UNIVERSITEIT ANTWERPEN

A Foundation for
Inconsistency Management
in Model-Based Systems Engineering

Een Onderbouw voor Inconsistentiebeheer
in Modelgebaseerd Systeemontwerp

Auteur: Promotor:

Istvan DAVID Prof. Dr. Hans VANGHELUWE
Universiteit
Antwerpen

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

https://www.uantwerpen.be/
http://istvandavid.com
http://msdl.cs.mcgill.ca/people/hv

To my Father.

Contents

4.1
42
4.3

4.4

1 Introduction
2 Background
2.1 Model-based system engineering
2.1.1 Requirements
2.1.2 Virtwalproduct
213 Models
2.1.4 Properties and attributes L.
2.1.5 Viewpoints, views oL oL
2.1.6 Typical scenariosin MVM
2.2 Processes
221 Modeling
222 Enactment
3 State of the art
3.1 (In)consistency management
311 Process
312 OVEIVIEW oo vttt
3.1.3 Features and patterns in inconsistency management techniques . .
3.1.4 Characterization patterns
3.1.5 Detection patternso e e e e
3.1.6 Resolution patterns
3.1.7 Optional and auxiliary activities
31.8 Conclusions
3.2 Process engineering uu i e e

3.2.1 Process modeling formalisms
3.2.2 Performance analysis techniques
3.2.3 Design structure matrices

Correctness and consistency

COITECINESS .« « v v v v v e e e e e e e e e
The repercussions of ensuring correctness
A heuristic for eventual correctness
431 ConsiStency v v v i e e e e e e
4.3.2 The relationship between (in)correctness and (in)consistency . . .
The need for explicitly modeled processes

I

10
11
14
15
16
17
19
19

21
21
22
25

31
37
40
41
42
45
45
47
47

49
50
50
51
52
52

II

CONTENTS

4.5 System properties for reasoning over consistency 54
4.5.1 Architectural decomposition 55
452 Viewdecomposition 56
453 Abstraction-refinement 58
454 Refinement-abstraction oL 59
4.5.5 Elementary engineering operation 60
Process-oriented inconsistency management 61
5.1 A formalism for modeling engineering processes 63
5.1.1 Typed processes in the classic FTG+P™M 64
5.1.2 Attributes, properties, constraints 67
5.1.3 Resources 72
514 Costmodels. 75
5.1.5 ISO/IEC/IEEE 42010:2011 compliant viewpoints 77
5.2 Off-line inconsistency management 77
5.2.1 Patterns of inconsistency 78
5.2.2 Patterns of inconsistency management 79
5.2.3 Process optimization by multi-objective process space exploration 80
5.3 Processenactment. oo 91
5.3.1 Architecture. 91
5.3.2 Execution semantics 92
5.3.3 Transformationrules 93
534 Implementation 94
5.4 On-line inconsistency management 95
54.1 Modelingsupport 97
5.4.2 Modeling the runningexample 98
5.4.3 Early detection of inconsistencies 103
544 Discussion 105
5.5 Translating process modelsto DEVS, 106
5.5.1 Translating processestoDEVS 109
5.5.2 Calibration of the process models 114
5.5.3 Modeling resource constraints 116
5.54 Performanceevaluation. 118
5.5.5 Conclusions oL 119
5.6 Modeling service interactions 120
5.6.1 The Statecharts + Class Diagrams (SCCD) formalism 121
5.6.2 Motivatingexample 121
5.6.3 Modeling activitiesusingSCCD 122
5.6.4 Mapping ProcessestoSCCD 124
5.6.5 Conclusions 128
Proof of concept 131
6.1 Introduction 131
6.2 Modeled reproduction of the hard-coded process 134
6.3 Modeling by ourapproach 137
6.3.1 Processmodeling 137
6.3.2 Attributes, properties, constraints 142

6.3.3 Properties 144

CONTENTS

7

6.34 Resources
6.3.5 COStS
6.3.6 Off-line inconsistency management
6.3.7 On-line inconsistency management

Prototype tooling
7.1 Features
7.2 Architecture L
7.3 Modeling of engineering processes
7.3.1 Language specification
7.3.2 Eight important modeling patterns
7.3.3 Specifying executable scripts for automated activities
7.3.4 Codegeneration
735 Validation
7.4 Off-line inconsistency management
7.5 Enactment of engineering processes
7.6 On-line inconsistency manager
7.7 Serviceintegration
7.8 Reflection and future directions

Conclusions
8.1 Evaluation of the research questions
8.2 Futureresearchdirections,

Appendices

A

= O a W

Metamodels

Al Overview e e
A2 FTG+PM e e
A3 Properties e e e e e
A4 Resources e
A5 Costs . . . e e e e
A6 VIewpoints
A7 Enactment e

Model queries and transformations
DEYVS library for processes
Artifacts of the proof of concept

Formal notations

III

145
145
146
148

151
151
151
153
154
156
160
160
160
160
160
161
162
162

163
166
169

171

173
174
175
176
177
178
179
180

181

191

199

223

v

CONTENTS

Acknowledgements

Throughout my life, I have been always striving for greatness in my work. That’s how I was
raised and trained. By my parents, my teachers, my co-workers, my superiors. Through
the past four years I have learned the value of credibility, accountability, persistence and
loyalty. Qualities that define us not just professionally, but personally as well. Strangely
enough, working towards one of the highest professional degrees also made me understand
how to be a better person. That is not to say, I didn’t grow as a professional. No, that is to
say, that the people around me thought me important lessons about greater things. And I
will be always thankful for that.

First of all, I would like to thank my supervisor, Hans Vangheluwe.

Hans, you trusted me and gave me a chance four years ago. Quite frankly, I still don’t get
what you saw in me during our limited conversations. And quite frankly, I never felt I can
live up to your standards. But that’s probably because you are that one-in-a-million type of
a person one shouldn’t compare himself to, and one should feel exceptionally lucky to work
together with. Being a great person you are, you never made me feel secondary or inferior.
You treated me like you treat everyone: with respect and friendliness. You took your time
to teach me lessons and help me grow. You were there during the toughest periods of my
research; and you were there during the toughest period of my personal life. You are a true
doktorvater, in every meaning of the word.

So thank you, Hans, for helping me become who I am today. And even though we did not
achieve world dominance while I was working with you, I can promise that I’ll carry the
torch with great responsibility, and I will spread the philosophy we stand for.

I would like to thank you, dear colleagues and friends, who stood by me during these
years: Yentl, Joachim, Simon, Ken, Bart, Claudio and Ali. Your presence created the most
inspiring professional environment I've ever got the chance to work in.

I would like to thank the patience of the people I shared an office with, Valérie and Fons.
Your friendliness and the wholesome conversations always meant a great deal to me.

I would like to express my gratitude to the members of my PhD committee and jury:
Vasco Amaral, Antonio Cicchetti, Joachim Denil, Serge Demeyer, Tom Mens and Dirk
Janssens. Your feedback, remarks and pointers were essential to arriving to the point of
writing and submitting this thesis.

I would like to thank the Flanders Make and their co-workers for the three years of
joint experience on the MBSE4Mechatronics project. Klaas, Maarten and Kristof, you are

\Y%

VI CONTENTS

absolutely remarkable professionals who thought me the value of science outside the realm
of academia.

Throughout my PhD years I got the chance to walk the path to enlightenment with the great-
est of our community. Thank you for accepting me as one of you. Thank you for teaching
me new things. Thank you for sharing your professional ideas. And thank you, Pieter, for
sharing your personal experiences during those unforgettable 36 hours of December 2016.
I would like to thank the people who gave me the rock solid foundations I was building on
top of in the past four years: Istvan, Akos, Dani and Laci.

Last but not least, I would like to extend my gratitude to a special person who stood
by me as long as she could. Thank you, Barbara, for having been my rock during these
trying times. Thank you for having been the companion throughout this long and exhausting
journey. Even though you (jokingly) view my work as “drawing boxes and arrows”, this
thesis would have never been started, let alone completed, without you. Thank you.

Istvan

Abstract

The complexity of engineered systems has increased drastically over the past decades. Per-
tinent examples are mechatronic and cyber-physical systems, characterized by an enormous
complexity, stemming from the number and heterogeneity of the components and concerns
involved in their engineering.

Due to this complexity, ensuring the correctness of the system is a challenging task.

Model-based systems engineering (MBSE) proposes modeling the system, before it gets
realized. Multi-paradigm modeling (MPM), specifically, advocates modeling every aspect
of the system at the most appropriate level(s) of abstraction, using the most appropriate
formalism(s). In such settings, the system components are developed in parallel, enabling a
more efficient engineering. Parallelism, however, gives rise to inconsistencies between the
design artifacts, compromising the ultimate correctness of the system.

In this work, we argue, that managing inconsistencies in an MBSE setting is an effective
heuristic for managing the ultimate correctness of the system.

First, we formulate an appropriate definition for correctness and consistency in terms
of semantic properties. Then, we define a process-based approach to provide formal
foundations for the detection and management of inconsistencies. The process model
is transformed so that the potential inconsistencies are managed, and its transit time is
minimal. This is achieved by searching through the set of potential process candidates by
the techniques of multi-objective design space exploration. The exploration is guided by
the transit time performance metric of the process, obtained via a DEVS-based simulation.
A general mapping between process models and DEVS provided.

The utility of the approach is shown through a demonstrator, using the prototype tooling
developed to support the approach.

VIl

VIII CONTENTS

Netherlandstalige
Samenvatting

De complexiteit van de systemen die we bouwen is de afgelopen decennia drastisch
toegenomen. Relevante voorbeelden zijn mechatronische en cyberfysische systemen,
gekenmerkt door een enorme complexiteit, die voortvloeit uit het aantal en de heterogeniteit
van de componenten.

Vanwege deze complexiteit is het garanderen dat een systeem correct ontworpen wordt een
grote uitdaging.

Modelgebaseerd systeemontwerp (Model Based Systems Engineering - MBSE) stelt voor
het systeem expliciet te modelleren voordat het wordt gerealiseerd. Multi-paradigma
modellering (MPM) pleit met name voor het modelleren van elk aspect van het systeem
op de meest geschikte niveau(s) van abstractie, gebruik makend van de meest geschikte
formalisme (s), en met expliciet modelleren van de complexe ontwikkelingsprocessen. Vaak
worden de systeemcomponenten door meerdere ingenieurs parallel ontwikkeld. Parallelisme
leidt echter mogelijks tot inconsistenties tussen de ontwerpartefacten, waardoor de ultieme
correctheid van het systeem in het gedrang komt.

In dit werk argumenteren we dat het beheersen van inconsistenties tussen systeemcompen-
ten/gezichtspunten in een MBSE-omgeving een effectieve heuristiek is voor het bekomen
van ultieme correctheid van het hele systeem.

Eerst formuleren we een geschikte definitie voor correctheid en consistentie in termen van
semantische eigenschappen. Dan definiéren we een procesgebaseerde benadering om een
formele basis te bieden voor de detectie en het beheer van inconsistenties. Het procesmodel
van het systeemontwerp wordt getransformeerd zodat de potentiéle inconsistenties worden
beheerd terwijl de ontwikkeltijd van het systeem minimaal is. Dit wordt bereikt door de
verzameling van potenti€le proceskandidaten met multi-objectieve ontwerpruimte exploratie
te doorzoeken. De verkenning wordt geleid door de transittijdprestatiemetriek van het
proces, verkregen via een op DEVS gebaseerde simulatie.

Het nut van de aanpak wordt aangetoond door middel van een demonstrator: het ontwerp
van een Automated Guided Vehicle. Dit gebeurt met behulp van de prototype tooling die
ter ondersteuning werd ontwikkeld.

IX

CONTENTS

Publications

The following peer-reviewed publications that I co-authored were included (partially) in
this thesis:

1. DAVID, I., VAN TENDELOO, Y. AND VANGHELUWE, H. Translating Engineering
Workflow Models to DEVS for Performance Evaluation. In Proceedings of the Winter
Simulation Conference. (2018)

Istvan and Hans came up with the ideas; Istvan and Yentl elaborated on the ideas.
Yentl implemented the approach in the Modelverse. Istvan and Yentl wrote the paper;
Hans reviewed the paper.

2. DAVID, 1., DENIL, J. AND VANGHELUWE, H. Process-oriented Inconsistency Man-
agement in Collaborative Systems Modeling. 16th annual Industrial Simulation
Conference (ISC). (2018)

Istvan and Hans came up with the ideas; Istvan and Joachim elaborated on the ideas.
Istvan implemented the approach. Istvan wrote the paper; Hans reviewed the paper.

3. VAN MIERLO, S., VAN TENDELOO, Y., DAVID, I., MEYERS, B., GEBREMICHAEL,
A., AND VANGHELUWE, H., A Multi-Paradigm Approach for Modelling Service
Interactions in Model-Driven Engineering Processes. In Model-driven Approaches
for Simulation Engineering Symposium (MOD4SIM) — Spring Simulation Multi-
Conference. (2018)

Bart and Hans came up with the ideas; Yentl and Addis elaborated on the ideas.
Addis and Yentl implemented the approach. Simon, Yentl, and Istvan wrote the paper;
Hans and Addis reviewed the paper.

4. DAVID, 1., MEYERS, B., VANHERPEN, K., VAN TENDELOO, Y., BERX, K., AND
VANGHELUWE, H., Modeling and Enactment Support for Early Detection of Incon-
sistencies in Engineering Processes. 2nd International Workshop on Collaborative
Modelling in MDE. (2017)

Istvan and Hans came up with the ideas; Istvan, Bart, Ken and Yentl elaborated on
the ideas. Istvan implemented the approach. Istvan wrote the paper; Bart, Ken, Yentl
and Hans reviewed the paper.

XI

XII

S.

10.

CONTENTS

DAvVID, 1., SYRIANI, E., VERBRUGGE, C., BUCHS, D., BLOUIN, D., CICCHETTI,
A. AND VANHERPEN, K. Towards Inconsistency Tolerance by Quantification of
Semantic Inconsistencies. Ist International Workshop on Collaborative Modelling in
MDE. (2016)

Istvan, Eugene, Clark, Didier, Dominique, Antonio and Ken came up with the idea.
Istvan, Eugene, Dominique, Clark and Didier wrote the paper. Ken reviewed the

paper.

. DAvVID, 1., DENIL, J., GADEYNE, K., AND VANGHELUWE, H. Engineering Process

Transformation to Manage (In)consistency. /st International Workshop on Collabo-
rative Modelling in MDE. (2016)

Istvan and Hans ideas; Istvan and Joachim elaborated on the idea. Istvan imple-
mented the approach. Istvan wrote the paper. Joachim, Hans and Klaas reviewed the

paper.

. DAvVID, I. A Multi-Paradigm Modeling Foundation for Collaborative Multi-view

Model/System Development. ACM Student Research Competition (SRC) MoDELS.
(2016)

Istvan and Hans came up with the ideas. Istvan implemented the approach. Istvan
wrote the paper; Hans reviewed the paper.

. VANHERPEN, K., DENIL, J., DAVID, I., DE MEULENAERE, P., MOSTERMAN, P. J.,

TORNGREN, M., QAMAR, A., AND VANGHELUWE, H. Ontological Reasoning for
Consistency in the Design of Cyber-Physical Systems. CPPS 2016 - 1st International
Workshop on Cyber-Physical Production Systems. (2016)

Ken, Hans and Joachim came up with the ideas. Ken, Paul, Pieter, Martin, Ahsan
and Istvan elaborated on the idea. Ken and Istvan wrote the paper. Joachim, Istvan,
Paul, Pieter, Martin, Ahsan and Hans reviewed the paper.

. DAVID, 1., DENIL, J, AND VANGHELUWE, H. Patterns of inconsistency manage-

ment in mechatronics - A survey. Technical report. (2015)

Istvan and Joachim did the literature survey. Istvan and Joachim categorized the
processed literature. Istvan wrote the paper. Joachim and Hans reviewed the paper.

DAVID, I., DENIL, J., AND VANGHELUWE, H. Towards Inconsistency Management
by Process-Oriented Dependency Modeling. In MPM 2015 - 9th International
Workshop on Multi-Paradigm Modeling. (2015)

Istvan and Hans came up with the ideas; Istvan and Joachim elaborated on the ideas.
Istvan worked out the manual approach. Istvan wrote the paper; Hans reviewed the

paper.

CONTENTS X

The following peer-reviewed publications that I co-authored were not included in this
thesis:

1.

MEYERS, B., DENIL, J., DAVID, I., AND VANGHELUWE, H. Automated Testing
Support for Reactive Domain-Specific Modelling Languages. In 9th International
Conference on Software Language Engineering Conference (SLE). (2016)

. DAvID, 1., RATH, I., AND VARRO, D. Foundations for Streaming Model Trans-

formations by Complex Event Processing. International Journal on Software and
Systems Modeling (2016), pp 1-28. DOI: 10.1007/s10270-016-0533-1.

. BALOGH, L., DAVID, 1., RATH, 1., VARRO, D., AND VOROS, A. Distributed and

Heterogeneous Event-based Monitoring in Smart Cyber-Physical Systems (Extended
abstract). MT CPS 2016 - 1st Workshop on Monitoring and Testing of Cyber-Physical
Systems. (2016)

. BERGMANN, G., DAVID, 1., HEGEDUS, A., HORVATH, A., RATH, 1., UJHELYI,

Z., AND VARRO, D. VIATRA3: A Reactive Event-driven Model Transformation
Platform. Theory and Practice of Model Transformations (D. Kolovos, M. Wimmer,
eds.), vol. 9152 of Lecture Notes in Computer Science. Springer International

Publishing. (2015), pp. 101-110.

. DAVID, 1., RATH, I., AND VARRO, D. Streaming model transformations by complex

event processing. In Model-Driven Engineering Languages and Systems (J. Dingel,
W. Schulte, 1. Ramos, S. Abrahdo, and E. Insfran, eds.), vol. 8767 of Lecture Notes in
Computer Science, Springer International Publishing. (2014), pp. 68-83. Invited for
submission to MODELS 14 Special Issue in SoSyM

. DAVID, 1., AND GONCZY, L. Ontology-Supported Design of Domain-Specific Lan-

guages: A Complex Event Processing Case Study. In Advances and Applications in
Model-Driven Engineering (Ed.: Dr. Vicente Garcia Diaz, Prof. Dr. Juan Manuel
Cueva Lovelle, Dr. Begoiia Cristina Pelayo Garcia-Bustelo and Dr. Oscar Sanjudn
Martinez), IGI Global. (2013) Book chapter.

. DAVID, I. A model-driven approach for processing complex events. In CoRR,

abs/1204.2203, Student Forum of the Ninth European Dependable Computing Con-
ference - EDCC, Sibiu, Romania. (2012)

. DAVID, 1., AND BUzA, K. On the relation of cluster stability and early classifiability

of time series. In 36th Annual Conference of the German Classification Society on
Data Analysis, Machine Learning and Knowledge Discovery, Hildesheim, Germany.
(2012), p. 91

. DAVID, 1. Modellalapu fejlesztési mddszer komplex események feldolgozasahoz

(Hungarian only). In Mesterproba Tudomdnyos Konferencia, Budapest, Hungary.
(2012), pp. 1-4

XIv CONTENTS

Overview of activities

Teaching, course work

e Home assignment supervision and grading for the course “Modelling of Software-
Intensive Systems” at University of Antwerp (2015 - 2018).

e Project supervision for the course “Model-driven engineering” at University of
Antwerp (2015 - 2018).

Scientific activities

e Conference talk at the 16th annual Industrial Simulation Conference (ISC 2018),
Ponta Delgada, Portugal, 2018 May

e Participation at the MPM4CPS COST Action, Riga, 2018 April

e Coference talk at the ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), Austin, Texas, 2017 October

e Multiple talks at the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), St Malo, France, 2016 October

e Engineering Process Transformation to Manage (In)consistency in Complex Systems,
Tallinn Tech, Tallinn, Estonia, 2016 June

e A Multi-Paradigm Modeling Foundation for Collaborative Multi-view Model/System
Development, Université de Mons, Belgium, 2016 June

e Complex event processing with the VIATRA platform, IncQuery Academia, Bu-
dapest, Hungary, 2016 May

e Invited participant at the 16th Computer Automated Multi-Paradigm Modelling
workshop, Bellairs Research Center, Barbados, 2016 May

e Participant at the 6th International Summer School on Domain-Specific Modeling
(DSM-TP), Antwerp, Belgium, 2015 August

e Participant at the EPFL / ETH Summer School on DSL Design and Implementation,
Ecole polytechnique fédérale de Lausanne, Switzerland, 2015 July

XV

XVI CONTENTS

e Conference talk at the ACM/IEEE 17th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), Valencia, Spain, 2014 October

Reviewing
o ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems (MoDELS)
e Federated Conference on Computer Science and Information Systems (FedCSIS)

e Workshop on Model-Driven Requirements Engineering (MoDRE)

List of Figures

1.1
1.2

2.1
22
23
24
2.5
2.6
2.7

3.1
3.2
33
34

4.1
42
43

4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9

Mechatronic design requires an interplay between disparate domains.
The process of the inconsistency management approach.

General overview of the engineering process.
Model-based engineering.
The typical workflow of requirements engineering.
Modeling and simulation concepts
Model-based systems analysis.
The Core of Architecture Description in ISO/IEC/IEEE 42010:2011

Scenarios in multi-view modeling [40].

Process of producing the current mapping study.
The detailed process of the Selection activity.
Feature model of the inconsistency management techniques.
The process of managing an inconsistency.

The relationship between properties and designs.
Correctness often contradicts efficiency.
Correctness is approximated by consistency; efficiency is measured in terms
oftheprocess.
The five types of engineering activities.
The sub-process of Architectural decomposition and System integration. .
The sub-process of View decomposition and View merge.
The sub-process of Abstraction-Refinement.
The sub-process of Refinement-Abstraction.
The sub-process of the Elementary engineering operation.

Front and top view of the conceptual design of the AGV.
Running example. Lo
Relationships between processes, formalisms and properties.
Excerpt of the FTG+PM part of the modeling formalism.
The PM of the running example.
The FTG of the running example.
The FTG+PM of the running example.
Influence relationship between two attributes.
Causal and acausal notation of a relationship.

XVII

12
13
15
16

22
23
28
30

59
60

XVII

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
542
543
5.44
5.45
5.46

6.1

6.2
6.3
6.4

6.5
6.6
6.7
6.8

LIST OF FIGURES

The running example, extended with attributes, constraints and intents . . 71
Excerpt of the resource modeling part of the formalism. 73
Resource types and resources of the running example. 74
Resource demands of the running example. 74
Resource allocations of the running example. 75
Excerpt of the cost modeling part of the formalism. 76
Associated costs of the running example. 77
Detailed overview of the search process. 81
Structural overview of the DSE approach. 82
Architectural overview of the design space exploration component 83
Constraints and objectivesof the DSE. 84
Transformationrulesof the DSE., 84
Design space exploration mechanism. 86
The PM of the DSE mechanism. 87
A process model and its quantitative SimEvents simulation model. 89
Two managed alternatives of the process in Figure 5.10. 90
Architectural overview of the enactment engine. 92
Metamodel for the enactment. L. 93
Excerpt from the metamodel for early detection 97
Attributes and constraints. 98
A capability and its constraintinthe FTG. 99
Excerpt from the example: the property validMass. 100
The process model with the capabilities and the attributes 102
The process of selecting the optimal hardware component. 109
FTG+PM model of our approach. 110
Transformation rule for control flow links. 114
The augmented process.o 115
Results of the simulations. 119
The process model of the example. 122
Protocol for communicating with an external service 124
Optimizerules. 126
Orchestratorrule. 127
Activityrule. L e 127
Forkrule. 128
Joinrule. 128
Decisionrule. 128
Process model from Figure 5.38 mapped to SCCD. 129

The automated guided vehicle (AGV) discussed in our demonstrative ex-

amples. . . . 131
Front and top view of the conceptual design of the AGV. 132
The FTG+PM of the demonstrative example. 135
Typed activity with the Matlab script motorSelection.m providing the exe-

CUtion SeMaNntiCcs. e 136
The built-in functionality for generating Matlab scripts shown in the menu. 137
The PM of the demonstrative example. 138
The FTG of the demonstrative example. 139

The augmented PM of the demonstrative example. 143

LIST OF FIGURES XIX

6.9

6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

8.1

Al
A2
A3
A4
AS
A.6
A7

The resource model of the demonstrative example. 145
Invoking the optimization mechanismonthe PmM. 146
The optimized PM of the demonstrative example. 147
Alias table for some of the attributes. 149
Invoking the process enactment mechanismonthe PmM. 149
The enacted PM with the relevant attributes and capabilities of the on-line

inconsistency management phase. 150
General architecture of the tool. 152
Various graphical components of the modeling UL. 153
Representation types for the Process Model. 154
Representation types forthe PM. 155
Elements for modelingthe P™M. 155
Elements for modelingthe FTG. 155
Elements for modeling the typing in the FTG+P™m.. 156
Elements for modeling the properties. 156
Additional elements for modeling the properties. 156
Additional elements for modeling the resources. 156
Intents. 157
Exogenous model transformation. 157
Endogenous model transformation.o 158
Endogenous in-place model transformation. 158
Property refinement. oL o 158
Performance value derived through an L3 relationship. 159
Explicit simulation of a performance value. 159
Property-capability typing. 159

DEVS providing semantics for inconsistency management and enactment. 169

Top-level overview of the formalism. 174
The FTG+PM modeling part of the formalism. 175
The property modeling part of the formalism. 176
The resources modeling part of the formalism. 177
The cost modeling part of the formalism. 178
The viewpoint modeling part of the formalism. 179

The enactment modeling part of the formalism. 180

XX

LIST OF FIGURES

List of Tables

3.1
32
3.3
34
3.5

4.1

6.1

Features of inconsistency management and their interpretation. 28
Inconsistency management dimensions and their patterns. 28
Summary on the features of state inconsistency management techniques. . 31
Inconsistency management patterns in the state of theart. 39
Summary of the related work on processes. 46
Consistency does not imply correctness. 52
Execution times of the activities. 146

XXI

XXII LIST OF TABLES

List of Listings

5.1 The read-modify inconsistency pattern.
5.2 Management alternatives of the read-modify inconsistency pattern.

XXIII

XXIV LIST OF LISTINGS

List of abbreviations

AGV Automated guided vehicle

CBD Contract-based design

DEVS Discrete event system specification

DSE Design space exploration

EMF Eclipse Modeling Framework

FTG Formalism-transformation graph

FTG+PM Formalism-transformation graph + Process model
ICM Inconsistency management

M2M Model to model (transformation)

M2T Model to text (transformation)

MBSE Model-based system engineering

MT Model transformation

PDEVS Parallel DEVS

PM Process model

RCPSP Resource constrained project scheduling problem
RSM Response surface methodology

SCCD Statecharts + Class Diagrams

TGG Triple-graph grammar

VP Virtual product

XXV

Chapter 1

Introduction

Ever since the first industrial revolution at the end of the 18th century, the number of
engineered systems has been growing at an ever increasing pace. More then two centuries
later, the fundamental challenge to any engineering endeavor remains the same: delivering
the correct product. The correct system is the one that meets the functional and the
extra-functional requirements formulated against the system.

The complexity of engineered systems has been steadily increasing in past centuries. With
the advent of mechatronic (Figure 1.1) and cyber-physical systems (CPS), and movements
such as the Internet-of-Things (IoT), System-of-systems (SoS) and the Industry4.0, the
complexity of systems exhibited an even more drastic increase. This is due the inherent
heterogeneity of nowadays’ systems. [151].

Ensuring the correctness of nowadays’ highly complex systems is a serious engineering
challenge.

Model-based systems engineering (MBSE) advocates modeling the system before it gets
realized. This way, the various properties of the eventual system can be computed before-
hand, resulting in an improved system design and decreasing costs. Due to the complexity,
however, these systems are no longer engineered by a single individual, but rather by the
collaboration of experts. Such collaborative endeavors involve stakeholders from differ-
ent domains, who bring their points of view on the system. Multi-paradigm modeling
(MPM) [134] acknowledges this idea and proposes modeling every aspect of the sys-
tem explicitly, using the most appropriate formalisms, at the most appropriate levels of
abstraction.

2 CHAPTER 1. INTRODUCTION

Control
Systems

Control
Systems Electronics

MECHATRONICS

Mechanical Electro-
CAD mechanics

Mechanical
Systems

Figure 1.1: Mechatronic design requires an interplay between disparate domains. [41]

Adhering to MPM principles results in (i) parallelized engineering processes, in which the
components of the system are developed independently; and (ii) stakeholders accessing the
same system component through multiple disparate views.

Such settings give rise to potential inconsistencies between the views/models of the different
stakeholders.

Overlaps in the semantic domain of models have been identified as the primary reason
of model inconsistencies by many authors [151, 90, 215]. That is, properties of different
models often turn out to be logically connected or sometimes even (nearly) the same [71, 82].
Such a property can be, for example, the “is safe” property of the designed system, which in
turn can be implied by the property of “is stable” of a specific subsystem, meaning that the
two properties are connected as they semantically overlap. Involving different engineering
domains which typically feature disparate modeling formalisms further exacerbates the
problem. In Chapter 3, we further elaborate on the state of the art of inconsistency
management.

The presence and absence of inconsistencies has strong implications to the eventual correct-
ness of the product.

Finkelstein [70] suggests that “rather than thinking about removing inconsistency we need
to think about managing consistency”. Managing (ensuring) consistency, however, does not
necessary result in an eventually correct product. On the other hand, however, inconsistent
views on the same system will surely deteriorate the engineering endeavor from delivering
the correct product. That is, inconsistency implies incorrectness.

In this work, we claim that instead of managing consistency, one should inconsistency. In
Chapter 4, we further elaborate on this idea.

Managing inconsistency still does not guarantee a correct product, but there is a reasonable

expectation, that the majority of eventually incorrect system configurations can be avoided.
In this sense, managing inconsistency is a heuristic to the correct product[161].

There are two fundamental types of techniques to managing inconsistency. Preventive
techniques, ensure no inconsistencies can happen at any point of the engineering endeavor.
Resolution-based techniques are more reactive in the sense, that inconsistencies are allowed
to surface, but subsequently are required to be detected and resolved. The various techniques
are reviewed in Chapter 3.

As of which technique to employ, at which point of the engineering endeavor, and in
what scope, is a configuration specific to the given case. The selection, however, will
have a profound impact on the overall efficiency of the engineering endeavor. To reason
about the impacts of the selection, the engineering process is required to be modeled
explicitly.

The modeled process can be augmented with inconsistency management activities and
simulated for performance indicators (PI), such as transit time and costs. This way, different
process alternatives can be evaluated to decide the most optimal one. The optimal process
alternative is the one that minimizes the number of inconsistencies as much as possible, while
keeping the transit time and the costs low. Other PIs can be selected for specific engineering
settings, such as maximal resource utilization, minimal queueing time, etc.

Research questions

We formulate a handful of research questions in order to organize our research.

R1 What are the shortcomings of the state of the art of inconsistency management that
hinder the model based engineering of heterogeneous systems?

R2 What is the relation of model (in)consistency to the (in)correctness of the product?

R3 What is an appropriate formalism and level of abstraction to approach inconsistency
management in model based systems engineering scenarios?

R4 What formalisms are required to successfully model an engineering endeavor with the
intent of identifying inconsistencies across the various models?

RS How can be the impacts of applying different inconsistency management patterns
quantified?

R6 Can an inconsistency management technique go beyond being prescriptive and actually
enact the inconsistency management techniques chosen for a particular case?

At the end of this work, in Section 8.1 we will answer the questions in greater details,
linking them to the contributions, presented below.

Contributions

The contributions of this work are enumerated below. Next to each contribution is listed the
section of this work that explicitly describes it.

4 CHAPTER 1. INTRODUCTION

Contribution 1: A mapping study of the state of the art, in order to identify the short-
comings of the currently available inconsistency management techniques. (Chapter 3)

Contribution 2: A new definition of model (in)consistency, in terms of semantic prop-
erties. Such an approach enables explicit reasoning about model inconsistencies
potentially hidden in the semantic domain of models. (Chapter 4)

Contribution 3: A process modeling formalism, serving as the foundation for the rest of
the contributions. The formalism supports linking engineering activities and artifacts
with semantic properties. (Section 5.1)

Contribution 4: A technique for the off-line management of inconsistencies, in order
to transform the original engineering process into a managed one. At the same time,
the efficiency of the process is ensured by minimizing the transit time of the process.
This is achieved by means of rule-based multi-objective design space exploration.
(Section 5.2)

Contribution 5: Enactment of the optimized process, in order to enable the manage-
ment of inconsistencies potentially appearing during the enactment. The enactment
is achieved by explicitly modeled model transformations. (Section 5.3)

Contribution 6: On-line management of inconsistencies in order to manage inconsis-
tencies appearing during the enactment. Symbolic mathematics are used for the
continuous evaluation of artithemtic and first-order-logic constraints. (Section 5.4)

Contribution 7: DEVS-based simulation of processes for evaluating the performance
of the process candidates in the off-line management phase. A mapping library
between general process patterns to DEVS is provided, along with a simulation
algorithm for computing the transit time. (Section 5.5)

Contribution 8: External service integration in order to enable using domain-specific
engineering tools in the modeled process. The integration is achieved by explicitly
modeled communication protocols, using the SCCD formalism. (Section 5.6)

Approach

In this work, we propose an approach for inconsistency management in the engineering
of complex, heterogeneous systems. The approach consists of six contributions, shown
in Figure 1.2. Most of the contributions provide automated machinery for carrying out
the specific steps of the approach. The automation is achieved by an appropriate tooling,
presented later in this work. The only exception, naturally, is the process modeling step,
which still has to be carried out manually.

Structure

The rest of this work is structured as follows. Chapter 2 provides the necessary background
information on the techniques and foundations relevant to this work. Chapter 3 reviews the
state of the art (SOTA) related to this work. This entails (i) (in)consistency management,
and (ii) process engineering, both constituting a vast body of knowledge. Chapter 4 serves
as the foundational theoretical baseline for this work and is based on distilling and extending

the state of the art. Chapter 5 presents the foundations for process-oriented inconsistency
management with all of its facets. Chapter 6 shows the utility of the previously presented
techniques by applying them in a demonstrative example. Chapter 7 is a reflection on the
current tooling supporting the previously presented techniques. It provides an overview
on the current state of the tool and directives for future development. Finally, Chapter 8
concludes this work and points towards possible directions for future work.

System Project
information information

rl:
Inconsistency
patterns
e —
Management
. patterns
e ———
Optimization
patterns

—__—

Contribution 3 ,

Process modeling

pm:FTGPM

offline
inconsistency mgmt €— _

Contribution 4 |

Contribution

optimizedPM
:FTGPM

Enactment
transformations

Contribution 5 ,
Process enactment [«—|

enactedPM
:enactFTGPM

External service
integration

On-line
inconsistency mgmt

Contribution 6 __________________ Contribution 8

Figure 1.2: The process of the inconsistency management approach.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we give an overview on the foundational concepts related to the broader
scope of this work. In particular, the topics of model-driven system engineering (MBSE)
and engineering processes are discussed.

2.1 Model-based system engineering

Engineering is the structured process that leads from the requirements to the product. The
American Engineers’ Council for Professional Development (ECPD) [64] defines engi-
neering as: the creative application of scientific principles to design or develop structures,
machines, apparatus, or manufacturing processes, or works utilizing them singly or in
combination; or to construct or operate the same with full cognizance of their design; or
to forecast their behavior under specific operating conditions, all as respects an intended
function, economics of operation and safety to life and property.

The International Council on Systems Engineering (INCOSE) narrows the scope of en-
gineering to systems engineering by the following definition. Systems Engineering is an
interdisciplinary approach and means to enable the realization of successful systems. It
focuses on defining customer needs and required functionality early in the development
cycle, documenting requirements, then proceeding with design synthesis and system valida-
tion while considering the complete problem: Operations, Cost and Schedule, Performance,
Training and Support, Test, Disposal, Manufacturing. [100]

Model-based systems engineering (MBSE), specifically, is a branch of systems engineering
which is characterized by INCOSE as a formalized application of modeling to support
system requirements, design, analysis, verification, and validation activities. [99] Extensive
surveys in [98] and [97] define MBSE in a more general way as a collection of related
processes, methods, and tools.

