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a b s t r a c t

Weconsider the problemof sparse interpolation of an approximate
multivariate black-box polynomial in floating point arithmetic.
That is, both the inputs and outputs of the black-box polynomial
have some error, and all numbers are represented in standard,
fixed-precision, floating point arithmetic. By interpolating the
black box evaluated at random primitive roots of unity, we
give efficient and numerically robust solutions. We note the
similarity between the exact Ben-Or/Tiwari sparse interpolation
algorithm and the classical Prony’s method for interpolating
a sum of exponential functions, and exploit the generalized
eigenvalue reformulation of Prony’s method. We analyse the
numerical stability of our algorithms and the sensitivity of
the solutions, as well as the expected conditioning achieved
through randomization. Finally, we demonstrate the effectiveness
of our techniques in practice through numerical experiments and
applications.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When computing with numerical multivariate polynomials and polynomial systems, it is often
effective and even necessary to work with an implicit representation. That is, we represent a
polynomial by its values at a sufficient number of points. Computationally, a black box for a
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multivariate polynomial is a procedure that, for any given input, outputs the evaluation of the
polynomial at that input. Black boxes may also represent ‘‘approximate polynomials’’, where we
expect that the evaluations may have error or noise. In this case wemight think of the coefficients (in
the power basis) as being approximate values as well, though the number of non-zero terms generally
remains fixed. In this paper we demonstrate robust numerical algorithms for the sparse interpolation
problem for approximate black-box polynomials: how to reconstruct an accurate representation
of the polynomial in the power basis. This representation is parameterized by the sparsity — the
number of non-zero terms — and its cost will be proportional to this sparsity (instead of the dense
representation size). Multivariate polynomial interpolation is a component in recent approximate
multivariate factorization algorithms (see Corless et al. (2002), Gao et al. (2004) and Sommese et al.
(2004)) and in the decomposition of approximately specified polynomial systems (Sommese et al.,
2005, 2001). Numerically robust interpolation methods for sparse polynomials are important for
the speed and reliability of these methods, especially when there are more than two variables. Our
prototypical situation is when there is an implicit underlying polynomial which can be evaluated,
with noise, and auxiliary information that it has a sparse representation in the standard basis. Our
goal is to identify this representation in a numerically robust manner, with as few evaluations as
possible. We will speak of this as an interpolation technique for recovering an existing sparse (and
exact) polynomial, though to mitigate the effects of the noise, we will also address approximation
methods in Section 4.8.
Suppose we have a black box for a multivariate polynomial f ∈ C[x1, . . . , xn] which we know to

be t-sparse, that is,

f =
∑
1≤j≤t

cjx
dj1
1 x

dj2
2 · · · x

djn
n ∈ C[x1, . . . , xn], (1.1)

where c1, . . . , ct ∈ C, (dj1 , . . . , djn) ∈ Z≥0 are distinct for 1 ≤ j ≤ t , and t is ‘‘small’’. Evaluating

α1 = f (ν1), α2 = f (ν2), . . . , ακ = f (νκ),

at our own choice of points ν1, ν2, . . . νκ ∈ Cn, where κ = O(t), we would like to determine the
coefficients c1, . . . , ct ∈ C and the exponents dj1 , . . . , djn , for 1 ≤ j ≤ t , of f . If the evaluation points
are not exact, this may not be possible, so we ask that our algorithms are numerically robust: if the
evaluations α̃1, . . . , α̃κ are relatively close to their true values, wewant the coefficients c̃1, . . . , c̃t ∈ C
that we compute to also be relatively close to their values in the exact computation. Of course, if
the polynomial is not sparse (i.e., t is large) then we are left with a standard interpolation problem,
and should apply to techniques appropriate to that problem. The fact that a polynomial is sparse is
significant structural information both algebraically and geometrically and our problem is capitalizing
on this algorithmically.
Black-box polynomials appear naturally in applications such as polynomial systems (Corless et al.,

2001) and the manipulation of sparse polynomials (e.g., factoring polynomials (Díaz and Kaltofen,
1998; Kaltofen and Trager, 1990)). Sparsitywith respect to the power (or other) basis is also playing an
evermore important role in computer algebra. As problem sizes increase,wemust be able to capitalize
on the structure, and develop algorithms whose costs are proportional only to the size of the support
for the algebraic structures with which we are computing. A primary example is that of (exact) sparse
interpolation of f as in (1.1), reconstructing the exponents djk andnon-zero coefficients c1, . . . , ct from
a small number of evaluations of f . The best known exact interpolation methods that are sensitive to
the sparsity of the target polynomial are the algorithms of Ben-Or and Tiwari (1988) and of Zippel
(1979). Although both approaches have been generalized and improved (see Grigoriev et al. (1990),
Kaltofen and Yagati (1988), Zilic and Radecka (1999) and Zippel (1990)), they all depend upon exact
arithmetic.
With recent advances in approximate polynomial computation, we are led to investigate the

problem of sparse interpolation in an approximate setting. Black-box polynomials can capture an
implicit model of an object which can only be sampled approximately. Moreover, sheer size and
complexity require that we exploit sparsity and use efficient (i.e., IEEE floating point) arithmetic in
a numerically sound manner.
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The problem of multivariate polynomial interpolation is not new, with early work going back
at least to Kronecker (1895). See Gasca and Sauer (2000) for a survey of early work in this area.
More recently there has been much activity on the topic, of both an algorithmic and mathematical
nature. See Lorentz (2000) for a good survey of the state of the art. To our knowledge, none of the
previous numerical work has considered the problems of identifying the (sparse) support and sparse
multivariate interpolation. Sparsity is considered in a different, bit-complexity model, using arbitrary
precision arithmetic by Mansour (1995), who presents a randomized algorithm for interpolating a
sparse integer polynomial from (limited precision) interpolation points (wherein bits of guaranteed
accuracy can be extracted at unit cost). The algorithm guarantees an answer with controllably high
probability, though its cost is dependent on the absolute size L of the largest coefficient in f , as well
as the sparsity t and degree. Moreover, it would also seem to be quite expensive, requiring about
O((log L)8 · t log deg f ) bit operations.
In Section 2, we present the algorithm of Gaspard Riche, Baron de Prony, from 1795 (Riche, 1795)

