Hematopoietic stem-cell transplantation for T-cell large granular lymphocyte leukemia: a retrospective study of the European society for blood and marrow transplantation (EBMT)

Reference:
Full text (Publisher’s DOI): http://dx.doi.org/doi:10.1038/LEU.2015.256
To cite this reference: http://hdl.handle.net/10067/1420510151162165141
Hematopoietic stem-cell transplantation for T-cell Large Granular Lymphocyte Leukemia: a retrospective study of the European Society for Blood and Marrow Transplantation (EBMT).

Tony Marchand¹,², Thierry Lamy¹,²,³, Hervé Finel⁴, William Arcese⁵, Sylvain Choquet⁶, Jürgen Finke⁷, Anne Huynh⁸, Giuseppe Irrera⁹, Dimitrios Karakasis¹⁰, Johanna Konopacki¹¹, Juliette Lambert¹², Mariagrazia Michieli¹³, Harry C. Schouten¹⁴, Wilfried Schroyens¹⁵, Gülşan Sucak¹⁶, Johanna Tischer¹⁷, Elizabeth Vandenberghe¹⁸ and Peter Dreger⁴,¹⁹ on behalf of the Lymphoma Working Party of the EBMT.

1. Service d'Hématologie Clinique, CHU de Rennes, Rennes, F-35043, France
2. INSERM UMR 917, Université Rennes1, Rennes, France
3. INSERM U1414-CIC, Université Rennes1
4. EBMT LWP Office, Paris
5. Policlinico Universitario Tor Vergata, Rome, Italy
6. Service d'Hématologie Clinique, CHU La Pitié Salpêtrière Hospital, APHP, Paris, France
7. Freiburg University Medical Center, Freiburg, Germany
8. Institut Universitaire du Cancer, Toulouse, France
9. Centro Unico Regionale Trapianto Cellule Staminali e Terapie Cellulari, Azienda Ospedaliera Bianchi-Melacrnino-Morelli, Reggio Calabria, Italia
10. Evangelismos Hospital, Athens, Greece
11. Hôpital d'Instruction des Armées Percy, Clamart, France
12. Centre Hospitalier de Versailles, Le Chesnay, France
13. Centro di Riferimento Oncologico, Aviano, Italy
14. University Hospital, Maastricht, The Netherlands
15. University Hospital, Antwerp Edegem, Belgium
16. Gazi Universitesi Tip Fakültesi Hastanesi, Ankara, Turkey
17. Ludwig Maximilians University Hospital of Munich, Grosshadern, Munich, Germany
18. St. James's Hospital, Dublin, Ireland
19. Department of Medicine V, University of Heidelberg, Heidelberg, Germany

Corresponding author:
Dr Tony Marchand, MD
Service d'Hématologie Clinique
Hôpital Pontchaillou
CHU de Rennes, France
Tel: +33 (0)2 99 28 42 91
Fax: +33 (0)2 99 28 41 61
Mail: tony.marchand@chu-rennes.fr

