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Abstract

In this paper, we present an improved two-level heuristic to solve the clustered vehicle

routing problem (CluVRP). �e CluVRP is a generalization of the classical capacitated

vehicle routing problem (CVRP) in which customers are grouped into prede�ned clusters,

and all customers in a cluster must be served consecutively by the same vehicle. �is paper

contributes to the literature in the following ways: (i) new upper bounds are presented for

multiple benchmark instances, (ii) good heuristic solutions are provided in much smaller

computing times than existing approaches, (iii) the CluVRP is reduced to its cluster level

without assuming Euclidean coordinates or distances, and (iv) a new variant of the Clu-

VRP, the CluVRP with weak cluster constraints, is introduced. In this variant, clusters are

allocated to vehicles in their entirety, but all corresponding customers can be visited by

the vehicle in any order.

�e proposed heuristic solves the CluVRP by combining two variable neighborhood

search algorithms, that explore the solution space at the cluster level and the individual

customer level respectively. �e algorithm is tested on di�erent benchmark instances from

the literature with up to 484 nodes, obtaining high quality solutions while requiring only

a limited calculation time.

Keywords: clustered vehicle routing problem, variable neighborhood search, meta-

heuristic
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1. Research context and literature review

Introduced by Dantzig and Ramser (1959), the vehicle routing problem (VRP) is one of the

best known and most widely studied problems in the Operations Research community. Many

variants of the VRP have been proposed and solved during the last decades. In this paper, we

focus on the clustered vehicle routing problem (CluVRP), a variant of the capacitated vehicle

routing problem (CVRP) in which all customers are partitioned into prede�ned clusters. In the

strict version of the CluVRP, all customers belonging to the same cluster should be visited by

the same vehicle consecutively in the same path. In other words, when a customer is visited by

a vehicle, all other customers belonging to the same cluster should be visited �rst before the

vehicle can either return to the depot or move to a client that belongs to another cluster. We

refer to this problem as the clustered vehicle routing problem with strong cluster constraints. In

Section 5, we will de�ne a new variant of the problem with weak cluster constraints.

�e idea of customer clustering was introduced by Chisman (1975) when de�ning the clustered

travelling salesman problem (CluTSP). �e objective of this problem is to construct a Hamilto-

nian path with minimum distance, visiting all customers exactly once. Customers, however, are

assigned to a set of prede�ned clusters and an extra constraint imposes that all customers be-

longing to the same cluster should be served consecutively. �e main algorithmic contributions

regarding the CluTSP consist of a tabu search heuristic (Laporte et al., 1997), genetic algorithms

(Ding et al., 2007; Potvin and Guertin, 1996) and a path relinking approach including GRASP

(Mestria et al., 2013). In addition to a number of vehicle routing applications, the CluTSP can

also be applied in many other �elds, such as manufacturing (machine scheduling, plate cu�ing,

optimisation of resource usage in a production process), IT (disk fragmentation, optimisation

of computer program structure) and microscopy (cytology) (Laporte et al., 2002).

�e CluVRP was introduced by Sevaux and Sörensen (2008) in order to model the parcel deliv-

ery activities of courier companies. A common practice in this industry is to sort all outbound

parcels into bins, where each bin corresponds to a speci�c, prede�ned part of the distribution

area, called a zone. �e �rst step in solving the distribution planning problem of a courier

company is to assign these bins (zones) to the vehicles available. A multi-objective approach

for this problem is presented by Janssens et al. (2015). A�erwards, an optimal cluster and cus-

tomer sequence should be determined for every vehicle. Other examples involving customer

clustering can be found in situations where it is desirable that certain customers are served by

the same vehicle. �is might be due to the fact that some customers demand a similar service,

request a speci�c repairman skill, or if the customer-driver relationship is perceived important

by one of the parties.
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In Pop et al. (2012), an exact method for solving the CluVRP is developed as an extension

of the Generalized Vehicle Routing Problem (GVRP). �e GVRP is closely related to the Clu-

VRP, as both problems share the concept of customer clustering. Contrary to the CluVRP, the

GVRP requires that only one customer is visited in every cluster (Ghiani and Improta, 2000).

A new compact and e�ective integer programming formulation and exact solution approach is

proposed in Ba�arra et al. (2014).

To solve the CluVRP heuristically, Barthélemy et al. (2010) introduce a transformation of the

CluVRP into the CVRP. �is is done by adding a large distance M to all inter-cluster edges in

the distance matrix. As a result, routes are obtained in which all customers of a single cluster

are served before leaving the cluster, because of the high penalty costs. In Barthélemy et al.

(2010) this big M approach is further combined with a simulated annealing heuristic.

A hybrid algorithm that does not make use of the big M transformation is proposed in Marc

et al. (2015), but this algorithm makes use of precomputed cluster centres and is therefore only

able to solve Euclidean instances. Furthermore, no calculation times are mentioned.

Two alternative metaheuristic solution approaches are proposed by Vidal et al. (2015). �e �rst

one is an adaptation of the Iterated Local Search (ILS) algorithm developed by Subramanian

(2012) for the CVRP. In order to avoid the evaluation of many infeasible moves, due to the

additional cluster constraints, the neighborhoods are rede�ned. Secondly, Vidal et al. (2015)

use their Uni�ed Hybrid Genetic Search (UHGS) approach to solve the CluVRP. Since this

method is designed to solve the non-clustered VRP, the pre-computation of all intra cluster

Hamiltonian paths is required. �e authors report high quality solutions for both methods.

�is solution quality, however, comes at the expense of very high calculation times.

Defryn and Sörensen (2015) propose a decomposition of the problem in two optimisation levels:

a high-level routing problem at the cluster level and a low-level routing problem at the indi-

vidual customer level. Expósito-Izquierdo et al. (2016) acknowledge the two-level optimisation

strategy and propose a solution algorithm that combines the Record-to-record algorithm (Li

et al., 2007) at the cluster level with the Lin-Kernighan heuristic (Lin and Kernighan, 1973) to

determine the intra-cluster routes.

�e current paper contributes to the existing literature in the following ways. First, we are

able to report improved results on most of the instances provided by Expósito-Izquierdo et al.

(2016). Secondly, even though good algorithms exist for solving the CluVRP, most notably the

ones proposed by Vidal et al. (2015), a gap remains for an approach that allows to calculate good

solutions in a short amount of computing time. �e heuristic procedure proposed in this paper

is able to generate good quality feasible solutions very fast. Such an algorithm is necessary in
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situations where large calculation times are not available or impractical, such as in the daily

planning process of couriers or other transportation companies. It is additionally useful in

applications for which the CluVRP is solved many times as a subproblem. For example, the

problem of de�ning the optimal customer clusters in the distribution area will rely on the

CluVRP solution as an evaluation criterion. In this case, a fast evaluation is preferred over

the fact that the optimal solution is guaranteed. A third contribution is that, compared to

Defryn and Sörensen (2015) and Expósito-Izquierdo et al. (2016), we generalise the two-level

framework to also handle non-Euclidean instances. Finally, a new CluVRP variant, i.e., the

CluVRP with weak cluster constraints is introduced in this paper. For some applications, the

use of clusters might be bene�cial to some extent (e.g., the sorting of the packages and the

allocation of zones to vehicles for courier companies, as described above), but could be relaxed

when it comes to optimising the route of a single vehicle. In other words, the CluVRP with

weak cluster constraints still enforces that all customers belonging to the same cluster are

visited by the same vehicle, but relaxes the constraint that they should be visited consecutively.

�e customers in the clusters assigned to a vehicle therefore can be visited in any order. To the

best of our knowledge, this problem has not yet been described in the literature.

�e structure of the paper is as follows. In Section 2, the CluVRP is formally described, a�er

which a detailed analysis of the developed metaheuristic is performed in Section 3. Our algo-

rithm is tuned and tested on multiple instances of di�erent sizes in Section 4. �e CluVRP with

weak cluster constraints is introduced and compared to the original strong cluster constraint

variant in Section 5. Finally, the main conclusions are summarised in Section 6.

2. Problem definition

In the CluVRP with strong cluster constraints, we are given a complete undirected graph G =

(V ,E), where V is a set of vertices including one depot (denoted as V0) and multiple customer

nodes. A distancedi j , is associated with each edge (i, j) ∈ E connecting two nodes. We consider

K to be a set of homogeneous vehicles with a maximum capacityQ each. All vehicles start and

end their trip at the depot. For each customer i the demand is denoted by qi . Furthermore, a set

of clusters is denoted by R. Cluster r0 ∈ R only contains one node, the depot. All other clusters

contain at least one customer. �e set of customers in a cluster is denoted as Cr = {i ∈ V \V0 :

ri = r }, ∀r ∈ R.

Following (Expósito-Izquierdo et al., 2016), the CluVRP can be de�ned by the mathematical

model described below which requires the de�nition of some additional variables. Consider Z
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to be any subset ofV that is di�erent fromV . �en, let δ+(Z ) be the set of edges (i, j) ∈ Z ×V \Z

and δ−(Z ) the set of edges (i, j) ∈ V \Z × Z .

xi jk =

{
1 vehicle k travels from node i to node j

0 otherwise

yik =

{
1 customer i is served by vehicle k

0 otherwise

min

∑
(i, j)∈E

∑
k ∈K

di jxi jk (1)

Subject to ∑
k ∈K

yik = 1 ∀i ∈ V \V0 (2)∑
k ∈K

y0k = |K | (3)∑
j ∈V \V0

xi jk =
∑

j ∈V \V0

x jik = yik ∀k ∈ K ,∀i ∈ V (4)∑
i ∈V

qiyik ≤ Q ∀k ∈ K (5)∑
i ∈S

∑
j<S

xi jk ≤ yhk ∀Z ⊆ V \V0,∀h ∈ Z ,∀k ∈ K (6)∑
(i, j)∈δ+(Cr )

∑
k ∈K

xi jk =
∑

(i, j)∈δ−(Cr )

∑
k ∈K

xi jk = 1 ∀r ∈ R (7)

xi jk ∈ {0, 1} ∀(i, j) ∈ E,∀k ∈ K (8)

yi ∈ {0, 1} ∀i ∈ V ,∀k ∈ K (9)

In the model formulation above, the objective function (1) minimises the total distance travelled

by all vehicles. Constraints (2) ensure that each customer is visited exactly once. Contraints (3)

state that all vehicles should visit the depot. Constraints (4) guarantee that the same vehicle

that arrives at a customer also leaves from that customer. Equations (5) make sure that vehicle

capacities are respected. �e subtour elimination constraints are represented by equations (6).

