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Abstract

Open modification searching (OMS) is a powerful search strategy to identify peptides with any type of modi-
fication. OMS works by using a very wide precursor mass window to allow modified spectra to match against
their unmodified variants, after which themodification types can be inferred from the corresponding precursor
mass differences. A disadvantage of this strategy, however, is the large computational cost, because each query
spectrum has to be compared against a multitude of candidate peptides.
We have previously introduced the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-
SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting only a limited number of the
most relevant library spectra to compare to an unknown query spectrum. Here we demonstrate how this candi-
date selection procedure can be further optimized using graphics processing units. Additionally, we introduce
a feature hashing scheme to convert high-resolution spectra to low-dimensional vectors. Based on these algo-
rithmic advances, along with low-level code optimizations, the new version of ANN-SoLo is up to an order of
magnitude faster than its initial version. This makes it possible to efficiently perform open searches on a large
scale to gain a deeper understanding about the protein modification landscape. We demonstrate the compu-
tational efficiency and identification performance of ANN-SoLo based on a large data set of the draft human
proteome.
ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license at https:
//github.com/bittremieux/ANN‐SoLo.

1 Introduction

As mass spectrometry (MS) instrumentation has
matured over the last decade, the focus of pro-
teomics experiments has shifted from identifying
the peptides and proteins that are present in a bi-
ological sample to characterizing all proteoforms
therein [2]. Detection of proteoforms yields ad-
ditional biological insights relative to simple pep-
tide or protein lists, because the proteoforms cap-
ture disparate sources of biological variation that
alter the primary protein sequences, such as post-
translational modifications (PTMs) and amino acid
mutations.

Accordingly, detecting proteoforms in MS re-
quires detecting PTMs, which can be challenging. In
particular, appropriate search settings are needed to
correctly identify spectra corresponding tomodified
peptides. A common approach is to specify the vari-
able modifications that are expected to be present
a priori. A downside of this approach, however,
is that as the number of potential modifications in-

creases the search space explodes, leading to long
search times and reduced identification sensitivity.
A compounding problem is that, besides modifica-
tions of biological interest, other modifications can
be introduced during the various sample processing
steps as well [11]. This can lead to challenges to un-
tangle these artificialmodifications from the interest-
ing modifications.

An alternative to explicitly specifying a limited
number of variable modifications is open modifica-
tion searching (OMS) [3, 31]. OMS works by us-
ing a very wide precursor mass window, exceed-
ing the delta mass induced by PTMs, to infer iden-
tifications of modified spectra from partial matches
against their unmodified variants. Afterwards, the
presence and types of the modifications can be in-
ferred from the differences between the observed
precursor masses and the masses of the unmodified
peptides [5]. In this fashion, all possible modifica-
tions are implicitly considered, allowing an untar-
geted analysis of all modifications that are present.

A downside of using a very wide precursor mass
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window, however, is that the search space is con-
siderably enlarged relative to a standard database
search, rendering OMS computationally expensive.
As a result, historically OMS has only been used
to a limited extent and with severely restricted pro-
tein databases. Based on computational and algo-
rithmic advances, however, recently several modern
open search engines have been developed that can
efficiently handle this large search space [10, 14, 17,
19, 25, 34, 39]. These tools make it possible to per-
form OMS on a proteome-wide scale, allowing re-
searchers to gain a deeper understanding of the pro-
tein modification landscape.

Here we present an update to our Approximate
Nearest Neighbor Spectral Library (ANN-SoLo)
tool for efficient open modification spectral library
searching [10]. As described previously, ANN-
SoLo uses approximate nearest neighbor (ANN) in-
dexing to speed up OMS by selecting only a limited
number of the most relevant library spectra to com-
pare to an unknown query spectrum. This approach
is combined with a cascade search strategy [23] to
maximize the number of identified unmodified and
modified spectra while strictly controlling the false
discovery rate (FDR). Additionally, the shifted dot
product score is used to sensitively match modi-
fied spectra to their unmodified counterparts by tak-
ing both directlymatching fragments and fragments
that match according to the precursor mass differ-
ence into account [10].