Keywords: Large Lymphocyte Granular Leukemia, Autologous Stem Cell Transplantation, Allogeneic Stem Cell Transplantation, Graft versus Leukemia.
Large Granular Lymphocyte (LGL) leukemia is a rare lymphoproliferative disorder characterized by clonal expansion of either CD3$^+$ cytotoxic T lymphocytes or CD3$^+$ NK cells. World Health Organization classification has recognized LGL leukemia as a specific entity among the subgroup of mature peripheral T-cell neoplasms. Clinical presentation is dominated by splenomegaly, neutropenia with recurrent infections and autoimmune manifestations. Due to low incidence and thus the lack of prospective studies, no standard treatment has been established in LGL leukemia. Although usually considered as an indolent disease, most patients will require therapy based on immunosuppressive drugs such as methotrexate, cyclophosphamide or cyclosporin. Despite of a good clinical response rate, long-term remissions are rarely observed. Patients who are refractory to immunosuppressive therapy or with initial aggressive clinical course should be offered alternative strategies because combined chemotherapy regimens such as CHOP-like regimens gives disappointing results. Few cases of aggressive LGL-leukemia have been described with an overall survival (OS) not exceeding 2 years. In this serious situation, intensification of therapy by high-dose chemotherapy may be considered. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment for several immune and hematologic disorders but is associated with a high toxicity mainly due to graft-versus-host disease (GVHD). Graft-versus-lymphoma effects have been proven in various lymphoproliferative disorders. However, the feasibility and efficacy of allo-HSCT in LGL leukemia has not been evaluated so far and data are only limited to few sporadic case reports. Autologous hematopoietic stem cell transplantation (auto-HSCT) is associated with prolonged progression-free survival (PFS) in several lymphohematopoietic malignancies and represents a valuable option in peripheral T cell lymphoma.
However, the value of auto-HSCT in relapsed or refractory LGL leukemia has not been evaluated to date. In this letter, we report the outcome of 15 patients treated by auto-HSCT or allo-HSCT for T-cell LGL leukemia and reported to the EBMT registry.

This is a registry-based retrospective multicentre study including patients 18 years or above who underwent allo-HSCT or auto-HSCT for T-cell LGL leukemia between 1 January 2004 and 30 November 2011 while cases were reported to the European Society for Bone and Marrow Transplantation (EBMT). EBMT is a voluntary organization comprising more than 600 transplant centres mainly from Europe. Accreditation as a member centre requires submission of minimal essential data (MED-A form) (www.ebmt.org) from all consecutive patients to a central registry. Informed consent for transplantation and data collection was obtained locally according to regulations applicable at the time of transplantation. Baseline patient, disease and transplant data were collected from MED-A forms. In addition, a questionnaire was sent out to collect additional data including autoimmune disease, clinical presentation, prior to transplantation administered therapies and updated follow-up information. Centers were then contacted to provide written flow-cytometry diagnostic reports in order to confirm the diagnosis of LGL leukemia. Conditioning regimen intensity were defined according to definition recently proposed.10,11 GVHD was graded according to consensus criteria.12,13 The primary end points studied were 2-year OS and 2-year PFS. Secondary endpoints were incidence of disease relapse or progression (RI) and non-relapse mortality (NRM). Probabilities of PFS and OS were calculated using the Kaplan-Meier estimate.

A total of 33 patients fulfilling the inclusion criteria were identified in the EBMT registry (allo-HSCT 20, auto-HSCT 13). In 15 patients, the requested additional data
could be retrieved and the diagnosis of LGL finally confirmed in all (allo-HSCT 10, auto-HSCT 5). Most of these 15 patients had advanced disease with multi-organ involvement (n=9) including bone marrow (n=9), spleen (n=7), liver (n=3), skin (n=1) and central nervous system (n=1). Median number of prior therapy regimens was 2 (1-8). Eleven patients (73%) were previously treated with poly-chemotherapy. Median time from diagnosis to transplantation was 15 months (range: 7-211). Patient and treatment characteristics as well as outcome after HSCT are shown in Table 1.

Ten patients received an allo-HSCT at a median age of 49 years (range 29-66). Three of them were in complete remission (CR) at transplantation. Six patients were in partial response (PR) and one patient presented with refractory disease. All but two donors were HLA-matched. G-CSF mobilized peripheral blood progenitor cells were used in all but one patient. Intensity of conditioning regimen was reduced in 6 patients (40%) while conditioning was TBI-based in 7 patients. GVHD prophylaxis consisted of cyclosporin alone (n=3) or in combination with either methotrexate (n=3) or mycophenolate mofetil (n=2). One patient received a GVHD prophylaxis by sirolimus and mycophenolate mofetil and one patient had a syngeneic donor not requiring a GVHD prophylaxis. In vivo T cell depletion was performed in 4 patients with either antithymocyte globulin (n=3) or alemtuzumab (n=1). Engraftment with absolute neutrophil counts rising above 5x10⁹/L was achieved for all patients at a median of 19 days (range: 8 - 41) after allo-HSCT. Grade II-IV acute GVHD was observed in 4 patients. Seven patients survived more than 100 days after allo-HSCT and 2 developed extensive and 1 patient limited chronic GVHD. One patient relapsed early at day +24 after allo-HSCT and died soon afterwards due to disease progression. Four other allografted patients died because of severe infections. Viral infections were documented in 3 patients with concomitant GVHD in 2 of them. One
additional patient died from fungal respiratory tract infection. These 4 patients were
heavily pretreated with a median of 3 chemotherapy lines. All of them had received
alemtuzumab prior to or in preparation for allo-HSCT. Five patients are still alive and
in remission after a median follow-up of 30 months (range: 19-95), resulting into a 2-
year PFS and OS of 50% each (95%CI, 18% - 75%).

