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Abstract
Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by
targeting tumorous cells while leaving their healthy counterparts unharmed.However, the underlying
mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and
in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of
malignant cells. In this paper we investigate the interaction ofOH radicals, as well asH2O2molecules
andHO2 radicals, withDNAbymeans of reactivemolecular dynamics simulations using the ReaxFF
forcefield. Our results provide atomic-scale insight into the dynamics of oxidative stress onDNA
caused by theOH radicals, whileH2O2molecules appear not reactive within the considered time-
scale. Among the observed processes are the formation of 8-OH-adduct radicals, forming thefirst
stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and
the partial opening of looseDNA ends in aqueous solution.

1. Introduction

Todate, the treatment of cancer remains a big challenge. Althoughmost cancer cells are killed after irradiation or
by the use of chemicals, i.e. chemotherapy, a small concentration of tumorous cellsmay survive and provemore
difficult to eliminate using conventional techniques [1, 2]. Additionally, it is well established that the above
mentioned therapies lack selectivity towards cancerous cells, being harmful for both cancer and healthy cells.
Moreover,many studies point to the risk of the growing resistance of cancer cells to these therapies and to the
body’s own defense system [2–6]. This resistance is a result of the very nature of tumorous cells: the capability to
mutate due to the continuous stress, e.g. oxidation, on its ownDNA, changing the biochemical pathwayswithin
the cell. For this purpose, new andmore selective treatments need to be investigated, which could prove safer for
the host body, treating themalignant cells without damaging the normal, healthy cells.

Plasmamedicine is becoming a fast growing field of research, which attracts increasing interest for
biomedical applications. Among these applications are sterilization, dental treatment, blood coagulation,
wound andulcer healing, inflammation as well as cancer treatment, which arewidely investigated by applying
cold atmospheric pressure plasmas (CAPPs) [7–16]. Awide range of studies have proven that plasmaswork on a
multilevel scale, where the synergy of the different plasma species leads to the envisaged results for each
application. An example is found in the area of wound healing, where plasmas are able to stimulate living tissue
by acting on the cellular biochemistry, while simultaneously invoke blood coagulation [13].

With respect to cancer treatment,many positive results are observed, both in vitro and in vivo, indicating that
plasmas are able to attack awide range of cancer lineswithout damaging the healthy cells [17, 18]. Among the
investigated cancer lines are breast cancer [19], cervical cancer [20], lung cancer [21], gastric cancer [22],
leukemia [23], pancreatic cancer [24], liver cancer [25], ovarian cancer [26], melanoma [27], neuroblastoma
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[28], glioblastoma and colorectal carcinoma [29, 30], etc. In these studies it was found that senescence and
apoptosis were the leading, selective, anti-tumormechanisms at low plasma doses and are the result of the
synergetic activity of the produced reactive oxygen and nitrogen species in the plasma (ROS andRNS,
respectively). Indeed, this synergywill affectmultiple parts of the cell, both stimulating and inhibiting several
biochemical pathways, which results in the inability of the cell to reproduce andwhich can eventually cause cell
death [31]. Furthermore, plasma treatments have proven to be beneficial against drug resistance of these
malignant cells, as the plasma species can interact with the specific transmembrane proteins, enhancing
conventional anti-cancer treatments [32]. This way, plasma species act together with the chemotherapeutic
drugs, in a synergisticmanner, to overcome drug resistance and to achieve a higher apoptotic rate in tumors. In a
recent study of Ishaq et al, this synergismwas clearly demonstrated [33]. Here, an increase in apoptotic responses
was observed in TRAIL-resistantHT29 colorectal cancer cells, without harming the healthy cells, using the
combined treatment of CAPPswith TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) [33].

