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Dark solitons in superfluid Bose gases decay through the snake instability mechanism, unless they are strongly
confined. Recent experiments in superfluid Fermi gases have also interpreted soliton decay via this mechanism.
However, we show using both an effective field numerical simulation and a perturbative analysis that there is a
qualitative difference between soliton decay in the BEC and BCS regimes. On the BEC side of the interaction
domain, the characteristic snaking deformations are induced by fluctuations of the amplitude of the order
parameter, while on the BCS side, fluctuations of the phase destroy the soliton core through the formation of
local Josephson currents without the presence of snaking deformations. The latter mechanism is qualitatively
different from the snaking instability and this difference should be experimentally detectable.
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I. INTRODUCTION

Arising from an interplay between nonlinear and dispersive
effects, solitons are solitary matter waves which retain their
shape while propagating at a constant velocity. They emerge
in a wide variety of physical systems including optical fibers,
classical fluids, plasmas, and ultracold atomic gases. Due to
their high experimental tunability, ultracold atom clouds in
particular form an ideal environment for studying the physics
of nonlinear matter waves in a well-controlled way. In these
atomic clouds, solitons often manifest themselves as dark
solitons, which are characterized by a localized density dip
and a jump in the phase profile of the order parameter. Dark
solitons have been theoretically and experimentally studied in
Bose-Einstein condensates (BECs) [1–5], as well as superfluid
Fermi gases [6–8]. In both systems, they are subject to an
instability mechanism called the snake instability [9–12],
which makes the soliton decay into vortices if the radial width
of the atom cloud is too large. The name “snake instability”
comes from the observation that in the decay process the
depletion plane of the soliton starts to oscillate until it breaks
up into one or more vortex structures. The snaking mechanism
and the subsequent decay of the dark soliton plane have been
observed experimentally in both BECs [13] and superfluid
Fermi gases [9].

Various theoretical methods have been used to ana-
lyze the instability of dark solitons in fermionic sys-
tems [12,14,15]. In Ref. [15], the critical length scale of
the instability was calculated in the BEC-BCS crossover by
means of a recently developed low-energy effective field
theory (EFT) [16]. This formalism, which is capable of

*wout.vanalphen@uantwerpen.be

describing Fermi superfluids in a wide range of tempera-
tures and interaction strengths, is based on the assumption
that the order parameter of the system changes slowly in
both space and time. It has already been successfully em-
ployed for the description of the properties and dynamics
of dark solitons as a function of temperature and population
imbalance [17–19].

In the present paper, numerical simulations based on the
EFT reveal that the dynamics of the dark soliton decay
changes significantly across the interaction domain. A per-
turbative analysis of the amplitude and phase fluctuations of
the order parameter demonstrates that this crossover in the
instability dynamics is related to a change in the nature of the
unstable modes, which shift from amplitudelike to phaselike
when one moves from the BEC to the BCS regime. All calcu-
lations are performed for the case of a Fermi superfluid with
a uniform background. While traditionally ultracold gases
are studied in setups with harmonic trapping potentials, the
recent realization of boxlike optical traps [20] provides an
incentive to investigate uniform superfluids and the oppor-
tunity to experimentally test the predictions of the present
work.

II. THEORETICAL MODEL

The system under consideration is an ultracold Fermi gas
in which particles of opposite pseudospin interact via an
s-wave contact potential. In the context of effective field
theories, this system can be described in terms of a su-
perfluid order parameter �(r, t ), representing the bosonic
field of Cooper pairs. Under the assumption that this field
varies slowly in both space and time, a gradient expansion
of the Euclidean-time action functional of the fermionic sys-
tem can be performed, resulting in an effective action for
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where we use the natural units of h̄ = 1, 2m = 1, and EF = 1
and β is the inverse temperature. A more detailed explanation
of this model can be found in Ref. [16] and in Appendix A,
together with the analytical expressions for the thermody-
namic potential �s and the coefficients C, D, E , Q, and R in
terms of the average chemical potential μ and the interaction
parameter (kF as)−1. The coefficients C, E , Q, and R are only a
function of the amplitude of the order parameter in bulk |�∞|
(i.e., the superfluid gap). The coefficient D and the thermody-
namic potential �s, on the other hand, depend fully upon the
local value of the amplitude of the order parameter [17]. In
this work, we assign to |�∞| and μ the mean-field values that
are obtained by simultaneously solving the saddle-point gap
and number equations [21].