Constraints (7) establish that each cluster is visited exactly once by one vehicle.

�e CluVRP is visualised in Figure 1. On the le� hand side, the �nal solution of the CluVRP

with strong cluster constraints is shown at the individual customer level. �e corresponding
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solution at the cluster level is included at the right hand side. �is high level representation

will be used during the algorithm to reduce the complexity of the problem by exploiting its

clustered substructure.

A

B

C

D

E

F

G

H

(a) A CluVRP solution at the customer level

A

B

C

D

E

F

G

H

(b) A CluVRP solution at the cluster level

Figure 1: �e CluVRP with strong cluster constraints. All three vehicles depart from the central depot (gray

rectangle) to serve all the customers (black circles). All customers within the same cluster should

be served consecutively by the same vehicle.

As demonstrated by Lenstra and Kan (1981), the CVRP is NP-hard. Since any CVRP can be

reduced to a CluVRP with one customer in each cluster and the complexity of this reduction

is linear with respect to the number of customers, the CluVRP is also NP-hard (Barthélemy,

2012).

3. A metaheuristic approach for the CluVRP

We propose a metaheuristic approach that explores the solution space at two di�erent levels:

the cluster level and the customer level. At both levels, a Variable Neighborhood Search (VNS)

algorithm is used to �nd a local optimum. VNS, introduced by Mladenović and Hansen (1997)

has proven to be a successful framework for solving combinatorial optimisation problems, es-

pecially vehicle routing problems (Hansen and Mladenović, 2014). First, the problem is solved

at the cluster level. A�erwards, this result is used as an input for the customer level VNS. Dur-

ing the diversi�cation phase, the algorithm moves back from the customer to the cluster level.

�e outline of our heuristic is shown in Algorithm 1. In the following sections, we take a closer

look at the di�erent operators and their implementation.
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Algorithm 1 Pseudocode of the two-level metaheuristic approach for solving the CluVRP.

1: nIterationsNoImprovement ← 0;

2: дoToNodeVNS ← false; stoppinдCriterion ← false;

3: best solution found: S∗i = ;

4: objective value of best solution found: f (S∗i ) ← ∞ ;

5: Step 0: Precomputation
6: calculate-inter-cluster-distances();

7: Step 1: Constructive phase
8: Sc ← allocate-clusters-to-vehicle();

9: Step 2: Intensi�cation phase
10: do
11: S ′c ← perform-VNS-at-cluster-level(Sc );

12: do
13: Si ← convert-from-cluster-to-customer-level(S ′c );

14: S ′i ← perform-VNS-at-customer-level(Si );
15: if f (S ′i ) < f (S∗i ) then
16: S∗i ← S ′i ;
17: f (S∗i ) ← f (S ′i );
18: nIterationsNoImprovement ← 0;

19: else
20: nIterationsNoImprovement ← nIterationsNoImprovement + 1;

21: if nIterationsNoImprovement =maxIterationsNoImprovement then
22: stoppinдCriterion ← true;

23: break;

24: end if
25: end if
26: Step 3: Diversi�cation phase
27: Sc ← perturb(S ′c );

28: repair(Sc );

29: r ← get-random-number[0,1]();

30: if r < cluVNSProb then
31: дoToNodeVNS ← false;

32: else
33: дoToNodeVNS ← true;

34: end if
35: while дoToNodeVNS = true;

36: while stoppinдCriterion = false;

37: return S∗i ;
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3.1. Precomputation

During precomputation all inter cluster distances are quanti�ed. As described earlier, only the

distance dN (i, j) between individual nodes i and j is given. �ese distances are not necessarily

symmetrical or Euclidean. To solve the CluVRP at the cluster level (i.e., to determine the

assignment of clusters to vehicles and the sequencing of the clusters per vehicle), the inter

cluster distance matrix should be de�ned. For this purpose we use the shortest edge between

two clusters as an approximation for the inter-cluster distance as this will be the preferred edge

to go from one cluster to another in the low-level routing solution.

3.2. Constructive phase

�e main goal of the constructive phase is to generate a feasible initial solution at the cluster

level. �is means that for every cluster, the individual customers are disregarded and the cluster

as a whole is allocated to an available vehicle. Even though the travel times between the clusters

are taken into account during the constructive process, constructing a feasible allocation of

clusters to vehicles is the priority in this phase. �erefore, instead of using a VRP algorithm, a

bin packing approach is preferred here. �is design choice is justi�ed as follows.

First, contrary to a standard VRP formulation, the number of vehicles is given and should not

be optimised any further, as all vehicles must be used anyway. As a result, the exact number

of trips is known in advance. Furthermore, it can be argued that the inter cluster Hausdor�

distances are only an approximation of the distances between two clusters, as the real distance

depends on both the cluster and customer sequence in the trip. Finally, the instances (especially

the smaller ones) are constructed in such a way that only very li�le to no spare capacity is

available. For these reasons, a problem speci�c bin packing approach is more suitable here.

If we disregard the travel of the vehicles between clusters, the allocation of clusters with their

given demand to a set of vehicle can be modelled as a one-dimensional bin packing problem

with given number of bins. A set of items (clusters) with a given weight (total demand) are to

be packed into a set of bins (vehicles) with a prede�ned maximal load (vehicle capacity Q).

�e one-dimensional bin packing problem is shown to be strongly NP-complete (Garey and

Johnson, 1978). Because we are not interested in the optimal bin packing solution, but a solution

for the CluVRP, we prefer a fast algorithm that provides us with a feasible result. �e �rst-�t

decreasing and the best-�t decreasing algorithms are most commonly applied in the literature.

In this paper, the best-�t decreasing strategy is adopted.
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�e traditional best-�t bin packing algorithm places each item (cluster), in succession, into the

fullest bin (vehicle) in which it �ts (Fleszar and Hindi, 2002). For a simple bin packing problem

this is satisfactory, but when solving the CluVRP, it is important that e�cient routes can be

constructed a�erwards with the clusters that have been allocated to the same vehicle. For every

cluster, sorted in decreasing order according to demand, we therefore look at the latest cluster

that was added to all the bins (vehicles). We then prefer the vehicle for which this latest cluster

is located the closest to the current cluster to add. In this way, the algorithm is more likely to

combine di�erent clusters that are located in the same part of the distribution area into one

vehicle. Once a vehicle has departed from the depot in a certain direction (certain clusters are

assigned to that vehicle), we force that other clusters in that same direction are also allocated

to this vehicle.

Due to the deterministic character of this constructive heuristic, the same initial solution will

be generated during every run of the algorithm. In order to prevent this from happening, an

alternative strategy, which involves some randomness, is de�ned. With a prede�ned probabil-

ity randConstructProb, the current cluster is not allocated to the closest vehicle, but from

all feasible vehicles (vehicles with enough spare capacity) one vehicle is selected at random.

3.3. Redistribution algorithm

As for each instance the number of vehicles is given, the heuristic constructive procedure used

to allocate clusters to vehicles might reach a point where no vehicle has enough capacity le� to

store the next cluster. In order to cope with these situations, a speci�c redistribution operator,

that tries to re-optimize the current capacity distribution, is built into the solution algorithm.

�is redistribution algorithm aims to increase the �ll rate of one of the vehicles as much as

possible by means of a clusterSwap operator, that swaps the vehicle of two already allocated

clusters. All cluster pairs are checked sequentially, and the best move — the one leading to the

highest possible �ll rate for one of the vehicles — is executed.

�e clusterSwap operator is illustrated in Figure 2. Two vehicles are considered with a ca-

pacity of 50 items each and eight clusters with a demand of 19, 14, 14, 12, 11, 11, 10 and 7 items

should be allocated to one of the vehicles. As shown, adding the last cluster to any of the vehi-

cles will result in an infeasible solution. �is issue is solved by swapping the vehicles assigned

to the clusters with a demand of 14 and 10, which will result in a 100% utilisation of vehicle 2.

As a results, enough spare capacity becomes available in vehicle 1 to hold the cluster with a

demand of 7.
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vehicle 1 19 14 12 5

vehicle 2 14 11 11 10 4

7?

Figure 2: Visualisation of the clusterSwap operator. By swapping the clusters with demand of 14 and 10,

free space is created in vehicle 1 where the additional cluster with a demand of 7 can be placed.

3.4. Intensification phase

From the moment that a feasible solution is constructed, the algorithm starts the intensi�cation

phase in which the initial solution is improved until a local optimum is reached. �is is done

in three steps.

First, the initial solution is improved at its cluster level by means of a VNS. A locally optimal

cluster sequence is obtained for every vehicle. A�erwards, this cluster level solution is trans-

lated to the individual customer level by a conversion operator. �e obtained result are then

used as the input for a second VNS at the individual customer level.

3.4.1. Intensification at the cluster level

�e �rst part of the intensi�cation phase is executed at the level of the clusters and uses the

inter cluster distance matrix, constructed during precomputation. By ignoring all individual

customer nodes, the problem size and complexity are reduced. �e obtained high level routing

problem is solved by a VNS with the objective of �nding an optimal cluster sequence for every

vehicle. �e search is based on seven local search operators that are commonly used in vehicle

routing. Both intra and inter vehicle neighborhoods are explored. �e intra vehicle operators try

to minimize the total distance of a single trip. �e inter vehicle operators combine at least two

trips while trying to improve the global cost (total distance) of the solution by moving one or

exchanging a set of clusters between di�erent vehicles. All local search operators are shown in

Table 1 and have complexity O(n2). We use the �rst improvement strategy, as every bene�cial

move encountered is executed by the algorithm.

�e order in which the neighborhoods are checked by the algorithm is changed randomly each

time the VNS is called. When no improvement can be found in the current neighborhood, the

algorithm moves to the next neighborhood. Every time an improvement is found, the algorithm

returns to the �rst neighborhood. �is is repeated until none of the neighborhoods is able to

improve the current solution any further, and a local optimum is reached at the cluster level.
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Table 1: List of all intra and inter vehicle local search operators, implemented in the VNS at the cluster level

Intra vehicle operators

Swap Swap the position of two clusters in a single trip.

Relocate Remove one cluster and insert it at a di�erent position in the trip.

Two-Opt Remove two edges and replace them by two new edges to close the tour.