Auto-HSCT was performed in 5 patients at a median age of 49 years (range:
38-57). Three patients were in CR and 2 in PR at the time of transplantation.
Conditioning regimens were BEAM (carmustine, etoposide, cytarabine and
melphalan) in 4 patients and TAM6 (cytarabine, melphalan, TBI 12 Grays) in 1
patient. Two patients relapsed at 1 and 31 months post auto-HSCT and died. One
patient could not achieve CR after auto-HSCT but is still alive after a follow-up of 40
months. No patient died due to auto-transplant related complications. Two patients
remain alive and disease-free 27 and 52 months post auto-HSCT, respectively.

T-cell LGL leukemia is usually an indolent disease with a high sensitivity to
immunosuppressive drugs.³ Contrasting with this classical presentation, some
patients suffer from aggressive or refractory disease associated with an extremely
poor prognosis.⁵ In this rare aggressive/refractory LGL leukemia, polychemotherapy
has been tried with disappointed results raising the question of HSCT.⁵,¹⁴ Autologous
HSCT is a validated therapeutic option in many lymphoid malignancies.⁹ Disease
control at the time of transplantation is crucial and associated with longer PFS in this
setting.¹⁵ In our series, 3 patients who had received an autograft with advanced
disease (2 patients in partial response and 1 patient in CR after 3 chemotherapy
lines) at time of transplantation relapsed or progressed after auto-HSCT whereas the
2 patients autografted in first complete remission have not relapsed after a
reasonable follow up. These results suggest that prolonged PFS might be achieved
by auto-HSCT in patients with a chemo-sensitive disease. Allogeneic HSCT represents the only curative treatment for several hematologic malignancies and "Graft versus lymphoma" (GVL) effects have been demonstrated in various lymphoid disorders. Due to the small number of patients included in this analysis, we were unable to evaluate the correlation between GVL and GVHD. However, it was remarkable that despite the inclusion of patients with advanced, non-remission disease, only one relapsed after allo-HSCT suggesting a "graft versus LGL" effect. Our finding of prolonged induction of remission in those patients supports additionally the possibility of an existing GvL effect in LGL leukemia. Thus our results suggest that allo-HSCT could be performed in chemo-refractory LGL-leukemia.

In conclusion, despite of the retrospective nature of our analysis and the small number of patients included not allowing the evaluation of prognosis factors, our results provide the first evidence of the feasibility of HSCT in refractory/aggressive LGL leukemia while an inside results showing efficacy in the treatment of a rare disease is provided. Thus, HSCT appears as a potential therapeutic option in rare aggressive and relapsing forms of T-LGL leukemia and should be further explored to define an optimal therapeutic strategy in this setting.

Conflicts of Interest

The authors declare no conflict of interest

Acknowledgments

The authors thank all EBMT centers that participated in this study.
Authorship

TM and TL designed the study and performed statistical analysis. TM, TL, HF and PD were responsible for data collection, data analysis, data interpretation, manuscript preparation, writing and completion and final approval of manuscript. All authors approved the final version of the manuscript and the submission.