From the Euclidian action functional (1), the real-time
three-dimensional (3D) equation of motion for the pair field
�(r, t ) can be derived

iD̃(|�|2)
∂�

∂t
= −C∇2

r � + Q
∂2�

∂t2

+
(
A(|�|2) + 2E∇2

r |�|2 − 2R
∂2|�|2

∂t2

)
�,

(2)

where the coefficients D̃ and A are defined as

D̃ = ∂ (|�|2D)

∂ (|�|2)
, A = ∂�s

∂ (|�|2)
. (3)

This equation is a type of nonlinear Schrödinger equation
which is closely related to both the Gross-Pitaevskii equation
for Bose-Einstein condensates [22] and the Ginzburg-Landau
equation for Fermi superfluids [23]. We find an analytical
solution �s(x) for a 1D stationary dark soliton by solving the
time-independent equation

−C∂2
x �s + [A(|�s|2) + 2E∂2

x |�s|2]�s = 0 (4)

with boundary conditions

lim
x→±∞ �(x) = ∓�∞. (5)

This solution for the order parameter possesses a phase jump
π and an amplitude equal to zero at the core of the soli-
ton [17,18]. When studying solitonic excitations across the
BEC-BCS crossover, it is convenient to express the length
scale in units of the healing length ξ , which is here defined as
the width of the soliton. An analytic expression for ξ can be
derived through a variational ansatz for the stationary soliton
solution and a minimization of the EFT free energy (see
Appendix B). Using the system parameters of the experiment
in Ref. [9], the variational result for ξ yields a soliton width
of about 550 nm at unitarity.

The main assumption of the EFT model is that the order
parameter �(r, t ) varies slowly in both space and time [16].

In terms of spatial fluctuations, this assumption corresponds
to the condition that the pair field should vary over a spatial
region larger than the pair correlation length. In terms of
the frequency and energy of the collective excitations, the
validity of the theory is mainly determined by the role of pair-
breaking processes. Broken pairs are only present in the EFT
in a local equilibrium state; there is no explicit pair-breaking
dynamics. As a function of energy, pair-breaking processes
become important at the bottom of the single-particle excita-
tion spectrum (2	 in the BCS regime and 2

√
	2 + μ2 in the

BEC regime), which means that the validity of the EFT can
only be guaranteed for fluctuations whose energy lies below
this threshold value. A detailed study of the validity of the
model reveals that the theory is reliable, except in some cases
in the BCS regime (see Fig. 5 in [18]), where 	 becomes
small and the pair correlation length becomes large. Earlier
EFT calculations on the snake instability mechanism show
good agreement with results obtained from other theoretical
formalisms [15] across the whole BEC-BCS crossover. This
is a consequence of the fact that the unstable mode is in
general a long-wavelength mode, with energies sufficiently far
below 2	. Accordingly, we also expect our present study on
the nature of the instability mechanism to remain within the
validity domain of the EFT.

III. RESULTS

To investigate the dynamics of the soliton instability across
the BEC-BCS crossover, we perform numerical simulations
of the decay of a stationary dark soliton in a uniformly
trapped quasi-2D superfluid Fermi gas, using the EFT’s non-
linear equation of motion (2). The initial state is constructed
by extending the 1D stationary soliton solution �s(x) into
two dimensions (using periodic boundary conditions in the
transverse direction) and adding a small amount of random
noise to trigger the instability. The subsequent numerical time
evolution is carried out by discretizing the space-time grid and
applying a finite-difference fourth-order Runge-Kutta (RK4)
algorithm. A more detailed explanation of this procedure
is given in Appendix C. For the present calculations, the
longitudinal and transverse system sizes are chosen to be,
respectively, Lx = 40ξ and Ly = 100ξ , while the spatial and
temporal resolutions are taken to be, respectively, 5% of ξ

and 2% of tF = ω−1
F = (EF /h̄)−1. All calculations are carried

out at a temperature T = 0.001TF , which for all practical
purposes corresponds to zero temperature.

