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There exists an example of a set of 40 projective lines in eight-dimensional Hilbert
space producing a Kochen–Specker-type contradiction. This set corresponds to a
known no-hidden variables argument due to Mermin. In the present paper it is
proved that this set admits a finite saturation, i.e., an extension up to a finite set with
the following property: every subset of pairwise orthogonal projective lines has a
completion, i.e., is contained in at least one subset of eight pairwise orthogonal
projective lines. An explicit description of such an extension consisting of 120
projective lines is given. The idea to saturate the set of projective lines related to
Mermin’s example together with the possibility to have a finite saturation allow to
find the corresponding group of symmetry. This group is described explicitely and
is shown to be generated by reflections. The natural action of the mentioned group
on the set of all subsets of pairwise orthogonal projective lines of the mentioned
extension is investigated. In particular, the restriction of this action to complete
subsets is shown to have only four orbits, which have a natural characterization in
terms of the construction of the saturation. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1887923g

I. INTRODUCTION

The analysis of the foundations of quantum theory has two important results,s1d Bell’s
inequalities;s2d Kochen–Specker theorem. Both of them show that in quantum mechanics a
statistical model of a physical experiment may not admit a realization by way of a probability
spacesV ,F ,Pd. The first result shows, that even if one assumes the existence of a measurable
spacesV ,Fd, one might not be able to consruct a probability measureP. The second result shows
that the assumption about the existence ofsV ,Fd may itself be contradictory.

The Bell–Kochen–Specker theory2,5 restricts itself to considering the measuring devices with
only two possible indications. In this case the problem cocerning the existence ofsV ,Fd reduces
to a problem about coloring projective lines in a finite dimensional Hilbert space. It is possible to
reformulate this problem as follows.8 Let H be a Hilbert space overC of finite dimensionn
ªdimC H. Suppose one is given a family ofmPN orthonormal bases inH : hei

sadji=1
n , a=1,m.

Choose from each basis an elementeia

sad, a=1,m, and look at the inner productsseia

sad ,eib

sbdd, a ,b
=1,m. Is it always possible to make this choice in such a way, that for alla and b the inner
product ofeia

sad andeib

sbd does not vanish, i.e., thesprojectived linesCeia

sad andCeib

sbd arenot orthogo-
nal?

One says that a collection of projective lineshCei
sadji,a produces aKochen–Specker-type con-
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tradiction if the answer to the formulated question is “No.” The original construction by Kochen
and Specker in the proof of their theorem generates the first example of this contradiction. Since
then several other examples of this type have been found, in particular Refs. 7, 6, 9, 4, and 1. In
the present paper we analyze one of them—the example coming from the proof of a no-hidden-
variables theorem given by Mermin.6 Note, that the latter example can be related to the discussion
of Einstein–Podolsky–Rosen paradox and Bell’s theorem in Ref. 3.

The original construction of Kochen and Specker is quite sophisticated. This is determined by
the fact that the authors work in a three-dimensional space. The construction of Mermin and the
corresponding proof are much more simple, but the space is eight-dimensional. To be exact, the
original paper of Mermin is written in terms of operators on a Hilbert space and the reformulation
in terms of projective lines is due to Kernaghan and Peres.4 In general, the latter consists in the
following. One defines a set of 40 projective lines inC8. The corresponding description is explicit
and quite simple. If one views the elements ofC8 as columns of eight complex numbers, then it is
possible to represent each of the 40 projective lines by a column with entries 0, 1 or −1. Thus in
fact the projective lines can even be viewed as real. The corresponding Kochen–Specker contra-
diction is then established by some simple arithmetic argument. The link with the Mermin’s
formulation is as follows. The described set splits into five distinct tuples, each containing eight
pairwise orthogonal projective lines. IdentifyingC8 with sC2d^3 and interpreting each of the five
tuples as coming from an orthonormal basis corresponding to some complete set of pairwise
commuting orthogonal projectors, one arrives at five complete sets playing a key role in Ref. 6.

There is another well-known example—the “Penrose dodecahedron”—studied in detail by
Zimba and Penrose in Ref. 9. In this case one again makes use of 40 projective lines, but this time
in C4. In the corresponding construction one considers a dodecahedron and associates in a certain
way to each of its 20 vertices two projective lines inC4. The whole construction has the symmetry
group of a dodecahedron, which naturally acts on the resulting set of 40 projective lines. Com-
paring the examples of Penrose and of Mermin, it is natural to ask, what can one say about the
symmetry of Mermin’s example? An additional motivation for this is given by the two examples
described in Ref. 1 which also have a high degree of symmetry. One of them is associated to a 120
cell sa four-dimensional analog of dodecahedrond, and the other to a 600 cellsa four-dimensional
analog of icosahedrond. It turns out, that despite of the fact that the projective lines in Mermin’s
case look quite simple, an answer to this question, as was mentioned in Ref. 4, presents a problem.
Its possible solution constitutes the subject of the present paper.

II. SATURATED KOCHEN–SPECKER

Let A denote a set of projective lines in Hilbert spaceH, dimC H=n,`. The setA is called
saturatedwith respect to orthogonality relation' if any of its subsetsB,A of pairwise orthogo-
nal projective lines can be embedded into a subsetC,A of n pairwise orthogonal projective lines.
DenoteP'sAdª hB,Au ∀x,yPB:xÞy⇒x'yj. DenoteCsAdª hBPP'sAd u #B=nj. The ele-
ments ofCsAd will be calledcompletesubsets ofA. Note thatP'sAd contains an empty set and all
subsets of cardinality 1. Note that ifA produces a Kochen–Specker contradiction, thenCsAd is not
empty.

If one looks at the mentioned example of Mermin, one observes that the corresponding set is
not saturated with respect to'. Intuitively, a saturated set should have a higher degree of sym-
metry than an unsaturated part of itfan example of a saturated set is the setPsHd of all projective
lines inHg. This leads to the idea of how to investigate the symmetry of Mermin’s example. One
may try to add projective lines to the given set so that to get a saturated set. After that it makes
sense to proceed with the symmetry. Naively, such an attempt should look as follows. One takes
a subset of pairwise orthogonal lines, tries to find a complete set containing it, and in case there is
no such one, invents several other pairwise orthogonal projective lines to make it complete. These
new projective lines are added to the initial set, and the whole process is repeated until one reaches
a saturation. At each step one solves the problem for the chosen subset, but at the same time one
may create other subsets of pairwise orthogonal elements which require a completion. It means,
that a priori the described algorythm is not even finite.
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In the next section we are going to describe afinite set A of projective lines inH, dimC H
=8, with the following properties:s1d A is saturated with respect to'; s2d A contains a set of
Mermin–Kernaghan–Peres projective lines and due to this, in particular, produces a Kochen–
Specker-type contradiction;s3d everyelement ofA can be represented by a column with each of
the eight entries being 0, 1 or −1.

After that we proceed with the study of the symmetry of the setA. One looks atBijsAd—a
group of all bijections ofA, and denotes byBij'sAd its subgroup consisting of all bijections which
respect the orthogonality relation'. The setCsAd naturally splits into four disjoint subsets de-
noted asCksAd, k=1,2,4,8, aswill be explained below. We describe a subgroupG in Bij'sAd by
giving explicit formulas for a set of its generators and prove, that this group has an action onCsAd
such thatCksAd’s conicide with its orbits. It means that one can take any element ofCksAd and then
generate all the other complete subsets belongingCksAd by applying the elements of this group.
This allows to describe the symmetry of Mermin’s example.

III. 120 PROJECTIVE LINES

We shall now describe a setA which will later be proved to be a saturated extension of
Mermin’s example. SetHªC2 ^ C2 ^ C2. Recall that one has denoted the set of all projective lines
in H by PsHd. Let V denote a set of four symbols,V=he, f ,g,hj. We are going to describe a map

j:PsVd3
ª PsVd \ hxj → CsPsHdd,

such that∀U ,U8PPsVd3 :UÞU8⇒jsUdùjsU8d=x. Note that the latter in particular implies
that j is injective. Since #PsVd3=15 and dimCsHd=8, the union of all the sets from the image of
j must yield 120 projective lines. This will produce the setA.

The setPsVd3 may be visualized as a tetrahedron with vertices labeled ase, f, g, and h.
Considering the subsets ofV, one identifies the vertices with the subsets of cardinality 1, the edges
with subsets of cardinality 2, faces with subsets of cardinality 3, and the body of the tetrahedron

with V. Assign to the edges of this graph labels of the formw
v

or c
v

wherew andc are two symbols
andv is a number 1, 2 or 3. Require, that the edges associated to the same vertex have different
numbersv. This defines the labelling of the edges of the graph up to a permutation of labels of
vertices. Without loss of generality, one may choose and fix the labeling as shown in

s1d

Note that this tetrahedron appears in Ref. 8.
Choose an arbitrary orthonormal basishwaja=0,1 in C2. It will be convenient to view the

possible values 0 and 1 of the indexa as elements of the groupZ2 with the group operation written
additively saddition modulo 2d. Consider a matrixuª iusa ,bdia,bPZ2

with entriesusa ,bd=−1 if
sa ,bd=s1,1d and usa ,bd=1 otherwise. Note that it can be viewed as a character matrix ofZ2.
There exist the following properties:

s1d usa,bd = usb,ad P R,
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s2d o
b

usa,bdusb,gd = 2da,g,

s2d
s3d usa,1 +ad = 1,

s4d usa,b + gd = usa,bdusa,gd,

wherea, b, g run overZ2. Denoteua
b
ªusa ,bd /Î2 and define another orthonormal basishcaja in

C2: caªobua
bwb.

We shall associate to the mentioned graph and a fixed choice of an orthonormal basishwaja a
setA of 120 projective lines inH expressed via the functionswa and the matrixu. It means that
there will be a complete set associated to every vertex of the graphsthis gives four complete setsd,
to every edgesthis gives six more complete setsd, to every facesthis gives four complete setsd and
to the whole tetrahedronsthis gives one complete setd. In what follows we use the notation: write

ê instead ofhej to refer to a vertex, writeef instead ofhe, fj to denote an edge, writeefg or h̄ to
denote the facehe, f ,gj, and writeefgh instead ofhe, f ,g,hj.

Let us start with the description of the complete sets corresponding to vertices. Denote a set of
all edges having a common vertexvPV by Ev, and consider a set

Sv̂ ª MapssEv → Z2d, v P V.

This set is not empty and contains eight elements. Take anyv, sayv=e, and take anysPSê. The
labels of the edgeseh, eg, andef from Ee are of the formw1, c2, andc3, respectively. Associate
to this fact a vectorCs

sed
ªwssehd ^ cssegd ^ cssefd. The vectorsCs

svd for othervPV are defined in a
similar way. As a result one gets for every vertexv an orthonormal basishCs

svdjsPSv̂
. Denote

Cs
v
ªCCs

svd. It follows, that one has four complete sets of projective lines associated to each
vertex. One definesjsv̂dª hCs

vjsPSv̂
, vPV.