One of the effects of CAPPs, seen inmultiple independent studies, is the elevation of the ROS levels (e.g., OH,
HO2,H2O2 andO2

−)within cells [31, 34, 35]. Recent studies have shown that CAPPs are able to transport ROS
up to 1.5 mmwithin the surface of targets and that ROS are observed to penetrate phospholipid bilayer vesicles,
as amodel system for the cell-membrane, up to 150 μmdeep in the sample [36, 37]. Furthermore, in a study by
Hong et al [37]no ruptures of the bilayer were observed, after the introduction of ROS in the vesicles, suggesting
the formation of short-lived punctures allowing theROS to transfer through this phospholipid bilayer, although
the exactmolecularmechanisms are still unknown. In a recent investigation performedwithin our group, the
behavior of a phospholipid bilayer, at several rates of phospholipid peroxidation caused by ROS,was studied
[38]. In this computational study, we observed the formation of aqueous pores due to the rearrangement of the
oxidized phospholipids. This created a polar channel, enabling the ROS to enter the cell, at least inmodel
systemswith a reduced cholesterol content compared to the steady-state concentration of healthy cells (usually
found in the 40–50% range). As it is stated that awide range of cancer cell lines contain a significantly lower
concentration of cholesterol in their cell-membrane, compared to their healthy counterparts, we expect further
accumulation of ROSwithin the treated cancer cell lines [39].Within the cell, reactive species interact or react
with different parts of the cell which results in the further stimulation of the cellular production of ROS. The
ROS then need to diffuse through the cell, in order to oxidize certain cellular parts, e.g., nuclearDNA, thus
having a high chance of being scavenged by themultiple antioxidants present in the cell (glutathion, superoxide
dismutase, catalase, cytoglobins, etc).

Tumor-selective treatment is partly caused by the difference in the redox balance of cancerous cells
compared to normal cells. In addition to the level of antioxidants, studies have pointed towards the plasma
assisted activation of the antioxidant systems in both normal and cancer cells either directly by the presence of
reactive species [40] or as a result of the increase in oxidative stress. As cancerous cells already contain a higher
steady-state concentration of ROS [41–44], the increase in concentration, as a result of plasma treatment, can
overcome the cellular antioxidant system. As a consequence, tumorous cells will suffer fromdamage caused by
the oxidation of proteins, lipids andDNA,whichmay eventually lead to apoptosis or even necrosis if the ROS
concentration and the consequent oxidative damage from the plasma treatment, become too high [30]. The
reason for the elevated steady-state ROS concentration of cancer cells is not yet fully understood. Possible
sources are changes inmitochondrial proteomics due toDNAmutations, hypoxia and anoxia, reduction in the
antioxidative responses and errors in the electron transfer chain in themitochondria as a result of theWarburg
effect [7, 45].

Among the endogenous ROS, hydroxyl radicals (OH) are found to be themost reactive towardsDNA,
resulting inDNA strand breaks (both single strand breaks (SSBs) and double strand breaks (DSBs)), oxidation of
the nucleotides andH-abstractions [46–48]. OH radicals are the resulting products after the Fenton reaction of
themore stableH2O2. The latter forms one of the dominant plasma-generated ROS in aqueous solution and is
furthermore partially produced in themitochondria as a by-product in the electron transfer chain [49], resulting
in a high concentration ofH2O2 in the cytoplasma of cancer cells. The oxidation ofDNA and their
consequences, however, still remain the subject ofmany studies as outlined in a recent review paper [50].

Computer simulations are ideally suited for gaining knowledge and understanding of phenomena in
biomolecular systems, complementary to experimental observations. In particular, classicalmolecular
dynamics (MD) simulations provide an atomic scale insight in the chemistry and dynamics of relatively large
systems, at least compared to quantummechanical computationalmethods. In the past, our group already used
reactiveMD (rMD) simulations to elucidate the reactivity of plasma-generated ROS towardsmultiple
biochemical structures [51], including parts of the cell wall of Gram-positive andGram-negative bacteria (for
sterilization) [52–54], amodel system for the stratum corneum (for skin treatment) [55, 56] and a liquid layer,
serving as a simplemodel system for biofilms [57, 58].