Figure 1 shows the evolution of the pair density |�(x, y)|2
of the superfluid during the decay of a stationary dark
soliton. The top row shows the evolution for (kF as)−1 = 1
(BEC regime), while the bottom row shows the evolution for
(kF as)−1 = −2 (BCS regime). To make the dynamics of the
soliton core more apparent, the spatial profile of the pair den-
sity is displayed using only two colors: black if |�(x, y)|2 <

0.1|�∞|2 and white otherwise. In the BEC regime, one can
clearly observe the onset of snaking deformations of the de-
pletion plane, which eventually break up the soliton into vor-
tices. The manifestation of these snaking oscillations during
the soliton decay is well known from superfluid Bose gases. In
the BCS regime, on the other hand, the depletion plane does
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FIG. 1. Evolution of the 2D pair density field |�|2 during the
decay of a dark soliton for (kF as )−1 = 1 (top row) and (kF as )−1 =
−2 (bottom row). The different columns correspond to snapshots at
t/tF = 0, 150, 160, 165, 168, 175, and 190 for the top row and t/tF =
0, 225, 236, 240, 244, 250, and 270 for the bottom row. Regions are
black if |�|2 < 0.1|�∞|2 and white otherwise.

not exhibit snaking deformations during the decay process.
Instead, the soliton core simply dissolves into vortices.

To further investigate the observed transition in the dynam-
ics of the decay across the BEC-BCS crossover, we perform
a perturbative study of the collective excitations around the
stationary soliton solution. These excitations are represented
by a small perturbation field δ�(r, t ) = �(r, t ) − �s(x). The
equation of motion (2) can be linearized with respect to this
perturbation field in order to describe small fluctuations of the
order parameter (see Appendix D). To capture the physics of
the instability more clearly, we also introduce the fields

P±(r, t ) = [δ�(r, t ) ± δ�∗(r, t )]/2. (6)

In the linearized theory, these fields correspond to fluctuations
of, respectively, the amplitude and phase of the order param-
eter. Since we are interested in transverse unstable modes
which propagate along the soliton plane in the y direction and
are localized around the soliton in the x direction, we assume
P±(r, t ) = P±(x)ei(ky−ωt ). Then the linearization of Eq. (2)
results in two coupled equations for the amplitude and phase
field:

α1(x)P′′
+ + α2(x)P′

+ + [α3(x) − ω2α4(x)]P+ = ωγ (x)P−,

(7)

β1P′′
− + [β2(x) − ω2β3]P− = ωγ (x)P+. (8)

The explicit expressions for the position-dependent coeffi-
cients αi(x), βi(x), and γ (x) are given in Appendix D. In gen-
eral, the two equations are coupled by a coupling coefficient
γ (x). However, this coupling coefficient becomes very small
with respect to the other coefficients on the BCS side of the
interaction domain, causing the amplitude and phase modes
to decouple for (kF as)−1 � −1. This decoupling is a well-
known result and is caused by the particle-hole symmetry in
the BCS regime [24]. On the BEC side, on the other hand,
γ (x) becomes much larger, resulting in a strong coupling
between the equations for (kF as)−1 	 1. Consequently, tun-
ing the interaction parameter (kF as)−1 from the BCS to the
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FIG. 2. Eigenvalues of the collective modes in the presence of a
stationary soliton for k ≈ 0 as a function of the interaction parameter
(kF as )−1: (a) the (positive) imaginary eigenvalues associated with the
unstable mode and (b) the (positive) real eigenvalues. The color of
each point indicates the nature of the associated eigenmode, based on
the value of η defined in Eq. (10). The inset in (a) shows the spatial
profiles of P+(x) and P−(x) for the unstable mode at (kF as )−1 =
−0.9.

BEC regime increases the coupling between the amplitude
and phase modes.

The spectrum of eigenmodes ω(k) is obtained by numeri-
cally solving the coupled equations (7) and (8). In particular,
the soliton will be unstable if there is at least one mode for
which Im(ω) > 0, since such a mode will grow exponentially
in time. Additionally, we can determine for every mode
whether it is more amplitudelike or phaselike in nature by
calculating the norms of the eigenfields as

N± =
∫

|P±(x)|2dx (9)

and then using these quantities to define a mixing parameter

η = N+
N+ + N−

, (10)

with 0 � η � 1. For η = 1, the excitation is a pure amplitude
mode, while for η = 0, it is purely a phase mode.