8 CHAPTER 2. BACKGROUND

Requirements @

o

e\

Requirements Engineering Product

Figure 2.1: General overview of the engineering process.

Figure 2.2 shows a formalized overview of MBSE approaches, depicted by the UML2.0
Activity Diagram notation.

|
|
|
Desired % Requirements
product |
|
|
|
|
[Modeling
|
|
|
|
|
Virtual E3
product [
|
|
| .
| Analysis
| (Simulation,
} verification...)
|
|
|
|
|
|
|
|
|
} Realization Cl Artifact
(Manufacturing, .
! Activit
| production) Y
| — Data flow
|
| =P Control flow
| Real product
Real £ p @ Product
product |
|

Figure 2.2: Model-based engineering.

In the remainder of Section 2.1, we walk through the concepts shown in Figure 2.2. In
Section 2.1.1, the notion of requirements is outlined along with the typical workflow of
deriving them from the customer needs. In Section 2.1.2, the notion of the virtual product
is discussed. And finally, in Section 2.1.3, we discuss models.

2.1. MODEL-BASED SYSTEM ENGINEERING 9

2.1.1 Requirements

Requirements, on an abstract level, are the input to the engineering process, and serve as
guards for evaluating the correctness of the final product. If the final product meets all the
requirements, it is considered a correct product, otherwise it is an incorrect one. According
to the more formal definition by the CMMI standard [37], a requirement is:

1. acondition or capability needed by a user to solve a problem or achieve an objective;

2. a condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard,specification, or other formally imposed
document;

3. a documented representation of a condition or capability as in (1) or (2).

Example (Requirement). The system must be able to carry out a mission of at least 8
hours.

Point 3 of the definition emphasizes the need for expressing single requirements in a
natural or formal language. Documentation is paramount as the requirements can change,
evolve and decomposed into new requirements throughout the engineering process. Agile
methodologies, such as Scrum [168] and Kanban [114], in particular, advocate embracing
the fact of the changing requirements and instead of trying to reduce the impact of the
change, novel methods are needed to deal with the impact of changes appropriately. Lately,
this philosophy started to appear in the design of heterogeneous systems as well [53].

Tacit knowledge Properties

Textual
»| document
= in a natural
¥ o language

a BUag

Has in mind A @ Produces S

Has view on
Has view on

I

[Ln

Design
process

Formalizes
Communicates

Communicates
! I needs I I | requirements,

Customer Requirements engineer Formalizer

A

Feedback for requirements validation

Figure 2.3: The typical workflow of requirements engineering.

Requirements engineering [105] aims at the proper specification and formalization of
the customer needs. Figure 2.3 shows the four typical steps of requirement engineering:
(i) communication of the tacit knowledge between the Customer and the Requirements
engineer; (ii) externalization of the tacit knowledge in the form of textual requirements
artifacts by the Requirements Engineer; (iii) communication of the externalized require-
ments between the Requirements Engineer and the Formalizer; and (iv) expressing the

10 CHAPTER 2. BACKGROUND

requirements as properties to be satisfied by the final system.

Requirements originate from the facit knowledge of the stakeholders. In this phase, re-
quirements only exists in the cognitive mind of the stakeholders, may be communicated
and reasoned about, but they are not documented and therefore, not suitable for driving an
engineering process. The task of the requirements engineer is to facilitate the communi-
cation with the customer (Step 1) and produce requirement artifacts, typically in a textual
form. Requirement documents may follow various templates to make them more formal,
e.g. user stories [39] of agile methodologies. This approach, however, is still not formal
enough for computer understanding and automated reasoning, but through a structured
format, it provides easier understating for the human stakeholders. Typical approaches
include scenario-based [165] and goal-oriented requirements engineering [201], such as
KAOS [44], I* [222] and GBRAM [9].

In a subsequent step, the requirements may be formalized. The task of the formalizer
is translating the requirements to properties, by means of formal languages, formalisms.
Pertinent examples of such formalisms include very foundational ones, such as various
branches of mathematics (first-order logic, Euclidean geometry, etc), physics (mechanics,
dynamics, etc); but also more specific formalisms, such as automatas, Petri-nets, etc. Thanks
to the formal nature of these properties, they are suitable for automated (computer-aided)
analysis. This also entails detecting inconsistencies between requirements, as discussed in
Chapter 4. Conversely, the requirement artifacts used to capture the properties, are in fact
essential models of the customer needs, and consequently, they become first-class citizens
of any MBSE approach. At this stage, the customer may be provided with an appropriate
presentation of the derived properties to validate the requirements before the design process
commences [182].

Requirement artifacts are then used in the design process, which aims at satisfying the
properties implied by the requirements.

In the remainder of this work, we assume that requirements can be correctly and efficiently
translated into properties.

2.1.2 Virtual product

Before the actual system or product gets realized, the engineers are concerned with its
architecture, parameter and behavior with respect to various aspects. To inspect these, a
virtual abstraction of the product is created in order to carry out analyses (e.g. verification,
validation, simulation, etc), which would be too costly and too late to be carried out once
the final product has been built. The virtual product (VP), therefore, is realized using
formal modeling languages, which enable capturing the essence of the final product from
domain-specific aspects.

There is no universal definition to the notion of the VP, but all the definitions express the
intention of modeling the end product using computer automation [92, 27]. Atkinson and
Draheim [12] refer to the VP as the single underlying model (SUM).

2.1. MODEL-BASED SYSTEM ENGINEERING 11

In this work, we consider the virtual product as the snapshot of the union of all of the
system models up fo a certain point of the development process, not including (i) the
requirements, and not including (ii) the actual, realized end product.

The above convention implies that the VP undergoes significant (and probably frequent)
changes throughout its lifeline. These changes are the natural way of engineering a system
or product. The motivation behind every change is to converge towards meeting all the
requirement previously stated against the system.

2.1.3 Models

A model is an abstract representation of another concept, which can be a real thing, or
another model. An early definition of formal models originates from Minsky [131] (1965),
who defines a model as follows.

Model (Minsky). To an observer B, an object A* is a model of an object A to the
extent that B can use A* to answer questions that interest him about A. It is understood
that B’s use of a model entails the use of encodings for input and output, both for A
and A*. If A is the world, questions for A are experiments. A* is a good model of A,
in B’s view, to the extent that A*’s answers agree with those of A’s, on the whole, with
respect to the questions important to B.

The same idea, although in a more software-oriented sense appears in Liskov’s substitution
principle [118] from 1987.

Liskov’s substitution principle. If S is a subtype of T, then objects of type T in a
program may be replaced with objects of type S without altering any of the desirable
properties of that program

In his foundational book Allgemeine Modelltheorie from 1973, Stachowiak identifies three
properties that make a model [179]. (Translation given by [133].)

Mapping Models are always models of something, i.e. mappings from, representa-
tions of natural or artificial originals, that can be models themselves.

Reduction Models in general capture not all attributes of the original represented
by them, but rather only those seeming relevant to their model creators and/or
model users.

Pragmatism Models are not uniquely assigned to their originals per se. They fulfill
their replacement function (i) for particular — cognitive and/or acting, model
using subjects, (ii) within particular time intervals and (iii) restricted to particular
mental or actual operations.

Box, in 1979, while investigating the robustness of mathematical models, states:

12 CHAPTER 2. BACKGROUND

All models are wrong but some are useful [32].

This is, indeed, in line with Minsky’s criterion of A* being a good model; and aligns well
with Stachowiak’s reduction and pragmatism properties.

It was Bezivin in 2004 who suggested the unification principle of models, stating: Every-
thing is a model [23]. This is a statement which every MDE practitioner can easily relate
to, albeit, a rather philosophical one. Additionally, the principle stems from the software
world and its grammar-based, essentially closed semantics. Jean-Marie Favre points out the
shortcomings of this view by questioning the meaning of the “is-a” relation [67]. Eventually,
Favre comes to the conclusion that nothing is a model, but rather: a model plays a role of
the modeled entity.

REALITY : MODEL
Real-World : Base
entity . Model

only study behaviour in
experimental context

4 ‘ | 4

within contéx
System S ’ > Model M

Model Base
a-priori knowledge

A

experiment = simulate
within context " = virtual expefiment

.

Experiment : validationi
Observed Data

Simulation Results Modelling and Simulation
Process

Figure 2.4: Modeling and simulation concepts [210].

Figure 2.4 presents the concepts of modeling and simulation, as introduced by Vangheluwe
et al. [210] and Zeigler [223]. In this interpretation, the Model is an abstract representation
of a System within the context of a given Experimental Frame. The Model reflects certain
properties of the system’s structure and/or behavior (within a certain accuracy). The System
is a well defined object in the Real World under specific conditions, only considering specific
aspects of its behavior. Experimental Frames describe a limited set of circumstances under
which a system is to be observed or subjected to experimentation. The purpose of building
the Model is to enable virtual experimentation with the System, e.g., by simulating or
debugging the Model. This workflow is shown in Figure 2.5.

To leverage the potential of model-based systems analysis, Vangheluwe [210] suggest
embracing the principles of multi-paradigm modeling (MPM).

2.1. MODEL-BASED SYSTEM ENGINEERING 13

Information Sources Activities

<] -1 Experimental Frame Definition).7

class of parametric . model candidates

A 4
& priort Pl B Structure Characterisation J° .
knowledge T
v
parametl;ic model
A4
- - - - . K N\
modeller’s and N I Parameter Estlmatlon/)

experimenter’s T

A\
goals model with meaninglful parameter values
- - - - > . .
D (Simulation)
experiment observation v
(measurement) simulated measurements
data R
O Validation

validated model

Figure 2.5: Model-based systems analysis [210].

Multi-paradigm modeling (Vangheluwe). Model everything explicitly, using the
most appropriate formalism(s) on the most appropriate level(s) of abstraction, while
also modeling the process(es).

In this work, we fully embrace this directive. In order to investigate inconsistencies in
heterogeneous settings, we provide means (theory, formalisms, tools) for modeling every
aspect of the engineered system, including the semantic links between disparate domain-
specific models, thus enabling a novel approach for inconsistency management.

To support the idea of the “most appropriate formalism” in MPM, domain-specific modeling
languages (DSL) have been proposed [74]. In contrast with general-purpose modeling lan-
guages (such as UML), DSLs aim at relatively small problem domains with restricted syntax
and semantics. This results in the model-space of the virtual product being decomposed
into very detailed and fine-grained models pertaining to the specific problem.

Modeling artifacts. In this work, we use the term modeling artifact as a general
notion of models and views. In accordance with the role-based view of Favre [67],
we also allow a modeling artifact to play different roles throughout the engineering
process. The two fundamental roles are: requirement artifact and design artifact.
This distinction provides an appropriate framework for the systematic formalization
of correctness and consistency between any artifact in the engineering process, as
discussed in Chapter 4.

14 CHAPTER 2. BACKGROUND

2.1.4 Properties and attributes

The term property is vastly overloaded already in the computer science domain alone.
Consider how UML [142] considers property merely a named “structural feature”; while
some object-oriented languages (such as C#) consider class members with a purpose
between a field and a method a property [130]; and at the same time properties bear the
notion of the abstract representation of a real-world phenomena in an ontological, set
theoretical way in the works of Vanherpen [211], Vangheluwe [210], and others. This
problem gets exacerbated by the presence of other domains in the engineering process.
(Which is exactly the case in the engineering of heterogeneous systems.)

In our terms, a property is a function over a given attribute of the system.

Properties specify the desired values of the various aspects of the system. Properties enforce
a set-based reasoning, following open-world semantics. By set-based reasoning, we mean
that the satisfaction of a property determines weather the system falls into a given set
of all the systems or not. By open-world semantics we mean, that upon inferring the
satisfaction of a property, the result can be either positive (the property is satisfied), negative
(the property is not satisfied), or inconclusive. If a proof exists that a property can not be
satisfied, the property is unsatisfiable; otherwise it is satisfiable.

Example (Attribute). The mass m of the system, represented as a rational number:
m € Q.

Example (Property). The system is correct if its mass is less than 10 kilograms.
p:mg < 10.

Following the same definitions for a set of properties, joint satisfaction and satisfiability
can be defined as Vp € P is satisfied.

Evaluating property satisfaction is typically operationalized by carrying out simulations
and interpreting the resulting traces; by formal verification; or by testing.

In this work, we use properties to characterize the system with. That is, after translating
requirements onto the set of required properties, the correctness of the resulting product is
always evaluated against the system of properties.

We distinguish between system properties and ontological properties. A system property is
any property specific to the given system. An example for such a property could be: the
mass of the system should be less than 10 kilograms (m < 10 [kg]). Ontological properties,
on the other hand, are more generic in the sense, that they apply to every engineered system.
An example for such a property could be: every mass property has a value that is larger
than zero (Ym € M : m > 0 [kg]). The conjunction of these two properties results in a
well-defined range of accepted values for the mass attribute: 0 < m < 10 [kg].

Property-based approaches have been shown to be extremely feasible in detecting in-
consistency and incorrectness in the engineering of highly complex heterogeneous sys-
tems [212].

In Chapter 4, we definition correctness and consistency in terms of properties.

2.1. MODEL-BASED SYSTEM ENGINEERING 15

2.1.5 Viewpoints, views

The complexity of nowadays engineered systems requires their thorough modeling before
the realization of the system. With the growing complexity the types of stakeholders
also increases: nowadays heterogeneous systems typically require and interplay between
engineers from various disparate domains, such as mechanical, electrical and control
engineering. This diversification of concerns requires breaking down the engineering
goals and tasks in accordance with the engineering domains present in the engineering
endeavor.

Introducing views and viewpoints to the engineering endeavor supports this approach.

According to the ISO/IEC/IEEE 42010:2011 (formerly: IEEE 1471) standard[101], a
viewpoint identifies the set of concerns and the representations/modeling techniques, etc.
used to describe the architecture to address those concerns. Applying a viewpoint to a
particular system results in a view of the system.

. i exhibits P

Y
Interest 1 1

! < identifies 1
A has interests in A expresses
1. 1
<« identifies 1 S
re
1. Description
. Architecture
1.7 ? > Rationale
has <« identifies
v
1.% 0.."
Correspondence
Rule Correspondence
Concern
1.x
frames A « addresses
1.* 1.%
Arphi governs P> .
Ar e Ar
Viewpoint 1] View
! 1
1 1.7 .
Model Ar
Kind Model
governs P

Figure 2.6: The Core of Architecture Description in ISO/IEC/IEEE 42010:2011 [101].

As Figure 2.6 shows, view(point)s are used to investigate the architecture of the system.
An Architecture Description is a work product used to express the Architecture of some
System Of Interest. The Concerns of the Stakeholders will form the eventual Architecture
Viewpoints. Applying an Architecture Viewpoint to an Architecture Description, will result
in Architecture models.

Various architecture description languages exists, and some of them are compatible with the

16 CHAPTER 2. BACKGROUND

ISO/IEC/IEEE 42010:2011 standard, such as ArchiMate [188] and SysML [141].

Broman et al. [33] adapt the general definition of the ISO/IEC/IEEE 42010:2011 viewpoints
to the design of cyber-physical systems and propose a framework in which viewpoints are
linked to modeling formalisms and to modeling languages and tools. Their framework con-
sists of three elements: viewpoints, which capture the stakeholders’ interests and concerns;
concrete languages and tools, among which the stakeholders must make a selection when
defining their CPS design environments; and abstract, mathematical formalisms, which are
the “semantic glue” linking the two worlds. Corley et al. [40] investigate typical scenarios
of multi-view modeling, in which they link single/multi — model/view scenarios and identify
potential breaches of consistency.

2.1.6 Typical scenarios in MVM

user % i X
@ N
N/

<3 @ & .
“'”\ / .
Ofexe

Figure 2.7: Scenarios in multi-view modeling [40].

-

X

%\
3 3
/
%

model

Corley et al. [40] identify four typical collaborative modeling scenarios shown in Figure 2.7.
In Multi-User Single-View settings (Scenario 1), users work on the same view of the model
and observe the exact same data in the same concrete syntax. The other three scenarios are
characteristically different as they feature multiple views or multiple models, which are the
primary cause of emerging inconsistencies. In Multi-View Single-Model settings (Scenario
2), users work on different views of the model. The two views may use different concrete
syntax. The views are projections of the same single underlying model (SUM) and therefore
conform to the same modeling language. Changes in the abstract syntax of one view have
to be reflected in the other view in order to retain consistency. The Multi-View Multi-Model
scenario (Scenario 3) does not assume a SUM, but multiple separated underlying models,
which are connected via their semantic domains. Manipulating the models throught the
respective views causes mismatches in the models themselves and thus, inconsistencies may
arise. Finally, the Single-View Multi-Model scenario (Scenario 4) is a special form of the
Multi-View Multi-Model scenario, in which one view corresponds to multiple underlying
models. In practice, collaborative modeling typically requires a combinations of these
scenarios.

The views can belong to different domains, i.e., they may represent various aspects of the
SUM in different formalisms and on different levels of abstraction. For example, in the

2.2. PROCESSES 17

mechanical design of complex systems, multi-body models and more detailed finite element
models are often used to reason about different aspects of the same virtual product.

Inconsistencies arise due to the shared elements between views: as one view changes an
overlapping element, the change has to be propagated to the other views that share the same
element, otherwise an inconsistency will occur [71, 82]. These related elements are not
necessarily of syntactic nature, but they may exist in the semantic domain of the SUM as the
ontological properties of the system, e.g., safety, energy-efficiency, etc. The conformance
of the system to such properties can be evaluated by simulations or model checking.

To reason about the characteristics of the semantic domain of models (such as overlaps and
linked properties), an explicit representation of the semantic domain is required.

2.2 Processes

Process and workflow modeling is an extensively researched area and is typically considered
with a specific application domain. Business processes, engineering processes and software
processes are among the pertinent examples which rely on a notion of the ordered activities,
but define a process (or) workflow differently. Examples include: purchase order, tax
declarations, insurance claims process, organizing engineering activities into a product
development project.

In its broader sense, processes are structured depictions of a work consisting of multiple
steps in order to achieve a desired state, e.g. delivering a product. The Oxford dictionary
defines [148] the process as

a series of actions or steps taken in order to achieve a particular end.

More specifically, a process definition specifies (i) which steps are required, and (ii) in what
order they should be executed [195]. On a deeper look, a process definition consists of
three elements:

Tasks (step, process element): A logical unit of work, e.g., typing a letter, stamping a
document, checking personal data

Conditions (state, phase, requirement): A condition is used to determine the enabling
of a task.

Subprocesses: Use of previously defined processes, and the ability to reuse frequently
occurring processes

Processes and process-like structures are referred in many ways, depending on the
domain and discipline the process is situated within. In this work, we use the following
terms interchangeably: process, workflow, procedure, routing definition.

The Accreditation Board for Engineering and Technology’s (ABET) defines [3] the engi-
neering process as

18 CHAPTER 2. BACKGROUND

a decision making process (often iterative) in which the basic sciences, mathematics,
and engineering sciences are applied to convert resources optimally to meet a stated
objective. Among the fundamental elements of the design process are the establishment
of objectives and criteria, synthesis, analysis, construction, testing and evaluation.

According to Weske [218],

a business process consists of a set of activities that are performed in coordination in
an organizational and technical environment. These activities jointly realize a business
goal. Each business process is enacted by a single organization, but it may interact
with business processes performed by other organizations.

In this research, we investigate processes more of the engineering type. But the above
definition is still applicable. Engineering processes consists of engineering activities that
are performed in order to realize an engineering goal: the engineered system.

We define processes in a more general manner to fit our needs.

Process. A process is a partially ordered set of activities, with the ordering operator
a; < aj between two activities. The semantics of the operator can be given by the
various before-after semantics of the Allen-algebra [6], usually meaning a; is finished
before a; is started. If not < relationship is present between two activities, the two
activities can be executed in parallel.

This definition is sufficient for our purposes, as it sheds light on the very basic structure of
the processes we consider. It defines activities as the foundational elements of a process;
and allows two respective properties to either define an ordering or leave that restriction
and implicitly allow parallelization.

Process management (Weske [218]). Process management includes concepts, meth-
ods, and techniques to support the design, administration, configuration, enactment,
and analysis of processes.

Processes play an important role in various engineering domains. Pahl et al. [149] provide
a systematic overview of the design processes in traditional engineering. These processes
are characterized by rigidity the separation of engineering concerns, and a resulting siloed
approach. With the advent of modern day software engineering, the related engineering
processes also became a subject of improvement. With the engineering product becoming a
purely virtual artifact, engineers became more experimental with their processes. Starting
from the waterfall model [153], the Rational Unified Process (RUP) [108] gained wide-
spread visibility all around the software domain. Later on, to overcome the inherit rigidity
of these process models, the processes have been shifted towards more of the iterative
and incremental nature [30]. Enabled by the mechanisms of MBSE, the V-model and the
subsequent Y-model have been popularized in safety-critical systems engineering [36].
Modern day software methodologies often build on the concept of agile [13] project

2.2. PROCESSES 19

management techniques.

Business processes constitute yet another typical type of processes. They are situated on
the higher level of the business hierarchy, typically governing strategic operations. Due
to the drive from the business domain and the instantly quantifiable gain they provide,
business processes were the prime candidates to benefit from modeling and analysis of
performance.

The various fields related to processes and important for this work are: process modeling
and process enactment.

2.2.1 Modeling

The modeling of the process is paramount in modern business and engineering settings.
By viewing the process as a resulting artifact of a planning or pre-planning work phase, it
becomes obvious, that the same motivations apply as in the case of any software or system
being engineered.

There are various process modeling formalism, typically tailored for specific domains.
Higher level modeling formalisms are typical in business process scenarios. Typical exam-
ples include BMPN2.0 [143] and BPEL [140]. These process models are often enactable, so
that the execution of the process can be automated to minimize the human effort. Medium
level formalisms are more general purpose and versatile, and are typically executable. Typi-
cal examples include FTG+PM [122], Activity diagrams [54], YAWL [193], MWE2 [59] or
Apache Maven [10]. There is a third category of process modeling formalisms: the ones
without a clear notion of the process. These formalisms focus on too low levels of abstrac-
tion to trivially see them as a process language, yet, they are bone fide process modeling
formalisms. Examples include Petri-nets [135], Statecharts [84], scheduling models (e.g.
Gantt-charts [219]), data dependency models with resolution semantics.

The notion of the process can be either explicit or implicit. In the former case, at least the
control and data elements of the process are made explicit. In the latter case, either the
control or the data, or both are only implicit. This is typical when a formalism is more
concerned with the stat of the work items instead. The traces of the execution, however,
correspond to an underlying process model.

The intent of the process can be descriptive (what/how is being done), prescriptive (what/how
must be done) or proscriptive (what/how must NOT be done). Typically, a combination of
these intents is required to properly model a process.

2.2.2 Enactment

Process enactment is commonly defined as the use of software to support the execution
of the operational process [146, 194, 109]. As opposed to process execution, enactment
is more broader and considers human interaction. Furthermore, human interaction is
typically viewed as dedicated, special activity with its own characteristics and modeling
standards [139].

20

CHAPTER 2. BACKGROUND

Chapter 3

State of the art

In this chapter, we present Contribution 1 of this work: a mapping study of the state of
the art. The majority of this section has been published in [55].

The chapter is organized into two main sections: Section 3.1 discusses the state of the art
in (in)consistency management, while Section 3.2 discusses the state of the art in process
engineering. Both areas have been thoroughly researched by multiple authors of multiple
domains, constituting a vast body of knowledge. We have conducted a mapping study on
(in)consistency management, keeping our focus on the applicability and scalability of the
techniques in in heterogeneous system engineering settings.

Systematic mapping is a methodology that is frequently used in medical research, but that
has largely been neglected in software engineering [152]. The usual outcome is a visual
map classifying the results. It requires less effort than a systematic literature review while
providing a more coarse-grained overview.

3.1 (In)consistency management

In this section, we review the state of the art on (in)consistency management. A mapping
study has been carried out at the beginning of this research to understand the various aspects
of the field. At this point, we focus on the following questions.

o What methods, techniques and tools are available for the management of con-
sistency in a mechatronic and CPS design process?

Many of the contributions to the field have been made in the context of pure software
systems. As opposed to this context, our main focus lies on the design of mechatronic
and cyber-physical systems in particular.

¢ What are limitations of the state of the art?

Identifying limitations and rather, the shortcomings of the state of the art is a vital
part of this report. We rely on this information to fill the gaps in what we believe to
be an efficient approach for handling inconsistencies.

21

22 CHAPTER 3. STATE OF THE ART

e What makes consistency management in a mechatronic and CPS context dif-
ferent from the software engineering industry in general?

The rest of this this section is structured as follows. In Section 3.1.1, the review process
is discussed. In Section 3.1.2, we give an overview of our findings. In Section 3.1.3, we
discuss the various features, patterns and activities typically encountered in inconsistency
management. In Sections 3.1.4-3.1.6, the typical patterns of the (in)consistency manage-
ment activities of characterization, detection and resolution are discussed, respectively.
In Section 3.1.7, the optional and auxiliary aspects of (in)consistency management are
discussed. In Section 3.1.8, the conclusions are drawn.

3.1.1 Process

Our process for producing the mapping study discussed in this section was based on the
guidelines described in [152] and [103]. The process is shown in Figure 3.1.

oS

SeEmei Filter Selection h SCEITE
Dlgltal ||brar|es Google Scholar

M w ' references
criteria Scholar
paper ||

Figure 3.1: Process of producing the current mapping study.

:mappingStudy

Follow

-
Digital
libraries

Search Digital libraries

The first step to the process is the search for the relevant scientific papers. For this, the
appropriate Search terms were determined, along with the relevant Digital libraries. The
Cartesian product of these two input parameterized the Search step; i.e., every search terms
has been evaluated against every digital library.

The following search terms were selected:
e consistency management, inconsistency management;
e overlap detection;
e inconsistency detection;
e inconsistency resolution.
Additionally, the following extra search terms were also used:

e multi-paradigm model(l)ing, multi-view model(l)ing;

3.1. (IN)CONSISTENCY MANAGEMENT 23

e mechatronic design;
e concurrent engineering;
e tool integration.

The following digital libraries were used:
o ACM Digital Library [4];
o IEEE Xplore Digital Library [96];
e Springer Link [178].

For every search term, the hit list in every library has been ordered based on relevance,
which is a compound metric of impact, number of citations, recency, and a similarity metric
between the search term and the content of the paper. The top 15 papers for every search
term have been accepted as candidates for the further evaluation. After selecting the top 15
publications, the year of publication has been constrained to the past two years as newer
publications tend to sink lower in lists ordered by relevance. That makes a total set of
candidates of 20 per source and per search term.

The number of unique papers included for the fist round was approximately 200.
Filter

Two exclusion criteria were defined to filter the selected papers based on: (i) non-English
papers, and (ii) short papers got rejected at this point in the process.

Selection

In the Selection step, the set of initial 200 papers have been narrowed down, and the set of
papers to be processed have been selected.

Two reviewers have been working on the selection step; each of them following one instance
of the detailed process of the Selection activity, shown in Figure 3.2.

T

> Accept
YES
Pick next paper Read Abstract +
pap Introduction

Relevant?

YES

:paper

. | Assign to the

"] other reviewer

A\ 4

MAYBE
Assigned by the
other reviewer?

Figure 3.2: The detailed process of the Selection activity.

24 CHAPTER 3. STATE OF THE ART

The set of initial 200 papers have been formed into a queue. In the fist step, the reviewer
chose the next paper for investigation.

After reading through the abstract and introduction, the relevance of the paper has been
determined, and as a result, the paper was assigned a status out of the following three:

e Accept — the paper was found relevant, and selected for processing;
e Reject — the paper was found not relevant, and was not selected for processing;
e Maybe — the relevance of the paper could not be determined.

If the relevance of the paper could not be determined (Maybe), the paper was assigned to
the other reviewer to repeat the process. If the second reviewer could not clearly accept the
paper, it got rejected.

The relevance of the papers has been determined based on the following criteria. A paper
fulfilling any of the below criteria got immediately assigned the Accepted status.

e Presents an overview.

— It’s a survey or systematic review.

— Presents a classification of the types of (in)consistency problems.

— Scoped to the domain of mechatronics, CPS, avionics, automotive.
e Presents a technique

— for overlap detection.

— for inconsistency detection.

— for resolution.

— the technique is supported via a (prototype) tooling.

Papers not meeting any of the above criteria, but otherwise interesting and potentially useful,
got assigned the Maybe status.

The rest of the papers got assigned the Rejected status.

Search Google Scholar

Google Scholar (https://scholar.google.be/) is one of the most popular scien-
tific indexing libraries. Therefore, a search on Google Scholar has been additionally carried
out. Duplicate entries have not been introduced. A set of approximately 25 papers have
been identified for further processing.

Process papers

Eventually, approximately 70 papers have been identified for being processed and incorpo-
rated into the mapping study.

https://scholar.google.be/

3.1. (IN)CONSISTENCY MANAGEMENT 25

During the processing, the list of citations of each paper has been processed as well, and
the relevant references have been followed.

Eventually, 59 papers on the topic of (in)consistency management have been incorporated
into the mapping study. Some of them contribute to the vocabulary and taxonomy pro-
vided later in this section; some of the contributed to understanding the mechanisms and
techniques of the specific steps in (in)consistency management.

Threats to validity

During the search and selection phase, we identified the following threats to the validity of
this survey.

The overloaded meaning of “inconsistency” Inconsistencies are natural phenomena in
several domains, not just in multi-model settings. Typical examples include: incon-
sistencies violating the ACID principle in relational database management systems,
and well-formedness violations in software design. This overloaded nature of the
term makes it hard to filter the works relevant to our scope.

Semantic gaps between different domains Even in closely related domains, the defini-
tion of inconsistencies is not clear. In software modeling, and especially in the case of
UML modeling, inconsistencies are typically defined as well-formedness violations,
i.e. a discrepancy arising from the linguistic properties of the domain. In a true
MPM setting, although, semantic inconsistencies are also considered as discrepancies
arising from the overlaps between various formalisms, domains.

Hidden domains Although our survey focused on multi-model setting in general, this
proposition also implicitly assumes the involved domain actually employs explicit
modeling techniques. If there is no link made between a domain and explicit model-
ing, a domain may remain hidden. As a typical example, we reached as far as the
domains of concurrent engineering, which is not linked directly to MPM, but we had
a-priori knowledge about potential links.

In the rest of Section 3.1, we discuss the findings of our study.

3.1.2 Overview

Here, we give a brief overview of our findings.

Definitions

There is no unified definition to “inconsistency”, as it is always specific to the given domain,
setting and task. According to the Merriam-Webster dictionary [1]:

Inconsistent. Not always acting or behaving in the same way; having parts that
disagree with each other: not in agreement with something.

26 CHAPTER 3. STATE OF THE ART

Spanoudakis et al. [177] define inconsistencies specific to software models as

a state in which two or more overlapping elements of different software models make
assertions about aspects of the system they describe which are not jointly satisfiable.

Herzig et al. [89] also add that

an inconsistency is present if two or more statements are made that are not jointly
satisfiable,

with the typical examples of: a failure of an equivalence test, a non-conformance to a
standard or constraint, and the violation of physical or mathematical principles.

We find the latter definition to be the best suited for domain of heterogeneous systems
engineering out of the existing definitions. The definition, however, does not consider
inconsistencies that remain hidden in the semantic domain [210] of models. To this end, we
suggest a more appropriate definition of inconsistency, in terms of semantic properties. In
our terms, two design artifacts d; and d; are said to be consistent w.r.t. the set of properties
P’ = Prog(d;)(Preg(d;) iff Vp € P’ : d; E p < d; F p. That is, properties that are in
the overlap of the respective semantic domains of d; and d;, are either have to be jointly
satisfied by the d; and d;, or jointly not satisfied, in order to consider d; and d; consistent.
If d; and d; are not consistent, they are inconsistent. The definition is explained in great
details in Section 4.3.1.

The sources of inconsistencies

Investigating their sources, gives a better understanding on the nature of inconsistencies.
Huzar et al. [95] note that the imprecise or vague semantics of modeling languages (and
UML, specifically) being a potential source of inconsistencies:

More frequently, however, inconsistencies arise in settings featuring multiple views on the
same virtual product and the mismanagement of the information between these.

(...) inconsistencies arise because the models overlap — that is, they incorporate elements
which refer to common aspects of the system under development — and make assertions
about these aspects which are not jointly satisfiable as they stand, or under certain condi-
tions. [177]

Views conforming to these viewpoints are highly interrelated due to the concerns addressed
overlapping. These interrelations and overlaps can lead to inconsistencies. [89]

(...) if different views of a system have some degree of overlap, how can we guarantee that
they are consistent, i.e., that they do not contradict each other? [160]

Additionally, the evolution of single model artifacts can also lead to inconsistencies. Hehen-
berger et al. [87] note that

large design models may contain thousands of model elements. Designers easily get
overwhelmed maintaining the correctness of such design models over time. Not only is it

3.1. (IN)CONSISTENCY MANAGEMENT 27

hard to detect new errors when the model changes but it is also hard to keep track of known
errors. In the software engineering community this problem is known as a consistency
problem and errors in models are known as inconsistencies.

Managing inconsistencies

Relational database management systems and version control systems overcome the prob-
lems of inconsistencies by avoiding them in the first place. In multi-view settings, however,
this cannot be always guaranteed and the allow-and-recover style of management is more
appropriate. Once inconsistencies are encountered, their root causes are required to be
analyzed in order to manage them properly. Finkelstein et al. [70] notes that

Rather than thinking about removing inconsistency we need to think about "managing
consistency".

In our view, however, it is more appropriate to reason about managing inconsistencies,
since we assume that inconsistencies cannot be avoided and the real challenge is to deal
with them after they are encountered.

3.1.3 Features and patterns in inconsistency management techniques

In this section we define a structured taxonomy for discussing various inconsistency man-
agement techniques and approaches. In our taxonomy, we combine those of Spanoudakis
et al. [177] and Hanmer et al. [83] and characterize inconsistency management techniques
and by their features and the patterns used for implementing those features. (For example,
using Pivot models (Section 3.1.4.1) is a typical pattern of the Representation feature
(Section 3.1.4.1).) While the usage of features assumes a closed-world, and thus gives a
rigid structure to our view on inconsistency management techniques in general, we assume
an open-world in case of patterns of implementing those features, since it is not feasible to
exhaustively enumerate and classify all of the patterns.

Not every inconsistency management technique addresses the same challenges in inconsis-
tency management. While some of them focus on specific sub-problems (such as detecting
inconsistencies), others approach inconsistency management from a holistic view and at-
tempt to come up with a framework for inconsistency management. Based on our survey of
the state of the art, we compiled a feature model for inconsistency management techniques,
shown in Figure 3.3.

The two required features of inconsistency management techniques are their dimensions
and activities. Dimensions are used to investigate what an inconsistency management
technique attempts to tackle, while activities tell how they achieve that. Additionally,
the extra-functional properties of an inconsistency management techniques may be also
interesting in some cases, as they tell how good a technique with respect to a specific metric
(such as performance, precision, etc).

28 CHAPTER 3. STATE OF THE ART

ICM technigue

="
Activities | | Extra-functional properties
T

oo e o e —— ——o— —0—— ——
Domain | | Abstraction | | Dynamics | | Space | | Application domain | | Characterization Prevention Allow-and-recover | | Tracking | | Process optimization
o T

Legend
[3 Mandatory
o Optional
Abstract
Concrete

o ‘e [& O]
Representation | | Specification | | Detection | | Tolerance | | Resolution

Figure 3.3: Feature model of the inconsistency management techniques.

Feature Meaning
Dimension What?
Activity How?
Extra-functional property | How good?

Table 3.1: Features of inconsistency management and their interpretation.

3.1.3.1 Dimensions

Dimensions identify what a given inconsistency management technique attempts to cover.
More specifically, what types of inconsistencies it considers. Table 3.2 summarizes the
dimensions considered at this place.

Dimension | Patterns
) Linguistic

Domain

Semantic

) Horizontal

Abstraction

Vertical

. Static

Dynamics

Evolution

Intra-model
Space

Inter-model

Table 3.2: Inconsistency management dimensions and their patterns.