The complete sets associated to edges make use of a slightly more sophisticated indexing. We
denote byEª hef,eg,eh, fg, fh,ghj the set of all edges. To define a complete set of projective
lines corresponding to an edge, one first takes an arbitraryorderedpair of two distinct vertices
sv ,wd. Let z and t denote the remaining two vertices of the graph. Consider a disjoint union of a
one-element sethvwj and a two-element sethz,tj and denote

Kvw ª Mapsshvwj t hz,tj → Z2d.

Note, that#Kvw=8. The complete set of projective lines corresponding to the edgevw will be
indexed by the elements ofKvw. Takev=e, w= f and take arbitraryûPKef. Recall that the labels
of the edgeseh, eg, andef from Ee are of the formw1, c2, andc3, respectively. Denote

Xû
se→fd

ª o
a,mPZ2

ua
mua

ûshdum
ûsgdwa ^ cm ^ cûsefd.

One defines the vectorsXû
sv→wd, ûPKvw, corresponding to every ordered pairsv ,wd, vÞw, in a

similar way. Using the properties of the matrixu, one can prove that

s1d the vectorsXû
sv→wd, ûPKvw, are pairwise orthogonal,

s2d the projective linesCXû
sv→wd andCXû

sw→vd coincide.

The latter fact motivates the notationXû
vw
ªCXû

sv→wd. The first fact implies, thathXû
vwjûPKvw

is a
complete set of projective lines. It follows, that one gets six complete sets of projective lines
associated to each edge of the graph. One definesjsedª hXû

ejûPKe
, ePE.

Let us construct the complete sets associated to faces of the tetrahedron. Actually, every face
is determined by an opposite vertex of the tetrahedron, and in this sense the complete sets to be
constructed can be viewed as associated to vertices. It is simply natural to view them as associated
to faces since the role of complete sets associated to vertices is already occupied. Denote
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 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

146.175.11.111 On: Mon, 02 Dec 2013 14:56:14



Rv̄ ª MapssE \ Ev → Z2d, v P V.

This set is not empty, contains eight elements, and moreover, there is a natural bijectionnv :Rv̄

→̃Sv̂ established by the formulanvsrdsvwd=rsztd, wherez and t are the vertices complementing
hv ,wj up toV. If there is no risk of confusion, we writer* instead ofnvsrd, rPRv̄, as well ass*

instead ofnv
−1ssd, sPSv̄. Now takev=e and anyrPRē. Recall that the labels of the edgeseh, eg,

andef from Ee are of the formw1, c2, andc3, respectively. Denote

Fr
se→fd

ª o
a,mPZ2

ua
r* sehd+r* sefdum

r* segd+r* sefdwa ^ cm ^ cDr+a+m,

whereDrªoePE\Ee
rsed. The vectorsFr

sv→wd corresponding to other choices ofv ,w[V,vÞw are
defined in a similar way. The properties of the matrixu imply that the vectorsFr

sv→wd ,r[Rv̄, are
pairwise orthogonal and thatCFr

sv→wd does not depend on the choice ofw. Denote, Fr
v

ªCFr
sv→wd. It follows, that to every facev̄ one associates a complete set of projective lines

hFr
vjrPRv̄

. One definesjsv̄dª hFr
vjrPRv̄

, vPV.

Let us finally associate a complete set of projective lines to the whole tetrahedron. Denote

L ª Hp:V → Z2u o
vPV

psvd = 1J .

Note, that #L=8. Take anorderedpair se, fdPV3V. Recall that the labels of the edgeseh, eg,
andef from Ee are of the formw1, c2, andc3, respectively,

Fp
se→fd

ª o
a,mPZ2

upshd
psgd+mua

psgd+mwa ^ cm ^ cpsed+a+m.

Note, that using the properties of the matrixu one can prove that the expressionua
m+mua

m+m remains
invariant under the transpositionsa,ad� sm,md. The vectorsFp

su→vd corresponding to other or-
dered pairs are defined in a similar way. Using the properties ofu, one can prove, that

s1d the vectorsFp
sv→wd, pPL, are pairwise orthogonal,

s2d the projective lineCFp
sv→wd does not depend on the choice of the ordered pairsv ,wd.

The latter fact motivates the notationFpªCFp
sv→wd. The first fact implies, thathFpjpPL is a

complete set of projective lines. One definesjsefghdª hFpjpPL. This completes the definition of
j.

Note that the projective lines of the formCs
v andFp have been introduced in Ref. 8, but the

set hFpjp was not viewed as a complete set associated to the whole tetrahedrons1d, since the
projective lines of the formXû

vw andFr
v did not exist. One can find the calculations illustrating the

mentioned properties ofFp in Ref. 8. The definition ofXû
vw andFr

v is new.
Now we have a mapj :PsVd3→CsPsHdd. One verifies, that all the described projective lines

are distinct. It means, that one gets 15 disjoint complete sets of projective lines inH, for every
vertex vPV a sethCs

vjsPSv̂
; for every edgeePE a sethXû

ejûPKe
; for every facev̄, vPV, a set

hFr
vjrPRv̄

; and for the whole tetrahedron a sethFpjpPL. The setAªtUPImsjdU has a cardinality

#A=120. We claim, that the setA is saturated with respect to the orthogonality relation' and
produces a Kochen–Specker-type contradiction.

IV. RELATIONS BETWEEN THE PROJECTIVE LINES

Let us describe the orthogonality relations between the elements of the setA. All these
relations follow from the propertiess2d of the matrixu. Recall that ifrPRv̄, then one denotes by

r* its image under the natural bijectionnv :Rv̄→̃Sv̂. Simillarly, if sPSv̂, one writess* instead of
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nv
−1ssdPRv̄. If sPSv̂, let ¹sªoePEv

ssed. If ûPKe, saye=ef, then letû̃ denote an element ofKef

defined byû̃sefd=1+ûsefd+ûsgd+ûshd, û̃sgd=ûshd, û̃shd=ûsgd. For othere the notationû̃ for
ûPKe is defined in a similar way. Note thatr** =r, s** =s, andû5 =û.

We explicitly describe part of the relations. The others are obtained by permutation of the
symbolse, f, g, andh,

s1d Cs
e 'Cs8

e iff ss·dÞs8s·d,
s2d Cs

e 'Cs1

f iff ssefd=1+s1sefd,
s3d Fr

e'Fr8
e iff r*s·dÞr8*s·d,

s4d Fr
e'Fr1

f iff r*sefd=1+r1
*sefd,

s5d Xû
ef'Xû8

ef iff ûs·dÞû8s·d,
s6d Xû

ef'Xû1

eg iff ûsefd+ûshd=1+û1segd+û1shd,
s7d Xû

ef'Xû1

gh iff ûsgd+ûshd=û1sed+û1sfd,
s8d Fp'Fp8 iff ps·dÞp8s·d,
s9d Cs

e 'Fr
e iff ¹s=1+¹r* ,

s10d Cs
e 'Fr

f iff ¹s+ssefd=1+¹r* +r*sefd,
s11d Cs

e 'Xû
ef iff ssefd=1+ûsefd,

s12d Cs
e 'Xû

fg iff ssefd+ssegd=1+û̃sed,
s13d Fr

e'Xû
ef iff r*sefd=1+û̃sefd,

s14d Fr
e'Xû

fg iff r*sefd+r*segd=1+ûsed,
s15d Cs

e 'Fp iff ¹s=1+psed,
s16d Fr

e'Fp iff ¹r* =1+psed,
s17d Xû

ef'Fp iff ûsgd+ûshd=1+psgd+pshd.

Note, that there is no 1 in the formulas7d. Note that these relations have a self-duality
property. Namely, the condition for orthogonality ins5d is equivalent toû̃s·dÞ û̃8s·d, the condition

in s6d is equivalent toû̃sefd+ û̃shd=1+û1̃segd+û1̃shd, the condition ins7d is equivalent toû̃sgd
+ û̃shd=û1̃sed+û1̃sfd, and the condition ins17d is equivalent toû̃sgd+ û̃shd=1+psgd+pshd. It
follows, that if one has a set of pairwise orthogonal projective lines of the form
hCsi

vi jiPI ø hXû j

e j j jPJø hFrl

wljlPLø hFpm
jmPM, where I, J, L, M are some index sets,vi ,wl PV, e j

PE, then by replacingCsi

vi with F
si

*
vi , Frl

wl with C
rl

*
wl andXû j

e j with Xû̃ j

e j , one obtains a set of projective

lines hF
si

*
vi jiPI ø hXû̃ j

e j j jPJø hC
rl

*
wljlPLø hFpm

jmPM, which are still pairwise orthogonal. It follows,

that one has a mapd :A→A, d2= id, which respects the orthogonality relation'. Call d
PBij'sAd the duality map.

V. LINK TO MERMIN’S EXAMPLE

Let us prove that the setA produces a Kochen–Specker-type contradiction and establish the
link with the example of Mermin. Denote

GsAd ª hf:CsAd → Au ∀ B P CsAd:fsBd P Bj,

DsAd ª hf P GsAdu ∀ B,B8 P CsAd:B Þ B8 ⇒ ¬ sfsBd ' fsB8ddj.

One must show, thatDsAd=x. Suppose the contrary,DsAdÞx. DenoteBvª hCs
vjsPSv̂

sv

PVd, B̂ª hFpjpPL. Take fPDsAd. The definition ofGsAd.DsAd implies, that for everyvPV
one has an elementfsBvdPBv, i.e., fsBvd=C

sv
f

v , wheresv
f is some element ofSv̂. Simillarly,

fsB̂d=Fpf, where pf is some element ofL. The definition ofDsAd implies, thatC
sv

f
v is not

orthogonal to C
sw

f
w sfor any vÞwd. Using the orthogonality relations one concludes, that

sv
fsvwd=sw

fsvwd. It means, that a set of functionshsv
fjvPV induces a functiontf :E→Z2 by the

formula tfsvwdªsv
fsvwd=sw

fsvwd sfor any vwPEd. Now invoke the fact, that the definition of
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DsAd also implies, that for everyvPV the line fsB̂d should not be orthogonal tofsBvd, i.e.,
¬sFpf 'Csv

fd. It follows, that ∀vPV:¹sv
f=pfsvd. Taking the sum over allvPV and invoking

the definition ofL, one getsovPV¹sv
f=ovPVpfsvd=1. On the other hand,

o
vPV

¹sv
f = o

vPV
o

ePEv

sv
fsed = o

ePE

stfsed + tfsedd = 0.

