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THE BRAUER GROUP OF SWEEDLER’S HOPF ALGEBRA H4

FRED VAN OYSTAEYEN AND YINHUO ZHANG

(Communicated by Ken Goodearl)

Abstract. We calculate the Brauer group of the four dimensional Hopf al-
gebra H4 introduced by M. E. Sweedler. This Brauer group BM(k,H4, R0)
is defined with respect to a (quasi-) triangular structure on H4, given by an
element R0 ∈ H4⊗H4. In this paper k is a field . The additive group (k,+) of
k is embedded in the Brauer group and it fits in the exact and split sequence
of groups:

1 −→ (k,+) −→ BM(k,H4, R0) −→ BW(k) −→ 1

where BW(k) is the well-known Brauer-Wall group of k. The techniques in-
volved are close to the Clifford algebra theory for quaternion or generalized
quaternion algebras.

1. Introduction

In their search for general unified theory allowing them to deal with the Brauer
group of a quantum group (cf. [2, 3]), the authors have introduced the Brauer group,
Br(C), of a braided monoidal category (see [10]). In loc. cit. it is shown that all
known Brauer groups, algebraic as well as geometric ones, appear as examples of
Br(C) for a suitable choice of C or the braiding on C. The theory of the Brauer group
of a quantum group deals mainly with Yetter-Drinfel’d modules (YD modules) and
YD module algebras. However, when a Hopf algebra H has a quasi-triangular
structure, then the category of left H-modules is itself a braided monoidal category,
say HM. The Brauer group Br(HM) is a subgroup of BQ(k,H) which is the
Brauer group of the category YD modules for H , where k is the ground field (or a
commutative ring). In [9], the authors have established that the Hopf automorphism
group of H may be embedded into BQ(k,H) (up to factoring out some finite group
eventually). Hence BQ(k,H) need not be a torsion group. The ruling idea was that
BQ(k,H) modulo the image of the Hopf automorphism group would be a torsion
group, at least for a finite dimensional H . The calculation in this paper contradicts
that idea; even in such a low-dimensional case as H4, many non-torsion elements
do exist in the Brauer group. We provide precise structure and calculation for the
Brauer group BM(k,H4, R0) of H4 with respect to a (quasi-) triangular structure
on H4 given by an element R0 ∈ H4⊗H4. Even if the Hopf automorphism group of
H4, the multiplicative group of k, does now not appear, the additive group (k,+)
of the field k may be embedded in BM(k,H4, R0). The structure results make it
clear that the non-torsion part of BM(k,H4, R0) is represented by H4-Azumaya
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algebra structures that are non-trivial but that are defined on the trivial element
of the Brauer-Wall group. This is contained in the fact that the following sequence
of group homomorphism is exact and split:

1 −→ (k,+) −→ BM(k,H4, R0) −→ BW(k) −→ 1.

2. Preliminaries

In this section, we recall the definition of the Brauer group of a Hopf algebra with
a bijective antipode and some related notions. Let k be a commutative ring with
unit, and H a Hopf algebra over k with a bijective antipode. A Yetter-Drinfel’d
H-module ( simply, YD H-module) M is a crossed H-bimodule [13]. That is, M
is a k-module which is at once a left H-module and a right H-comodule satisfying
the following equivalent compatibility conditions [6, 5.1.1]:
(i)

∑
h(1) ·m(0) ⊗ h(2)m(1) =

∑
(h(2) ·m)(0) ⊗ (h(2) ·m)(1)h(1),

(ii)
∑

(h ·m)(0) ⊗ (h ·m)(1) =
∑

(h(2) ·m(0))⊗ h(3)m(1)S
−1(h(1))

where the sigma notations for comodules and for comultiplications can be found in
the standard reference book [11]. An Yetter-Drinfel’d H-module algebra is a YD
H-module A such that A is a left H-module algebra and a right Hop-comodule
algebra. For the details of H-(co)module algebras we refer to [11].