We describe two major improvements to ANN-
SoLo. First, we show how feature hashing is used to
convert high-resolution tandem mass spectrometry
(MS/MS) spectra to vectors with a limited dimen-
sionality while closely capturing the high fragment
resolution. Hashed spectrum vectors approximate
the original spectra better compared to simply bin-
ning the spectra to vectors, leading to an improve-
ment in accuracy of the ANN candidate selection
step. Second, the spectral library candidate selec-
tion step is sped up by using specialized graphics
processing unit (GPU) hardware. Whereas GPUs
have previously been proposed to accelerate spec-
tral matching [6, 29, 30], to our knowledge this work
is the first application of GPUs to efficiently process
large search spaces, such as during OMS. We show
how these two developments increase the speed of
ANN-SoLo by up to an order of magnitude, making
it possible to performOMS extremely efficiently. We
demonstrate this high computational performance
through an open search of a large data set of the draft
human proteome and investigate human PTMs.

ANN-SoLo is implemented in Python and C++.
It is freely available as open source under the per-
missive Apache 2.0 license at https://github.com/
bittremieux/ANN‐SoLo.

2 Methods

2.1 Feature hashing to vectorize
high-resolution mass spectra

To build an ANN index to efficiently select can-
didates from the spectral library, spectra are vec-
torized to represent them as points in a multidi-
mensional space. In previous work [10], we con-
verted spectra to sparse vectors by dividing the
mass range into equally spaced bins and assign-
ing each peak’s intensity to the corresponding bin.
When choosing the mass bin width two conflicting
factors must be considered. First, the mass bins
should be as small as possible, ideally correspond-
ing to the fragmentmass tolerance, to accurately cap-
ture the peak masses. Second, because the sensi-
tivity of multidimensional indexing techniques de-
creases as the dimensionality increases, due to the
curse of dimensionality [8], shorter vectors are pre-
ferred. Previously, we empirically found that mass
bins of 1Da represented a good trade-off between
fragment mass resolution and vector dimensional-
ity [10]. However, because such mass bins consider-
ably exceed the fragment mass tolerance when deal-
ing with high-resolution spectra, multiple distinct
fragments occasionally get merged into the same
mass bin. Thismerging leads to an overestimation of
the spectral similarity when comparing two spectra
with each other using their vector representations,
because spurious matches between fragments can
occur.

In this work, we employ a different vectorization
scheme. Rather than binning spectra to vectors di-
rectly, we use feature hashing [38] to convert high-
resolution spectra to low-dimensional vectors (fig-
ure 1). The following two-step procedure is used
to convert a high-resolution MS/MS spectrum to a
vector:

1. Convert the spectrum to a sparse vector us-
ing smallmass bins to tightly capture fragment
masses.

2. Hash the sparse, high-dimensional vector to a
lower-dimensional vector by using a hash func-
tion to map the mass bins to a limited number
of hash bins.

More precisely, let h : N → {1, . . . ,m} be a ran-
dom hash function. Then h can be used to convert a
vector x = ⟨x1, . . . , xn⟩ to a vector x′ = ⟨x′

1, . . . , x
′
m⟩,

with m ≪ n:

x′
i =

∑
j:h(j)=i

xj

It can be proven that under moderate assumptions
feature hashing approximately conserves the Eu-
clideannorm [20], andhence, the similarity between
hashed vectors can be used to approximate the sim-
ilarity between the original, high-dimensional vec-
tors.
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Figure 1: High-resolution MS/MS spectra are first
converted to sparse vectors using small mass bins to
accurately capture the fragment masses. Next, these
high-dimensional, sparse vectors are converted to
lower-dimensional vectors through feature hashing.

An important consideration in choosing hash
function h is that it must be unbiased in order to
minimize the number of hash collisions. Hash col-
lisions occur when fragment peaks in multiple dis-
tinct mass bins are mapped to the same hash bin.
This can happen because the number of hash bins
is significantly lower than the number of original
mass bins. Hash collisions cause unrelated frag-
ment peaks to be matched with each other, lead-
ing to an inflated similarity between two spectrum
vectors. To avoid a systematic hash collision bias
hash function h has to be truly random. This is, for
example, not the case for the classic multiply-mod-
prime hashing scheme [16]. In this work, we instead
use theMurmurHash3 algorithm [1], a popular non-
cryptographic hash function that essentially behaves
as truly random hashing [16]. MurmurHash3 is an
efficient, general-purpose hash function that uses
multiplications, rotations, XOR operations, and bit
shifts to convert an input key to a random hash
value. Subsequently, the modulo operator is used
to restrict the hash value to a user-specified num-
ber of hash bins. The number of hash bins m, i.e.
the length of the hashed vectors, directly influences
the rate of collisions. The smaller m is, the more
likely it is that two or more fragment peaks will be
mapped to the same hash bin. Nevertheless, for a
suitable value of m, because spectra contain only a
small number of fragment peaks, the unhashed spec-
trum vectors are very sparse and can be converted to
low-dimensional vectorswithout suffering toomany
hash collisions.