Thus one arrives to a contradiction 0=1. It means that∃”fPDsAd, i.e., DsAd=x.
The link with Mermin’s example is established as follows. Let the standard basis inC2 play

the role of the basishwajaPZ2
involved in the construction ofA. Note, that in the proof ofDsAd

=x we have used only five complete subsets,Bv sv=e, f ,g,hd and B̂. The proof of no-hidden-
variables theorem by Mermin is given in terms of operators inC2 ^ C2 ^ C2. There are five com-
plete sets of pairwise commuting orthogonal projectors present in that proof. If one looks at the
one-dimensional eigenspacessi.e., the projective linesd associated to each of these sets, one ob-

tainsBetBf tBgtBht B̂.

VI. SATURATION PROPERTY, PART 1

The proof that the setA is saturated with respect to' is more bulky. Recall that we have an
injective mapj :PsVd3�CsPsHdd, whereV is a set of 4 symbolsV=he, f ,g,hj. This map has a
property∀U ,U8PPsVd3 ,UÞU8 :jsUdùjsU8d=x. It follows, that one can define a maph :A
→PsVd as follows: one choosesUPPsVd3 to be the valuehsld of the maph on a projective line
l PA wheneverl PjsUd, i.e., h is defined from the requirement∀UPPsVd3 : l PjsUd⇔hsld
=U. Note, thath induces a surjection ontoPsVd3.

The projective lines constitutingA may be classified as follows. Call#hsld the type of the
projective linel PA. There are four types of projective lines. The imagehsld is termed thekind of
the line l. There are 4 kinds in type 1, 6 kinds in type 2, 4 kinds in type 3, and 1 kind in type 4.
We shall also refer to projective lines of the types 1, 2, 3, 4, as being projective lines ofC type,
X type,F type, andF type, respectively. In a similar way, ifhsld= ê, the linel is said to be ofCe

kind, if hsld=ef, the line l is said to be ofXef kind, etc.
Naively, in order to prove the saturation property forA one may think of having to do the

following: one must take every subsetB of A and test if its elements are pairwise orthogonal; if it
happens to be so, one must find a complete subset inA containingB. All this appears to be a very
boring problem since#PsAd=2120. There is of course a group of permutationsS4 acting onP'sAd
and an observation about the existence of the duality mapd, but the #S4 is just 4!=24 and the
order of d as an element ofBij'sAd is just 2, i.e.,d2= id. It means, that one must find a more
sophisticated approach to prove the saturation.

We have a maph :A→PsVd. It induces a mapPshd :PsAd→LªPsPsVdd. How to describe an

image of the compositionP'sAd�PsAd →
Pshd

L, where the first arrow is the canonical injection?
There exists a natural monomorphism of groupsm: BijsVd�BijsPsVdd, b°Psbd. There also

exists a natural monomorphismm: BijsVd�BijsAd, such that for everybPBijsVd there is a
commutative diagram

The monomorphismm is defined as follows. Take anybPPsVd and describe explicitly the values
of msbds·d on the elements of the formCs

v , Xû
e , Fr

v, andFp, wherevPV, ePE, sPSv̂, ûPKe,

rPRv̄, and pPL. Let msbdsCs
vdªCs8

v8, wherev8=bsvd and ∀e1PEv8 :s8se1d=ssPsb−1dse1dd;
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msbdsXû
edªXû8

e8 , wheree8=Psbdsed and û8se8d=ûsed, ∀v1PV\e8 :û8sv1d=ûsb−1sv1dd; msbdsFr
vd

ªFr8
v8, where v8=bsvd and ∀e1PEv8 :r8*se1d=r*sPsb−1dse1dd; finally msbdsFpdªFp8, where

∀v1PV:p8sv1d=psb−1sv1dd. Note, that for everybPBijsVd the mapmsbd respects the orthogo-
nality relation' on A, and the fact that this relation has a symmetry with respect to the group of
permutations ofe, f, g, andh can be expressed as

∀b P BijsVd ∀ l,l8 P A:l ' l8 ⇒ msbdsld ' msbdsl8d.

It follows, that whenever an elementQPL stems from some elementBPP'sAd, the element of
the form PsmsbddsQd, bPBijsVd, also stems from an element ofP'sAd, namely from
PsmsbddsBd. FactorizeL with respect to the equivalence relation; induced by permutations,

Q , Q8: ⇔ ∃ b P BijsVd:PsmsbddsQd = Q8.

DenoteGªL /,. The problem of the description of the image ofP'sAd in L is then reduced to
describing the image of the composition

P'sAd� PsAd →
Pshd

L� G,

where the first arrow is the canonical injection and the last arrow is the canonical surjection.
It is convenient to introduce graphical notation for the elements ofL and G. Consider an

example. LetQ=hê, f̂ ,ē,eg,efghjPL. It is represented by a graph,

The general principle is the following. A graph may have up to four vertices labeled by the
symbolse, f, g or h. If Q containsv̂, introduce a vertex labeled by the symbolv and mark it with
*; if Q containsv̄, introduce a vertexv and draw a circle around it; if there isvwPQ, introduce
two verticesv andw and connect them by an edge; finally ifQ containsefgh, set a letterF near
the corresponding figure. Thus to eachQPL a graph is associated. Note, that if an elementQ
PL stems from some elementBPPsAd, i.e., PshdsBd=Q, then by looking at a graph that repre-
sentsQ one cannot tell everything aboutB, but the kinds of projective lines that are present inB
can be understood.

The graphs representing the elements ofG are similar to the graphs representing the elements
of L. They are obtained by omitting the labelse, f, g, andh of the vertices. For instance, ifQ
PL is as in the example given above, andfQgPG is its image under the natural surjectionL�G,
then fQg is represented by the graph

Whenever one has an element ofG of the formfPshdsBdg, whereB is some subset ofA, the graph
that represents this element is called ashadowof B.

Let us introduce more terminology. A graph representing an element ofG is calledadmissible
iff by definition it represents an element of the image ofP'sAd→G; otherwise it is callednon-
admissible. One would like to describe all the admissible graphs. Whenever a graph represents an
image of someQPL under the canonical surjectionL�G, the cardinality#Q is called thedegree
of this graph. Whenever a graph represents an image of someBPP'sAd underP'sAd→G, one
says thatB hangs overthis graph. AnyB8P P'sAd containingB is called anextensionof B. It is
called apure extension, iff by definitionB8 and B hang over the same graph. An extension
satisfyingB8=B is called trivial . An extensionB8 of B is calledcompleteiff by definition #B8
=8 frecall that 8=dimCsHd, A,PsHdg.
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Proposition 1: s1d The graphp is admissible and any element ofP'sAd hanging over this
graph admits a pure complete extension.

s2d The graphpp is admissible and any element ofP'sAd hanging over this graph admits a
pure complete extension.

s3d The graphn is not admissible.
s4d The graphppp is admissible and any element ofP'sAd hanging over this graph admits a

pure extension up to a set of cardinality 6. Any element ofP'sAd of cardinality 6, which hangs
over this graph, has a complete extension hanging overppp(.

s5d The graphppp( is admissible and any element ofP'sAd hanging over this graph admits
a pure complete extension.

s6d The graphpppp is admissible and any element ofP'sAd hanging over this graph does not
have nontrivial pure extensions. Any element ofP'sAd hanging over this graph has a complete
extension hanging over~~~~.

s7d The graphppppF is not admissible.
Proof: s1d A set consisting of one projective lineCs

e, wheres is some element ofSê, gives an
example of a set hanging overp. Every set hanging over this graph is of the formB=hCs

vjsPS,
wherev is some element ofV andS is some nonempty subset ofSv̂. This subsetB is always a
subset of a complete sethCs

vjsPSv̂
.

s2d Take anyaPZ2 and choose anysPSê such thatssefd=a, and anys1PSf̂ such that
s1sefd=1+a. Then the projective linesCs

e andCs1

f are orthogonal and one can take them two as
a set which hangs over the graphpp. An arbitrary setB hanging over this graph is always of the
form B=hCs

vjsPSø hCs1

w js1PS1
, whereS andS1 are some nonempty subsets ofSv̂ andSŵ, respec-

tively, v, wPV, vÞw. One associates toB a parameteraªssvwd=1+s1svwd, wheres is any
element of S and s1 is any element ofS1. Denote S8ª hsPSv̂ ussvwd=aj and S18ª hs1

PSŵus1svwd=1+aj. Since #S8= #S18=4, the setB8ª hCs
vjsPS8ø hCs1

w js1PS18
gives the required

pure complete extension ofB.
s3d If the graphn is admissible, then there should exist three pairwise orthogonal projective

lines of the formXû
ef, Xû1

eg andXû3

fg, whereû, û1, andû2 are some elements ofKef, Keg, andKfg,
respectively. The orthogonality relations yield three equations,

Xû
ef ' Xû1

eg ⇔ ûsefd + ûshd = 1 +û1segd + û1shd,

Xû
ef ' Xû2

fg ⇔ ûsefd + ûshd = 1 +û2sfgd + û2shd,

Xû1

eg ' Xû2

fg ⇔ û1segd + û1shd = 1 +û2sfgd + û2shd.

Taking the sum of these three equations one arrives to a contradiction 0=1. This means, that the
mentioned triangle is not admissible.

s4d One can construct an example of three pairwise orthogonal lines of the formCs
e, Cs1

f , Cs2

g

as follows: take anya,b,cPZ2 and choosesPSê such thatssefd=a, ssegd=b, anys1PSf̂ such
thats1sefd=1+a, s1sfgd=c, ands2PSĝ such thats2segd=1+b, s2sfgd=1+c. Then the orthogo-
nality relations between the mentioned three lines are fulfilled and the set consisting of these three
hangs over the graphppp. An arbitrary set hanging over this graph is of the formB
=hCs

vjsPSø hCs
wjs1PS1

ø hCs
zjs2PS2

, whereS, S1, andS2 are some nonempty subsets ofSv̂, Sŵ, and
Sẑ, respectively,v ,w,zPV, vÞw, vÞz, wÞz. Without loss of generality one may specializev, w
and z to e, f, and g, respectively. Associate toB three parametersa,b,cPZ2: aªssefd=1
+s1sefd, bªssegd=1+s2segd, cªs1sfgd=1+s2sfgd, wheres, s1 ands2 are elements ofS, S1,
and S2, respectively. Denote S8ª hsPSêussefd=a&ssegd=bj, S18ª hs1PSf̂ us1sefd=1
+a& s1sfgd=cj, andS28ª hs2PSĝus2segd=1+b& s2sfgd=1+cj. Since #S8= #S18= #S28=2, the set
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B8ª hCs
vjsPS8ø hCs

wjs1PS18
ø hCs

zjs2PS28
is a pure extension ofB up to a set of cardinality 6. Now

look for a projective lineFr
h, rPRh̄, which is orthogonal to every element ofB8. This yields the

following equations:

∀s P S8:¹s + ssehd = 1 +¹r* + r*sehd,

∀s1 P S18:¹s1
+ s1sfhd = 1 +¹r* + r*sfhd,

∀s2 P S28:¹s2
+ s2sghd = 1 +¹r* + r*sghd.

