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Retail credit scoring using �ne-grained payment data

Ellen Tobbacka and David Martensa

aDepartment of Engineering Management, University of Antwerp

Abstract

Banks are continuously looking for novel ways to leverage their existing data assets.

A major data source that has not yet been used to the full extent, is massive �ne-grained

payment data on the bank's customers. In this paper, a design is proposed that builds

predictive credit scoring models using the �ne-grained payment data. Using a real-

life data set of 183 million transactions made by 2.6 million customers, we show that

the scalable implementation that is put forward leads to a signi�cant improvement in

AUC, with only seconds of computation needed. When investigating the 1% riskiest

customers, twice as many defaulters are detected when using the payment data. Such

an improvement has a big impact on the overall working of the bank, from applicant

scoring to minimum capital requirements.

1 Introduction

In this big data era banks, like any other large company, are looking for ways to lever-

age their existing data assets. Internally, banks have access to a broad base of customer

data. Technological advancements such as mobile banking and contactless payments have

substantially raised the number of registered transactions. As a result, next to sociode-

mographic data such as age, income and education, banks have data on the purchasing

and payment records which makes much of a person's behaviour visible. The fact that a

customer regularly transacts with other clients who have defaulted on a loan, combined

with the fact that he makes regular payments at a casino and high-street shops while only

rarely receiving money from an employer can be telling for his default behaviour. Payment

data has been used in the credit scoring literature to help banks better predict default and

bankruptcy. Yet, this data source is not used to its full extent. Because payment data is
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too big or disorganized for traditional methods to handle, most studies have derived ag-

gregated attributes from the �ne-grained data and thus discard important information. In

this paper, we investigate how to leverage this data source in its granular form and test

both propositional and relational methods1. We propose a scalable and privacy-friendly

design that allows banks to include payment data in a non-aggregated manner. We test the

results empirically using a data set from a European major commercial bank that contains

183 million checking account transactions made by 2.6 million clients holding a commercial

loan.

The recent credit turmoil has shown the dangers of inaccurate credit risk modelling

approaches. Focusing on payment data to enhance credit risk models has the advantage

that it manages to combine interpretability with increased prediction performance. This

comprehensibility aspect is a regulatory requirement, as a bank needs to be able to explain

to a customer why credit has been denied [18].

Our study contributes to the credit scoring literature in several ways. We provide

empirical evidence that using �ne-grained transaction data improves the accuracy of default

predictions, (ii) we describe two methods (propositional and relational) and show that

transaction data is best analysed in a relational manner and (iii) building upon our initial

�ndings, we o�er advice to the banks on their data collection and analyses to perform.

The outline of this paper is as follows. Section 2 reviews prior work on credit scoring and

behavioural data. Section 3 describes the transformation of transaction data into default

predictions. Next, Section 4 provides a detailed description of our experimental set-up and

analyses the empirical results. The �nal section concludes the paper.

2 Credit scoring and behavioural data

There is a vast amount of research on credit scoring, covering statistical, operational re-

search and arti�cial intelligence methods. The �rst credit scoring models were created using

discriminant (DA) [7] or regression analysis [22], however researchers quickly introduced lo-

gistic regression [32], decision trees [17] and linear programming [11] as alternative credit

scoring methods. Since the 1990's the research focus has shifted towards techniques such as

Support Vector Machines (SVM) and Arti�cial Neural Networks (ANNs). In a large bench-

1Whether the bank is allowed to explicitly use this payment data in such a manner in the context of

the European General Data Protection Regulation (GDPR) [24] is part of a larger discussion, which is why

we propose the privacy-friendly design as discussed in Section 4.4
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marking study, Baesens et al. [1] show that neural networks and non-linear Least Square

SVM report the highest performance for each data set considered in their study. However,

the authors note that in terms of performance, logistic regression and DA are competitive

with the non-linear classi�ers.

In many countries legislation requires �nancial institutions to explain why a certain

credit was not granted. Applying non-linear, black box models decreases the comprehen-

sibility of credit scoring. Even though methods exist that extract rules from black-box

models [18], in a practical setting, credit scoring is still mainly based on simple classi�ers

such as logistic regression, DA and classi�cation trees.