2.2 GPU-powered spectral library
candidate selection

ANN-SoLo uses approximate nearest neighbor in-
dexing to efficiently find the relevant candidate spec-
tra in the spectral library that need to be matched

against each query spectrum when performing an
open search [10]. First, anANN index is constructed
using the vectorized library spectra. Subsequently,
to identify an unknown query spectrum, a nearest
neighbor search using the ANN index is performed
to select a limited set of library candidates. Finally,
the optimal match between the query spectrum and
its library candidates is computed using the shifted
dot product to accurately match modified spectra to
their unmodified library counterparts.

Typically, during an open search each query spec-
trum has to be compared to most of the spectra
in the library, imposing a significant computational
burden. In contrast, ANN-SoLo massively speeds
up open searches by using an ANN index to effi-
ciently select only a limited number of relevant li-
brary candidates to be evaluated for each query spec-
trum. Whereas previously the Annoy library [35]
was used for ANN searching, this is now done us-
ing the Faiss library [21], developed by Facebook for
web-scale similarity searching. A major advantage
of Faiss is that it can use NVIDIA CUDA-enabled
GPUs to accelerate ANN searching, resulting in sig-
nificant speed-ups [4].

ANN searching in Faiss is based on the concept
of an inverted index [33]. To construct the ANN in-
dex a representative set of vectors is selected by us-
ing the centroids of a k-means clustering operation.
Next, for each of these centroids a list of references
to the library spectra that are closest to it is stored in
an inverted index file. Subsequently, during ANN
querying, finding the candidates for a query spec-
trum no longer requires searching the entire spec-
tral library. Instead, the query only needs to be com-
pared against the small number of centroids in the
inverted index to retrieve the closest library candi-
dates. The accuracy and speed of ANN indexing is
governed by two hyperparameters: the number of
lists used to partition the spectral library during in-
dex construction and the number of lists to probe
during querying. Using a higher number of lists re-
sults in a more fine-grained partitioning of the data
space, whereas probing more lists during querying
decreases the chance of missing the best library can-
didate at the expense of running time.

2.3 Miscellaneous improvements

In addition to the important algorithmic changes de-
scribed above, we have implemented several addi-
tional, smaller improvements.

Spectral library reading A significant part of the
ANN-SoLo runtime consists of reading spectra from
the spectral library file. Because library spectra
are retrieved from disk in an indeterminate order,
based on the query spectra that are being identi-
fied, a large number of random-access read opera-
tions are needed. To optimize spectral library read-
ing Cython [7] is used to parse the spectral library
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file efficiently by avoiding overhead from the Python
IO libraries. Additionally, C-style memory mapping
is used to perform random-access reads from binary
spectral library files.

Spectrum preprocessing To optimize the
spectrum–spectrum match (SSM) scoring the
query and library spectra are preprocessed to
increase their signal-to-noise ratio. Spectrum pre-
processing includes, for example, precursor peak
and low-intensity noise peak removal, and fragment
intensity scaling to de-emphasize overly dominant
peaks. Although the previous spectrum preprocess-
ing functionality was already implemented quite
efficiently by making extensive use of the NumPy
scientific Python library [36], it has been further op-
timized using Numba [28], a just-in-time compiler
for Python. This preprocessing functionality has
been extracted into the spectrum_utils software
package [9] for general public use to preprocess
and visualize MS/MS spectra.

Batch query processing Rather than identifying
each query spectrum individually and retrieving the
candidate spectra from the ANN index for each
query separately, the query spectra are now pro-
cessed in batches. This makes it possible to exploit
parallelism while querying the ANN index, opti-
mally utilizing the GPU hardware to achieve a con-
siderable speed-up.

