser € § such thato(ef)=a, o(eg=b, anyo; € S such
thatoy(ef)=1+a, o4(fg)=c, ando, e §; such thaio,(eg =1+b, o,(fg)=1+c. Then the orthogo-
nality relations between the mentioned three lines are fulfilled and the set consisting of these three
hangs over the graphs*x. An arbitrary set hanging over this graph is of the foifn
={¥},csU {\If‘g’}(,leslu {\Iffr}(,zesz, whereS, S, andS, are some nonempty subsets3f S;, and
S, respectivelyp,w,ze V, v #Ww, v # z, w# z. Without loss of generality one may specializev
and z to e, f, and g, respectively. Associate t8 three parametera,b,ceZ,: a:=o(ef)=1
+a4(ef), b:=o(eg =1+0,(eg), c:= a4(fg)=1+0,(fg), whereo, o, ando, are elements 08, S,
and S, respectively. Denote S :={c e S|o(ef)=a&oa(eg=b}, S :={01eS|o(ef)=1
+a& o(fg)=c}, andS,:={0, € §| o,(eg =1 +b& 0,(fg) =1 +c}. Since #' = #S = #S,=2, the set
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B ={¥'},.s U{\If‘(“,’}gles U{\IIZ}U ,<s, IS @ pure extension d8 up to a set of cardinality 6. Now
look for a projective Imed) p € Ry, which is orthogonal to every element Bf. This yields the
following equations:

OoeS:V,+o(eh=1+V, + p (eh),
Ooy € Si:Vol +oqy(fh)=1+V -+ p (fh),

Doz € SV, + ap(gh) = 1+V - + p'(gh).

Observe that the left-hand sides of these equations may be expressed in terms of paeaieters
and ¢ as V to(eh=o(ef)+o(eg=a+b, V, +0'1(fh) oq(ef)+oy(fg)= (1 +a)+c, and V,,
+02(gh) oq(eg +oy(fg)=(1+b)+(1+c). Reduce the equations fgr to p'(fh)+p"(gh)= 1+a
+b, p'(eh)+p’(gh)=a+c andp’(eh) +p"(fh)=1+b+c. The latter equation is nothing but a sum of
the first two and may be dropped. Den®e={p € R, p"(fh)+p"(gh)=1+a+b&p"(eh) +p"(gh)
=a+c}. Taking into account thatR=2, one obtains a s&":=B’ U{(Dg}pER,, which is a complete
extension ofB’ and hangs overx*Q©,

(5) The admissibility ofs«+*® follows from (4). Consider anyB € P, (A) hanging over this
graph. Without loss of generality, one may assume, thatB
={Wel,esU{W}, s UTW,, e U{D]),cr, WhereS, S}, S, andR are some nonempty subsets
of &, S, &, andR;, respectively. Consider a subset®fconsisting of all projective lines oF
type and associate to it the parametens, c € 7, in a way as described in the proof @. LetS',

S, S, and R be defined as in the proof of(4). Then the set B
={We}, g U{WPS }Ules LJ{‘lfg}(rze U{CD“},,ER, is the required pure complete extensionBof

(6) A set of pairwise orthogonal projective linds’, ‘lff \If% , and\lfh which is required to
establish the admissibility of the grap=*, can be constructed as foIIows. Take afpyvalued
function ¢ on E:={ef,eg,eh,fg,fh,gh}. Denotea:= ¢(ef), b:=¢(eg), c:=¢(fg), p:=¢(eh), q
= ¢(fh), r:= ¢(gh). Take the followingo, o4, 0y, andos: a(ef)=a, o(eg =b, o(eh =p; o4(ef)
=1+a, oy(fg)=c, oq(fh)=q; ox(eg=1+b, o,(fg)=1+c, ax(gh)=r; o3(eh=1+p, o3(fh)=1+q,
a3(gh)=1+r. Then the projective line¥¢, \Iff,l, \If?,z, and \If';s constitute a set as required. An
arbitrary set B hanging over the mentioned graph is of the fornB
={¥e},  sU {Wfrl}tfleslu{\sz}ozE%U{q";g}ﬂse%’ whereS, S, S,, and S; are some nonempty
subsets of%;, S, §, and§, respectively. To every sucB associatep: E— 7, by setting¢(ef)
=a(ef), p(eg=a(eg, p(eh=a(eh), ¢(fg)=01(fg), ¢(fh)=a1(fh), p(gh)=0,(gh), wherea, oy,
and o, can be taken to be any elementsfS;, andS,, respectively. The se$ is a nonempty
subset of S :={o e S| o(ef)=¢p(ef) & o(eg =¢(eg & a(eh) =¢(eh)}. Since #& =1, we see that
#S=1. Similarly, #5,=#S,=#S;=1. In the latter case $;CS;:={o3e S |o3eh=1
+¢(eh) & a3(fh)=1+¢(fh) & o3(gh)=1+¢(gh)}. This means that a set hanging owe#= cannot
have nontrivial pure extensions.

Let us now construct a complete extension of aBsethereB hangs oversx*+. Let ¢ denote
the function associated B:{‘Pﬁ,\lffrl,‘lf?rz,\lf('}B} e P, (A) as described above, and &tb, c, p,
g, andr be its values on the edges, eg fg, eh fh, and gh, respectively. Looking for an
extenS|on which hangs oves®®®, we need to construct projective lines of the foﬁrﬁ ol v

, and (I)h Define p, p1, py and ps by the formulasp’(ef)=a+b+c+p+q, p'(eg= l+a+b
+C+p+r P (eh) a+b+p+g+r; py(ef)=1+a+b+c+p+q, py(fg)=a+b+c+q+r, py(fh)=1+a
+CH+p+Q+r; pyeg=at+brc+p+r, py(fg)=1+a+b+c+q+r, py(gh)=b+c+p+g+r; pyleh=1
+a+b+p+q+r, py(fh)=a+c+p+q+r, py(gh)=1+b+c+p+qg+r. Straightforward computation
establishes thaB’ := BU~{<I>e,<I>f Y fI)h} is a complete extension @.

(7) It is necessary to show that flve projective lines of the fob{ ‘I' \If?,z, \PEB, andF .
cannot be pairwiserthogonal Recall that we already know that they cannot be pairwiseor-
thogonal The conditions of orthogonality between the projective line¥df/pe yield a system of
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equations, o(ef)+oq(ef)=1, o(eg +oy(eg=1, o(eh+os(eh=1, oi(fg)+oy(fg)=1, o4(fh)
+o3(fh)=1, ando,(gh) + o3(gh)=1. By summation, one obtair¥,+V, +V, +V, =0. On the
other hand, the orthogonality conditions wi yield the equationssr(e)=1+V,, m(f)=1+V,,
w(g):1+VUZ, and w(h):1+VUS. Recalling that®, _ym(v)=1, and summing the foregoing equa-
tions yields 1:VU+V01+VUZ+V03. Hence, the requirement that all five projective lines are pair-
wise orthogonal leads to a contradiction 1=0. O

Proposition 2: Let B= P, (A) be a set hanging overs:x.