References

6 Jones RJ, Ambinder RF, Piantadosi S, Santos GW. Evidence of a graft-versus-lymphoma effect associated with allogeneic bone marrow transplantation. Blood
1991; **77**: 649–653.

Figure Legends:

Table 1. Patient characteristics and outcome

<table>
<thead>
<tr>
<th>Treatment Codes</th>
<th>Drug(s) Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AraC</td>
<td>cytarabine</td>
</tr>
<tr>
<td>aGVHd</td>
<td>acute Graft versus Host disease</td>
</tr>
<tr>
<td>ATG</td>
<td>antithymocyte globulin</td>
</tr>
<tr>
<td>BEAM</td>
<td>Carmustine-etoposide-cytarabine-melphalan</td>
</tr>
<tr>
<td>cGVHd</td>
<td>chronic Graft versus Host disease</td>
</tr>
<tr>
<td>CHOP</td>
<td>cyclophosphamide-doxorubicine-vincristine-prednisone</td>
</tr>
<tr>
<td>CHVP</td>
<td>cyclophosphamide-adriamycin-etoposide-prednisolone</td>
</tr>
<tr>
<td>CR</td>
<td>complete remission</td>
</tr>
<tr>
<td>CY</td>
<td>cyclophosphamide</td>
</tr>
<tr>
<td>DHAP</td>
<td>dexamethasone-cytarabine-cisplatine</td>
</tr>
<tr>
<td>ESHAP</td>
<td>etoposide-prednisone-cytarabine-cisplatine</td>
</tr>
<tr>
<td>F</td>
<td>female</td>
</tr>
<tr>
<td>FLAG-Ida</td>
<td>fludarabine-cytarabine-granulocyte colony-stimulating factor-Idarubicin</td>
</tr>
<tr>
<td>FLAMSA</td>
<td>fludarabine-cytarabine-amsacrine</td>
</tr>
<tr>
<td>Flu</td>
<td>fludarabine</td>
</tr>
<tr>
<td>FU</td>
<td>follow up</td>
</tr>
<tr>
<td>GMALL</td>
<td>German Multicenter Acute Lymphoblastic Leukemia group</td>
</tr>
<tr>
<td>ICE</td>
<td>ifosfamide-carboplatine-etoposide</td>
</tr>
<tr>
<td>M</td>
<td>male</td>
</tr>
<tr>
<td>MAC</td>
<td>myeloablative conditioning</td>
</tr>
<tr>
<td>Mel</td>
<td>melphalan</td>
</tr>
<tr>
<td>Mitox</td>
<td>mitoxantrone</td>
</tr>
<tr>
<td>MMF</td>
<td>mycophenolate mofetil</td>
</tr>
<tr>
<td>MOPP</td>
<td>mechlorethamine-vincristine-procarbazine-prednisone</td>
</tr>
<tr>
<td>MUD</td>
<td>match unrelated donor</td>
</tr>
<tr>
<td>MTX</td>
<td>methotrexate</td>
</tr>
<tr>
<td>NA</td>
<td>not applicable</td>
</tr>
<tr>
<td>OS</td>
<td>overall survival</td>
</tr>
<tr>
<td>PR</td>
<td>partial remission</td>
</tr>
<tr>
<td>Pred</td>
<td>prednisone</td>
</tr>
<tr>
<td>Prog</td>
<td>progression</td>
</tr>
<tr>
<td>RIC</td>
<td>reduced intensity conditioning</td>
</tr>
<tr>
<td>SCT</td>
<td>stem cell transplantation</td>
</tr>
<tr>
<td>Sib</td>
<td>sibling donor</td>
</tr>
<tr>
<td>Stanford V</td>
<td>doxorubicine-vinblastine-mechlorethamine</td>
</tr>
</tbody>
</table>

HSCT for T-cell LGL Leukemia
etoposide-vincristine-bleomycin-prednisone; Syn, syngenic donor; Tacro, tacrolimus; TAM,
total body irradiation (TBI)-cytarabine-melphalan;