Or-Opt RemoveN consecutive clusters and insert them at a di�erent position in the trip. (withN = {2, 3, 4})

Inter vehicle operators

Swap Swap the vehicle of two clusters.

Relocate Remove one cluster and insert it in another trip.

Or-Opt Remove N consecutive clusters and insert them in another trip. (with N = {2, 3, 4})

3.4.2. Conversion operator

�e best cluster sequence for every vehicle obtained during the intensi�cation phase at the

cluster level is converted into a solution at the customer level before sending it to the customer

level intensi�cation phase. �is is done by the conversion operator.

For each cluster, an intra cluster TSP was constructed heuristically during pre-processing. �e

order in which the nodes appear in this TSP is maintained by the conversion operator. �e

starting node is chosen as the node closest to the current position of the vehicle. In other words,

when entering a new cluster, the customer that is closest to the vehicles’ current position (either

the last customer visited in the previous cluster of the depot) is visited �rst. Starting from this

customer, the node sequence equals the intra cluster TSP constructed during pre-processing.

With a probability given by the parameter randConversionProb, all nodes of the current

clusters are added randomly to the solution. In this way, we introduce some diversi�cation in

the conversion operator and a larger part of the solution space is searched.

�e solution obtained a�er applying the conversion operator is considered the initial solution

at the customer level.

3.4.3. Intensification at the customer level

�e initial solution at the customer level constructed by the conversion operator, is improved

further during a second intensi�cation phase in which all individual customer nodes are taken

into account. Similar to the VNS discussed in 3.4.1, a set of neighborhoods is explored in the

search for a local optimal solution.
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�e cluster constraints, however, impose that all customers belonging to the same cluster

should remain visited consecutively in the same path. �is restricts the number of feasible

moves to be checked by the local search operators.

Two main groups of neighborhoods can be distinguished: the intra cluster and the inter cluster

neighborhoods. �e �rst group is responsible for improving the Hamiltonian path within a

certain cluster. �e optimality of these intra cluster routes is also dependent on the cluster

sequence, as this might a�ect the optimal edge to enter or leave the cluster. Secondly, the inter

cluster neighborhoods operate on the cluster order as obtained by the VNS at the cluster level.

As no customer information was taken into account at the cluster level, a modi�ed cluster

sequence might be bene�cial. �e inter cluster operators can be both intra or inter vehicle,

as the performed moves can involve a single vehicle (e.g., two entire clusters swap within the

same vehicle), or multiple vehicles (e.g., two entire clusters belonging to di�erent vehicles are

swapped). �e neighborhoods used by the VNS at the customer level are described in Table 2.

Table 2: �e di�erent VNS neighborhoods at the customer level

Intra cluster operators

Swap Swap the position of two customers within the same cluster in a single trip.

Relocate Remove one customer and insert it at a di�erent position within the same cluster.

Two-Opt Remove two edges and replace them by two new edges to close the tour.

Or-Opt Remove N consecutive customers and insert them at a di�erent position within the same cluster in

the trip. (with N = {2, 3, 4})

Inter cluster operators (intra vehicle)

Swap Swap the position of two clusters within the same trip.

Relocate Remove all customers of a single cluster and insert them sequentially at a di�erent position in the

same trip.

Inter cluster operators (inter vehicle)

Swap Swap the vehicle of two clusters.

Relocate Remove all customers of a single cluster and insert them sequentially in another trip.

Similar to the �rst VNS, the applied neighborhoods are checked sequentially. When an im-

provement is found, the algorithm restarts by exploring the �rst neighborhood. It continues

until none of the neighborhoods is able to improve the solution any further and a local opti-

mum is reached. Again, the order in which the neighborhoods are checked by the algorithm is

changed randomly by each call of the VNS.
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3.5. Diversification phase

A�er having evaluated the new solution obtained at the customer level, the algorithm executes

its diversi�cation strategy to continue the search and explore another part of the solution space.

�is diversi�cation operator consists of a perturbation operator, that destroys parts of the solu-

tion, followed by a repair operator.

As all customer nodes that belong to the same cluster should remain grouped together, the

removal of one customer node by the perturbation operator would in the end result in the

removal of the complete cluster this customer belongs to. �erefore, the perturbation operator

is applied immediately to the current solution at the cluster level. A random part of the solution,

denoted by the parameter pertRate, is destroyed and the removed clusters are stacked in a

separate list.

A�erwards, all removed clusters are reallocated to random vehicles by the repair operator

while making sure that the vehicle capacity constraints are not violated. If no feasible vehicle

can be found for a certain cluster, the redistribution operator (described in Section 3.3) is called

by the algorithm.

When a new solution is obtained, the algorithm can resume its search at two di�erent points.

Either the new solution at the cluster level is improved �rst by the intensi�cation phase at the

cluster level, or the algorithm calls the conversion operator immediately a�er the diversi�ca-

tion phase. �e probability to call the VNS at the cluster level a�er the diversi�cation operator

is denoted by the parameter cluVNSprob.

4. Parameter tuning and experimental results

4.1. Parameter tuning

�e algorithm is controlled by four parameters, summarised in Table 3. In order to fully test the

impact of these parameter values on the solution quality, a full factorial statistical experiment

is executed. �e tuning is done on a selection of large-size instances as provided by Ba�arra

et al. (2014). See Section 4.3 for a more elaborate presentation of the instances. �e results of

this tuning procedure are visualised in Figure 3, for each individual parameter. �e obtained

best parameter se�ings are shown in the last column of Table 3. �e optimal value for the

randConstructProb parameter is zero, stating that allocating each cluster to a close-by ve-

hicle outperforms a randomized approach. For the cluVNSprob parameter the optimal value
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equals 1, meaning that a�er the diversi�cation phase the best strategy is again to �rst opti-

mise the solution at the cluster level. All results in this paper are obtained using these optimal

parameter values.

Table 3: Results of parameter tuning on a small subset of the large-size instances. �ese results are obtained

by performing a full-factorial statistical experiment.

Parameter De�nition Tested Values # Best

randConstructProb Probability that a cluster is allocated to a random in-

stead of the closest feasible vehicle during construc-

tion.

0,0.1,. . . ,0.5 6 0

randConversionProb Probability that an intra cluster route is inserted ran-

domly instead of using the nearest neighbour ap-

proach.

0,0.1,. . . ,1 11 0.4

pertRate Percentage of the solution that is randomly de-

stroyed by the perturbation operator.

0,0.1,. . . ,0.5 6 0.1

cluVNSprob Probability that, a�er the diversi�cation phase, the

new solution is improved �rst at the cluster level be-

fore going to the conversion operator.

0.2,0.3. . . ,1 9 1

4.2. Stopping criterion

�e search procedure continues until a stopping criterion is reached. Our algorithm uses a pre-

de�ned number of iterations without improvement. It can be expected that the solution quality

will increase for a larger number of allowed iterations. �is result is shown in Figure 4. �is

graph is constructed by using the optimal parameter se�ings, de�ned above, while varying the

maximum number of iterations without improvement. As expected, we �nd an almost linear

relationship between the calculation time and the number of iterations without improvement.

A large improvement of the solution quality is realised during the �rst seconds of execution.

As the optimality gap decreases, more calculation time is required to further improve the cur-

rent solution. To preserve a good balance between computation time and solution quality, the

stopping criterion is set to 5000 iterations without improvement.

4.3. Experimental results

�e metaheuristic is tested extensively on benchmark instances of di�erent sizes and with

varying degree of clustering. All computational results are obtained using an Intel(R) Core(TM)

i7-4790 @ 3.60GHz with 16GB of RAM. Because the algorithm makes use of randomness during

the optimisation process, the instances are solved multiple times (20 runs per instance). Both
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Figure 3: Solution quality, measured by the average optimality gap and the average calculation time, for

di�erent parameter se�ings. Results are obtained by performing a full factorial experiment.
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Figure 4: Relationship between the number of iterations without improvement (stopping criterion) and the

average optimality gap for the tuning instance set.
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the average and best results are reported per instance. For a complete overview of all obtained

solutions, we refer to Appendix A.

4.3.1. Results on the GVRPθ3 instances

�e algorithm is tested on a set of 79 small and medium sized test instances, denoted as GVRPθ3,

provided by Ba�arra et al. (2014), as discussed in their paper on exact algorithms for the Clus-

tered Vehicle Routing Problem. �ese GVRP instances are adaptations of existing CVRP in-

stances from Bektas et al. (2011). �e transformation is achieved by creating clusters of cus-

tomers using a seed-based algorithm and by replacing the number of required vehicles by the

solution (number of bins) of the bin packing problem for each instance. See Ba�arra et al.

(2014) for a more elaborate explanation on the design of the instances. �e resulting number

of clusters reach 88, while the average number of customers per cluster is three.

�e obtained results for the GVRPθ3 instances are summarised in Table 4. By using their

branch-and-cut method, Ba�arra et al. (2014) are able to solve 77 out of 79 instances exactly

within reasonable time limits. It should be mentioned that for these methods the preprocessing

times, which lie between 3 and 8 seconds, are not included in the calculation times. �is pre-

processing step consists of the calculation of all possible Hamiltonian paths inside each cluster.

A�erwards, while running the branch-and-cut approach, these results are used to de�ne the

optimal inter cluster connections at the customer level for a given sequence of clusters. Our

VNS algorithm is able to solve 71 instances to optimality, while signi�cantly reducing calcula-

tion times. For the other instances, we are able to provide a high quality solution that lies on

average 0.04% from optimality. For the instance G-n262-k25-C88-V9 which could not be solved

using the exact approach, a heuristic solution with an objective value of 3310 is obtained in a

very short calculation time. For instance M-n200-k16-C67-V6 we improve the upper bound to

909.

Table 4: Results for the GVRPθ3 instances. Comparison between the branch-and-cut and price (BCP),

branch-and-cut (BC) (Ba�arra et al., 2014) and the two-level VNS proposed in this paper.

BCP BC VNS (20 runs)
Opt. Avg. t(s) Opt. Avg. t(s) Opt. Avg. t(s) Avg. best GAP Avg. GAP

A 31 - 79 cust. 27/27 42.52 27/27 4.84 24/27 0.05 0.07% 0.07%

B 30 - 77 cust. 23/23 7.69 23/23 4.99 21/23 0.04 0.03% 0.04%

P 15 - 100 cust. 24/24 0.48 24/24 3.77 23/24 0.06 0.00% 0.02%

M+G 100 - 261 cust. 2/5 157.25 3/5 25.44 3/5 5.98 0.04% 0.18%

total 76/79 77/79 71/79

average 26.87 5.86 0.43 0.03% 0.04%
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4.3.2. Results on the adapted Golden instances proposed in Expósito-Izquierdo et al.