(1) For everyv eV there exists a unique projective line @F-kind which is orthogonal to
every projective line belonging to.B

(2) There exist no extensions of B which contain a projective line of X type or of F type

(3) The complete extension of B is unique and hangs eve®®.

Proof: (1) It is sufficient to considev=e. If W5, W, W9, and Wy are four pairwise
orthogonal projective lines, then the requirement th?;lis orthogonal to each of them yields four
equauons V,y=1+V,, V, +p'(ef)=1+V, +al(eﬂ Vy+p(eg=1+V, +0'2(eg) and V,
+p'(eh)= 1+V ,tos(eh). Expressmng from the first equation and substltutmg it into the other
three, one flnds the expressions for the valueg'ofia o, oy, 05, andos.

(2) The fact thatB cannot have an extension containing a projective lin€& aype follows
from the nonadmissibility of the graph-++F. Let us show that the grapf+—+ is nonadmissible.
This will imply that an extension oB cannot contain an element of type. Consider three
projective lines of the form¥¢, \Iff,l, and X‘ff, and impose the condition that they are pairwise
orthogonal. This yields the equations(ef)=1+o0;(ef), o(ef)=1+x(ef), and o,(ef)=1+x(ef).

The sum of the second and the third equations yiettsf) + o (ef)=0, contradicting the first
equation. It means that the mentioned graph is not admissible.

(3) The existence of the extension Bfhanging ovem®@®® has been proved in the previous
proposition. Since an extension Bfcannot contain elements &for F type, it should hang over
a graph which may contain only stars and circles. According to the previous proposition, a set
hanging over a graph=** cannot have nontrivial pure extensions. It follows, that a complete
extension ofB contains projective lines of the forab!. Every such projective line is uniquely
defined according tdl1). It follows that a complete extension & hangs over®®®® and is
unique. O

VIl. GROUP OF SYMMETRY

We have given aexplicit description of every element of the finite geaaind by that we have
an opportunity toconstructthe mapse: A— A by simply saying for eacthe A which I’ € A
corresponds to it undes. One would like to have a similar opportunity for the &t(A), i.e., one
needs tocharacterizethe elements ofP, (A). In particular, for the set of all complete sets
C(A)CP (A it would be nice to have some group transitively acting@(#), so that having
found just one complete set, one could automatically generate all the others.

Recall that there is a map: A—P(V), whereV is a set of four symbol¥={e,f,g,h}. We
shall describe a grou@ which acts on the sét="(P(V)) and then describe a grogpwhich acts
onP, (A).

We start with the definition of the group. Consider the grougij(P(V)) of all bijections of
the power set ol/. One has ¥=4, #P(V)=16, #Bij(P(V))=16!. Associate to eacBe P(V) a
map Tg P(V)— P(V) defined by the formula

U, if #(SNU)is even,
V) = { 3

UAS, if #(SNU)is odd,

where U varies overP(V), the bar denotes the completion of a setMnmand A denotes the
symmetric difference of two subsets. For a@yne hasTézid. In particular, T is a bijection,
Tse Bij(P(V)). DefineG to be a subgroup iBij(P(V)) generated by reflectionks, Se P(V):

G:= ({TdSe P(V)}) C Bij(P(V)).
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Note, thatT,=Tegn=id. Note for anyS, that T{(?)=2.

For a givenSe P(V), write U+ U, to express thafgU;)=U,& TgU,)=U;, andU=inv to
expressTg(U)=U. Then, for exampleT;, T, and Tz are explicitly described as followsl;
corresponds to

e« efgh f—<—>ef, g+« eg F<—>eh,

@,e 1,8, fg,fh,gh=inv;
Tef corresponds to

e—~f, foe egeeh fge fh,

and Tg corresponds to

ew—efgh foef §oeg heeh,

@,&f,g.h fg, fh,gh=ino.

Explicit descriptions of the other;, T,,, andT;are obtatined via permutations of symbelsf,
g, andh. Note that for evenge P(V),

Tmips =MB)TMB™), B e Bij(V),

wherem is the natural monomorphism of groups; Bij(V)— Bij(P(V)), B—P(B).

Recall that there also exists a natural monomorphisnBij(V)— Bij(A) described in the
previous section.

Every elemeng e G is a mapg: P(V)=P(V). It induces a maP(g):L=L, L=P(P(V)). It
means that there is a natural action®6n L. Recall that we have a map A— P(V). It turns out
that the mapds, Se P(V), can be lifted up to mapés: A=A in such a way that the subgroup of
Bij(A) generated by 6 s has a natural action on the sBt (A).

Proposition 3: For every & P(V) there exists a mapgs: A— A such that

@) OLI"eA:1LI"D o41) L 641");
(2) The mapés renders the following diagram commutative:

A > A
"l l"?
P(V) — P(V)
(3 6=id. Ts @

Proof: If S=@ or S=V, then the correspondirifs=id and one may takés=id. It means that
essentially one must to consider the cases of nonempty proper s8hsetaNe describe explicit
formulas for 6, 6., and 6= The other maps are defined by permutationsg,df, g, andh.

We start withé,. Invoking the explicit description fofg given above, one has, for example,

e« efgh Thus, a projective line of the for¥®, o € &, should map under the action 6f to a
0A

e
projective line of the formF ., wheren’ is some element of\. Denote this by¥S~~F_.. A
complete description of; consists in the description of its actions on the elements of the form

o’

we, wlowe o gh
1 2 3
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f h
o, @), o, @of

ef eg eh
X5 X,

Define 6, as follows:

fg fh gh
X9 XD, x& R

05 05
WEsF FrPe,:
7'(e):=1+V,, d'(ef):=mn(f),
' (f) = o(ef), o'(eg :=m(g),
7'(g) := o(eg, o' (eh :=m(h).

7' (h) == o(eh).

b
f ef,
CDplwx )

x

x(ef):=V,,

#'(9) = py(ef) + py(fg),
#' (h) = py(ef) + py(fh).

O
CD?)ZWX(;?Z
x(eQ =V,
#,(f) = py(eg) + py(fg),
() == py(eg) + p,(gh).
O
CDSSWXiZZ
xy(eh) =V,
#(f) = py(eh) + py(fh),
#5(0) = pa(eh) + p3(gh).

b

f f.
Wl
’
o-l(ef) = Vo'l’

oy(fg) = ay(fg),
ay(fh) == a4(fh).

Oa

&
g g .
\I’(,ZW‘I’Ué.
!
0-2(69) = V(TZ’

o3(fg) = o(fg),

a,(gh) = op(gh).