(generally referred to as ‘‘Prony’s algorithm’’) for interpolating sums of exponential functions. We
show that it is very similar to the algorithm for sparse polynomial interpolation of Ben-Or and Tiwari
(1988). In Section 3 we adapt Ben-Or and Tiwari’s method to floating point arithmetic and identify
the numerical difficulties encountered. We also adapt a recent, and much more stable, variant of
Prony’s algorithm given by Golub et al. (1999) andMilanfar et al. (1995) to the problem of polynomial
interpolation. This algorithm, developed for the shape frommoments problem,makes use of generalized
eigenvalues for added numerical stability. Our goal is a numerically stable algorithm in the sense of
Wilkinson, or normwise backward stability as defined by Higham (2002, Section 7.6). Ultimately, we
will not quite achieve this, but obtain an algorithm which is a composition of two stable steps.
In Section 4,we give a detailed analysis of the numerical behaviour of our algorithms and sensitivity

of the underlying problems. In particular, we show that the stability of our algorithms is governed by
‖V−1‖2/min |cj|, where V is a (hidden) Vandermonde matrix of the support terms of the polynomial
evaluated at the sample points. Here, and throughout, ‖A‖ = ‖A‖2 is the matrix 2-norm of the
matrix A, unless otherwise indicated by a subscript (i.e., ‖A‖1 is the 1-norm of A, etc.) The coefficients
c1, . . . , ct are intrinsic to the problem, and in some sense having one of them too small may indicate
an incorrect choice of t . On the other hand, the condition of V (as indicated by ‖V−1‖ or perhaps more
exactly by a structured condition number) is really a property of the method, and we address this
directly. Note that we consider only the unstructured condition number, and will ultimately show
that this is small with reasonable probability (and hence our algorithms are stable). The unstructured
condition number may well be smaller still, but we will not analyse this further in this work.
A key technique in this regard is the use of evaluation points at roots of unity, and the random

choice of such roots. The use of roots of unity for interpolation is well-established, and adds numerical
stability by reducing large variations inmagnitude incurred by evaluating polynomials of high degree.
In particular, the Vandermonde matrix V discussed above will have entries which are roots of
unity. Still, difficulties can arise when the values of different terms in the target polynomial become
clustered, and a naïve floating point implementation of Ben-Or/Tiwari may still be unstable, even
when evaluating at roots of unity (Beckermann et al., 2007). We show that by randomly choosing a
primitive root of unitywe can avoid this clusteringwith high probability. Choosing randomevaluation
points is, of course, a well-established method in symbolic computation (e.g., Zippel (1979)) and
symbolic–numeric computation (e.g., Corless et al. (1995) and Kaltofen et al. (2007)).
We prove modest theoretical bounds to demonstrate this improvement by exhibiting a bound on

‖V−1‖ which is dependent only on the sparsity (and not on the degree or number of variables in f ).
Moreover, we show that in practice the improvement in stability is far more dramatic, and discuss
why this might be so.
In Section 5, the numerical robustness of our algorithms is demonstrated. We show the effects of

varying noise and term clustering and the potential numerical instability it can cause.Wedemonstrate
the effectiveness of our randomization at increasing stability dramatically, with high probability, in
such circumstances.
An extended abstract of some of this work appears in Giesbrecht et al. (2006).
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2. Prony and Ben-Or/Tiwari’s methods for exact interpolation

In this section we describe Prony’s method for interpolating sums of exponentials and the Ben-
Or/Tiwari algorithm for multivariate polynomials. We show that these two algorithms are closely
related.

2.1. Prony’s method

Prony’s method seeks to interpolate a univariate function F(x) as a sum of exponential functions.
That is, it tries to determine c1, . . . , ct ∈ C and µ1, . . . , µt ∈ C such that

F(x) =
t∑
j=1

cjeµjx with cj 6= 0. (2.1)

Since there are 2t unknowns, one would expect to need a system of at least the same number of
equations in order to determine these unknowns. If bj = eµj , by evaluating F(0), F(1), . . . , F(2t − 1)
we can obtain a non-linear system of 2t equations relating the 2t variables µ1, . . . , µt , c1, . . . , ct .
Prony’s method solves this non-linear system by converting it into a problem of root finding for a
single, univariate polynomial, and the solving of (structured) linear equations. LetΛ(z) be the monic
polynomial having the bj’s as zeros:

Λ(z) =
t∏
j=1

(z − bj) = zt + λt−1zt−1 + · · · λ1z + λ0.

It is straightforward to derive that λ0, . . . , λt−1 satisfy
F(0) F(1) . . . F(t − 1)
F(1) F(2) . . . F(t)
...

...
. . .

...
F(t − 1) F(t) . . . F(2t − 2)



λ0
λ1
...

λt−1

 = −


F(t)
F(t + 1)

...
F(2t − 1)

 .
After solving the above system for coefficients λ0, . . . , λt−1 of Λ(z), b1, . . . , bt (and hence also
µ1, . . . , µt ) can be determined by finding the roots of Λ(z). The remaining unknown coefficients
c1, . . . , ct can then be computed by solving the transposed Vandermonde system:

1 · · · 1
b1 · · · bt
...

. . .
...

bt−11 · · · bt−1t



c1
c2
...
ct

 =

F(0)
F(1)
...

F(t − 1)

 . (2.2)

While Prony’s method is relatively well-known, it has largely been abandoned in the numerical
literature due to its numerical instability. Indeed, at evaluation points 0, 1, . . . , 2t − 1 as above the
problem is highly ill-conditioned. Recent developments in Golub et al. (1999) and subsequent work
have revived interest in the shape frommoments problem, andwewill examine these advances below.

2.2. The Ben-Or/Tiwari method

For a given black-box polynomial f with n variables, in exact arithmetic the Ben-Or/Tiwari method
finds coefficients cj and integer exponents (dj1 , . . . , djn) such that

f (x1, . . . , xn) =
t∑
j=1

cjx
dj1
1 · · · x

djn
n , (2.3)

for 1 ≤ j ≤ t , with c1, . . . , ct 6= 0. Let βj(x1, . . . , xn) = x
dj1
1 · · · x

djn
n be the jth term in f . The

interpolationmethod assumes that f is defined over a unique factorization domain D. Select elements
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ω1, . . . , ωn ∈ D, with the sole condition that they be pairwise relatively prime. The polynomial f will
be evaluated at powers of (ω1, . . . , ωn). Define

bj = βj(ω1, . . . , ωn) = ω
dj1
1 · · ·ω

djn
n

and note that bkj = βj(ω
k
1, . . . , ω

k
n) for any power k.