In the present work, rMD simulations are performed in a similar fashion, using the Reax potential [59], to
investigate the interaction ofOH radicals, as well asH2O2molecules, withDNA, in order to provide atomic-
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scale insight into the dynamics of one of the leadingmechanisms of plasma-driven apoptosis inmammalian
cells, whichwill prove useful for plasma cancer treatment and even for oncologymore generally. Using the
ReaxFF potential, relatively large systems can be investigated, in a dynamically and computationally inexpensive
manner [59]. In section 2, the computational setupwill be explained, togetherwith the treatment of the
simulated systembefore impact simulationswere performed. The results obtained for this systemwill be
discussed in section 3, andfinally, in section 4, a conclusionwill be drawn.

2. Simulation setup

InMD, the trajectories of all atoms in a given system are calculated by integrating the laws ofmotion. The forces,
acting on every particle, are derived from an adequate interatomic interaction potential (forcefield), which
governs all atomic interactions. In this work, we use theReaxFF potential [59] based on the bond order/bond
length relationship introduced byAbell [60]. In this potential, the total potential energy of the system is
calculated as the sumovermultiple partial energy contributions, including bond energy, valence and torsion
angles, over- and undercoordination corrections, conjugation terms and the non-bonded van derWaals and
Coulomb interactions. The ReaxFF potential is able to describe not only covalent bonds but also ionic bonds and
awide range of intermediate interactions, enabling us to investigate relatively large systems (up to 105–106

atoms) over a time scale of nanoseconds in a reactivemanner. Amore detailed description of the potential and
the energy terms can be found in [60, 61]. Awide variety of parametrizations has been developed and optimized
for ReaxFF, for the accurate representation of the chemistry of covalentmaterials [61–63], polymers [64, 65],
combustion [61, 66], catalysis [67, 68], metals [69, 70], metal oxides [71–73], biomolecules [52–57], etc. For the
simulation of theDNA system in this work, we have used amodified version of the force field developed by
Monti [74], optimized for C/H/O/N/P systems. This forcefield is known as a reactive forcefield, as it enables
to simulate bond formation and dissociation, providing fundamental insight in the reactivity of the simulated
molecular system. The charge distribution is calculated based on geometry and connectivity, using the
electronegativity equalizationmethod [75, 76]. Simulations were carried out using ReaxFF as implemented in
LAMMPS [77].

For the present study, aDNA string composed of 12 base pairs (i.e., aDNAdodecamer)was considered (see
figure 1(a)). The dodecamerwas placed in a periodic rectangular cuboidwith dimensions 33 Å×33 Å×48 Å.
The remaining volume of the simulation boxwas filledwithwatermolecules (approaching a density of
1 g ml−1), providing a simplemodel forDNA, consisting of only the specifiedROS, water andDNA.Hydroxyl
groups are added to the two ends of bothDNA strands, replacing themissing phosphate groupwhile preserving
theO-atoms of the end nucleotides connected to either C5′ orC3′ (see figure 1(b)).

Reactions at either one of these four end points are thus not considered in the results, i.e. reactions at the
resultingOHgroups (e.g. H-abstractions) aswell as the adjacent atoms (e.g. bond breaks and formations) are
neglected. For integrating the equation ofmotion, a time step of 0.25 fs was used. All impact simulations, 15
independent runs in total, were performed for 500 ps at 300 K.

Prior to the impact simulations, themolecular systemswere equilibrated at room temperature for 300 ps in
the canonical ensemble (temperature and volumewere kept constant: NVT) using aNosé–Hoover thermostat
with coupling constant of 25.0 fs.We used the following procedure for the equilibration: the systemwas first
slowly heated from0 K to room temperature for 100 ps, after which the systemwas stabilized at 300 K for 200 ps.
This simulation timewas verified to be sufficient to stabilize themolecular structures at the given temperature.
Additionally, test simulations have been conducted to verify the accuracy of the force fieldwith respect to
nucleotide stacking interactions, which are known to contribute significantly to the system stability and
structure. For the guanine–adenine stacking, wefind a stable intrastrand base distance of 3.4 Å, corresponding
with a stacking interaction of−9.31 kcal mol−1, in good agreementwith the literature [78–80].