O3
Xequ)f .
% p:'L‘
p1 (ef) = x(ef) + x(g) + x(h),

py (fg) = x(ef) + x(h),
py (fh) := x(ef) + x(g).

be
X9 ®9Y, :
1 23
py (€9 = xy(eg) + xy(f) + i (h),
Pé*(fg) = x1(e9) + 2 (h),
Pé*(gh) = xp(eg) + ().

be
Xehw(bh,i
2 P3
ph (eh) := xy(eh) + xy(F) + 2,(Q),
ps () := s(eh) + x,(g),
p5 (gh) == xo(eh) + xy(f).

e
h
X3 X9
5 "5

xg(gh) := x5(gh),
xg(€) = xs5(€),
() == 1 + x5(€) + x5(f).

b
(o h.
%y %4'1
2,(fh) == 3,(fh),

x,(€) = 24(€),
2(9) == 1+ 24(€) + 24(Q).
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O O
wh g - xf9..., x9-
0_3 (ré- %3 %é
ag(eh) := Vg o3(fg) = x5(fg),
o(fh) := a5(fh), x3(€) = x5(8),

o3(gh) == o3(gh). x3(h) = 1 +23(€) + x3(h).

be
e e .
q)pw (I>p,.
p'(ef):=1+p (e,
p'"(eg :=1+p (eg),
p'"(eh) :=1+p'(eh).
Note, that the formulas defining; have a symmetry with respect to the permutations of symbols
f, g, h. It is a straightforward calculation to show thtrespects the orthogonality relatian on
A. The commutativity of the mentioned diagram follows directly from the constructiafa.ofhe
verification thaté, is indeed a reflection is also straightforward.
Now define by,

eef f . oef
e . e .
\I'O_w (Dpi (I)plw ‘PU,_
p1 (ef) = a(ef), o' (ef) := p,(ef),

pi (fg) = a(ef) + o(eh), o' (eg) := py(ef) + py(fh),
pi (th) == o(ef) + o(eg). o' (eh) = py(ef) + pi(fg).

et Oet
vl S (I)ew\I’f,Z
a1 P P a1
p" (ef) = ay(ef), oy(ef) = p'(ef),
p' (g = oy(ef) + ay(fh), oy(fg) =p'(ef) +p’(eh),
p'"(eh) = oy(ef) + ay(fg). oy(fh)=p'(ef)+p’(eg.

Ot Oef
Xegw Xeh . Xehw Xeg.
% "é E2 %:,L
y(eh) = 2 (f), x1(eg) = xy(f),
() = x1(€9), #1(f) = xy(eh),

25(Q) := L+ 21(€9) + 2¢9(F) + 2¢9(h). %1 (h) := 1 +2ex(€h) + 2¢5(F) + 2,(9).

Oct Ot
ngwxfh . thwxfg .
%3 %"1 %y %é
2x4(fh) = x3(e), x3(fg) == x4(e),
xy(€) = x3(fg), x3(€) = x,(fh),

24(9) == 1 +23(fg) + 23(€) + 23(h).  25(h) := 1 +2,4(fh) + 4(€) + 24(Q).
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: DY s DY,
92 Ty P2 Py
o = ox(eg) + oh(gh), pj (ed = py(ed + py(gh),
o(fg) == o(fg) + o5(gh), py (fg) = py(fQ) + po(gh),
ab(gh) = a5(gh). Py (gh) = py(gh).
Oet Oet
93 g3 P3 P3
oy(eh) := as(eh) + o5(gh), py (eh) := py(eh) + py(gh),
a4(fh) == a5(fh) + a5(gh), p5 (fh) := pa(fh) + ps(gh),
o(gh) = o3(gh). p5 (gh) = p3(gh).

‘9ef 09f
f f. gh__ y9h.
Xi in, . X}f5 X"é'
x'(ef) == 1 +s(ef) + 2(g) + 2(h), 2x5(gh) == x5(gh),
%'(9) = %(9),

x5(€) = x5(e),

%' () == 2(h). 25(F) := 2e5(f).

Oet
F.~F_:
w'(€) := m(f), a'(f):=m(e),
m'(9) == m(g), ' (h):=m(h).
The verification tha®,; satisfies all the conditions of the proposition is straightforward just as in

the case withd:. Note, that the formulas fofi,; are invariant under the transposition of symbels
andf and under the transposition of symbglsndh.
Now definedg

bs b5

Do F o Fom @
7@ =14V, p(ef) = a(h),
7' (f):=p'(ef), p’(eg:=m(g),
7' (g =p (eg, p’ (eh :=m(h).
7' (h) == p'(eh).

O
f ef .
' 1WX’¢"

[op

b

Xifw\l’f i

x'(ef) = 1 +0q(ef), oy(ef) :== 1+ x(ef),

%' () = ay(ef) + oy(fh), oy(fg) == 1 + x(ef) + x(h),

%' (h) := oy(ef) + a1(fg). oi(fh) == 1 +x(ef) + x(g).
b

"
g €g.
WY, X

Xig:»‘I'g,:

x1(eg) = 1+0y(eg), oy(eg = 1+x(eg),
x(F) := o5(€9) + 0p(gh), 05(fg) == 1 +x1(eg) + xy(h),
%1(h) := op(eQ) + 05(fg).  o5(gh) == 1 +2(eg) + 2y (f).
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s e

q,h erh. Xehw'\lfh .
o3 %é %o (;-é'
x5(eh) == 1+ a3(eh), ag(eh) == 1+ x,(eh),

xy(f) = a3(eh) + o3(gh), a3(fh) = 1+ x,(€h) + x,(g),
#3(9) = a3(eh) + a5(fh).  o3(gh) := 1 +sx,(eh) + x,(f).
bs b
q)f Wq)f . Xghwxgh.
P Tpy” x5 g
Pr(eN =V, xi(gh) =1+ x(gh) + (D),
py (fg) = py(fg), (€)= 1 +xg(e) + xs(f),
py (fh) := py(fh). () 1= s(f).
5 5
DY DY, XM X
P2 Py’ %4 %y
Py (€9 =V, xy(fh) = 1+ x,(Th) + x,(0),
py (FQ) = py(fQ),  24(€) = 1 +(€) + 24(Q),

Py (gh) == py(gh). #4(9) = %4(Q).
Og Og
(I)h W(Dh . xfgwxfg.
Pz Tpy n3 g

Py (eN =V, s(fg) == 1 +xg(fg) + 5(h),
Py (fh) = pa(fh),  xj(e) := 1 + 5(€) + 5(h),
ps (gh) = p3(gh). #4(h) = 5(h).

be
s

v,

VoW
o' (ef):= 1 +o(ef),
o'(eg :=1+a(eg),

o' (eh) :=1+a(eh).