If we define a function F on integer values by F(k) = f (ωk1, . . . , ω
k
n), then the Ben-Or/Tiwari

algorithm solves for the bj and the cj, much as is done in Prony’s method, from evaluations of
F(0), F(1), F(2), . . . . That is, it finds a generating polynomial Λ(z), determines its roots, and then
solves a Vandermonde system. In addition, once the individual terms bj are found as the roots of
Λ(z) = 0, the exponents (dj1 , . . . , djn) are determined by looking at their unique factorizations:

bj = ω
dj1
1 ω

dj2
2 . . . , ω

djn
n , which can be easily achieved through repeated division of bj by ω1, . . . , ωn.

We note that, as an alternative which we employ in the our algorithms in the next section, we
could also choose ω1, . . . , ωn to be roots of unity of relatively prime order (i.e., ω

pi
i = 1, ω

j
i 6= 1 for

1 ≤ j < pi, and pi > degxi f , gcd(pi, pj) = 1 whenever i 6= j). Then, given bj, we can again uniquely
determine (dj1 , . . . , djn).

3. Numerical methods for sparse interpolation

In this section we present two methods for black-box interpolation of sparse multivariate
polynomials in floating point arithmetic. One is a straightforward modification of the Ben-Or/Tiwari
algorithm, while the other methodmakes use of a reformulation of Prony’s method using generalized
eigenvalues (Golub et al., 1999).

3.1. A modified numeric Ben-Or/Tiwari algorithm

If the steps of the Ben-Or/Tiwari algorithm are directly implemented in floating point arithmetic,
then difficulties arise at various stages of the computation. The first difficulty is that the subroutines
employed for linear system solving and root finding in the Ben-Or/Tiwari algorithm need to use
floating point arithmetic. Hence, they may encounter significant numerical errors. The second
difficulty is that we can no longer employ exact divisions to recover the exponents of each variable in
a multivariate term.
While it is well-known that Hankel and Vandermondematrices can often be ill-conditioned, this is

particularly true when the input is real, as it is in the Ben-Or/Tiwari algorithm. For example, when
all the coefficients of f are positive, the Hankel matrix in Prony’s algorithm is positive definite,
and its condition number may grow exponentially with the dimension (Beckermann, 2000). The
Vandermonde structured condition number may be better, and a structured analysis of a related
Vandermonde system is presented in Beckermann et al. (2007).
Instead, our modified numeric Ben-Or/Tiwari algorithm uses evaluation points at appropriate

primitive (complex) roots of unity. This turns out to reduce our conditioning problemswith theHankel
and Vandermonde systems encountered (see Section 4.1), and has the added advantage that it allows
us to recover the exponent of each variable in a multivariate term. We also assume that we have an
upper bound on the degree of each variable in f ; this is necessary to recover the correct exponents.
Let f be as in (2.3). Choose p1, . . . , pn ∈ Z>0 pairwise relatively prime such that pk > degxk f for
1 ≤ k ≤ n. The complex root of unity ωk = exp(2π i/pk) has order pk, which is relatively prime with
the product of other pj’s. Now consider the following sequence for interpolation:

αs = f (ωs1, ω
s
2, . . . , ω

s
n) for 0 ≤ s ≤ 2t − 1, (3.1)

with ωk = exp(2π i/pk). Setting m = p1 · · · pn and ω = exp(2π i/m), we see that ωk = ωm/pk for
1 ≤ k ≤ n.
Each term βj(x1, . . . , xn) in f is evaluated as βj(ω1, . . . , ωn) = ωdj , and each dj can be computed

by rounding logω(ωdj) = logω(βj(ω1, . . . , ωn)) to the nearest integer. Note that this logarithm is
defined modulo m = p1 · · · pn. Because the pk’s are relatively prime, the exponent for each variable
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(dj1 , . . . , djn) ∈ Zn>0 can be uniquely determined by the reverse steps of the Chinese remainder
algorithm (see, e.g., Geddes et al. (1992)). That is, we have dj ≡ djk mod pk for 1 ≤ k ≤ n and

dj = dj1 ·
(
m
p1

)
+ · · · + djn ·

(
m
pn

)
. (3.2)

We present our modified Ben-Or/Tiwari algorithm.

Algorithm: ModBOTInterp

Input: I a floating point black box f : the target polynomial;
I t , the number of terms in f ;
I D1, . . . ,Dn: Dk ≥ deg(fxk).

Output: I cj and (dj1 , . . . , djn) for 1 ≤ j ≤ t such that
∑t
j=1 cjx

dj1
1 · · · x

djn
n approximately interpolates f .

(1) [Evaluate f at roots of unity.]

(1.1) Choose p1, . . . , pn pairwise relatively prime and pj > Dj. Let m = p1 · · · pn, ω =
exp(2π i/m), and ωk = exp(2π i/pk) = ωm/pk .

(1.2) Evaluate αs = f (ωs1, ω
s
2, . . . , ω

s
n), 0 ≤ s ≤ 2t − 1.

(2) [Recover (dj1 , . . . , djn).]

(2.1) Solve the associated Hankel system
α0 . . . αt−1
α1 . . . αt
...

. . .
...

αt−1 . . . α2t−2


︸ ︷︷ ︸

H0


λ0
λ1
...

λt−1

 = −

αt
αt+1
...

α2t−1

 . (3.3)

(2.2) Find roots b1, . . . , bt forΛ(z) = zt + λt−1zt−1 + · · · + λ0 = 0.

(2.3) Recover (dj1 , . . . , djn) from dj = round(logω bj) via (3.2) by the reverse Chinese
remainder algorithm.

(3) [Compute the coefficients cj.]

Solve an associated Vandermonde system (nowβj = x
dj1
1 · · · x

djn
n are recovered, b̃j can be either

bj or βj(ω1, . . . , ωn)):
1 · · · 1
b̃1 · · · b̃t
...

. . .
...

b̃t−11 · · · b̃t−1t



c1
c2
...
ct

 =

α0
α1
...