Observe that the left-hand sides of these equations may be expressed in terms of parametersa, b,
and c as ¹s+ssehd=ssefd+ssegd=a+b, ¹s1

+s1sfhd=s1sefd+s1sfgd=s1+ad+c, and ¹s2
+s2sghd=s1segd+s1sfgd=s1+bd+s1+cd. Reduce the equations forr to r*sfhd+r*sghd=1+a
+b, r*sehd+r*sghd=a+c andr*sehd+r*sfhd=1+b+c. The latter equation is nothing but a sum of
the first two and may be dropped. DenoteR8ª hrPRh̄ur*sfhd+r*sghd=1+a+b&r*sehd+r*sghd
=a+cj. Taking into account that #R=2, one obtains a setB9ªB8ø hFr

hjrPR8, which is a complete
extension ofB8 and hangs overppp(.

s5d The admissibility ofppp( follows from s4d. Consider anyBPP'sAd hanging over this
graph. Without loss of generality, one may assume, thatB
=hCs

ejsPSø hCs
f js1PS1

ø hCs
gjs2PS2

ø hFr
hjrPR, whereS, S1, S2, andR are some nonempty subsets

of Sê, Sf̂, Sĝ, andRh̄, respectively. Consider a subset ofB consisting of all projective lines ofC
type and associate to it the parametersa,b,cPZ2 in a way as described in the proof ofs4d. Let S8,

S18, S28, and R8 be defined as in the proof of s4d. Then the set B̃
ª hCs

ejsPS8ø hCs
f js1PS18

ø hCs
gjs2PS28

ø hFr
hjrPR8 is the required pure complete extension ofB.

s6d A set of pairwise orthogonal projective linesCs
e, Cs1

f , Cs2

g , andCs3

h , which is required to
establish the admissibility of the graphpppp, can be constructed as follows. Take anyZ2-valued
function w on Eª hef,eg,eh, fg, fh,ghj. Denoteaªwsefd, bªwsegd, cªwsfgd, pªwsehd, q
ªwsfhd, rªwsghd. Take the followings, s1, s2, ands3: ssefd=a, ssegd=b, ssehd=p; s1sefd
=1+a, s1sfgd=c, s1sfhd=q; s2segd=1+b, s2sfgd=1+c, s2sghd=r; s3sehd=1+p, s3sfhd=1+q,
s3sghd=1+r. Then the projective linesCs

e, Cs1

f , Cs2

g , andCs3

h constitute a set as required. An
arbitrary set B hanging over the mentioned graph is of the formB
=hCs

ejsPSø hCs1

f js1PS1
ø hCs2

g js2PS2
ø hCs3

h js3PS3
, whereS, S1, S2, and S3 are some nonempty

subsets ofSê, Sf̂, Sĝ, andSĥ respectively. To every suchB associatew: E→Z2 by settingwsefd
=ssefd, wsegd=ssegd, wsehd=ssehd, wsfgd=s1sfgd, wsfhd=s1sfhd, wsghd=s2sghd, wheres, s1,
and s2 can be taken to be any elements ofS, S1, andS2, respectively. The setS is a nonempty
subset ofS8ª hsPSêussefd=wsefd& ssegd=wsegd& ssehd=wsehdj. Since #S8=1, we see that
#S=1. Similarly, #S1= #S2= #S3=1. In the latter case S3,S38ª hs3PSĥus3sehd=1
+wsehd& s3sfhd=1+wsfhd& s3sghd=1+wsghdj. This means that a set hanging overpppp cannot
have nontrivial pure extensions.

Let us now construct a complete extension of a setB, whereB hangs overpppp. Let w denote
the function associated toB=hCs

e ,Cs1

f ,Cs2

g ,Cs3

h jPP'sAd as described above, and leta, b, c, p,
q, and r be its values on the edgesef, eg, fg, eh, fh, and gh, respectively. Looking for an
extension which hangs over~~~~, we need to construct projective lines of the formFr

e, Fr1

f ,
Fr2

g , and Fr3

h . Define r, r1, r2, and r3 by the formulasr*sefd=a+b+c+p+q, r*segd=1+a+b
+c+p+r, r*sehd=a+b+p+q+r; r1

*sefd=1+a+b+c+p+q, r1
*sfgd=a+b+c+q+r, r1

*sfhd=1+a
+c+p+q+r; r2

*segd=a+b+c+p+r, r2
*sfgd=1+a+b+c+q+r, r2

*sghd=b+c+p+q+r; r3
*sehd=1

+a+b+p+q+r, r3
*sfhd=a+c+p+q+r, r3

*sghd=1+b+c+p+q+r. Straightforward computation
establishes thatB8ªBø hFr

e,Fr1

f ,Fr2

g ,Fr3

h j is a complete extension ofB.
s7d It is necessary to show that five projective lines of the formCs

e, Cs1

f , Cs2

g , Cs3

h , andFp

cannot be pairwiseorthogonal. Recall that we already know that they cannot be pairwisenonor-
thogonal. The conditions of orthogonality between the projective lines ofC type yield a system of
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equations, ssefd+s1sefd=1, ssegd+s2segd=1, ssehd+s3sehd=1, s1sfgd+s2sfgd=1, s1sfhd
+s3sfhd=1, ands2sghd+s3sghd=1. By summation, one obtains¹s+¹s1

+¹s2
+¹s3

=0. On the
other hand, the orthogonality conditions withFp yield the equations,psed=1+¹s, psfd=1+¹s1

,
psgd=1+¹s2

, andpshd=1+¹s3
. Recalling thatovPVpsvd=1, and summing the foregoing equa-

tions yields 1=¹s+¹s1
+¹s2

+¹s3
. Hence, the requirement that all five projective lines are pair-

wise orthogonal leads to a contradiction 1=0. h

Proposition 2: Let BPP'sAd be a set hanging overpppp.
s1d For everyvPV there exists a unique projective line ofFv-kind which is orthogonal to

every projective line belonging to B.
s2d There exist no extensions of B which contain a projective line of X type or of F type.
s3d The complete extension of B is unique and hangs over~~~~.
Proof: s1d It is sufficient to considerv=e. If Cs

e, Cs1

f , Cs2

g , and Cs3

h are four pairwise
orthogonal projective lines, then the requirement thatFr

e is orthogonal to each of them yields four
equations, ¹r* =1+¹s, ¹r* +r*sefd=1+¹s1

+s1sefd, ¹r* +r*segd=1+¹s2
+s2segd, and ¹r*

+r*sehd=1+¹s3
+s3sehd. Expressing¹r* from the first equation and substituting it into the other

three, one finds the expressions for the values ofr* via s, s1, s2, ands3.
s2d The fact thatB cannot have an extension containing a projective line ofF type follows

from the nonadmissibility of the graphppppF. Let us show that the graphp—p is nonadmissible.
This will imply that an extension ofB cannot contain an element ofX type. Consider three
projective lines of the formCs

e, Cs1

f , andXû
ef, and impose the condition that they are pairwise

orthogonal. This yields the equations,ssefd=1+s1sefd, ssefd=1+ûsefd, and s1sefd=1+ûsefd.
The sum of the second and the third equations yieldsssefd+s1sefd=0, contradicting the first
equation. It means that the mentioned graph is not admissible.

s3d The existence of the extension ofB hanging over~~~~ has been proved in the previous
proposition. Since an extension ofB cannot contain elements ofX or F type, it should hang over
a graph which may contain only stars and circles. According to the previous proposition, a set
hanging over a graphpppp cannot have nontrivial pure extensions. It follows, that a complete
extension ofB contains projective lines of the formFr

v. Every such projective line is uniquely
defined according tos1d. It follows that a complete extension ofB hangs over~~~~ and is
unique. h

VII. GROUP OF SYMMETRY

We have given anexplicit description of every element of the finite setA and by that we have
an opportunity toconstruct the mapsw: A→A by simply saying for eachl PA which l8PA
corresponds to it underw. One would like to have a similar opportunity for the setP'sAd, i.e., one
needs tocharacterizethe elements ofP'sAd. In particular, for the set of all complete sets
CsAd,P'sAd it would be nice to have some group transitively acting onCsAd, so that having
found just one complete set, one could automatically generate all the others.

Recall that there is a maph: A→PsVd, whereV is a set of four symbolsV=he, f ,g,hj. We
shall describe a groupG which acts on the setL=PsPsVdd and then describe a groupG which acts
on P'sAd.

We start with the definition of the groupG. Consider the groupBijsPsVdd of all bijections of
the power set ofV. One has #V=4, #PsVd=16, #BijsPsVdd=16!. Associate to eachSPPsVd a
mapTS: PsVd→PsVd defined by the formula

TSsUd ª HU, if # sSù Ud is even,

UDS, if # sSù Ud is odd,
J s3d

where U varies overPsVd, the bar denotes the completion of a set inV and D denotes the
symmetric difference of two subsets. For anyS one hasTS

2= id. In particular,TS is a bijection,
TSPBijsPsVdd. DefineG to be a subgroup inBijsPsVdd generated by reflectionsTS, SPPsVd:

Gª khTSuSP PsVdjl , BijsPsVdd.
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Note, thatTx=Tefgh= id. Note for anyS, thatTSsxd=x.
For a givenSPPsVd, write U1↔U2 to express thatTSsU1d=U2& TSsU2d=U1, andU= inv to

expressTSsUd=U. Then, for example,Tê, Tef, and Tē are explicitly described as follows.Tê

corresponds to

ê↔ efgh, f̄ ↔ ef, ḡ ↔ eg, h̄ ↔ eh,

x,ē, f̂,ĝ,ĥ, fg, fh,gh= inv;

Tef corresponds to

e↔ f̄, f ↔ ē, eg↔ eh, fg ↔ fh,

x,g,h,ḡ,h̄,ef,gh,efgh= inv;

andTē corresponds to

ē↔ efgh, f̂ ↔ ef, ĝ ↔ eg, ĥ ↔ eh,

x,ê, f̄,ḡ,h̄, fg, fh,gh= inv.

Explicit descriptions of the otherTv̂, Tvw, andTv̄ are obtatined via permutations of symbolse, f,
g, andh. Note that for everySPPsVd,

TmsbdsSd = msbdTSmsb−1d, b P BijsVd,

wherem is the natural monomorphism of groups,m: BijsVd�BijsPsVdd, b°Psbd.
Recall that there also exists a natural monomorphismm: BijsVd�BijsAd described in the

previous section.

Every elementgPG is a mapg:PsVd→,PsVd. It induces a mapPsgd :L→,L, L=PsPsVdd. It
means that there is a natural action ofG on L. Recall that we have a maph :A→PsVd. It turns out

that the mapsTS, SPPsVd, can be lifted up to mapsuS:A→,A in such a way that the subgroup of
BijsAd generated byhuSjS has a natural action on the setP'sAd.

Proposition 3: For every SPPsVd there exists a mapuS:A→A such that

s1d ∀l , l8PA: l ' l8⇒uSsld'uSsl8d;
s2d The mapuS renders the following diagram commutative:

s4ds3d uS
2= id.