2.4 Data sets

The main data set used to evaluate the improve-
ments made to ANN-SoLowas generated in the con-
text of the 2012 study by the Proteome Informat-
ics Research Group of the Association of Biomolec-
ular Resource Facilities, whose goal was to assess
the community’s ability to analyze modified pep-
tides [12]. The biological sample for this study con-
sisted of a mixture of synthetic peptides with bio-
logically occurring modifications combined with a
yeast whole cell lysate as background, and the spec-
tra were measured using a TripleTOF instrument.
For full details on the sample preparation and acqui-
sition see the original publication by Chalkley et al.
[12]. All data was downloaded from the MassIVE
data repository (accession MSV000078492).

To search the iPRG2012 data set the human HCD
spectral library compiled by the National Institute
of Standards and Technology (version 2016/09/12)
and a TripleTOF yeast spectral library from Selevsek
et al. [32] were used. First, matches to decoy pro-
teins were removed from the yeast spectral library,
afterwhich both spectral librarieswere concatenated
using SpectraST [27] version 5.0 while removing du-
plicates by retaining only the best replicate spectrum
for each individual peptide ion. Next, decoy spec-
tra were added in a 1:1 ratio using the shuffle-and-
repositionmethod [26], resulting in a single spectral

library file containing 1 188 168 spectra.
Additionally, ANN-SoLo was used to reanalyze

the human draft proteome data set by Kim et al. [24].
This large data set aims to cover the whole human
proteome and consists of 30 human samples in 2212
raw files, measured using LTQ–Orbitrap Velos and
LTQ–Orbitrap Elite mass spectrometers. For full de-
tails on the sample preparation and acquisition see
the original publication by Kim et al. [24]. Raw files
were downloaded from the PRoteomics IDEntifica-
tions (PRIDE) database [37] (project PXD000561)
and converted to MGF files using msconvert [13].

To search the Kim data set the MassIVE-KB pep-
tide spectral library (version 2018/06/15) was used.
This is a repository-wide human higher-energy col-
lisional dissociation spectral library derived from
over 30 TB of human MS/MS proteomics data. The
original spectral library contained 2 154 269 MS/MS
spectra, from which duplicates were removed using
SpectraST [27] version 5.0 by retaining only the best
replicate spectrum for each individual peptide ion,
resulting in a spectral library containing 2 113 413
spectra. Next, decoy spectra were added in a 1:1 ra-
tio using the shuffle-and-reposition method [26], re-
sulting in a final spectral library containing 4 226 826
spectra.

All MS/MS data, spectral libraries, and identi-
fication results have been deposited to the Pro-
teomeXchange Consortium [18] via the PRIDE part-
ner repository [37] with the data set identifier
PXD013641 and via theMassIVE repositorywith the
data set identifier RMSV000000091.4.

2.5 Search settings

ANN-SoLo version 0.2 was used to produce all
search results. Section 3.2 compares these results
to those obtained using ANN-SoLo version 0.1.3,
whichwas previously described by Bittremieux et al.
[10].

Spectrum preprocessing consisted of the removal
of the precursor ion peak and noise peaks with an
intensity below 1% of the base peak intensity. If ap-
plicable, spectra were further restricted to their 50
most intense peaks. Spectra that contained fewer
than 10 peaks remaining or with a mass range less
than 250m/z after peak removal were discarded. Fi-
nally, peak intensities were rank transformed to de-
emphasize overly dominant peaks.

The search settings for the iPRG2012 data set con-
sist of a precursor mass tolerance of 20 ppm for the
first level of the cascade search, followed by a pre-
cursor mass tolerance of 300Da for the second level
of the cascade search. The fragment mass toler-
ance was 0.02Da. To evaluate the spectrum hashing
performance a bin width between 0.02Da and 1Da
and a hash length between 100 and 1600 were used.
To evaluate the performance of the ANN index the
number of lists was varied between 64 and 16 384
and the number of probes was varied between 1 and

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=48e9a924f0394d6d8d1ed04a1716e73b
https://www.ebi.ac.uk/pride/archive/projects/PXD000561
https://www.ebi.ac.uk/pride/archive/projects/PXD013641
https://massive.ucsd.edu/ProteoSAFe/reanalysis.jsp?task=b25b8c664eb8477a9991c477a40af8c2
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1024. The number of candidates to retrieve from the
ANN index was either 1024 (GPU) or 25 000 (CPU).