Figure 2 shows the real frequencies of several low-lying en-
ergy modes [Fig. 2(b)] and the imaginary part of the frequency
of the unstable mode [Fig. 2(a)] as a function of (kF as)−1

for k ≈ 0. The inset of Fig. 2(a) shows an example of the
profiles of the localized eigenfunctions P+(x) and P−(x) for
the unstable mode at (kF as)−1 = −0.9. Each point on the
main graphs is assigned a color based on the value of η for
the associated eigenmode: As η goes from 0 to 1, the assigned
color shifts from blue to red. We observe that as we tune the
interactions from the BCS regime [(kF as)−1 < 0] to the BEC
regime [(kF as)−1 > 0], the unstable mode changes from a
phaselike mode to an amplitudelike mode. This shift in nature
also appears to affect the behavior of the stable collective
excitations across the interaction domain, inducing a steeply
increasing amplitude mode which runs through the continuum
of phase modes across the BEC-BCS crossover.

Figure 3 shows the imaginary part Im(ω) of the unstable
modes for several values of (kF as)−1. The insets show the
localized eigenfunctions P+(x) and P−(x) for the modes which
have been observed to manifest during the decay processes in
Fig. 1. It is clear that the unstable mode is a long-wavelength
mode which only exists up to a maximum wave number kc.
We observe that, in the deep BCS regime, the unstable mode
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FIG. 3. Imaginary part of the frequency of the unstable mode
as a function of k for (a) (kF as )−1 = −2, (b) (kF as )−1 = −0.7,
(c) (kF as )−1 = 0, and (d) (kF as )−1 = 1. The color of each point indi-
cates the nature of the associated unstable mode, based on the value
of η defined in Eq. (10). The insets show the localized eigenfunctions
P+(x) and P−(x) for the modes which have been observed to manifest
during the decay processes in Fig. 1.

is a phase mode across the whole k domain, while closer to
unitarity and in the BEC regime, its nature strongly depends
on the value of k: For lower values of k it is amplitudelike,
while for higher k it is phaselike. We can interpret these
observations in terms of the width of the system, as for a
given transverse system size Ly the largest transverse mode
which fits into the system corresponds to the wave number
k = 2π/Ly. If it is assumed that the mode with the largest
growth rate will be the one to manifest itself, one would need
a considerably small transverse width Ly at unitarity or in the
BEC regime to observe the phaselike modes close to kc. In
the deep BCS regime, on the other hand, the nature of the
unstable mode will always be phaselike, independent of the
system width. Considering the typical system sizes which are
currently employed in dark soliton experiments in superfluid
Fermi gases [9,25,26], we expect that the phaselike character
of the unstable mode will be observable only in the BCS
regime.

Combining the results of the numerical simulations and the
perturbative analysis now allows us to explain the change in
the behavior of the soliton instability observed in Fig. 1. In
the BEC regime, the mode with the largest growth rate has
a finite wave number and is a mix between an amplitudelike
and a phaselike mode [Fig. 3(d)]. The amplitudelike contri-
bution causes the characteristic snaking oscillations of the
soliton core,1 while the phaselike contribution creates local
Josephson currents, leading to the manifestation of vortices.
In the deep BCS regime, on the other hand, unstable modes

1The k = 0 amplitude mode δ� ∝ δx d�s
dx corresponds to a uniform

shift of the soliton in the x direction over a distance δx. For finite k,
the magnitude and direction of this translation vary along the soliton
plane, leading to the creation of the characteristic snaking pattern.

are purely phaselike [Fig. 3(a)]. As such, they cause vortex
nucleation without the occurrence of snaking deformations.
Therefore, we suggest that, on the BCS side of the interaction
domain, “Josephson instability” might be a more suitable
name than snake instability to describe the unstable mode,
as no observable snaking pattern is present. Moreover, since
in the deep BCS regime the imaginary part of the frequency
reaches its maximum value at k = 0, the number of generated
vortices is expected to be smaller than in the BEC regime, as
is indeed the case in Fig. 1.