(2016)

In this section we test our algorithm on the CluVRP benchmark instance sets proposed by

Expósito-Izquierdo et al. (2016). �e instances are adaptations of the instances introduced by

Golden et al. (1998) for the CVRP. Each set is characterised by a parameter ρ, representing the

�lling range of a vehicle. When ρ = 100%, each vehicle can serve at most one cluster, whereas

a lower �lling percentage indicates that a higher number of clusters can be combined in one

vehicle trip. Five di�erent instance sets are built by se�ing ρ ∈ {10, 25, 50, 75, 100}%.

�e two-level solution approach from Expósito-Izquierdo et al. (2016) is compared to the two-

level VNS introduced in this paper. Although both algorithms are based on a breakdown of

the CluVRP in two distinct routing problems, some important di�erences can be identi�ed.

First, Expósito-Izquierdo et al. (2016) de�ne the high-level routing problem by replacing all

clusters by their virtual center by using the center of mass concept. �eir approach is therefore

limited to Euclidean instances. Secondly, the algorithm by Expósito-Izquierdo et al. (2016) is

mainly focused on optimising the solution at the cluster level in which the individual customer

sequence is only considered in the Lin-Kernighan heuristic. Our two-level VNS, however, also

includes a strong intensi�cation of the low-level routing problem by means of a separate VNS

procedure. �e results below indicate that it is bene�cial to devote additional a�ention to the

solution at the customer level.

�e results of both approaches are summarised in Tables 5 – 9. To allow a fair comparison, a

maximum calculation time of 60s is considered for both algorithms. It can be seen that if ρ ∈

{10, 25, 50}%, almost all instances can be improved by our two-level VNS algorithm compared

to the results of Expósito-Izquierdo et al. (2016). �e reduction in total cost can be up to 6.10%

(instance 4, with ρ = 10%). For the instance sets with a higher �lling rate (ρ ∈ {75, 100})

it turns out to be harder to improve the current best solution. �is might be due to the fact

that the lower the number of clusters inside a vehicle, the more the CluVRP converges to the

more traditional CVRP. �erefore we lose the advantage of exploiting the clustered structure of

the problem in our algorithm. However, the gaps remain far below 1% compared to Expósito-

Izquierdo et al. (2016) for all instances, ensuring that a high quality and competitive solution

is found.
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Table 5: Results for the adapted problem instances by Golden et al. (1998) with ρ = 10%. Comparison be-

tween the two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed

in this paper.

index n+1 Q best known Expósito-Izquierdo et al. (2016) two-level VNS gap

1 240 550 5759.25 5801.67 5759.25 -0.73%

2 320 700 9247.92 9649.67 9247.92 -4.16%

3 400 900 12904.60 13249.22 12904.60 -2.60%

4 480 1000 17810.40 18966.92 17810.40 -6.10%

5 200 900 8960.31 9479.74 8960.31 -5.48%

6 280 900 10976.50 11601.77 10976.50 -5.39%

7 360 900 12485.80 13243.13 12485.80 -5.72%

8 440 900 13331.20 13756.51 13331.20 -3.09%

9 255 1000 710.64 717.16 710.64 -0.91%

10 323 1000 908.89 914.73 908.89 -0.64%

11 399 1000 1139.51 1146.57 1139.51 -0.62%

12 483 1000 1384.29 1386.48 1384.29 -0.16%

13 252 1000 1030.42 1047.57 1030.42 -1.64%

14 320 1000 1324.96 1340.16 1324.96 -1.13%

15 396 1000 1668.39 1700.28 1668.39 -1.88%

16 480 1000 2053.47 2097.47 2053.47 -2.10%

17 240 200 840.53 867.03 840.53 -3.06%

18 300 200 1097.51 1104.86 1097.51 -0.67%

19 360 200 1522.83 1522.83 1545.53 1.49%

20 420 200 2019.55 2019.55 2042.90 1.16%

#best solutions 2 18

Table 6: Results for the adapted problem instances by Golden et al. (1998) with ρ = 25%. Comparison be-

tween the two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed

in this paper.

index n+1 Q best known Expósito-Izquierdo et al. (2016) two-level VNS gap

1 240 550 6051.04 6135.26 6051.04 -1.37%

2 320 700 9725.90 10005.59 9725.90 -2.80%

3 400 900 13692.60 14083.28 13692.60 -2.77%

4 480 1000 16977.90 17359.95 16977.90 -2.20%

5 200 900 9340.70 9701.89 9340.70 -3.72%

6 280 900 10840.70 11261.49 10840.70 -3.74%

7 360 900 12348.10 12720.79 12348.10 -2.93%

8 440 900 14100.80 14307.64 14100.80 -1.45%

9 255 1000 717.63 723.49 717.63 -0.81%

10 323 1000 908.26 915.09 908.26 -0.75%

11 399 1000 1131.84 1140.36 1131.84 -0.75%

12 483 1000 1387.67 1395.67 1387.67 -0.57%

13 252 1000 1034.30 1054.64 1034.30 -1.93%

14 320 1000 1317.05 1341.39 1317.05 -1.81%

15 396 1000 1667.08 1697.88 1667.08 -1.81%

16 480 1000 2048.08 2105.01 2048.08 -2.70%

17 240 200 795.33 808.24 795.33 -1.60%

18 300 200 1122.73 1138.45 1122.73 -1.38%

19 360 200 1538.20 1549.89 1538.20 -0.75%

20 420 200 2036.19 2036.19 2038.27 0.10%

#best solutions 1 19
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Table 7: Results for the adapted problem instances by Golden et al. (1998) with ρ = 50%. Comparison be-

tween the two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed

in this paper.

index n+1 Q best known Expósito-Izquierdo et al. (2016) two-level VNS gap

1 240 550 6551.04 6719.17 6551.04 -2.50%

2 320 700 9787.09 9904.40 9787.09 -1.18%

3 400 900 13287.00 13303.31 13287.00 -0.12%

4 480 1000 17569.90 17935.58 17569.90 -2.04%

5 200 900 8597.31 8790.44 8597.31 -2.20%

6 280 900 10550.80 10714.34 10550.80 -1.53%

7 360 900 12673.70 12862.90 12673.70 -1.47%

8 440 900 13766.30 13924.79 13766.30 -1.14%

9 255 1000 698.04 703.07 698.04 -0.72%

10 323 1000 890.87 898.19 890.87 -0.81%

11 399 1000 1107.88 1112.35 1107.88 -0.40%

12 483 1000 1317.47 1319.98 1317.47 -0.19%

13 252 1000 1053.47 1080.84 1053.47 -2.53%

14 320 1000 1342.70 1363.99 1342.70 -1.56%

15 396 1000 1657.22 1685.61 1657.22 -1.68%

16 480 1000 2003.10 2030.60 2003.10 -1.35%

17 240 200 881.66 910.73 881.66 -3.19%

18 300 200 1200.98 1217.71 1200.98 -1.37%

19 360 200 1612.33 1631.21 1612.33 -1.16%

20 420 200 2278.64 2325.47 2278.64 -2.01%

#best solutions 0 20

Table 8: Results for the adapted problem instances by Golden et al. (1998) with ρ = 75%. Comparison be-

tween the two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed

in this paper.

index n+1 Q best known Expósito-Izquierdo et al. (2016) two-level VNS gap

1 240 550 6736.15 6736.15 6736.15 0.00%

2 320 700 10204.30 10204.30 10223.20 0.19%

3 400 900 13575.70 13575.70 13635.20 0.44%

4 480 1000 17077.59 17077.59 17194.20 0.68%

5 200 900 8664.94 8664.94 8666.59 0.02%

6 280 900 11452.01 11452.01 11520.30 0.60%

7 360 900 12901.41 12901.41 12950.00 0.38%

8 440 900 13926.40 13943.65 13926.40 -0.12%

9 255 1000 773.39 773.39 773.39 0.00%

10 323 1000 1000.51 1000.51 1001.28 0.08%

11 399 1000 1223.66 1223.66 1226.91 0.27%

12 483 1000 1475.68 1475.68 1478.86 0.22%

13 252 1000 1183.12 1183.12 1183.12 0.00%

14 320 1000 1520.55 1523.44 1520.55 -0.19%

15 396 1000 1825.29 1829.32 1825.29 -0.22%

16 480 1000 2265.54 2265.54 2265.77 0.01%

17 240 200 1001.02 1001.02 1001.02 0.00%

18 300 200 1392.15 1396.27 1392.15 -0.29%

19 360 200 1951.77 1977.40 1951.77 -1.30%

20 420 200 2540.22 2540.22 2540.39 0.01%

#best solutions 14 9
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Table 9: Results for the adapted problem instances by Golden et al. (1998) with ρ = 100%. Comparison be-

tween the two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed

in this paper.

index n+1 Q best known Expósito-Izquierdo et al. (2016) two-level VNS gap

1 240 550 6293.04 6293.04 6297.05 0.06%

2 320 700 9879.59 9879.59 9917.68 0.39%

3 400 900 12361.09 12361.09 12422.10 0.49%

4 480 1000 16130.39 16130.39 16276.70 0.91%

5 200 900 8394.11 8394.11 8399.31 0.06%

6 280 900 10777.33 10777.33 10802.70 0.24%

7 360 900 11346.11 11346.11 11411.60 0.58%

8 440 900 13188.94 13188.94 13251.30 0.47%

9 255 1000 705.19 705.19 705.19 0.00%

10 323 1000 837.52 837.52 838.55 0.12%

11 399 1000 1054.13 1054.13 1056.71 0.24%

12 483 1000 1297.31 1297.31 1300.02 0.21%

13 252 1000 996.36 996.36 996.36 0.00%

14 320 1000 1223.09 1223.09 1223.41 0.03%

15 396 1000 1531.29 1531.29 1532.82 0.10%

16 480 1000 1874.69 1874.69 1875.04 0.02%

17 240 200 844.27 844.27 844.27 0.00%

18 300 200 1212.97 1212.97 1213.13 0.01%

19 360 200 1667.45 1667.45 1667.51 0.00%

20 420 200 2128.60 2128.60 2128.77 0.01%

#best solutions 20 3

4.3.3. Results on the adapted Golden instances proposed in Vidal et al. (2015)

Finally, we test our algorithm on yet another adaptation of the Golden et al. (1998) instance

set, proposed by Ba�arra et al. (2014). We refer to Table 10 for an overview of the obtained

results. Our two-level VNS is compared to the solution procedure of Expósito-Izquierdo et al.