In [2] we defined the Brauer group of a Hopf algebra H by considering iso-
morphism classes of H-Azumaya algebras. A YD H-module algebra A is called
H-Azumaya if it is faithfully projective as a k-module and if the following YD
H-module algebra are isomorphisms:

F : A#A −→ End(A), F (a#b)(c) =
∑
ac(0)(c(1) · b),

G : A#A −→ End(A)op, G(a#b)(c) =
∑
a(0)(a(1) · c)b,

where A is the H-opposite YD H-module algebra of A (cf. [2]). For a faithfully
projective YD H-module M , the endomorphism ring Endk(M) is a YD H-module
algebra with H-structures given by

(h · f)(m) =
∑
h(1) · f(S(h(2)) ·m),∑

f(0)(m)⊗ f(1) =
∑
f(m(0))(0) ⊗ S−1(m(1))f(m(0))(1).

Two H-Azumaya algebras A and B are Brauer equivalent (denoted by A ∼ B) if
there exist two faithfully projective YD H-modulesM and N such that A#End(M)
∼= B#End(N). Note that A ∼ B if and only if A is H-Morita equivalent to B (cf. [3,
Theorem 2.10]). The Brauer group of the Hopf algebra H is denoted by BQ(k,H).
An element in BQ(k,H) represented by an H-Azumaya algebra A is indicated by
[A]. The unit in BQ(k,H) is represented by End(M) for any faithfully projective
YD H-module M .

If A is an H-Azumaya algebra, the left and right H-centers defined by

{a ∈ A | ax =
∑

x(0)(x(1) · a), ∀x ∈ A},
resp.

{a ∈ A | xa =
∑

a(0)(a(1) · x), ∀x ∈ A},
are trivial.

Now let H be a quasi-triangular Hopf algebra, that is, H is a Hopf algebra with
an invertible element R =

∑
R(1) ⊗ R(2) in H ⊗H satisfying several axioms (e.g.
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see [7]). If A is a left H-module algebra, then A is simultaneously a Yetter-Drinfel’d
H-module algebra with the right Hop-comodule structure given by

A −→ A⊗Hop, a 7→
∑

R2 · a⊗R1

for a ∈ A. The subset of BQ(k,H) consisting of the elements represented by
the H-Azumaya algebras with right Hop-comodule structures stemming from left
H-module structures in the above way, turns out to be a subgroup of BQ(k,H),
denoted by BM(k,H,R). It is obvious that BM(k,H,R) contains the Brauer group
Br(k).

The Brauer group BQ(k,H) is a special case of the Brauer group Br(C) of a
braided monoidal category C as introduced in [10]. The fact that BM(k,H,R) is
a subgroup of BQ(k,H) when (H,R) is a quasi-triangular Hopf algebra can be
explained in a categorical way. If D is a closed braided monoidal subcategory
of a braided monoidal category C, then the Brauer group Br(D) is a subgroup
of Br(C). This fact allows us to consider various subgroups of the Brauer group
Br(C) of a braided monoidal category C whenever C contains certain closed braided
subcategories. For example, if (H,R) is a quasi-triangular Hopf algebra, then the
category HM of left H-modules is a closed braided subcategory of the braided
category of YD H-modules with braiding φ given by:

M ⊗N −→ N ⊗M, m⊗ n 7→
∑

R2 · n⊗R1 ·m,

where m ∈ M,n ∈ N . The Brauer group Br(HM) of HM is indeed BM(k,H).
When H is a finite dimensional Hopf algebra, it is well-known that the category of
YD H-modules is equivalent to the category of left D(H)-modules, where D(H) is
the Drinfel’d double of H . So we have that BQ(k,H) is equal to BM(k,D(H), R),
where R is the canonical quasi-triangular structure on D(H).

3. Actions on Azumaya algebras

In this section, we will consider actions of H4 on Azumaya algebras. Throughout
k is a field with characteristic different from two. Let H4 be the Sweedler 4-
dimensional Hopf algebra over k. That is, H4 is generated by two elements g and
h such that

g2 = 1, h2 = 0, gh+ hg = 0.

The comultiplication, the antipode and the counit of H4 are given by

∆(g) = g ⊗ g, ∆(h) = 1⊗ h+ h⊗ g,
S(g) = g, S(h) = gh,
ε(g) = 1, ε(h) = 0.