Most credit scoring research focuses on the modelling techniques and only to a lesser

extent on the input data. Traditionally, credit scoring models include socio-demographic

data2, data on the applicant's �nancial situation, employment and education data, and

behavioural data. Certain studies have included macroeconomic data to consider the mar-

ket conditions at the time of application [2, 5]. Following the de�nition by Shmueli [28],

big behavioral data captures human behavior through the actions and/or interactions of

people. These form a record of a person's behavior captured as �ne-grained features. In

this setting, behavioural data can be the �ne-grained credit card usage, transfer patterns

on the transaction account or repayment behaviour on a di�erent loan. Banks have be-

havioural data at their disposal if the applicant is an existing (credit) client3. This data

can be complemented with external data, e.g. from credit bureaus.4 A number of studies

have included behavioural data in their credit scoring models. Norden and Weber [23] in-

vestigated the in�uence of credit line usage and the checking account balance on default

risk of bank borrowers. They �nd that measures of account activity signi�cantly enhance

default predictions. Khandani et al. [15] analyse patterns in consumer expenditures, sav-

ings and debt payments to predict credit card delinquencies. Bellotti and Crook [3] use

monthly account behavioural records to predict credit card defaults using dynamic models.

2In certain countries, legislation prohibits banks to discriminate based on certain socio-demographic

information, such as age, gender, ethnic origin and religion. In the US, this is directly regulated by the

Equal Credit Opportunity Act. In the EU this is indirectly regulated by Article 13 of the EC Treaty and

translated into national legislation.
3In Europe, a new European PSD2 directive has come into e�ect in January 2018 [8], which encourages

the mobility of consumers' payment data. This implies that payment data becomes available from other

banks, at the request of the customer. The implications in this setting are elaborated on in Section 4.4.
4In certain countries in continental Europe, there are no credit bureaus. Banks can collect information

on existing credits from a national credit register.
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However, all the above-mentioned studies transform the data to monthly aggregates, such

as the transaction count per month, the monthly average account balance and the total

in�ow and out�ow per month. In this paper we use behavioural data on checking account

transactions in a �ne-grained manner, using the individual payments.

The use of behavioural data has proven to be successful in other domains such as as

targeted advertising [20], fraud detection [14] and customer retention [30]. The nature of

these large behavioural data sets requires a di�erent modelling approach than the tradi-

tional, structured data sets. One option is to consider each action as a separate data entry

and create a large matrix where each column is an interest, activity or entity. A di�erent

option is to create a network between all nodes where two nodes are linked through similar

interests or activities: e.g. watching the same videos [31], visiting the same places [27] or

liking the same pages on Facebook. Behavioural data on checking account transactions has

been used by Martens and Provost [20] to successfully target potential buyers of a �nancial

product using a network structure, where two customers are linked if they have paid to the

same entity. Within data mining we observe an increased use of social network data as input

drivers for applications in marketing [26] and fraud detection [12]. The main reason is the

tremendous predictive power that is present in models built on such relational data, with

signi�cant improvements compared to traditional approaches that only use individual cus-

tomer data. Network data can be seen more broadly than the typical friendship relationship

among persons as data that de�nes relationships between entities. Two major categories

of relational data can be distinguished: real network data and pseudo-network data. In a

real network, two nodes are connected because a certain form of direct communication has

taken place between them. In a pseudo-network, two nodes are connected because they

have a common interest, activity or asset. The network is implied as there is no evidence

that both nodes have ever communicated with each other. In this study, we build upon

the proven success of network data and exploit the transaction data in a relational manner.

Next to a direct network where consumers are linked if they made payments to each other,

we create an implied or pseudo-social network where two consumers are linked if they made

payments to the same entities.

3 Transforming transactions into predictions

We investigate both propositional and relational models to use money transfer data of a

client's transaction account. The propositional model follows the standard classi�cation
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method and adds each unique transaction as a feature in the input space. This results in

a large and sparse adjacency matrix B(m,n) that represents the behavioural data, with m

the number of clients and n the number of counterparties (i.e. the unique set of account

members that can be paid to). Each cell ci,j is a binary variable that denotes whether a

transaction has taken place between client i and counterparty j. The matrix is created from

the transaction log as illustrated by Figure 1. Bob, Jack, Sarah, Sophie and Josh all have

an account and a commercial loan at the same bank. The graph on the left side represents

their transactions over one month. The matrix on the right side is the adjacency matrix

B(m,n).