αt−1

 . (3.4)

3.2. Interpolation via generalized eigenvalues

We now give another algorithm which avoids the solving of a Hankel system and the subsequent
root finding. This is done by using a reformulation of Prony’s method as a generalized eigenvalue
problem, following Golub et al. (1999). In our subsequent analysis we will show that in fact both
methods are theoretically numerically robust. In practice, the method below using generalized
eigenvalues is generally more resilient to ‘‘unlucky’’ random choices.
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As before, consider f as in (2.3) evaluated at primitive roots of unity as in (3.1). Define Hankel
systems

H0 =

 α0 · · · αt−1
...

. . .
...

αt−1 · · · α2t−2

 , and H1 =

α1 . . . αt
...

. . .
...

αt . . . α2t−1

 .
Let bj = βj(ω1, . . . , ωn). If we set Y = diag(b1, . . . , bt), D = diag(c1, . . . , ct), and

V =


1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...

bt−11 bt−12 . . . bt−1t

 , (3.5)

then
H0 = VDV T, and H1 = VDYV T. (3.6)

The solutions for z ∈ C in the generalized eigenvalue problem
(H1 − zH0)v = 0, (3.7)

for a generalized eigenvector v ∈ Ct×1, are bj = βj(ω1, . . . ωn) for 1 ≤ j ≤ t . If ω1, . . . , ωn are chosen
as described in the previous subsection, we can also recover the multivariate terms βj(x1, . . . , xn)
through the samemethod. To complete the interpolation, we need to compute the coefficients, which
requires the solving of a transposed Vandermonde system over a numerical domain. The cost of the
entire procedure is bounded by the cost of solving the generalized eigenvalue problem, which can be
accomplished in a numerically stable manner with O(t3) operations using the QZ algorithm (see, e.g.,
Golub and Van Loan (1996)).
The algorithm for sparse interpolationusing generalized eigenvalues is the sameasModBOTInterp

with the exception of step (2), which we present here.

Algorithm: GEVInterp (Step 2)

(2) [Recover (dj1 , . . . , djn).]

(2.1) Find solutions b1, . . . , bt for z in the generalized eigenvalue problem H1v = zH0v.

(2.2) Recover (dj1 , . . . , djn) from dj = round(logω bj) via (3.2) by the reverse Chinese
remainder algorithm.

4. Sensitivity analysis and randomized conditioning

In this sectionwe focus on the numerical accuracy of the sparse interpolation algorithms presented
in the previous section. We also introduce a new randomized technique which will dramatically
improve the expected numerical stability of our algorithms.
Both the Ben-Or/Tiwari algorithm and the generalized eigenvalue method first recover the

polynomial support. That is, they determine which terms are non-zero in the target polynomial. We
look at the numerical sensitivity of both techniques, and link it directly to the choice of sparsity t and
the condition of the associated Vandermonde system V . After the non-zero terms are determined,
both methods need to separate the exponents for different variables and recover the corresponding
coefficients, again via the Vandermonde system V . Finally, we show how randomization of the choice
of evaluation points can substantially improve the conditioning of V , and hence improve the stability
of the entire interpolation process.

4.1. Conditioning of associated Hankel system

Consider the modified numeric Ben-Or/Tiwari algorithm described in Section 3.1. In order to
determine coefficients for the polynomialΛ(z) = zt +λt−1zt−1+· · ·+λ0, we need to solve a Hankel
system as in (3.3). In general, if the polynomial f is evaluated at powers of real values, the difference
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between the sizes of varying powers will contribute detrimentally to the conditioning of the Hankel
system. This problem of scaling is avoided in our method, since our H0 is formed from the evaluations
on the unit circle.
The following proposition links the condition of H0 directly to the condition of V and to the

size of the reciprocals 1/|cj| of the coefficients cj in the target polynomial (for 1 ≤ j ≤ t). It is
useful to recall from Section 3.2 the definitions of H0, Vandermonde matrix V , and diagonal matrix
D = diag(c1, . . . , ct) such that H0 = VDV T.

Proposition 4.1. (i) ‖H−10 ‖ ≥
1
t maxj

1
|cj|
, and ‖H−10 ‖ ≥

‖V−1‖2∑
1≤j≤t |cj|

.

(ii) ‖H−10 ‖ ≤ ‖V
−1
‖
2
·maxj 1|cj| .

Proof. Define W = VD1/2, where D1/2 = diag(
√
c1, . . . ,

√
ct), choosing some fixed (possibly

complex) square root of each cj. Thus, we can write H0 = WW T and H−10 = W
−TrW−1. We note

that ‖H−10 ‖ = ‖W
−1
‖
2.

For (i), let D1/2j be the matrix derived from D1/2 by replacing the jth diagonal element by 0. Then
VD1/2j is singular for 1 ≤ j ≤ t . By the Eckart–Young theorem, and the fact that the bj’s are on the unit
circle, we obtain

1
‖W−1‖

= min
A
{‖W − A‖, A singular } ≤ min

j
{‖VD− VDj‖}

= min
j
{‖V (D− Dj)‖} = ‖[1, bj, . . . , bt−1j ]‖ · |

√
cj| ≤ |

√
tcj|,

and ‖H−10 ‖ = ‖W
−1
‖
2
≥ (1/t)·maxj(1/|cj|). Similarly, let Ṽ be singular such that ‖V−Ṽ‖ isminimal,

so ṼD1/2 and ṼDṼ T are singular, and ‖V − Ṽ‖ = 1/‖V−1‖. Then
1

‖W−1‖
≤ ‖VD1/2 − ṼD1/2‖ = ‖(V − Ṽ )D1/2‖ ≤ ‖V − Ṽ‖ · ‖D1/2‖ ≤

‖D1/2‖
‖V−1‖

,

and ‖H−10 ‖ = ‖W
−1
‖
2
≥ ‖V−1‖2/

∑
j |cj|, since ‖D

1/2
‖
2
=
∑
j |cj|.

For (ii), write H−10 = V
−TrD−1V−1, and note

‖H−10 ‖ ≤ ‖V
−1
‖
2
‖D−1‖ = ‖V−1‖2 ·max

j

1
|cj|
. �

Thus, bounds for ‖H−10 ‖ involve both the (inverses of) the coefficients of the interpolated
polynomial c1, . . . , ct and the condition of the Vandermonde system V . In some sense the coefficients
c1, . . . , ct are intrinsic to a problem instance, and having them very small (and hence with large
reciprocals) means that we have chosen t too large. The Vandermonde matrix V , on the other hand,
is a construction only of our algorithm (and not intrinsic to the problem), and we will address its
conditioning, and methods for improving this conditioning, in the following sections.