In order to obtain formulas fofi one may take the formulas definig and perform the replace-
ments of the symbole«— p*, x—%, ==, and similar for(-)’ symbols. The verification thats
satisfies the three conditions of the proposition is again straightforward.

The otheré;, 6,,, and 6; (v,we V,v #w) are defined fromps, 6., and 6z via the permuta-
tions of symbolse, f, g, andh, i.e., in such a way that for evel§ye P(V),

On a9 = (B Osu(B), B € Bij(V),

where u is the natural monomorphism,: Bij(V)— Bij(A). O

Denote byBij, (A) the subgroup oBij(A) consisting of all bijections oA which respect the
orthogonality relation. on A. We have constructed a family of reflectiomge Bij, (A), S
e P(V). Denote byg the subgroup oBij , (A) generated by these reflections,

G=({0dS e P(V)}) CBij (A).

Note that the corresponden@g— 65 does notdefine a homomorphism froi® to G, since, for
example, the order of an elemenil, e G is 2, and the order of;6, G is 4.
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Let us mention some properties of the gro@andg. First of all, recall that we have natural
monomorphismsm: Bij(V)— Bij(P(V)), w: Bij(V)>—Bij(A). It turns out, that the images of
these monomorfisms are in fact containedarand G, respectively, i.e., each of the two groups
contains a copy 0§,. Denote byt.; the bijectionV;V which interchanges the symbatsandf,
i.e.,toie—f,fr>e,g—g,h—h. Let us write(ef) instead oim(tes) and(ef) instead ofu(tes). One
defines in a similar way the transformatiofasv) and (vw) for all v,we V,v #w.

Proposition 4: For allv,w,zeV,v#Ww, v #2, W# Z,

TowTuzTuw= (W2),

0UW0U20UW = (WZ) . (5)

Proof: It is sufficient to verify thatTeTeoTer=(fg) and that6.0.40.1=(fg). The latter is
established by a straightforward computation. O

Consider a producD:=(ef)(gh)TeTyn For everyU e P(V), D(U)=U if #U is odd, and
D(U)=U if #U is even. Hence the mdp is obtained by

e fof, §go0 geh,

@,ef.egehfg,fh,gh,efgh=inv.

Note, that for anyeeE, D=(¢)(e)T.T= Consider an analog oD in G, the products

:= (ef)(gh) fe16yn. Observe tha® is just the duality transformation mentioned in the section de-
scribing the orthogonality relation oA, 8(W;)=®"., &(X5)=Xs, 5(@2)2‘1’}, and 8(F,)=F,
(notationo”, p*, andx as in that section More generally, for any € E one hasd= (;)(?5 0.0= The
transformationd € G and § e G allow to obtainT;-and 6;- (v € V) from T; and 6; according to
T,=DT;D and 6,=46;6. Any transformationT, (e e E) commutes withD, DT,=T.D, and any
transformationd, (e € E) commutes withs, 66.=6.6.

Note that(ev)Te(ev)=T;, v € V, v #e. Since every transformation of the fortow) and the
transformationD belong to a subgrous, of G generated by{T}..g, any set generating,
appended with an elemeiiit, generates the whole grow Similarly, if one denotes by, the
subgroup ofG generated by6.}..g, then any set of generators @ appended with an elemeni
generates the whole group

The groupsG, andg, should be investigated in more detail. We start with the grégplt is
convenient to conside,,,:= (vw)T,,, (v,we V,v#w). Denote byG, the subgroup of5, gen-
erated by(vw)’s, and byGj; a subgroup of5, generated byV,,’s. TogetherG; and G, generate
the wholeG. The explicit description oW, is

e ?Hf_, eg«< fh, eh« fg,

@,3,h,g,h,ef,ghefgh=inv.

and the explicit descriptions of the other,, are similar. One verifies thaW\W,=W,, More
generally, for any, w, ze V, v#W, v # 2, W# Z,

WUWWWZ = WUZ'

It follows, thatG; consists of all elements of the forwi,, € € E, an elemenD =W, W, and a unit
element ofG. Since every elemerii e G, preserves the cardinalify.e., #(U)=#U, U e P(V)],

and no elemeniv e G, except the unit preseves the cardinality, it follows that the intersection of
G, and Gj is ftrivial. Moreover, the groupG, is normal in G, since (ef)Wyef)=Wey,
(egWei(eg =Wsg, and(gh)We{(gh) =Wy, and there exists a natural action®f on G; defined as
follows. From the explicit description a#,,, one observes th&; is isomorphic to a group\, of
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Z,-valued functionsg on V satisfying a conditior®, .y¢(v)=0, i.e., it is a sample ofZ,)%. An
element 8 e Bij(V) acts on A, by the formula ¢— ¢°B7L. This induces an action o6,
=Bij(V) on Gy=A,. SinceBij(V) =S, and A= (Z,)3, it follows that one may view the group,
as a semidirect produ€?,)®xS,.

The considerations about the gro@pare similar to the considerations ab&yt In particular,
the elementso,,,:= (VW) 6,,, have the properties similar to the properties/gf,. As a result, one
gets thatG,=(Z,)3x'S, as well.

G is a group generated by the following five elemenrsf), (fg), (gh), Ts and Wt The
corresponding Coxeter matrix is defined by

ord((ef)Ty) =3, ord(fg)Te) =2, ord(gh)Ty =2,
ord(eHWe) =2, ord(fg)We) =4, ord(ghWey) =2,
ord((ef)(fg)) =3, ord(ef)(gh)) =2, ord(fg)(gh)=3,

ord(W,Te) = 3,

where ord-) denotes the order of a group element. One verifies that the Coxeter matrix associated
to the original set of generato{3g}s, Se P(V), is defined by the formula

2, if #(5,\S,) is even and #S,\S)) is even,
ord(Ts,Ts) =13, if # (§,\S,) is odd and #S,\S,) is odd,
4, otherwise.

Note, that the groups contains other reflections besides the ones already mentioned. In
particular, there exist reflections which intercharde-efgh for example, T{W,TeWes. At least
some of the reflections can be generated starting {ig by using the following facts: whenever
R; and R, are two reflectionsR,RR, is again a reflection; iR; and R, commute, then their
productR,R; is again a reflection.

Note that there is another way of expressiow) andD in G. Verify that additioned td5)
there is also a formuld@;T;Te=(ef) and TsTsT.=D. After replacing the left-hand and right-hand
sides of these equalities by their analogegjjrone observes, thal;650;= 5, but 6:6;6,# (ef).
What is the deviation of the value ¢&f)8:6;6; from identity? We need more notation to express
that. Consider an Abelian groug of all Z,-valued functions on the set of all edgés
={eCV|#e=2}. We shall associate to evegye F a transformatiorl ,  Bij(A) and then show
that in factl , falls into the groups. The producivw)§; 6;6; will be equal tol , wheree is some
element ofF.