Proof: If S=x or S=V, then the correspondingTS= id and one may takeuS= id. It means that
essentially one must to consider the cases of nonempty proper subsetsS,V. We describe explicit
formulas foruê, uef, anduē. The other maps are defined by permutations ofe, f, g, andh.

We start withuê. Invoking the explicit description forTê given above, one has, for example,
ê↔efgh. Thus, a projective line of the formCs

e, sPSê, should map under the action ofuê to a

projective line of the formFp8, wherep8 is some element ofL. Denote this byCs
e 

uê

Fp8. A
complete description ofuê consists in the description of its actions on the elements of the form

Cs
e, Cs1

f , Cs2

g , Cs3

h ,

052109-12 A. E. Ruuge and F. van Oystaeyen J. Math. Phys. 46, 052109 ~2005!

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

146.175.11.111 On: Mon, 02 Dec 2013 14:56:14



Fr
e, Fr1

f , Fr2

g , Fr3

h ,

Xû
ef, Xû1

eg, Xû2

eh, Xû3

fg, Xû4

fh, Xû5

gh, Fp.

Defineuê as follows:

Cs
e 

uê

Fp8: Fp 
uê

Cs8
e :

p8sed ª 1 + ¹s, s8sefd ª psfd,

p8sfd ª ssefd, s8segd ª psgd,

p8sgd ª ssegd, s8sehd ª pshd.

p8shd ª ssehd.

Fr1

f  
uê

Xû8
ef : Xû

ef 
uê

F
r18
f :

û8sefd ª ¹r1
* , r18

*sefd ª ûsefd + ûsgd + ûshd,

û8sgd ª r1
*sefd + r1

*sfgd, r18
*sfgd ª ûsefd + ûshd,

û8shd ª r1
*sefd + r1

*sfhd. r18
*sfhd ª ûsefd + ûsgd.

Fr2

g 
uê

Xû18
eg: Xû1

eg 
uê

F
r28
g :

û18segd ª ¹r2
* , r28

*segd ª û1segd + û1sfd + û1shd,

û18sfd ª r2
*segd + r2

*sfgd, r28
*sfgd ª û1segd + û1shd,

û18shd ª r2
*segd + r2

*sghd. r28
*sghd ª û1segd + û1sfd.

Fr3

h 
uê

Xû28
eh: Xû2

eh 
uê

F
r38
h :

û28sehd ª ¹r3
* , r38

*sehd ª û2sehd + û2sfd + û2sgd,

û28sfd ª r3
*sehd + r3

*sfhd, r38
*sfhd ª û2sehd + û2sgd,

û28sgd ª r3
*sehd + r3

*sghd. r38
*sghd ª û2sehd + û2sfd.

Cs1

f  
uê

C
s18
f : Xû5

gh 
uê

Xû58
gh:

s18sefd ª ¹s1
, û58sghd ª û5sghd,

s18sfgd ª s1sfgd, û58sed ª û5sed,

s18sfhd ª s1sfhd. û58sfd ª 1 + û5sed + û5sfd.

Cs2

g  
uê

C
s28
g : Xû4

fh 
uê

Xû48
fh :

s28segd ª ¹s2
, û48sfhd ª û4sfhd,

s28sfgd ª s2sfgd, û48sed ª û4sed,

s28sghd ª s2sghd. û48sgd ª 1 + û4sed + û4sgd.
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Cs3

h  
uê

C
s38
h : Xû3

fg 
uê

Xû38
fg :

s38sehd ª ¹s3
, s38sfgd ª û3sfgd,

s38sfhd ª s3sfhd, û38sed ª û3sed,

s38sghd ª s3sghd. û38shd ª 1 + û3sed + û3shd.

Fr
e 

uê

Fr8
e :

r8*sefd ª 1 + r*sefd,

r8*segd ª 1 + r*segd,

r8*sehd ª 1 + r*sehd.

Note, that the formulas defininguê have a symmetry with respect to the permutations of symbols
f, g, h. It is a straightforward calculation to show thatuê respects the orthogonality relation' on
A. The commutativity of the mentioned diagram follows directly from the construction ofuê. The
verification thatuê is indeed a reflection is also straightforward.

Now defineuef,

Cs
e 

uef

F
r18
f : Fr1

f  
uef

Cs8
e :

r18
*sefd ª ssefd, s8sefd ª r1

*sefd,

r18
*sfgd ª ssefd + ssehd, s8segd ª r1

*sefd + r1
*sfhd,

r18
*sfhd ª ssefd + ssegd. s8sehd ª r1

*sefd + r1
*sfgd.

Cs1

f  
uef

Fr8
e : Fr

e 
uef

C
s18
f :

r8*sefd ª s1sefd, s18sefd ª r*sefd,

r8*segd ª s1sefd + s1sfhd, s18sfgd ª r*sefd + r*sehd,

r8*sehd ª s1sefd + s1sfgd. s18sfhd ª r*sefd + r*segd.

Xû1

eg 
uef

Xû28
eh: Xû2

eh 
uef

Xû18
eg:

û28sehd ª û1sfd, û18segd ª û2sfd,

û28sfd ª û1segd, û18sfd ª û2sehd,

û28sgd ª 1 + û1segd + û1sfd + û1shd. û18shd ª 1 + û2sehd + û2sfd + û2sgd.

Xû3

fg 
uef

Xû48
fh : Xû4

fh 
uef

Xû38
fg :

û48sfhd ª û3sed, û38sfgd ª û4sed,

û48sed ª û3sfgd, û38sed ª û4sfhd,

û48sgd ª 1 + û3sfgd + û3sed + û3shd. û38shd ª 1 + û4sfhd + û4sed + û4sgd.
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Cs2

g  
uef

C
s28
g : Fr2

g 
uef

F
r28
g :

s28segd ª s2segd + s28sghd, r28
*segd ª r2

*segd + r2
*sghd,

s28sfgd ª s28sfgd + s28sghd, r28
*sfgd ª r2

*sfgd + r2
*sghd,

s28sghd ª s28sghd. r28
*sghd ª r2

*sghd.

Cs3

h  
uef

C
s38
h : Fr3

h 
uef

F
r38
h :

s38sehd ª s3sehd + s3sghd, r38
*sehd ª r3

*sehd + r3
*sghd,

s38sfhd ª s3sfhd + s3sghd, r38
*sfhd ª r3

*sfhd + r3
*sghd,

s38sghd ª s3sghd. r38
*sghd ª r3

*sghd.

Xû
ef 

uef

Xû8
ef : Xû5

gh 
uef

Xû58
gh:

û8sefd ª 1 + ûsefd + ûsgd + ûshd, û58sghd ª û5sghd,

û8sgd ª ûsgd, û58sed ª û5sed,

û8shd ª ûshd. û58sfd ª û5sfd.

Fp 
uef

Fp8:

p8sed ª psfd, p8sfd ª psed,

p8sgd ª psgd, p8shd ª pshd.

The verification thatuef satisfies all the conditions of the proposition is straightforward just as in
the case withuê. Note, that the formulas foruef are invariant under the transposition of symbolse
and f and under the transposition of symbolsg andh.

Now defineuē,

Fr
e 

uē

Fp8: Fp 
uē

Fr8
e :

p8sed ª 1 + ¹r* , r8*sefd ª psfd,

p8sfd ª r*sefd, r8*segd ª psgd,

p8sgd ª r*segd, r8*sehd ª pshd.

p8shd ª r*sehd.

Cs1

f  
uē

Xû8
ef : Xû

ef 
uē

C
s18
f :

û8sefd ª 1 + s1sefd, s18sefd ª 1 + ûsefd,

û8sgd ª s1sefd + s1sfhd, s18sfgd ª 1 + ûsefd + ûshd,

û8shd ª s1sefd + s1sfgd. s18sfhd ª 1 + ûsefd + ûsgd.

Cs2

g  
uē

Xû18
eg: Xû1

eg 
uē

C
s28
g :

û18segd ª 1 + s2segd, s28segd ª 1 + û1segd,

û18sfd ª s28segd + s2sghd, s28sfgd ª 1 + û1segd + û1shd,

û18shd ª s2segd + s2sfgd. s28sghd ª 1 + û1segd + û1sfd.
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Cs3

h  
uē

Xû28
eh: Xû2

eh 
uē

C
s38
h :

û28sehd ª 1 + s3sehd, s38sehd ª 1 + û2sehd,

û28sfd ª s3sehd + s3sghd, s38sfhd ª 1 + û2sehd + û2sgd,

û28sgd ª s3sehd + s3sfhd. s38sghd ª 1 + û2sehd + û2sfd.

Fr1

f  
uē

F
r18
f : Xû5

gh 
uē

Xû58
gh:

r18
*sefd ª ¹r1

* , û58sghd ª 1 + û5sghd + û5sfd,

r18
*sfgd ª r1

*sfgd, û58sed ª 1 + û5sed + û5sfd,

r18
*sfhd ª r1

*sfhd. û58sfd ª û5sfd.

Fr2

g 
uē

F
r28
g : Xû4

fh 
uē

Xû48
fh :

r28
*segd ª ¹r2

* , û48sfhd ª 1 + û4sfhd + û4sgd,

r28
*sfgd ª r2

*sfgd, û48sed ª 1 + û4sed + û4sgd,

r28
*sghd ª r2

*sghd. û48sgd ª û4sgd.

Fr3

h 
uē

F
r38
h : Xû3

fg 
uē

Xû38
fg :

r38
*sehd ª ¹r3

* , û38sfgd ª 1 + û3sfgd + û3shd,

r38
*sfhd ª r3

*sfhd, û38sed ª 1 + û3sed + û3shd,

r38
*sghd ª r3

*sghd. û38shd ª û3shd.

Cs
e 

uē

Cs8
e :

s8sefd ª 1 + ssefd,

s8segd ª 1 + ssegd,

s8sehd ª 1 + ssehd.

In order to obtain formulas foruē one may take the formulas defininguê and perform the replace-
ments of the symbolss↔r* , û→ û̃, p;p, and similar fors·d8 symbols. The verification thatuē

satisfies the three conditions of the proposition is again straightforward.
The otheruv̂, uvw, anduv̄ sv ,wPV,vÞwd are defined fromuê, uef, anduē via the permuta-

tions of symbolse, f, g, andh, i.e., in such a way that for everySPPsVd,

umsbdsSd = msbduSmsb−1d, b P BijsVd,

wherem is the natural monomorphism,m: BijsVd�BijsAd. h

Denote byBij'sAd the subgroup ofBijsAd consisting of all bijections ofA which respect the
orthogonality relation' on A. We have constructed a family of reflectionsuSPBij'sAd, S
PPsVd. Denote byG the subgroup ofBij'sAd generated by these reflections,

G ª khuSuSP PsVdjl , Bij'sAd.