4.2. Root finding on the generating polynomial

In our modified numeric Ben-Or/Tiwari algorithm, for recovering non-zero terms in f , we need
to find the roots of Λ(z) = 0. In general, root finding can be very ill-conditioned with respect to
perturbations in the coefficients (Wilkinson, 1963).
However, all the roots bj = βj(ω1, . . . , ωn) as in (2.3) are on the unit circle by our choice of

evaluation points. Using Wilkinson’s argument for points on the unit circle, the following theorem
shows that the condition can be improved, and related to the separation of the roots b1, . . . , bt .
Theorem 4.1. LetΛ(z) be a polynomial with roots bk on the unit circle. Let Λ̃(z) = Λ(z) + εΓ (z) be a
perturbation ofΛ(z) with roots b̃k. Then

|bk − b̃k| <
ε · ‖Γ (z)‖1
|
∏
j6=k
(bk − bj)|

+ Kε2. (4.1)
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Proof. FromWilkinson (1963, Page 39), we know that

|bk − b̃k| ≤ ε ·
|Γ (bk)|
|Λ′(bk)|

+ Kε2,

whereΛ′ is the first derivative ofΛ and K is some constant. SinceΛ(z) =
∏
k(z − bk)we know that

Λ′(bk) =
∏
j6=k(bk − bj). Assume Γ (z) =

∑
j γjz

j. Then, since the bk’s are on the unit circle, we have

|Γ (bk)| =

∣∣∣∣∣ t∑
j=1

γjb
j
k

∣∣∣∣∣ ≤ t∑
j=1

|γj| · |b
j
k| ≤

t∑
j=1

|γj| = ‖Γ (z)‖1,

giving us the desired inequality. �

Note that ε · ‖Γ (z)‖1 is an upper bound for the perturbation of the polynomial Λ(z) evaluated
on the unit circle, which is also a measure of the size of a perturbation in the solution of the Hankel
system (3.3). The value of |

∏
j6=k(bk − bj)| is directly related to the condition of the Vandermonde

system (3.5), and depends on the distribution of bj’s on the unit circle (see Section 4.6).
We remark that the above results may be improved though a characterization in terms of pseudo-

zeros (see Corless et al. (2007)). This will not be necessary for our purposes here, though it is certainly
worthy of further pursuit.

4.3. Error bounds for generalized eigenvalues

We can further analyse the generalized eigenvalue approach described in Section 3.2. In particular,
we once again link the sensitivity directly to the condition of V , that is, to ‖V−1‖, and to themagnitude
of the smallest coefficient. Along similar lines to Golub et al. (1999), we can prove the following:

Theorem 4.2. Assume the generalized eigenvalue problem in (3.7) has generalized eigenvalues
b1, . . . , bt ∈ C and corresponding eigenvectors v1, . . . , vt ∈ Ct×1. Consider the perturbed problem(

(H1 + ε Ĥ1)− z(H0 + ε Ĥ0)
)
v = 0 (4.2)

for ε > 0 and normalized perturbations Ĥ0, Ĥ1 ∈ Ct×t with ‖Ĥ0‖ = ‖H0‖ and ‖Ĥ1‖ = ‖H1‖. Then (4.2)
has solutions (generalized eigenvalues) b̃1, . . . , b̃t ∈ C, with

|̃bj − bj| < ε ·
2t2 · ‖(c1, . . . , ct)‖∞ · ‖V−1‖2

|cj|

for 1 ≤ j ≤ t.

Proof. Assume that

(H1 + ε Ĥ1)(v + ε v̂) = (z + ε ẑ)(H0 + ε Ĥ0)(v + ε v̂),

where z ∈ C is an eigenvalue of the unperturbed system (3.7) and v ∈ Ct×1 is its corresponding
eigenvector, and ẑ ∈ C and v̂ ∈ Ct×1 are (scaled) perturbations. Then

(H1 − zH0)̂v = (̂zH0 + zĤ0 − Ĥ1)v. (4.3)

Following Golub et al. (1999), we premultiply both sides of (4.3) by vT and rearrange, to obtain

ẑ =
vT(Ĥ1 − zĤ0)v

vTH0v
, and hence ‖̂z‖ ≤

‖vT‖2 · (‖H1‖ + ‖H0‖‖z‖)
|vTH0v|

.

Note that ‖z‖ = 1 since all the nodes lie on the unit circle, and that ‖D‖ = ‖(c1, . . . , ct)‖∞ and
‖Y‖ = 1 since they are diagonal matrices, and that ‖V‖ ≤ t since all the entries have absolute value
1. Then from (3.5), we see that

‖H0‖ = ‖V TrDV‖ ≤ ·‖V‖2 · ‖D‖ ≤ t2 · ‖(c1, . . . , ct)‖∞, and
‖H1‖ = ‖V TrDYV‖ ≤ ‖V‖2 · ‖Y‖ · ‖D‖ ≤ t2 · ‖(c1, . . . , ct)‖∞.

(4.4)
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Now recall that any eigenvalue z = bj ∈ C of (3.7) has eigenvector vj = (V T)−1ej. We thus see that

vTj H0vj = v
T
j VDV

Tvj = cj.

Substituting a specific z = bj (for some 1 ≤ j ≤ t) into the above inequalities, and letting b̂j = ẑ, we
see that any eigenvalue b̃j = bj + b̂j of (4.2) satisfies

|̂bj| = |̃bj − bj| ≤ ε ·
2t2 · ‖(c1, . . . , ct)‖∞ · ‖V−1‖2

|cj|
.

as required. �

4.4. Separation of powers

After computing approximations b̃1, . . . , b̃t for the term values b1, . . . , bt , we still need to
consider the precision required for correctly recovering the integer exponents (with respect to ω =
exp(2π i/m)) by taking the logarithms of bj = ωdj (with respect to ω), for 1 ≤ j ≤ t , as in (3.2).
Since each bj lies on the unit circle, we really need only consider the argument of b̃j in determining its
logarithm with respect to ω (i.e., we normalize b̃j := b̃j/|̃bj|).
Two consecutivemth roots of unity on the unit circle are separated by an angle of 2πm radians, and

the distance between these two points is bounded below by twice the sine of half the angle between
them. Thus, in order to separate any two such points by rounding, onemust have the computed values
b̃1, . . . , b̃t of b1, . . . , bt correct to

|bj − b̃j| ≤
1
2

∣∣∣2 sin (π
m

)∣∣∣ < π

m
, and m = p1 · · · pn,

for 1 ≤ j ≤ t , where pk > deg fxk for 1 ≤ k ≤ n.
We note that π/m is not a particularly demanding bound, and is easily achieved (for fixed-

precision, floating point numbers) when H is well-conditioned, for reasonable size m. In particular,
we need only O(logm) bits correct to identify the non-zero terms in our target sparse polynomial.