Take anyp € F. Denotea:= ¢(ef), b:= p(eg), c:= o(fg), p:= ¢(eh), q:= ¢(fh), r:= o(gh). The
transformation, will not change the kind of a projective line and we will describe its action on
we, X ®¢, andF . The other cases are obtained by permutation of the synghdlsg, h. A
projective line WS is mapped byl, to \Ifi, with ¢’ (ef)=co(ef)+a, o’'(eg=o(eg+b, o’'(eh
=o(eh)+p. A projective lineX; maps toX, with »'(ef)=x(ef)+a, »'(g)=x»(g)+p+q, »'(h)
=x(h)+b+c. A projective line®; maps tod),‘j, with p’(-) defined byp'"(ef)=p"(ef)+b+c+p
+q+r, p'"(eg=p’(eg+a+c+p+q+r, p' (eh)=p (e +a+b+c+qg+r. Finally, the projective line
F. is mapped byl, to F_,, where#'(-) is defined asr’'(e)=m(e)+a+b+p, #'(f)=u(f)+a+c
+q, 7' (g)=m(g)+b+c+r, «'(h)=m(h)+p+qg+r. Note, that sinceX,_ym(v)=1, one gets
>,y (v)=1. The differencer’ — 7 satisfies2, .\(7' - m)(v)=0.

We have defined a collectiofl .}, » of mapsA—A, such thatl2=id. This implies, in
particular, thatl, is a bijection, and one may consider the subgrouBij{A) generated by
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{l}¢e 7 Since for everyp,, ¢, € 7 we havel, I, =1, .., this subgroup is Abelian. Denote Ly
(e € E) the element ofF which has a value 1 on the edgeand a value 0 on all other edges.
Straightforward computation establishes that

(OW) 0506, =1, (6)

(for everyv, we V, v #w). Since every map,, ¢ € 7, may be represented as a composition of
maps of the formXE, ecE, it follows from (6) that every mag,, is in G. It follows that the set
{ls}oc + generates some Abelian subgrabfin G.

Proposition 5: The groupV generated byl },. » is a normal subgroup of.

Proof: We define forSe P(V) a morphismrs, 7— F, such thatlp € 7 6dl ,=1 4, 0s. Since
0p=6y=id, set rz:=id and n,:=id. The set of formulas for the other cases®will have a
symmetry with respect to the permutationsepff, g, andh, and in fact the nontrivial part of the
proof will consist in providing the definitions of;, 7.5, and 7=

There exists a natural monomorphismBij(V)— EndF) defined as follows: for every
e Bij(V) the morphismu(B): F— F is defined byer— ¢’, ¢'(€):=o(m(B1)(e)) for all ecE,
wherem is the natural monomorphisiij(V) — Bij(P(V)). Recall that there also exists a natural
monomorphismu: Bij(V)— Bij(A).

The 1, are defined in such a way, thatg e Bij(V): u(B)l (B =1, Recall that for
every 8 e Bij(V) and everySe P(V), u(B)Osi(B) = Oy p)s- Hence,

1= O o O = H(B) Osiu(BH1 L (B) Osa(B™H] ™ = m(B) 0 g1y 05 (B

= 1B (s g 1)@ B ™) = (g g D))

Tm(p)(9)(®

where ¢ e 7. It follows, that the collection{7s}s_p(, should satisfyu(B)rsv(B™) =T s, B
e Bij(V). Hence it is necessary to describe just three morphigmss, 7s: F— F.

It is convenient to represent an elementfby a graph, which is a tetrahedron with vertices
e, f, g, h, and equip its edges with the values of the considered elemefbafthe corresponding
edge. Take any e F and denote by, b, ¢, p, g, andr the values ofp on the edgeef, eg, fg,
eh, fh, andgh, respectively. Definez, 7., and 7z as follows:

p+g+r q\

| N ey/

P h Te(p) :

[
a f a+c+q
Te f
ﬁ
/ a+p+q
/ / +b+c
a+b+c+p+g (7)

The explicit descriptions of the otheg are induced by permutations of labels of vertieg$, g,
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and h. Recall thatry=mn,=id. Straightforward computation establishes tifgit,=|

7@(‘P)0é’ Oefl
ro(¢) Oets and bl o= ) O This completes the proof that the grofpis a normal subgroup of
the groupg. O
Note that now one has three types of transformations indexe8&#(V), a bijectionTg
e Bij(P(V)) [refer to (3)], a bijection 6se Bij , (A) [refer to (4)], and an automorphisnrg
e Aut(F) [refer to(7)].
The groupsG and G will play a key role in the proof of the saturation property Af In

particular, it will be shown below that the image of the composition of mBp§A)— P(A)
P(1)
— L, where the first arrow is a canonical injection, is invariant underGhaction. It will be

shown, that an image of a complete set under this composition can have a cardinality only 1, 2, 4
or 8. This induces a partition @(A) into four subsets. Thg action will fix each of these subsets
and it will turn out thatG acts transitively on each one of them.

VIIl. SATURATION PROPERTY, PART 2

We have constructed a growp and an action ofs on L. Let H be a subgroup 06. Two
graphs corresponding to some element¥ afre calledH-equivalentff they can be represented in
L by elements of the santé orbit.

In the groupG there is an elemerd. Its action onL induces a map@:I"— I, which in terms
of graphs replaces a starby a circle® around the same vertex and a cireby a star+ at the
same vertex; the edges -—- and the synthoémain untouched. It means that if one is given a
graph, then by applying if necessary the transformadianis possible to produce a graph with the
number of stars greater or equal to the number of circl@s We shall call a graph satisfying this
condition, primary, and a graph not satisfying this conditicsgcondary For example, a graph
F+® —- is primary, and a grapR © ® —- is secondary. If the graphs represent the elemenis of
related to one another by the transformatiprone calls these graphs mutuadlyal. If a graph
coincides with its dual, it is calledelf-dual For example, the graph—Q© is self-dual.

Note, that anyG-equivalence class is invariant under the transformation induced Dlye set
of elements constituting &-equivalence class, is completely determined by a list of all primary
elements belonging to it; the other elements are obtained by duality.