Note that the correspondenceTS°uS does notdefine a homomorphism fromG to G, since, for
example, the order of an elementTf̄TêPG is 2, and the order ofu f̄uêPG is 4.
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Let us mention some properties of the groupsG andG. First of all, recall that we have natural
monomorphisms,m: BijsVd�BijsPsVdd, m: BijsVd�BijsAd. It turns out, that the images of
these monomorfisms are in fact contained inG andG, respectively, i.e., each of the two groups

contains a copy ofS4. Denote bytef the bijectionV→̃V which interchanges the symbolse and f,

i.e., tef:e° f , f °e,g°g,h°h. Let us writesefd instead ofmstefd andsefd˜ instead ofmstefd. One
defines in a similar way the transformationssvwd and svwd˜ for all v ,wPV,vÞw.

Proposition 4: For allv ,w,zPV, vÞw, vÞz, wÞz,

TvwTuzTuw = swzd,

uvwuvzuvw = swzd˜ . s5d

Proof: It is sufficient to verify thatTefTegTef=sfgd and thatuefueguef=sfgd˜ . The latter is
established by a straightforward computation. h

Consider a productDª sefdsghdTefTgh. For everyUPPsVd, DsUd=Ū if #U is odd, and
DsUd=U if #U is even. Hence the mapD is obtained by

ê↔ ē, f̂ ↔ f̄, ĝ ↔ ḡ, ĝ ↔ h̄,

x,ef,eg,eh, fg, fh,gh,efgh= inv.

Note, that for anyePE, D=sedsēdTeTē. Consider an analog ofD in G, the product d

ª sefd˜ sghd˜ uefugh. Observe thatd is just the duality transformation mentioned in the section de-
scribing the orthogonality relation onA, dsCs

vd=Fs*
v , dsXû

ed=Xû̃
e , dsFr

vd=Cr*
v , and dsFpd=Fp

snotations* , r* , andû̃ as in that sectiond. More generally, for anyePE one hasd=sed˜ sēd˜ ueuē. The
transformationsDPG anddPG allow to obtainTv̄ anduv̄ svPVd from Tv̂ anduv̂ according to
Tv̄=DTv̂D and uv̄=duv̂d. Any transformationTe sePEd commutes withD, DTe=TeD, and any
transformationue sePEd commutes withd, due=ued.

Note thatsevdTêsevd=Tv̂, vPV, vÞe. Since every transformation of the formsvwd and the
transformationD belong to a subgroupG2 of G generated byhTejePE, any set generatingG2

appended with an elementTê, generates the whole groupG. Similarly, if one denotes byG2 the
subgroup ofG generated byhuejePE, then any set of generators ofG2 appended with an elementuê

generates the whole groupG.
The groupsG2 andG2 should be investigated in more detail. We start with the groupG2. It is

convenient to considerWvwª svwdTvw sv ,wPV,vÞwd. Denote byG28 the subgroup ofG2 gen-
erated bysvwd’s, and byG29 a subgroup ofG2 generated byWvw’s. TogetherG28 andG29 generate
the wholeG. The explicit description ofWef is

ê↔ ē, f̂ ↔ f̄, eg↔ fh, eh↔ fg,

x,ĝ,ĥ,ḡ,h̄,ef,gh,efgh= inv.

and the explicit descriptions of the otherWvw are similar. One verifies thatWefWfg=Weg. More
generally, for anyv, w, zPV, vÞw, vÞz, wÞz,

WvwWwz= Wvz.

It follows, thatG29 consists of all elements of the formWe, ePE, an elementD=WefWgh and a unit
element ofG. Since every elementbPG28 preserves the cardinalityfi.e., #bsUd= #U, UPPsVdg,
and no elementwPG29 except the unit preseves the cardinality, it follows that the intersection of
G28 and G29 is trivial. Moreover, the groupG29 is normal in G2 since sefdWefsefd=Wef,
segdWefsegd=Wfg, andsghdWefsghd=Wef, and there exists a natural action ofG28 on G29 defined as
follows. From the explicit description ofWvw one observes thatG29 is isomorphic to a groupL0 of
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Z2-valued functionsf on V satisfying a conditionovPVfsvd=0, i.e., it is a sample ofsZ2d3. An
element bPBijsVd acts on L0 by the formula f°f +b−1. This induces an action ofG28
.BijsVd on G29.L0. SinceBijsVd.S4 andL0.sZ2d3, it follows that one may view the groupG2

as a semidirect productsZ2d3
’S4.

The considerations about the groupG2 are similar to the considerations aboutG2. In particular,
the elementsvvwª svwd˜ uvw have the properties similar to the properties ofWvw. As a result, one
gets thatG2.sZ2d3

’S4 as well.
G is a group generated by the following five elements:sefd, sfgd, sghd, Tê, and Wef. The

corresponding Coxeter matrix is defined by

ordssefdTêd = 3, ordssfgdTêd = 2, ordssghdTêd = 2,

ordssefdWefd = 2, ordssfgdWefd = 4, ordssghdWefd = 2,

ordssefdsfgdd = 3, ordssefdsghdd = 2, ordssfgdsghdd = 3,

ordsWefTêd = 3,

where ords·d denotes the order of a group element. One verifies that the Coxeter matrix associated
to the original set of generatorshTSjS, SPPsVd, is defined by the formula

ordsTS2
TS1

d = 52, if # sS1 \ S2d is even and #sS2 \ S1d is even,

3, if # sS1 \ S2d is odd and #sS2 \ S1d is odd,

4, otherwise.
6

Note, that the groupG contains other reflections besides the ones already mentioned. In
particular, there exist reflections which interchangeef↔efgh, for example,Tf̂WefTêWef. At least
some of the reflections can be generated starting fromhTSjS by using the following facts: whenever
R1 and R2 are two reflections,R2R1R2 is again a reflection; ifR1 and R2 commute, then their
productR2R1 is again a reflection.

Note that there is another way of expressingsvwd andD in G. Verify that additioned tos5d
there is also a formulaTêTf̂Tê=sefd andTêTēTê=D. After replacing the left-hand and right-hand

sides of these equalities by their analoges inG, one observes, thatuêuēuê=d, but uêu f̂uêÞ sefd˜ .

What is the deviation of the value ofsefd˜ uêu f̂uê from identity? We need more notation to express
that. Consider an Abelian groupF of all Z2-valued functions on the set of all edgesE
=he,Vu #e=2j. We shall associate to everywPF a transformationIwPBijsAd and then show
that in factIw falls into the groupG. The productsvwd˜ uv̂uŵuv̂ will be equal toIw wherew is some
element ofF.

Take anywPF. Denoteaªwsefd, bªwsegd, cªwsfgd, pªwsehd, qªwsfhd, rªwsghd. The
transformationIw will not change the kind of a projective line and we will describe its action on
Cs

e, Xû
ef, Fr

e, andFp. The other cases are obtained by permutation of the symbolse, f, g, h. A
projective line Cs

e is mapped byIw to Cs8
e with s8sefd=ssefd+a, s8segd=ssegd+b, s8sehd

=ssehd+p. A projective lineXû
e maps toXû8

e with û8sefd= û sefd+a, û8sgd= û sgd+p+q, û8shd
= û shd+b+c. A projective lineFr

e maps toFr8
e with r8s·d defined byr8*sefd=r*sefd+b+c+p

+q+r, r8*segd=r*segd+a+c+p+q+r, r8*sehd=r*sehd+a+b+c+q+r. Finally, the projective line
Fp is mapped byIw to Fp8, wherep8s·d is defined asp8sed=psed+a+b+p, p8sfd=psfd+a+c
+q, p8sgd=psgd+b+c+r, p8shd=pshd+p+q+r. Note, that sinceovPVpsvd=1, one gets
ovPVp8svd=1. The differencep8−p satisfiesovPVsp8−pdsvd=0.

We have defined a collectionhIwjwPF of maps A→A, such thatIw
2 = id. This implies, in

particular, thatIw is a bijection, and one may consider the subgroup inBijsAd generated by
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hIwjwPF. Since for everyw1, w2PF we haveIw1
Iw2

= Iw1+w2
, this subgroup is Abelian. Denote byxe

sePEd the element ofF which has a value 1 on the edgee and a value 0 on all other edges.
Straightforward computation establishes that

svwd˜ uv̂uŵuv̂ = Ixvw
s6d

sfor everyv, wPV, vÞwd. Since every mapIw, wPF, may be represented as a composition of
maps of the formIxe

, ePE, it follows from s6d that every mapIw is in G. It follows that the set
hIwjwPF generates some Abelian subgroupN in G.

Proposition 5: The groupN generated byhIwjwPF is a normal subgroup ofG.
Proof: We define forSPPsVd a morphismtS, F→F, such that∀wPF :uSIw= ItSswduS. Since

ux=uV= id, set txª id and tVª id. The set of formulas for the other cases ofS will have a
symmetry with respect to the permutations ofe, f, g, andh, and in fact the nontrivial part of the
proof will consist in providing the definitions oftê, tef, andtē.

There exists a natural monomorphismn: BijsVd�EndsFd defined as follows: for everyb
PBijsVd the morphismnsbd: F→F is defined byw°w8, w8sedªwsmsb−1dsedd for all ePE,
wherem is the natural monomorphismBijsVd�BijsPsVdd. Recall that there also exists a natural
monomorphismm: BijsVd�BijsAd.

The Iw are defined in such a way, that∀bPBijsVd :msbdIwmsb−1d= Insbdswd. Recall that for
everybPBijsVd and everySPPsVd, msbduSmsb−1d=umsbdsSd. Hence,

ItmsbdsSdswd = umsbdsSdIwumsbdsSd
−1 = msbduSmsb−1dIwfmsbduSmsb−1dg−1 = msbduSInsb−1dswduS

−1msb−1d

= msbdI stSnsb−1ddswdmsb−1d = I snsbdtSnsb−1ddswd,

where wPF. It follows, that the collectionhtSjSPPsVd should satisfynsbdtSnsb−1d=tmsbdsSd, b

PBijsVd. Hence it is necessary to describe just three morphismstê,tef,tē:F→F.
It is convenient to represent an element ofF by a graph, which is a tetrahedron with vertices

e, f, g, h, and equip its edges with the values of the considered element ofF on the corresponding
edge. Take anywPF and denote bya, b, c, p, q, andr the values ofw on the edgesef, eg, fg,
eh, fh, andgh, respectively. Definetê, tef, andtē as follows:

s7d

The explicit descriptions of the othertS are induced by permutations of labels of verticese, f, g,
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and h. Recall thattx=tV= id. Straightforward computation establishes thatuêIw= Itêswduê, uefIw

= Itefswduef, anduēIw= Itēswduē. This completes the proof that the groupN is a normal subgroup of

the groupG. h

Note that now one has three types of transformations indexed bySPPsVd, a bijectionTS

PBijsPsVdd frefer to s3dg, a bijection uSPBij'sAd frefer to s4dg, and an automorphismtS

PAutsFd frefer to s7dg.
The groupsG and G will play a key role in the proof of the saturation property ofA. In

particular, it will be shown below that the image of the composition of mapsP'sAd�PsAd

→
Pshd

L, where the first arrow is a canonical injection, is invariant under theG action. It will be
shown, that an image of a complete set under this composition can have a cardinality only 1, 2, 4
or 8. This induces a partition ofCsAd into four subsets. TheG action will fix each of these subsets
and it will turn out thatG acts transitively on each one of them.