3. Results and discussion

First of all, a clear difference between the reactivity ofH2O2molecules andOHradicals towardsDNAwas
observed.While theOH radicals react upon impact, theH2O2molecules were found to be non-reactive towards
DNA. Instead, and only in rare cases, similar reactions have been observed as described in thework of Yusupov
[57], where clusters ofH2O2 andwater result in the formation ofOHandHO2.More information can be found
in [57]. This observation confirms the high reactivity of OH radicals, as well as the long-lived nature ofH2O2.
Additionally, we have investigated the interaction ofHO2 radicals with the dodecamer and found that they
reactedwithDNA in a similar fashion as theOH radicals, albeit at amuch lower rate (14%ofHO2 resulted in an
additional reaction, similar as depicted infigure 2, compared to 80% in the case ofOH radicals). Therefore, in
this work, wewill only focus on the interactions of theOH radicals withDNA.
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Figure 1. (a) Snapshot of the dodecamer inwater, as used for the simulations. The addedOHgroups, forming the end points of every
strand, are indicated by the black circles. (b)Chemical structures of the four nucleotides: 2′-deoxyadenosine 5′-monophosphate
(dAMP), 2-deoxycytidine 5′-monophosphate (dCMP), 2′-deoxyguanosine 5′-monophosphate (dGMP), thymidine 5′-monopho-
sphate (dTMP).
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3.1.OH-addition reactions
Figure 2 represents snapshots taken from theMD simulations, showing theOHaddition reaction on theC8-
atomof purines (shownhere for dGMP: before reaction (left) and after reaction (right)). This addition reaction
results in the formation of an 8-OH-adduct radical. Although only depicted for dGMP, this reactionwas also
observed for both dAMP and dGMP in 32%and 48%of the total reactions observed, respectively. This reaction
is observed at a higher rate for dGMP,which is in linewith experimental data, as guanine is known to have the
lowest redox potential of all nucleic bases, thus beingmore susceptible to oxidative stress [81]. 8-OH-adduct
radicals form very important andwell-knownDNAoxidation products, andmultiple independent studies point
out that they react further towards both 8-oxoAde and 8-oxoGua (i.e., 8-oxo-7,8-dihydroadenine and 8-oxo-
7,8-dihydroguanine, respectively), after a one-electron oxidation, or towards both FapyAde and FapyGua (i.e.,
2,6-diamino-5-formamidopyrimidine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine, respectively) as a
result of a one-electron reduction after the opening of the imidazole ring as indicated in a recent review paper
[82]. These later-stage oxidation products are widely known asmarkers for oxidative stress onDNA, observed in
several studies [47, 83–87].

The presence of thesemarkers can lead to the activation of pro-apoptotic factors, which can give rise to cell
death.Moreover, it has been proven in experimental studies that the introduction of 8-oxoAde or 8-oxoGua can
result in pointmutations: GKC ->TKA andGKC ->CKG, leading to devastating effects for the affected cells
[84, 88, 89]. The formation of these post-oxidation products was not investigated in the present dynamic study,
due to the absence of the necessary reactants and the prohibitively long simulation time required.However, the
clear observation of the abundant formation of the upstreamoxidation products (i.e., 8-OH–purine adducts)
already demonstrates thatOH radicals, and indirectlyH2O2molecules, are pro-apoptotic species.