Proposition 6: (1) The complete list of primary graphs from thee@uivalence class of the
graph A is of the form

a) Z_\ b) x—x c)

(2) The complete list of primary graphs from theeQuivalence class of the graph* © is of the
form:

F d)~—@- e)®F

b)%F )*x**x® d) ®®

)
)< N 90 W o

(3) The complete list of primary graphs from theeQuivalence class of the graph** F is of the
form:
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*— % % ® -
b c)®— d) x—@ el
)*__‘_ ) ) e) N

EEEEY A

f)<® 9) L h) x xOOF z)*<*F j)<;F

(4) The complete list of primary elements of thee@uivalence class of the graph®®® is of the
form

*

0) ®@®®  b) <ﬂf:{J@ o) @%*F

Proof: The proof is straightforward. Let us consider the proofHfin more detail. Note that all
the graphs listed iil) except the grapkb) are self-dual. Denote a graph obtained by duality from
(b) as(b'); it is of the form ©—®©. Denote the set of graph4) appended with(b’) as N3 (N
stands for nonadmissible and 3 stands for the degree

That theG-equivalence class of the triangle indeed coincides Wihfollows from two facts:
(i) the listN5 is complete, i.e., there is no other graph not present in the list, whiGkeiguivalent
to some member of the listji) any two members of the liskl; are G-equivalent. In order to
establish(i), let us choose and fix some representative.ifior each element ofN3. This is
equivalent to assigning some labels to the vertices of the graphs and can be done, for example, as
follows:

g foh g h
a1)/\ bl)z—? bll)(g—(? c1) lF dl)é—*@f 61)(2)F

e f e g

Now for each of these labeled graphs calculate the result of the action on them of the transfor-
mations induced byl; andT,,, (v,weV,v#w), and after that delete the labalsf, g, h. For
example, if one takes the gragh;), then the transformation associatedTipfollowed by the
deletion of symbols, f, g, andh, generates a graph—O. If instead ofT; one takedT}, then the
result will be the unlabeled triangle. Performing similar calculations, in each case one obtains an
element ofN3, i.e., N3 is complete.

Now let us establisfii), i.e., the fact thal; is just oneG-equivalence class. It is convenient
to do this in several steps by taking bigger and bigger subgréup$ G and splittingN; into
H-equivalence classes. Denote By the subgroup o6 generated byT;}, .. ThenN; splits into
threeG;-equivalence classes: the first class consistepand (b’); the second class consists of
(b) and(e); and the third class consists @) and(d). Denote byG, ;the subgroup o6 generated
by T; and T;; v e V. Recall thatT;=DT;D where D=TT,, Hence,G, ; is generated by the
{T;},ev andD. The list N3 splits into two G, z-equivalence classes, the first class contains the
graphs(a), (b), (b"), and(e); and the othefc) and(d). Finally, the action associated Tg, on the
graphe* —* f gives a graphe—h* f ©g. Hence, one obtains a transition frdim to (d), i.e., a
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link between the two mentione@d; s-equivalence classes. It follows, that any two elementsof
are G-equivalent and this completes the proof of the first part of the proposition.

The proof of(2), (3), and(4) is similar. O

We have calculated some of tequivalence classes of some examples of graphs represent-
ing the elements of". It will be interesting to describe for every given degree the sets of
G-equivalence classes of admissible graphs.

Proposition 7: If v, is an admissible graph ang, is a graph Gequivalent toy;, then it is
also admissible. Moreover, if{Bhangs overy,, then there exists a setBvhich hangs ovely, and
has the same cardinality as;B

Proof: Choose a representatig for y, in L and a representativ@, for y, in L. Hencey;
is associated tQ,] e I' and vy, is associated t§Q,] € I'. The assumption thay; and y, are
G-equivalent implies tha®, andQ, are related anzi'(Ql), whereT:= TsTs, Tg €G,m is
some natural number arg},S,, ... ,S,, are some nonempty proper subset¥efe, f,g,h}. Since
Q; is admissible, choose a $8t € P, (A) CP(A), such thatP(#)(B;)=Q, wheren: A—P(V) is
the natural map. For evely= B, look atl’:= 6(1), where§:= bs,0s,...6s_€G. Asl runs over the

wholeB,, | sweeps up some sBy C A. Note, that since evergsis a bijection,@ is a bijection as
well, and the setB; andB, have the same cardinality. Using the commutative diagram relating
and 05, Se P(V), and the fact that evergs respectsl, one concludes thd, € P, (A) and that
P(75)(B,)=Q,. In particular,B, hangs overy,, and by that provides a realization of the admissi-
blity of ,. O

The graph * is an admissible graph of degree 1. The complete list of all primary elements
from its G-equivalence class is of the form

a)* b-— oF.

It means, that th&-equivalence class of the grapltoincides with the set of all graphs of degree
1.

Similarly, one has an admissible graph of degree 2. The complete list of all primary
elements from it$G-equivalence class is of the form

a) * * b) < c) d) ¥— e) 2

HN® ¢g)x©  h)*xF  i)—

This G-equivalence class coincides with the set of all graphs of degree 2.

In degree 3 there exist admissible, as well as nonadmissible graphs.

Proposition 8: The set of all admissible graphs of degree 3 coincides with thguivalence
class of the graphesx.

Proof: Let us generate a list of all primary graphs of degree 3. It is convenient to present it in
a systematic way. Denote ﬁ?kl,kz,k3,k4 a subset ofl” consisting of all the elements which are
associated to the graphs which hdyestars,k, edgesks circles, andk, instances of the symbol
F. Look at all decompositions of 3 into a sum of four non-negative inte@+r8+0+0+0=2
+1+0+0=1+1+1+0Each of the mentioned three variants corresponds to %k3,k4 with
ki=k,=k3=ky, one getd'3 90 21,00 andI'y ; 1 o After that one generates the otﬂ"qgl,kz,ks,k4
by permuting the arguments, k,, k3, k, in the obtained three variants. Finally, one deletes from
the list all the entries which do not satigfy=k; andk,<1. Inside each of the Seﬁl,kz,kB,k4 one
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generates the corresponding graphs by exploring the different variants. After excluding the known
nonadmissible graphs of degree 3, i.e., the graphs whiclGaggquivalent to a triangle, the list
becomes

3v: a

3X: a

2\Il]-X: a

1‘1;2)( . a

2\1;].}:': a
2x1p: a

l\plxlcp . a

)
)
)

)<<
2¢le 1 a)®* b)x*x0O
)

)

)

)

1\1;1}(11:*: a

lelelp: a)*QOF

Here we use the labels of the formy 2y, 14141, etc., to classify the graphs. The labgl2,
is associated to admissible graphs frdi, oo lylyxl is associated to admissible graphs from
I'1 10,1 €tc. In a way, similar to the proof of the previous proposition, check that all the presented
graphs are in fact a set of all primary graphs dbaquivalence class ofx. O

Now let us look at the graphs of degree 4. Note, that any admissible graph of degree 4 should
satisfy anecessarycondition, it does not contain a nonadmissible graph of degree 3. More pre-
cisely, one says that a graph is containedin the graphy, by definition iff these two graphs can
be represented ih by Q; andQ,, respectively, in such a way th@t; C Q..

Proposition 9: (1) A graph of degree 4 is admissible iff it does not contain a nonadmissible
graph of degree 3.

(2) The set of all admissible graphs of degree 4 splits into tweg@ivalence classes, one of
the graph##x® and the other of the graph::.