4.5. Recovering the coefficients

Once the values of b1, . . . , bt , and hence the exponents of the non-zero terms, have been
determined, it still remains to compute their coefficients c1, . . . , ct , which can be done in a number
of ways. Most straightforwardly, we can solve the Vandermonde system V in Eq. (3.4) (Step 3 in
algorithm ModBOTInterp) to determine the coefficients c1, . . . , ct . The main issue in this case is
the condition of V , which is not obviously good. We examine this in Section 4.6. If the terms are
determined as general eigenvalues in (3.7) by the QZ algorithm, the computed eigenvectors v1, . . . , vt
can be used to reconstruct the coefficients. See Golub et al. (1999).

4.6. Condition of the Vandermonde system

While Vandermonde matrices can be poorly conditioned, particularly for real number data
(Beckermann, 2000; Gautschi and Inglese, 1988), our problem will be better behaved. First, all our
nodes (b1, . . . , bt ) lie on the unit circle. For example, in the case of t × t Vandermonde matrices as in
(3.5), the 2-norm condition number has the optimal value of 1 when the nodes are all themth roots of
unity (Gautschi, 1975, example 6.4). A slightly less uniform sequence of nodes is studied in Córdova
et al. (1990), where the nodes are chosen according to a Van der Corput sequence, to achieve a 2-norm
condition number of

√
2t of a t×t Vandermondematrix (for any t).Whilewe have noway of choosing

our nodes to be in a Van der Corput sequence, this result suggests the possibility of well-conditioning
of complex Vandermondematrices, especially when the spacing of the nodes is relatively regular. See
also Higham (2002, Section 22.1).
When b1, . . . , bt are all mth roots of unity (for m ≥ t) we have the following bounds for ‖V−1‖

from Gautschi (1975):
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max
1≤k≤t

1/
√
t∏

j6=k
|bj − bk|

< ‖V−1‖ ≤ max
1≤k≤t

2t−1
√
t∏

j6=k
|bj − bk|

. (4.5)

These boundsmay still be dependent exponentially on t andm, particularly if b1, . . . , bt are clustered.
In the worst case, we find

‖V−1‖ >
1
√
t
·

(
m

2π(t − 1)

)t−1
.

For a more general discussion, see Beckermann et al. (2007).
This indicates that as m, as well as t , gets larger, the condition of V can get dramatically worse,

particularly ifm is large. As an example, ifm = 1000 (which might occur with a trivariate polynomial
of degree 10 in each variable) with 10 terms, V could have condition number greater than 1016. This
is quite worrisome, asm is proportional to the number of possible terms in the dense representation,
and in particular is exponential in the number of variables n. Moreover, the bound seems surprisingly
bad, as one might hope for better conditioning as m gets larger, when there is greater ‘‘opportunity’’
for node distribution. This is addressed in the next subsection.

4.7. Randomized reconditioning

We now demonstrate how a small amount of randomization ameliorates the problem of potential
ill-conditioning in the Vandermonde matrix dramatically.
Suppose p1, . . . , pn are distinct primes, pk > degxk f , and ω = exp(2π i/m) for m = p1 · · · pn. If

the target polynomial f is evaluated at powers of (ω1, . . ., ωn) for ωk = ωm/pk (cf. Section 3.1), the
distribution of term values on the unit circle is fixed because the polynomial terms are fixed. Wemay
well end up in a situation where the Vandermonde matrix is ill-conditioned as discussed above. To
eliminate this possibility with high probability, we will introduce a randomization as follows. Instead
of using ωk = ωm/pk = exp(2π i/pk), the principal pkth primitive root of unity, we choose a random
pkth primitive root of unity, ωk = exp(2π irk/pk), for some 1 ≤ rk < pk. Equivalently, we choose a
single r with r ≡ rk mod pk, 1 ≤ r < m, so that ωk = ωmr/pk (see (3.2)).
To analyse the distribution of term values, instead of the multivariate polynomial f =∑t
j=1 cjx

dj1
1 · · · x

djn
n , we equivalently consider the univariate polynomial f̃ (x) =

∑t
j=1 cjx

dj where
dj = dj1(m/p1) + · · · + djn(m/pn) (cf. Section 3.1). The term values are ω

d1 , . . . , ωdt , and the
stability of recovering the dj’s depends upon the condition of the Vandermondematrix V on the nodes
ωd1 , . . . , ωdt . This is inversely related to the product of differences |ωdj − ωdk | for 1 ≤ j < k ≤ t as
described in (4.5).
For each interpolation attempt, we pick an r uniformly and randomly from 1 . . .m − 1. The

condition number of the new Vandermonde matrix Ṽ , with nodes bj = ωrdj for 1 ≤ j ≤ t , is now
inversely related to the differences |rdj − rdk| = r|dj − dk|modm. In some sense we are multiplying
each difference by (the same) randomnumber r , and hope tominimize the chance that there aremany
small differences. Once the Hankel matrixH0 is constructed, we can check the conditioning, and if it is
poor, we can choose another random r and repeat the process. The next theorem, and especially the
following discussion, gives us some assurance that we do not have to do this very often.

Theorem 4.3. Let p1, . . . , pn > t2/2 be distinct primes as above, with m = p1 . . . pt and ω =
exp(2π i/m). Let 0 ≤ d1, . . . , dt ≤ m − 1 be distinct. Suppose r is chosen uniformly and randomly
from 1, . . . ,m − 1 and let Ṽ be the Vandermonde matrix on nodes bi = ωrdi . Then, with probability at
least 1/2,

‖Ṽ−1‖ ≤
√
t
(
2t2

π

)t−1
.
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Fig. 4.1.Worst case condition number of V , without randomization.