Figure 1: Matrix representation of the payment data: from the transaction log

to an adjacency matrix.

The relational models use two types of network representations of the data: a direct

network and an implied network. In the direct network, i.e. a unigraph with m nodes, two

clients are linked if a transaction has taken place between them. In the implied network,

which is a projection from a bipartite graph with m bottom nodes and n top nodes, two

clients are linked if they have transferred money to or received money from the same entity.

By creating both networks, we rely on the sociological concept of assortativity which states

that people are more likely to form bonds with others who have similar characteristics
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such as values, beliefs, socio-economic status [21]. By creating a direct network, we build

upon the theory of assortativity and assume that people of similar creditworthiness tend to

cluster [20].

Both networks are created from the transaction log as visualized in Figures 2 and 3. The

graph on the right side of Figure 2 represents the direct network. It shows the connections

between the clients that transacted with each other. These clients are both clients and

counterparties in the transaction log. The debit transactions of Sarah, Sophie and Josh to

Bob are listed as credit transactions on Bob's account. In the resulting network, Sarah,

Sophie and Josh are directly connected to Bob.

Figure 2: Direct network representation of the payment data: unigraph ex-

tracted from the transaction log.

The implied network is a projection from the transaction log as illustrated by Figure 3.

The network shows the connections between the clients that transacted with the same entity.

Sarah, Sophie and Josh are connected in the implied network because they transferred

money to the same account (i.e. Bob's account). The more entities they have in common,

the stronger the connection. Sophie and Josh have a stronger connection than Josh and

Sarah, because they have more transactions in common (i.e. Bob's account and their

employer).

To create the implied network, we follow the three-step framework proposed by Stankova
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Figure 3: Indirect (implied) network representation of the payment data: from

a bipartite graph (transaction log) to a projected unigraph.

et al. [29]. To each counterparty a weight is assigned according to the hyperbolic tangent

of its inversed degree, with the degree equal to the number of clients that have made a

payment to/received a payment from the respective counterparty. The hyperbolic tangent

function downweighs entities that many clients have in common, as these are likely to be less

distinctive for the target variable. Referring to the example of Figure 3, there will be more

clients receiving a tax refund from the government tax agency (Internal Revenue Service or

the country-equivalent) than clients buying their groceries at a certain local supermarket.

Hence, the supermarket should be assigned a larger weight than the tax agency. Figure 4

shows the histogram of the number of clients per counterparty in our data set, accompanies

by the corresponding weight. Most counterparties have few transaction partners. However,

there is a small number of counterparties that the majority clients has transacted with.

These are likely to be large companies or government organizations, such as energy and

water suppliers and the tax agency. The weights assigned to the counterparties (i.e. the

top node weights S) are given by the black line, which is the hyperbolic tangent of the

inverse degree d, the number of clients per counterparty. The weighting scheme downweighs

counterparties with many transaction partners more severely than entities that transacted
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with only a few clients5. In the second step of the three-step framework the weights of all

shared entities are aggregated.

The implied network is named Pseudo-Social Network (PSN): as in a true social network,

strongly connected consumers demonstrate a strong similarity, at the very least in the

particular merchants with which they transact. It is a pseudo-social network because,

by and large, the linked consumers probably have no true social relationship with one

another [20].

Figure 4: Histogram of the number of clients per counterparty (bars). The

corresponding weight, the hyperbolic tangent of the inverse degree, is shown

by the black line.
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5The reader might wonder if this will not cause over�tting. In previous work [29], we looked at this

risk by also including a tunable beta function as the top node weighting function. This beta function can

take di�erent forms, with a shape similar to the one of Figure 4, but also the possibility to downweigh

the very infrequent counterparts. Interestingly, the optimal form is still the one we observe in the tangens

hyperbolicum function (moreover, the tangens hyperbolicum is the one recommended in this study).
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4 Experimental setup

4.1 Data

We received data from the transaction account, which includes an anonymised bank client

indicator and a counterparty indicator for each transaction. We obtained 5 months of

transaction data, containing over 180 million (debit and credit) transactions of 2.5 million

bank accounts. Each bank account is linked to a consumer credit with a non-default status

on 31 December 2014. The goal is to predict which loans will default in 2015. Transactions

are marked as point-of-sales (POS) transactions or transfers. The �rst category consists

of payments made at a physical store with a debit card (credit cards transactions are not

included in the data), the latter category are electronic transfers from or to the client's

account. Table 1 shows some relevant data characteristics. By adding more months, we

increase the total number of transactions and counterparties. The number of bank accounts

is kept stable and equal to those accounts that have made transactions on their account in

December 2014.