Space

Depending on whether the considered inconsistencies are restricted to just one single model
or are allowed to extend over multiple models, intra-model and inter-model inconsistencies

3.1. (IN)CONSISTENCY MANAGEMENT 29

are distinguished [121]. Intra-model inconsistencies occur in one single model, while
inter-model inconsistencies can be observed between different models.

Due to the prevalence of multi-view settings in the mechatronic domain, techniques feasible
for inter-model (inter-view) inconsistency management are the preferred ones. Since
inconsistency management techniques suitable for inter-model situations are also suitable
for intra-domain cases, we only consider approaches capable of inter-model inconsistency
management and do not investigate this dimension further.

Domain

The domain defines whether the considered inconsistencies are situated in the linguistic or
the semantic domain of a model. Linguistic inconsistencies arise from syntactic discrep-
ancies and are equivalent to well-formedness violations, as known in software modeling.
Semantic inconsistencies, on the other hand, are results of overlaps between different
domains and formalisms involved in the modeling process.

Abstraction

Depending on whether an inconsistency can extend over various levels of abstraction, Lucas
et al. [121] distinguish between horizontal and vertical inconsistencies. While horizontal
inconsistencies occur between models on the same level of abstraction, vertical ones are
associated with models on different levels of abstraction.

Dynamics

An inconsistency management technique can static vs evolution] Depending on whether the
notion of inconsistencies supports reasoning between different versions of the same model,
inconsistencies may be defined either as static or evolutionary.

Discipline

Also known as the application domain of a technique, the discipline identifies the scope an
inconsistency management technique can be successfully applied within. The majority of
the state of the art considers only software engineering as an application domain.

3.1.3.2 Activities

Activities define how an inconsistency management process is structured. We mainly follow
the classification of Spanoudakis et al. [177], but further extend it as presented later. Our
classification of inconsistency management processes is shown in Figure 3.4.

30 CHAPTER 3. STATE OF THE ART

Characterization

Characterizing inconsistencies is the first step to every inconsistency management process.
Its role is twofold. First, the inconsistency rules defined in this step serve as inputs
for the subsequent activities (detection or avoidance). Second, the employed patterns of
inconsistency characterization, heavily influence the choice on the patterns of the subsequent
steps.

Different authors approach this process with various granularity and see the role of character-
ization (often referred as inconsistency definition) different. Spanoudakis et al. [177] do not
emphasize the role of proper inconsistency characterization, while Van Der Straeten [197]
acknowledges characterization as the foundational first step towards a managed approach
towards handling inconsistencies.

:paper

Accept

A 4

YES (—
. | Assigntothe

NO | other reviewer

YES

Relevant?

Choose next Read Abstract +
paper Introduction

A\ 4

MAYBE

Assigned by the
other reviewer?

Figure 3.4: The process of managing an inconsistency.

Detection

In non-prevention style techniques, inconsistent situations have to be detected based on the
characterization of inconsistencies in order to execute the proper resolution actions. The
patterns of characterization heavily influence the patterns of detection.

Resolution

Once an inconsistent state is detected, it is usually expected to be resolved. Finkelstein
et al. [70] note, however, that managing consistency does not only mean removing the
detected inconsistencies; but also preserving inconsistency where it is desirable.

3.1.3.3 Summary of the state of the art

Table 3.3 briefly summarizes the features supported by the state-of-the-art techniques
considered in our survey. The patterns of these techniques are classified and presented in
the subsequent sections.

3.1. (IN)CONSISTENCY MANAGEMENT 31

Characterization | Detection | Resolution | Prevention

Stolz [181]
Van Der Straeten [199]
Van Der Straeten 2 [198]

Adourian [5] (] (] ([J O
Balzer [14] (] (] O O
Becker [18] ([J O O O
Bhave [26] ([J ([J O O
Bhave 2 [25] (] @) O O
Blanc [29] (] o O O
Dahman [43] (] (] ([J O
Easterbrook [56] (] (] O O
Egyed [61] ([([©) ©)
Engels [63] o o O O
Gausemeier [76] o (] ([J O
Giese [79] o o ([J O
Giese 2 [78] @) @) O o
Hamlaoui [62] (] (] O O
Hehenberger [87] [) [) @) @)
Herzig [88] ([J O O O
Hessellund [91] (] @) O ([J
Le Noire [113] (] o O O
Lopez-Herrejon [119] O [J O O
Lopez-Herrejon 2 [120] ® [(D) O
Mens [128] (] (] ([J O
Nentwich [137] @) @) ([J O
Oka [144] (] O O [J
Qamar [154] (] (] O O
Quinton [156] @) (] O O
Shah [172] ([J O O O

[[@) @)

[[[@)

[[[@)

Table 3.3: Overview on the state of the art. (Legend: O — no support; © — possible support,
not emphasized; @ — dedicated support)

3.1.4 Characterization patterns

In terms of characterization, we distinguish between two important aspects:
e representation, i.e. the form (in)consistency rules are defined in, and
e specification, i.e. the way (in)consistency rules are defined.

Typical representation patterns include using naming conventions, graph-like formalisms

32 CHAPTER 3. STATE OF THE ART

and pivot model based techniques. Other representation techniques are also discussed
in the following section. Concerning specification, most of the available techniques are
based on and involve human inspection, therefore we only mention those employing a
semi-automated or automated technique.

3.1.4.1 Representational patterns
Naming conventions

According to Spanoudakis [177]:

the simplest and most common representation convention is to assume the existence of a
total overlap between model elements with identical names and no overlap between any
other pair of elements.

Hessellund et al. [91] investigate inconsistencies in a setting where multiple DSLs are
involved in the design process. The technique aims to represent, check, maintain constraints,
and that in an avoidance-like fashion. An EMF extension framework, SmartEMF is used
which employs Prolog to achieve inconsistency management. Referential integrity is
mentioned as a typical (general) type of inconsistencies.

Oka et al. [144] identify different types of relationships between (i) two components, (ii)
composite and component objects, (iii) two composite objects. The technique has three
main elements:

e update operation patterns - there are three of them: (a) not allowed update, (b) allowed
update but no change propagation, (c) allow-and-propagate,

e modification rule matrix - specifies how the previous ones are applied: for every
relationship type a pattern is chosen,

e modification algorithm - orchestrates the interplay between the matrix and the rules

The authors to not assess the performance of the framework and there is no known follow-up
project or tool. The applicability of the technique seems to be very constrained.

Dependency graphs

The second group of characterization techniques by Spanoudakis [177] are the shared
ontologies. This approach requires the authors of the models to tag the elements in
them with items in a shared ontology. The tag of a model element is taken to denote its
interpretation in the domain described by the ontology and, therefore, it is used to identify
overlaps between elements of different models.

We found that this technique is hardly ever encountered in mechatronic settings. Instead,
graph-like formalisms are used to depict overlaps between various models.

A number of techniques employ a specific subset of dependency models in form of
TGGs [167].

3.1. (IN)CONSISTENCY MANAGEMENT 33

Becker et al. [18] describe requirements and the characteristics of tools for inter-model
consistency management. Most notably, they identify functionality (m—n relations between
objects the tools needs to install), operation mode (incremental preferred over batch),
direction (bidirectionalaty is preferred) and adaptability (support for different domains)
among others and identify TGGs as a good fit with these requirements.

Adourian et al. [5] use an explicit correspondence model to relate elements of different
models to each other. Unidirectional change propagation can support interleaved evolution,
where no conflicts are introduced in the separate views of the system. Bidirectional
change propagation can support parallel evolution, where parallel and conflicting changes
are allowed to be introduced. Triple-graph grammars (TGG) are used as a theoretical
underpinning to the technique. It is thanks to the (computationally) non-causal nature
of Modelica as well as its modularity that an almost one-to-one correspondence between
geometry models and dynamics models can be found. Without non-causal models, we
would have to associate many causal models with a single geometric model.

Gausemeier et al. [76] propose using a cross-domain system model for consistency manage-
ment, based on TGG. This view of the system is used in conceptual design. The conceptual
view (active view), contains system elements and shows the information and energy flow in
the system. After the conceptual design, all views of the system keep relations with this
domain-spanning model. Model transformations are used to generate the domain-specific
views from the conceptual model and to keep the models consistent.

Giese et al. [79] focus on bidirectional model synchronization as an important technique in
MDSD. They provide an algorithm based on the triple graph grammar formalism (TGG).
Their previous work [80] optimizes for a single change, which is generalized to compound
changes in [79]. The problem of multiple transformation steps is identified, along with the
need for a formal framework for reasoning about algebraic-temporal structures of these
steps.

Mechatronic/CPS settings.

Qamar et al. [154] present a technique specifically for the mechatronics domain, which
considers structural and parameter type dependencies between different domain-models in
order to provide consistency between different views. This provides an ability to traverse
between different views of the system, as well as maintaining consistency between those
views. Inter-domain relationships are established via SysML as a pivot model, between a
mechanical model (Solid Edge) and the dynamic analysis model (SimScape).

Other authors focus on the operational side of dependency modeling.

Mens et al. [128] expresses inconsistency detection and resolution as graph transformation
rules. The dependency analysis of these enables appropriate ordering and refactoring of
inconsistency rules. The analysis is carried out using the critical pair analysis algorithm.
This analysis can be exploited to improve the inconsistency resolution process, for example,
by facilitating the choice between mutually incompatible resolution strategies, by detecting
possible cycles in the resolution process, by proposing a preferred order in which to
apply certain resolution rules, etc. The approach focuses on structural inconsistencies and
therefore, it falls short to tackle the problem of semantic inconsistencies.

Egyed [61] presents an incremental technique to detect and keep track of inconsistencies
and a prototype tooling to support the approach. The author claims that even “very large

34 CHAPTER 3. STATE OF THE ART

industrial” models can be maintained efficiently. The technique identifies the consistency
rule instances to be checked upon a model change, based on a scopes of the changes. The
rules are defined manually and cover structural constraints only; this technique, therefore
does not support reasoning over semantic inconsistencies.

Dahman et al. [43] investigate the problem of consistency management in the domain of
business processes. They propose incremental model transformations to mend evolution-
ary consistency issues. The case study is the consistency between a BPMN model and
a Component-Based Model. Update mechanisms on one model are primitive updates:
addNode, insertEdge, dropNode, deleteEdge, setLabel, setSource, setTarget, setIndex. A
synchronization algorithm specifically for the BPMN to SCA model is specified in the
paper. The characterization is achieved on meta-model level, and could be used for keeping
analysis models up-to-date.

Apart from inconsistencies of static dynamics discussed above, evolutionary inconsistencies
can be also supported by dependency graphs.

Hamlaoui et al. [62] recognize the infeasibility of depicting virtual product by one huge
model and propose a network of related models, which provides a global view of the system
through a correspondence model. The approach is claimed to be domain independent.
Two types of model evolution are presented: adaptation (between model and meta-model)
and co-evolution (on the same level of abstraction). Changes (add, modify, delete) in one
model trigger changes in other model(s). An Xtext-based textual DSL is used for defining
the correspondence model. Domain specific and -independent structural changes can be
detected; semantic changes can be handled via the suggestions provided to the human user,
although the paper does not provide examples on this scenario.

Pivot models

A special case of the graph-based representation is the usage of pivot models, which is
more frequently used in design of mechatronic and cyber-physical systems. Pivot models
act as an intermediate language to transform models into each other.

Shah et al. [172] present SysML as a pivot model for system engineering and the related
concerns of tool integration. SysML is used as the pivot where also the other languages
(abstract syntax) are included by using profiles. Model transformations are used to generate
the domain-specific models in the different tools form the SysML model or vice versa.
SysML parametric models are used to model the dependency relations within the pivot
model. Because of structure changes (topological changes), this would have to be remade
every time the structure changes. For this, multi-aspect component models are used. These
instantiate a correct component and parametric relations when the topology changes. This
information is domain-specific. The paper also provides a case study where the approach is
applied to a log splitting machine.

Bhave et al. [25] describe an architectural approach to reasoning about relations between
heterogeneous system models. A pivot model (the “run-time base architecture”) is used
to associate related models. Models are related to the pivot model through architectural
views, which capture structural and semantic correspondences between model elements
and system entities. The component-and-connector (C&C) perspective is used to define
the architecture. The C&C perspective is extended to efficiently address not just software

3.1. (IN)CONSISTENCY MANAGEMENT 35

and computational infrastructures, but also the physical parts of a CPS - this is the base
architecture (BA). The BA of a CPS is an instance of the CPS architecture style, which
contains all the cyber and physical components and connectors that constitute the complete
system at runtime. Architectural views for a modeling formalism are defined as a tuple of (i)
the C&C configuration of the view (with types, semantics and constraints); (ii) associations
of model elements with elements of CV; and (iii) associations of elements in CV with
elements in BA, respectively. The technique is demonstrated through a multi-domain case
study on engineering a quadrotor system. The only type of inconsistencies considered is the
one arising when model elements are mapped to the BA in a many-to-many style, which
is clearly a structural one. The authors claim that current C&C architectural styles, which
focus primarily on software and computational infrastructures, are not comprehensive
enough to describe a complete CPS. Although the aim of this paper is not inconsistency
management, as this question is addressed in Bhave et al. [26] introduce the notion of
structural consistency management for CPS. Views of a single system are kept consistent
using an architectural base model (the pivot model). This base architecture relates the
different views of the system to each other. Well defined mappings between a view and
a base architecture manage the different consistencies. Defines “weak consistency” as
(a) every component in the view is accounted for in the architectural base model, (b)
every communication pathway and physical connection in view should be allowed in the
architectural base model. Defines “strong consistency” as weak consistency, plus: every
element in the architectural base model must be represented in the view.

Operation-based representation

Blanc et al. [29] propose to represent models by sequences of elementary construction
operations, rather than by the set of model elements they contain. The key idea of the
approach, to uniformly detect structural and methodological inconsistencies is, that it relies
on elementary model construction operations instead of the model elements themselves.
Change operations are motivated by MOF: create, delete, setProperty, setReference. Struc-
tural and methodological consistency rules can then be expressed uniformly as logical
constraints on such sequences. Structural and “methodological” inconsistencies can be
detected. Methodological rules constrain the overall construction process and the authors
claim this being the core contribution of the paper. The approach supports multi-model
and multi-level modeling. For structural constraints, they define operation pairs, where
the second operation cancels out first one. For example, creating a model element and
subsequently deleting it.

Le Noire et al. [113] propose an approach that represents models as a sequence of operations.
The Praxis tool is used as a (meta-model independent) tool for operation based model
management, with and PraxisRules for consistency constraint definition. The textual DSL
expresses consistency constraints in terms of operation primitives and also allows complex
change definitions. The search for inconsistencies is performed on the subset of the model
that was modified since the same inconsistency check was run last time. The provided use
case builds on the ARCADIA framework of Thales. The approach allows modeling both
structural and semantic inconsistencies.

Stolz et al. [181] present a notion of potentially re-orderable model transformations to track
the semantic dependencies of the different modeling steps. The technique assumes model

36 CHAPTER 3. STATE OF THE ART

evolution on various meta-levels and that specific model elements may contain different
data on different levels. Both structural and semantic issues are considered when change
propagation fails. The method starts from an empty model which evolves via primitive
operations: add, update, delete. Prerequisites are assumed to be captured in first order logic
(e.g. OCL in UML settings), which imply a set of model elements as dependencies. These
can be mapped to other parts of the model in the time and scope of a transformation. “Proof
obligations” are used to keep models in a semantically consistent state: transformations
generate new proof obligations and the user must prove these. These are stored as the part
of the dependency model.

Ontologies

Hehenberger et al. [87] present an approach for consistency checking of mechatronic design
models by using domain ontologies. Ontologies are meant to be a “structured and organized”
way to represent domain knowledge and therefore, enable reasoning over multiple domains.
The approach explicitly aims to managing semantic inconsistencies.

Rule based representation

Van Der Straeten et al. [198] argue that inconsistency resolution is the key enabler of
refactoring as a software engineering technique. Inconsistencies emerge as intermediate
states are traversed during a complex refactoring step; the final state is reached via gradually
eliminating these inconsistencies. The idea is highlighted by the step-by-step execution of
the Move Operation refactoring activity. The paper also presents a rule-based technique
for rule-based inconsistency resolution. The authors observe that the same inconsistencies
occur in multiple refactoring scenarios and therefore, reusability of resolution strategies
is acknowledged as a key factor. Resolution strategies are user-guided. The rule-based
approach translates to LHS-RHS structures where the user-specified patterns (LHS) trigger
the user-defined resolution strategy (RHS). As the motivation of the paper comes from
model/code refactoring, the takeaways are really syntax-oriented; semantic inconsistencies
are not addressed. “Object-oriented modeling languages” (and UML, in particular) are the
application domain of the presented resolution technique.

Quinton et al. [156] supports the evolution of cardinality-based feature models. Specifically,
range inconsistencies are handled, i.e. the cases when no product exists for some values of
a range of a feature cardinality. The authors identify key scenarios upon add/remove/up-
date/move operations which can lead to range inconsistencies.

Formal methods

Engels et al. [63] present a prototype framework for modeling consistency constraints,
specifically in UML-based software development. The idea behind the approach is to
capture consistency rules by arbitrary formal techniques and then evaluate those over
input models. The user has to choose the appropriate formal technique and provide a
mapping from and to the input models. As a case study is presented where CSP serves
as the formal underpinning. Mappings are captured via graph transformation rules. An

3.1. (IN)CONSISTENCY MANAGEMENT 37

extensible catalogue of various consistency problems is provided by the framework to
support reusability of (in)consistency concepts. Giese et al. [78] present an inconsistency
avoidance technique in the context of mechatronic system design by safe composition of
systems.

Logic-based approaches

Van de Straeten et al. [199] use description logic to characterize and evaluate inconsistent
model states. The approach mainly targets inconsistencies arising during model evolution.
Introduces horizontal and evolution consistency; horizontal defined as: consistency between
different models within the same version; evolution consistency defined as: consistency
between different versions of the same model. A classification of inconsistencies is provided.
Description logic is used to depict ontological relationships among model elements. Loom
is used as a description logic tool. Inconsistency management is achieved by a UML
profile. Unfortunately, the technique has a strong focus on UML and its applicability in a
broader modeling domain is questionable. Lopez-Herrejon et al. [120] pose the research
question “where should the fixes be placed?” rather then when and how to fix. Possible
configurations are mapped to formulas of propositional logic. Consistency rules are captured
as well-formedness rules using logical formulas. Inconsistencies arise due to changes in the
feature models, although removing elements is not permitted. A metric called “pair-wise
commonality” is used to express how many configurations a feature appears in.

3.1.4.2 Specification patterns

The most common approach to specify inconsistency rules is to manually inspect models
and make links between the appropriate model elements. Spanoudakis [177] refers to this
approach as human inspection. The vast majority of the state of the art considered in this
report relies on human inspection. As an attempt for automation, Herzig et al. [88] present
a characterization technique based on pattern matching and similarity metrics defined
between different (graph-like) models. Model characteristics, such as entity and property
names, property units, relationship names and cardinalities, etc are used to calculate
similarity between sets of different models. This enables identifying overlapping elements
which are not necessarily connected via syntactic link, but still represent the same or related
information. It builds on the premise that models of similar meaning are represented
similarly in terms of naming, structure, dimensions, etc. The characterization rules are
derived automatically, although the intervention of a human domain expert is inevitable
in this case also. This technique, however, is the most advanced automation technique in
terms of specification in the state of the art.

3.1.5 Detection patterns

In non-prevention style techniques, inconsistent situations have to be detected based on the
characterization of inconsistencies in order to execute the proper resolution actions. Typical
patterns are the human-centered collaborative exploration and the specialized forms of
automated analysis [177]. In general, the patterns of characterization heavily influence the
operational patterns of detection.

38 CHAPTER 3. STATE OF THE ART

Graph reasoning

Techniques employing dependency graphs pattern typically rely on the related techniques of
graph reasoning, such as graph querying, transformations, pattern matching, etc. Hamlaoui
et al. [62] use EMFCompare [58] to enrich the correspondence model by change deltas
among models. Giese et al. [79] employ the FUJABA framework to transform TGGs in
consistency-preserving bidirectional synchronization scenarios. The majority of techniques
relying on a graph-based representation pattern also uses some form of model transforma-
tions, such as Qamar et al. [154] and Adourian et al. [5] for change propagation, and Mens
et al. [128] for model-dependency analysis.

Rule-based detection

Rule-based detection is used in combination with dependency graphs by Becker et al. [18].
While consistency rules are defined via TGGs among the related models, the detection
achieved by the PROGRESS rule engine.

Solver-based detection

Numerous techniques rely on solver-based detection, typically using a variant of Prolog for
tooling. Hessellund et al. [91] employ this patten in combination with naming conventions,
using SmartEMF, an EMF extension framework, which is actually a Prolog fact base. This
fact base captures models in EMF (MOF) terms. Basic EMF operations are extended by
propagating changes into the fact base. Constraints are captured by Prolog terms. The
evaluation is implemented via higher-order queries (using call predicate). Both Blanc
et al. [29] and Le Noire et al. [113] use Prolog in combination with operation-based
representation. In the former case, edit operations are recorded and traces are fed to a
Prolog engine, resulting in an on-demand, batch style inconsistency check approach. The
latter approach builds on SWI-Prolog. No difference in the time and space complexity
of the detection phase in operation-based and standard representation patterns has been
identified. Quinton et al. [156] use SAT solvers to evaluate sequences of edit operations
in operation-based representation scenarios. Model changes are translated to the BR4CP/
Aralia language [159] and are fed to a SAT solver.

Ontological reasoning

While there is not much work on it, the ontological reasoning detection pattern fits well
with ontology-based inconsistency characterization. Although this pattern is not found in
the state of the art, techniques such as Hehenberger et al. [87] could employ it.

Incremental evaluation

The incremental evaluation pattern is one of the typical requirements for inconsistency
management techniques described by Becker et al. [18]. Some authors explicitly aim to
exploit the benefits of such an approach (Egyed et al. [61], Giese et al. [79], Gausemeier

3.1. (IN)CONSISTENCY MANAGEMENT 39

et al. [76]). While not always emphasized, incremental evaluation is usually handled as a
desirable property of inconsistency management techniques.

In Table 3.4, we summarize the characterization and detection patterns supported by the
inconsistency management techniques investigated up to this point.

Characterization Detection
Representation Specification
Naming Depen- | Other Human Similarity Incre-
conven- dency inspec- analysis mental
tions graphs tion
Adourian [5] @) (] @) (] O ()}
Balzer [14] @) @) @) (] O ()}
Becker [18] @) (] @) (] O ()}
Bhave [26] O [) O [) @) ©
Bhave 2 [25] @) O @ (pivot) (] @) N/A
Blanc [29] O O @ (operation) [J O [J
Dahman [43] @) (] @) (] O ()}
Easterbrook [56] @) O @ (logic) (] @) O
Egyed [61] O [J O [J O ([
Engels [63] @) O @ (formal) o @) O
Gausemeier [76] O ([O ([O ([
Giese [79] @) (] @) (] O ([J
Giese 2 [78] @) O @ (formal) @) @) ([J
Hamlaoui [62] @) (] @) (] O ([J
Hehenberger [87] O O @ (ontology) ([J O [J
Herzig [88] @) (] @) O (] N/A
Hessellund [91] (] @) @) (] O ()}
Le Noire [113] O O @ (operation) ([J O O
Lopez-Herrejon [119] N/A (avoidance only) ©
Lopez-Herrejon 2 [120] O O @ (logic) ([J O ([
Mens [128] @) o @) (] O ()}
Nentwich [137] N/A (avoidance only) ()}
Oka [144] ([J O O ([J O ()}
Qamar [154] O [) O [) @) ©
Quinton [156] O O @ (SAT) (O O
Shah [172] O O @ (pivot) [O O
Stolz [181] @) O @ (operation) o @) ([J
Van Der Straeten [199] @) O @ (logic) (] @) O
Van Der Straeten 2 [198] @) O @ (rules) (] @) O

Table 3.4: Inconsistency management patterns in the state of the art. (Legend: O — no
support; © — possible support, not emphasized; @ — dedicated support)

40 CHAPTER 3. STATE OF THE ART
3.1.6 Resolution patterns

Resolution patterns address detected inconsistencies. Depending on their intent, changing
and non-changing actions are distinguished [177], i.e. the ones aiming to bring the models
back to a consistent state, and the ones aiming to notify stakeholders about inconsistencies
and trigger further (manual) evaluation, respectively. From an automation point of view,
manual and semi-automated patterns can be distinguished. (We argue that full automation
cannot be achieved in general cases and human intervention - especially from the domain
experts and stakeholders - is inevitable.) Additionally, Gausemeier et al. [76] distinguish
between operations that required user interaction and the ones that are straightforward to
execute, i.e. no further inconsistency is introduced by the resolution.

Model synchronization and change propagation

Model synchronization and change propagation are commonly used patterns for automating
inconsistency resolution [5, 43, 76, 79, 128, 137, 154]. As a prerequisite, appropriate
detection algorithms are required to be deployed, which are capable to signal inconsistent
states between the participating models. (E.g. by graph reasoning (Section 3.1.5).)

Editing hints

Editing hints are also a commonly used pattern, although requiring more human participa-
tion. During the resolution phase, the user is provided by resolution/editing hints by the
modeling environment. The environment is responsible only for generating and visualizing
the hints; it is the user who decides which one of the hints to apply. Hessellund et al. [91]
present a prototype tool that queries a Prolog fact base for valid model change operations
and these are presented in a pop-up view. Hegedus et al. [85] present a technique for
generating quick fixes for DSLs.

Design-space exploration

Design-space exploration (DSE) is another pattern that can be used in combination with
editing hints and explicitly model resolution processes. The modeling environment is
integrated with an appropriately configured DSE engine, which is responsible to generate
an exhaustive list of resolution strategies. An example is provided by david2016streaming
et al. [48].

Logic-based resolution

The logic-based representational pattern (Section 3.1.4.1) is often used in conjunction with
similarly logic-based resolution patterns, such as in Van der Straeten et al. [199].

3.1. (IN)CONSISTENCY MANAGEMENT 41

3.1.7 Optional and auxiliary activities

As Figure 3.3 shows, apart from the mandatory activities discussed previously, there are
optional activities an inconsistency management technique may incorporate. At this place,
we focus on tolerance, tracking and process optimization.

Tolerance

Finkelstein et al. [70] hint that instead of just removing an inconsistency, we have to reason
about managing them. In our view, this also includes tolerating detected inconsistencies
before executing potentially costly resolution actions, i.e. postponing the resolution activity
as much as viable in order to allow the potential resolution of transient inconsistencies
without intervention.

Blanc et al. [29] propose to represent models by sequences of elementary construction
operations. To detect structural constraints, they define pairs of operations, where the
second operation cancels out first one. E.g. creating and subsequently deleting a model
element. Although the authors do not investigate it, the approach provides foundations
for temporal inconsistency tolerance. In these scenarios, inconsistencies are tolerated
based on temporal and timing relations of elementary or compound model changes, or
operations.

Balzer et al. [14] focus on augmenting instances of inconsistencies with state. The authors
introduce the notion of temporal tolerance by deconstructing inconsistency rules to two
derived rules, the appearance and disappearance rule which span a temporal interval of
the model(s) being in an inconsistent state, hence making inconsistencies stateful entities.
The approach keeps track of the violated constraints by using “pollution markers” and
instead of instantly initiating a resolution action, concerned processes (and stakeholders)
can be notified about the inconsistency. By allowing further engineering activities to be
executed during the inconsistent interval, the better parallelization of the design workflow
can be achieved and ultimately, these may lead to the inconsistencies to be resolved without
interrupting the design process for further reconciliation. As a limitation, the technique
only deals with the most simplistic version of temporal consistency relations, in which a
pair of subsequent operations form an identity transformation. In practice, more complex
structures of operations have to be supported.

Easterbrook et al. [56] propose a similar technique for temporal inconsistency tolerance in
the context of multi-view modeling. Tolerating inconsistencies decouples the viewpoints
and introduces flexibility in the design process as deciding upon when to resolve inconsis-
tencies is the responsibility of the owner of the view. The authors provide a formal approach
for guiding the decision in form of pairs of pre- and postconditions. Our approach extends
this model by using a quantifiable distance metric to evaluate the divergence of views
(and viewpoints). The distance metric also helps understanding the impact of unresolved
inconsistencies and reason over their accumulation and evolution.

42 CHAPTER 3. STATE OF THE ART

Tracking and process optimization

The management of detected inconsistency rules also may involve storing relevant informa-
tion upon detection, such as the affected model element, timestamp, etc. This data can be
later reused in various ways, for example

e revising inconsistency rules,
e fine-tuning the tolerance and resolution approach,

e optimizing the engineering process in order to minimize additional costs arising from
inconsistencies.

These patterns, however, are not properly addressed by the state of the art.

Measuring inconsistency

Measuring inconsistency has been a topic of interest in the ontology and knowledge
engineering. Hunter and Konieczny [93] approach measuring the level of inconsistency
through the notion of minimal inconsistency sets. They show how their inconsistency metric
is a special Shapley Inconsistency Value, which enables using SAT techniques for proving
consistency and inconsistency. Ma et al [123] propose a technique to measure the degree of
inconsistency in description logic based ontologies. As compared to these approaches, we
mainly focus on collaborative modeling of complex engineered systems where the semantic
inconsistencies of the models are not that obvious as in ontologies.

Inconsistency measurement approaches in software engineering settings typically focus on
inconsistencies on linguistic level. Lange et al [112] use the number of detected instances
of various inconsistency rules between UML diagrams as an inconsistency metric between
views. Inconsistency rules are syntactic, such as messages in sequence diagrams without
names.

Similar to our approach is the one presented by Barragans-Martinez et al [15], who provide a
formal framework to assess the significance of inconsistencies in requirement specifications.
The scope of our work is more general as our technique is not constrained to requirement
specifications but arbitrary models in a collaborative setting.

3.1.8 Conclusions

After investigating the broad topic of inconsistencies in multi-model mechatornic/CPS
settings, we draw the conclusions in this section and answer the questions posed at the
beginning of Section 3.1.

3.1. (IN)CONSISTENCY MANAGEMENT 43

3.1.8.1 Surveying questions

What methods, techniques and tools are available for the management of consistency
in a mechatronic and CPS design process?

We found that there are only a few inconsistency management techniques efficiently sup-
porting the design of CPS/mechatronic systems. These foundational works focus mainly on
characterizing inconsistencies as a necessary first step towards inconsistency management.
The majority of the inconsistency management techniques of the state of the art have
their roots in software system modeling and their applicability in CPS/mechatronic design
processes is questionable. This is due to the likely scalability issues when the complexity
of the underlying engineered system increases drastically, as it is the case in CPS/mecha-
tronic systems. The number and heterogeneity of the components and stakeholder views
in such systems pose a severe issue w.r.t. the scalability of inconsistency management
techniques.

What are limitations of the state of the art?

Focus on software system modeling and UML in particular.

As mentioned earlier, the main limitation of the state of the art is the focus on software
system modeling and the lack of techniques to reason about physics in terms of inconsis-
tencies. A majority of the publications considered in this survey assume UML as the de
facto modeling language and implicitly tie the techniques and approaches to UML. Even
though UML is supposed to be a general-purpose modeling language, its applicability
in CPS/mechatronic design is marginal, as only a small set of design tasks are suitable
to be efficiently addressed by UML or one of its variants (SysML, MARTE, etc). This
strong relation to UML makes most of the state-of-the-art techniques unfeasible to apply in
CPS/mechatronic design.

Tolerance.

Tolerance is an optional activity in allow-and-recover style of inconsistency management
techniques, situated between detection and resolution. Its various forms (temporal, design,
spatial) enable better runtime performance and better scalability of the overall design
process. Inconsistency tolerance has been addressed sporadically by the state of the art and
there is no comprehensive, structured approach on the topic.

Explicitly modeled resolution processes.

While many authors propose semi-automated human-guided resolution techniques (Hessel-
lund et al. [91], Hegedus et al. [85]), the appropriate resolution actions typically require
complex sequences of changes. Explicitly modeling resolution actions is a missing link in
the state of the art.

Process optimization.
By reusing the data on encountered (i.e. detected and resolved) inconsistencies, the overall
engineering process can be optimized. For this purpose, appropriately designed databases

44 CHAPTER 3. STATE OF THE ART

and smart analysis techniques are required. This activity, however, is not addressed by the
state of the art.

What makes consistency management in a mechatronic and CPS context different
from the software engineering industry in general?

The main difference between modeling pure software systems and mechatronic systems
is the involvement of models of physics in the latter case. Incorporating physics in the
design of a virtual product links the whole design process to a belief system with inherited
semantics. As opposed to this, the semantics of a pure software system are fully to be
defined. Reasoning about inherited semantics, and especially: modeling the behavior of
inherited semantics is what makes mechatronic design radically different from software
design. The involvement of physics is also the reason of many software- and UML-oriented
inconsistency management techniques being unfeasible to apply in mechatronics.

3.1.8.2 Consistency in other contexts

Consistency issues are of course well known in distributed and multiprocessor contexts,
where program correctness is strongly dependent on understanding precise conditions
under which the memories of different processors may differ. Lamport’s seminal work
on parallel computers, for instance, developed core notions of consistency as preserving
causality between events [110], or in terms of interleaving sequential streams in the well
known Sequential Consistency model [111]. A wide variety of less strict, or “relaxed”
consistency models have since been defined, although they are often quite specific to the
design decisions made in the underlying hardware [171]; Sorin et al.’s book provides a
good overview [176] of memory model designs and issues.

A number of approaches to categorizing consistency have also been attempted. For dis-
tributed, virtual environments, Bouillot and Gressier-Soudan decompose consistency into
elements of causality, concurrency, simultaneity, and instantaneity [31]. The latter two are
difficult to achieve, and typically imply sacrificing the former two and living with short-term
inconsistencies. Liu et al.’s survey paper organizes models based on their focus on ultimate
consistency (systems which become eventually consistent), or on being deadline-based
(given an event at time ¢, consistency is achieved at ¢t +). The former includes Lamport’s
basic models, as well as various similar forms of serializability [21], while the latter can be
further broken down into perceptive (or absolute) consistency [31], where every process
executes events at the same absolute time, delayed consistency [155], which imposes a fixed,
maximum pair-wise delay of (i, j) between processes ¢ and j, and timed consistency [189],
which requires a fixed global bound of § on all processes. In this terminology our definition
of eventual consistency is an instance of ultimate consistency, exact consistency a kind of
absolute consistency, and regular consistency is deadline-based. Repetitive consistency and
bounded consistency introduce new ideas based on a flexible notion of delay, and a formal
distance metric for relative consistency.

3.2. PROCESS ENGINEERING 45

3.2 Process engineering

In this section, we review the state of the art on process modeling formalism and process
performance assessment techniques.

3.2.1 Process modeling formalisms

Process modeling languages are primarily geared towards modeling concurrency and
synchronisation [194]. Pertinent examples include languages based on the Business Process
Model and Notation [180], Petri nets [192] and UML Activity Diagrams [24].

The Business Process Model and Notation (BPMN) [174] is a widely used standard in
process modeling. BPMN is used in a wide range of areas, to model processes in non-IT, as
well as IT-intensive organisations. Its main goal is to provide an understandable notation
for all stakeholders. The focus is more on the conceptual modeling of processes, and less
on orchestration and execution. In version 2.0, the standard has been extended with support
for orchestration, albeit on a non-technical level.

JBPM [42] is an open-source, Java-based framework that supports execution of BPMN
2.0 conform processes. The framework also provides enhanced integration features with
external services in the form of managed Java program snippets. In addition, the process
engine is tightly integrated with a collaboration and management service (Guvnor), a
standardized human-task interface (WS-HT), a rule engine (Drools) and a complex event
processing engine (Drools Fusion).

The Business Process Execution Language (BPEL) [217] is a standardised language for
specifying activities by means of web services. The standard specifies a BPEL process as
XML code, though graphical notations exist, often based on BPMN. Service interaction can
be executable or left abstract. Analysis tools for BPEL have been developed, for example by
formalising BPEL models in terms of Petri nets as done by Ouyang et al. [147] and Xia et
al. [220]. Kovics et al[106] use a symbolic analysis model checker. Fu at al. [75] and Foster
et al. [73] analyse the communication between BPEL processes by employing automata.
Nevertheless, BPEL is exclusively used for web services defined using WSDL.