For the Kim data set a precursor mass tolerance
of 10 ppm was used for the first level of the cascade
search, followed by a precursor mass tolerance of
500Da for the second level of the cascade search.
The fragment mass tolerance was 0.05Da. To vector-
ize spectra a bin width of 0.1Da and a hash length
of 800were used. ANNsearchingwas performedus-
ing 256 lists ofwhich 128were probed during search-
ing, while retrieving 1024 candidates for each query.

All SSMs are reported at a 1% FDR threshold.

2.6 Code availability

The ANN-SoLo spectral library search engine is
available as a Python command-line tool. All code
is released as open source under the permissive
Apache 2.0 license and is available at https://
github.com/bittremieux/ANN‐SoLo. This web re-
source also includes detailed instructions on how to
install and run ANN-SoLo, along with code note-
books to reproduce all analyses discussed next.

3 Results

3.1 Feature hashing converts
high-resolution spectra to
low-dimensional vectors

Feature hashing is used during ANN indexing
to convert high-resolution MS/MS spectra to low-
dimensional vectors while closely capturing their
fine-grained mass resolution. Previously, 1Da mass
bins were used to vectorize the MS/MS spectra as a
trade-off between fragment mass resolution and vec-
tor dimensionality [10]. However, this approach of-
ten results in multiple distinct peaks being merged
into a single mass bin, leading the vector dot prod-
uct to overestimate the actual spectral similarity (fig-
ure 2A, supplementary figures 1 and 2). Instead,
for high-resolution spectra small mass bins should
be used to closely capture the fragment masses, af-
ter which feature hashing is used to obtain low-
dimensional vectors that are amenable to nearest
neighbor searching (figure 2B, supplementary fig-
ures 1 and 2).

When feature hashing is employed, the dimen-
sionality of the spectrum vectors is effectively dis-
connected from the bin width. This allows the bin
width to be selected to optimally capture the frag-
ment masses based on the operational parameters
associated with the mass spectrometry run. Hashed
vectors should be as short as possible to avoid the
curse of dimensionality during nearest neighbor
searching, while not being overly short to minimize
the rate of hash collisions. Empirically, we have
found that a hash length of 400 to 800 can capture
the fragments in high-resolution spectra with a min-
imal loss of information (supplementary figures 1
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Figure 2: Comparison between the spectral similar-
ity based on the spectrum shifted dot product and
the vector dot product for SSMs from the iPRG2012
data set (1% FDR). (A) The vector dot product is
obtained by binning spectra using 1Da mass bins.
(B) The vector dot product is obtained by binning
spectra using 0.04Da mass bins hashed to vectors of
length 800. When using 1Da mass bins the vector
dot product often overestimates the actual spectral
similarity (A; SSMs above the diagonal), while small
mass bins avoid spurious peak matches (B).

and 2). Furthermore, while such hashed vectors cap-
ture the fragment resolution of high-resolution spec-
tramore closely and enable the vector dot product to
better approximate the spectral similarity, their di-
mensionality is actually lower than that of the origi-
nal 1Da binned vectors. Consequently, a secondary
advantage of feature hashing is that these vectors re-
quire less disk space to be stored in the ANN index,

https://github.com/bittremieux/ANN-SoLo
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Figure 3: ANN-SoLo performance improvements.
Whereas an open search of the iPRG2012 data set us-
ing the previous version of ANN-SoLo took 50min,
the current version performs a similar search in un-
der 6min. Timing results were obtained on an Intel
Xeon E5-2643 v3 processor for ANN-SoLo version
0.1.3, combined with an NVIDIA GeForce RTX 2080
GPU for ANN-SoLo version 0.2.

and that their dot product can be computed slightly
faster.