IV. CONCLUSION

The combined observations of the nonlinear dynamics and
the perturbative analysis of the soliton decay indicate that the
crossover in the behavior of the soliton instability is caused
by the fact that the nature of the unstable mode changes from
amplitudelike to phaselike when one moves from the BEC to
the BCS side of the interaction domain. In the BCS regime,
where the unstable mode is purely phaselike in nature, the
creation of local Josephson currents leads to the disintegration
of the soliton core into vortices without the presence of
snaking deformations. In the BEC regime, on the other hand,
where the nature of the unstable mode is a mix between
amplitudelike and phaselike, the nucleation of vortices is
preceded by the onset of snaking deformations of the soliton
core. We proposed to name the soliton instability in the BCS
regime the Josephson instability in order to distinguish it from
the snake instability in the BEC regime.

The shape of the instability spectra in Fig. 3 can be com-
pared to the results of Ref. [12], where the same types of spec-
tra were calculated using the time-dependent Bogoliubov–de
Gennes (TDBdG) formalism. We observe that qualitatively
the EFT results agree quite well with the available TDBdG
data, except for the k = 0 point in the BCS regime. Here the
EFT predicts a finite value for Im(ω), while the TDBdG re-
sult is constrained to (k = 0, Im(ω) = 0) by a hydrodynamic
approximation [12]. This approximation, however, relies on
the presence of an amplitude mode, and hence might become
invalid on the BCS side of the interaction domain.

We can also compare our predictions with the results of
the experiment carried out in Ref. [9], in which the authors
imaged the decay of a dark soliton in a 3D harmonically
trapped superfluid Fermi gas at unitarity. By applying the
system parameters of this experiment to the case of a uni-
formly trapped superfluid, we obtain that tF ≈ 5.2 × 10−5 s,
which yields a typical decay time on the order of (tens
of) milliseconds for our numerical simulations across the
BEC-BCS crossover. This timescale is in good agreement
with the decay time observed in Ref. [9], even though the
experiment was performed in a harmonically trapped system.
We furthermore observe that, on some of the experimental
images in Ref. [9], the decay process actually looks like a
crossover between the snake instability mechanism and the
aforementioned Josephson instability mechanism, indicating
that, in practice, the predicted transition in the dynamics of
the decay might already be observable around unitarity. This
hypothesis will have to be investigated more thoroughly in
future experiments that focus more on the dynamics of the
decay process than the observation of the resulting solitonic
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vortices. We suspect that large quasi-2D systems, like the one
employed in the experiment in Ref. [27], might be most suit-
able to test the current predictions, as they closely resemble
the theoretical system described in this work.
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APPENDIX A: OVERVIEW OF THE EFT

In this Appendix we provide a brief overview of the EFT
model and the expressions for the EFT expansion coefficients.
More detailed derivations and explanations can be found in
Refs. [16,21,28].

The system of interest is an ultracold Fermi gas, in which
particles of opposite pseudospin interact via an s-wave contact
potential. The Euclidian-time action functional of this system
can be written in terms of the fermionic (Grassmann) fields
ψσ (x, τ ) and ψ̄σ (x, τ ),

S[ψ] =
∫ β

0
dτ

∫
dx

⎡
⎣ ∑

σ∈{↑,↓}
ψ̄σ (x, τ )

(
∂

∂τ
−∇2

x −μσ

)
ψσ (x, τ )

+gψ̄↑(x, τ )ψ̄↓(x, τ )ψ↓(x, τ )ψ↑(x, τ )

⎤
⎦, (A1)

where g is the strength of the contact interaction and the label
σ denotes the spin degree of freedom. The quartic interaction
term can be decoupled through the Hubbard-Stratonovich
(HS) transformation, which introduces the bosonic pair field
�(x, τ ) (the HS field is often also denoted by 	, but here
we use � to emphasize its interpretation as a position- and
time-dependent order parameter for the system) [21]. The
fermionic degrees of freedom can then be integrated out.
If we assume that the pair field �(x, τ ) only varies slowly
around its constant background value �∞, we can perform
a gradient expansion around �∞ up to second order in the
spatial and temporal derivatives of �(x, τ ) [16]. This results
in the following Euclidian-time effective action functional for
the bosonic pair field:

SEFT[�] =
∫ β

0
dτ

∫
dr

[
D

2

(
�̄

∂�

∂τ
− ∂�̄

∂τ
�

)

+�s + C(∇r�̄ · ∇r�) − E (∇r|�|2)2

+Q
∂�̄

∂τ

∂�

∂τ
− R

(
∂|�|2
∂τ

)2
]
. (A2)