It is well-known that H4 is a quasi-triangular Hopf algebra with a family of quasi-
triangular structures with respect to parameter t varying over k:

Rt =
1
2

(1⊗ 1 + 1⊗ g + g ⊗ 1− g ⊗ g) +
t

2
(1 ⊗ 1 + g ⊗ g + 1⊗ g − g ⊗ 1)(h⊗ h).

When t is zero, then (H4, R0) is a triangular Hopf algebra. In this paper we will
mainly concentrate on the case (H4, R0).

An algebra A is called a generalized quaternion algebra if A is a four dimensional
algebra generated by two elements u, v subject to the relations:

u2 = α, v2 = β, uv + vu = γ(1)
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for some α, β and γ in k. A is said to be non-singular if γ2− 4αβ 6= 0 (in this case,
it is isomorphic to a quaternion algebra). Otherwise A is singular. d = γ2− 4αβ is
called the determinant of the generalized quaternion algebra A. We denote A by[
α,β,γ
k

]
.

There is a natural action of H4 on
[
α,β,γ
k

]
given by

g ⇀ u = −u, g ⇀ v = −v, g ⇀ (uv) = uv,
h ⇀ u = 0, h ⇀ v = 1, h ⇀ (uv) = u

(2)

such that
[
α,β,γ
k

]
is a (left) H4-module algebra (cf. [4]). We call the action (2)

the standard action of H4 on
[
α,β,γ
k

]
. This standard action makes

[
α,β,γ
k

]
into an

H∗4 -Galois extension of k (cf. [4]).
Now let us recall from [1] that an action of a Hopf algebra H on an algebra A

is called inner if there is an invertible element π ∈ Hom(H,A), the convolution
algebra, such that

h ⇀ a =
∑

π(h(1))aπ−1(h(2))

whenever h is in H and a is in A. If, in addition, π is an algebra map, then the
action is called a strongly inner action.

If A is an Azumaya algebra, then any action of H4 on A is an inner action by the
Skolem-Noether theorem (cf. [8, 5]). If the inner action is induced by an invertible
element π ∈ Hom(H4, A), then the two elements u = π−1(g) and v = π−1(h) in A
satisfy the relation (1) for some α 6= 0, β and γ in k. One may check that, in this
case, the action of H4 on A is determined by u and v and reads as follows:

g(a) = u−1au, h(a) = av − vg(a)(3)

for any a ∈ A. We call the subalgebra generated by the elements u and v the
induced subalgebra with respect to the action. The induced subalgebra is unique
though the elements u and v are not.

Lemma 1. Let H4 act non-trivially on an Azumaya algebra A. Let u, v be the
generators of the induced subalgebra of A such that u and v satisfy (3) and the
relations in (1) for some α 6= 0, β and γ in k. Then the action is strongly inner if
and only if d = γ2 − 4αβ is zero and α is a square of some non-zero element in k.

Proof. Assume that the action of H4 on A is strongly inner. Then there is an
algebra map δ : H4 −→ A such that

g ⇀ a = δ(g)aδ(g),
h ⇀ a = aδ(gh) + δ(h)aδ(g) = au′w + wau′

for any a ∈ A, where δ(g) = u′, δ(h) = w and

u′
2 = 1, w2 = 0, u′w + wu′ = 0.

On the other hand, we have that

g ⇀ a = u−1au, h ⇀ a = av − v(g ⇀ a)

(see (3)) for any a ∈ A. Comparing these two actions, we obtain that

u = su′, w =
1
2

(u′v − vu′)(4)
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where s 6= 0 is in k. It follows that α = s2 and that

0 = w2 =
1

4s2
(uv − vu)2 =

1
4s2

(γ2 − 4αβ).

Therefore d = γ2 − 4αβ = 0.
Now one may easily see that if d = 0 and α is a square of some non-zero element

in k, then the elements u′ and w given by (4) give a strongly inner action of H4 on
A.

As a consequence of Lemma 1, we obtain that when an inner action of H4 on
an Azumaya algebra A is not strong and the action of g is strongly inner, then the
induced subalgebra is a non-singular generalized quaternion algebra.