(2016), described above, and the UHGS algorithm from Vidal et al. (2015). �e UHGS algorithm

aims at combining the diversi�cation strength of a genetic algorithm with the improvement

capabilities of local search and has proven to return high quality solutions that are very close to

optimality. �e algorithm relies, however, on the exact solution of all intra cluster Hamiltonian

paths, precomputed by means of Concorde (Applegate et al., 2006). �is causes the required

calculation time to increase up to even above the exact solution approach of Ba�arra et al.

(2014). Although in terms of solution quality the UHGS method tends to outperform all existing

approaches, the high calculation times can be considered an important drawback for some

applications.

To allow the comparison with the results reported by Expósito-Izquierdo et al. (2016), we ded-

icate a maximum calculation time of 10 seconds to our two-level VNS. On average, this cor-

responds to a 98% reduction in calculation time compared to Vidal et al. (2015). �e two-level

VNS is able to �nd the optimal solution for only 8 out of 220 instances. An optimality gap of
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around 1% is obtained on average, which is equivalent to a reduction of the optimality gap by

63% compared to Expósito-Izquierdo et al. (2016).

Table 10: Comparison between the UHGSp algorithms from Vidal et al. (2015), the two-level approach from

Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper over the problem

instances proposed by Ba�arra et al. (2014).

n+1 Vidal et al. (2015) Expósito-Izquierdo et al. (2016) two-level VNS
gap t(s) gap t(s) gap t(s) gap reduction

200 0.00% 2866.56 4.61% 10.0 0.07% 10.0 -98.56%

241 0.00% 174.90 2.39% 10.0 0.44% 10.0 -81.66%

252 0.01% 164.69 0.50% 10.0 0.53% 10.0 5.97%

255 0.02% 135.45 3.69% 10.0 1.33% 10.0 -63.93%

280 0.00% 3848.31 2.94% 10.0 0.71% 10.0 -76.00%

300 0.00% 191.26 1.04% 10.0 0.93% 10.0 -11.05%

320 0.02% 198.09 1.26% 10.0 0.85% 10.0 -32.75%

323 0.08% 175.74 4.94% 10.0 0.93% 10.0 -81.22%

360 0.00% 1248.29 2.87% 10.0 1.02% 10.0 -64.52%

396 0.05% 279.15 1.54% 10.0 1.37% 10.0 -10.89%

399 0.06% 198.00 4.96% 10.0 2.15% 10.0 -56.58%

400 0.01% 1384.18 2.56% 10.0 1.26% 10.0 -50.61%

420 0.00% 351.74 2.60% 10.0 1.11% 10.0 -57.22%

440 0.02% 1017.64 3.67% 10.0 1.32% 10.0 -64.02%

480 0.01% 1427.23 3.42% 10.0 1.49% 10.0 -56.38%

483 0.07% 389.16 4.93% 10.0 2.23% 10.0 -54.75%

Average 0.02% 878.15 3.00% 10.0 1.11% 10.0 -62.99%

5. The CluVRP with weak cluster constraints

5.1. Motivation

As described above, the CluVRP with strong cluster constraints requires that all customers

that belong to the same cluster should be served consecutively by the same vehicle. �is re-

quirement can be relaxed in some real life applications. In parcel delivery, e.g., the customers

are o�en clustered in zones (clusters) in order to facilitate the sorting process. �ese zones are

assigned to the available vehicles, obtaining a tactical plan in which each vehicle is allowed to

serve multiple zones during one trip. (Janssens et al., 2015) However, from the moment that the

vehicle leaves the depots there is no need to visit the individual customers according to their

original zone. It might be pro�table for the driver to leave a current zone, serve customers

belonging to another zone and return to the initial zone a�erwards. �is can depend on the

layout of the instance and the individual customer locations, but also on real time tra�c in-
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formation or additional constraints such as time windows. �is gives rise to another variant

of the CluVRP, which we de�ne as the CluVRP with weak cluster constraints. Similar to the

CluVRP with strong cluster constraints, we impose that clusters are assigned to vehicles and

therefore that all customers that belong to a certain cluster are all served by the same vehicle.

However, we allow a vehicle to leave and re-enter a cluster multiple times during its trip.

5.2. Mathematical model

�e mathematical model, introduced in Section 2 is adapted below to comply with the weak

cluster constraints. Constraints (7) are relaxed and replace by constraints (16) as each cluster

can now be visited multiple times. Furthermore, a additional set of equations is added to the

model to ensure that all customers that belong to the same cluster are visited by the same

vehicle (see constraints (17)).

min

∑
(i, j)∈E

∑
k ∈K

di jxi jk (10)

Subject to ∑
k ∈K

yik = 1 ∀i ∈ V \V0 (11)∑
k ∈K

y0k = |K | (12)∑
j ∈V \V0

xi jk =
∑

j ∈V \V0

x jik = yik ∀k ∈ K ,∀i ∈ V (13)∑
i ∈V

qiyik ≤ Q ∀k ∈ K (14)∑
i ∈S

∑
j<S

xi jk ≤ yhk ∀Z ⊆ V \V0,∀h ∈ Z ,∀k ∈ K (15)∑
(i, j)∈δ+(Cr )

xi jk =
∑

(i, j)∈δ−(Cr )

xi jk ≥ 1 ∀r ∈ R (16)

yik = yjk ∀i, j ∈ Cr ,∀k ∈ K (17)

xi jk ∈ {0, 1} ∀(i, j) ∈ E,∀k ∈ K (18)

yi ∈ {0, 1} ∀i ∈ V ,∀k ∈ K (19)
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5.3. Experiments

Our two-level VNS approach is slightly altered to solve the CluVRP with weak cluster con-

straints. More speci�cally, the intra cluster neighborhoods of the VNS at the customer level

are expanded to inter cluster operators, allowing the customers to be moved to any position in

the trip.

Again, the GVRPθ3 and Golden instances as proposed by Ba�arra et al. (2014) are solved. Ta-

ble 11 bundles the di�erences in total distance between the CluVRP with strong and weak

cluster constraints. �ese relative di�erences are obtained by comparing the results of our

algorithm for weak cluster constraints to the results discussed in Section 4.3.

As in this section the problem becomes less constrained, the objective value, de�ned as the total

distance travelled by all vehicles, is lower for all instance classes compared to the CluVRP with

hard cluster constraints. �e reduction in objective value lies between 4 and 7% on average for

the Golden instances, but can go up to more than 12% for some of the instances. As the choice

between strong and weak cluster constraints might result in signi�cant di�erences in total cost,

this decision should be taken with care in real life scenarios.

Table 11: Results for the GVRPθ3 and Golden instances as proposed by Ba�arra et al. (2014) with weak

cluster constraints. Reported values are the averaged over all instances in the set, compared to

the obtained results with strong cluster constraints.

GVRPθ3 Golden instances

instance set t(s) Avg. best di�erence Avg. di�erence n+1 t(s) Avg. best di�erence Avg. di�erence

A 0.28 -2.66 % -2.52 % 200 10.00 -8.97 % -8.09 %

B 0.06 -1.18 % -1.18 % 241 10.00 -5.69 % -4.92 %

P 0.52 -4.64 % -4.58 % 252 10.00 -3.62 % -3.04 %

M+G 13.46 -3.19 % -2.73 % 255 10.00 -5.02 % -3.88 %

280 10.00 -6.57 % -5.56 %

300 10.00 -3.81 % -3.09 %

320 10.00 -3.46 % -2.88 %

323 10.00 -6.10 % -4.98 %

360 10.00 -5.23 % -4.48 %

396 10.00 -3.13 % -2.41 %

399 10.00 -4.67 % -3.48 %

400 10.00 -3.81 % -3.20 %

420 10.00 -3.49 % -2.71 %

440 10.00 -4.25 % -3.37 %

480 10.00 -3.87 % -3.15 %

483 10.00 -2.96 % -1.63 %

average 1.12 -2.86 % -2.80 % -4.65 % -3.82 %
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6. Conclusion

In this paper, a fast two-level VNS heuristic was presented to solve the Clustered Vehicle Rout-

ing Problem. �is metaheuristic solution approach solves the CluVRP without assuming Eu-

clidean distances or converting the problem to a CVRP by using a big-M approach. By integrat-

ing a cluster level and a customer level local search phase, the speci�c clustered structure of

the problem was exploited to reduce complexity, and high quality solutions could be obtained

in very short calculation times.

Our algorithm was tested on benchmark instances from the literature with di�erent sizes and

diverse complexities. Many of the small and medium-sized problems were solved to optimality

in very short computing times. Even if the optimal solution was not found, an average optimal-

ity gap of 0.03% was obtained. For the large-size instances, which are adaptations of the Golden

benchmark instances as proposed by Ba�arra et al. (2014) and Expósito-Izquierdo et al. (2016),

only a limited number of optimal solutions were found. However, with an average optimality

gap around 1% high quality and competitive solutions were obtained by our two-level VNS ap-

proach in very small computation times. We therefore believe that our solution approach has

potential for integration in solution approaches that rely on the CluVRP as a subproblem as

this might require the method to be executed multiple times. For example, a courier company

that wants to determine the boundaries of its zones (cluster) in the distribution area might want

to solve the CluVRP for every possible con�guration to select the best option. In this context,

a fast method is preferred while the remaining optimality gap is a minor issue. By allowing

larger calculation times, the optimality gap is likely to reduce further. However, we leave this

trade-o� to the decision maker.

Furthermore, we have introduced a new type of CluVRP in this paper. Next to the traditional

CluVRP with strong cluster constraints, in which it is not allowed to leave a cluster before

having served all customers within it, we have proposed a CluVRP variant with weak cluster

constraints. Here, all customers belonging to the same cluster should be served by the same

vehicle but customers in the di�erent clusters assigned to a vehicle can be visited in any order.

Our simulation experiments show that the total distance travelled might decreases by 4.65%

on average for the large-size instances when going from strong to weak cluster constraints.