Yet Another Workflow Language (YAWL) [193] attempts to combine the functionality of
BPMN (business-mindedness) and BPEL (executability). In contrast to other approaches,
YAWL was designed with formal semantics in mind, and is defined as a mapping to Petri
nets. Execution particularly aims to provide insight in data and resources. There is, however,
no particular focus on the integration and orchestration of tools.

Orc [104] is a formal textual language for the orchestration of service invocation in con-
current processes. It aims to manage timeouts, task priorities, and failure of services and
communication. Orc is based on trace semantics, which is used to determine whether two
Orc programs are interchangeable. The integration of tools can be achieved by defining
sites, which represent units of computation. There is no support, however, for modeling
modal behaviour, and the textual notation does not scale to large processes.

Open Services for Life-cycle Collaboration (OSLC) [145] is the de facto standard in tool
integration. It is a specification for the management of software lifecycle models and data,

46 CHAPTER 3. STATE OF THE ART

which are represented as resources. The specification is intended to be used for integration
of services and data, and does not include process modeling.

The Statecharts formalism [84] has first-class notions of concurrency, hierarchy, time
and communication. It can therefore be viewed as a suitable formalism for integration
and orchestration. Because Statecharts is state-based, and does not include fork and join
constructs, it is less suitable for process modeling. Statecharts has been combined with
Class Diagrams in SCCD [203], to provide structural object-oriented language constructs
(i.e., objects with behaviour).

Story diagrams [214] are a formal behavioral specification language with process semantics.
Similarly to UML Activity Diagrams, they describe control and data flow across the
process, but with the added support for specifying executable actions. Just like the FTG+PM
formalism, story diagrams rely on typed attributed graph transformations, but with a very
simplistic type model. As a result, event though story diagrams provide added behavioral
specification semantics, the formalism still is not as versatile as the FTG+PM.

A summary of all approaches and their suitability for our purpose is presented in Table 3.5.
We have investigated whether the approach is intended to be used to specify processes
(process), whether it aims at integration of services/tools (integration), whether it supports
execution or enactment (executability), whether it provides means for formal analysis
(analyzability), and whether its notation is appropriate for the tasks it is intended for
(usability).

Process Integration Executability Analyzability Usability
Petri nets [J O [J [J ()
Activity Diagrams () O [[] []
BPMN2.0 [J O [] [[
jBPM [J [[O [
BPEL [J () [[()
YAWL [] O [J [J []
Orc [J () [] [] ©)
OSGi O () [J O [J
OSLC O [] [] O [
FTG+PM [J O [[] []
Neleh] O [] [] ([] []
Story diagrams O [J [J © ()

Table 3.5: Summary of the related work. (@ — Supports, © — Partially supports, O — Does
not support)

The main conclusion is that no approach truly unifies process modeling and integration of
services. The approaches that score best in these two aspects (BPEL and Orc) do not have
an intuitive, accessible notation, although in the case of BPEL, graphical notations have
been suggested but are not part of the standard. jBPM overcomes these shortcomings, but
does not support analyzability of the service interactions.

3.2. PROCESS ENGINEERING 47
3.2.2 Performance analysis techniques

Performance analysis of processes constitutes an important part of our work. Due to the
semantic variety of different process/workflow formalisms, however, there is no single
solution for the performance evaluation of process models in general.

Alshareef et al. [8] map processes to parallel DEVS models with the intent of behavior
specification. The authors base themselves on UML Activity diagrams. Unfortunately,
UML Activity diagrams do not include all of the van der Aalst patterns [194], which is
paramount to this work. Additionally, our intent of mapping to DEVS is the performance
evaluation of stochastic processes in combination with resources.

The idea of using DEVS for performance evaluation already popped up in the work of
Cohen [38]. The authors view discrete event systems as linear algebras, in which the
periodical behavior (i.e., repeatedly performed activities) can be characterized by solving
an eigenvalue and eigenvector equation. Numeric algorithms are used to solve the equations
and link the results to performance metrics of manufacturing systems.

The linchpin of assessing process performance is the calibration of the process as realis-
tically as possible. Automating this step is a big step towards realistic simulation results.
The most natural way to do so is by processing data from the previous runs of the process.
Li et al. [116] extend the WF-net formalism with timing information and provide a formal
framework for assessing the lower bound of average turnaround time of the process. The
timing information, however, is not modeled by statistical distributions, but scalar metrics.
Xiao et al. [221] focus more on the problem of the competition for the limited resources
within the process. They propose a method based on queuing theory in order to analyze the
time performance of a process. Miu et al. [132] use learning algorithms over historical data
to predict execution times of single activities based on the characteristics (instances and
attributes) of their input data.

The resource constrained project scheduling problem (RCPSP) [11] is a dual problem to
process performance optimization. Its focus lays on the schedule of the activities that has
to be determined in the presence of resource constraints and timing information.

3.2.3 Design structure matrices

Design structure matrices (DSM) [65] are widely used in mechanical engineering for
modeling structures of processes, by capturing the dependencies between the activities of a
process.

DSM are adjacency matrices with the activities in the two dimensions. The control flow
between the activities is not made explicit, but it is implicitly encoded in the ordering of the
activities.

A number in the i-th column and j-th row represents the fact of activity i requiring data/in-
formation from activity j. Depending on the semantics of the specific DSM implementation,
this number can be a binary 0/1 information; or, typically, a weight of dependency, ranging
from O to 3.

48 CHAPTER 3. STATE OF THE ART

DSM are primarily used as the structured data for algorithms employed in process improve-
ment scenarios. Example approaches include [34, 77, 117], which document the reduced
number of iterations required in the improved process. The operations typically used in
such algorithms include:

Partitioning. Minimizes the number of activities executed multiple times due a depen-
dency. In a DSM, numbers below the main diagonal represent information flow to an
activity that has already been performed. The partitioning step identifies these cases
and attempts to reorder the activities accordingly.

Clustering. Organizes the engineering teams enacting the different activities. This is
achieved by grouping the various activities into clusters with the minimal amount of
information flows between them. [163]

Tearing. Breaks dependency loops by identifying the optimal breaking point with the
optimal sequence of activities.

The approach presented in this work cannot be fully aligned with DSM in terms of the
operations used for process improvement/optimization. This is due to the fact that DSM use
operations with local optimization heuristics, as opposed to the approach approach presented
in this work, which relies on global optimization heuristics. The global optimization
heuristics of the approach described in this work are: (i) having every potential inconsistency
managed; and (ii) minimal transit time of the process. DSM operations use partitioning,
clustering and tearing in order to support the minimal transit time global heuristic. The
approach described in this work does not demand these local optima to be satisfied, as the
global optimum may differ from such configurations.

The approach presented in this work, however, is capable of emulating DSM, and offers
techniques beyond the standard ones used in DSM. Some of the notable examples are the
following.

e DSM capture the level/strength of dependency between activities by an estimate range
value. (Typically 0-3.) By explicitly modeling artifact flows in our processes, and
introducing the property model with system characteristics and levels of influence,
the approach presented in this work enables reasoning about the dependencies in
processes in a more detailed way.

e DSM focus solely on data/information flow, and are missing the control flow of the
process. At the same time, DSM do not provide enactment semantics. The approach
presented in this work provides execution semantics.

e The semantics of DSM are not sufficient for quantitative performance analysis of
the underlying process. In this work, we show, that explicit process models can be
efficiently translated to DEVS models for performance evaluation.

Chapter 4

Correctness and consistency

In this section, we present Contribution 2 of this work: adapting the definition of
(in)consistency to match our needs for the management of semantic inconsistencies.

In this section, we present the core problem this work is concerned with: managing model
inconsistency in order to retain the eventual correctness of the product. We base our
reasoning on the fact that delivering the correct product at the end of the engineering
process is a must. We will argue that carrying out the engineering process consistently
helps achieving the correct product and increases the efficiency of the process.

As outlined in Section 2.1, requirements are used to obtain the properties the final product
must satisfy. From this point on, we assume an appropriate mapping from requirements
to the properties and approach the problem of (in)consistency management in terms of
properties only. To do so, we will use the concepts shown in Figure 4.1

Design artifacts D Properties P

Pt Punsat

(*p)>>d

D
N
2

§

R

('p)>>d

— —»Pp Must satisfy
@ Artifact

Figure 4.1: The relationship between properties and designs.

49

50 CHAPTER 4. CORRECTNESS AND CONSISTENCY

The set of system properties P can be divided as follows. P,..,(d;) C P denotes the subset
of properties required to be satisfied by a design artifact d;. The design artifact may or may
not satisfy these properties, denoted by Pyu:(d;) € P and P,,sa:(d;) C P, respectively.
Formally, the following hold:

i vpepsat(di) dz':ps
L vp € Punsat(di) : dz ¥ p;
L4 sat(di) U Punsat(di) = P’r’eq(di)~

Note, that P,.,(d;) # P, meaning Pyu¢(d;) | Punsat(d;) #Z P. This convention is fol-
lowed to allow open world semantics. That is, Vp € P\ Py.¢,(d;) the satisfaction is allowed
to be unknown.

Given another design d; with the same respective set of properties Py (d;) and Pypsat(d;),
we are able to formalize correctness and consistency.

4.1 Correctness

The (virtual or real) product may or may not meet the requirements. In this work we
consider the product to be correct if and only if it meets all the requirements. If at least one
requirement is not met, the product is considered an incorrect product.

Any incorrectness introduced during the realization of the real product from its virtual
representation is considered to be out of the scope of this work. Therefore, the correctness
of the product is approximated with the correctness of the virtual product.

Correctness of a design.

Design d; is said to be correct with respect to a set of required properties Preq(d;) iff
Vp € Preq(di) : dz = p.

As a consequence, there must be no unsatisfied required property: Py sqt(d;) = 0.

The correctness of the overall system is given by the correctness of the virtual product.
The correctness of the virtual product, in turn is given by the correctness of the design
artifacts.

Correctness of the system.
The system S, given by the virtual product S = UdiC p d; s said to be correct with
respectto P’ C Piff Vp € P’ 3d; € D : d; F p. -

4.2 The repercussions of ensuring correctness

Retaining the correctness of the product has its own repercussions on the engineering
endeavor. This is because retaining correctness and the costs of the engineering do not
trivially align well. The problem is, ensuring correctness at every elementary engineering

4.3. A HEURISTIC FOR EVENTUAL CORRECTNESS 51

step slows down the engineering work tremendously. Overlooking correctness, however,
could result in an incorrect product. Noticing incorrectness too late results in exponentially
increasing costs and necessary re-iteration in the engineering work.

CORRECTNESS EFFICIENCY
The product satisfies the The cost of the engineering
required properties is minimal

Figure 4.2: Correctness often contradicts efficiency.

In real heterogeneous settings some activities aiming to ensure correctness may take weeks
or even months. This is typical in prototype test scenarios, e.g. when a scaled model of an
airplane is built and used in a wind tunnel to observe its aerodynamical properties.

A trade-off between checking correctness too often and rigorously, and checking correctness
only in the integration phase has to be made.

4.3 A heuristic for eventual correctness

We often think in terms of heuristics when a goal is to be met, but the set of practical
solutions are not guaranteed to lead to the goal.

Heuristic (Romanycia and Pelletier [161]). Any device, be it a program, rule, piece
of knowledge, etc., which one is not entirely confident will be useful in providing a
practical solution, but which one has reason to believe will be useful, and which is
added to a problem-solving system in expectation that on average the performance will
improve.

Motivated by collaborative modeling and concurrent engineering settings, in this work,
we view model consistency as a primary heuristic for the eventual correctness of the
(virtual) product. Keeping models consistent with each other is a significantly easier task as
compared to keep models correct.

The above definition is then adopted as follows. The device is the consistency between the
design artifacts, whose presence does not entirely confidently provides the practical solution
(correct product). This heuristic is added to the problem-solving system (the engineering
endeavor) in the expectation on that the average performance will improve (the number of
attempts required to come up with the correct product will decrease).

Looking at model consistency as a heuristic suggests that the belief that more consistent
designs are more likely to lead to a correct product is indeed plausible. At the same time,
this notion also warns us about the fact that consistent design does not guarantee a correct
product.

One should, therefore, handle inconsistencies as the necessary part of the everyday engineer-
ing endeavour, embrace them and, by paraphrasing Finkelstein [70]: instead of removing

52 CHAPTER 4. CORRECTNESS AND CONSISTENCY

them immediately, one should think whether or not a given instance of an inconsistency
can be tolerated for a while.

4.3.1 Consistency

In our terms, two artifacts are consistent with respect to property p iff their respective
satisfaction relation towards p is exactly the same. Following the notation of Figure 4.1,
we define the consistency between two designs with respect to their overlapping required
properties.

Consistency of two design artifacts.
The design artifacts d; and d; are said to be consistent w.r.t. the set of properties
P’ = Preg(di) () Preq(d;) iffVp € P 1 d; Ep < d; Ep.

That is, when deciding upon the consistency of two design artifacts, we demand the two ar-
tifacts having a respective set of required properties, which overlap. (Prcq(d;) () Preq(d;))
To the overlapping properties must be satisfied by both of the artifacts. An inconsistency
arises when exactly one of the two artifacts satisfies the property. (But not the other one.)
If both artifacts satisfy the property, or neither of them does, the artifacts are considered
consistent.

4.3.2 The relationship between (in)correctness and (in)consistency

While correctness and consistency correlate, they don’t imply each other. Table 4.1 shows
how the satisfaction of the required properties by two respective design artifacts d; and d;
lead to (in)correctness and (in)consistency.

Table 4.1: Consistency does not imply correctness.

d; P d;jEP Consistent Correct

(1) v v v ?
2) v X X X
(3) X v X X
@ X X v X

P’ denotes the overlap between the two sets of required properties for the two respective
design artifacts, i.e. P’ = Pyeq(d;) [Preq(d;).

It is obvious that if both d; and d; meet the shared set of requirements, they are consistent.
This, however, does not say anything about d; and d; meeting the rest of their respective
requirements, and therefore, their correctness cannot be inferred.

4.4. THE NEED FOR EXPLICITLY MODELED PROCESSES 53

Should either d; or d; not meet the shared requirements, they are definitely inconsistent
w.r.t the properties of the shared requirements; and the resulting product will be incorrect,
due to at least one of the models not satisfying the required properties.

When neither d; nor d; meet the requirements, they can be still considered consistent,
but they will be consistently incorrect way. In this case, even though the models seem
not be inconsistent, at the end of the development process, the resulting product will be
incorrect.

The following conclusions can be drawn from Table 4.1.

Consistency is a required, but not satisfactory requirement to correctness. That is, to
build the correct product, the designs eventually have to be consistent with each other.

Formally:

o consistent(d;,d;) # correct(S);

o correct(S) = consistent(d;,d;).
Conversely:

o inconsistent(d;, d;) = incorrect(S);

o incorrect(S) # inconsistent(d;, d;).

4.4 The need for explicitly modeled processes

Now, that we established, that managing inconsistencies helps delivering the correct product,
we should focus on a formal framework for reasoning about when and how to manage
inconsistent models.

We look at the task of inconsistency management as a typically efficient and useful approach
for ensuring eventual correctness. Still, wrongly executed inconsistency management may
have severe repercussions on the time it takes to produce a correct product. For example,
dealing with incompatible sub-system interfaces during the integration phase may require
additional iterations over costly engineering activities. Consequently, analyzing the impact
of various inconsistency management techniques is desirable.

The explicitly modeling the engineering process, the various inconsistency patterns and
management patterns, enables the formal reasoning about the optimal inconsistency
management strategy, pertaining to the specific engineering endeavor.

By explicitly modeling the engineering process, combining the two facets of proper and
efficient inconsistency management can be achieved: the when? and how? can be posed as
well-formalized problems. Additionally, the process model enables thorough understanding
of where and when specific inconsistencies arise. On the other hand, it also enables a

54 CHAPTER 4. CORRECTNESS AND CONSISTENCY

quantitative assessment of the impact of introducing a specific inconsistency management
strategy to the process. This concept is shown in Figure 4.3.

CONSISTENCY PROCESS

CORRECTNESS

The product satisfies the
required properties

EFFICIENCY

The cost of the engineering
is minimal

Figure 4.3: Correctness is approximated by consistency; efficiency is measured in terms of
the process.

In the later sections of this work, we will present a framework for modeling and enacting
processes, while also managing inconsistencies in them. Standard process modeling
formalisms, however, fall short of capturing an important aspects of the engineering process
that enables reasoning over consistency: the notion of semantic properties.

To reason about inconsistencies and their management, the process modeling formalism
should be capable of depicting (semantic) properties of the system and relate them to
artifacts and activities of the process.

In Section 5.1 we present our formalism that satisfies this requirement. But first, we should
investigate how the properties of the system are obtained and how do they relate to the
engineering itself.

4.5 System properties for reasoning over consistency

The properties of the system play an important role in formalizing inconsistencies.

Benveniste et al. [19] propose that three elementary operators (and their combinations)
are suitable for describing the activities of engineers in contract-based engineering set-
tings:

e architectural decomposition;
e view decomposition;
e abstraction followed by refinement.

Such mechanisms, indeed, are well suited to describe engineering activities, and conse-
quently, engineering processes. The authors use contracts and system components as the
primitives to the above operations. We elaborate on the above operations in terms of
properties to give an overview as of how properties used in our approach emerge.

4.5. SYSTEM PROPERTIES FOR REASONING OVER CONSISTENCY 55

We also introduce an additional typical engineering step: refinement followed by abstraction,
which is inverted direction of the last operator out of the above ones. To allow flexibility to
this list of operations, we also allow a wildcard: the elementary engineering operation. The
concept is shown in Figure 4.4.

Properties Process Design
(*) @<
P:Property v
I

Dl e e ma

¥
Architectural View Refinement/ Abtraction/ Elemeriiary
engineering
ion Abtraction Refinement
4

operation
| 3 | 4 £y | £y

v — = d:Design
I

deP

Figure 4.4: The five types of engineering activities.

Every activity takes the set of the properties P (or a subset of it), and produces a design d.
An activity may also use a design as an input to execute the engineering operation on that
design. Conceptually, this is equivalent with the process in Figure 4.4.

Following the chosen activity, it is determined if the properties are satisfied (d = P) or
not (d [~ P). In the former case, the process terminates successfully; in the latter case,
however, another engineering activity has to be taken.

Additionally, the nesting of activities is also allowed and this is what is typical in real
engineering processes. We show this mechanism in details in the following.

4.5.1 Architectural decomposition

The architectural decomposition activity (Figure 4.5) decomposes the system into architec-
tural components. This activity is usually situated on a higher level of the engineering. It
is very often encountered, for example, in OEM company processes, where that parallel
engineering processes are be facilitated, without having any impact on each other.

It is important to note, that the architecture, ideally, is yet another design artifact in the
engineering process.

The main focus are the interfaces and their compatibility. In the System integration part,
the interfaces are the primary means of re-composing the higher level architectures.

A typical example in the AGV case is breaking down the system into a mechanical and
electrical subsystem.

56 CHAPTER 4. CORRECTNESS AND CONSISTENCY

Between the Architectural decomposition and the System integration activities, the engi-
neering process has the possibility to re-iterate to the segment of the process in Figure 4.4,
marked by (). This mechanism enables nesting various activities into each other.

Properties Process Design

P:Property —

architecture
:Design

System y
integration

Figure 4.5: The sub-process of Architectural decomposition and System integration.

This sub-process also appears in the work of Benveniste et al. [19], as part of the contract
composition and system integration scenarios.

4.5.2 View decomposition

The view decomposition activity (Figure 4.6) is the one that facilitates the multi-view and
multi-paradigm nature of complex engineering processes. View decomposition should
follow the guidelines outlined in the related ISO standard 42010 [102].

A viewpoints capture stakeholders interests and concerns; concrete languages and tools;
and abstract formalisms [33]. Applying a viewpoint to a specific problem results in a
view.

From our perspective, the decomposition the system into various views is a correspondence

4.5. SYSTEM PROPERTIES FOR REASONING OVER CONSISTENCY 57

Properties Process Design

P:Property —

View merge

Figure 4.6: The sub-process of View decomposition and View merge.

function which projects a subset of properties: decompose, (sys) : v — P’ C P. This is
referred in the ISO standard as “the view being the result of applying the viewpoint to a
particular system”.

As a by-product, the formalisms used in v are also determined in this step, as discussed in
the ISO definition. Thus, it is safe to assume the most appropriate formalisms are used to
reason about properties P’. This is the step which eventually results in overlapping sets
of properties over various views [151] and gives rise to inconsistencies as the engineering
process advances. Our approach is, however, independent from the details of certain views,
as long as the properties are appropriately modeled in our formalism.

Merging separate views is often required for simulating the system at some point of the
engineering process. The merge is accomplished by the union operation of properties:
v @v”. Givenv' E P’ = {p},ph...p} and v” E P" = {p{,py ... pX}, it must hold
that o' @ 0" E P'|JP", ie. v v EPL Apy AL APy ADY APS AL ADY. This step
is used when two views have to be jointly investigated, e.g., for co-simulation.

A typical example in the AGV case is when the mechanical engineer’s and the electrical
engineer’s views on the motor and battery are created. In the mechanical view, the battery

58 CHAPTER 4. CORRECTNESS AND CONSISTENCY

is characterized by its mass and shape; while in the electrical view, it is the capacity that is
represented. Similar concerns apply for the motor. The two views are eventually merged in
the electormechanical view.

4.5.3 Abstraction-refinement

Abstraction and refinement are natural mechanisms in engineering processes.

As shown in Figure 4.7, the Abstraction activity takes a design d with its related properties P,
and produces another design d’ and its related properties P’. The activity is an abstraction
iff P’ C P, i.e. the number of concerned properties decreases. The abstraction is valid iff
Vp € P:dFE p=d F p,ie. the properties originally satisfied by the design d must be
satisfied by the design d’.

A typical example in the AGV case is when the control engineer first abstracts the system
to be controlled as an inertia matrix, and later refines it into an actual plant model of the
system.

Properties Process Design

d:Design

P:Property ||
/\ /

//
P’:Property ||
\\\\

S

- ‘ ,y b

d":Design

P”:Property ||

Figure 4.7: The sub-process of Abstraction-Refinement.

4.5. SYSTEM PROPERTIES FOR REASONING OVER CONSISTENCY 59

Persson et al. [151] define the mechanism of abstraction in terms of views and their semantic
domains. According to authors, a view V] is an abstraction of a view V5 if its semantics is a
superset of the other, i.e. S(V1) D S(V3). Selic [169] provides a catalogue of abstraction
patterns for model-based software engineering. The Refinement activity takes a design d’
with its related properties P’, and produces another design d” and its related properties
P". The activity is an abstraction iff P’ C P”, i.e., the number of concerned properties
increases. The refinement is valid iff Vp' € P’ : d' E p’ = d” F p”, i.e., the properties
originally satisfied by the design d’ must be satisfied by the design d”.

4.5.4 Refinement-abstraction

As the inverted direction of the abstraction-refinement mechanism, the refinement-abstraction
mechanism (Figure 4.8) first refines a model a then abstracts it. We have noticed this mecha-
nism being frequently used in industrial practice, in particular, in mechanical engineering. A
pertinent example is when a finite element model (FEM) is constructed first, then the model
is refined into a rigid body dynamics model; and subsequently, the model is abstracted into
a finite state machine (FSM) for model checking purposes.

Properties Process Design

P:Property ||) d:Design
il
\ Refinement
P’:Property || (*) d':Design
//
Abstraction
il \\\\
P”:Property || d":Design

Figure 4.8: The sub-process of Refinement-Abstraction.

60 CHAPTER 4. CORRECTNESS AND CONSISTENCY

4.5.5 Elementary engineering operation
The elementary engineering operation (Figure 4.9) is a wildcard that represents any activity
in an engineering process. We use it to make our view on engineering processes full.

In general, the elementary engineering operation takes a design d and produces another
design d’ with the intention of improving the design, w.r.t. the requirements previously
formulated against the engineered system.

Properties Process Design

P:Property | d:Design
= |
Elementary
engineering
operation
d":Design

Figure 4.9: The sub-process of the Elementary engineering operation.

Chapter 5

Process-oriented
inconsistency management

This chapter constitutes the core of this work, and presents the inconsistency manage frame-
work and methodology developed in this research. In this chapter, we discuss contributions
3-8 with a strong theoretical underpinning; along with one conceptual contribution which
has not been researched to its entirety due to the depth of the topic.

An illustrative case

We use various elements of a real-live case study of the design of an automated guided
vehicle (AGV) in this chapter [22]. The AGV is designed to transport payload on a specific
trajectory between a set of locations. The drivetrain is fully electrical, using a battery for
energy storage and two electric motors driving two wheels. Being a complex mechatronic
system, the requirements of the AGV are specified by stakeholders of the different involved
domains, such as (i) mechanical requirements: sufficient room on the vehicle to place
payload; (ii) control requirements: following the defined trajectory with a given maximal
tracking error; (iii) electrical requirements: autonomous behavior, defined as the number
of times that it needs to be able to perform the movement before needing to recharge; (iv)
product quality requirements: the previous requirements should be achieved at a minimal
cost.

Figure 5.1 shows the conceptual geometric design of the AGV. The design team chose a
circular platform, with two omniwheels in addition to the two driven wheels.

The design process needs to determine the sizing of the different components (motors,
battery, platform) and tune the controller. This process is decomposed into multiple
dependent design steps, such as motor selection, battery selection, platform-, controller-,
and drivetrain design. The process requires an interplay between different domain-specific
engineering tools, such as CAD tools for platform design, Simulink and Virtual.Lab Motion
for multi-body simulations employed during controller design, AMESim for multi-physical
simulations during drivetrain design. Motor and battery selection activities use databases

61

62 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Wheel

Wheel

Figure 5.1: Front and top view of the conceptual design of the AGV.

maintained in Excel files. Since these tools work with different modeling formalisms,
reasoning over the consistency of the system as a whole properties poses a complex
problem to overcome. By explicitly modeling linguistic and ontological properties and
associating them with the engineering activities, patterns of inconsistencies can be identified
and handled.

We consider the AGV to be representative for the types of systems our approach aims
to support to the design of. This is due to the AGV exhibiting the typical complexity
mechatronic and cyber-physical systems exhibit. This complexity is due to the number and
heterogeneity of the involved components, concerns and views.

Running example

As a running example, we use a portion of the AGV process, shown in Figure 5.2. The
example highlights how inconsistencies can occur due to properties of the system that
interact with activities of an engineering process.

Activities Properties
read
Mechanical design — — — — N

| \
dependsOn \'
! /
Simulation of the modify . /
electical model N

Figure 5.2: Running example.

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 63

Initially, components of the system, such as the battery, are selected based on approxima-
tions and domain expertise. The mass of the initially selected battery is considered during
the Mechanical design phase to identify the mass constraints on other parts of the system.
After the mechanical design phase, the electrical model is designed in details. This includes
identifying the required capacity of the battery by Simulating the electrical model, in order
to fulfill the autonomy requirement.

Inconsistencies may arise when the Battery capacity property is changed, because the
Battery mass property depends on it: batteries with bigger capacity are typically heavier.
As the capacity is changed, the mass becomes inconsistent with the capacity. Should the in-
consistency get unnoticed, the engineered system will fail to meet the requirements.

There are two important specificities to this example.

First, inconsistencies occur due to the lack of explicitly modeled information about how
activities access system properties. The key in identifying the above inconsistency is the
explicit modeling of the nature of interaction between activities and properties, such as
reading or modifying a property. We refer to this information as intents of activities over (a
set of) properties.

Second, state-of-the-art techniques typically reason about inconsistencies in terms of
linguistic model elements. The dependency between the two properties is, however, not
persisted in any of the engineering models as it is an inter-domain relationship. To tackle this
problem, we allow modeling ontological properties as well, and linking them to activities
by intents.

5.1 A formalism for modeling engineering processes

In this section, we present Contribution 3 of this work: a formalism for modeling engi-
neering processes. The majority of this section has been published in [45] and [46].

To model engineering processes with sufficient semantics for managing inconsistencies, we
propose a formalism that augments the process with the syntactic and semantic properties
that depict specificities of the engineered system.

We build our formalism on the FTG+PM[122] formalism, which enables the usage of
process models (“PM”) in conjunction with the model of formalisms and transformations
(the formalism-transformation graph - “FTG”) used throughout the process. As shown in
Figure 5.3, formalisms and transformations serve as a type system to the processes: artifacts
of the process are typed by the formalisms of the FTG; and activities of the process are
typed by the transformations.

Additionally, we extend the FTG+PM formalism by allowing explicit modeling of (i)
properties, and (ii) costs. We assume activities of an engineering process have a meaningful
purpose of enhancing the system. This purpose is expressed as the intent of an activity with
respect to a property or a set of properties.

We kept the modeling language visual, but extended it with textual elements. Process
models, however, tend to scale up quickly, and the graphical notation only works if appro-

64 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

FTG+PM

Formalisms and | tvped by intents :
transt i Process — Properties
ransformations rcoste

Figure 5.3: Relationships between processes, formalisms and properties.

priate packaging mechanisms are provided for grouping various concerns. In our prototype,
packaging is not provided, but layering mechanisms help alleviating this issue.

In the following, we elaborate on the specific parts of this process modeling formalism.
First, we present the foundations of the FTG+PM formalism for typed processes; then we
discuss the property model in details; finally we extend processes with costs.

5.1.1 Typed processes in the classic FTG+PM
5.1.1.1 The process model (PM)
By a process we mean a partially ordered set of activities A. The process is defined by the
tuple (A, A., D, A,) consisting of
e the set of activities A;
e the set of directed control relations between activities A, : A — A;
e the set of artifacts D;

e the set of directed data flow relations between activities and artifacts Ay : A — D,

5.1.1.2 Transitivity of the control flow
The control flow is a transitive relation. That is: Va, as,a3 € A,. € A, : d.(a1,a2) A
dc(az,az) = d0.(ay,as).

The transitive closure A of an activity is defined as the set of all activities reachable

through the control relations A, from the activity. The following notation is used: ag €
A (a1).

5.1.1.3 The formalism-transformation graph (FTG)
The FTG consists of formalisms and transformations, formally: FTG = (F,T). A
transformation transforms formalisms into formalisms: t € T : F — F.

The FTG serves as a type system to processes, where formalisms type the artifacts of the
process; and transformations type the activities of the process.

e Vde D3I feF typeOf(d) = f.

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 65

e Vac Adte T :typeOf(a) =t.

In the running example, the models of the mechanical design activity are typed by a CAD
formalism, while the activity itself realizes the transformation(s) required to achieve the engi-
neering goals during the mechanical design, such as dimensioning the platform of the AGV,
and obtaining and executing a finite element simulation model. That is, modelsc.n €D,
and typeOf(modelpecn) = CAD, where CAD€eF. Additionally, aprechDesign €A, and
typeOf(a]MechDesign)ET'

5.1.1.4 Modeling support

Figure 5.4 shows the relevant excerpt of the FTG+PM modeling part of the whole formalism.
The full, detailed metamodel is shown in Figure A.2 of Appendix A.

[[FormalismTransformationGraph]
C)
0..*] f li .
10.] formalism 0..*] transformation
[0..*ynode
H Formalism [i“"] output [0..*] outputOf [Transformation

e
o
£ ObjectType 0.1] typedBy [0.] types E object
E i

Figure 5.4: Excerpt of the FTG+PM part of the modeling formalism.

[0..1] typedBy [0.*] types

5.1.1.5 Modeling the running example

The modeling of the running example is demonstrated by using our prototype tool with
process modeling capabilities. The tool is built upon cutting-edge Eclipse technologies.
The modeling interface was built using the Sirius framework [60]. The tooling is discussed
in details in Chapter 7.

Modeling the PM The PM of the example is shown in Figure 5.5.

This simple PM consists of two activities and two models. mechanicalDesign is a manual
activity, as shown by the grey roundtangle and the hand icon in the upper-left corner.
The activity produces a model called design. This model is subsequently taken by the
electricalSimulation activity. This activity is an automated one, as shown by the yellow
roundtangle and the cogwheel icon in the upper-left corner. The activity produces a model,
called elSimTrace, which is a trace of the simulation.

The control flow between the control nodes and activities is designated by the bold black
arrows. The data flow is designated by the thin grey arrows.

66 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

' mechanicalDesign

— 1

." design

° electricalSimulation

." elSimTrace

Figure 5.5: The PM of the running example.

Modeling the FTG The process still has to be typed by the FTG. Generally, an ever

growing FTG is assumed in MPM settings, such as the Modelverse concept, introduced by
Van Tendeloo et al. [207]. The FTG for the process is shown in Figure 5.6.

echanicalDesign

«transformdtionTo»

v
CAD

«transforedBy»

y
ElectricalSimulation

<<transform£tionTo»

Trace

Figure 5.6: The FTG of the running example.

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 67

There are two formalisms in this simple example. CAD is the formalism for capturing
the mechanical design. Trace is the formalism for capturing the results of the electrical
simulation step. In between these are the transformations.

Putting it all together To put the two parts together, the typing relationships between
the appropriate elements of the PM and the FTG are captured. The full FTG+PM is shown
in Figure 5.7.

This FTG+PM is obviously a very abstract depiction of the actual engineering process and
it is not suitable for any sort of analysis. For the full FTG+PM of the example, see the
appendix.

|

oy ! === mmmmmm=m=== a mechanicalDesign :
e «typedBy» MechanicalDesign

We» /

CAD)& =====-------- R design : CAD
«typedBy»

<
«tra nsfo@» \

electricalSimulation :
e T< «typedBy» {a ElectricalSimulation 1
«transformaftionTo» A/L)
Trace C----==------=-- ¥ elSimTrace : Trace

«typedBy»

Figure 5.7: The FTG+PM of the running example.

5.1.2 Attributes, properties, constraints
To support the modeling of system properties, we extend the classic FTG+PMformalism by
new elements: attributes, properties and constraints, that constitute the property model.
By a property model we mean a tuple (©, P, R) consisting of
e the set of attributes ©; and
o the set of properties P; and

o the set of influence relationships R between attributes, between properties, or between
the two.

68 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Attributes of the running example in Figure 5.2 are the Battery mass and Battery capacity,
while the dependency between those is a relationship with a direction and a level of
precision.

5.1.2.1 Attributes and properties
Attributes capture qualitative and quantitative characteristics of the modeled system and
typically represent values of various types.

Properties capture system characteristics in terms of satisfaction constraints. The way
properties are checked, also depends on their types.

Checking an attribute means evaluating if the actual value of the property is within a range
of acceptance criteria; checking a property, on the other hand, means evaluating if the
property is satisfied or not. While the former check is typically achieved by well-defined
operators over the algebraic structures of the type of the property (e.g. arithmetic operators
over number values), the latter type of checks typically involves simulations or model
checking tasks [212].

Explicitly modeling attributes, properties and their relationships (i) enables reasoning over
these specificities, and (ii) fosters communication of tacit knowledge, which is especially
important in the early phases of a multidisciplinary design process [212]. In our approach,
attributes and properties are treated uniformly.

We refer to the set of attributes and properties as system characteristics: = = O | P.

5.1.2.2 Influence relationships

Relationships between two system characteristics are present if a change in one property
potentially influences the other. In the running example, properties Battery capacity
and Current drawn could be considered two properties with a relationship in between
(Figure 5.8): a change in the Battery capacity will have an impact to the Current drawn and

the other way around.

Battery capacity Current drawn

Figure 5.8: Influence relationship between two attributes.

A relationship 7 is formally defined as r € R = (Z4 2" \), i.e.
e a set of influencer (input) properties Ef ={&..&4} CE,
e aset of influencee (output) properties 27, = {£,,..{n} C =,
e alevel of precision A € {L1,L2,1L3}.

The three levels of precision have been defined in our work [46] and are as follows.

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 69

e LL1: the fact of influence is known, its extent is not;
e [L2: sensitivity information between two values is known;
o [L3: the relationship can be expressed using an exact mathematical relationship.

Figure 5.8 shows a pair of attributes that mutually influence each other, albeit on different
levels of precision. A change in the Current drawn has an L3 influence on the Battery
capacity as follows:

BatteryCapacity > /C’urrentDrawn(t)dt.