VIII. SATURATION PROPERTY, PART 2

We have constructed a groupG and an action ofG on L. Let H be a subgroup ofG. Two
graphs corresponding to some elements ofG are calledH-equivalentiff they can be represented in
L by elements of the sameH orbit.

In the groupG there is an elementD. Its action onL induces a map] :G→G, which in terms
of graphs replaces a starp by a circle( around the same vertex and a circle( by a starp at the
same vertex; the edges ·—· and the symbolF remain untouched. It means that if one is given a
graph, then by applying if necessary the transformation], it is possible to produce a graph with the
number of starsp greater or equal to the number of circles(. We shall call a graph satisfying this
condition, primary, and a graph not satisfying this condition,secondary. For example, a graph
Fp~— · is primary, and a graphF(~— · is secondary. If the graphs represent the elements ofG
related to one another by the transformation], one calls these graphs mutuallydual. If a graph
coincides with its dual, it is calledself-dual. For example, the graphp—( is self-dual.

Note, that anyG-equivalence class is invariant under the transformation induced by]. The set
of elements constituting aG-equivalence class, is completely determined by a list of all primary
elements belonging to it; the other elements are obtained by duality.

Proposition 6: (1) The complete list of primary graphs from the G-equivalence class of the
graph n is of the form

(2) The complete list of primary graphs from the G-equivalence class of the graph*** ( is of the
form:

.

(3) The complete list of primary graphs from the G-equivalence class of the graph** ** F is of the
form:
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(4) The complete list of primary elements of the G-equivalence class of the graph~~~~ is of the
form

Proof: The proof is straightforward. Let us consider the proof ofs1d in more detail. Note that all
the graphs listed ins1d except the graphsbd are self-dual. Denote a graph obtained by duality from
sbd as sb8d; it is of the form (—(. Denote the set of graphss1d appended withsb8d as N3 sN
stands for nonadmissible and 3 stands for the degreed.

That theG-equivalence class of the triangle indeed coincides withN3, follows from two facts:
sid the listN3 is complete, i.e., there is no other graph not present in the list, which isG-equivalent
to some member of the list;sii d any two members of the listN3 are G-equivalent. In order to
establishsid, let us choose and fix some representative inL for each element ofN3. This is
equivalent to assigning some labels to the vertices of the graphs and can be done, for example, as
follows:

Now for each of these labeled graphs calculate the result of the action on them of the transfor-
mations induced byTv̂ and Tvw sv ,wPV,vÞwd, and after that delete the labelse, f, g, h. For
example, if one takes the graphsa1d, then the transformation associated toTê followed by the
deletion of symbolse, f, g, andh, generates a graph(—(. If instead ofTê one takesTĥ, then the
result will be the unlabeled triangle. Performing similar calculations, in each case one obtains an
element ofN3, i.e., N3 is complete.

Now let us establishsii d, i.e., the fact thatN3 is just oneG-equivalence class. It is convenient
to do this in several steps by taking bigger and bigger subgroupsH of G and splittingN3 into
H-equivalence classes. Denote byG1 the subgroup ofG generated byhTv̂jvPV. ThenN3 splits into
threeG1-equivalence classes: the first class consists ofsad and sb8d; the second class consists of
sbd andsed; and the third class consists ofscd andsdd. Denote byG1,3 the subgroup ofG generated
by Tv̂ and Tv̄, vPV. Recall thatTv̄=DTv̂D where D=TefTgh. Hence,G1,3 is generated by the
hTv̂jvPV and D. The list N3 splits into twoG1,3-equivalence classes, the first class contains the
graphssad, sbd, sb8d, andsed; and the otherscd andsdd. Finally, the action associated toTeg on the
graphe* — * f gives a graph,e—h* f (g. Hence, one obtains a transition fromsbd to sdd, i.e., a
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link between the two mentionedG1,3-equivalence classes. It follows, that any two elements ofN3

areG-equivalent and this completes the proof of the first part of the proposition.
The proof ofs2d, s3d, ands4d is similar. h

We have calculated some of theG-equivalence classes of some examples of graphs represent-
ing the elements ofG. It will be interesting to describe for every given degree the sets of
G-equivalence classes of admissible graphs.

Proposition 7: Ifg1 is an admissible graph andg2 is a graph G-equivalent tog1, then it is
also admissible. Moreover, if B1 hangs overg1, then there exists a set B2 which hangs overg2 and
has the same cardinality as B1.

Proof: Choose a representativeQ1 for g1 in L and a representativeQ2 for g2 in L. Henceg1

is associated tofQ1gPG and g2 is associated tofQ2gPG. The assumption thatg1 and g2 are

G-equivalent implies thatQ1 andQ2 are related asQ2=T̂sQ1d, whereT̂ªTS1
TS2

¯TSm
PG, m is

some natural number andS1,S2, . . . ,Sm are some nonempty proper subsets ofV=he, f ,g,hj. Since
Q1 is admissible, choose a setB1PP'sAd,PsAd, such thatPshdsB1d=Q1, whereh :A→PsVd is

the natural map. For everyl PB1 look at l8ª ûsld, whereûªuS1
uS2

. . .uSm
PG. As l runs over the

wholeB1, l8 sweeps up some setB2,A. Note, that since everyuS is a bijection,û is a bijection as
well, and the setsB1 andB2 have the same cardinality. Using the commutative diagram relatingTS

anduS, SPPsVd, and the fact that everyuS respects', one concludes thatB2PP'sAd and that
PshdsB2d=Q2. In particular,B2 hangs overg2, and by that provides a realization of the admissi-
blity of g2. h

The graph * is an admissible graph of degree 1. The complete list of all primary elements
from its G-equivalence class is of the form

sad p sbd ·—· scdF.

It means, that theG-equivalence class of the graphp coincides with the set of all graphs of degree
1.

Similarly, one has an admissible graphpp of degree 2. The complete list of all primary
elements from itsG-equivalence class is of the form

This G-equivalence class coincides with the set of all graphs of degree 2.
In degree 3 there exist admissible, as well as nonadmissible graphs.
Proposition 8: The set of all admissible graphs of degree 3 coincides with the G-equivalence

class of the graphppp.
Proof: Let us generate a list of all primary graphs of degree 3. It is convenient to present it in

a systematic way. Denote byGk1,k2,k3,k4
a subset ofG consisting of all the elements which are

associated to the graphs which havek1 stars,k2 edges,k3 circles, andk4 instances of the symbol
F. Look at all decompositions of 3 into a sum of four non-negative integers,3=3+0+0+0=2
+1+0+0=1+1+1+0.Each of the mentioned three variants corresponds to someGk1,k2,k3,k4

with
k1ùk2ùk3ùk4, one getsG3,0,0,0, G2,1,0,0, andG1,1,1,0. After that one generates the otherGk1,k2,k3,k4

by permuting the argumentsk1, k2, k3, k4 in the obtained three variants. Finally, one deletes from
the list all the entries which do not satisfyk1ùk3 andk4ø1. Inside each of the setsGk1,k2,k3,k4

one
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generates the corresponding graphs by exploring the different variants. After excluding the known
nonadmissible graphs of degree 3, i.e., the graphs which areG-equivalent to a triangle, the list
becomes

Here we use the labels of the form 1C2X, 1C1X1F, etc., to classify the graphs. The label 1C2X

is associated to admissible graphs fromG1,2,0,0, 1C1X1F is associated to admissible graphs from
G1,1,0,1, etc. In a way, similar to the proof of the previous proposition, check that all the presented
graphs are in fact a set of all primary graphs of aG-equivalence class ofppp. h

Now let us look at the graphs of degree 4. Note, that any admissible graph of degree 4 should
satisfy anecessarycondition, it does not contain a nonadmissible graph of degree 3. More pre-
cisely, one says that a graphg1 is containedin the graphg2 by definition iff these two graphs can
be represented inL by Q1 andQ2, respectively, in such a way thatQ1,Q2.

Proposition 9: (1) A graph of degree 4 is admissible iff it does not contain a nonadmissible
graph of degree 3.

(2) The set of all admissible graphs of degree 4 splits into two G-equivalence classes, one of
the graphppp( and the other of the graphpppp.

Proof: Consider the set ofall graphs of degree 4, which do not contain a nonadmissible graph
of degree 3. The set of alladmissiblegraphs of degree 4 is a subset of this set. One generates the
required list in analogy with the case of degree 3. There are five ways to decompose 4 into a sum
of four non-negative integers,4=4+0+0+0=3+1+0+0=2+2+0+0=2+1+1+0=1+1+1+1. It
means, in particular, that one must have a series of graphs marked by labels 4C, 3C1X, 2C2X,
2C1X1F, and 1C1X1F1F. The label 4C generates 4X, 4F, and 4F. Since a graph cannot contain more
than one symbolF, delete 4F. Since it suffices to consider only primary graphs, exclude the case
4F. Treating the other labels in a similar fashion, one arrives at the following: 3C1X generates
3C1F, 3C1F, 1C3X, and 3X1F; 2C2X generates 2C2F; 2C1X1F generates 2C1X1F, 2C1F1F, 1C2X1F,
and 1C2X1F; finally, 1C1X1F1F does not generate more labels. Having a set of all possible labels
classifying the mentioned graphs, one generates a set of graphs present under each label by
exploring different variants. The resulting complete list of primary graphs is given below,
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Note, that the existence of nonadmissible graphs of degree 3 excludes many variants of the
graphs of degree 4. Now exclude all the graphsG-equivalent toppp(. It is easily verified, that all
the remaining graphs constitute in fact the set of all primary graphs from theG-equivalence class
of pppp. h

We have shown, that the set of all admissible graphs of degree 4 splits into twoG-equivalence
classes, one containing the graphpppp and the second, the graphppp(. The elements from the
first class will be referred to assingletsand the elements of the second class asdoublets.

Now consider the case of the graphs of degree 5. Recall that one knows at least some of the
nonadmissible graphs of this degree, these are the graphs from theG-equivalence class of the
graphppppF.