Each bank account is accompanied by a rating score, determined by the bank's internal

rating model that uses a 12 notch rating scale. This rating model is built using advanced

modelling and includes sociodemographic and aggregated behaviour input variables. Due

to con�dentiality reasons, we are unable to describe the exact modelling procedure used.

However, as the data is obtained from a large European bank, subject to regulatory oversight

on its modelling, we can con�dently state that the modelling procedure is in line with the

state of the art modelling practices.

4.2 Study design

We estimate the performance of 4 models built using only transaction data: a propositional

model, a direct network model, an implied (PSN) network model and a linear ensemble

model that combines the output scores of the direct and implied network. The performance

of these models is compared to the benchmark performance of the bank's own ratings. To

test whether the payment data and the traditional data (represented by the ratings) are

complementary, we create three additional linear ensemble models: one model that combines

the output scores of the rating model with the scores of the direct network, one model that

combines the scores of the rating model with the scores of the implied network and one

model that combines the scores of the rating model with the scores of the direct and the
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Table 1: Data characteristics

Number of

months included

Number of clients Number of coun-

terparties

Number of trans-

actions

Number of unique

client-CP combi-

nations

1 month
2,585,227 4,141,402 42,865,861 28,278,074

(December)

2 months
2,585,227 4,757,378 76,026,632 38,390,747

(+ November)

3 months
2,585,227 5,254,154 114,043,910 48,401,003

(+ October)

4 months
2,585,227 5,649,005 150,387,767 56,431,000

(+ September)

5 months
2,585,227 5,945,217 182,645,116 63,042,608

(+ August)

scores of the implied network. The latter model is referred to as the `full ensemble model'.

We use a ten-fold cross validation procedure, where 90% is used as training data and

10% as test data. The training data is further split in 80% to train and validate the

classi�ers using the transaction data and to train and validate the rating model, and 20%

to train and validate the linear ensemble models. Ideally, the study should be performed

completely out-of-time. However, due to data restrictions we are limited to the use of an

out-of-sample testing framework.

To investigate the value of additional data, we start by incorporating only the most

recent month (December 2014) and gradually increase the size of the data set by including

the transactions further in the past. This allows us to see if it pays o� to invest in the

collection and storage of historical transactions.

Benchmark rating model The bank's 12 notch rating scale is used as a benchmark in

this study. We could use the rating directly to test the performance, however, we decided to

use the rating scales as input data in a simple linear prediction model. In a later step, the
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output scores of the direct and implied network models can be added to this linear model,

which allows us to precisely estimate the added predictive value of the payment data. The

rating scales are transformed into separate data entries using unary encoding. Unknown

ratings are replaced by the mode and are assigned a missing value �ag. This results in 12

input variables (11 ratings and 1 missing value dummy).

As linear classi�er, we apply a linear Support Vector Machines which solves the follow-

ing optimization problem [9]:

minw
1

2
wTw + C

∑
i

max(1− yiwTxi, 0)
2

(1)

With vector w representing the weights of the model and xi and yi representing the

input vector and the label of the ith observation. max(1− yiwTxi, 0)
2 is the squared (L2)

hinge-loss function. A ten-fold out-of-sample grid search was performed to �nd the optimal

value of C, the regularization hyperparameter. We employed the LibLinear package from

Fan et al. [9] to run the SVM.

Propositional model The propositional model looks at the payment data from a stan-

dard classi�cation perspective. Each counterparty in the adjacency matrix is an input

feature of the propositional model. Depending on the amount of months that are included

in the data set, the amount of variables in the model thus varies between 4 and 6 million.

The model weights are calculated using linear SVM.