The relationship in the other direction, however, cannot be determined in such details
and thus, only constitutes an L1 relationship. In the running example, the relationship
between the Battery mass and Battery capacity constitutes an L2 relationship: increasing
the capacity requires increasing the battery mass, although the exact relation cannot be
provided as batteries come in various architectures.

Acausal influence relationships

Acausality provides compactness in terms of the notation of relationships: it enables
modeling of N-ary relationships in a more convenient and readable fashion. Figure 5.9a
shows an N-ary influence relationship, depicting a simple law of physics:

BatteryMass + MotorMass = TotalMass.

By assigning value to two of the three system characteristics, the third can be automatically
calculated. The same information can be captured in an acuasal way as presented in
Figure 5.9b.

Battery mass

Motor mass Sm— 7L§ JA/

(a) Causal notation of an N-ary relationship.

Battery mass
@ Total mass
Motor mass

(b) Acausal notation of the same N-ary relationship.

Total mass

Figure 5.9: Causal and acausal notation of a relationship.

In our approach, we allow using acausal relationships, but translate them to the causal equiv-
alent form when carrying out analyses. Formally, given an acausal influence relationship r of

70 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

level X over a set of system characteristics =’, the causality assignment maps r = (0, Z', \)
onto a set of relationships R’ = {(Z”, ="', \)}, such that =/ = =" |J ="

The causal equivalent can be unambiguously determined only in symmetric N-ary relation-
ships, meaning any M number of the N system characteristics determine the remaining
N — M, e.g. the one in Figure 5.9. In this case the causal equivalent will consist of (ﬁ[)
causal relationships.

Change scope of system characteristics

By a change scope of a system characteristic £ we mean a subset of system characteristic
x(§) C E potentially affected by a change in £. Given two system characteristics &;
=l

and §; directly linked by a relationship r = (=;,Z7,, A), the change set is defined as
follows.

& ex(&) e (& EELNE €ED)

That is, system characteristic £; is in the change scope of system characteristic &; iff §; is
an input system characteristic and ; is an output system characteristic of a relationship. In
the running example, the Battery mass system characteristic is in the change scope of the
Battery capacity system characteristic.

The change scope is a reflexive and transitive relation, i.e.
VEeE: ¢ ex(§),
Vi, &€k € 21 &5 € X(&) A&k € X(&5) = &k € x(&),

respectively. We use the following notation for the transitive closure of the change scope:

& € XT (&)

5.1.2.3 Intents

Intents capture the motivation of an activity with respect to a system characteristic or a
relationship, such as reading and modifying an attribute. An intent ¢ € [is defined as a
tuple {(a, s,ts), where

e a € Ais an activity;
e s € Z|J R is the subject of intent, i.e. a system characteristic or a relationship;
e ¢y € T7 is the type of intent.

We define four elementary intents for our approach: 17 = {read, modify, check, contract},
the first two being the typically occurring intents in standard engineering activities, while
the latter two are specific to activities related to inconsistency management.

As discussed in Section 5, the main rationale behind explicitly modeling intents is that they
carry valuable information regarding inconsistencies in processes, which enables reasoning
about the origin and the potential management of inconsistencies. The inconsistency in
the running example is possible to detect because of the exactly modeled pair of the read-
modify intents on system characteristics that influence each other and activities that are

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 71

control-dependent. In Section 5.2 we formally characterize inconsistencies in terms of
processes, system characteristic and intents.

5.1.2.4 Typing of the property model

Intents relate properties to processes. In order to handle property models in a type-safe
manner, however, attributes, properties and relationships have to be related to the type
system defined by the language model as well.

We handle elements of the property model as special process artifacts that activities interact
with. That is, following the definition of processes in Section 2.2:
Vse = U R:se D,
Viel:ie Ay

That is, attributes, properties and relationships are typed by appropriate languages, e.g.
OWL languages [17], for modeling properties, or graphs, algebra and Forrester system
dynamics [72] for modeling relationships.

Intents are typed by an intent language T1 € F. This means the language of intents in our
approach can be aligned with the application domain of the problem at hand. The intents
used throughout this paper are rather general and capture only access-change information
over system properties.

5.1.2.5 Modeling the running example

The metamodel of the property model is too complex to shown an excerpt of it. The full,
detailed metamodel, however, is shown in Figure A.3 of Appendix A.

.) C===m=========- mechanicalDesign : modify
MechanicalDesign «typedBy» a MechanicalDesign |~~~ """ ""7°77 @ BatteryMass
We»

CAD ===] ¥ design : CAD

«typedBy»
<<transfow»

icalSi i lectricalSimulation : modif
P < - = = = == == = == = == QEI?;;;EZIS%SI:&ES --------- Youuo B BatteryCapacity

«typedBy»
«trans}f%‘ro»

-
Ve Cmmmmmsmmmmmmmesn W elSimTrace : Trace

«typedBy» @

Figure 5.10: The running example in Figure 5.7, extended with attributes, constraints and
intents.

72 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Figure 5.10 shows the extended model of the running example. The mechanicalDesign
activity has a modification intent on the BatteryMass attribute, because it is indeed the
intention of the activity to set a new value to of the battery mass. Similarly, the lectrical-
Simulation activity has a modification intent on the BatteryCapacity attribute. Between the
two attributes, an L2 relationship is captured, suggesting there is a sensitivity relationship
between the two attributes, but it is not obvious to capture on the L.3.

5.1.3 Resources

The availability of resources impose constraints as of how well-performing a process can be
in terms of the transit time. This is due to the fact that the level of parallelism of the process
depends on the available resources. Some activities can be executed at the same time or at
least in an overlapped fashion, but some must be executed in a sequential order.

When talking about resources, we mean both physical (e.g. a machine, a conveyor belt, etc)
and logical resources (e.g. software licences). At this point, we only focus on renewable
resources, i.e. the ones that become available for an activity again, once a preceding activity
has been terminated.

When optimizing a process, we factor in the availability of resources and the resource
demand of the process. To this end, we support modeling the resource demands and
availabilities in our formalism.

To consider a process valid, all the resource demands have to be satisfied by the available
resources; i.e. a valid allocation of the resources is required.

Resource. The resources are formalized as a set 2 = {w1,wa, ...}

Availabilities. The availability b of resource defines how many units are available for the
certain resource. b(w) : w € 8 — N. As defined by [11], if b(w) = 1, then w is called a
unary or disjunctive resource. Otherwise, as a resource may process several activities at a
time, it is called a cumulative resource. The availability of all the resources is captured as
B = {b(w1),b(ws), ...}, i.e. a vector of natural numbers B(f2) : Q@ — NI,

Resource demands. The resource demand & of an activity a € A defines how many of
the various types of resources an activity requires, and is represented as a vector of natural
numbers over the resources: k(a) : @ € A — NI®I, where the i-th element k; is defined as
ki(a,w):a€ AjweQ—N.

Allocation. The resource allocation [of an activity a € A and resource w € (2 defines
how many units of w is a using, and is represented as a vector of natural numbers over
the resources: l(a) :a € A — NIl where the i-th element /; is defined as li(a,w) :a €
AweQ— N

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 73

Valid allocation. An allocation is valid iff the resource demands are met, i.e. Vi =
{1..19]} e N: l; > k;. Ideally, I; = k; is expected.

5.1.3.1 Modeling support

Figure 5.11 shows the relevant excerpt of the resource modeling part of the whole formalism.
The full, detailed metamodel is shown in Figure A.3 of Appendix A.

As proposed, the Resource is the central concept of this facade of the modeling formalism.
Resources provide an integer attribute to capture the available units of that resource. (Note,
that resources are unary on this metalevel, and the integer attribute on the instance level
provides the cumulative semantics.) The allocation between activities and resources is
accomplished using the Allocation type, linking an Activity with a Resource, while also
explicitly stating the amount of allocated units.

] specialize

H ResourceType [

[1.1] resourceType

[L.1] typedBy

[0.*] types

H Resource [@

= availability : EInt = 1

[0..*] generalize

[1.1] resourceType
[1.1] resource

[0..*] allocationCaonstraint [0..*] demand

| B ResourceConstraintE‘| | E Demand E||

| = amount : Elnt =1 | 5 amount : Elnt |

[0..1] resourceConstraint

[0..*] demand
[1..1] transformation [1..1] activity [0..%] allocation
B Transformatien E‘] | B Activity E‘| [1.1] activity B Allocation &
[] | | [0..*] allocation = amount : EInt

Figure 5.11: Excerpt of the resource modeling part of the formalism.

The demand is captured one meta-level above, as demands are stated against a specific
type of resources. Hence the need for the explicit ResouceType. (Apart from the obvious
need for a sound type system.) The Demand type then specifies the amount of units of a
ResouceType required for an Activity. Through the typing relations in the FTG+PM, these
relationships commute well, and the back-and-forth between meta-levels does not introduce
any overhead. It is hidden from the user.

Finally, the formalism supports defining ResourceConstraints an additional meta-level
higher: on the level of Transformations. In certain cases, it is known what resources a
Transformation requires. This additional constraint must be met as well in order to achieve
a valid process.

Alternatively, DEVS could be used for handling resources and resource constraints, as
discussed in Section 8.2.

74 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

5.1.3.2 Modeling the running example

In the running example, the two activities can impose the following resource demands.

mechanicalDesign: requires a mechanical engineer, and a licence for a proprietary CAD
tool.

electricalSimulation: requires an electrical engineer and a mechanical engineer, and a
licence for the AMESim tool.

Modeling the resources and their availabilities There are four types of resources in
this example: the Mechanical Engineer, the Electrical Engineer, the CAD licence, and the
AMESim licence. Figure 5.12 shows how the modeling of the resources are accomplished
using the modeling tool provided with the formalism. For demonstrative reasons, the
example is modeled so that the demands can be satisfied.

‘ < CAD Licence | ‘ <+ AMESim Licence | ‘ <+ Mechanical Engineer | ‘ <+ Electrical Engineer |
A A A A
1 1 1 1
1 1 1 1
«typedBy= «typedBy= «typedBy= «typedBy-
1 1 1 1
1 1 1 1
1 1 1 1
EcadLicence namesimLicence EmechEng neIEng
<+ availability: 1 < availability: 1 <+ availability: 2 <+ availability: 1

Figure 5.12: Resource types and resources of the running example.

Modeling the demands Now, that the types of resources are modeled, we can formalize
the resource demands of the specific activities. Figure 5.13 shows the table-based syntax
provided by the tool to model the unit-based demands for the various activities.

E new Resource Dermand Table (3

4 CAD Licence < AMESim Licence < Mechanical Engineer <+ Electrical Engineer

< mechanicalDesign 1
< electricalSimulation 1 1 1

Figure 5.13: Resource demands of the running example.

Modeling the allocations Finally, the allocations can be modeled or automatically in-
ferred. A valid allocation is shown in Figure 5.14.

5.1. A FORMALISM FOR MODELING ENGINEERING PROCESSES 75

B new Resource Allocation Table i

4 cadlicence < mechEng <4 elEng < amesimLicence

<= mechanicalDesign 1
< electricalSimulation 1 1 1

Figure 5.14: Resource allocations of the running example.

5.1.4 Cost models

After having modeled the process along with its type system, the relevant properties of the
system engineered in the process, and the resources available for the process’ activities, the
last facility required to reason about various alternatives of the process, is modeling and
simulating the performance of the process.

We are looking for an optimal process, and this is typically meant in a Pareto way, i.e.
multiple performance factors result in a Pareto-front, from which any alternative is equally
optimal.

We take a cost-based approach to the performance analysis of the process. This means,
we allow modeling of various cost metrics, which are mapped to a common metric space
with an ordering operator. In practical terms, three financial aspect of the process can be
modeled.

Cost per execution time (c.) : the cost depends on the execution time of the process. A
typical example is the salaries of the engineers required for the activity.

Cost per unit (c,) : the cost is uniform for the activity, regardless of its execution. A
typical example is the cost of materials required for the activity.

Cost for presence (c,) : the cost is counted only once (or N times, in general scenarios)
for the process, regardless the activity resource demands. A typical example is the
cost of licences for engineering tools payed upfront.

The cost of the process , then is calculated as C(7m) = c.(A) + ¢, (A) + ¢,. Additionally,
C(m):m— RF.

Costs serve as a basis for quantifying the differences between various process alternatives.
In our current work, we approximate costs by the transition time required for single activities.
Non-linear processes, i.e. the ones with directed loops, are typical in engineering scenarios.
In these cases, the cost of a process is a non-deterministic value that can be obtained by
appropriate simulations.

76 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

5.1.4.1 Modeling support

Figure 5.15 shows the relevant excerpt of the cost modeling part of the whole formalism.
The full, detailed metamodel is shown in Figure A.5 of Appendix A.

Q CostModel

[0..¥] costRactor

2 CostType

| E CostFactor |

= CostPerTime

= UnitCost

= CostForPresence
= Time

' type: CostType = CostPerTimeI

5 Costitem
[1.1]

7

[0.4] cost T value: EDouble = 0.0

E Resource

] Activity

&£ dataFlowFrom : Node
£ dataFlowTo : Node

&& controlin : ControlFlow
&2 controlOut : ControlFlow

= availability : EInt = 1

$* typedBy : ResourceType
&3 allocation : Allocation
&3 enacts : Stakeholder

= typedBy : ActivityType

&3 allocation : Allocation

&3 demand : Demand

&3 intent : Intent

=+ partOf : CompoundActivity

5 : StringToStringMap

& executi

Figure 5.15: Excerpt of the cost modeling part of the formalism.

The formalism enables specifying various CostFactors of different CostTypes for the
Costltems, i.e. Activities and Resouces.

5.1.4.2 Modeling the running example

Modeling the costs is accomplished using a table-based syntax provided by the tool, as
shown in Figure 5.16. Activities mechanicalDesign and electricalSimulation are associated
with Time types of costs. This means, the former one takes 40 hours to finish, while
the latter one takes 1 hour to finish. Additionally, the mechEng and elEng resources (i.e.
the Mechanical Engineer and the Electrical Engineer, respectively), are associated with
a time-based wage. Both make 30 EUR per hour in this example. (Which is a realistic
gross amount from the company’s perspective.) Finally, the licence fees for executing the
activities are captured as one-time costs for the whole process. The cadLicence costs 2000
EUR, while the amesimLicence costs 4000 EUR.

5.2. OFF-LINE INCONSISTENCY MANAGEMENT 77

<4 mechanicalDesign <4 electricalSimulation < cadlicence < mechEng < elEng < amesimlicence
< licenseCost ; CostForPresence 2000.0 4000.0
< wage: CostPerTime 300 30.0
< time: Time 400 1.0

Figure 5.16: Associated costs of the running example.

It is thanks to resource allocation model that these cost factors eventually can be composed
into a single composite cost metric, i.e. the monetary costs in EUR, in this case. The
eventual cost of this simple example will be calculated as follows.

e The cost of the mechanical design activity: 40 x 30 in wages and 1 x 2000 in licence
fees.

e The cost of the electrical design activity: 2 x 1 x 30 in wages and 1 x 4000 in licence
fees.

Resulting in 7260 EUR in sum monetary costs, and 41 hours of time costs.

In the later sections, we will show two simulation methods for costs. A quick and simple
method is shown from the earlier stage of this research in Section 5.2.3.5; an advanced,
state-of-the-art simulation method is shown in Section 5.5.

5.1.5 ISO/IEC/IEEE 42010:2011 compliant viewpoints

It falls outside of the scope of this work, but our formalism also provides modeling support
for ISO/IEC/IEEE 42010:2011 compliant view/viewpoint specifications [102].

As outlined in Section 2.1.5 and additionally discussed in Section 4.5, MPM and multi-view
settings are strongly related. Our intention with the added viewpoint modeling facility is to
enable the explicit modeling of the information viewpoints entail, including stakeholder
concerns, and formalism/tool selection for certain types of engineering activities. These
information do not fit the FTG+PM concept in its classic form, and instead of forcing
these information into the FTG+PM, we provide a link to the architecture imposed by the
ISO/IEC/IEEE 42010:2011 standard.

In Figure A.6 of Appendix A we present the metamodel for viewpoint modeling scenarios.
Given that this topic has been never researched thoroughly, we do not elaborate on it further
and leave it as a future work.

5.2 Off-line inconsistency management

In this section, we present Contribution 4 of this work: a formalism for modeling complex
engineering processes. The majority of this section has been published in [45].

The management of inconsistencies is achieved by selecting the appropriate techniques
from a catalogue of management patterns and applying them on the original unmanaged
process to achieve an optimized and managed one. Typical patterns of inconsistency

78 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

management include re-ordering activities of a process, ensuring property checks around
inconsistency-prone regions and using design contracts [164].

We approach the problem of managing inconsistencies as a process optimization problem.
There are multiple alternative inconsistency management patterns that can be applied for
the same type of inconsistency. Selecting the appropriate one happens by considering a
performance metric of choice the process is the most optimal according to. Applying the
elementary inconsistency management patterns and process optimization patterns, leads
to different process alternatives. These alternatives span the process space, that has to be
efficiently traversed in order to find the best appropriate solution.

We formalize this problem as a constraint solving and optimization problem over the process
7 as follows.

minimize C(7)
T

subjectto ¥ = {),
v(m) = 1.

where v(7) : 1 — B is the indicator function of the validity (i.e. well-formedness) of the
process m. We also demand a process in which every potential inconsistency is managed,
i.e. the set of the unmanaged inconsistencies is empty: ¥ = ().

5.2.1 Patterns of inconsistency

In the following, we identify cases when inconsistencies may occur. We formalize this
information in terms of pairs of activities, the related properties and intents. Generally,
inconsistencies are introduced when an activity modifies a property that is accessed by
another activity. A more formal definition can be given by distinguishing between activities
situated in a sequential order and in parallel branches of a process. By sequential and
parallel activities we mean the following.

Sequential: Vay,as € A : seq(a1,az) < az € Af(a1);
Parallel: Va,,as € A : par(ay,a2) < as & Af(a1) Aay € AF(az).

That is, two activities are said to be sequential iff one activity is transitively reachable from
the other via the control flow of the process. If no such relation exists (in any direction), the
activities are said to be parallel.

5.2.1.1 Sequential case

Given a pair of activities aq,as € A : seq(aq, az), system characteristic £ is said to be
exposed to a potential inconsistency due to insufficient inconsistency management in the
following case.

3¢ € Eyiryip € 1) sir(an, & tr) Nigag, &, 1) A
cexT ()Nt =read ANty = modify = I(€) € U,

5.2. OFF-LINE INCONSISTENCY MANAGEMENT 79

where W denotes the set of unmanaged inconsistencies, and () is the inconsistency map-
ping function of the system characteristic. ¥ — W | J{£} iff there exists and inconsistency
over &.

That is, system characteristic £ is exposed to a potential inconsistency if activity a; first
accesses it with a read intent and subsequently activity ao modifies property ', while
system characteristic £ is in the change scope of £’. The relation does not hold the other
way around, i.e. by first modifying and subsequently reading a system characteristic does
not lead to inconsistencies.

As a consequence of the reflexivity of the change scope, the above definition applies on
cases where the same system characteristic is being read and modified as well.

5.2.1.2 Parallel case

Given a pair of activities a1, as € A : par(ay, az), property £ is said to be exposed to a
potential inconsistency in the following case.

El(é-, € EailviQ € I) : il(alvgatf) /\i2(a27£/7t/1) A
€€ XF(E) Aty = modify = F1(¢) € V.

The definition is different from the one in the sequential case in not being specific about
the type of intent ¢;. This is because of the inconclusive ordering of a; and asy due to their
parallel relation. Since the two activities may access the related system characteristic in
any order, the cases of potential inconsistencies cannot be narrowed to a specific ordering
of read-modify intent pairs. That is, inconsistencies may arise if any of the two activities
reads system characteristic £, while the other one modifies &'

5.2.2 Patterns of inconsistency management

We use four typical inconsistency management patterns in our approach. This catalogue of
patterns is, however, extensible in the prototype tooling.

5.2.2.1 Reordering and sequencing

Reordering and sequencing aim to modify the control flow in order to avoid inconsisten-
cies.

Given a sequential case, i.e. a1, a2 € A : seq(a1,az) = ¥(§) € U, the reordering strategy
would swap a; and as, i.e. seq(ay,as) — seq(asg, ay), to utilize that the appropriate order
of read-modify intents does not lead to inconsistencies, as shown in Section 5.2.1.1.

In parallel cases, i.e. aj,as € A : par(ai,as) = ¥(§) € P, the sequencing strategy
would try every possible order of the activities and eventually select the one that leads to
the most optimal process, i.e. par(ai,az) — seq(ay,az) V seq(az, aq).

80 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Reordering and sequencing are easy-to-apply and inexpensive patterns as they do not
require introducing additional management activities. Both patterns work well in sim-
ple cases; in more complex processes, however, both patterns tend to introduce other
inconsistencies.

5.2.2.2 Property check

Property checking is used to ensure no inconsistencies are introduced on specific sections of
the process. A special activity a.pecr 18 added to the process that accesses the unmanaged
properties with a check intent. If the result of the check is satisfactory, the process continues
with the subsequent activities; in the case of a failed check, however, the process would fall
back to the latest point where the inconsistency is not yet present and facilitate a re-iteration
loop.

The property check pattern is a typically expensive management pattern as it introduces
directed loops in the design processes and therefore, makes processes inherently non-
deterministic.

5.2.2.3 Contracts

In a contract-based approach [212], the stakeholders would agree on acceptance criteria of
specific system characteristic before executing specific design activities. A special activity
A NegotiateContract 15 added to the process to represent the contract negotiation phase. The
activity accesses the unmanaged system characteristics with a contract intent. The contract
is represented as an artifact. The contract is enforced during the affected part of the process,
thus providing means to avoid inconsistencies.

In the current work, we assume both the contract negotiation activity, and the contract
artifact as black boxes. The work of Vanherpen [211] provides appropriate means for
including formalized contracts into the current approach.

5.2.2.4 Assumptions

A less rigorous approach to contracts is also possible by making an educated guess about the
shared system characteristics. In the parallel case: a;,a2 € A : par(a1, az) = () € ¥,
one of the parallel activities makes assumptions about the system characteristics that will
be modified by the other activity. However, these assumptions need to be checked once the
process rejoins both branches. The benefit of the pattern is that only one of the branches
has to be re-executed if the assumption proves to be invalid, i.e. an inconsistency may
occur.

5.2.3 Process optimization by multi-objective process space exploration

To solve the process optimization problem, we employ a search-based technique. The set
of every possible processes is considered and an algorithm searches through this set to find
the possible process alternative(s). Figure 5.17 shows this concept. The search starts from

5.2. OFF-LINE INCONSISTENCY MANAGEMENT 81

the original process 7. In each step, any process transformation rule » € R can be applied
onto the current process alternative. The set of transformation rules R consists of two types
of transformations: inconsistency management transformations and process performance
enhancing transformations. Eventually, the search algorithm finds the (at least locally)
optimal process alternative 7.

P(1) = Uyrerr(p)

p*:Process

p:Process

P(2) = UVrER,p'EP(l)r(p')
Figure 5.17: Detailed overview of the search process.
In step M, the set of process candidates is I1(m) = Uy, cr rerm(m—1) (7). Assuming

that the number of applicable transformation rules is | R| = n, in the m-th step, the set of
process candidates is n"".

Process space. By process space >7, we mean the set of process candidates that are
reachable from the initial process 7 via a sequence of transformation rules r1, ... 7r,.

Formally, ¥y = J;~, II(m) = U/, UvreRm,en(m_l) r(r').

The process space is typically an infinite set and grows exponentially in each iteration.
Therefore, it is infeasible to carry out the search in an exhaustive fashion. Design-
space exploration techniques, however, help tackling this issue. We employ a rule-based
multi-objective design space exploration (DSE) approach to search through the process
space.

Design space exploration. Design space exploration aims at searching through various
models representing different design candidates to support activities like configuration
design of critical systems or automated maintenance of IT systems [86], or to obtain deeper
insight into the design problem and better formulate the optimization problem [216]. In
model-driven settings DSE is typically achieved by gradually applying model transforma-
tion rules to the source model to find instance models that are reachable from the source
model, while satisfying a set of constraints. In general, design space exploration is done
by extending the abstract model by implementation constraints to identify suitable solu-

82 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

tions [166]. The traversal process is guided by hints or smart search heuristics to avoid
unpromising subsets of the design space.

In our case, the previously defined process space is the design space spanned by the original
process and the set of inconsistency management and process performance enhancing
model transformations.

The multi-objective nature of the DSE refers to the fact that there are multiple optimality
criteria (some mandatory, some optional), which imply a Pareto-front of equally optimal
solutions.

Figure 5.18 shows the overview of the DSE approach used to search to the process
space.

‘ Constraints H Objectives ‘

‘ Transformation rules ‘

Unmanaged Optimized
process DS E managed process

Figure 5.18: Structural overview of the DSE approach.

The exploration mechanism takes the original unmanaged process and the property model
as an input and produces an optimal managed process as a series of model transformations
applied on the original process. (The property model is left intact as it reflects domain
knowledge and as such, typically should not be changed because of a single process.) The
exploration process is guided by mandatory constraints and optional objectives.

For capturing the transformations, constraints and objectives, explicitly modeled graph
queries are used. Constraints and objectives are evaluated by matching the graph queries
against the process model at hand and counting the matches. Transformations employ the
graph queries as the left-hand sides of the transformation rules.

We use the VIATRA DSE framework [2] for implementing this feature in our tool. Fig-
ure 5.19 shows the architecture of the DSE engine in the core of our prototype tooling. The
inconsistency and management catalogues, as well as cost models are fully extensible, i.e.
new inconsistency and management patterns can be formalized by the appropriate graph
query and transformation languages, and costs can be evaluated using other approaches
than the ones presented here.

W J oUW

5.2. OFF-LINE INCONSISTENCY MANAGEMENT 83

Runtime
DSE engine
Inconsistenc Management
¥ g Cost models
catalogue catalogue
Graph queries Model transformations Simulation
Reuse Use transformed model

Figure 5.19: Architectural overview of the design space exploration component in the core
of the prototype tooling.

5.2.3.1 Inconsistency catalogue

The patterns of inconsistencies are captured by graph queries over the input model. In
our prototype tool, we use the VIATRA Query Language (formerly EMF-IncQuery) [191]
for this purpose. Listing 5.1 presents the inconsistency pattern matched on the running
example.

pattern unmanagedReadModify (
al:Activity, pl:Property,
a2:Activity, p2:Property) {
find readModifySharedProperty(al, pl, a2, p2);
checks == count find checkProperty (a2, _, p2);
contracts == count find contract(_, al, pl);
check (checks+contracts==0) ;

Listing 5.1: The read-modify inconsistency pattern.

The pattern reflects the left-hand side (LHS) of the general transformation rule in Sec-
tion 5.2.3.4. In Line 4, system characteristics p1 € R™ (p2); and the activities a2 € A.(al)
accessing the two system characteristics with the respective read and modify intents are
identified. Subsequently, in Lines 5-6, the number of applied inconsistency management
patterns is determined. In case there is no management pattern applied (Line 7), the pat-
tern is matched and the match set requires an inconsistency management pattern to be
applied.

The detailed inconsistency patterns are listed in Listing 5 of Appendix B.

5.2.3.2 Management catalogue

Management patterns are captured as model transformations over the model. In accor-
dance with Section 5.2.3.4, the LHS of the transformation rules consist of the previously
defined inconsistency patterns; while the right-hand side (RHS) defines how the specific
inconsistency should be handled by using one of the management patterns described in
Section 5.2.2. Allowed LHS-RHS combinations are specified in terms of VIATRA Model
Transformations [20], that enable directly reusing the previously defined graph queries as
the LHS.

84 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

5.2.3.3 Constraints and objectives

‘ Constraints H Objectives |

| Transformation rules ‘

Optimized

D S E managed process

Unmanaged
process

Figure 5.20: Constraints and objectives of the DSE.

Constraints and objectives are used to guide the exploration process and evaluate the
solution candidates. We constrain the set of solutions to processes that are valid and have
no unmanaged inconsistencies.

As the objective function, the cost of the process is used. Since the cost of non-linear
processes (i.e. the ones featuring directed cyclic graphs) is not deterministic, simulations of
various kinds can be used to obtain the cost, such as event queueing networks or discrete
event simulations.

Listing 9 of Appendix B shows the constraints and objectives used in our framework in
greater details. Here, we show one typical

5.2.3.4 Transformation rules

| Constraints H Objectives ‘

‘ Transformation rules ‘

Optimized

D S E managed process

Unmanaged
process

Figure 5.21: Transformation rules of the DSE.

The purpose of using model transformations is twofold. We use them to augment the
process with inconsistency management techniques, but also for rewriting the process into a
better performing process. An example for the latter one is parallelizing as many activities
as possible. Of course, this will affect the applicable inconsistency management techniques,

O JoU s WN

5.2. OFF-LINE INCONSISTENCY MANAGEMENT 85

and therefore, the execution and evaluation of these transformations must be achieved in a
coupled way.

Management transformation rules

Transformation rules aiming to augment the process with inconsistency management
techniques, are derived from the inconsistency patterns (Section 5.2.1) and management
patterns (Section 5.2.2). A transformation rule is defined as

I EeTPE) eTA
fm e M :m(y())
— apply(m(y(§))), m € M.

That is, if an inconsistency pattern ¢ () is detected, and there is no corresponding manage-
ment pattern m detected for the same subset of elements, then an appropriate management
pattern m is applied to the inconsistency.

Listing 5.2 shows the abstract structure of the transformations used for the running example.
The detailed management transformation rules are listed in Listing 7 and Listing 8 of
Appendix B.

rule manageWithContract (ic: unmanagedReadModify) {
// apply contract on ic

rule manageWithCheck (ic: unmanagedReadModify) {
// apply propertyCheck on ic

rule manageWithReorder (ic: unmanagedReadModify) {
// reorder (ic)

Listing 5.2: Management alternatives of the read-modify inconsistency pattern.

General transformation rules

The overall goal of our approach is to find better processes, with respect to a goal function,
that create correct products. Apart from the transformations specific to inconsistency man-
agement, therefore, we also use transformations that manipulate the structure of processes,
such as adding and removing control flow between activities, arranging activities into
sequences or parallel branches, etc. There is no restriction on how far the exploration
strategy can go in restructuring the process, as it is determined in the exploration phase
by considering that every inconsistency has to be managed. By making certain activities
parallel, more linguistic and semantic overlap exists at the same instant in the process and
thus making the process more vulnerable to inconsistencies.

Note that certain applications of this pattern are not usable. For example, the parallelization
of a design activity cannot be parallelized with the subsequent simulation of the created
model.

86 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

5.2.3.5 Design space exploration mechanism

| Constraints H Objectives ‘

| Transformation rules ‘

Unmanaged Optimized
process DSE managed process

Figure 5.22: Design space exploration mechanism.

Figure 5.23 shows the process model of the DSE mechanism, corresponding to the overview
in Figure 5.22. The DSE process starts with taking the original process as an input. First,
it is determined if the mechanism should terminate due to a timeout. If not, the process
proceeds with selecting the model transformation rules T’ out of every transformation rule
T that are applicable for the process model at hand. Subsequently, the process evaluates the
criteria against the current process candidate at hand; the criteria being the meeting of the
Objectives while respecting the Constraints. The result of the evaluation is a criteria metric.
This metric is used do determine whether the current branch of the search tree should
terminate, i.e. cut off. If not, the exploration proceeds with applying one transformation
rule t € T'. This results in updating the current process candidate. Subsequently, the
model undergoes a validation step, and if it is determined to be valid, it is also evaluated
whether it is a solution. If it is, the exploration process terminates with the current process
candidate being promoted to the optimized process.

The DSE mechanism can also be parametrized so that not only one solution but a set of
alternative solutions is returned. We opted for the simpler exploration process in order to
simplify the proof-of-concept implementation.

Search strategies Traversing the design space in an efficient manner is a key in DSE.
Search strategies help identifying the viable directions to be navigated towards in the search
space. (Or dually: pruning the uninspiring branches of the search tree, and that, in a
relatively early stage of the traversal.)

In our tooling, we use a hill climbing strategy to guide the exploration process, which
comes out of the box with the employed DSE framework [86]. The search strategy takes
the simulated performance value of the process as a guiding metric.

5.2. OFF-LINE INCONSISTENCY MANAGEMENT

currentCandidate

:FTGPM

>

P —

T:Transformation
Rule

Timeout?

e —————
T':Transformation

Select applicable
transformation rules

X

]

:Objective

) .

Rule i

e ——

:Constraint

_off? .
Yes Cut-off: criteria:Metric

No ~—

Apply <

transformation rule

No ‘ Valid model?

Yes

No ‘folution?

Save solution

optimizedProcess
:FTGPM

Figure 5.23: The PM of the DSE mechanism.

87

88 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Performance simulations of the process Performance simulations of the process are
required for guiding the search. At an earlier stage of this research, we provided two
sub-optimal techniques for simulating performance. In this section, both are presented. At
a later stage of this research, a much more efficient, automated simulation approach has
been provided. That approach is discussed in greater details in Section 5.5.

Fixed loop iterations In fixed iteration simulations, the loops of the design process are
identified and simulated with a fixed amount of iterations, shown in algorithm 1, resulting
in a process cost as follows

i=|A(m))|

Vrell:C(m)= > Clai)n(a;).

Loops are detected by a graph pattern matcher. If a loop is detected between two activities,
the costs of activities in the loop are weighted by the number of iterations N and added to
the sum cost. The parameter is to be set by a domain expert. In our experiments, we used
3-5 iterations as the typical values.

Algorithm 1 The fixed iteration simulation algorithm.

1: procedure SIMULATE(N : int) > N is the number of iterations
2: cost :=0

3: for al,a2: A do

4: if loop(al, a2) then > al and a2 form a loop
5: fora3: A € loop(al, a2)do > a3 is in the loop
6: cost :=cost +c(a3) x N > add cost of a3 to cost
7: end for

8: end if

9: end for

10: return cost
11: end procedure

Event queueing network based simulation In event queueing network (EQN) based
stochastic simulations [81], the decision of re-iterating over a loop is simulated with
sampling from a probabilistic distribution. We carried out our early experiments using the
SimEvents toolbox [127]. While stochastic simulations offer more precise results in terms
of simulating the costs, they are also more demanding in terms of computation power and
time.

Here, we provide mapping rules for translating the engineering process onto the SimEvents
formalism.

e Activities are translated to a Server processing a single token in the SimEvents
formalism. The service time of the token in the server is based on the provided cost.
The service time is either a constant value or a value sampled from a distribution.

e Fork nodes are translated to replicate nodes that process an incoming token (and all
of it properties, like the total service time) to each of the outgoing branches.

e The Join node uses a combination of queues to let the tokens wait for the other
branches. An entity combiner combines all tokens when they are available.

5.2. OFF-LINE INCONSISTENCY MANAGEMENT

‘Ini&ial node

“ design_concept :
Concept design

=

‘“ design_mbm :
Multi-body design

“ design_elca :
Electrical design

i
(o

W select_motor :
Motor selection

‘u select_battery :
Battery selection
-

Join

[
i

a mechanical_design :
Mechanical design

° control_co-sim :
Control co-simulation

° electrical_sim :
Electrical simulation

n

OK?‘
NO

YES

®

(a) Original process model.

(b) Quantitative SimEvents model.

89

Figure 5.24: A process model and a quantitative SimEvents simulation model, depicting

the parallel motor and battery selection steps.

90 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

mechanicalDesign :
o MechanicalDesign BatteryMass

(((((((((

W design : CAD

imulation :

imulation [BatteryCapacity

§ mechanicalDesion
MechanicalDesign

WH elSimTrace : Trace

J checkBatteyMass: | o oo check property _;
PropertyCheck

W checkResult : Trace

NO

Property OK?

(a) Property check (b) Contract

Figure 5.25: Two managed alternatives of the process in Figure 5.10.

e Decision nodes are translated to an output switch element that routes to the available
paths. The chosen path is sampled from the information provided in the process
model. The merge node uses a path combiner to combine the incoming paths.

Because we only allow for a single process to be executed at the same time, the logic in
the final node allows for the creation of a new token in the initial node. The control flow
between these newly created entities is equal to the control flow edges in the process model.
For each of the tokens, the total service time is recorded. As SimEvents is a stochastic
formalism, multiple tokens are used to calculate the total cost of the process. We use the
average service time of all tokens as the cost of the process.