This effective action functional forms the starting point for our
study of the snake instability in the main text. The thermody-

namic potential �s is given by

�s = − 1

8πkF as
|�|2 −

∫
dk

(2π )3

{
1

β
ln[2 cosh(βEk )

+2 cosh(βζ )] − ξk − |�|2
2k2

}
, (A3)

while the gradient expansion coefficients D, C, E , Q, and R
are defined as

D =
∫

dk
(2π )3

ξk

|�|2 [ f1(β, ξk, ζ ) − f1(β, Ek, ζ )], (A4)

C =
∫

dk
(2π )3

k2

3m
f2(β, Ek, ζ ), (A5)

E = 2
∫

dk
(2π )3

k2

3m
ξ 2

k f4(β, Ek, ζ ), (A6)

Q = 1

2|�|2
∫

dk
(2π )3

[ f1(β, Ek, ζ ) − (E2
k + ξ 2

k ) f2(β, Ek, ζ )],

(A7)

R = 1

2|�|2
∫

dk
(2π )3

[
f1(β, Ek, ζ )+(

E2
k − 3ξ 2

k

)
f2(β, Ek, ζ )

3|�|2

+4
(
ξ 2

k − 2E2
k

)
3

f3(β, Ek, ζ ) + 2E2
k |�|2 f4(β, Ek, ζ )

]
.

(A8)

The functions f j (β, ε, ζ ) in the above expressions are defined
by

f j (β, ε, ζ ) = 1

β

∑
n

1

[(ωn − iζ )2 + ε2] j
, (A9)

with the fermionic Matsubara frequencies ωn = (2n + 1)π/β.
In this treatment, the chemical potentials of the two pseu-
dospin species μ↑ and μ↓ are combined into the aver-
age chemical potential μ = (μ↑ + μ↓)/2 and the imbalance
chemical potential ζ = (μ↑ − μ↓)/2, the latter determining
the difference between the number of particles in each spin
population. The quantity ξk = k2

2m − μ is the dispersion re-
lation for a free fermion, Ek = (ξ 2

k + |�x,τ |2)1/2 is the local
Bogoliubov excitation energy, and as is the s-wave scattering
length that determines the strength and the sign of the contact
interaction. In the absence of spatial and temporal variations,
the thermodynamic potential �s determines the value of the
pair-breaking gap |�∞| for the uniform system through the
saddle-point gap equation

∂�s

∂|�|2 � = 0. (A10)

This equation is solved self-consistently together with the
number equation to obtain the correct values of |�∞| and μ

for a given set of system parameters.
In principle, all expansion coefficients (A3)–(A8) fully

depend upon the order parameter �(x, τ ), but in practice
we assume that the coefficients associated with the second-
order derivatives of the pair field can be kept constant and
equal to their bulk value, since retaining their full space-
time dependence would lead us beyond the second-order
approximation of the gradient expansion. This means that in
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expressions (A5)–(A8) for the coefficients C, E , Q, and R, we
set |�(x, τ )|2 → |�∞|2 and Ek → Ek,∞ = (ξ 2

k + |�∞|2)1/2.
For the thermodynamic potential �s and the coefficient D, on
the other hand, the full space-time dependence of the order
parameter is preserved.

From the Euclidian-time action functional (1), the EFT
equation of motion for the pair field �(r, t ) is found to be

iD̃(|�|2)
∂�

∂t
= −C∇2

r � + Q
∂2�

∂t2

+
(
A(|�|2) + 2E∇2

r |�|2 − 2R
∂2|�|2

∂t2

)
�,

(A11)

where the coefficients D̃ and A are defined as

D̃ = ∂ (|�|2D)

∂ (|�|2)
, A = ∂�s

∂ (|�|2)
. (A12)

The first term on the right-hand side of the equation can
be identified as a kinetic energy term, while the nonlinear
term represents a system-inherent potential for the field. The
ratio D̃/C can be interpreted as a renormalization factor
for the mass of the fermion pairs [22] and the coefficient
A determines the uniform background value of the system,
since A(�)� = 0 is nothing but the aforementioned gap
equation (A10). It has been verified that in the deep BEC
limit (1/kF aS 	 1), the equation correctly tends to the Gross-
Pitaevskii equation for bosons with a mass M = 2m and an
s-wave boson-boson scattering length aB = 2as [28].