Direct and implied network models To create predictions for both the direct and

implied networks, a relational learner is used. This learner is applied to the unigraph of the

direct model and to the projected unigraph of the implied PSN network. As a relational

learner, we apply the weighted-vote Relational Neighbour (wvRN) classi�er [16]. It is a

simple, yet powerful classi�er that uses the network structure to calculate a credit default

probability P (yi = c|N(i)) for a company as a weighted average of its j neighbours' (N(i))

probability scores (see Equation 2). The classi�er is based on the property of assortativ-

ity [21], as it makes the assumption that the connected nodes are similar and therefore

more likely to belong to the same class. We applied a smoothed version of wvRN that adds

the default rate µc as smoothing factor.

11



P (Li = c|N(i)) =

∑
j∈N(i)wijP (yj = c|N(j)) + 2µc

Z + 2

where the normalization factor Z is equal to
∑

j∈N(i)

wij

(2)

Equation 2 calculates the probability that the label y of client i equals c, with c being

a binary indicator of default, given its neighbours N(i) in the unigraph (projection). The

resulting credit default probability is the weighted sum of the default probabilities of a

client's neighbours. In this study, the neighbour's default probability is set to either 0 or

1, depending on whether they defaulted or not.

When estimating default probabilities, the traditional, unsmoothed, wvRN will assign

boundary values to nodes with only one neighbour, i.e. one or zero depending on whether

the neighbour has defaulted or not. Similarly, the method will assign boundary values

when the node is surrounded by neighbours of only one type and zero when the node has

no neighbours in the network. However, a client connected to no-one or to non-defaulted

clients only still has a certain probability of default. To solve these problems, we calculate

a smoothed version of the probability estimate using the concept of additive smoothing.

Traditional additive smoothing starts from the prior assumption of equal probabilities for

each class. This assumption is not valid for our credit scoring data set, therefore we replace

the uniform probability of 0.5 by the default rate µc of the training set. As a result, when

using a smoothed wvRN, a client with no neighbours will receive the default rate µc.

The edge weight wij between client i and its neighbour j is di�erent for the implied and

direct network. The edge weights in the implied network are de�ned by Equation 3 and

equal the sum of the top node weights Sk of all shared top nodes NT in the bipartite graph.

wij =
∑

k∈NT (i)∩NT (j)

Sk (3)

The top node weight Sk of node k is equal to the hyperbolic tangent of its degree dk:

Sk = tanh(
1

dk
) (4)

For the direct network two di�erent weighting schemes are considered. In the �rst

scheme the edge weight wij is a variable that denotes the number of months from the data

set in which at least one transaction between both parties has taken place. When only one

month of data (i.e. December) is considered, the edge weight is a binary variable. In the
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second scheme the edge weight wij equals the number of transactions between both parties

i and j.

Ensemble models As mentioned before, for each fold the training set is split into 80% to

train the classi�ers (training set 1) and 20% to train the ensemble models (training set 2).

The direct and implied networks are built on the �rst training set and are used to estimate

default probabilities for the clients in training set 2. These probability scores are then used

as input features for the ensemble models, alongside the unary encoded rating dummies for

those ensemble models that include the ratings. The ensemble models linearly combine the

di�erent variables with the weights estimated by a linear SVM.

4.3 Results

We compare the results of the four payment data models with the benchmark rating model

and the rating ensemble models using the Area under the ROC-curve characteristic [10]

and the lift [4] at 1 and 5% of the test set, averaged over the 10 folds.

Figure 5 plots the AUC performance for all models. For sake of clarity, the results

are spread over two graphs. Figure 5a plots the performance of the propositional model,

the direct network model, the implied network model and the benchmark rating model.

Figure 5b also plots the performance of the benchmark rating model (to facilitate easy

comparison) and the four ensemble models. The direct network is created using the �rst

weighting scheme, i.e. the number of months from the data set in which at least one

transaction has taken place. The network models report high performance, however, they

are still outperformed by the bank's own rating models. The only exception is the ensemble

model that combines the direct and implied network scores. The results show that a direct

network has more predictive power than an implied network, indicating that your direct

transaction circle is likely to be composed of people with similar creditworthiness. Figure 6

illustrates a set of default clusters that are part of the direct network. The entire network

is a collection of similar small default and non-default clusters. It motivates the intuition

behind the relational model: if you are connected to numerous defaulters, you are likely

to be a defaulter too. This intuition is also con�rmed by Figure 7 which represents a

client's default probability for increasing minima of defaulters (absolute or proportional)

in its network. Remarkably, amongst the clients that are connected to at least 1 defaulter

(in the training set), 51.98% are defaulters themselves, compared to 0.77% in the complete

test set. In other words: for every 100 clients in the test set that are linked to at least 1

13



defaulter in the training set, 52 of them will default.