Corollary 2. If an action of H4 on an Azumaya algebra A is not strongly inner
and the action of g is strongly inner, then there are an Azumaya subalgebra B and
a non-singular generalized quaternion algebra

[
α,β,γ
k

]
in A such that

A =
[
α, β, γ

k

]
⊗ B

as H4-module algebras, where H4 acts in a non-strongly inner way on
[
α,β,γ
k

]
and

acts trivially on B.

Proof. By assumption and Lemma 1, A contains a generalized quaternion alge-
bra

[
α,β,γ
k

]
which is non-singular. Since

[
α,β,γ
k

]
is an Azumaya algebra, by the

commutator theorem there is an Azumaya subalgebra B in A such that

A =
[
α, β, γ

k

]
⊗B.

Since B commutes with
[
α,β,γ
k

]
and the inner action of H4 on A is induced by the

two generators u, v of
[
α,β,γ
k

]
, H4 acts trivially on B. Thus the action on A is

uniquely determined by the restricted action on the subalgebra
[
α,β,γ
k

]
.

4. Quaternion algebras

In this section, we work with the non-singular generalized quaternion algebras
which, over a field k, turn out to be quaternion algebras.

Lemma 3. Let A be an H4-module quaternion algebra. If the induced subalgebra
is equal to A, then we can choose a basis for A such that the action of H4 is the
standard action on A.

Proof. Let u, v be the two generators of the induced subalgebra
[
α,β,γ
k

]
which

is equal to A by assumption. Set u′ = uv − vu and v′ = −αd−1u−1u′, where
d = γ2 − 4αβ. Then

u′
2 = d, v′

2 = −αd−1, u′v′ + v′u′ = 0.

It follows that A ∼=
[
d,−αd−1,0

k

]
. Now one may check that, with respect to the basis

{1, u′, v′, u′v′} of A, the action of H4 is the standard action, that is,

g(u′) = −u′, g(v′) = −v′, h(u′) = 0, h(v′) = 1.
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Lemma 4. Let A,B be two H4-module algebras. Then the braided product A#B
is the same as the graded product of the graded algebras A and B.

Proof. The braided product is determined by the (quasi-) triangular structure R0 in
which the skew derivation h disappears. If we write A = A0 +A1 and B = B0 +B1,
where g(x0) = x0, g(x1) = −x1 if xi ∈ Ai, Bi, i = 0, 1, then R0(ai⊗bj) = (−1)ijbj⊗
ai. By definition, R0 exactly induces the classic graded product A⊗̂B (see [12]).

In the sequel, we use
〈
α,β,γ
k

〉
to indicate the generalized quaternion algebra[

α,β,γ
k

]
with the standard H4-action. The following proposition says that a gener-

alized quaternion algebra with the standard H4-action is H4-Azumaya only if it is
a quaternion algebra.

Proposition 5. Let A =
〈
α,β,γ
k

〉
be a generalized quaternion algebra. Then A is

an H4-Azumaya algebra if and only if the determinant d = γ2 − 4αβ is not zero.

Proof. Assume that d is not equal to zero. Then A is an Azumaya algebra in the
usual sense. Consider the H4-opposite algebra A which is generated by u and v
subject to the relations:

u2 = −u2 = −α, v2 = −v2 = −β, uv + vu = −γ.

It turns out that A is equal to
〈
−α,−β,−γ

k

〉
. Since A and A are graded Clifford

algebras and A#A is the graded product, A#A is still a graded Clifford algebra
and hence an Azumaya algebra in the usual sense. Now the canonical H4-linear
map

F : A#A −→ End(A)

given by F (a#b)(x) =
∑
a(R2 · x)(R1 · b), where a, x ∈ A and b ∈ A, is an

isomorphism because F sends the center k of A#A onto the center of End(A).
Similarly, the other canonical H4-linear map

G : A#A −→ End(A)op

is an isomorphism too. So we have proved that A =
〈
α,β,γ
k

〉
is an H4-Azumaya

algebra.
Conversely, if

〈
α,β,γ
k

〉
is an H4-Azumaya algebra, then its left (or right) H4-

center is trivial. Let x = s1 + s2u+ s3v+ s4w be an element in the H4-center of A,
where w = uv, si ∈ k. By definition, we have

xy =
∑

(R2 · y)(R1 · x)

for any y ∈ A. Choose y to be the element u. We obtain

(αs2 + γs3) + (s1 + γs4)u− αs4v − s3w = −αs2 + s1u+ s4v − s3w.