3.2 Highly efficient open modification
searching using GPUs

To test the effectiveness of the speedups that we
have introduced to ANN-SoLo, we profiled the pre-
vious and current versions of the software on the
iPRG2012 data set. Although the previous ver-
sion of ANN-SoLo already outperformed alterna-
tive spectral library search engines by an order of
magnitude during open modification searching in
terms of runtime [10], this analysis shows an ad-
ditional speedup by up to an order of magnitude
compared to the previously reported results (fig-
ure 3). Notably, the use of specialized GPU com-
puting resources makes it possible to very efficiently
select library candidates. The time spent during
candidate selection has decreased by a factor of
30, reducing the average time required to select li-
brary candidates from 0.1222 s/query spectrum to
0.0036 s/query spectrum.

A drawback of the approximate nature of the can-
didate selection step is that there is a small risk of
missing the optimal library candidate. First, it is not
guaranteed that the exact nearest neighborwill be re-
trieved from the ANN index in all cases. Two hyper-
parameters (the number of lists used during index
construction and the number of probed lists during
querying) can be used to control the ANN searching
performance (figure 4, supplementary table 1). Sec-
ond, there is a discrepancy between similarity scor-
ing in the ANN index, which is done using a stan-
dard dot product between the spectrum vectors, and
the shifted dot product score matching unmodified
andmodified spectra to each other to obtain the final
SSM ranking. Because shifted peaks are not taken
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Figure 4: Trade-off between search speed and the
number of identified spectra for the iPRG2012 data
set (up and to the right is better). The number of
identifications is represented as the SSM recall com-
pared to the results of a brute-force open search
without using ANN indexing. Timing results were
obtained on an Intel Xeon E5-2643 v3 processor
with four threads for the ANN CPU and brute-force
searches, combined with an NVIDIA GeForce RTX
2080 GPU for the ANN GPU searches. Parallel ex-
ecution (on the CPU or GPU) was limited to the
candidate selection step. The multiple ANN results
correspond to different hyperparameter configura-
tions, with the settings that lie on the Pareto fron-
tier shown. ANN indexing provides speed-ups of
up to two orders of magnitude compared to the
brute-force open search, approaching the speed of
a standard search. The ANN hyperparameters can
be set to achieve a higher SSM recall at the expense
of a slight decrease in search speed, maximizing the
number of identified spectra while still achieving
a speed-up of an order of magnitude over a brute-
force open search. Specific values of the ANNhyper-
parameters and the corresponding speed and identi-
fication performance are available in supplementary
table 1.

into account during ANN searching, library candi-
dates are selected based on partial matches between
unshifted peaks. Consequently, if an optimal SSM
contains a large proportion of shifted peaks, the cor-
responding library candidate will not be found via
ANN searching. To alleviate this problem, multiple
library candidates are retrieved from the ANN in-
dex, and these candidates are then rescored using
the shifted dot product (supplementary figure 3).
The number of considered library candidates is an
additional hyperparameter that can be used to con-
trol the performance of ANN-SoLo by limiting the
number of spectrum–spectrum comparisons that
have to be performed for each query spectrum, at the
expense of missing the optimal library candidate in
case it is heavily modified (supplementary figure 4).
A limitation of the GPU search mode is that it al-
lows at most 1024 candidates to be retrieved from
the ANN index due to GPUmemory constraints. Al-
ternatively, ANN-SoLo can be run in a CPU-only
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mode which does not have this limitation. This al-
lows the user to trade off fast runtimes for a slightly
higher number of identifications based on their re-
quirements and available computational resources.

3.3 Large-scale investigation of the
modified human proteome

The high computational efficiency of ANN-SoLo
makes it possible to perform untargeted PTM pro-
filing via open searches at an unprecedented scale.
Here we have analyzed the draft human proteome
data set by Kim et al. [24], containing approximately
25 million MS/MS spectra, in combination with a
large human spectral library, containing over four
million spectra. A brute-force open search of such a
large search space would require billions, if not tril-
lions, of spectrum–spectrum comparisons to match
all query spectra against the spectral library, which
would clearly be computationally infeasible. In con-
trast, ANN-SoLo only needs 281 hours to search
this large data set (single instance wall time), cor-
responding to only 8 minutes of processing time per
raw file on average.