Proof. For 1 ≤ j < k ≤ t , let ∆jk = |dj − dj| mod m. There are at most
(t
2

)
≤ t2/2 distinct values

of ∆jk. Fix ` := m/t2, and let c ∈ {1, . . . , `}. For each ∆jk there is at most one r ∈ Zm such that
r∆jk ≡ c mod m. Thus, there are at most t2/2 · ` = m/2 values of r such that for any ∆jk and any
c ∈ {1, . . . , `}we have r∆jk 6≡ c modm.
Assume that the chosen r is such that r∆jk 6≡ 1, . . . , `. Then for all 1 ≤ j < k ≤ t we have

|ωrdj − ωrdk | = |ωr(dj−dk) − 1| ≥ |ωm/t
2
− 1| = |e2π i/t

2
− 1|

= 2 sin(π/t2) ≥ 2
(
π

t2
−
π3

6t6

)
≥
π

t2
.

Using (4.5) this yields

‖Ṽ−1‖ ≤
√
t · max
1≤k≤t

2t−1∏
j6=k
|ωdj − ωdk |

≤
√
t
(
2t2

π

)t−1
. �

This eliminates any dependence upon m, and hence any dependence upon the size of the dense
representation of the polynomial. However, we believe that this is probably still far from optimal.
Considerable cancellationmight be expected in the sizes of the entries of V−1, though bounding these
formally seems difficult. See Higham (2002) for a recent exposition on Vandermonde conditioning.
We have conducted intensive numerical experiments which suggest that the bound (in terms of t)

on the condition number (of H and V ) ismuch lower. For the experiments, we assume the worst case
before the randomization (Fig. 4.1), with nodes clustered as ω,ω2, . . . , ωt . We assume that we are
in the univariate case, where m is prime. Neither of these assumptions has any substantial effect on
the results of the experiments. We ran the experiment 100 times for each value of m and sparsity
percentage t , and report the median condition number (Fig. 4.2).
In the first set of experiments we consider the condition number of V in the worst case and in

the median case. In the median case, with randomization, we can expect the condition number of
V to be less than that stated in the table with probability at least 50%. Recall that the condition
number of H0 from (4.4) is directly related to the condition of V . We can restart the interpolation at
a different random root of unity should ill-conditioning be encountered. A slightly greater tolerance
for ill-conditioning can reduce this need for restarting considerably.
The actual condition number appears to be remarkably small, and a (perhaps naïve) conjecture

might be that it is linear in t . In any case, the condition number is low, and in practice this makes for
a very stable recovery process from V . This will be fully validated in the upcoming Section 5.
A difficult problem that we have not addressed thus far is the determination of the sparsity t .

While we do not offer a complete solution to this, we note that randomization is of potential help. In
particular, the randomization appears to ensure not only that H0 and H1 are well-conditioned with
high probability, but also that in fact all leading minors of H1 are well-conditioned. This leads us to
a possible way to identify the sparsity t of f by simply computing α0, α1, . . . (at a random root of
unity) until the constructed H1 becomes ill-conditioned. This can be determined efficiently with the
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Fig. 4.2.Median condition number of V with randomization.

Fig. 4.3. Median condition number of H1 with randomization. Superscripts indicate the percentage of H1 ’s with condition
number less than median which have a leading minor of condition number more than five times the median (entries with
no superscripts encounter no such exceptions).

algorithm of Cabay and Meleshko (1993) along with the system solution, and with high probability
should identify t .
Numerical evidence suggests much better conditioning of the leading minors of H1, and hence

quite a strong criteria for identifying the sparsity of f . For these experiments we choose a random D
with coefficients between 0.5 and 1.5, and perform 10 random selections per choice of D. We note (in
superscripts) the percentage of random trials for which the condition numbers of any of the leading
minors is greater than five times the condition number of H1 itself (Fig. 4.3).
Theoretical evidence supporting this is provided by Kaltofen and Lee (2003, Theorem 4), where it

is shown that all leading minors of H1 are non-singular with high probability. (This may be true for
H0 under an additional condition that

∑t
j=1 cj 6= 0, but we do not have a proof, and hence work with

H1.) This is clearly a necessary condition for the leading minors to be well-conditioned. The proof of
Kaltofen and Lee (2003, Theorem4)makes use of the factorization of the leading k×kminorH(k)1 ofH1,

H(k)1 = V
(k)DY (V (k))T,

where matrix V (k) ∈ Ck×t , consisting of the first k rows of V . Since Theorem 4.3 can easily be general-
ized to the k × t matrix V (k), a well-conditioned V (k) provides an explanation for a well-conditioned
H(k)1 .

4.8. Oversampling for improved conditioning

When ill-conditioning is encountered we can use over oversampling — choosing more than the
minimally required number of sample points — to improve the stability of the sparse interpolation
problem. This is regarding our problemmore as one of approximation than interpolation, though this
is potentially due to noise in the samples and not a difference in the underlying sparse model.
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Consider our modified numeric Ben-Or/Tiwari interpolation of a (univariate) t-sparse polynomial
f (x) =

∑t
j=1 cjx

dj evaluated at 2T points αi = f (ωi) for i = 0, . . . , 2T−1with T > t (themultivariate
case follows as in Section 3). We can find the generating polynomialΛ(z) = zt + λt−1zt−1+ · · ·+ λ0
of the sequence α0, α1, . . . as the least squares solution of the rectangular Hankel system

α0 . . . αt−1
α1 . . . αt
...

. . .
...

α2T−t−1 . . . α2T−2


︸ ︷︷ ︸

H0


λ0
λ1
...

λt−1

 = −


αt
αt+1
...

α2T−1

 . (4.6)

After approximating the roots ωd1 , . . . , ωdt of Λ, we can determine the coefficients of f by solving
another least squares problem that makes use all the polynomial evaluations obtained so far:

1 · · · 1
ωd1 · · · ωdt

...
. . .

...

ωd1(2T−1) · · · ωdt (2T−1)


︸ ︷︷ ︸

W2T


c1
c2
...
ct

 =

α0
α1
...