The best performing models are the ensemble models. The ensemble model that consid-

ers only payment data, i.e. the `direct + implied' model, performs better than the ensemble

model that combines the implied network with the ratings. The highest AUC values are

found for the full ensemble model, closely followed by the model that combines the ratings

with the scores of the direct network. The results show that traditional data and payment

data have complementary predictive power in terms of AUC. The similarity-based network

seems to add information above that already contained by the direct transactions network.

Applying a propositional technique is clearly suboptimal for the �ne-grained transaction

data used in this study. Our results indicate that this data type should be exploited in a

relational manner.

Figures 8 and 9 show the lifts at 1 and 5 percent averaged over the 10 folds. The highest

lifts are reported for the full ensemble model, the `direct + implied'-model and the `direct +

rating'-model, with a comparatively large gap in lift with the remaining �ve models. While

the rating model scores better than the direct network model in terms of AUC, it performs

worse in terms of the lift at the threshold of 1% : the direct network model reports a 115%

higher average lift than the rating model. However, this advantage over the rating model

levels o� at the 5% threshold, where the direct network model has only a 10% higher lift

than the rating model. In terms of lift it appears that adding the implied network score to

the `direct+rating'-model does not lead to higher performance: when using �ve months of

data, the lift of the full ensemble model and the `direct+rating' model overlap. The results

are in line with other studies that use relational learners on �ne-grained data: network

data gives a boost to the model lift [20]. In practical terms, this means that amongst the

highest (worst) scores of the models that include payment data in a direct network there

are more actual defaulters than amongst the highest scores of the traditional rating model.

This `boost' can also be seen in the ROC-curves in Figure 10. The direct model, the full

ensemble model and the `direct + implied'-model all have a cut-o� at which the model

detects more than 40% of the defaulters with almost zero misclassi�cations. The direct

network model is surpassed by the rating model for lower cut-o� values. Investigating the

true positive (TP) and false positive (FP) rates of the direct network model's ROC-curve

for the di�erent cut-o�s, shows that there is a sudden jump in the FP rate at a cut-o� of

0.009. This score is the default rate of the training set and is assigned by the relational

classi�er to the bank's clients that have no known transactions with other clients of the

bank. These are thus nodes with no links in the direct network, con�rming the importance

14



Figure 5: Results in terms of out-of-sample AUC.
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Figure 6: Graph representation of a sample of the direct network.

Figure 7: Probability of default for clients with increasing number and percent-

age of defaulted neighbours in their direct network.
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Figure 8: Results in terms of out-of-sample lift at 1 percent.
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Figure 9: Results in terms of out-of-sample lift at 5 percent.
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Figure 10: Receiver Operating Curve of one fold of out-of-sample predictions.
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of more information. This �nding shows that credit scoring and marketing can go hand in

hand: (i) encouraging clients to increase their use of the bank's checking account will result

in more information on a client's direct transaction network, and (ii) investing in positive

word-of-mouth marketing can lead to more links in a client's direct network if the people

in his or her environment open an account at the bank.

Figures 5, 8 and 9 operate as learning curves [25]. In the �rst step only the most

recent transactions (December 2014) are considered and at each step older transactions

are included. Overall, we see that the performance increases with each extra month of

transactions that is included in the features space, with the largest increase occurring in

the beginning between 1 and 2 months. The model that seems to bene�t the most from

additional data is the implied (PSN) network. Contrary to previous studies [13], we do not

increase the number of clients, but the number of counterparties and known transactions

per client. Nonetheless, we �nd the same conclusions: when working with �ne-grained data,

bigger is better [13, 20].

Regardless of the number of months included in the data set, the full ensemble model

performs better than the other models. This is con�rmed by a set of one-sided paired

t-tests over all ten folds. The results of these comparison tests are reported in Table 2.