This amounts to the linear equations: 2αs2 + γs3 = 0,
γs4 = 0,
αs4 = 0.
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Since α and γ cannot be zero at the same time, we have s4 = 0. Similarly, xv =∑
(R2 · v)(R1 · x) implies that

γs2 + 2βs3 = 0.

Now the uniqueness of the solution for s2 and s3 yields that the determinant d =
γ2 − 4αβ is not equal to zero.

As a consequence of Corollary 2 and Proposition 5, we obtain the following:

Corollary 6. If A is an Azumaya algebra on which H4 acts in a non-strongly inner
way and g acts in a strongly inner way, then A is an H4-Azumaya algebra.

5. The Brauer group BM(k,H4, R0)

In this section, we calculate the Brauer group BM(H4, R0, k). We first con-
sider the 2 × 2 matrix algebra M2 which is isomorphic to the quaternion algebra[
α,−α,0
k

]
for any non-zero element α ∈ k. However, when we endow

[
α,−α,0
k

]
with

the standard H4-action, the H4-module algebra
〈
α,−α,0
k

〉
is no longer isomorphic

to
〈
β,−β,0
k

〉
as H4-module algebras whenever α is not equal to β. This is the

case when
〈
α,−α,0
k

〉
and

〈
β,−β,0
k

〉
represent different elements in the Brauer group

BM(H4, R0, k). Actually, we have a group embedding of the abelian group (k,+)
into BM(k,H4, R0). We let M2 stand for the 2× 2 matrix algebra with the trivial
H4-action; in other words, [M2] represents the unit in BM(k,H4, R0).

Let Φ be a map from (k,+) to BM(k,H4, R0) sending 0 to [M2] and α 6= 0 to
[
〈
α−1,−α−1,0

k

〉
].

Proposition 7. Φ is a group monomorphism from (k,+) into BM(k,H4, R0).

Proof. We first compute the action of H4 on the braided product
〈
α−1,−α−1,0

k

〉
#〈

β−1,−β−1,0
k

〉
. Let {u, v} and {u′, v′} be the generators of

〈
α−1,−α−1,0

k

〉
and of〈

β−1,−β−1,0
k

〉
respectively. One may take a while to check that the inner action of

H4 on
〈
α−1,−α−1,0

k

〉
#
〈
β−1,−β−1,0

k

〉
is induced by two elements:

U = sw#w′, V = −α
2
v#1− β

2
1#v′ + tw#w′

where w = uv, w′ = u′v′, s (6= 0) and t vary over k. Choose s = αβ and t = 0.
Then U2 = 1 and V 2 = − 1

4 (α + β). We may assume that α 6= −β. Otherwise,

we have that
〈
β−1,−β−1,0

k

〉
=
〈
α−1,−α−1,0

k

〉
and

〈
α−1,−α−1,0

k

〉
#
〈
β−1,−β−1,0

k

〉
∼=

End(
〈
α−1,−α−1,0

k

〉
) which represents the unit in BM(k,H4, R0).

Assume that α+ β 6= 0. Let U ′ = 2UV and V ′ = −2(α+ β)−1V . Then U ′ and
V ′ generate the quaternion algebra

〈
σ−1,−σ−1,0

k

〉
with the standard action, where

σ = α+ β. By Corollary 2, we obtain〈
α−1,−α−1, 0

k

〉
#
〈
β−1,−β−1, 0

k

〉
∼=
〈
σ−1,−σ−1, 0

k

〉
⊗M2
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where σ = α+ β. It follows that〈
α−1,−α−1, 0

k

〉
#
〈
β−1,−β−1, 0

k

〉
] = [

〈
(α+ β)−1,−(α+ β)−1, 0

k

〉
]

in the Brauer group BM(k,H4, R0). So we have proved that Φ is a group morphism.
Finally, since the standard H4-action on a quaternion algebra is not strongly inner,
we have [

〈
α−1,−α−1,0

k

〉
] 6= 1 whenever α is not equal to zero.