Proposition 10: (1) A graph of degree 5 is admissible iff it does not contain a nonadmissible
graph of degree 3 and does not belong to the G-equivalence class of the graphppppF;

s2d Every admissible graph of degree 5 is G-equivalent to the graph~ppp.
Proof: Let us generate the list of all graphs of degree 5 which do not contain a non-admissible

subgraph of degree 3. There exist six ways to decompose 5 into a sum of four non-negative
integers, 5=5+0+0+0=4+1+0+0=3+2+0+0=3+1+1+0=2+2+1+0=2+1+1+1.This
gives six labels, 5C, 4C1X, 3C2X, 3C1X1F, 2C2X1F, 2C1X1F1F. By permuting the symbolsC, X,
F, andF, one generates the other labels. Excluding from the resulting set of labels the ones, which
do not satisfy the conditionsk3øk1ø4 andk4ø1, wherek1, k3, andk4 are the numbers in a label
associated to the symbolsC, F, andF, respectively, one arrives at the following: 5C generates 5X,
but itself is deleted from the list; 4C1X generates 4C1F, 4C1F, 4X1F, and 1C4X; 3C2X generates

052109-24 A. E. Ruuge and F. van Oystaeyen J. Math. Phys. 46, 052109 ~2005!

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

146.175.11.111 On: Mon, 02 Dec 2013 14:56:14



3C2F, 2C3X; 3C1X1F generates 3C1X1F, 3C1F1F, 1C3X1F, and 1C3X1F; 2C2X1F generates 2C2X1F,
2C2F1F, and 2C1X2F; finally, 2C1X1F1F generates 1C2X1F1F. This yields 20 labels in total. Inside
each label the corresponding graphs are generated by exploring all the possible variants. Note, that
in some of the cases one inevitably obtains a graph containing a nonadmissible part of degree 3,
a graph under the label 5X should contain a triangle since there are maximum four vertices on a
graph; a graph under the label 4C1X always containsp—p; and a graph under the label 4X1F

contains either a triangle or a graphiF. It means that the labels 5X, 4C1X, and 4X1F can be omitted.
After deleting from the list the known nonadmissible graphs of degree 5, i.e., the graphs which are
G-equivalent to the graphppppF, the following list is obtained:

One verifies, that this list coincides with the set of all primary graphs belonging to the
G-equivalence class of the graphppp~. Since the latter graph is known to be admissible, all these
graphs are admissible. h

One could proceed in a similar way and investigate the cases of the graphs of degree 6, 7, and
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8, but it turns out that one does not have to do it. Recall that the aim is to prove that the set of
projective linesA is saturated with respect to the orthogonality relation'.

Theorem 1: The set A is saturated with respect to'. Moreover, for every BPP'sAd, one has
the following:

s1d If B has a shadow of degree1 or 2, then it admits a pure complete extension.
s2d If B has a shadow of degree 3, then it admits a complete extension hanging over a doublet.
s3d If the shadow of B is a doublet, then B has a unique pure complete extension.
s4d If the shadow of B is a singlet, then B has a unique complete extension; this extension has a

shadow of degree 8.
s5d If the degree of the shadow of B isù5, then B has a unique complete extension; this

extension has a shadow of degree 8.

Proof: Take anyBPP'sAd and denoteQªPshdsBdPL. Let g denote the shadow ofB, i.e.,
the graph associated tofQgPG, andd denote the degree ofg.

s1d Suppose thatd=1 or d=2. Theng is G-equiavalent top, or respectively,pp. Represent the

corresponding latter graph by someQ8PL. There existsT̂ªTS1
TS2

. . .TSm
, whereS1,S2, . . . ,Sm are

some nonempty proper subsets ofV sm is some natural numberd, such thatQ8=T̂sQd. Denote

B8ª ûsBd, whereûªuS1
uS2

¯uSm
. Choose a complete setB9 containingB8 such thatPshdsB9d

=PshdsB8d. The setB̂ª û−1sBd yields the required pure complete extension ofB.
s2d The case ofd=3 is similar and the difference is thatg is nowG-equivalent toppp. Let one

chooseQ8 and constructT̂, û andB8 by analogy with the previous case. The complete setB9.B8
cannot be chosen now to have the same shadow asB8, but it can have a shadowppp(. Denote

Q9ªPshdsB9d. The setB̂ª û−1sB9d gives the required extension ofB. This extension hangs over

a graph associated tofQ̂g, whereQ̂ª T̂−1sQ9d, which is G-equivalent toppp( and by that is a
doublet.

s3d Suppose thatd=4 andg is a doublet. Then it isG-equivalent toppp(. ChooseQ8 and

defineT̂, û, andB8 in analogy with the two previous cases. There exists a unique pure extension

B9 of B8. The required unique pure complete extensionB̂ of B will be of the form B̂ª û−1sB9d.
Note that not all the complete extensions of a setB have to be pure.

s4d Suppose thatd=4 andg is a singlet. Theng is G-equivalent to ****. ChooseQ8 and

constructT̂, û, and B8 in analogy with the three previous cases, i.e., we haveQ8=T̂sQd, B8

= ûsBd, h + û=T̂+h. The setB8 has a unique complete extensionB9 and this extension hangs over

~~~~. The setB̂ª û−1sB9d is the unique complete extension of the original setB. The shadow

of B̂ is of degree 8 and is given by the graph associated tofT̂−1sQ9dg, whereQ9ªPshdsB9d.
s5d Suppose thatdù5. Recall that the set of all admissible graphs of degree 5 is the

G-equivalence class of the graphppp~. This graph contains a singletpppp. It follows, that every
admissible graph of degree 5 contains a singlet, since a singlet can beG-equivalent only to a
singlet. Whenever a setB0 hangs over a singlet ****, the corresponding complete extension exists
and is unique. At the same time, for everyvPV there exists a unique projective line of the form
Fr

v, rPRv̄, which is orthogonal to every element ofB0; there exist no projective lines ofX or F
type, which are orthogonal to every element ofB0. Thus the construction of the complete exten-
sion of B0 may be viewed as a step-by-step appending of the mentioned uniqueFr

v to the setB0

asv runs overV. One concludes, that whenever one has some setsB1, B2, B3, andB4 hanging over
the graphsppp~, pp~~, p, and~~~~, respectively, one may extract from each of them a part

Bi
0,Bi si =1,2,3,4d hanging overpppp; the unique complete extensionB̂i

0 of Bi
0 at the same time

plays a role of a unique complete extension ofBi and one hasBi
0,Bi , B̂i

0, i =1,2,3,4.
Now let BPP'sAd have an arbitrary shadowg of degreedù5. Every suchg should contain

an admissible graphḡ of degree 5 and it is possible to choose inB a subsetB̄ hanging overḡ.
Using the lists of graphs from the proofs of the two previous propositions, one verifies in a
straightforward way that every admissible graph of degree 5 contains a singlet. It means, that one
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can always find inḡ some singletg0 and chooseB0, B̄ which hangs over this singlet. The graph
g0, as any other singlet, isG-equivalent topppp. DenoteQ0ªhsB0d and choose anyQ08PL
representing thepppp. There exists a collection of nonempty proper subsetsSi ,V, i

=1,2, . . . ,m sm is some integerd, such thatQ08=T̂sQ0d, where T̂ªTS1
TS2

¯TSm
PG. Denote û

ªuS1
uS2

¯uSm
. The setûsB0d has a shadowpppp, the setûsB̄d has a shadow~ppp and the setûsBd

has a shadow consisting of four stars * andd−4 circles(. A unique complete extensionB̃ of

ûsB0d is at the same time a unique complete extension forûsB̄d and ûsBd. The shadow ofB̃ has a

degree 8 and is of the form~~~~. The setB̂ª û−1sB̃d has a shadow of degree 8 as well and
provides the required unique complete extension of the setB. h

IX. TRANSITIVE ACTION

We have the setA of 120 projective lines inH.C8 which produces a Kochen–Specker-type
contradiction and is saturated with respect to the orthogonality relation'. Note, that if one
extracts a subsetA0 from A consisting of all projective lines ofC andF type, one can still prove
that A0 is saturated with respect to', but A0 will not produce a Kochen–Specker-type contradic-
tion. Consider the setCsAd of all complete subsets ofA and denote byCdsAd the subset ofCsAd
consisting of all the elements which have a shadow of degreedPN.

Theorem 2: s1d The set CdsAdÞx iff d is equal to1, 2, 4or 8;
s2d The groupG acts transitively on each of the CdsAd, d=1,2,4,8.

Proof: s1d The statement thatd cannot be other than 1, 2, 4 or 8 wheneverCdsAdÞx follows
from the fact that a set hanging over a graph of degree 3 cannot have pure complete extensions and
the fact that if a set hangs over a graph of degreeù5, then its complete extension always has a
shadow of degree 8. The examples of realizations of all four mentioned possibilities have been
given in the proof of Proposition 1.

s2d Recall thatG is a subgroup ofBijsAd and the action ofuPG on BPCsAd is given by
PsudsBd. Let us start with the componentC8sAd. Every elementBPC8sAd can be viewed asB
=PsudsB0d, whereB0 is some element ofC8sAd with a shadow~~~~ andu is some element of
G. Denote byC8

0sAd,C8sAd the set of all complete subsets with the specified shadow. It follows,
that the problem is reduced to the following: for every twoB,B8PC8

0sAd show that there exists
uPG such thatPsudsBd=B8. Every element ofC8

0sAd is determined by its part which hangs over
a singlet ****. There are as many elements inC8

0sAd as the sets hanging over this singlet. Take any
B,B8PC8

0sAd and denote byB1,B and byB18,B8 their parts hanging over ****. One associates
in the way described in parts6d of the proof of Proposition 1 toB1 andB18 some functionsw and
w8, respectively,w ,w8 :E→Z2, whereE is the set of all edges of the tetrahedron representing
PsVd3. One verifies, thatB18=PsIw+w8dsB1d. This implies that the action ofG on C8sAd is transitive.

Now consider the case ofC4sAd. This set consists of all those complete subsets ofA hanging
over a doublet. Denote byC4

0sAd,C4sAd the set of all complete subsets with shadowppp(. In
analogy to the case ofC8sAd, the original problem reduces to the problem to show that for every
B,B8PC4

0sAd such thatPshdsBd=PshdsB8d frecall thath :A→PsVd denotes the natural mapg,
there existsuPG such thatPsudsBd=B8. Take any of the mentionedB andB8 and assume without
loss of generality thatPshdsBdPL is visualized by a graph *e* f* g(h. One associates in the way
as pointed out in parts5d of the proof of Proposition 1 toB a triple of parametersa, b, andc. Let
c : hef,eg, fgj→Z2 denote the function, which has values on the edgesef, eg, and fg given bya,
b, andc, respectively. In a similar way a functionc8 : hef,eg, fgj→Z2 is associated to the setB8.
Choose anyw ,w8 :E→Z2 such that their restrictions tohef,eg, fgj coincide withc and c8, re-
spectively. It is clear thatB8=PsIw+w8dsBd. This completes the proof for the caseC4sAd.

The investigation of the caseC2sAd is similar and contains a graphpp and a pair ofZ2-valued
functions on just one edge. The caseC1sAd involves a graph * and does not require a similar
construction ofZ2-valued functions. h
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