The diagonal elements show the results for the model of the respective category. The rest

of the matrix indicates the results of the di�erent combinations of the corresponding data
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Table 2: P-values of a one-sided paired t-test for the di�erent models. The test

compares the AUC performance of each model with the best performing model

(the full ensemble model).

Rating Implied Direct Full ensemble

Rating 7.77e-14 5.81e-14 2.96e-08 -

Implied 5.81e-14 3.39e-14 6.95e-10 -

Direct 2.96e-08 6.95e-10 2.27e-15 -

Best model - - - 1.00

categories, i.e. the ensemble models. The full ensemble model, that uses all categories, is

shown in the last row. For all cases, we �nd that the full ensemble model has a signi�cantly

higher AUC than the other models, with all p-values lower than 1e-07.

For the direct network, we consider two weighting schemes. The networks in Figures 5, 8

and 9 applied the �rst type of edge weighting. The second type assigns the total number

of transactions between both parties as weight to the edge. Figure 11 compares the AUC

performance values of the resulting networks using the two weighting schemes. The dif-

ference in performance between both networks is limited and levels o� almost completely

when all 5 months of transaction data are used. After the addition of the fourth month of

transactions, the di�erence becomes insigni�cant (p-values > 0.31) as tested by a one-sided

paired t-test. We would recommend banks reproduce such learning curves on their own

data. With our results in mind (on the given dataset for the given prediction task), it is

su�cient to save only the unique transactions per month, as the predictive value seems to

lie in the fact that a payment to a certain counterparty has been made, not in the amount

or frequency.

As mentioned before, there are two types of counterparties in the data set: Point-of-

sales and transfers. Figure 12 compares the AUC-results of the implied network when all

counterparties are included with the network when only transfers or only POS are included.

The results illustrate that most predictive power is included in the transfer transactions.

The implied PSN network created out of POS-transactions has limited predictive power

and performs worse than the bank's own rating model. However, POS-transactions still

add some complementary information to the transfer network, as the highest performance

is found for the network created using all counterparties.
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Figure 11: AUC of the direct network model with two di�erent weighting

schemes.
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Figure 12: AUC of the implied network for di�erent counterparties.
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4.4 Deployment

Introducing big data analytics in credit scoring may require a reallocation of banking re-

sources. Traditional banks are often held back by legacy systems that are not adjusted to

the task at hand [6]. Simultaneously, banks can be reluctant to use external data sources

for fear of defying customer's trust. This paper o�ers a big data application for banks that

does not require large IT infrastructures and that uses internal data only. The data, in

the form of transaction logs, are already available at banks. As the results show, with few

months of transaction data, a high accuracy can easily be obtained. The smoothed wvRN

classi�er is a straightforward method with low computational time. On the largest data

set, it took 48.96 seconds to run 10 folds for the implied network using Matlab and only

1.65 seconds for the direct network 6. We should note that the data preparation process

(extraction of the transaction log and transformation of the log to an adjacency matrix) is

a time-intensive process. However, once extracted, the data can be utilized for purposes

other than credit scoring as well, including targeted advertising and churn prediction. This

process can also be done in an incremental manner, so once the �rst batch has been pro-

cessed, the weekly or monthly processing to add the new transactions would be quite fast.

Finally, the network scores can be integrated as a variable into the existing credit scoring

models and can thus provide additional information without disrupting the entire credit

scoring system.

In Europe, a new European PSD2 directive has come into e�ect in January 2018, which

encourages the mobility of consumers' payment data [8]. This implies that customers can

ask their current bank to send all �nancial transaction data to another bank. With an

increased digitalisation in the bank sector, there is a growing need for customers to be

allowed to smoothly apply for a (consumer) loan through the banking app. This is a

huge opportunity for our design: even for non-existing customers, a credit score will be

computable if the customer provides the bank with its �nancial transactions. This implies

that a person is no longer limited to its current bank to apply digitally and smoothly for

a loan. A potential threat that looms for current major banks, is the implication that also

startups or digitally native companies such as Google, Amazon, Facebook or Apple can

start gathering payment data from other banks (of course only at the explicit request of the

customers) and with the use of our design can build or improve their existing (marketing,

credit, fraud) scoring models.