Results of the exploration After exploring the space of alternative solutions and ranking
them based on the performance of the process, the managed process is obtained. Figure 5.25
presents two managed alternatives to the running example in Figure 5.10.

Figure 5.25a shows as an allow-and-resolve type of inconsistency technique, property
checking is executed after the location of the potential inconsistency. The manual check-
BatteryMass activity accesses the potentially inconsistent property Battery mass with a
check_property intent. The checkBatteryMass activity is typed by a special transformation:
PropertyCheck. This transformation expects a set of properties on the input, a model to
check the properties in, and a simulation technique; and produces a correspondent per-
formance metric, a trace of the simulation, from witch the satisfaction of the property, or
the validity of the attribute can be inferred. Subsequently, a decision node is added to the
control flow to enable a backward loop in case the check fails (NVO) and to proceed if the
check succeeds (OK).

5.3. PROCESS ENACTMENT 91

Applying contracts (Figure 5.25b) is an avoidance style inconsistency technique and there-
fore, it manages inconsistencies before they can manifest. The negotiate activity captures
the step when a handful of engineers negotiate for a contract [212]. The activity outputs an
artifact of type DesignContract, containing assumptions and guarantees w.r.t. some proper-
ties of the system. In this case, the BatteryCapacity is the attribute to formulate assumptions
and guarantees about. This means, the mechanicalEngineering step will not introduce
inconsistencies because of the battery’s capacity when selecting the battery.

Depending on their costs, any of these solutions can be applicable to the specific prob-
lem.

5.3 Process enactment

In this section, we present Contribution 5 of this work: a formalism for modeling complex
engineering processes. The majority of this section has been published in [47].

Process enactment is commonly defined as the use of software to support the execution of
operational processes, which enables mixing automated and manual activities [37]. Our
framework provides an engine for enacting previously defined (and optimized) processes
with the additional support for interoperability with a selection of engineering tools, such
as Matlab/Simulink or Papyrus. During the enactment, the constraints of the system’s pa-
rameters are continuously monitored. By employing symbolic mathematics, constraints can
additionally be maintained in an incremental fashion and used for guiding the engineering
work. Whenever the value of a system attribute can be derived from a combination of
constraints and previously assigned attributes, the engine will provide this information to
the stakeholder, thus aiding engineering decisions.

In this section, we briefly present how the enactment of the previously modeled process
(Section 5.1) is carried out while enforcing a consistent state across the models. Our custom
process enactment engine with fully modeled execution semantics is presented, as well
the algorithm used for detecting inconsistencies during the enactment of the process. To
facilitate the interplay in real engineering settings, we provide integration with multiple
tools and frameworks, which will be discussed briefly as well.

5.3.1 Architecture

Figure 5.26 shows the architecture of the process enactment engine. The engine is initialized
by the Process model, defined previously in Section 5.1. An explicit Enactment model
augments the Process model with the notion of tokens and activity states (Figure 5.27), to
be able to define the execution semantics. Execution semantics are defined by explicitly
modeled Transformation rules.

The architecture has been implemented on top of the Eclipse platform. The Eclipse Model-
ing Framework (EMF) [57] is used for modeling purposes, while the model transformations
have been realized using the VIATRA framework [20].

Activities of the process, especially the automated ones, often execute simulations and
calculations over models on external storages by using external tools. For that, interop-

92 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Enactment engine i
m
3] fa =S
& . ®
5 Consistency manager s ||
€ w o [
= 0}
o Transformation rules s || 3
- . . o]]
S (Execution semantics)] 3
o =1
o o | —
2 FTG+PM Enactment “5
E instance < model 5 |:
enacts 5 |

Figure 5.26: Architectural overview of the enactment engine.

erability with a representative set of services is provided (External service integration).
Our framework currently provides scripting support for Matlab/Simulink, and Amesim of
Siemens/LMS through its native API. Executable pieces of Java code or Python scripts are
supported and executed during the appropriate phases of the enactment.

A vital contribution of the stack is the Consistency manager, which features a symbolic
solver for detecting inconsistencies. For this purpose, the SymPy [183] framework for
symbolic mathematics is used. In Section 5.4.3.1, the algorithm of the solver is discussed
in greater detail.

5.3.2 Execution semantics

The execution semantics of the FTG+PM have been discussed previously in [52]. Here, we
give a brief overview and focus on the main specificities in our current framework.

Since the core of enactment engine is fully modeled, the execution semantics are given by
reactive live model transformations. Figure 5.27 shows the metamodel of the enactment
engine. A ProcessModel (i.e. a full FTG+PM) is given to the compiler which creates an
instance of the elements shown in green. During the enactment, a set of Tokens define the
marking of the process, i.e. the active Nodes at a given moment.

A Token also equips Activities of the process with additional semantics regarding the state
of their execution, modeled by ActivityState. This is required because the execution of
Activities is not instantaneous.

e When a Token is moved to a new Activity, the Activity becomes Ready. The stake-
holders and tools required to execute the Activity can be notified, the required models
can be loaded into the tools.

e When the actual work in the Activity begins, the Activity becomes Running. This state
can last for longer periods, especially in resource-intensive simulations or manual
modeling activities, which may take days or weeks.

5.3. PROCESS ENACTMENT 93

2 ActivityState H Enactment [1..1] enactedProcessModel B ProcessModel®
- READY |.77

= RUNNING i
= DOME [0.*] token
‘ 5 Token
[0.*] frocess
T state ; ActivityState = READY
T abstract : EBoolean = false

)[0..1] subTokenOf

[0.%] subToken

‘ EE MNode £ [0.*] node E Process L

| |
| EQAch'w'ty Iz|| | EQ Control IE||
) []

[0..1] currentMode

Figure 5.27: Metamodel for the enactment (green) along with the characteristic parts of the
process metamodel.

e When the actual work in the Activity is finished, the Activity becomes Done and the
process can move on.

5.3.3 Transformation rules

Definition 1 (Marking of the process). By marking p of the process we mean the function
mu : N — Z, where N denotes the set of the Nodes of the process with an integer number
Z of Tokens in it. A process is considered to be unmarked if there are no tokens present in
it.

Initialization is a transformation which takes an unmarked process and transforms it into a
process with an initial marking, i.e. with one token in its initial node.

Finishing is a transformation which takes a process with a final marking (i.e. every token
in the final node) and transforms it into an unmarked process.

Fork is a transformation which takes exactly one token and produces a token for each
parallel branch starting from that fork node. The input token is marked abstract (see
Figure 5.27) and kept (hidden) in the model, while the newly created tokens are defined as
subtokens of the input token, so that they can be identified once they have to be joined at
the end of the parallel branches.

Join is a transformation which takes a token from each of its incoming parallel branches and
joins those tokens. In a valid process model, the tokens to be joined must be the subtokens
of the same (now abstract) parent token. The join is achieved by locating the parent token,
placing it into the join node, marking it as not abstract, and removing the subtokens.

94 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Step is a transformation which moves a token from a node to a consecutive node, while
respecting the previous rules of forking and joining.

5.3.4 Implementation

The transformation rules are captured using the VIATRA Transformation Language. We
only show one of them, the rest is shown in Listing 10, Listing 11, Listing 12 and Listing 13
of Appendix B.

Listing 1 shows the Fork transformation rule. The rule defines its name as “forkable”;
its precondition being a match of the model query called forkable; and the action to be
executed upon a matching precondition. The action first logs the information of being
executed to the console. (Line 3.) The token in the given node is being marked as abstract.
(Line 5.) Subsequently, a loop goes through all the outgoing control flows from the given
node (Line 7), and a new non-abstract token is being created for each subsequent node
(Lines 8-11). If the subsequent node is an Activity (as opposed to being a control node), the
activity is being marked READY for execution (Lines 12-14).

Listing 1 Fork rule implementation using the VIATRA Transformation Language.

val forkableRule = createRule.name ("forkable") .precondition (forkable)
.action [
logger.debug (String. format ("Forking token %s at %s.", token, fork)
// de-activate parent
token.abstract = true
// create sub-tokens
for (ctrlout : fork.controlOut) ({
val newToken = EnactmentFactory.eINSTANCE.createToken
newToken.subTokenOf = token
enactment .token.add (newToken)
newToken.currentNode = ctrlOut.to
if (ctrlOut.to instanceof Activity) {
newToken.state = ActivityState::READY
}
}

.build

Listing 2 Related model queries implemented using the VIATRA Transformation Lan-
guage.

pattern forkable (fork: Fork, token: Token) {
find tokenInNode (token, fork);
}

pattern tokenInNode (token : Token, node : Node) {
find activeToken (token) ;
Token.currentNode (token, node);

}

pattern activeToken (token: Token) {
Token.abstract (token, a);
a == false;

}

5.4. ON-LINE INCONSISTENCY MANAGEMENT 95

The forkable precondition of the transformation rule is shown in Listing 2. The model
query refers to another model query called tokeninNode (using the find keyword) and binds
that query to the given control node of type Fork. This means, the query engine will look
for a token in a fork control node. The tokenInNode query looks for an activeloken in the
current node. The activeToken pattern, then, finds an object of type Token which is not
abstract.

5.4 On-line inconsistency management

In this section, we present Contribution 6 of this work: a formalism for modeling complex
engineering processes. The majority of this section has been published in [47].

We focus on detecting inconsistencies arising once the process is enacted, i.e. “running”.
We aim to detect inconsistencies as early as possible by leveraging the interrelations of the
properties, attributes and their relationships. To this end, a state-of-the-art symbolic solver
is presented.

The process is augmented with consistency checks during the enactment, which can be
viewed as special activities of the process. These activities are not shown in the original
engineering process, as they do not carry relevant information from the engineering point
of view.

The explicit modeling of attributes and constraints means that the information relevant
to inconsistency management is being conceptually “lifted” from the models containing
those attributes and constraints. (Although, they are still present in the models themselves.)
This modeling step may be expensive for larger processes, but it has to be done only once
for a process. Attributes and constraints operate on multiple meta-levels, which enables
reasoning about capabilitiesSection 5.1.2.4 of certain modeling formalisms. This, due to
the strongly typed process model, provides additional vital information regarding potential
inconsistencies along the process. This combination of modeling paradigms (i.e. multi-level,
multi-abstraction, process-oriented) is novel in the state of the art.

Running example

In this section, we use another aspect of the illustrative case of the AGV used throughout
this chapter.

The engineering process of the AGV needs to determine the sizing of the different com-
ponents (motors, battery, platform) and tune the controller. The process requires a collab-
oration between different stakeholders and their domain-specific engineering tools, such
as CAD tools for platform design, Simulink and Virtual.Lab Motion for multi-body simu-
lations, AMESim for multi-physical simulations during drivetrain design. The motor and
battery selection activities use databases maintained in Excel files. Since these tools work
with different modeling formalisms, reasoning over the consistency of the system as a whole
properties poses a complex problem. By explicitly modeling attributes and constraints of
the system and associating them with the engineering activities, the engineering process
can be augmented with automated consistency monitoring.

96 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

The total mass of the AGV (mq) is a sum of the mass of the battery (mp), the mass of the
motor (m) and the mass of the platform (mp):

mr =mp-+my +mp. 5.1

During the engineering process, and specifically: during the requirements analysis, con-
straints are applied on the attributes:

(5.2)

These constraints must be respected throughout the whole process, otherwise the model of
the system becomes inconsistent.

Additionally, all the masses must be positive numbers, as constrained by the laws of
physics.
mass > 0 [kg]. (5.3)

Obviously, the notion of masses specific to the system, i.e. mz, mp, mys and mp, are of a
different nature than the general mass concept, as mass is not related to a specific part of
the system, but is more abstract. The concept of mass, in fact, can be viewed as type to the
system-specific masses: mr, mp, mys and mp are all masses and therefore, a constraint
on mass imposes a constraint on each system-specific mass. This means the constraint in
Equation 5.3 must hold for each system-specific mass.

Step 1 A platform is selected with a mass of 100 kg. (mp = 100 [kg])
Step 2 A motor is selected with a mass of 50 kg. (mp; = 50 [kg])
Step 3 A battery is selected with a mass of 10 kg. (mp = 10 [kg])

At this point, an inconsistency can be detected. Even though the selected components
satisfy their respective constraints imposed in Equation 5.2, the total mass now becomes
160 kgs (due to Equation 5.1), which leads to a violation of a constraint in Equation 5.2 and
therefore: the design is considered inconsistent.

Factoring in Equation 5.3, however, allows an earlier detection of inconsistencies. Already
in Step 2, Equation 5.1 can be rewritten as follows:

mr = 150 + mpg.

Since Equation 5.3 holds for any mass, and consequently for mp as well, it can be inferred
that after selecting a battery (and thus filling in m p in this equation), the total mass will be
greater than 150, thus violating the constraint in Equation 5.2.

Such an early detection of inconsistencies may save significant costs in the specific en-
gineering process, because it reduces the amount of iterations over complex engineering
activities if the design is detected to be inconsistent. Early detection of inconsistencies
requires (i) reasoning over constraints on different meta-levels (in this case: factoring
Equation 5.3 into Equation 5.1); and (ii) efficient constraint solving algorithms.

5.4. ON-LINE INCONSISTENCY MANAGEMENT 97

H Activity

Q Transformation

I
i

[8.1] typedBy!

[1..*] input [1..*] output 1..*] input [1..*] output
Q Formalism Q Object
. [X.1] typedBy 7
[0.*] has [0..*] has

I

H capability H attribute
[X.1] typedBy|

J

) Instance level
‘] ConstraintSubject

[0..*] constrains

Type level

[0..1] constrainec By

E Constraint

[0..1] evaluates

H Property

Figure 5.28: Excerpt from the extended FTG+PM metamodel supporting early online
detection of inconsistencies.

5.4.1 Modeling support

The strong type system of the FTG+PM formalism fits well with the problem sketched
in Section 5.4 as it supports reasoning on different meta-levels. To enable modeling the
problem at hand, we make use of the Aftribute type, and extend the FTG+PM formalism by
its meta-type: the Capability (Figure 5.28).

As discussed in Section 5.4, the concept of mass is different from the concept of the masses
specific to the system: m7, mp, mys and mp are related to the notion of mass by a typing
relationship. In our framework, we call these “meta-attributes” capabilities

Definition 2 (Capability). A capability v of a formalism expresses the ability of a model,
corresponding to the formalism, to reason about attributes. ¥0 € ©3y € T : typeof(0)=-.

In the running example, Matlab is used for defining the (simplified) mechanical model of
the AGV. The Matlab language, in this sense, is able to reason about masses. (Although,
mass-like attributes are just ordinary data structures from Matlab’s point of view.)

To make use of attributes and capabilities for consistency management purposes, constraints
are used to defined validity rules over capabilities and attributes.

Definition 3 (Constraint). A constraint defines the desired characteristics of the system, i.e.
it is a selection of an interval over the domain of the previously obtained attribute.

98 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Constraints are special types of relationships, presented in Section 5.1.2.2. Constraints
are always of a level L3. In a typical engineering process, algebraic (Equation 5.1),
arithmetical (Equations 5.2 and 5.3) and logical formulas are used as constraints. As shown
in Figure 5.28, constraints can be applied on both the PM and the FTG side.

The design of the system is considered to be consistent at a given point of the process iff
there are no violated constraints.

5.4.2 Modeling the running example

After having defined the core concepts, we use our prototype tool to model the attributes,
capabilities and constraints of the engineering process. The tool provides a visual interface
for modeling. It was built on top of the Eclipse platform, implemented using the Sirius
framework [60], and it is available as an open-source software.

5.4.2.1 Attributes and their constraints

Figure 5.29 shows an excerpt from the full model of the example, with the attributes of the
running example and their constraints modeled.

mechanicalModel. L3
platformMass platformMass <= 100

: REL I3
mechanicalModel.
motorMass motorMass <= 50

totalMass = platformMass +
motorMass + batteryMass

: 13
mechanicalModel.
batteryMass batteryMass <= 10

REL IS

totalMass <= 150

M totalMass

Legend Be Constraint Attribute e Relationship link

Figure 5.29: Attributes and constraints.

5.4. ON-LINE INCONSISTENCY MANAGEMENT 99

Attributes are denoted by light red rectangles, and constraints by darker red rectangles.
There are four attributes in the figure, one for each of the masses in Section 5.4. Apart from
the totalMass, the three other masses are persisted in the mechanicalModel, as shown by
the prefix in the names of the attributes. The total mass is not persisted in the mechanical
model, but it is a result of an aggregation of the other three masses (Equation 5.1). This
equation is captured in the rightmost constraint, as shown by the formula. The other four
constraints correspond to the four sub-equations of Equation 5.2.

The header of the constraint contains its level of precision. In this example, all of the con-
straints are of level L3. As defined in [46], the level of precision reflects what information
a constraints carries:

e [L1: the fact of influence is known, its extent is not;

e [L2: sensitivity information between two values is expressed, e.g. by Forrester
system dynamics [72];

e [L3: the constraint can be expressed using an exact mathematical relationship.

In this work, we assume L3 relationships, but our technique can adapted to deal with lower
levels of precision as well.

5.4.2.2 Capabilities and their constraints

Figure 5.30 shows an excerpt from the full model of the example, with the mass capability,
its constraint, alongside the related part of the FTG. Matlab is used as a formalism for
defining the mechanical model of the system and has a capability of expressing mass.
(That is, models being conform to the Matlab formalism, can have attributes of type mass.)
Figure 5.30 shows how this aspect of the running example is modeled, with Equation 5.3
captured in a similar fashion as the other constraints were in Figure 5.29.

3 «transformedBy»
! mass Matlab -]
mass > 0

Legend
C:\MD Formalism - Typed by

Transformation

el Transformation (by/to)

«transformationTo»
Constraint

. — Relationship link
Capability

Figure 5.30: A capability and its constraint in the FTG.

The evaluation of such constraints, however, differs from the ones shown in Figure 5.29,
as the constraints on mass are stemming from the universal laws of physics, while mr,
mp, mp, mys are specific to the system. To evaluate constraints of capabilities, we use the
following rule.

100 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Definition 4 (Evaluation of capability constraints). Any constraint applied on a capability
imposes a constraint on every attribute typed by that capability.

This means, that based on the typing relationship between the mass capability and the
system-specific masses mp, mp, mp, mas, Equation 5.2 can be unfolded as follows:

0 [kg] < mp <150 [kg],

0 [kg] <mp <100 [kg], (5.4)
0 [kg] < mas < 50 [kg] '
[kg]

0 [kg] < mp <10 [kg].

3

5.4.2.3 Properties

As presented in [212] and [107], ontologies can be efficient enablers for inconsistency man-
agement in heterogeneous settings. During the translation of requirements to view-specific
properties, each stakeholder keeps in mind certain domain properties, i.e. ontological
properties. For example, an electrical engineer implicitly thinks about the capacity of
the battery, a mechanical engineer reasons about how a battery would fit the frame of the
AGV. Due to overlap in requirements, some ontological properties will be shared and/or
will influence each other such that the related view-specific properties will be shared or
influenced as well. Our framework allows defining property satisfaction relationships in
terms of attributes. The satisfaction of a property can be inferred by checking the single
constraints imposed on the specific attributes.

REL I
gtotalMass
. totalMass <= 150
Legend

= Constraint

B totaimass Attribute

. validTotalMass) Property

Relationship link

Figure 5.31: Excerpt from the example: the property validMass.

Figure 5.31 shows the property validMass. The satisfaction of the property is evaluated
from the totalMass attribute, using the same constraint as the one shown in Figure 5.29 (i.e.
the constraint on attribute m in Equation 5.4), while the bottom right element, labeled with
the name of the property, holds the Boolean value of the satisfaction relationship.

This notion of properties allows various scenarios aiding inconsistency management, such
as reusing domain knowledge from existing domain ontologies [68], using ontological

5.4. ON-LINE INCONSISTENCY MANAGEMENT 101

reasoning [212] in conjunction with our techniques, and using contract-based design [164]
to aim co-design scenarios, i.e. parallel branches of the engineering process.

5.4.2.4 Putting it all together: the process

Figure 5.32 shows the final model of the running example. In the middle, the yellow
rectangles denote the activities of the PM with control flows in between them denoting
the precedence relationship between the activities. On the right side, the attributes and
constraints are shown. Activities and attributes are linked by intents, which express the
purpose of the activity accessing a given attribute. The first three activities access attributes
in order to modify them, while the last activity attempts to resolve a constraint w.r.t.
totalMass. Other types of intents include: reading the value of an attribute, imposing
a constraint, locking/releasing an attribute in a parallel process branch, etc. This latter
step is built into the process as an actual engineering step, but as shown later, in case
of an inconsistency, the consistency monitoring service can stop the process before this
point. In our previous work [45] we used read-modify pairs of intents to identify potential
inconsistencies at the optimization phase. In this work, however, we leverage the notion
of intents at run-time to narrow the scope of the consistency checking algorithm, i.e., to
consider only the attributes which have been explicitly linked with an activity using a
modify intent.

On the left side, the FTG and the only associated capability is shown. The typing relation-
ships correspond to Figure 5.28:

o the mechanical model in the PM is an Object and it is typed by the Formalism Matlab
in the FTG;

e the Activities are typed by the transformation assignMass;

o finally, the mass capability types all the masses on the right side, but this relationship
is not visualized in the graphical view. (It is shown in a property view of the tool,
however.)

Masses are assigned to the design when the respective activities are executed. Conceptually,
this assignment can be viewed as a transformation of the model, and as such, the actual
transformation logic is captured in the transformation typing the activities. In this case,
assignMass holds the specification of the transformation. The activities operate on models.
To check the consistency of the attributes, the attribute values are obtained by querying the
appropriate models, i.e. the ones the specific attributes are persisted in. As Figure 5.32
shows, the name of the attribute is prefixed with the name of the model persisting the
attribute. The first three attributes are all persisted in the mechanicalModel, which is a
Matlab type of a model. Using this information, the querying is executed in the background
by our tool via the Matlab API, without requiring the user to submit any extra information
for this.

All these values come from the specifications, previously inferred from the requirements by
the stakeholders. Depending on the scenario, the values may already have been persisted in
the respective domain models and lifted to this level of the process during the specification
of the process (i.e. queried from the domain model); or a stakeholder may have used the
process model to specify the parameters of model manipulations.

CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

102

ssewkianeq +

+ SsepIO K

erd

05T => SseWIRI0}

o=

0 => sse/ianeq

o

SSRNUNeG o
popieeysw B

05 => ssepi0j0w

o=

00T => ssewuiogeld

o

Gayegpars £

1030Wp31s £

: PPOpIRIURYIW &

qenen Py

ul| diysuonefay
ua|

(03/Aq) uonewojsues|
Aq padL

FTREEICT)

mojy jo13u0D

Aunqeded
anquay

Julensuo)

wsijewoy
(12Pon) 122[90

< Aoy

sseubisse

«Agpawiojsuess,

- Ggpadiy»

«0JuonewIojsuRL»

Figure 5.32: The FTG+PM based process model with the capabilities (left) and the attributes

(right).

5.4. ON-LINE INCONSISTENCY MANAGEMENT 103
5.4.3 Early detection of inconsistencies

Now we discuss how the detection of inconsistencies is carried out while the process is
being enacted.

5.4.3.1 Algorithm for early inconsistency detection

The early detection of inconsistencies requires computing the satisfiability of the system
of constraints at certain points of the process. These computations are carried out on each
Step in the process, based on Algorithm 2.

Algorithm 2 Handling attribute modifications.

1: procedure STEP(token, nextActivity)

token.currentActivity <— nextActivity > Move the token to the next activity
3 for all i:Intent, a:Attribute: i(token.currentActivity, modify, a, v) do

4: UPDATEATTRIBUTEVALUE(a, v) > Assign value v to attribute a
5: end for

6: end procedure

On each Step in the process, the token is moved to the next activity (Line 2). As discussed in
Section 5.1.2.3, intents between activities and attributes help identifying the cases when an
activity modifies the value of a property. For each of such intents (Lines 3-5), the attribute
is updated and the change is propagated through the whole system of constraints. This
latter step is being taken care of by Algorithm 3.

Symbolic computation of constraints

The updates to the system of constraints require introducing the new values of attributes
and computing whether the constraints can be still satisfied later on in the process or
not. Such a computation requires factoring in the potential impacts of the future attribute
changes (explicitly modeled in the process). To execute these computations, we opted for
the techniques of symbolic computation. Our main concern is the maintenance of a system
of constraints by gradually simplifying them as attributes get updated, to the point, where
contradictions appear in the equations, i.e. the set of potential solutions is empty, thus
denoting an inconsistency in the system design. Alternative approaches include simulation
of the process and abstract interpretation.

Algorithm 3 shows the steps taken in our symbolic computation approach. The algorithm
is invoked by Algorithm 2 with the name and the new value of the attribute to be updated
passed along as parameters. In Phase 1 of the algorithm, the attribute-value assignment
is translated to an equality constraint and added to the system of constraints (Line 2). In
Phase 2, the algorithm propagates this change and attempts to simplify every constraint.
This is achieved by iterating through the system of constraints (Lines 3-4) and factoring
equation constraints (Line 5-6) into the rest of the constraints by trying to solve (simplify)
the constraint (Line 7).

104 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

We use the SymPy [183] symbolic mathematics library to solve/simplify the constraints,
thus the semantics is provided by the library. Constraints imposed by capabilities are
calculated based on Definition 4 and applied on attributes.

Finally, in case an empty set is produced as a set of potential solutions for a constraint, we
interpret it as an inconsistency and notify the user about this fact.

Algorithm 3 Maintenance of the system of constraints.

1: procedure UPDATEATTRIBUTEVALUE(attribute, value)

Phase 1 — Impose a new constraint with equality
2: model.constraints <+ Eq(attribute, value)

Phase 2 — Propagation and simplification: substitute equality constraints into the rest of the constraints

3 for all constraintl in model.constraints do

4 for all constraint2 in model.constraints do
5 if constraint2is Eq then

6: constraintl < constraint2

7: solution = solve(constraintl) > Try to solve the constraint
8 if solution = () then

9: notify inconsistency

10: end if

11: end if

12: end for

13: end for

14: end procedure

When an inconsistency is detected, the process is halted and cannot proceed until the
inconsistency is not fixed. Resolving inconsistencies is outside the scope of the paper. A
simple undo/redo functionality is provided by the framework, but more detailed research
have been carried out by other authors, e.g. [128], [66], [61], or [7].

5.4.3.2 Execution of the running example

We follow the process in Figure 5.32. During the execution, Equations 5.1 and 5.2 are
maintained: whenever a value is assigned to an attribute present in one of the equations, the
equations are simplified with that attribute. This means

e substituting the newly assigned value of the attribute to every occurrence of the
attribute in every equation; and

e removing constraints without free attributes.

Step 1: The platform mass is set to 100 kgs. Activity DesignPlatform is executed and the
mass of the platform is set in the mechanical model. Since the attribute is persisted
in a Matlab model, the model is queried via the Matlab API for the value of the
platformMass variable. The consistency manager uses this information to update the
constraints with. The related constraint of Equation 5.2 (0 [kg] < mp < 100 [kg]) is

5.4. ON-LINE INCONSISTENCY MANAGEMENT 105

satisfied, and therefore the system can be simplified with it:

my = 100 + mpy; + mB[kg}

0 [kg] < my < 150 [kg]
0 [kg] < ma <50 [kg]
0 [kg] < mp <10 [kg]

Solving the constraints for m results in a non-empty set of solutions:

100 [kg] < mr < 150 [kg]

No inconsistency is detected, the process proceeds.

Step 2: The motor mass is set to 50 kgs. The SelectMotor activity is executed which sets
the mass of the motor to 50 kgs.

mr = 150 + mB[kg}

0 [kg] < mr < 150 [kg]
0 [kg] <mp <10 [kg]

At this point, Algorithm 3 detects the inconsistency sketched in Section 5.4. Solving
the constraints for myp results in an empty set of solutions:

150 [kg] < my < 150 [kg]

Since 0 < mp, it can be inferred, that after executing the next activity of the process,
mr > 150 will hold, which violates the constraint on the total mass. The process is
halted and a notification is raised to the user to resolve the inconsistency.

5.4.4 Discussion

As demonstrated, factoring ontological knowledge into the requirements of the system may
shed light to additional constraints viable for early detection of potential inconsistent states
of the system design. The main advantage of this approach is the support for such scenarios
by uniformly handling instance- and meta-level constraints. As highlighted in the running
example, the advantages of such an early detection approach are visible already in very
simplistic cases. The gain realized in real engineering processes can obviously be much
higher, when the execution of resource and cost demanding activities can be prevented by
the early detection of inconsistencies.

The proposed modeling formalism enables lifting information relevant to inconsistency
management purposes regarding the given process. Explicit modeling of such information
is an enabler of improving the quality and efficiency of the process once enacted. Although

106 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

the thorough modeling requires significant efforts from the stakeholders, it is needed to be
done only once, before the actual design of the system commences. Such a front-loaded
approach can be typically expected from companies on CMMI levels 3 and above [37].
As a consequence, our approach suits best the domain of complex heterogeneous systems,
where the costs of dealing with inconsistencies is often in a different order of magnitude
than the costs of modeling and optimizing the process.

5.5 Translating process models to DEVS for performance
evaluation

In this section, we present Contribution 7 of this work: a formalism for modeling complex
engineering processes. The majority of this section has been published in [50].

In this section, we provide an advanced simulation technique for the off-line inconsistency
management technique presented in Section 5.2. The more simple performance evaluation
techniques presented in Section 5.2.3.5 can be easily replaced by the technique presented
in this section to achieve more precise results.

We provide an automated translation from engineering process models to a formalism
appropriate for the simulation of performance characteristics of the process. To show that
our approach is applicable to all possible process models, we base ourselves on the essential
process/workflow patterns, previously identified by [194]. Each of these patterns introduces
essential concepts of a process model, thereby providing us with a list of elements that
should be supported. While our approach is complete, only the most common constructs
are presented here due to space restrictions.

Our mapping is furthermore specialized in two dimensions: (i) the stochastic nature
of process execution; and (ii) the constraints imposed by the resource demands of the
process.

In our approach, instead of modeling with DEVS, we allow the high-level, more appropriate
process formalisms to be used and support mapping to DEVS in the background.

Performance of processes

To evaluate the performance of a process model we assume a metric space (W, d) with W
being the set of processes and d being a metric on W, i.e. a functiond : W x W — R, [35],
used for comparing two arbitrary process models w;, w; € W. Because of the domain of R,
the set of performance metrics constitutes an ordered set (R, <), i.e. Vd;,dy € R : dy —
dy <= dj < ds. In this paper we use the simple metric of transit time t as a quantified
performance metric. Given two transit time metrics ¢; and ¢, the better performance is
associated with the lower value, following the intuitive interpretation of the time-based
performance metrics. Apart from the transit time, typical performance metrics in business
and engineering processes include other time-based metrics (e.g., time-to-market, queueing
time) or monetary value based metrics (e.g., monetary emerging costs); and more complex
metrics (e.g., resource utilization).

5.5. TRANSLATING PROCESS MODELS TO DEVS 107

Simulation by DEVS

To obtain the performance metric of transit time, we translate processes to DEVS [223].
Given its ability to support queueing systems and performance modeling [223], we de-
termine DEVS to be an appropriate formalism for the performance analysis of process
models. DEVS is a discrete-event formalism, consisting of Atomic DEVS models (defining
behaviour) and Coupled DEVS models (defining structure).

Atomic DEVS models are defined as an 8-tuple (X, Y S, Ginit, Oint, Oext, A, ta) [206, 208],
consisting of

e the set of input events X;
o the set of output events Y;
o the set of states S : X[.5;;
e the initial total state q;t;
e the internal transition function d;,; : S — S;
e the external transition function d..; : S — S;
e the output function A : S — Y U {¢}; and
4

o the time advancement function ta : S — Ry | .

Coupled DEVS models are defined as a 7-tuple (Xeir, Yeerp, D, MS, IS, ZS, select), con-
sisting of

o Xoayp;

o Yoor;

o the set of model instances D;

o the set of model specifications MS';

e the set of model influencees IS

e the set of translation functions ZS'; and

o the tie-breaking function select : 2P — D.

To keep our approach as general as possible, we do not tie ourselves to one particular
process modeling formalim, but rather, we provide a mapping of each of the original 20 van
der Aalst process/workflow patterns [194] to DEVS models. Given these patterns, every
process can be mapped on to DEVS and simulated.

Modeling the stochastic nature of processes

To obtain meaningful results, the process model must be calibrated with activity execution
times. These execution times are, however, often based on distributions, as some variation
will be present in this value. For this reason, the time taken by activities is best defined
through a distribution, thereby having a further impact on the complexity of the time taken
by the process. Additionally, this distribution likely evolves over time, depending on the

108 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

number of iterations that have previously occurred. A typical example in model-driven
engineering processes is the activity of creating a model, which gradually takes less time
as the process iterates through it, since the modeler does not have to restart from scratch.
Another stochastic element is the decision: the activation of the outgoing branches depends
on a condition that can only be evaluated at execution time. The choice is sampled from a
distribution, which is again likely to evolve over time. For example, the first time a model
is simulated for a property, it is likely that there are still unsatisfied elements in the model,
but this chance gradually decreases as the check is more often performed.

Modeling resource constraints

An additional facet of processes are the constraints imposed by the resources available for
the specific activities. The execution of an activity demands specific amounts of specific
resources types, such as a CPU core, an engineer, a software license, etc. Depending
on the other (concurrently) execution activities, these resources might not be available,
meaning that the activity cannot start execution yet. By introducing these limitations in our
simulation, it becomes possible to determine the effect of obtaining additional resources
(e.g., hiring an additional employee), or releasing it. It thus becomes possible to optimize the
available resources, while taking into account the impact on process enactment time.

Implementation

Our approach is implemented in the Modelverse [207], our MPM environment. The
Modelverse presents the users with a process modeling environment, where the mapping to
and simulation of DEVS models remains completely hidden.

Running example

To illustrate our approach, we use the running example shown in Figure 5.33.

The process depicts the simplified engineering scenario of selecting the appropriate configu-
ration of a hardware module through modeling and hardware-in-the-loop (HIL) simulations.
This is commonly done for example for Automated Guided Vehicles (AGVs) [45]. The
process is augmented with the identifiers of the relevant van der Aalst process/workflow
patterns at the appropriate locations. First, the requirements are defined. Subsequently, the
Multi-body model is being created, or updated, depending on the iteration. The process is
then split into two parallel branches. In one branch, ten independent HIL Simulations are
carried out in a parallel way to measure the physical attributes of the system and obtain
statistical characteristics, such as the mean and variance. In the other branch, the model
of the system undergoes formal model checking to verify the satisfaction of the safety
requirements. Both branches require a significant amount of CPU time for the involved
computations. After the synchronization of the branches, results are evaluated. If require-
ments are met, the process finishes; otherwise another iteration of engineering work is
enforced.

5.5. TRANSLATING PROCESS MODELS TO DEVS 109

b

Define
requirements

Create/update
multi-body model

@ HIL simulation Model checking

©

Evaluation of the

results @9

®

@+

@ Sequence @ Parallel split @ Synchronization
@ XOR choice @ Simple merge @ Arbitrary cycles

@ Multiple Instances with a Priori Design-Time Knowledge

Figure 5.33: The process of selecting the optimal hardware component.

Although in our running example we only focused on the control flow of the process, the
approach presented in this paper fits well with our previously presented approach, based
on the FTG+PM formalism [122]. The rich semantics of the FTG+PM formalism allow
reasoning not just over the syntactic characteristics of input data, but also the semantic
characteristics, resources and costs.

5.5.1 Translating processes to DEVS

In order to simulate the enactment of the process model using DEVS, an automated
translation between the two is necessary. Since DEVS constitutes Atomic and Coupled
DEVS models, the translation consists of two parts. The first part is the Atomic DEVS
models, defining behaviour. As the behaviour of the process nodes is fixed, these can
actually be handcoded in Atomic DEVS model. For example, the behaviour of a Parallel
Split is independent of how it is used in the process. To tackle this part of the translation, we

110 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

create a library of Atomic DEVS models of which the elements can be parameterized with
runtime information (e.g., number of incoming links for Synchronization). The second part
is the Coupled DEVS model, defining structure. Given the set of Atomic DEVS building
blocks, we must translate each process node to the equivalent Atomic DEVS model, and
create the correct links between the two of them. For example, the sequence of two activities
is translated to a connection in the Coupled DEVS model. Only this part of the translation
is specific to the process model. This is summarized in the FTG+PM [122] model shown in
Figure 5.34. At the left-hand side, the Formalism Transformation Graph (FTG) presents
the different formalisms and activities between them. At the right-hand side, the Process
Model (PM) presents the process as an instance of the FTG, showing the order in which
activities are invoked and how the models are used.