For some instances, a cost reduction of more than 10% could be obtained. �ese values put an

estimate on the pro�t of allowing the approach with weak cluster constraints as opposed to

strong cluster constraints, e.g., in the context of the operations of a courier company.

Although all algorithms are tested and compared on multiple sets of benchmark instances, a gap

remains between the size of these instances and the complexity of the logistic problems faced
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by the industry today. For further research, we therefore acknowledge the need for additional

very large-size instances that are able to be�er represent the daily planning problems faced by,

e.g., parcel delivery and courier companies.
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A. Detailed results

Table 12: Detailed results for the GVRPθ3 instances A, B

instance Strong cluster constraint Weak cluster constraints
set n k c v opt. Best Avg. best GAP Avg. GAP Avg. CPU(s) Avg. Best GAP Avg. GAP
A 32 5 11 2 522 522 0.00% 0.00% 0.00 -1.34% -1.34%

A 33 5 11 2 472 472 0.00% 0.00% 0.00 -2.33% -2.33%

A 33 6 11 2 562 562 0.00% 0.00% 0.00 -1.42% -1.42%

A 34 5 12 2 547 547 0.00% 0.00% 0.00 -1.65% -1.65%

A 36 5 12 2 588 589 0.17% 0.17% 0.00 -7.81% -7.81%

A 37 5 13 2 569 569 0.00% 0.00% 0.00 -2.46% -2.46%

A 37 6 13 2 615 615 0.00% 0.00% 0.02 -1.63% -1.56%

A 38 5 13 2 507 507 0.00% 0.00% 0.00 0.00% 0.00%

A 39 5 13 2 610 610 0.00% 0.00% 0.02 -3.61% -3.41%

A 39 6 13 2 613 613 0.00% 0.00% 0.00 -1.63% -1.63%

A 44 6 15 2 714 714 0.00% 0.00% 0.04 -3.22% -3.22%

A 45 6 15 3 712 712 0.00% 0.00% 0.00 -8.43% -8.43%

A 45 7 15 3 664 664 0.00% 0.00% 0.00 -0.45% -0.45%

A 46 7 16 3 664 664 0.00% 0.00% 0.00 -3.31% -3.31%

A 48 7 16 3 683 683 0.00% 0.00% 0.00 -0.44% -0.44%

A 53 7 18 3 651 651 0.00% 0.00% 0.00 -3.69% -3.69%

A 54 7 18 3 724 724 0.00% 0.00% 0.01 -3.45% -3.45%

A 55 9 19 3 653 653 0.00% 0.00% 0.00 -1.23% -1.23%

A 60 9 20 3 787 795 1.02% 1.02% 0.02 -4.15% -4.04%

A 61 9 21 4 682 682 0.00% 0.00% 0.00 -1.61% -1.11%

A 62 8 21 3 778 778 0.00% 0.00% 0.01 -0.90% -0.90%

A 63 10 21 4 801 801 0.00% 0.00% 0.02 -2.75% -2.65%

A 63 9 21 3 865 865 0.00% 0.00% 0.45 -3.24% -3.21%

A 64 9 22 3 773 773 0.00% 0.00% 0.09 -0.78% -0.78%

A 65 9 22 3 725 725 0.00% 0.01% 0.15 -4.41% -4.41%

A 69 9 23 3 814 819 0.61% 0.66% 0.38 -3.05% -2.37%

A 80 10 27 4 972 972 0.00% 0.10% 0.27 -2.88% -2.78%

B 31 5 11 2 375 375 0.00% 0.00% 0.00 0.00% 0.00%

B 34 5 12 2 416 416 0.00% 0.00% 0.00 -0.24% -0.24%

B 35 5 12 2 562 562 0.00% 0.16% 0.03 -0.89% -0.89%

B 38 6 13 2 431 431 0.00% 0.00% 0.06 -0.93% -0.93%

B 39 5 13 2 321 321 0.00% 0.00% 0.00 -1.25% -1.25%

B 41 6 14 2 476 476 0.00% 0.00% 0.00 -1.47% -1.47%

B 43 6 15 2 415 415 0.00% 0.00% 0.00 -2.41% -2.41%

B 44 7 15 3 447 447 0.00% 0.00% 0.00 -0.89% -0.89%

B 45 5 15 2 506 508 0.40% 0.41% 0.02 -3.74% -3.74%

B 45 6 15 2 391 391 0.00% 0.00% 0.02 -1.28% -1.28%

B 50 7 17 3 467 467 0.00% 0.00% 0.00 -0.64% -0.64%

B 50 8 17 3 666 666 0.00% 0.00% 0.02 -0.75% -0.75%

B 51 7 17 3 585 585 0.00% 0.00% 0.00 -1.20% -1.20%

B 52 7 18 3 427 427 0.00% 0.00% 0.00 0.00% 0.00%

B 56 7 19 3 433 434 0.23% 0.23% 0.01 -3.23% -3.23%

B 57 7 19 3 634 634 0.00% 0.00% 0.01 -1.89% -1.89%

B 57 9 19 3 753 753 0.00% 0.00% 0.01 -0.93% -0.93%

B 63 10 21 3 685 685 0.00% 0.00% 0.06 0.00% 0.00%

B 64 9 22 4 526 526 0.00% 0.00% 0.00 -0.38% -0.38%

B 66 9 22 3 687 687 0.00% 0.00% 0.26 -0.58% -0.58%

B 67 10 23 4 626 626 0.00% 0.00% 0.04 -1.12% -1.12%

B 68 9 23 3 588 588 0.00% 0.03% 0.29 -1.02% -1.02%

B 78 10 26 4 721 721 0.00% 0.00% 0.02 -2.36% -2.36%
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Table 13: Detailed results for the GVRPθ3 instances G, M, P

instance Strong cluster constraint Weak cluster constraints
set n k c v opt. Best Avg. best GAP Avg. GAP Avg. CPU(s) Avg. Best GAP Avg. GAP
G 262 25 88 9 - 3310 15.95 -3.44% -2.71%

M 101 10 34 4 607 607 0.00% 0.00% 0.03 -1.48% -1.48%

M 121 7 41 3 691 691 0.00% 0.35% 4.25 -1.45% -0.94%

M 151 12 51 4 804 805 0.12% 0.19% 3.20 -5.71% -5.11%

M 200 16 67 6 914 (UB) 909 -0.55% -0.34% 6.45 -3.85% -3.40%

P 101 4 34 2 679 679 0.00% 0.00% 0.20 -4.42% -4.32%

P 16 8 6 4 253 253 0.00% 0.00% 0.00 -0.79% -0.79%

P 19 2 7 1 186 186 0.00% 0.00% 0.00 -8.60% -8.60%

P 20 2 7 1 200 200 0.00% 0.00% 0.00 -11.50% -11.50%

P 21 2 7 1 190 190 0.00% 0.00% 0.00 -5.79% -5.79%

P 22 2 8 1 202 202 0.00% 0.00% 0.00 -9.41% -9.41%

P 22 8 8 4 365 365 0.00% 0.00% 0.00 0.00% 0.00%

P 23 8 8 3 279 279 0.00% 0.00% 0.00 -3.23% -3.23%

P 40 5 14 2 396 396 0.00% 0.00% 0.00 -3.79% -3.79%

P 45 5 15 2 440 440 0.00% 0.00% 0.00 -4.09% -4.09%

P 50 10 17 4 491 491 0.00% 0.00% 0.02 -4.07% -4.07%

P 50 7 17 3 447 447 0.00% 0.00% 0.02 -3.80% -3.80%

P 50 8 17 3 460 460 0.00% 0.00% 0.01 -4.13% -4.13%

P 51 10 17 4 537 537 0.00% 0.02% 0.03 -8.19% -8.19%

P 55 10 19 4 500 500 0.00% 0.00% 0.03 -3.80% -3.75%

P 55 15 19 6 595 595 0.00% 0.00% 0.01 -3.87% -3.87%

P 55 7 19 3 462 462 0.00% 0.00% 0.00 -1.30% -1.30%

P 55 8 19 3 471 471 0.00% 0.00% 0.02 -3.18% -3.18%

P 60 10 20 4 552 552 0.00% 0.03% 0.19 -3.08% -2.96%

P 60 15 20 5 611 611 0.00% 0.18% 0.29 -3.27% -3.27%

P 65 10 22 4 619 619 0.00% 0.00% 0.01 -5.98% -5.98%

P 70 10 24 4 643 644 0.16% 0.16% 0.01 -6.52% -6.12%

P 76 4 26 2 581 581 0.00% 0.00% 0.41 -4.13% -3.81%

P 76 5 26 2 581 581 0.00% 0.00% 0.31 -4.30% -4.00%
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Table 14: Detailed results for the Golden instances 1 – 5, as provided by Ba�arra et al. (2014)

instance Strong cluster constraints Weak cluster constraints
set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best di�. Avg. Di�.