α2T−1

 . (4.7)

While in general the condition of the least squares problems (4.6) and (4.7) can be larger than the
conditions of H0 andW2T respectively (they can vary quadratically with these quantities), when the
residual is small in these systems the sensitivity of the corresponding least squares problem varies
only linearly with the condition of H0 andW2T (see, e.g., Golub and Van Loan (1996), Section 5.3).
Note that the rectangular Hankel matrix H0 in (4.6) factors similarly to H0 in (3.6) as H0 = WTDV

for

WT =


1 · · · 1
ωd1 · · · ωdt

...
. . .

...

ωd1(T−1) · · · ωdt (T−1)

 .
Thus, a larger number of samples should improve the overall stability due to the better conditioning
ofWT andW2T . This is justified theoretically in Bazán (2000), which shows that if N = mt for somem,
then the condition number of WN improves linearly with

√
m. This improvement is consistent with

our initial experimental results.
We remark that since there are at least 2t evaluations for our sparse interpolation, the least squares

problem (4.7) can always be used for recovering the t coefficients cj in f .

5. Experiments

For our experiments we have tested both the modified Ben-Or/Tiwari and the generalized
eigenvaluemethods. Our computational environment is the computer algebra systemMaple 10 using
hardware arithmetic (IEEE floating point).
Our algorithms interpolate multivariate polynomials. However, during the computation, a

multivariate polynomial is regarded as a univariate polynomial on the unit circle through the
(reverse) steps of the Chinese remainder algorithm (essentially variable substitution; see Section 3.1).
Therefore, we concentrate our tests on sparse univariate examples. Since the stability of our
algorithms is directly dependent upon the condition of the underlying Vandermonde system, we
arrange our tests by the condition of this system. We look at the case when it is well-conditioned,
and when it starts off poorly conditioned, and examine how randomness generally avoids the poorly
conditioned case.



M. Giesbrecht et al. / Journal of Symbolic Computation 44 (2009) 943–959 957

Term values evenly distributed on the unit circle
This is the best and ‘‘easiest’’ case, wherein the Vandermonde system is well-conditioned. We

randomly generated 100 univariate polynomials, with the number of terms between 10 and 50, and
roughly evenly distributed the term degrees between 0 and 1000. When the non-zero coefficients
are randomly distributed between −1 and 1, the following table reveals the performance of both
interpolation algorithms. Robustness is evaluated as the 2-norm distance between the interpolation
result and the target polynomial. For this we list both the mean and median for the performance of
the interpolation of these 100 random polynomials.

Random noise Ben-Or/Tiwari Generalized eigenvalue

0 Mean .12050598e−11 .12059459e−11

Median .13384107e−11 .13363611e−11

±10−12–10−9 Mean .58139807e−9 .58139847e−9

Median .58207511e−9 .58207779e−9

±10−9–10−6 Mean .57076380e−6 .57076380e−6

Median .56946777e−6 .56946777e−6

±10−6–10−3 Mean .57797593e−3 .57797593e−3

Median .58339174e−3 .58339174e−3

As the above table illustrates, well-conditioned Vandermonde systems give excellent interpolation
results, and the amount of the input noise is proportional to the error in the output. We also note
that there is little gain in using the generalized eigenvalue algorithm in this case (and indeed, it is
considerably slower). This should not be particularly surprising given Proposition 4.1.

Clustered term values
For a second experiment, we interpolate polynomials with terms x0, x3, x6, xb

994
t−2 c+6,

xb
2·994
t−2 c+6, . . . , xb

(t−3)·994
t−2 c+6 at powers of ω = exp(2π/1000), in which terms x0, x3, and x6 are close

to each other while the remaining terms are relatively evenly distributed.
In our test, we encounter a (numerically) singular system when the (random) noise is in the range

of±10−9–10−6. We list the mean and median of all the non-singular results. We also note that 11 of
the 99 non-singular results are of distance less than or around 0.0001 from the target polynomial.

Random noise Ben-Or/Tiwari Generalized eigenvalue

0 Mean .13690795e−9 .13784763e−9

Median .10103809e−9 .10515025e−9

±10−12–10−9 Mean .11819143e−6 .11819222e−6

Median .70040445e−7 .70045526e−7

±10−9–10−6 Mean .71372850 .71089183

Median .64123838 .64123838

±10−6–10−3 Mean .84367533 .84366247

Median .75434586 .75434586

In this experiment, good interpolation resultsmay still be obtained for Vandermonde systemswith
a few nodes clustered on the unit circle. However, such results tend to be very sensitive to noise.
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Effective randomization to ameliorate term value accumulation
In our third set of tests we consider the effect of randomization to improve the numerical

conditioning of the interpolation problems. Here we consider polynomial interpolation associated
with a Vandermonde system with three terms clustered. That is, the 100 random univariate
polynomials, with the number of terms between 10 and 50, all have terms x0, x, and x2. All other
remaining terms are roughly evenly distributed with the term degrees between 3 and 1000.
We interpolate the polynomial at powers of exp(2π i/1009). As the following table shows, the

clustering greatly affects the effectiveness of both interpolation algorithms.

Random noise Ben-Or/Tiwari Generalized eigenvalue

0 Mean 92.801972 92.801972

Median 73.482353 73.482353

However, after randomization, that is, instead of interpolating at powers of ω = exp(2π i/1009),
we interpolate at powers of ω = exp(2rπ i/1009) for a random r ∈ {1, . . . , 1008}; for the same set
of random polynomials, we have the following results.

Random noise Ben-Or/Tiwari Generalized eigenvalue

0 Mean 27.998330 30.602222

Median .24279377e−7 .24273472e−7

±10−12–10−9 Mean .86965287 .86342432

Median .17078161e−6 .17079019e−6

In addition, when the random noise belongs to ±10−9–10−6, a singular system is encountered in
our test, and 22 among the 99 non-singular results are of distance less than 10−4 after randomization.
Notice that, althoughwedo not obtain good interpolation results each time, the error at themedian

is generally quite good (a terribly conditioned randomization can affect the mean dramatically). In
practice, upon obtaining an ill-conditioned result, we would simply re-randomize and repeat the
computation. Theorem 4.3 provides assurances that we should not have to restart this many times
before achieving a well-conditioned Vandermonde matrix, and hence obtaining reliable results.
The full Maple code alongwith a broader range of experiments (including the examplesmentioned

in Sommese et al. (2004), can be found at the web site http://www.scg.uwaterloo.ca/∼ws2lee/
sparse-interp.
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