Coupled

PML translate DEVS

pm:PMLr.A.V:::_.

I
I
I
I
model Atomic merge | :Coupled|
(55 DEVS DEVS | ..
model |
I
I
|

| :Atomic
“ | DEVS

Metrics
Language| simulate

DEVS

o
perfMet:Metrics
Language

Figure 5.34: FTG+PM model of our approach.

5.5.1.1 DEYVS Library

The first step is to create a library of Atomic DEVS models, one for each process node
presented by [194]. Due to space restrictions, we only present the patterns used in our
running example. All elements have a similar structure, with an input and output port
termed “resource_in”" and “resource_out”, respectively. Over these ports, there is a control
token that passes from node to node. As soon as a node receives the control token, it knows
that the activity before it has terminated. Most process nodes subsequently pass on the
token in one way or the other (e.g., split it or wait for multiple). Further details are given
next for each type of process node.

1. Activity. The activity takes in the control token and passes it on after some time.
While not a pattern, it is the basic building block of a process, and could be considered
as the Sequence pattern (Pattern 1). In DEVS, this can simply be modeled as shown
in Equation (5.5). Essentially, the atomic DEVS model is either active (i.e., currently
executing) or inactive (i.e., waiting for control). When the model is active, it outputs
the token after some time p,.ocess, Otherwise it passivates.

2. Parallel Split. The parallel split (Pattern 2) merely duplicates a token instantaneously,
thereby effectively starting concurrent branches. It is therefore identical to the activity,
but instead of taking #,,,ocecss time to process the token, it happens instantaneously.
The control token is put on the output port, to which all subsequent nodes are

http://www.workflowpatterns.com/patterns/control/basic/wcp1.php
http://www.workflowpatterns.com/patterns/control/basic/wcp2.php

5.5. TRANSLATING PROCESS MODELS TO DEVS 111

connected. As such, the splitting of the token happens automatically. The DEVS
specification is not repeated, as it is identical to Equation (5.5), but with #,,ocess set
to zero.

3. Synchronization. Synchronization (Pattern 3) has to wait for all incoming control
flows to send a token. From the patterns definition, we know that only a single
control token is sent on each branch (as the input places are guaranteed to be safe).
Therefore, we can simply keep a counter, counting how many incoming tokens we
need to receive, before we forward it ourselves. This counter is initialized with the
number of incoming branches, which is specific to the process. This is shown in
Equation (5.6).

Activity = <X, Y, S, Ginit, Oint, Ocxt, A, t(l> (5.5)

X = {ControlToken}
Y = {ControlToken}
S = {active, inactive}
Ginit = (tnactive, 0.0)
dint = {active — inactive}
dext = {((inactive,_), ControlToken) — active}
X = {active — ControlToken}

ta = {active — tprocess, inactive — oo}

Synchronization = (X, Y, S, Ginit, Oint, dext, A, ta) (5.6)

X = {ControlToken}
Y = {ControlToken}
S = NU {inactive}
Ginit = (inactive, 0.0)
dint = {0 — inactive}
dext = {((¢ € N,_), ControlToken) — i — 1}
A = {0 — ControlToken}
ta=9{0— 0.0,N\ {0} — oo, inactive — oo}

4. Exclusive Choice. The exclusive choice (Pattern 4) makes a decision depending on
some condition, thereby passing the control token to only a single branch. In the
context of our process, we need to make it such that the decision varies between
different invocations, as otherwise the process might become stuck in a loop. Later in
this paper, we make this choice probabilistic, thereby circumventing these problems.

http://www.workflowpatterns.com/patterns/control/basic/wcp3.php
http://www.workflowpatterns.com/patterns/control/basic/wcp4.php

112

CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

5. Simple Merge. The simple merge (Pattern 5) merges different branches again as soon

as a single one of them proceeds. This is commonly used after an exclusive choice,
when the conditional part is finished, but can also be used in other scenarios where
branches must merge. In contrast to synchronization, the simple merge continues
for each token that comes in and does not wait for any other input. This definition
is again similar to that of an activity, as it essentially takes in a control token and
immediately passes it on to the next node. As such, the definition is identical to
Equation (5.5), but with ?,,,-5cess et to zero.

Multiple Instances with a priori Design-Time Knowledge. The multiple instance
process node (Pattern 13) is a more complex node, which spawns several instances
of a single activity concurrently. The number of instances is defined at design
time, making it possible to know beforehand how many instances there will be.
Nonetheless, this information is still unknown in our Atomic DEVS model, as the
library blocks are generic, and must therefore be taken in as a parameter. Control
progresses as soon as all spawned threads are finished, meaning that we operate
synchronously. For the moment, this definition is again the same as the activity,
shown in Equation (5.5), as nothing prevents us from spawning these elements
concurrently immediately. Indeed, given that each instance takes ¢, ocess amount
of time to process, but they can all run concurrently, the total time taken is again

tproces S

Initial. While not an actual pattern, each process model needs exactly one initial
node, to start the process. This has its own specific DEVS model, which starts with
the control token and immediately hands it over to the next node. The DEVS model
is shown in Equation (5.7). Essentially, the model immediately sends out the token
and then passivates in the inactive state.

Initial = (X, Y, S, qinit, Oint, Ocat, A, ta) 5.7)

X=1{}
Y = {ControlToken}
S = {active, inactive}
ginit = (active,0.0)
dint = {0 — inactive}
Seat = {}
A = {active — ControlToken}

ta = {active — 0.0, inactive — oo}

Finish = (X, Y, S, qinit, dint, Ocat, \, ta) (5.8)

http://www.workflowpatterns.com/patterns/control/basic/wcp5.php
http://www.workflowpatterns.com/patterns/control/multiple_instance/wcp13.php

5.5. TRANSLATING PROCESS MODELS TO DEVS 113

X = {ControlToken}
Y ={}

S =R U {inactive}

Ginit = (inactive, 0.0)

Oint = {}
dezt = {((inactive, e), ControlToken) — e}
A={}

ta = {* — oo}

8. Finish. Similar to the initial node, the finish node is not actually a pattern, although it
is required to indicate that the process has finished. This again has its own DEVS
model, which starts in a passivated state. As soon as the control token arrives, the
elapsed time is stored in the state, as it will be used in the simulation termination
condition later on. This elapsed time is the time taken by the process, as no other
events ever arrive in this model. The DEVS model is shown in Equation (5.8).

5.5.1.2 Mapping through model transformations

With all Atomic DEVS models defined, the next step is to replicate the original process
semantics with them. For this, we will make instances of the DEVS library elements for
each of the process nodes, and copy the relevant connections between them.

Model transformations are ideally suited for this operation, as they allow for pattern
detection and replacement. A model transformation defines a left-hand side (LHS), right-
hand side (RHS), and negative application condition (NAC). For each application of the
transformation, a match for the pattern in the LHS is searched in the model. When found,
the match is replaced with the RHS if simultaneously the NAC is not matched. Model
transformations generate traceability links, which store the origin of a specific construct
in the target. This can be used subsequently for matching, or later on for debugging. For
example, each process node is linked to an instance of the activity Atomic DEVS model
through such a traceability link. These links are later on used to find translated elements:
with all nodes matched and traceability information stored, linking the control flow edges
becomes trivial.

An example transformation rule for an activity is shown in Figure 5.35. Here, we match on
an abstract superclass (Node) and the related DEVS Atomic DEVS models, through the
traceability links (links 6 and 7).

5.5.1.3 Implementation

The approach was implemented in the Modelverse [207], our Multi-Paradigm Modeling
(MPM) environment. When enacting the FTG+PM model shown before, the Modelverse
automatically loads the appropriate formalism (Process modeling) and allows users to
model with it. When users are content with the process model, enactment continues with

114 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

4 4
rame ! [EOEVS rame 1 [EOEVS
:Node 6 ‘Node :Node 6 ‘Node

3 3 8

5 5
rame? __ [EOEVS rame?__ [EOEVS
:Node 7 ‘Node :Node 7 ‘Node

Figure 5.35: Transformation rule for control flow links.

the (automated) mapping to a Coupled DEVS model. This is then combined with the
Atomic DEVS model library created beforehand to create a complete DEVS model. This
DEVS model is serialized and sent to PythonPDEVS [205], our DEVS simulator, through
the use of external services [202]. PythonPDEVS simulates the model and returns the
simulation results, which get stored in the Modelverse.

The implementation is disclosed in Listings 14-19 of Appendix C. The coupled DEVS
model of the running example is disclosed in Listings 20-21 of Appendix C.

5.5.2 Calibration of the process models

To evaluate the performance of the worklow, we augment its structure with multiple
stochastic parameters, capturing the dynamics of the process. As Figure 5.36 shows, each
activity is augmented with an estimated execution time (blue), and the characterization
of the evolution of the execution time (red) over multiple iterations. Each activity is
augmented with an estimated execution time, and the characterization of the evolution of
the execution time over multiple iterations. For clarity, we only show the evolution function
for create/update multi-body model, as this is a constant function for all other activities.
Finally, the outgoing branches of decision nodes are also augmented with a quantitative
decision function.

The characteristics of the estimations and the resulting functions can be determined by
looking into historical data, for example. At this point, our example values rely on rules
of thumb taken from industrial partners. We now elaborate on the above parameters in
detail.

1. Estimated execution time of the activities. The execution time of the activities
is estimated by a normal (Gaussian) distribution. The distribution is set so that
(1) its expected value represents the guess of the estimator, and (ii) its variance
yields 80% of the estimations within a 20% error range. The latter characteristic is
achieved by setting the variance o relative to mean p, resulting in the function of
t(a) = N(u,0.15625u).

2. Evolution of the execution time. The previous estimates of the activity execution times
might evolve during the subsequent iterations of the process. For example, an activity
might cache previous results (e.g., in simulation) or use them as a basis (e.g., modeling

5.5. TRANSLATING PROCESS MODELS TO DEVS 115

?

Define
requirements

2

Create/update
multi-body modelr=

v
[0

HIL simulation Model checking
Evaluation of the | <

results
o - \\
5 \ ;)/
. N

Activity exec. Exec. time Decision
time estimate evolution function function

Figure 5.36: The augmented process.

from scratch vs. updating a model). To capture this aspect, we use an aggressive
exponential function e~ 1/9.7t where i denotes the number of iterations. This factor
is used to scale down the original estimates as follows: ¢(a,i) = t(a) * e~ /%7", The
function results the following scale factors for the first few iterations: 1.0, 0.2397,
0.05743, 0.01376, 0.00329, and 0.0008.

As shown in Figure 5.36, there is only one activity (Create/update multi-body model)
with a decreasing execution time over the various iterations. Of course, the execution
time might also remain constant or even increase.

3. Decision function. Deciding whether or not to re-iterate over a part of the process
also happens with a given probability. A strong assumption against the process is its
convergence towards a final solution. This also means that the chance of having to
re-iterate over previously carried out activities decreases over time. We model this

116 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

in a similar vein to the evolution of the execution time, again keeping track of the
number of iterations. The function results the following probabilities of having to
reiterate for the first few executions of the process: 0.99, 0.9, 0.8, 0.5, 0.2, 0.1.

4. Incorporating the stochastic parameters in the DEVS models. There are only three
Atomic DEVS models that are influenced by these extensions. The first two, Activity
and Multi-Instance, are actually similar, as they merely have to update their p,ocess
from a constant to a sample from a random distribution. To cope with the evolution
of the execution time, both types of process nodes keep a counter of how many times
they have been executed. This is trivial to incorporate in the DEVS model and is
therefore not shown explicitly. The third process node, the Decision node, similarly
gets augmented with a counter which counts how many times it was executed. This
counter is passed on to the distribution function when sampling for which output port
to use.

5.5.3 Modeling resource constraints

Another process constraint is resource utilization. There are several types of resources,
such as recurring costs (e.g., employees), one-time costs (e.g., software licenses), or a
combination of both (e.g., CPUs). The constraints imposed by these resource requirements
have a significant effect on the performance of the process. Indeed, if multiple activities
are scheduled in parallel, but only enough resources are available for one (e.g., only one
employee), these activities are effectively sequentially. As such, the inclusion of resources
is an important consideration. For simplicity, we consider a generic “resource” in further
discussions, although this could be any relevant resource.

5.5.3.1 Implications of Resources

In our running example, the use of resources becomes important in the concurrent part,
where HIL simulation and model checking are done simultaneously. Both activities can
be done automatically, meaning that relevant resources are for example software licenses
(e.g., for the tool performing the simulation or model checking) and CPU cores (to execute
the activities on). As only activity and multi-instance process nodes consume a non-trivial
amount of resources, we focus on them next.

1. Activity. The first process node that is influenced, is the activity. Assuming that an
activity has some resource requirements, which it needs throughout the complete
duration of the activity. Should this not be the case, the activity can be split up in
multiple distinct activities. As such, before starting the execution of the activity,
we request all required resources. Only as soon as all resources are acquired, will
the activity start executing. Upon termination of the activity, resources are released
again.

2. Multi-Instance. The multi-instance node is similar to the activity node, except that
multiple instances are spawned as soon as possible. Each instance is independent
of the others, meaning that some instances could already be spawned, depending
on resource availability. Instead of requesting all resources, the resources for a
single instance are requested atomically. For example, if five instances have to be

5.5. TRANSLATING PROCESS MODELS TO DEVS 117

spawned, we make five individual requests, each requesting all resources required by
the instance. If for example only two requests can be granted at that time, at least
these two instances already acquire the resources and can start execution. After an
instance has finished, its resources are already released. As soon as resources become
available, additional instances are spawned.

5.5.3.2 Incorporating resources in the DEVS models

We now include these concepts in the Atomic DEVS models discussed before. As only
two types of nodes need resources, we only consider these two. Additionally, the resource
handler, being the entity which is responsible for the acquisition and release of resources,
is modeled as well. To handle the communication between these nodes and the resource
handler, all relevant nodes are augmented with a resouce_out and resource_in port, all
connected to the single resource handler.

1. Activity. For the activity, we merely add two new states to make a request for the
resource and wait for the reply. Only upon a positive reply does the activity start its
execution and its ¢, ocess Starts to count down. When activity execution is finished,
resources are released in the same output function where the control token was passed
on. A DEVS specification is given in Equation (5.9).

Activity = (X,Y, S, Ginit, Oint, Oext, A, ta) (5.9)

X = {ControlToken, Resources}
Y = {ControlToken, Request, Release}
S = {active, inactive, request, waiting }
ginit = (inactive,0.0)
dint = {active — inactive, request — waiting}
dext = {((inactive,_), ControlToken) — request,
((waiting,_), Resources) — active}
A = {active — [ControlToken, Release],
request — [Request|}
ta = {active — tprocess, inactive — 0o,

request — 0, waiting — oo}

2. Multi-Instance. The Multi-Instance node is a bit more difficult, as it considers
multiple instances, all requiring the same resources. When the node gets the control
token, it immediately requests all resources for all instances to be spawned. Upon
receiving a positive reply from the resource handler, the .55 for one instance is
sampled from the distribution and the countdown starts. These timers run in parallel,
modeling the concurrent execution of a multi-instance node. Note that each instance
samples from the same distribution, although the actual times might vary. Instances
that acquired their resources at the same time, might thus finish at different times.

118

CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Only when all instances have finished execution will the model passivate again. A full
DEVS specification is not presented in this paper due to space restrictions, although
it can be found in our implementation.

. Resource Handler. The resource handler is responsible for keeping track of resources.

Incoming requests are put in a queue, and, when resources are available, the request
is processed. Processing a resource means that the resources are acquired in the
resource handler (i.e., a counter is decremented), and a reply is sent to the requester.
When a request for a release is sent, the resource is immediately released (i.e., a
counter is incremented).

The logic of the request handler can be complex, such as request prioritization,
different resource types, and deadlock resolution. In our case, we only present a
minimal example resource handler, managing a single type of resource, for which
each request operates on exactly one resource instance. This Atomic DEVS model is
given in Equation (5.10).

ResourceHandler = (XY, S, Ginit, Oint, Oext, A, ta) (5.10)

X = {Request, Release}
Y = {Resources}
S =[Request] x N
ginit = (([], resources), 0.0)
e = {([Ro],) = (R, — 1)}

dext = {((([R],9), €), Request) — ([R, Request],),
((([R],1),e), Release) — ([R],i+ 1)}
A ={([R,],i) — Resources(r)}
ta = {([R],i>0) =0,
(l,4) = oo,
([R],0) — oo}

5.5.4 Performance evaluation

After mapping the process model to the DEVS model and simulating it, the performance
metric of transit time is obtained. Figure 5.37 shows the performance results of our running
example, charted against the number of available resources. The chart shows the standard
box plot features (i.e. minimum, first quartile, median, third quartile, maximum, and
outliers) of the single simulation cases. For each scenario, 1000 simulations have been
carried out.

The sharp decrease of the transit time is due to the more and more parallel threads spawned
from the HIL Simulation activity (Figure 5.33). We spawn at most 11 concurrent activities
(10 simulators and 1 model checker). This explains why with 6 available resources,

5.5. TRANSLATING PROCESS MODELS TO DEVS 119

o
o
S 4
®
.-
QL © E o
o
=
= o
Z g g o
gﬁ‘ o o o o o
—— ﬁ g 8 °
= 1 E 8 8 8 8 E
8 | - o o 8 8 8 8
N % —o- - - - o - - -
- : =
T T - = - - - 5
T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11

Available resources [#]

Figure 5.37: Results of the simulations.

time doesn’t decrease further: we need at least two “phases” of executing the activities.
Subsequently, when 11 resources are available, we see another minor decrease in time,
since then all activities can then execute concurrently. More than 11 resources are not
shown, as then we just have spare resources which are never used.

Note that there are several “bands” in which results are clustered. Indeed, the majority
of the execution runs are clustered in the boxplots, which for the most likely scenario.
However, we see that there are scenario’s that cluster together: these values depend on the
decision that was made at the end of the process. If we immediately decide that results
are fine, the lowest “band” of results is achieved. Similarly, the topmost results indicate
that the decision was made to redo the modeling for several times. Of course, results vary
depending on the model and used parameters.

Such results can be used in various ways for process optimization. Given an appropriate
cost function of resources, one can identify the appropriate amount of resources to be added
to the process for an optimal configuration. The chart shows no relevant decrease of the
transit time after case 5, which (in the absence of a more complex cost function) may denote
the optimum of the amount of added resources. The chart also shows a large variance
in transit times, shown by the circles denoting the outliers. This is an indicator of brittle
processes with a hidden hazard factor, which should be investigated.

5.5.5 Conclusions

In this paper, we presented an approach for simulating performance metrics of engineering
process models. Our approach relies on the automated translation of engineering process
models to DEVS models, and the capability of the latter to simulate stochastic performance
metrics, such as transit time. Our approach supports each of the van der Aalst control
patterns [194]. This means that our approach is compatible with the vast majority of process
and process modeling formalisms. Our proof-of-concept implementation integrates with
the FTG+PM framework seamlessly. We presented how stochastic behavior and resource

120 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

constraints can be modeled in order to gain more realistic performance metrics.

In future work, we plan to further investigate DEVS simulations for different performance
metrics, and feeding back the results to improve the process. The approach presented in this
paper integrates with our inconsistency management framework [45], where inconsistencies
and their quantitative metrics [46] serve as performance metrics to the process.

5.6 A multi-paradigm approach for modeling service in-
teractions for engineering processes

In this section, we present Contribution 8 of this work: a formalism for modeling complex
engineering processes. The majority of this section has been published in [202]. The results
of this section have not been integrated into the prototype tooling. As opposed to the rest of
the contributions, a more simplistic illustrative example (Section 5.6.2) is used in order to
keep the contributions understandable. (See Figure 5.39.)

Engineering processes aim at depicting how the various domain-specific models are used
during development. Models are passed around in the process and are being worked
on within the activities of the process. These activities are either manual or automated,
and typically make use of various services offered by engineering tools. If modeled in
an appropriate formalism, the process can be analysed and subsequently enacted [146].
The enacted process orchestrates the engineering services, thus enabling a higher level of
automation in the flow of the modeling work in general.

Orchestration requires a detailed specification of the interaction protocol with external
services. In manual activities, user input is required, often through a (visual) modeling
and simulation tool (for example, to create a model). In automated activities, a service
(or multiple services) might be invoked and communicated with in an automated way
(for example, to run a simulation). Such interaction protocols exhibit timed, reactive,
and concurrent behaviour, making their formal analysis paramount in industrial-scale
engineering processes. The analysis of the interaction protocols can improve its overall
process with regards to transit time, scheduling, resource utilization, and overall model
consistency. These interactions are, however, typically specified in scripts or program code,
which interface with the API of the tools providing the services. Such an encoding of the
interaction protocols inhibits their formal analysis.

In this section, we propose to explicitly model the external service interaction protocols
in the activities of engineering processes using SCCD [203], a variant of Statecharts [84].
Sccp is appropriate for modeling timed, reactive, autonomous, and dynamic-structure be-
haviour, as it has native constructs available for it. This facilitates the implementation of the
interaction protocols, and enables future analysis of the service orchestration. Additionally,
we provide execution semantics for the overall process, expressed as an FTG+PMmodel, by
mapping it to an SCCD model, augmented with process semantics. This avoids the need to
define operational semantics for activity diagrams, which is non-trivial.

5.6. MODELING SERVICE INTERACTIONS 121

5.6.1 The Statecharts + Class Diagrams (SCCD) formalism

Statecharts is a formalism for modeling timed, reactive, autonomous systems, and was
introduced by Harel [84]. Its main abstractions are states that can be composed hierar-
chically and orthogonally; transitions between these states that are either spontaneous, or
triggered by an external event (coming from the environment), an internal event raised by
an orthogonal component, or a timeout; and actions that are executed when a transition is
executed.

While Statecharts is an appropriate formalism for describing the timed, reactive, au-
tonomous behaviour of systems, it does not allow to model a system with dynamically
changing structure. In many systems, objects are continuously created and destroyed. The
Sccb formalism [203] extends the Statecharts formalism with the concepts of the Class
Diagrams formalism (classes and relations, which model structure). Each class in the class
diagram is associated with a definition of its behaviour (in the form of a Statecharts model).
At runtime, an object can request for a class to be instantiated as an object, and relationships
between classes to be instantiated as links between objects. Links serve as communication
channels, over which objects can send and receive events. There is exactly one default class,
of which an instance is created when the system is started by the runtime.

5.6.2 Motivating example

Our motivating example is the optimization of the number of traffic signals in a railway
system. The system consists of sequences of railway segments, each guarded by a single
traffic signal. For safety reasons, only one train is allowed per railway segment. Adding
traffic signals increases the throughput of the system, though increases the cost of mainte-
nance. The ideal number of traffic signals is therefore dependent on the characteristics of
the system (e.g., train inter-arrival time, acceleration, total length of the track).

The optimization is done by modeling the system with the DEVS formalism [223]. Our
problem requires several atomic DEVSmodels, such as a generator, collector, railway
segment, and a traffic signal, and a single coupled DEvVSmodel, coupling these atomic
models together. This model is subsequently simulated for a fixed set of parameters,
while varying the number of traffic signals over the total length. All simulation results are
collected, the cost function is evaluated for all of them, and the number of traffic signals
with the minimal cost is returned.

This process is shown in Figure 5.38, where we first design the various atomic models
manually, though concurrently. As such, multiple engineers can model different aspects of
the system concurrently. Additionally, a set of parameters is chosen, for which to simulate
the model. Afterwards, the created atomic DEVSmodels are used to create the coupled
DEvsmodel. It is this collection of models that is passed on to the optimization step, which
plots out the costs of various configurations.

We implemented this example in the Modelverse [207, 204], our prototype Multi-Paradigm
modeling tool. Simulations were performed using PythonPDEVS [205] as an external
service.

122 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

v v v v

Model Model Railway Model Generate
Generator segment Collector parameters

A

Combine
models

v

Optimize |:| Activity
model Model
r:ﬁﬁw ¢ —P Control flow
_ » Data flow

Figure 5.38: The process model of the example.

5.6.3 Modeling activities using SCCD

We first turn to the definition of an activity. Activities are the atomic actions being executed
throughout the enactment of the process. Up to now, we were agnostic of what is the content
of the activity, as we merely require it to be executable. Most often, it is hard-coded in
some programming language or provided as an executable binary. When control is passed
to a specific activity, the activity executes.

5.6.3.1 Problem statement

Activities can be hard-.coded, but code is arguably not the optimal formalism to describe an
activity. While activities can be limited to executing some local computation, it frequently
requires external tool interaction. Such external tools can be anything, for example a
(highly-optimized) simulator, or a modeling tool. In such cases, hard-coding the potentially
complex interaction protocol is far from ideal. Indeed, the behaviour of protocols exhibits

5.6. MODELING SERVICE INTERACTIONS 123

timing (e.g., network timeouts, delays), reactivity (e.g., responding to an incoming message),
and concurrency (e.g., orchestrating multiple tools concurrently).

In our running example, we see this exact problem occurring in the “optimize model”
activity. In this activity, we want to optimize the cost for a given set of parameters, varying
a single parameter within a given range. Concretely, we want to vary the number of traffic
lights in the simulation, while keeping all other parameters fixed. In the end, the activity
needs to return the optimal solution; that is, it returns the optimal number of traffic lights
for the given set of parameters. In essence, the same simulation is ran with slightly different
parameters. This is, however, embarrassingly parallel: each simulation run is independent
of every other simulation run. Therefore, we desire to run some simulations in parallel.
Doing this the usual way (i.e., with code) is non-trivial: concurrency requires threads (which
is problematic [115]), reactivity requires the use of a main loop (possibly with polling), and
timeouts require interruptable sleep calls.

5.6.3.2 Approach

The previous discussion illustrated that code is not ideal to specify timed, reactive, and
concurrent activities, which is the case with service orchestration. We propose to use a
formalism equipped with better support for these requirements: SCCD. Some activities
are therefore ideally modeled with SCCD, where they can automatically make use of
its features. On the implementation side, SCCD manages all concurrency, timing, and
reactivity natively. Indeed, concurrency is supported by orthogonal components and
dynamic structure, reactivity is supported by event-based transitions, and timeouts are
supported by after events.

In our running example, we see that these features of SCCD are all required in the “optimize
model” activity. Concurrency is required to spawn several instances of the simulator
concurrently, and the number is only known at runtime, as it depends on the number of
possible configurations. Reactivity is required to handle the results of these individual
simulators, which should be aggregated. Timeouts are required to handle network timeouts
and potential infinite simulations.

In Figure 5.39, we show how the example activity is modeled with SccD. Thanks to SCCD,
we can spawn an arbitrary number of “Simulation” objects, by sending out an event to the
object manager, thereby allowing for dynamic structure (implementing concurrent). After
a simulation is spawned dynamically, for each configuration to evaluate, we wait for results
to come in, encoded in events (implementing reactive behaviour). Each of the spawned
simulations serializes the model, and sends it to the actual external simulator, after which
the simulator is started externally. If no response is received from the simulator during
initialization before a timeout occurs, we retry the connection (implementing timing). If
the simulation was started successfully, but no result comes in before a timeout occurs, we
determine that the simulation has crashed, is stuck in an infinite loop, or ran out of memory.
Independent of the reason, we determine that the simulation result is not the optimum, and
subsequently ignore the simulation run. When all simulation results are in, or we have
waited sufficiently long, we return the optimal parameter that we found.

124 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

simulations

AutomaticActivity Simulation

- model: Model - model: Model

- configs: List - connect_attempts: Integer
/_ - results: SimulationResult \ - data: String
f - result: Integer N\

initializing serializing
start_simulation

raise out_service::connect

in_service::connected /
raise out_service::simulate(data)

(initializing] [check_configs_left

spawning_simulation

N\
[configs_left()]

/ raise create_instance(Simulation,

model,
creating_object

params.pop())
instance_created(id) /
raise start_instance(id)

starting_object

i 7
Co”eCtmg—reSUIts 5/ raise simulation_done(result)

(id) /

raise id::start_simulation

waiting) (connecting
after(10) after(1)

— fretry01/)
) service_timeout raise out_service::connect
5
g
& connection_timeout
(<)
S

in_service::simulation_result(result) / [tretry()]

[!configs_left()]

instance_started

after(20) /
raise activity_done(min(simulation_results))

5 .
N T mmen)d)\ (e)

Figure 5.39: Automated activity: protocol implemented to communicate with an external
service.

5.6.4 Mapping Processes to SCCD

Orthogonal to the previous section, where we modeled the contents of the activities using
Sccp, we now look at the process model itself. The process model chains the different
activities, dictating the order in which they should be executed, possibly concurrently. Of
specific interest is the fork/join operation, which executes multiple activities concurrently
and synchronizes when both have finished. This is ideal for manual activities, for which
multiple developers might be involved, who can now model concurrently.

5.6.4.1 Problem statement

Despite the advantages of concurrent manual activities, implementing this in a truly parallel
fashion is non-trivial. Basic implementations merely dictate an arbitrary order between
different concurrent activities, without actually executing them in parallel. This was origi-
nally the case in our prototype tool, the Modelverse, because true concurrency is difficult
and relies on many platform characteristics. Examples are the choice between processes
or threads, their interleavings, how the implementation platform supports parallelism, and
how data is shared between activities. These are only a small selection of crucial questions
regarding the implementation of process enactment. A significant investment to implement
and maintain this infrastructure is needed if processes are implemented using traditional
(code-based) techniques.

For our running example, this is shown in the concurrent manual activities in the beginning
of the process: creating the various DEVSmodels. These models are independent, and
can easily be created in parallel. Nonetheless, if there is no support for activities to run
concurrently, all work is effectively sequentialized, significantly increasing the duration of
the overall process.

5.6. MODELING SERVICE INTERACTIONS 125

5.6.4.2 Approach

The problem arises due to the lacking native support for concurrency in many imple-
mentation languages. As such, implementing process model enactment requires many
workarounds to achieve true parallelism. We note, however, that languages do exist that
natively support notions of concurrency, for example SCCD. Nonetheless, SCCD was not
designed to model processes, and is therefore not suited for direct modeling. In summary,
we want users to model using activity diagrams, as they are used to, but for execution
purposes, we transform the modeled process to an SCCD model. This transformation
defines denotational semantics for process models, instead of operational semantics (an
executor).

While other such languages exist, we favour SCCD as this allows us to reuse the SCCD
execution engine, needed to execute activities. Additionally, we see many future opportuni-
ties for our approach if both orthogonal dimensions (modeling activities with SCCD, and
mapping the process to SCCD) are combined: both share the same (hierarchical) formalism,
and can therefore potentially be flattened.

Mapping activity diagrams to SCCD can be achieved through the use of model transfor-
mations, which are often referred to as the heart and soul of MDE [170]. With model
transformations, a Left-Hand Side (LHS) is searched throughout the model, and, when
matched, the match is replaced with a Right-Hand Side (RHS), if the Negative Applica-
tion Condition (NAC) does not match at the same time. In our case, the LHS consists
of activity diagrams elements, such as the activity construct, while the RHS copies the
activity diagram construct (thereby leaving the activity diagram intact) and creates an
equivalent SCCD construct (i.e., an orthogonal component). Defining such a mapping is
significantly less work than defining operational semantics from scratch, as we will show.
Additionally, by mapping to SCCD, there is only one implementation of an executor for
timed, reactive, autonomous, dynamic-structure behaviour that must be maintained (the
SccD executor).

A naive mapping to SCCD would map forked activities to orthogonal components, each
spawning and managing the execution of the activities; joins synchronize the execution by
transitioning from the end states of these components. While intuitive, this mapping runs
into problems with non-trivial concurrent regions. For example, consider two parallel forks
that interleave: the two forks cannot be independently mapped, as they interact with one
another, resulting in a different mapping to orthogonal regions.

We define a more generic mapping, based on orthogonal components, one for each activity
diagrams construct. The order in which the orthogonal components are enabled, is defined
by the condition that is present in the orthogonal component itself. Each orthogonal
component checks whether it has the “execution token”, and if so, it passes on the token.
All orthogonal components execute concurrently, meaning that if multiple tokens exist,
multiple orthogonal components operate concurrently. Depending on the type of construct,
the behaviour changes: activities execute and pass on the token upon completion, a fork
splits the token, a join merges tokens, and a decision passes the token conditionally. In the
remainder of this section, we describe our transformation rules for each activity diagram
construct in detail.

126 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

5.6.4.3 Transformation rules

The following transformation rules are executed in the presented order. Before we actually
start the translation, however, we first perform a minor optimization step: subsequent
fork operations are merged into a single fork. This is not performed for performance
considerations, but makes the mapping slightly easier. This optimization thereby removes
subsequent forks, allowing us to skip this case in the remainder of the mapping. The same
happens for join nodes.

Optimization

Figure 5.40 presents the optimization of fork nodes. The first (topmost) rule makes sure
that the first fork directly links to all targets of the second fork, removing the target from the
second fork. This rule keeps the model semantically equivalent, as the second fork now has
no successors. In the second (bottommost) rule, an empty fork node is removed, as it has
no outgoing edges any more. This rule again maintains semantic equivalence, as the second
fork has no successors left. Similar rules exist for the optimization of fork nodes.

1 1

4 :Fork .

| , :

5 :Fork 3 :Fork .
:ProcessNode/

|

| | 3 :Fork I 1—
2 :Fork

|

|

Figure 5.40: Optimize rules.

Orchestrator

Figure 5.41 presents the transformation rule for the orchestrator, which executes once.
Each subsequent transformation rule extends a single composite state with an orthogonal
region. The orthogonal regions execute all elements of the activity diagram in parallel,
waiting for a condition to become true. The first step consists of creating the composite
state and providing it with an orthogonal region that catches a spawn event, and performs
the spawning of an activity. By defining this code here, it does not have to be reproduced
throughout the other orthogonal regions, maximizing reuse.

5.6. MODELING SERVICE INTERACTIONS 127

Orchestrator|*
2
initializing

Figure 5.41: Orchestrator rule.

Activity

Figure 5.42 presents the transformation rule that executes for each activity. Activities are
relatively easy to map, as they merely require the spawning of their associated activity
(which, in our case, is modeled by another SCCD class). This is achieved by sending a
spawn event to the orchestrator, and transitioning to a “running” state. We stay in this state
until we have determined that the spawned activity has terminated, after which we mark the
current activity as executed (i.e., we pass on the token).

T 2
3
L | :Activity |—>| :ProcessNode |
:Activity

2 3 12

4 -
F : 8

4 --

-

Figure 5.42: Activity rule.

Fork

Figure 5.43 presents the transformation rule that executes for each fork node. Forking
requires a single token to be distributed among all of its successors, without doing any
computation itself. As such, our transformation rule adds an orthogonal component which
continuously polls whether or not it has received the token. If it receives the token, it
immediately passes the token to all of it successors simultaneously.

Join

Figure 5.44 presents the transformation rule that executes for each join node. Joining is
slightly more complex: it has to check for multiple tokens, before becoming enabled. When
enabled, it consumes all of these tokens and passes on the token to its own successor, of
which there is only one.

128 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

1
:Fork 2
running

Figure 5.43: Fork rule.

1 . 4
3 :Join 1 :Join
Z, 3 '
'
(__running
- l
2 '
'
- :ProcessNode || '

Figure 5.44: Join rule.

Decision

Figure 5.45 presents the transformation rule that executes for each decision node. The final
construct that we have to map, is the decision node. Similar to all previous nodes, we check
whether we have a token to start execution. Depending on the input data that we receive,
we decide to pass on the token to either the true- or the false-branch.

1 . runnin
:Decision

1 8

:Decision >

running

Figure 5.45: Decision rule.