Golden-1 241 17 4831 4862 0.64% 1.19% 5.33 -3.39% -2.38%

Golden-1 241 18 4847 4864 0.35% 0.98% 4.68 -2.80% -1.97%

Golden-1 241 19 4872 4889 0.35% 1.24% 4.05 -2.92% -2.41%

Golden-1 241 21 4889 4914 0.51% 1.13% 5.65 -2.81% -2.43%

Golden-1 241 22 4908 4950 0.86% 1.20% 4.07 -4.36% -3.21%

Golden-1 241 25 4899 4917 0.37% 0.80% 3.72 -3.72% -3.21%

Golden-1 241 27 4934 4952 0.36% 0.67% 4.14 -4.81% -3.70%

Golden-1 241 31 5050 5053 0.06% 0.19% 5.21 -5.68% -4.99%

Golden-1 241 35 5102 5116 0.27% 0.54% 4.75 -7.74% -6.81%

Golden-1 241 41 5097 5113 0.31% 0.74% 4.85 -7.88% -6.76%

Golden-1 241 49 5000 5039 0.78% 1.35% 4.24 -7.32% -5.43%

Golden-2 321 22 7716 7785 0.89% 1.24% 6.19 -2.84% -2.43%

Golden-2 321 23 7693 7768 0.97% 1.36% 5.29 -2.79% -2.43%

Golden-2 321 25 7668 7728 0.78% 1.15% 5.79 -3.35% -2.44%

Golden-2 321 27 7638 7705 0.88% 1.23% 4.50 -2.92% -2.39%

Golden-2 321 30 7617 7689 0.95% 1.51% 5.51 -2.65% -2.26%

Golden-2 321 33 7640 7705 0.85% 1.24% 4.84 -3.04% -2.70%

Golden-2 321 36 7643 7699 0.73% 1.14% 3.62 -3.27% -2.79%

Golden-2 321 41 7738 7781 0.56% 1.16% 5.08 -4.25% -3.46%

Golden-2 321 46 7861 7926 0.83% 1.30% 4.43 -5.41% -4.86%

Golden-2 321 54 7920 7989 0.87% 1.28% 3.84 -6.28% -5.62%

Golden-2 321 65 7892 7997 1.33% 1.71% 5.45 -6.50% -5.67%

Golden-3 401 27 10540 10662 1.16% 1.80% 4.81 -2.56% -2.17%

Golden-3 401 29 10504 10627 1.17% 1.50% 5.33 -3.72% -2.92%

Golden-3 401 31 10486 10616 1.24% 1.48% 4.68 -3.23% -2.79%

Golden-3 401 34 10465 10602 1.31% 1.64% 5.18 -2.92% -2.60%

Golden-3 401 37 10482 10605 1.17% 1.66% 4.25 -3.30% -2.75%

Golden-3 401 41 10501 10606 1.00% 1.51% 4.87 -3.12% -2.70%

Golden-3 401 45 10485 10649 1.56% 1.78% 4.56 -3.73% -2.98%

Golden-3 401 51 10583 10722 1.31% 2.00% 4.46 -4.01% -3.43%

Golden-3 401 58 10776 10905 1.20% 1.71% 4.75 -5.09% -4.48%

Golden-3 401 67 10797 10953 1.44% 1.79% 4.51 -6.06% -4.96%

Golden-3 401 81 10614 10756 1.34% 1.91% 4.96 -4.14% -3.44%

Golden-4 481 33 13598 13805 1.52% 1.99% 5.07 -4.97% -3.95%

Golden-4 481 35 13643 13795 1.11% 1.89% 4.35 -4.28% -3.71%

Golden-4 481 37 13520 13722 1.49% 1.83% 5.32 -4.59% -3.80%

Golden-4 481 41 13460 13618 1.17% 1.91% 5.09 -4.46% -3.52%

Golden-4 481 44 13568 13756 1.39% 1.70% 5.25 -4.66% -3.97%

Golden-4 481 49 13758 13968 1.53% 2.10% 4.93 -5.98% -5.19%

Golden-4 481 54 13760 13985 1.64% 2.27% 5.62 -6.16% -5.02%

Golden-4 481 61 13791 14045 1.84% 2.25% 5.51 -6.09% -4.98%

Golden-4 481 69 13966 14143 1.27% 2.00% 4.31 -6.00% -5.35%

Golden-4 481 81 13975 14167 1.37% 2.13% 5.32 -6.58% -5.75%

Golden-4 481 97 13775 13973 1.44% 2.22% 3.50 -4.46% -3.96%

Golden-5 201 14 7622 7652 0.39% 0.74% 4.62 -7.08% -6.39%

Golden-5 201 15 7424 7429 0.07% 0.67% 4.52 -8.49% -7.55%

Golden-5 201 16 7491 7491 0.00% 0.30% 4.89 -8.92% -8.00%

Golden-5 201 17 7434 7434 0.00% 0.44% 4.81 -7.61% -7.04%

Golden-5 201 19 7576 7576 0.00% 0.08% 4.14 -7.23% -6.69%

Golden-5 201 21 7596 7596 0.00% 0.03% 4.59 -9.00% -8.39%

Golden-5 201 23 7643 7643 0.00% 0.24% 2.38 -11.33% -10.18%

Golden-5 201 26 7560 7566 0.08% 0.21% 3.66 -11.12% -10.20%

Golden-5 201 29 7410 7410 0.00% 0.04% 4.91 -8.99% -8.11%

Golden-5 201 34 7429 7433 0.05% 0.17% 5.28 -9.66% -8.32%

Golden-5 201 41 7241 7251 0.14% 0.25% 5.39 -9.20% -8.11%
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Table 15: Detailed results for the Golden instances 6 – 10, as provided by Ba�arra et al. (2014)

instance Strong cluster constraints Weak cluster constraints
set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best di�. Avg. Di�.

Golden-6 281 19 8624 8685 0.71% 0.94% 4.72 -5.62% -4.91%

Golden-6 281 21 8628 8661 0.38% 0.73% 5.04 -5.83% -4.38%

Golden-6 281 22 8646 8715 0.80% 1.26% 6.02 -5.96% -4.67%

Golden-6 281 24 8853 8905 0.59% 1.04% 3.59 -5.44% -4.63%

Golden-6 281 26 8910 8978 0.76% 1.31% 4.16 -6.32% -5.52%

Golden-6 281 29 8936 9025 1.00% 1.46% 4.69 -6.98% -6.08%

Golden-6 281 32 8891 8974 0.93% 1.44% 3.93 -7.62% -5.90%

Golden-6 281 36 8969 9011 0.47% 0.82% 4.89 -6.97% -6.36%

Golden-6 281 41 9028 9067 0.43% 0.80% 5.37 -7.30% -6.42%

Golden-6 281 47 8923 8996 0.82% 1.37% 2.99 -7.19% -6.10%

Golden-6 281 57 9028 9107 0.88% 1.32% 5.36 -7.09% -6.23%

Golden-7 361 25 9904 10021 1.18% 1.68% 4.32 -4.42% -3.72%

Golden-7 361 26 9888 10023 1.37% 1.76% 5.61 -4.42% -3.71%

Golden-7 361 28 9917 10056 1.40% 1.84% 5.39 -4.72% -4.02%

Golden-7 361 31 10021 10131 1.10% 1.53% 4.67 -3.99% -3.58%

Golden-7 361 33 10029 10161 1.32% 1.57% 5.07 -4.68% -4.02%

Golden-7 361 37 10131 10176 0.44% 1.14% 4.67 -4.93% -3.75%

Golden-7 361 41 10052 10119 0.67% 1.27% 4.94 -4.50% -3.61%

Golden-7 361 46 10080 10197 1.16% 1.77% 5.75 -5.44% -4.24%

Golden-7 361 52 10095 10201 1.05% 1.61% 4.40 -4.97% -4.10%

Golden-7 361 61 10096 10189 0.92% 1.74% 5.74 -4.67% -4.18%

Golden-7 361 73 10014 10095 0.81% 1.52% 4.70 -4.88% -3.57%

Golden-8 441 30 10866 11002 1.25% 1.58% 4.86 -3.19% -2.45%

Golden-8 441 32 10831 10943 1.03% 1.73% 5.82 -2.77% -2.07%

Golden-8 441 34 10847 10963 1.07% 1.68% 5.33 -2.56% -2.04%

Golden-8 441 37 10859 11010 1.39% 1.95% 5.06 -3.18% -2.59%

Golden-8 441 41 10934 11088 1.41% 1.79% 5.94 -3.57% -3.02%

Golden-8 441 45 10960 11103 1.30% 1.60% 4.48 -3.93% -3.00%

Golden-8 441 49 11042 11177 1.22% 1.61% 4.81 -3.98% -3.34%

Golden-8 441 56 11194 11350 1.39% 1.86% 4.86 -5.50% -4.48%

Golden-8 441 63 11252 11412 1.42% 1.76% 4.64 -5.83% -4.51%

Golden-8 441 74 11321 11462 1.25% 2.09% 4.50 -6.17% -4.84%

Golden-8 441 89 11209 11409 1.78% 2.45% 5.08 -6.09% -4.74%

Golden-9 256 18 300 304 1.33% 1.77% 4.62 -5.26% -4.18%

Golden-9 256 19 299 304 1.67% 1.96% 3.67 -5.59% -3.98%

Golden-9 256 20 296 298 0.68% 1.59% 3.09 -3.69% -2.67%

Golden-9 256 22 290 295 1.72% 2.45% 3.98 -3.39% -2.85%

Golden-9 256 24 290 295 1.72% 2.48% 3.84 -3.73% -2.78%

Golden-9 256 26 288 293 1.74% 2.20% 5.29 -3.41% -2.92%

Golden-9 256 29 292 297 1.71% 2.40% 3.21 -5.39% -4.09%

Golden-9 256 32 297 300 1.01% 1.58% 4.38 -6.67% -5.02%

Golden-9 256 37 294 296 0.68% 1.55% 3.31 -5.41% -3.89%

Golden-9 256 43 295 300 1.69% 2.36% 2.97 -6.33% -5.27%

Golden-9 256 52 296 298 0.68% 2.50% 4.30 -6.38% -5.05%

Golden-10 324 22 367 369 0.54% 1.20% 2.41 -3.25% -1.88%

Golden-10 324 24 361 361 0.00% 0.43% 5.03 -1.94% -0.83%

Golden-10 324 25 359 360 0.28% 0.88% 3.75 -1.11% -0.58%

Golden-10 324 27 361 363 0.55% 1.65% 3.53 -1.65% -1.17%

Golden-10 324 30 367 371 1.09% 1.58% 4.31 -3.77% -2.87%

Golden-10 324 33 373 378 1.34% 2.25% 2.51 -5.82% -4.80%

Golden-10 324 36 385 391 1.56% 2.04% 4.22 -8.70% -7.43%

Golden-10 324 41 400 403 0.75% 1.44% 4.72 -9.93% -9.09%

Golden-10 324 47 398 402 1.01% 1.58% 4.65 -10.45% -9.38%

Golden-10 324 54 393 397 1.02% 1.95% 3.92 -10.08% -8.66%

Golden-10 324 65 387 395 2.07% 2.70% 3.64 -10.38% -8.09%
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Table 16: Detailed results for the Golden instances 11 – 15, as provided by Ba�arra et al. (2014)

instance Strong cluster constraints Weak cluster constraints
set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best di�. Avg. Di�.