Proof: Consider the set ddll graphs of degree 4, which do not contain a nonadmissible graph
of degree 3. The set of aldmissiblegraphs of degree 4 is a subset of this set. One generates the
required list in analogy with the case of degree 3. There are five ways to decompose 4 into a sum
of four non-negative integerd=4+0+0+0=3+1+0+0=2+2+0+0=2+1+1+0=1+1+1+1. It
means, in particular, that one must have a series of graphs marked by lahéls14, 242y,
241414, and 4,14141-. The label 4 generates 4 4, and 4. Since a graph cannot contain more
than one symbokF, delete 4. Since it suffices to consider only primary graphs, exclude the case
44. Treating the other labels in a similar fashion, one arrives at the followipdy $enerates
3yle, 3¢l 143y, and 1f; 242y generates @24; 2¢1x1le generates 2lylr, 241e1r, 1y2¢1g,
and 1,241g; finally, 1414141 does not generate more labels. Having a set of all possible labels
classifying the mentioned graphs, one generates a set of graphs present under each label by
exploring different variants. The resulting complete list of primary graphs is given below,
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4y : a)¥*x%

4X . a)

3ulx: a) ool

3uls : a)®*x b) * * x®

Julp: a)**xxF

S —

ledx: @) < B o d)

3xlp: a) <—F
*

22x: < H<* 9 x I
20261 a)®® bH@*O ) **O0

* £

2lxle: Q)& — D0 o  do—
* ks

2¢0lxlp: a)*— b) —.

vlxlp ) 7 ) 7

2¢lslp:  a)*x*QF

® + :
ke )< Dol 9 )<, 9el

Nxlo gl n<e ¥ HE_

O] *
lelxlelp: a)*— b) x+— — .
vlxlelp ) 7 ® ) 7 c)® 7

Note, that the existence of nonadmissible graphs of degree 3 excludes many variants of the
graphs of degree 4. Now exclude all the graf@hequivalent tox#*Q©. It is easily verified, that all
the remaining graphs constitute in fact the set of all primary graphs frortbguivalence class
Of sk, O

We have shown, that the set of all admissible graphs of degree 4 splits inG-ggaivalence
classes, one containing the graph:+ and the second, the graph+®. The elements from the
first class will be referred to asingletsand the elements of the second classlagblets

Now consider the case of the graphs of degree 5. Recall that one knows at least some of the
nonadmissible graphs of this degree, these are the graphs fro@-#ggiivalence class of the
graphssessF,

Proposition 10: (1) A graph of degree 5 is admissible iff it does not contain a nonadmissible
graph of degree 3 and does not belong to theduivalence class of the grap¥F;

(2) Every admissible graph of degree 5 is€guivalent to the graphssx.

Proof: Let us generate the list of all graphs of degree 5 which do not contain a non-admissible
subgraph of degree 3. There exist six ways to decompose 5 into a sum of four non-negative
integers, 5=5+0+0+0=4+1+0+0=3+2+0+0=3+1+1+0=2+2+1+0=2+1+1+1This
gives six labels, B, 441y, 342y, 3ulxle, 2¢2x1e, 2¢1x1lelr. By permuting the symbol¥, X,

@, andF, one generates the other labels. Excluding from the resulting set of labels the ones, which
do not satisfy the conditiong<k; <4 andk,=<1, wherek;, ks, andk, are the numbers in a label
associated to the symbols, ®, andF, respectively, one arrives at the following; §enerates 5

but itself is deleted from the list; /Ly generates @14, 4yl 4¢1e, and L4y 3¢2x generates
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3v2¢, 2¢3x; 3ulxle generates lylr, 3yleplr, 1¢3x1le, and 1,3y 1r; 2¢2x1e generates 2y 1,

2¢241F, and 2,1424,; finally, 2414141 generates ¢2y141¢. This yields 20 labels in total. Inside

each label the corresponding graphs are generated by exploring all the possible variants. Note, that
in some of the cases one inevitably obtains a graph containing a nonadmissible part of degree 3,
a graph under the labek5hould contain a triangle since there are maximum four vertices on a
graph; a graph under the label % always contains——:*; and a graph under the labe}%4
contains either a triangle or a grajf It means that the labels54y 1y, and 41 can be omitted.

After deleting from the list the known nonadmissible graphs of degree 5, i.e., the graphs which are
G-equivalent to the graphks+*xF, the following list is obtained:

4yle: a)®**x
4\1;1}:': @

1\II4X : a)
*

3v2x: a) <**

3v2 1 a)®®* b)®**O
* *

2\113)( : a) ‘é* b)

S

* %
3ulxls : a) *—()

: a *

Jelslp: a)***@F

baste: o B | 9] @ |

* .
led3xlp: a)<—F b)+<—F

_®

* * .
202x1le:  a) < b)®<>'< c)®<.* d) ® *

* ~.
@ N
2¢2x1F a)<:F b)<’f*F
20281p: 0

2¢lx24 : a) @Q

2lxlelp: a)x—20o b oXr.
vlxlelp )F )F

* -
ly2xlelr: a)0_F B OF

One verifies, that this list coincides with the set of all primary graphs belonging to the
G-equivalence class of the graph+®. Since the latter graph is known to be admissible, all these
graphs are admissible. O

One could proceed in a similar way and investigate the cases of the graphs of degree 6, 7, and
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8, but it turns out that one does not have to do it. Recall that the aim is to prove that the set of
projective linesA is saturated with respect to the orthogonality relation

Theorem 1: The set A is saturated with respect_to Moreover, for every B P, (A), one has
the following

(1) If B has a shadow of degrekor 2, then it admits a pure complete extension

(2) If B has a shadow of degree 3, then it admits a complete extension hanging over a .doublet

(3) If the shadow of B is a doublet, then B has a unique pure complete extension

(4) If the shadow of B is a singlet, then B has a unique complete extension; this extension has a
shadow of degree.8

(5) If the degree of the shadow of B i85, then B has a unique complete extension; this
extension has a shadow of degree 8

Proof: Take anyB € P, (A) and denot&):=P(7)(B) € L. Let y denote the shadow @, i.e.,
the graph associated {@] < I', andd denote the degree of.
(1) Suppose that=1 ord=2. Theny is G-equiavalent te, or respectivelys*. Represent the

corresponding latter graph by sor@é e L. There existd = TSlTSz' . .T%, whereS;, S, ... .Sy are
some nonempty proper subsets\6f(m is some natural numbgrsuch thatQ’= '?(Q) Denote
B': (B) where §:= 6516% “Os, . Choose a complete s8' containingB’ such thatP(7)(B")

=P(n)(B’). The setB:= g 1(B) yields the required pure complete extensiorBof

(2) The case ofl=3 is similar and the difference is thatis now G-equivalent tos+*. Let one
chooseQ’ and construcT, 6 andB’ by analogy with the previous case. The completeBsé B’
cannot be chosen now to have the same shadoB/ asut it can have a shadow:+*©. Denote

Q":=P(5)(B"). The seB:= 29“1(8”) gives the required extension Bf This extension hangs over
a graph associated {®], whereQ:=T"%Q"), which is G-equivalent tox++© and by that is a
doublet.