APPENDIX B: VARIATIONAL DERIVATION OF THE
HEALING LENGTH

We can derive an analytic expression for the healing length
ξ associated with a stationary (black) soliton in a superfluid
by considering a variational ansatz for the wave function and
minimizing the free energy of the system. Since the wave
function of a stationary soliton is expected to be real and
antisymmetric, we assume a hyperbolic tangent model for the
pair field

�(x) = 	 tanh

(
x√
2ξ

)
. (B1)

The EFT free energy for a one-dimensional Fermi superfluid
is given by

FEFT[�] =
∫ ∞

−∞
dx[X (|�|2) + C∂x�̄∂x� − E (∂x|�|2)2],

(B2)

with

X (|�|2) = �s(|�|2) − �s(|�∞|2). (B3)

The subtraction of the term �s(|�∞|2) indicates that the
energy is measured with respect to the energy of the uniform
system. By substituting the ansatz (B1) for the pair field into
the free energy and making a change of integration variable
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FIG. 4. Variational estimate of the healing length as a function of
the interaction parameter.

u = x/
√

2ξ , we obtain

F =
√

2
∫ ∞

−∞
du

[
ξX (u) + C̃	2

2ξ
sech4(u)

− Ẽ	4

ξ
sech4(u) tanh2(u)

]
. (B4)

The integrals in the second and third terms can be computed
analytically. The derivative of F with respect to the variational
parameter ξ then becomes

dF

dξ
=

√
2

[∫ ∞

−∞
X (u)du − 2C̃	2

3ξ 2
+ 4Ẽ	4

15ξ 2

]
. (B5)

By setting the above equation equal to zero, we find the
variational expression for the healing length

ξ =
√

10C̃	2 − 4Ẽ	4

15B
, (B6)

with

B =
∫ ∞

−∞
X (u)du. (B7)

Figure 4 shows the behavior of this quantity as a function of
the interaction parameter (kF as)−1. A similar expression was
derived in the context of the EFT for the width of a vortex core
in Ref. [29]. A more extensive study of the healing length of
a fermionic superfluid across the BEC-BCS crossover can be
found in Ref. [30].

APPENDIX C: DISCRETIZATION AND NUMERICAL
EVOLUTION OF THE EQUATION OF MOTION

In this Appendix we elaborate on how the EFT equation
of motion (2) is discretized and solved numerically using the
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explicit RK4 algorithm. We introduce a field φ(r, t ) such that

φ = ∂�

∂t
(C1)

and

φ̄ = ∂�

∂t
= ∂�̄

∂t
. (C2)

Substituting this into the equation of motion and making use
of the fact that

∂2|�|2
∂t2

= �̄
∂2�

∂t2
+ 2

∂�̄

∂t

∂�

∂t
+ �

∂2�̄

∂t2
, (C3)

we have

iD̃(|�|2)φ = −C̃∇2
r � + Q

∂φ

∂t
+

[
A(|�|2) + Ẽ∇2

r |�|2

−R̃

(
�̄

∂φ

∂t
+ 2|φ|2 + �

∂φ̄

∂t

)]
�. (C4)

In order to get an equation of the form ∂tφ = · · · , we take
the complex conjugate of (C4), find an expression for ∂t φ̄ as a
function of ∂tφ, and substitute this back into (C4), yielding

∂�

∂t
= 1

Q(Q − 2R̃|�|2)

[ − Q
(
A + Ẽ∇2

r |�|2 − 2R̃|φ|2)�
+iD̃(Qφ − R̃�(φ̄� + φ�̄ )) + C̃

(
�2R̃∇2

r �̄

+∇2
r �(Q − R̃|�|2)

)]
. (C5)

Equations (C1) and (C5) form a system of two coupled partial
differential equations of the form

∂�

∂t
= f (φ), (C6)

∂φ

∂t
= g(�,φ), (C7)

where f (φ) = φ and g(�,φ) is given by (C5). In the case
of a 2D system, we use finite mesh widths 	x and 	y and a
finite time step 	t to discretize space-time into a grid of L ×
M × N points by writing xl = l	x with l = 1, . . . , L; ym =
m	y with m = 1, . . . , M; and tn = n	t with n = 1, . . . , N .
This allows us to approximate the spatial derivatives by central
finite difference formulas

∂2�(x, y, t )

∂x2
= �l+1,m,n − 2�l,m,n + �l−1,m,n

	x2
, (C8)