Golden-11 400 27 457 464 1.53% 1.76% 3.58 -3.66% -2.73%

Golden-11 400 29 455 463 1.76% 2.38% 3.58 -3.46% -2.71%

Golden-11 400 31 455 464 1.98% 2.59% 5.29 -3.66% -2.66%

Golden-11 400 34 455 462 1.54% 2.21% 4.23 -4.55% -3.19%

Golden-11 400 37 459 469 2.18% 2.68% 4.65 -5.33% -4.08%

Golden-11 400 40 461 467 1.30% 2.25% 3.87 -4.93% -3.88%

Golden-11 400 45 462 470 1.73% 2.54% 4.69 -5.96% -4.66%

Golden-11 400 50 458 467 1.97% 2.90% 4.81 -5.35% -3.74%

Golden-11 400 58 456 468 2.63% 3.30% 4.64 -4.91% -3.84%

Golden-11 400 67 454 469 3.30% 4.13% 4.20 -4.90% -3.57%

Golden-11 400 80 451 468 3.77% 4.71% 3.87 -4.70% -3.26%

Golden-12 484 33 535 545 1.87% 2.50% 4.38 -2.94% -1.59%

Golden-12 484 35 537 547 1.86% 2.50% 3.40 -2.93% -1.86%

Golden-12 484 38 535 547 2.24% 3.39% 4.15 -2.93% -1.37%

Golden-12 484 41 537 550 2.42% 3.66% 3.67 -3.27% -1.87%

Golden-12 484 44 535 552 3.18% 4.02% 4.11 -3.99% -2.23%

Golden-12 484 49 533 550 3.19% 3.96% 4.01 -2.00% -1.09%

Golden-12 484 54 535 551 2.99% 3.83% 4.74 -2.54% -1.11%

Golden-12 484 61 538 552 2.60% 3.67% 4.16 -2.36% -1.24%

Golden-12 484 70 546 552 1.10% 1.83% 3.76 -2.54% -1.19%

Golden-12 484 81 546 557 2.01% 2.79% 4.52 -3.23% -1.71%

Golden-12 484 97 560 566 1.07% 2.07% 3.98 -3.89% -2.71%

Golden-13 253 17 552 553 0.18% 0.57% 4.43 -2.71% -1.98%

Golden-13 253 19 549 552 0.55% 0.77% 4.79 -3.99% -3.28%

Golden-13 253 20 548 549 0.18% 0.60% 4.84 -3.28% -2.98%

Golden-13 253 22 548 549 0.18% 0.74% 2.80 -3.46% -2.86%

Golden-13 253 23 548 551 0.55% 0.78% 3.73 -3.99% -3.42%

Golden-13 253 26 542 544 0.37% 0.62% 3.69 -2.76% -2.30%

Golden-13 253 29 540 543 0.56% 0.77% 3.64 -2.58% -2.00%

Golden-13 253 32 543 545 0.37% 0.69% 4.75 -2.94% -2.19%

Golden-13 253 37 545 550 0.92% 1.21% 3.84 -3.45% -2.84%

Golden-13 253 43 553 559 1.08% 1.52% 3.24 -4.83% -4.43%

Golden-13 253 51 560 565 0.89% 1.44% 3.90 -5.84% -5.13%

Golden-14 321 22 692 698 0.87% 1.23% 4.23 -2.72% -2.25%

Golden-14 321 23 688 692 0.58% 1.02% 4.27 -2.46% -2.08%

Golden-14 321 25 678 683 0.74% 1.07% 3.87 -2.05% -1.46%

Golden-14 321 27 676 683 1.04% 1.45% 4.35 -1.90% -1.62%

Golden-14 321 30 678 684 0.88% 1.47% 3.94 -2.05% -1.62%

Golden-14 321 33 682 687 0.73% 1.20% 3.68 -2.18% -1.94%

Golden-14 321 36 687 689 0.29% 1.16% 3.35 -3.05% -2.26%

Golden-14 321 41 690 695 0.72% 1.17% 5.46 -3.88% -2.93%

Golden-14 321 46 694 699 0.72% 1.44% 3.99 -3.29% -2.72%

Golden-14 321 54 699 706 1.00% 1.58% 3.83 -4.53% -3.46%

Golden-14 321 65 703 713 1.42% 1.74% 3.55 -4.77% -4.03%

Golden-15 397 27 842 850 0.95% 1.53% 5.14 -2.94% -2.01%

Golden-15 397 29 843 854 1.30% 1.64% 5.01 -3.40% -2.51%

Golden-15 397 31 837 846 1.08% 1.62% 4.64 -2.36% -1.59%

Golden-15 397 34 838 851 1.55% 2.05% 3.95 -2.94% -2.30%

Golden-15 397 37 845 858 1.54% 1.99% 4.09 -3.73% -3.01%

Golden-15 397 40 849 859 1.18% 1.60% 2.90 -3.38% -2.81%

Golden-15 397 45 853 864 1.29% 1.50% 4.39 -3.47% -2.80%

Golden-15 397 50 851 863 1.41% 1.77% 3.04 -2.78% -2.47%

Golden-15 397 57 850 859 1.06% 1.84% 3.98 -2.44% -1.82%

Golden-15 397 67 855 870 1.75% 2.26% 3.74 -3.45% -2.55%

Golden-15 397 80 857 874 1.98% 2.51% 3.32 -3.55% -2.64%
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Table 17: Detailed results for the Golden instances 16 – 20, as provided by Ba�arra et al. (2014)

instance Strong cluster constraints Weak cluster constraints
set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best di�. Avg. Di�.

Golden-16 481 35 1028 1038 0.97% 1.31% 4.24 -2.60% -1.89%

Golden-16 481 37 1028 1037 0.88% 1.21% 3.66 -2.89% -1.96%

Golden-16 481 41 1032 1039 0.68% 1.31% 4.43 -2.50% -1.74%

Golden-16 481 44 1028 1042 1.36% 1.71% 4.53 -2.30% -1.77%

Golden-16 481 49 1031 1044 1.26% 1.66% 5.56 -2.87% -2.20%

Golden-16 481 54 1022 1038 1.57% 1.91% 4.39 -2.50% -2.13%

Golden-16 481 61 1013 1035 2.17% 2.58% 3.85 -2.22% -1.74%

Golden-16 481 69 1012 1035 2.27% 2.60% 3.86 -2.03% -1.65%

Golden-16 481 81 1018 1043 2.46% 3.06% 2.93 -2.49% -1.62%

Golden-16 481 97 1018 1048 2.95% 3.47% 3.16 -2.48% -1.72%

Golden-17 241 17 418 421 0.72% 1.16% 3.44 -7.13% -6.48%

Golden-17 241 18 419 421 0.48% 0.95% 2.77 -6.89% -6.41%

Golden-17 241 19 422 424 0.47% 0.78% 5.01 -7.55% -7.09%

Golden-17 241 21 425 427 0.47% 0.91% 3.68 -8.67% -7.85%

Golden-17 241 22 424 426 0.47% 0.91% 4.59 -8.22% -7.69%

Golden-17 241 25 418 421 0.72% 1.04% 3.70 -7.84% -7.54%

Golden-17 241 27 414 416 0.48% 0.79% 2.29 -7.21% -6.36%

Golden-17 241 31 421 422 0.24% 0.61% 2.33 -5.45% -4.62%

Golden-17 241 35 417 418 0.24% 0.49% 3.34 -4.55% -4.04%

Golden-17 241 41 412 412 0.00% 0.39% 4.96 -3.40% -2.71%

Golden-17 241 49 414 416 0.48% 0.79% 3.45 -4.81% -4.07%

Golden-18 301 21 592 599 1.18% 1.60% 4.13 -4.34% -3.06%

Golden-18 301 22 594 602 1.35% 1.61% 4.89 -3.99% -3.47%

Golden-18 301 24 592 601 1.52% 1.73% 5.09 -4.49% -3.23%

Golden-18 301 26 590 595 0.85% 1.54% 3.41 -3.19% -2.31%

Golden-18 301 28 577 582 0.87% 1.33% 4.42 -2.23% -1.65%

Golden-18 301 31 578 583 0.87% 1.18% 4.09 -2.92% -2.04%

Golden-18 301 34 582 585 0.52% 1.05% 4.38 -2.91% -2.56%

Golden-18 301 38 586 592 1.02% 1.48% 2.32 -3.89% -3.45%

Golden-18 301 43 594 599 0.84% 1.33% 4.50 -4.34% -3.80%

Golden-18 301 51 601 605 0.67% 1.18% 3.29 -4.96% -4.45%

Golden-18 301 61 599 602 0.50% 1.17% 3.73 -4.65% -4.01%

Golden-19 361 25 925 936 1.19% 1.55% 5.06 -3.85% -3.16%

Golden-19 361 26 924 935 1.19% 1.63% 4.84 -3.21% -2.84%

Golden-19 361 28 808 818 1.24% 1.63% 4.36 -6.60% -5.79%

Golden-19 361 31 811 822 1.36% 1.61% 4.41 -7.30% -6.65%

Golden-19 361 33 797 806 1.13% 1.66% 4.96 -6.58% -6.18%

Golden-19 361 37 799 809 1.25% 1.55% 4.51 -6.30% -5.77%

Golden-19 361 41 789 796 0.89% 1.27% 4.03 -5.40% -4.79%

Golden-19 361 46 788 794 0.76% 1.08% 3.13 -5.29% -4.38%

Golden-19 361 52 800 807 0.88% 1.30% 3.43 -6.57% -5.59%

Golden-19 361 61 807 812 0.62% 1.13% 3.09 -6.03% -5.40%

Golden-19 361 73 810 814 0.49% 1.33% 3.00 -6.27% -5.52%

Golden-20 421 29 1220 1231 0.90% 1.32% 4.78 -1.79% -1.49%

Golden-20 421 31 1232 1239 0.57% 1.14% 4.30 -1.53% -1.12%

Golden-20 421 33 1208 1219 0.91% 1.30% 4.37 -1.39% -1.00%

Golden-20 421 36 1059 1073 1.32% 1.76% 5.44 -3.73% -2.71%

Golden-20 421 39 1052 1063 1.05% 1.39% 5.13 -3.57% -3.07%

Golden-20 421 43 1052 1062 0.95% 1.46% 3.37 -4.24% -3.23%

Golden-20 421 47 1053 1065 1.14% 1.55% 3.90 -3.94% -3.27%

Golden-20 421 53 1058 1071 1.23% 1.94% 3.41 -4.58% -3.79%

Golden-20 421 61 1058 1072 1.32% 1.95% 3.82 -4.76% -3.61%

Golden-20 421 71 1059 1076 1.61% 2.01% 2.80 -4.74% -3.81%

Golden-20 421 85 1049 1062 1.24% 1.98% 4.38 -4.14% -2.74%
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