ANN-SoLo identifies over 14 million SSMs out of
the 25 million query spectra. Among these identi-
fications, approximately 9.8 million SSMs were ob-
tained during the first level of the cascade search,
and hence correspond to direct matches between
query spectra and library spectra. The remaining
4.3million SSMs have a non-zero precursormass dif-
ference and hence represent modified peptides (fig-
ure 5 and table 1). We can see that frequently occur-
ring modifications can mostly be attributed to vari-
ous sample processing steps or can be explained by
amino acid substitutions. Modifications of potential
biological interest, such as acetylation, phosphory-
lation, GlyGly, etc., are detected at lower rates. Be-
cause thesemodifications are less abundant than the
modifications introduced during sample processing,
typically only a handful of such PTMs will be set
as variable modifications during searching to mini-
mize an unnecessary search space explosion. In con-
trast, our results indicate that it is possible to detect
various types of biologically relevant modifications
across the whole human proteome using OMS.

4 Conclusions

Wehave presented an update to theANN-SoLo spec-
tral library search engine. ANN-SoLo uses ANN in-
dexing to efficiently traverse the large search space
encountered during OMS by selecting only a lim-
ited number of the most relevant library spectra for
comparison to the unknown query spectra. We have
demonstrated how specialized hardware resources,
such as GPUs, can be used to optimize the candidate
selection step and speed up OMS. Additionally, we
have shown how feature hashing can be used to vec-
torize high-resolutionMS/MS spectra. Feature hash-

# SSMs ∆m (Da) Potential modification
9 882 777 0.001
308 387 57.022 Carbamidomethyl /

Ala → Gln / Gly → Asn /
Addition of Gly

246 428 27.996 Formylation / Ser → Asp
/ Thr → Glu

219 006 0.994 First isotopic peak
211 927 15.995 Oxidation or hydrox-

ylation / Ala → Ser /
Phe → Tyr

163 269 −0.986 Amidation
133 020 14.016 Methylation /Asp → Glu

/ Gly → Ala / Ser → Thr
/ Val → Leu/Ile /
Asn → Gln

129 687 −17.025 Pyro-glu from Q / loss of
ammonia

111 075 −18.010 Dehydration / Pyro-glu
from E

99 286 1.988 Second isotopic peak

Table 1: The most frequent precursor mass differ-
ences for the Kim data set and likely modifications
sourced from Unimod [15] or isotopic variants cor-
responding to these precursormass differences. The
delta-mass column contains the median precursor
mass difference of that SSM subgroup.

ing makes it possible to accurately capture the high
fragment resolution of modern MS data using low-
dimensional spectrum vectors.

To map mass bins in high-dimensional vectors
to hash bins in low-dimensional vectors during fea-
ture hashingwe have used the general-purposeMur-
murHash algorithm. Alternatively, other hash func-
tions can be used as well, potentially incorporating
domain knowledge. For example, a custom hash
function that exploits the mass clustering effect for
peptides, by not considering invalid mass values be-
cause peptides can only contain a limited number of
distinct chemical elements, could be beneficial in re-
ducing the number of hash collisions.

In this case the vectorized spectra after feature
hashing were used for ANN searching to efficiently
perform OMS. Via feature hashing the dimension-
ality of spectrum vectors can be kept low and their
sparsity is reduced. As such, this techniquemight be
used for various other downstream machine learn-
ing approaches on MS/MS spectra as well [22], be-
cause such approaches often require dense and short
vectors as input.

We have demonstrated the computational effi-
ciency and identification performance of ANN-SoLo
on a large data set of the draft human proteome in
combination with a repository-wide spectral library.
Using traditional search engines it would be unfea-
sible to perform OMS on such a large volume of
data. In contrast, due to its advanced, GPU-powered
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Figure 5:Precursormass differences for theKimdata set (table 1). Only non-zero precursormass differences are
shown, whereas themajority of SSMs correspond to unmodified peptideswith a zero precursormass difference.
The five most frequent precursor mass differences are annotated with their likely modifications.

ANN indexing to condense the search space, ANN-
SoLo can perform this task in a matter of minutes
per raw file. These algorithmic advances make it
possible to do OMS on a routine basis, allowing
researchers to investigate the protein modification
landscape at an unprecedented scale and depth.

The ANN-SoLo spectral library search engine is
freely available as open source. The source code
and detailed instructions can be found at https://
github.com/bittremieux/ANN‐SoLo.
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