(3) Suppose thatl=4 andy is a doublet. Then it i$G-equivalent tox*+*®. ChooseQ’ and

definei f9, andB’ in analogy with the two previous cases. There exists a unique pure extension

B” of B'. The required unique pure complete exteng®of B will be of the formB:= @“1(8”).
Note that not all the complete extensions of aBdtave to be pure.

(4) Suppose thatl=4 andy is a singlet. Theny is G-equivalent to ****, ChooseQ’ and
construct:l', b, and B’ in analogy with the three previous cases, i.e., we h@\’/e'AI'(Q), B’
:@(B), nob:i’o 7. The setB’ has a unique complete extensiBt and this extension hangs over
®@®®. The setB:= @‘1(8”) is the unique complete extension of the original BeThe shadow
of B is of degree 8 and is given by the graph associatdd t4Q")], whereQ" := P(n)(B").

(5) Suppose thad=5. Recall that the set of all admissible graphs of degree 5 is the
G-equivalence class of the graph=®. This graph contains a singlet:x. It follows, that every
admissible graph of degree 5 contains a singlet, since a singlet c&idogiivalent only to a
singlet. Whenever a s&, hangs over a singlet ****, the corresponding complete extension exists
and is unique. At the same time, for everg V there exists a unique projective line of the form
@, p e R;; which is orthogonal to every element Bf; there exist no projective lines of or F
type, which are orthogonal to every elementByf Thus the construction of the complete exten-
sion of B, may be viewed as a step-by-step appending of the mentioned uﬁ;gtcethe setB,
asv runs overV. One concludes, that whenever one has someBseR,, B;, andB, hanging over
the graphs:++®, **®®, *, and®®®®, respectively, one may extract from each of them a part
B?C B; (i=1,2,3,9 hanging over:x*; the uniqgue complete extensiéﬁ of B? at the same time
plays a role of a unique complete extensiorBpfand one haBiOC B, C é?, i=1,2,3,4.

Now letB e P, (A) have an arbitrary shadow of degreed=5. Every suchy should contain
an admissible graply of degree 5 and it is possible to chooseBra subseB hanging overy.
Using the lists of graphs from the proofs of the two previous propositions, one verifies in a
straightforward way that every admissible graph of degree 5 contains a singlet. It means, that one
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can always find iny some singlety, and choos@ocgwhich hangs over this singlet. The graph
Yo, @s any other singlet, i§-equivalent toxxx*. Denote Qq:=7(By) and choose any e L
representing thess*x. There exists a collection of nonempty proper subsg§tsV, i

=1,2,...m(mis some integer such thatQ{)='AI'(Qo),Avihere:I':: TSlTsz"'TSmE G. Denqteb
i= O s, b5 . The setd(B,) has a shadows+x, the setd(B) has a shadowe+** and the sef(B)
has a shadow consisting of four stars * a4 circles®. A unique complete extensioB of
AG(BO) is at the same time a unique complete extensior@(gl) and b(B). The shadow oB has a

degree 8 and is of the form®®®. The setB:= b’l(~B) has a shadow of degree 8 as well and
provides the required unique complete extension of th&set O

IX. TRANSITIVE ACTION

We have the seA of 120 projective lines irf{ = C8 which produces a Kochen—Specker-type
contradiction and is saturated with respect to the orthogonality relatiofNote, that if one
extracts a subse, from A consisting of all projective lines o and® type, one can still prove
that A is saturated with respect to, but Ay will not produce a Kochen—Specker-type contradic-
tion. Consider the seE(A) of all complete subsets & and denote byC,4(A) the subset oC(A)
consisting of all the elements which have a shadow of dedre#l.

Theorem 2: (1) The set GA) # @ iff d is equal tol, 2, 4or 8;

(2) The groupg acts transitively on each of the,®), d=1,2,4,8.

Proof: (1) The statement that cannot be other than 1, 2, 4 or 8 whene@g(A) # @ follows
from the fact that a set hanging over a graph of degree 3 cannot have pure complete extensions and
the fact that if a set hangs over a graph of degede then its complete extension always has a
shadow of degree 8. The examples of realizations of all four mentioned possibilities have been
given in the proof of Proposition 1.

(2) Recall thatG is a subgroup oBij(A) and the action o G on Be C(A) is given by
P(6)(B). Let us start with the componeidg(A). Every elemenB e Cg(A) can be viewed a8
=P(6)(By), whereB is some element oEg(A) with a shadows®®® and 0 is some element of
G. Denote byCJ(A) C C4(A) the set of all complete subsets with the specified shadow. It follows,
that the problem is reduced to the following: for every tR@B’ Cg(A) show that there exists
0 € G such thatP(6)(B)=B’. Every element otlg(A) is determined by its part which hangs over
a singlet *** There are as many elements@j(A) as the sets hanging over this singlet. Take any
B,B’ e Cg(A) and denote by, C B and byB; C B’ their parts hanging over ****. One associates
in the way described in pa(6) of the proof of Proposition 1 t8; andB; some functionsp and
@', respectively,p, ¢’ :E—7,, whereE is the set of all edges of the tetrahedron representing
P(V)*. One verifies, thaB; =P(l .., )(B,). This implies that the action @ on Cg(A) is transitive.

Now consider the case &,(A). This set consists of all those complete subset& banging
over a doublet. Denote b@Z(A)CC4(A) the set of all complete subsets with shadew©. In
analogy to the case @g(A), the original problem reduces to the problem to show that for every
B,B’ eCﬂ(A) such thatP(#%)(B)=P(7)(B’) [recall that »: A— P(V) denotes the natural map
there existd) € G such thatP(6)(B)=B’. Take any of the mentione8landB’ and assume without
loss of generality thaP(7)(B) € L is visualized by a graph*¢*,©y. One associates in the way
as pointed out in paif5) of the proof of Proposition 1 t8 a triple of parametera, b, andc. Let
y:{ef,eq,fg} — 7, denote the function, which has values on the edtfeeg, andfg given bya,

b, andc, respectively. In a similar way a functiaff : {ef,eqg, fg} — 7, is associated to the sBt.
Choose anyp, ¢’ :E— 7, such that their restrictions tfef,eg,fg} coincide with s and ¢, re-
spectively. It is clear thaB’=P(l ., )(B). This completes the proof for the ca€g(A).

The investigation of the cag®,(A) is similar and contains a grapt and a pair ofZ,-valued
functions on just one edge. The caSgA) involves a graph * and does not require a similar
construction ofZ,-valued functions. O
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