∂2�(x, y, t )

∂y2
= �l,m+1,n − 2�l,m,n + �l,m−1,n

	y2
, (C9)

where we use the notation �l,m,n = �(xl , ym, tn). Since we
expect the superfluid to assume its uniform bulk value suf-
ficiently far from the soliton, we require the derivatives of
the fields to be zero at the x boundaries of the grid. In the y
direction, we apply periodic boundary conditions. If we now
know the values �l,m,n and φl,m,n at a certain time step tn for
all positions xl and ym, the explicit RK4 method allows us to
calculate for every position the values �l,m,n+1 and φl,m,n+1 of
the next time step by using the following algorithm [31]:

p1l,m,n = f (φl,m,n), (C10)

p2l,m,n = g(�l,m,n, φl,m,n), (C11)

q1l,m,n = f
(
φl,m,n + p2l,m,n/2

)
, (C12)

q2l,m,n = g
(
�l,m,n + p1l,m,n/2, φl,m,n + p2l,m,n/2

)
, (C13)

r1l,m,n = f
(
φl,m,n + q2l,m,n/2

)
, (C14)

r2l,m,n = g
(
�l,m,n + q1l,m,n/2, φl,m,n + q2l,m,n/2

)
, (C15)

s1l,m,n = f
(
φl,m,n + r2l,m,n

)
, (C16)

s2l,m,n = g
(
�l,m,n + r1l,m,n , φl,m,n + r2l,m,n

)
, (C17)

�l,m,n+1 = �l,m,n + 	t

6

(
p1l,m,n + 2q1l,m,n + 2r1l,m,n + s1l,m,n

)
,

(C18)

φl,m,n+1 = φl,m,n + 	t

6

(
p2l,m,n + 2q2l,m,n + 2r2l,m,n + s2l,m,n

)
.

(C19)

This scheme can be repeated until the solution has evolved up
to the desired point in time.

APPENDIX D: LINEARIZATION OF THE EQUATION
OF MOTION

To describe small fluctuations of the pair field, we add a
perturbation field δ�(r, t ) to the stable soliton solution �s(x):

�(r, t ) = �s(x) + δ�(r, t ). (D1)

We plug this perturbed solution into the equation of motion (2)
and expand the coefficients D̃ and A (which depend on the
local value of the order parameter) up to first order in the
perturbation field:

D̃(|�(r, t )|2) = D̃(|�s(x)|2) + ∂D̃

∂|�|2
∣∣∣∣
|�s|2

×�s(x)[δ�(r, t ) + δ�∗(r, t )] + · · · ,

(D2)

A(|�(r, t )|2) = A(|�s(x)|2) + ∂A
∂|�|2

∣∣∣∣
|�s|2

×�s(x)[δ�(r, t ) + δ�∗(r, t )] + · · · .

(D3)

In order to study explicitly the character of amplitude and
phase modes, we introduce the fields

P±(r, t ) = [δ�(r, t ) ± δ�∗(r, t )]/2. (D4)
If we then collect all terms of first order in the fluctuation
fields, we find two linearized equations

α1(x)P′′
+ + α2(x)P′

+ + [α3(x) − ω2α4(x)]P+ = ωγ (x)P−,

(D5)

β1P′′
− + [β2(x) − ω2β3]P− = ωγ (x)P+, (D6)

where the coefficients αi(x), βi(x), and γ (x) are given by

α1(x) = −[C̃ − 2Ẽ�2
s (x)], (D7)

α2(x) = 4Ẽ�s(x)∂x�s(x), (D8)

α3(x) = C̃k2 + As(x) + 2∂sAs(x)�2
s (x)

+2Ẽ [∂x�s(x)]2 + 4Ẽ�s(x)∂2
x �s(x), (D9)

α4(x) = Q − 2R̃�2
s (x), (D10)

β1 = −C̃, (D11)
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β2(x) = C̃k2 + As(x) + 2Ẽ [∂x�s(x)]2

+ 2Ẽ�s(x)∂2
x �s(x), (D12)

β3 = Q, (D13)

γ (x) = D̃s(x). (D14)

Here we have used the notation

fs = f (|�s(x)|2), ∂s fs = ∂ f

∂|�|2
∣∣∣∣
|�s|2

. (D15)
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