Now we are ready to compute the Brauer group BM(k,H4, R0). Let A be an
H4-module algebra. As mentioned in the proof of Lemma 4, A has a natural Z2-
gradation:

A0 = {x ∈ A | g(x) = x}, A1 = {x ∈ A | g(x) = −x}.

If A is an H4-Azumaya algebra, A = A0 +A1 is Z2-graded Azumaya algebra in the
sense of Wall. This is so because the canonical isomorphism

F : A#A −→ End(A)

is automatically a Z2-graded isomorphism. Thus the forgetful map

Ψ : [A] −→ [A]

yields a homomorphism from BM(k,H4, R0) to the Brauer-Wall group BW(k) (for
details on BW(k), we refer to [12]). Here Ψ is a homomorphism because of Lemma
4.

On the other hand, if B is a Z2-graded Azumaya algebra in the sense of Wall,
then we can endow B with a natural H4-module structure in the following way:

g ⇀ xi = (−1)ixi, h ⇀ xi = 0

where xi is a homogeneous element inBi, i = 0, 1. One may easily check thatB is an
H4-Azumaya algebra. So we obtain that BW(k) is a subgroup of BM(k,H4, R0).
In fact, the split map Ψ can be easily explained in a categorical way as follows.
Since R0 is a (quasi-) triangular structure of kZ2, we have (quasi-) triangular Hopf
algebra maps:

(kZ2, R0) incl.−→(H4, R0)
proj.−→(kZ2, R0)

which induce braided monoidal functors:

kZ2M←− H4M←− kZ2M(5)

whose composite functor is the identity functor. Since the Brauer groups are func-
torial (see [10]), the monoidal functors of (5) induce group morphisms:

BM(k, kZ2, R0)←− BM(k,H4, R0)←− BM(k, kZ2, R0)

whose composite map is the identity map. One may identify BM(k, kZ2, R0) with
BW(k) by Lemma 4. Now we are able to state our main theorem.

Theorem 8.

1 −→ (k,+) Φ−→BM(k,H4, R0) Ψ−→BW(k) −→ 1(6)

is a split and exact sequence of group morphisms.
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Proof. It suffices to prove that Φ(k,+) is the kernel of Ψ. Since a Z2-graded matrix
algebra represents the unit in the Brauer-Wall group, we have that Φ(k,+) ⊆
Ker(Ψ). Conversely, assume that A is an H4-Azumaya algebra such that Ψ([A]) = 1
in BW(k) and [A] 6= 1 in BM(k,H4, R0). Since Ψ([A]) = 1, the action of g on A is
strongly inner, and we may identify A with a graded matrix algebra when we forget
the action of the skew-derivation h, say, 〈Mn〉. Since [A] 6= 1 in BM(k,H4, R0), we
know that H4 acts in a non-strongly inner way on A. Thus we may apply Corollary
2 to obtain:

〈Mn〉 =
[
α, β, γ

k

]
⊗B

for some Azumaya algebra B with the trivial H4-action. This implies that
[
α,β,γ
k

]
is

not a non-trivial quaternion algebra because α is a square of some non-zero element
in k. So

[
α,β,γ
k

]
must be the 2× 2-matrix algebra. Hence B is a matrix algebra as

well and represents the unit in BM(k,H4, R0).
Now we may choose α equal to d2. By applying Lemma 3 we obtain that[

1, β, γ
k

]
∼=
〈
d,−d, 0

k

〉
where d is the determinant. So we get [A] = [

〈
d,−d,0
k

〉
] = Φ(d−1) for some non-zero

element d.

From the exact sequence (6) we get the whole Brauer group BM(k,H4, R0) which
is the direct product of (k,+) with BW(k) that is easily computed (see [12]). Finally
we remark that the Brauer group BM(k,H4, Rt), t 6= 0, is much more complicated
than BM(k,H4, R0). The full Brauer group BQ(k,H4) is a very rich group con-
taining subgroups like BM(k,H4, R0), BM(k,H4, R1), BC(k,H4, R

′
t) and k∗/Z2,

where {R′t} is a family of coquasi-triangular structures of H4. The investigation of
BQ(k,H4) will be carried out in the forthcoming paper.
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