3.2.H-abstraction reactions
H-abstraction reactions at the nucleotides, caused byOH radicals, are also observed in our simulations, but to a
lower extent, and they are presented infigures 3 and 4. Both reactions are a direct result from anH-abstraction at
amines found on the nucleic acids, i.e., primary and secondary amines, resulting in 2-N-centered and 1-N-
centered radicals, respectively. These reactions have only been encountered in 10%and 5%of the total number
of observed reactions. TheH-abstraction from a primary amine has been observed for both dAMPand dGMP,
while theH-abstract from a secondary amine is only observed in the dGMP, found at the very end of the
simulatedDNAdouble helices, thus beingmore dissolved inwater. This combined behavior has also been
suggested by theworks ofMundy and co-authors [90, 91] andAbolfath et al [92]. UsingCar-ParrinelloMD,
Mundy et al investigated theH-abstraction reactions of guanine byOH radicals in gas phase [90]. Their
observations pointed out that theH-abstraction reaction from2-N is energetically significantly favored above
1-N,which is also partially reflected in our simulated reaction rates. In their later work byWu andMundy, they
investigated the sameH-abstraction reactions in aqueous solution [91], and they observed that the reaction rate
for theH-abstraction at 1-N increases compared to their earlier work.On the other hand, Abolfath and co-
workers concluded that theH-abstraction from the secondary amine is favored above the abstraction from the
primary amine of guanine in aqueous solution, usingQM/MMsimulations [92]. These observations are in line

Figure 2. Snapshots fromMDsimulations depicting the addition of anOH radical (green) onC-8′ (yellow) of dGMP. This reaction
results in the formation of an 8-OH-adduct radical (right). The color code of the remaining atoms corresponds to the legend given in
figure 1(a).
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with our results, as the abstraction from1-N is only observed in themorewater dissolved nucleotides (i.e., at the
end points of the simulatedDNAdouble helix), albeit a significantly lower rate (5% compared to 10%).

3.3. Partial unwinding ofDNAat breaks
It is known from experimental studies thatOH radicals can also lead to directH-abstraction at theC5′-position
of the phosphodiester bonds of theDNAbackbones [93–95]. This will result in a ribose radical, which is able to
react further, either withO2 or another ROS, or by the direct desorption of a phosphate group [82], both giving
rise to SSBswithin the affectedDNA-strand. A SSB is a reversible oxidation pathway inDNA, but combinedwith
a second SSB at the opposite strand, in close vicinity, it results in irreversible DSBs, cleaving theDNAdouble
helix, which in turn activates pro-apoptotic factors.Moreover, it has been observed that ribose radicals, after
H-abstraction, are able to react with the opposite strand, again resulting inDSBs [93]. Single andDSBs are widely
considered among themain antitumor responses, leading to apoptosis [9, 93–95], which forms themain goal of
plasma cancer treatment.

Although this particularH-abstraction reactionwas not yet observed in our simulations, a strong affinity was
found betweenOHradicals andC-5′, suggesting that this reactionwould occur on a longer time-scale, and it is
important tomention that the subsequent SSBs result in an increased contact surface for water-interactions.
This is important because our simulations point out that oxidation reactions almost exclusively occur at
positions, which are in direct contact with the solution (DNAbackbone and the outer side of the nucleic bases).
As SSBs result in an increased contact surface with the solution, we investigated the effects ofDNA strand
cleavages at the dodecamer ends,mimicking the situation as it is observed atDSBs and SSBs. Indeed, at such
points a partial opening of the double helix has been observed in our simulations, as displayed infigure 5. It is
seen that theH-bonds between opposite nucleic bases at such positions are broken and replacedwithH-bonds

Figure 3. Snapshots fromMDsimulations depicting theH-abstraction reaction caused by anOH radical (green) at a primary amine
(yellow) found on dGMP. The color code of the remaining atoms corresponds to the legend given infigure 1(a).

Figure 4. Snapshots fromMDsimulations depicting theH-abstraction reaction caused by anOH radical (green) at a secondary amine
(yellow) found on the purine 6-ring of dGMP.Note that this reaction only happened at the nucleotides at the end of theDNA string,
thus beingmore dissolved inwater. The color code of the remaining atoms corresponds to the legend given infigure 1(a).
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with the surroundingwatermolecules.We believe that due to the introduction of thesemigrated nucleotides in
the solution,more oxidation reactions at these locations can be expected (e.g., formation of 1-N centered
radicals, figure 4). Thismay prove very difficult to repair by the cell’s repair proteins, which, again,may activate
pro-apoptotic pathways in the cell, ultimately leading to controlled cell death. Thus, we expect that if enough
time is given to the simulated structure,more andmoreH-bonds between opposite nucleic basesmay be
replacedwithH-bondswithwatermolecules. In a similar fashion it is expected that two independent SSBs in the
vicinity of each other (i.e., within several tens of base pairs [93])may eventually lead to irreversible DSBs.