6On an Intel Core i5-3470 CPU @ 3.20 GHz machine with 8Gb RAM.
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An important issue to consider when using sensitive payment data is privacy. The

design we propose is privacy-friendly and is an example of privacy-by-design: privacy is

embedded in the entire process. All data can be encrypted and only the encryption of the

client IDs should be reversible. This decryption can be executed in a separate, protected

environment that cannot be accessed by the modellers. We do not use the counterparties'

semantics such as address, type of person, type of shop, thereby allowing full encryption.

The results show that even the distinction between POS and transfer isn't necessary, as

the best performance is found when both types are included. The counterparties' IDs can

thus be irreversibly hashed. At no point in the modelling process does the design require

the modellers to look at the client's name or unencrypted payment data. The design does

not require purchasing third-party information and is therefore less likely to face privacy

and regulatory compliance issues, given that banks are transparent about the data used to

build credit scores.

Another ethical implication for the use of �ne-grained payment data is the explainability

of such models. Global explanation methods such as investigating the coe�cients in a

linear model or rule extraction [18, 19] are di�cult, as there are millions of features (the

account numbers of the counterparties). For such high-dimensional, sparse data, instance-

level explanation methods have been proposed recently, such as the EDC method [19]

(stands for EviDence Counterfactual, as well as Explaining Document Classi�cation). A

single (e.g. default) prediction is explained by the minimal set of transactions made by

this person such that if those transactions would not have occurred, the customer would

no longer be predicted to be a defaulter. Although this is an interesting approach to

understand the decisions made, and potentially to improve the model (by explaining false

positives), such explanations are not provided to the customers. The score based from our

design would mainly be used as a complement to already available models (which is also

the recommendation when considering the predictive performance). Upon request for more

explanation by the customer, the information provided is limited to the loan evaluation

process, meaning that the decision has taken into account aspects as budgetary analysis,

credit register information, and credit scoring. Most banks already use payment data

in an aggregated manner, the explanation hence does not change with the inclusion of our

design. There is however an additional ethical issue, where we need to avoid that customers,

becoming aware of the use of their payment data for credit scoring, avoid transacting with

economically vulnerable persons with assumed low credit score. On the other hand, this

same economically vulnerable group bene�ts from this design, as they would be able to
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apply for credit at more banks (not just its own bank), and as such the design also promotes

�nancial inclusion.

5 Conclusion

This paper investigates the use of transaction data for credit scoring. Our �rst contribution

is the examination of both propositional and relational methods to classify customers and

the �nding that transaction data should be modelled in a relational manner. Our second

contribution is the demonstration that payment data adds complementary predictive power

to the traditional credit scores. Thirdly, we o�er guidelines to banks on the data to use and

analyses to consider. The best results are found when the default probability scores of a

direct network (linking clients that transacted with each other) are combined with the scores

of an implied PSN network (linking clients if they transacted with the same entities) and

the bank's own ratings. We �nd that electronic transfers are more predictive than point-

of-sales transactions, though the model still bene�ts from the inclusion of both transaction

types. Adding more information to the data set by including transactions further in the

past increases the models' accuracy, though this increase appears to level o� when all �ve

months of transaction data are included.

In this study, we provide a big data application for credit risk assessment. The results

con�rm the large predictive value of behavioural data in credit scoring. The proposed design

is easy to implement by �nancial institutions as it uses internal data and does not require

a disruption of the existing IT infrastructure. Once the networks are created, they can

be applied within the bank for di�erent purposes other than credit scoring, such as churn

prediction, fraud detection and targeted marketing. The design can be extended to other

credit scoring applications, including credit card default using credit card transactions and

corporate default using corporate transactions. Additionally, the European PSD2 directive

also implies that banks (but also startups or digitally native companies such as Google,

Amazon, Facebook or Apple) can start gathering payment data from other banks (of course

only at the explicit request of the customers) to improve their existing scoring models.

As we found that bigger data leads to better predictions, the question arises at what

point more data will not be bene�cial anymore? More data has two dimensions: more

transactions for a given customer (in time for example), or having transaction data over

more customers. Another interesting issue for future research is the inclusion of domain

knowledge or the detection of potential bias in the scoring models.
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