As a final remark, it needs to bementioned that a number of oxidation reactions described in literature have
not been encountered in our simulations, like the addition ofOH radicals on sp2 carbon atoms of pyrimidines
(dTMPor dCMP) [96, 97]. Ji et al investigated this with thymine using ab initioDFT calculations and concluded
that the addition ofOHon 6-C and 5-C are the energeticallymost favored reactions betweenOHand pyrimidine
nucleic acids, with yields of 60 and 30%, corresponding to experimental values [97]. These observations suggest
a somewhat lower overall reactivity in our simulations compared to experimental and ab initio studies. However,
it was not the aimof this work to describe all possible reactions, but rather to give dynamic insight inDNA
oxidation based on (reactive)MD.The reactions observed in this work point towards themost relevant
oxidation products, which can be expectedwhen considering an aqueous solution containing onlyOHorH2O2

and a dodecamer.

4. Conclusion

Wehave investigated the initial interactions ofOH radicals andH2O2molecules with aDNAdodecamer in
solution, bymeans of rMD simulations using theReaxFF potential. This enables us to obtain atomic-scale
insight in the dynamic nature of the interactions. From these calculations, several observations weremade.

(i)H2O2 does not react directly with the biomolecule.
(ii)OHradicals react either throughH-abstraction resulting in the formation ofN-centered radicals, or by

OHaddition leading to the formation of 8-OH-adduct radicals. The latter oxidation products are known
as thefirst steps towards thewidely known andmutagenic 8-oxo-Gua, 8-oxo-Ade, FapyG and FapyA,
which are known asmarkers forDNAoxidation.

(iii)A strong affinity betweenOH radicals and theC5′ position of theDNAbackbone is found, although this
did not yet result inH-abstractionwithin the simulation time, leading to SSBs.

(iv)Partial opening of theDNAmolecule as a function of time, at positions of SSBs, can result in increased
oxidation at themore dissolved nucleotides, withmight be very difficult to repair by the cell’s repair
proteins, thus activating pro-apoptotic pathways in the cell, ultimately leading to controlled cell death.

These observations point out thatOH-radicals, and indirectlyH2O2molecules, are pro-apoptotic species.
The presented results provide insight in the interaction dynamics ofOH radicals, as one of themost aggressive
ROS in the treated cells, as well asH2O2, withDNA. This is of particular importance for understanding the
interaction of CAPPswith living tissue, in particular in the context of plasma cancer treatment.With respect to
the use of CAPPs for cancer treatment, the discussed oxidations are expected to happen only inmalignant cells.
In this way, a selective anti-tumor treatment is provided, where damage is induced on cancerous cell lines, while
leaving their healthy counterparts unharmed or even stimulating the defensemechanisms of the latter cell lines

Figure 5. Snapshots of themost bottompart of the simulatedDNAmolecule, before (left) and after (right) the impact simulations,
depicting the partial opening of theDNAdouble helix at the break. In the right snapshot a clear decrease in interstrandH-bonds (from
3 to 1) is visible at the bottombase pair, indicated by thin black lines. At this base pair only theH-bond between dGMP-O and
H-dCMP remains. For the sake of clarity only the three nucleotide base pairs at the bottompart of the dodecamer are shown, and the
backbones are depicted in semi-transparent gray. The color code for the base pairs is identical as used in figure 1(a).
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and their environment. However,more investigations are needed in the field of plasma-based oncology to
elucidate the role of plasma species in triggering tumor specific apoptosis.
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