5.6.4.4 Results

The resulting mapped model for our motivating example is shown in Figure 5.46. The
Orchestrator class is the default class of the SCCD and spawns the other classes (i.e., the
activities) depending on its orthogonal components. These other classes are, for example,
the optimization activity previously described in Figure 5.39. Other classes are not shown
due to space restrictions.

5.6.5 Conclusions

In the context of MPM, service orchestration is essential for the combination of multiple
external tools. Nonetheless, current approaches do not sufficiently address the challenges it
poses: timed, reactive, and concurrent behaviour. In this paper, we propose an approach

5.6. MODELING SERVICE INTERACTIONS 129

| — Simulation
Model Generator Optimize Model | simulations_}
n >~ model: Model
- model: Model - connect_attempts: Integer
- configs: List - data: String
- results: SimulationResult - result: Integer
Orchestrator,
|

/ FunRning \
; RSN TEN gentirirt sement: | reameras!
e @ N e e
(Gone) | (creating) | . (running) | (running)
: M Mo

Model |
Collector |

: :
| (waitng | (g
’ (ronming) | | (ranning)

Figure 5.46: Process model from Figure 5.38 mapped to SCCD.

for handling these problems by two contributions, based on SCCD (a Statecharts variant),
which has native notions of timing, reactivity, concurrency, and dynamic structure. First,
activities themselves are modeled using SCCD, allowing external service protocols to be
more effectively specified. Second, the process model is transformed into an equivalent
Sccb model for execution. This preserves the modeling abstractions provided by activity
diagrams, while gaining the execution of SCCD.

In future work, we plan to consider the benefits of combining these two orthogonal dimen-
sions of our approach. Indeed, as both the process and activities are modeled in SCCD, they
can be combined into a single SCCD model. This single SCCD model can subsequently
be analysed [150] or debugged [136], without any additional work. To achieve the valid
and sound construction of this combined SCCD interaction/process model, composition
rules of the single interaction SCCD model need to be investigated. Our previous work on
process-oriented inconsistency management in MPM settings [45] is a prime candidate to
be augmented with such an approach. Software Process Improvement (SPI) techniques in
general can greatly benefit from our approach as well.

130 CHAPTER 5. PROCESS-ORIENTED INCONSISTENCY MANAGEMENT

Chapter 6

Proof of concept

In this section, we elaborate on the utility of our methods through two demonstrative exam-
ples. Both examples are of a system engineering nature and are based on the engineering
process of a real-life autonomous guided vehicle (AGV).

The two examples are discussed in Section 6.2 and Section 6.3, respectively.

6.1 Introduction

Figure 6.1 shows the automated guided vehicle, of which engineering process is referred in
our demonstrative examples later in this chapter.

Figure 6.1: The automated guided vehicle (AGV) discussed in our demonstrative examples.

131

132 CHAPTER 6. PROOF OF CONCEPT

The AGV is designed to transport payload on a specific trajectory between a set of locations.
The drivetrain is fully electrical, using a battery for energy storage and two electric motors
driving two wheels. Being a complex mechatronic system, the requirements of the AGV
are specified by stakeholders of the different involved domains, such as

e mechanical requirements: sufficient room on the vehicle to place payload;

e control requirements: following the defined trajectory with a given maximal tracking
error;

e clectrical requirements: autonomous behavior, defined as the number of times that it
needs to be able to perform the movement before needing to recharge;

e product quality requirements: the previous requirements should be achieved at a
minimal cost.

Figure 6.2 shows the conceptual geometric design of the AGV. The design team chose a
circular platform, with two omniwheels in addition to the two driven wheels.

Wheel

Wheel

Figure 6.2: Front and top view of the conceptual design of the AGV.

The design process needs to determine the sizing of the different components (motors,
battery, platform) and tune the controller. This process is decomposed into multiple
dependent design steps, such as motor selection, battery selection, platform-, controller-,
and drivetrain design. The process requires an interplay between different domain-specific
engineering tools, such as CAD tools for platform design, Simulink and Virtual.Lab Motion
for multi-body simulations employed during controller design, AMESim for multi-physical
simulations during drivetrain design. Motor and battery selection activities use databases
maintained in Excel files. Since these tools work with different modeling formalisms,
reasoning over the consistency of the system as a whole properties poses a complex
problem to overcome. By explicitly modeling linguistic and ontological properties and
associating them with the engineering activities, patterns of inconsistencies can be identified
and handled.

Naive solution using Matlab

A naive solution has been given by our industrial partner to formalizing the process for
automation purposes. To this end, a Matlab script has been developed to capture the

0 J oUW N

6.1. INTRODUCTION 133

essential steps of the process. The outline of this script is shown in Listing 3. Listings
22-36 of Appendix D document this script in details.

The script first initializes the variables used throughout the process, such as initial condi-
tions of simulation parameters, and contents of catalogues to choose components from.
Subsequently, seven iterations of the engineering process are hard-coded.

Listing 3 Outline of the original design process encoded in Matlab.

$%$Initial conditions, variables, etc
designSteps = containers.Map();

% Motor selection design step
motorSelection.parameters = {’Pdes’;’Peff’;'m’';’'x';"1’};
motorSelection.inputs = {’Pdes’};
motorSelection.outputs = {'m’;’1’;’x’;’Peff’};
motorSelection.analytical = motorAnalytical;
motorSelection.functionCall = ’ [Peff,m,1,r] = MotorSelectionF (Pdes)’;
motorSelection.data = containers.Map () ;
designSteps (‘motorSelection’) = motorSelection;

% Battery selection design step
batterySelection.parameters = {’Cdes’;’Ceff’;'m’;’1’;'w’;"h’};
batterySelection.inputs = {’Cdes’};
batterySelection.outputs = {'m’;’1’;’w’;'h’;’Ceff’};
batterySelection.analytical = batteryAnalytical;
batterySelection.functionCall = '’ [Ceff,m,]1,w,h] = BatterySelectionF (Cdes)’;
batterySelection.data = containers.Map () ;
designSteps (' batterySelection’) = batterySelection;
3%(...)

$%Iterations of the engineering process

$ ITERATION 1
motorSelectionPoint ('Pdes’) = PdesV(end); ¢ [kW]
motorSelectionPoint = [motorSelectionPoint;call (motorSelection,motorSelectionPoint)];
add (motorSelection.data,motorSelectionPoint) ;

batterySelectionPoint ('Cdes’) = CdesV(end); ¢ [Ah]

batterySelectionPoint=[batterySelectionPoint;call (batterySelection,
< batterySelectionPoint)];

add (batterySelection.data,batterySelectionPoint) ;

assignInputs ('mechDesign’) ;
mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];
add (mechDesign.data, mechDesignPoint) ;

3% (...)

% ITERATION 2
motorSelectionPoint ('Pdes’) = PdesV(end); % [kW]
motorSelectionPoint = [motorSelectionPoint;call (motorSelection,motorSelectionPoint)];
add (motorSelection.data, motorSelectionPoint) ;

batterySelectionPoint (' Cdes’) = CdesV(end); ¢ [Ah]

batterySelectionPoint=[batterySelectionPoint;call (batterySelection,
<~ batterySelectionPoint)];

add (batterySelection.data,batterySelectionPoint) ;

$%(...)

% ITERATIONS 3-7
S(...)

oo

oo o

$Function definitions
$(...)

It is far from obvious from this description, but every iteration consists of the same activities.
These are the following.

134 CHAPTER 6. PROOF OF CONCEPT

Motor selection Selects the first appropriate motor from a list (catalogue), based on the
current precondition of the desired minimal power. (See Lines 2-4 in Listing 24.)

Battery selection Selects the first appropriate battery from a list (catalogue), based on the
current precondition of the desired minimal capacity. (See Lines 6-8 in Listing 24.)

Mechanical design Applies the selected motor and battery to the abstracted mechanical
design and simulates the resulting model. The inputs to this activity are the masses,
geometry and positions of the newly selected components. The result of this activity
is the inertia matrix of the resulting vehicle. The inputs and outputs of the activities
are shown in Lines 27-70 of Listing 22 of Appendix D. Specifically, the input for the
Mechanical design activity are shown in Lines 48-56.

Control optimization The control should be optimized in order to fulfill the AGV’s mis-
sion criteria. The inertia matrix is taken as an input and as an output, the required
power of the motor and the torque profiles of the wheels are produced.

Electrical simulation The electrical simulation takes the torques and simulates the elec-
trical model to check if the battery can provide enough energy at every point of the
simulated trajectory to the motor in order it to generate the appropriate torques. As a
result, the feasibility of the configuration is obtained. If the electricity or the power
are not sufficient to keep the vehicle on the desired trajectory, the process will start a
new iteration.

Select next point To determine how far the current solution is from a feasible/optimal one,
a response-surface methodology (RSM) is used. We abstract from this step, as it is
not necessary for our purposes. It is, however, included in the demonstrative example
to demonstrate full correspondence.

Structure of this chapter

In Section 6.2, we demonstrate that our approach is capable to fully reproduce the engi-
neering process previously captured as a sequential Matlab script by our industrial partner.
Subsequently, in Section 6.3, we re-model the whole process leveraging the capabilities
of our approach, optimize the process for consistency, enact it while ensuring service
integration, and manage inconsistencies during the enactment.

6.2 Modeled reproduction of the hard-coded process

In our first demonstrative example, we take the Matlab script discussed at the end of
Section 6.1, and re-model it so that the semantics will still be mainly given by Matlab. The
aim of this exercise is to demonstrate the ability to facilitate one-to-one correspondence
between an FTG+PM process model and a hard-coded Matlab script.

Figure 6.3 shows the process model of the demonstrative example. To reproduce the original
Matlab-encoded workflow, only the PM and the typing FTG are needed.

6.2. MODELED REPRODUCTION OF THE HARD-CODED PROCESS 135

motorSelectionPoint :
MotorSelection €====== d-B- - MotorSelection
«typedBy» k
J
.)
° batterySelectionPoint :
BattrySelection €= ===== d-B_ == BattrySelection
«typedBy» \
J
° mechanicalDesign :
MechanicalDesign €= == === =——— MechanicalDesign
«typedBy» \)
controlOptimization
ControlOptimization il :t;p-ed-B\;»- = 3 ControlOptimization >
electricalSimulation :
HEGGIEINITENNEPE = = = = = = = = = = ElectricalSimulation
«typedBy»
N J
selectNextPoint :
NextPointSelection A Sl NextPointSelection
«typedBy» C
NO
Autonomous?

Figure 6.3: The FTG+PM of the demonstrative example.

The decision point after the elementary engineering operations is called Autonomous?, and
it represents the fact that the vehicle is able to carry out its mission.

The artifacts flowing through the process would be attributes, properties and simulation
traces, but in this case, it is Matlab that takes care of the actual execution semantics. After
having modeled the structure of the process, the correspondence with the appropriate parts
of the Matlab code has been facilitated and provided to the transformations of the model
shown in Figure 6.3. Our tool allows associating Matlab, Java and Python scripts with

N

136 CHAPTER 6. PROOF OF CONCEPT

the transformation definitions in order to provide semantics. Figure 6.4 shows that the
semantics of the motorSelectionPoint activity are given by the motorSelection.m
script. The script is, in fact, associated with the MororSelection transformation, so any
activity typed by this transformation will be given semantics by the motorSelection.m
script. To tailor the script to the specific activity, execution parameters can be specified
for the activity, and used with a specific syntax in the scripts. (For Matlab, itis args [i],
where 7 represents the index of the parameter in the parameter list. The name and the value
of the parameter can be obtained using the args [i] .name and the args[i] .value
calls, respectively. The list of parameters is a comma-separated list of semicolon-separated
key:value pairs.)

& new Process Model 53
hd: A TAEER-Il IR - . £ 1. NS - IR A AIAd. | & g

!

motarselectionPoint :\
D
«typedBy»

[T Properties 5%

4+ Automated Activity motorSelectionPoint

Activity Properties ~ Execution

Documentation

Semantic I Script location clicmiagvimeterSelection.m I

Style Execution parameters (3)

Appearance

Figure 6.4: Typed activity with the Matlab script motorSelection.m providing the execution
semantics.

The motorSelection.m script is fairly simple, as shown in Listing 4.

Listing 4 Matlab script providing semantics for the MotorSelection transformation.

motorSelectionPoint ('Pdes’) = PdesV(end); & [kW]
call (motorSelection, 'motorSelectionPoint’) ;
add (motorSelection.data, motorSelectionPoint);

After having lifted all the activity-related parts of the script, the rest of the script is treated
as a library, which provides the functionality to the activities.

Finally, as Figure 6.5 shows, the built-in functionality of generating Matlab scripts, can be
invoked via the main menu available from the process modeling canvas.

6.3. MODELING BY OUR APPROACH 137

e B

Layout
Reset Origin Ctrl-Home

Validate disgrem

Find Cti+Alts Shft+F
Quick search culeo

™

Show EClass information

0w

[Properies £
+ Process Model matlabgen
~ Group.

Locstion () |c\Users\steve\ Documents\ MATLAB\ ManualSolutionGen.m

Root package ()

Figure 6.5: The built-in functionality for generating Matlab scripts shown in the menu.

6.3 Modeling by our approach

In our second demonstrative example, we take previously elaborated example and improve
its process model in order to demonstrate the capabilities of our approach. The process
model has been created using the domain-specific knowledge from our industrial partners.
Informal discussions and collaborative modeling sessions have been conducted to access
the tacit knowledge in form of socialization [138]. As suggested by Hutchinson et al. [94],
such an approach works well and with a minimal bias in case of MDE professionals.

In this section, we aim at demonstrating the four important stages of our approach: (i) pro-
cess modeling; (ii) modeling of the attributes, properties and constraints; (iii) off-line incon-
sistency management; and (iv) enactment and on-line inconsistency management.

6.3.1 Process modeling

First off, we have to model the process. We improve the process so that the battery selection
and the motor selection activities are carried out in parallel. This will lead to new types of
inconsistencies which have to be managed.

Figure 6.6 shows the PM of the demonstrative example with the activities and artifacts;
and Figure 6.7 shows the FTG typing the process. In the following, we elaborate on the
elements of the process model by walking through its activities.

138 CHAPTER 6. PROOF OF CONCEPT

£ setUptiotorns
MotorDBSetup

o KokamlargeBatieries

5 motords atiab

£ setUpBattenon
BatteryDBSetup
|

@ batenon vt

£ setintilConditons
SetinitilConditionsSpec

i
(s) (B)

—|
& lectedbattery [‘ o selectedMotor
8 Matldb LBV

(g simuiteMechanicalvocel
SimulateMechanical

MechanicalModel - | |
LY
simulationResults
¥ Matiab

"
MBM - VirtualLab,
LIl =

portPlant
POVLMZSimulink

CE

5 ot Simulnk

£ desanContioler

& onvoodel || ControlDesign
8 Simuink

£ cosmuntewinTrgjectory
imulateControl

£ checkMotorouer
CheckTrace

W 2eptiecricaviodel
UpdateElectricalModel

£ checkautonomy
CheckTrace

Figure 6.6: The PM of the demonstrative example.

6.3. MODELING BY OUR APPROACH 139

= N «r f tionTo» ’
SimulateElectricalModel ransformgonTe «mplgfnents»
\%
«transformedBy»

MotorDBSetup aransformptionTos @

«transformp#onTo»
SimulateControl m
«transforMgtionTo» "

'
aramiqgmedsy>» '
y '
BatteryDBSetup) h
ControlDesign
ionTon

stransformationTo»

UpdateElectricalModel

! arandQMNationTaramiy
firansformplionTo»
'

«implements»

Figure 6.7: The FTG of the demonstrative example.

setUpMotorDB and setUpBatteryDB

Throughout the process, the previously established motor and battery databases are used to
choose components from automatically, based on various conditions.

To this end, first the motor database is set up in the setUpMotorDB activity. The activity
realizes the MotorDBSetup transformation, which initializes a Matlab structure called
motorDB out of the manually defined list of motors.

The setUpBatteryDB activity serves a similar purpose, but for the battery components.
Instead of taking a manually defined list, the activity takes a csv list of battery com-
ponents, called KokamLargeBatteries, and creates a Matlab structure out of it, called
batteryDB.

Both of the steps are given semantics by Matlab. The associated code snippets are listed in
Appendix D. Listing 37 shows the Matlab code for the setUpMotorDB activity; Listing 38
shows the Matlab code for the setUpBatteryDB activity; and Listing 39 shows the original
source of the battery DB: the KokamLargeBatteries collection.

setInitialConditions

The initial conditions of the process are set in the setlnitial Conditions activity. This means
opening a Matlab workspace and defining and initializing the parameters (variables, in
technical terms) used later.

140 CHAPTER 6. PROOF OF CONCEPT

The original process covers these parts in Lines 14-70 of Listing 22 and Lines 1-23 of
Listing 23 of Appendix D.

selectBattery and selectMotor

Subsequently, the actual engineering commences, and that, in a parallel fashion. The battery
and the motor are selected concurrently, in the respective selectBattery and selectMotor
activities. Both of these activities are typed by the ComponentSelection transformation,
which takes a Matlab struct and selects the first appropriate component out of it. In the
case of the selectBattery activity, it is the batteryDB that is being used for the selection; in
the case of the selectMotor activity, it is the motorDB. The selected components, both the
battery and the motor are then stored in the Matlab workspace as variables, under the name
selectedBattery and selectedMotor, respectively.

The Matlab scripts giving semantics to the selectBattery and selectMotor activities are
listed in Listing 40 and Listing 41 of Appendix D, respectively.

The process joins at this point, meaning, both the previous activities have to be concluded,
before proceeding.

simulateMechanicalModel

The first step after selecting the two components, is the mechanical simulation, carried
out by the simulateMechanicalModel activity. The mechanicalModel, again, is a Matlab
structure in this case. The model is a lumped parameter model of the actual mechanical
design, and can in more detailed scenarios, it is usually captured in formalisms like CAD.
In this case, the mechanical model serves the purpose of calculating the inertia of the newly
configured vehicle, hence the simplified model.

The model is a collection of seven variables: the masses of the battery and the motor;
the length-width-depth dimensions of the motor approximated by a cuboid shape; and the
radius and height dimensions of the battery approximated by a cylinder shape.

The result of the simulation is the total mass and the three components of the 3D inertia
matrix. The results are captured in the simulationResults artifact, and are persisted in
Matlab variables.

The Matlab script giving semantics to the activity is listed in Listing 42 of Appendix D.

adaptMBM

In the next step, the first manual activity of the process is being carried out. The multi-body
model consists of a multitude of bodies, joints, and constraints, forces and torques, and
sensors [126].

The activity takes the previously obtained simulation results, and updates the multi-body
model in the VirtualLab.Motion tool [186]. This multi-body modeling tool allows exporting
a plant model compatible with Simulink for control design purposes. This is what is
happening in the subsequent steps.

6.3. MODELING BY OUR APPROACH 141

exportPlant

The exportPlant activity exports a plant model from the updated multi-body model in order
to carry out the control design.

The engineering of the control logic is carried out in Mathwork’s Simulink [?], and therefore,
the plant model is typed by the Simulink formalism.

The result of this activity is shown in Listing 43 of Appendix D.

designController

The designController activity is an automated one. The previously design control model
is updated with the new plant model and the simulation is carried out. As a result, the
controlModel is produced in Simulink.

coSimulateWithTrajectory

The expected trajectory of the vehicle is then taken into account and a co-simulation of the
controlModel and the multi-body model (referred as: the controlled multi-body model) is
carried out.

The results of this activity are (i) the maximal power of the motor required for the control
logic; and (ii) the average torques on the two wheels. These parameters are used later
to decide if the motor and the battery were sufficient (in terms of power and capacity,
respectively) for the eventually correct configuration.

checkMotorPower

The required power of the motor is the checked against the maximal power of the motor
selected in the selectMotor step. If the required power can be provided by the motor, the
process continues, otherwise it falls back to the selectMotor activity.

adaptElectricalModel

Should the selected motor be able to provide the required power, the electrical capabilities
must be checked as well. This means, it should be investigated if the selected batteries
can provide the sufficient capacity to power the motors and generate the sufficient torques
prescribed by the control logic.

First, the electrical model is updated. The electrical model is stored in the AMESim
tool [173].

142 CHAPTER 6. PROOF OF CONCEPT

simulateElectricalModel

The simulation of the electrical model takes the torques obtained in the coSimulate WithTra-
Jectory activity. As a result, the desired capacity is obtained.

checkAutonomy

Finally, the desired capacity is compared to the actual capacity of the battery. If the
battery can provide the desired capacity, the vehicle is deemed autonomous and the process
concludes. Otherwise the process falls back to the selectBattery activity.

6.3.2 Attributes, properties, constraints

Next up, the attributes, properties and constraints have to be modeled in order to later
carry out the inconsistency management. Figure 6.8 shows the PM augmented with the
attributes, properties and constraints. The figure is extremely cluttered due to the heavily
interconnected model. The provided tool helps organizing the model into various views
and within the views, into various layers. This helps with visualizing the parts of the model
which are relevant to specific stakeholders.

Here, we outline the main points of the model.

6.3.2.1 Attributes

The attributes are denoted by the red rectangles on the right side of the process. The dashed
lines represent intents of an activity to an attribute.

desiredPower, desiredCapacity — actualPower, actualCapacity The desiredPower and
desiredCapacity attributes are used to decide whether the power of the chosen motor, and
the capacity of the chosen battery is sufficient or not, respectively.

The desired-* attributes set in the setlnitialConditions activity (hence the modify intent),
and later modified by the simulation activities: coSimulateWithTrajectory and simulateElec-
tricalModel, respectively.

The counterparts of these attributes are the actualPower and actualCapacity attributes,
representing the actual characteristics of the chosen components.

supportTime The supportTime attribute is used to derive the capacity from the current.
Usually, the following equation is used for this purpose:

capacity > / current Drawn(t)dt.

But we simplify this calculation by abstracting to a steady current.

6.3. MODELING BY OUR APPROACH 143

Masses: platform, motor, battery, magnet, total Masses pertaining to the various com-
ponents are captured in the *-mass attributes. When calculating the total mass, the sum of
the platform, the motors (2 of them), the battery and the magnets (2 of them) are take into
consideration.

@w

Figure 6.8: The augmented PM of the demonstrative example.

144 CHAPTER 6. PROOF OF CONCEPT

6.3.2.2 Constraints

Constraints are defined using the previously modeled attributes. L3 relationships are
paramount to the efficient change propagation and early inconsistency detection in the
on-line phase. It is, however, the L1 and L2 relationships that prevail in our demonstrative
example.

Here, we look at some of the demonstrative examples.

LL3: actual-* > desired-* An important L3 constraint type is the one that defines that
the actualPower should be at least as high as the desiredPower; and that the actualCapacity
should be at least as high as the desiredCapacity. These are the relationships that govern the
two loops of iteration in the process, when the checkMotorPower and the checkAutonomy
activities are executed, respectively.

The rules are as follows:
o desiredPower < actualPower

e desiredCapacity < actualCapacity

LL3: capacity = current * supportTime As elaborated previously, we assume a constant
current being drawn from the battery and hence, we approximate the capacity required to
meet the support time with the above formula.

There are two variants of this expression: one for the desired and one for the actual
capacity.

LL3: totalMass — with tolerance The total mass is the sum of the various components
which are characterized by a mass. This entails the platform, two motors, the battery
and two magnets. The model suggests that toralMass = platformMass + motorMass*2 +
batteryMass + magnetMass*2.

In this specific case, the evaluation of the equation is also supported with a tolerance
type of a parameter. We are willing to tolerate an additive error in the 1.0E-6 order of
magnitude. The machinery for the evaluation of the constraint will consider this error
margin when warning for potential inconsistencies, hence implementing the tolerance
principles discussed in [49].

6.3.3 Properties

For demonstrative reasons, we also provide two properties. Both the massOK and isAu-
tonomous properties are derived from a performance value [212] by mapping to the B
domain. Should the associated equation not hold, the property is considered unsatisfied;
should the equation hold, the property is considered satisfied; otherwise the satisfaction of
the property is deemed inconclusive.

6.3. MODELING BY OUR APPROACH 145
6.3.4 Resources

At this point, we assume that the pool of resources always satisfies the resource demands,
so we intentionally model the resources with this in mind. Figure 6.9 shows our resource
model with the typing and availability information. The top three elements represent the
human resources: the mechanical, electrical and control engineers, one available from each.
The bottom five elements represent the tools and licences required to carry out the activities
of the process. It is only the selectBattery and selectMotor activities being executed in
parallel, and these only overlap in using one Microsoft Excel licence each. Thus, two
licences are required to keep the process parallel. Should there be only one licence, the
parallelized process would be transformed into a sequential one, in which the selectBattery
and selectMotor activities are situated in a sequential order.

‘ > Electrical Engineer ‘ ‘ Control Engineer

» MechanicalEngineer

A A A

1 1 1

1 1 1

«typedfy» «typedfy» «typedby»

1 1 1

1 1 1

1 1 1

. mechanicalEngineer . electricalEngineer n ctrlEngineer
< availability: 2 < availability: 1 <+ availability: 1
< Matlab licence ‘ ‘ < Excel licence ‘ ‘ < VLM licence ‘ ‘ ¥ AMESim licence ‘ ‘ ¥ Simulink licence
A A A A A
1 1 1 1 1
1 1 1 1 1
1
«typedBy» «typedy» <<typedlBy» «typedBy» «typedBy»
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
. matlabLicence n excellicence . vimLicence n amesimLicence . simulinkLicence
<+ availability: 1 <> availability: 2 <+ availability: 1 <> availability: 1 <+ availability: 1

Figure 6.9: The resource model of the demonstrative example.

6.3.5 Costs

Finally, the costs are modeled. Our approach supports a multi-objective approach to the
automated optimization of processes. In this case, this would mean providing multiple
cost metrics for the process and arbitrarily selecting one process candidate from the Pareto-
front [51].

In order to keep the demonstrative example fairly simple, we operate with one type of
cost: the execution time of the various activities. Table 6.1 lists the chosen execution
times.

(Due to the inconvenient layout of the cost matrix provided by the tool, we only show a table
at this point. The tool, however, allows modeling the costs efficiently, but the visualization
is not suitable for static documents.)

146

CHAPTER 6. PROOF OF CONCEPT

Activity Execution time [hours]
setUpMotorDB 4
setUpBatteryDB 4
setInitialConditions 0.1
selectBattery 0
selectMotor 0
simulateMechanicalModel 1
adaptMBM 4
exportPlant 0.1
designController 8
coSimulateWithTrajectory 2
checkMotorPower 0.1
adaptElectricalModel 8
simulateElectricalModel 4
checkAutonomy 0.1

Table 6.1: Execution times of the activities.

6.3.6 Off-line inconsistency management

We use the default library of inconsistency patterns and management patterns for the off-line
phase. We do so, because the defaults have been developed while investigating this very
demonstrative example. Therefore, the default libraries are the most appropriate ones
for this particular problem. Additional patterns can be formulated for different problems.
(Caveat: there is no user-friendly interface on the tool for carrying out such an activity.
Such a step should be accomplished by modifying the graph queries and transformations in
the source of the tooling, and recompiling the tool.)

The functionality for the off-line inconsistency management can be invoked via the main
menu available from the process modeling canvas, as shown in Figure 6.10.

Figure 6.10: Invoking the optimization mechanism on the PM.

6.3. MODELING BY OUR APPROACH 147

The optimized process

The optimization results in a slightly transformed process shown in Figure 6.11. To avoid a
cluttered figure, we show only the essential attributes of the model. The rest of the attributes
is left intact, as shown in Figure 6.8.

Figure 6.11: The optimized PM of the demonstrative example.

148 CHAPTER 6. PROOF OF CONCEPT

The inconsistency manager identified the potential deviation between the pairs of desired-
Capacity-actualCapacity, and desiredPower-actualPower as the source of the potential
inconsistency in this model. The model has a built-in mechanism for identifying such
inconsistencies, namely: the two feedback loops. This structure has been identified as an
inconsistency management pattern and evaluated against other management patterns. As
witnessed by Figure 6.11, the cost simulations deemed the feedback loops potentially very
costly, as opposed to the pattern of using design contracts. Indeed, the contractNegotiation
activity is required only once for the particular inconsistency [211]. The linchpin of the
decision, of course, is the estimation as of how much time the contractNegotiation activity
requires. In our experiments, we chose the realistic 8 hours for such an activity.

As a consequence, the proposed managed process features a contract negotiation phase,
which results in a design Contract. The contract imposes contract intents on the follow-
ing attributes: desiredPower, actualPower, desiredCapacity, actualCapacity, motorMass,
batteryMass. By doing so, the contractNegotiation activity conceptually guarantees no
inconsistency will be introduced through these attributes.

As for the performance: the new process shows an improvement of 80%. (A decrease from
about 220 hours to about 43.) This figure, however, is heavily influenced by two facts. First,
the cost calculation is sensitive to slight differences in the time estimations. Second, we
implicitly assumed that negotiating a design contract is an efficient and feasible activity,
which is far from granted in nowadays engineering state of the practice.

The caveat of this step is obvious: we do not model the internal of the design contract.
But this has not been the goal anyways. Modeling design contracts is a research field
of its own, and its foundations have been just recently published by Vanherpen [211].

6.3.7 On-line inconsistency management

Finally, the process is enacted and the on-line inconsistency management mechanism
kicks in. To ensure tool interoperability, two steps have to be taken before enacting the
process.

First, the formalisms used throughout the FTG+PM have to be associated with tools. We
did this previously, as shown in Figure 6.7. The dark blue rectangles represent the tools
implementing the various formalisms. Currently, there is a one-one relation between
formalisms and tools, meaning: tools supporting multiple formalisms have to be added
in multiple instances. (This design decision has been made to short-circuit the non-trivial
problem of multi-formalism tools and their relations to each other.)

Second, the attributes may exist in external tools under different aliases. Sometimes,
attributes are not even persisted in a serialized model or workspace, but are derived and cal-
culated on-the-fly [157]. To overcome this problem, our tool offers a table-based alias-editor
for the attributes. Figure 6.12 shows four attribute-alias pairs. For example, the actualPower
attribute in the motorDB artifact is referred as Peff. Multiple aliases can be listed for a
single attribute, and the machinery will attempt to find one of these names in the artifact
at hand to execute the activity. Specifically, derived features captured as EMF-IncQuery
queries [157] can be referred with the following syntax: @query: [name].

6.3. MODELING BY OUR APPROACH 149

< actualPower motorDB:Peff

<+ actualCapacity batteryDB:Ceff

<+ batteryMass

< desiredPower matlabWorkspace: PdesV
< desiredCapacity matiab\Workspace: CdesV

Figure 6.12: Alias table for some of the attributes.

Now the process is ready to be enacted. The functionality for enacting the process can
be invoked via the main menu available from the process modeling canvas, as shown in
Figure 6.13.

Ctrl-Home

Ctrl Alt+ShiftF
-0

Figure 6.13: Invoking the process enactment mechanism on the PM.

The enactment of the process is managed through a process management console. The
commands are documented in Section 7.5. The automated activities are attempted to be
executed in a headless fashion, i.e. without actually showing the UI of the engineering tool.
This is especially convenient when the tool take lots of resources to boot up in a UI mode,
which is the case, e.g. for AMESim.

AMESim provides a reasonable scripting interface through C and Python. We opted for the
latter one. In case of Matlab, we opted for the managed Java APIL.

In terms of processing overhead, there is a strong distinction between querying a tool
for information and modifying an artifact in a tool. To this end, we distinguish between
query type of requests, and execution type of requests. The modules covering these
functionality are listed in Listing 44, Listing 45, Listing 46, Listing 47 and Listing 48 of
Appendix D.

Figure 6.14 shows the process model that has been enacted, along with the attributes and
capabilities relevant for the on-line inconsistency manager.

150 CHAPTER 6. PROOF OF CONCEPT

Figure 6.14: The enacted PM with the relevant attributes and capabilities of the on-line
inconsistency management phase.

The inconsistency management example shown in Section 5.4 is actually taken from this
demonstrative example, thus the reader is referred to that part of this work. Briefly: the
early detection of inconsistencies is achieved by factoring in the ontological knowledge of
the mass capability always being a positive number. This, along with the interconnections
of the attributes and constraints brings valuable information for detecting inconsistencies
even before they surface on the level of engineering models. The mechanism is described
in Section 5.4.

Chapter 7

Prototype tooling

We support the methodology presented in this work with a prototype modeling and execution
tool. The tool is available from http://istvandavid.com/icm, under the Eclipse Public License
1.0.

7.1 Features

The main features of the tool are in accordance with the contributions of this research. That
is, the tool supports

e modeling of engineering processes (Section 5.1);
e optimizing the modeled processes (Section 5.2);
e enacting the optimized process (Section 5.4);

e integrating external tools as services in the enactment process (Section 5.6).

7.2 Architecture

The tool has been mainly built on top of Eclipse technologies employing model-based
techniques; with some additional features implemented in Python. The functionality sup-
ports the inconsistency management process shown in Figure 1.2. The general architectural
overview of the tool is shown in Figure 7.1, with the main components distinguished by
color coding. (Red: metamodels; green: off-line components; blue: on-line components;
yellow: Eclipse-related productivity functionality.)

Metamodels

As we have employed a general model-based approach to develop the tooling, the func-
tionality depends on the Metamodels providing formalisms for both the off-line and the

151

152 CHAPTER 7. PROTOTYPE TOOLING

m
I |
15 |o |
0 2 |
I_ o 1

[z frj © On-line inconsist — :
19 |
'3 Script I
12 B J DSE Ena !
13 |
| @ |
enel | Modengandosiueies | F| cnecimentauerios <

Figure 7.1: General architecture of the tool.

on-line components of the tool. The metamodels used all over the tooling are created
using the Eclipse Modeling Framework (EMF) [57]. This includes metamodels for the pre-
enactment functionality (process modeling and off-line inconsistency management), and
for enactment-related features (enactment and on-line inconsistency management).

Queries

Instances of the metamodels are manipulated through model transformations and queried
via explicitly modeled queries. The off-line components use queries for process modeling
and DSE, while the on-line components use queries for enactment purposes. For both of
these, the VIATRA3 stack is used, which provides support for highly efficient, incremental
model querying and executing transformations based on the queries.

Off-line functionality

The off-line functionality consists of three components: the Process modeler, the Script
generator for producing Matlab [125] scripts out of process definitions, and the DSE
component implementing the off-line inconsistency management functionality. The Process
modeler contributes solely to the UI layer of the tool, providing a rich, graphical user
interface for modeling engineering processes.

On-line functionality

The on-line functionality consists of four components. Out of these, the Enactment runtime,
the On-line inconsistency manager and the Service integration components contribute to
the business logic layer of the tool; while the Process management console is a Ul element
for controlling the enacted process.

7.3. MODELING OF ENGINEERING PROCESSES 153

Eclipse-related productivity functionality

The Eclipse-related functionality consists of platform-specific features, such as
e project nature and project builder contribution,
e a project creation wizard,
e a model creation wizard.

These features improve the usability and the productivity of the tool.

7.3 Modeling of engineering processes

The support for modeling engineering processes has been implemented using Eclipse’s Sir-
ius framework [60]. The Sirius framework follows a model-based approach for developing
various graphical user interfaces.

The tool we provide comes with two types of graphical interfaces: canvas-based modeling
interfaces; and table-based modeling interfaces. Figure 7.2 shows a handful of these while
modeling the FTG+PM of the running example, shown in Figure 5.7.

& new Process Model 57

2 @ 10% - |)

Figure 7.2: Various graphical components of the modeling UI.

The canvas-based central component allows the modeling the engineering process from
various aspects. Dedicated interfaces allow modeling

e the FTG,

e the PM, and

154 CHAPTER 7. PROTOTYPE TOOLING

e the resources
of the process model.

Apart from these, table-based components allow the modeling/viewing of other aspects of
the engineering process, including

e artifact and activity typing,

e cost factors,

e attributes/properties and relationships,

e design-structure matrix derived from the process.

Design structure matrices (DSM) [65] are widely used in industrial settings to model
dependencies of activities in complex engineering processes. While DSMs are specified
manually and are not explicit about the reason of the dependency, our prototype tool
provides a DSM-like view on processes that is able to distinguish between various types of
dependencies, such as property, control and artifact dependencies.

7.3.1 Language specification

In this subsection, we disclose the elements of the graphical modeling formalism.

These language elements are available for the Process Model type, which is not to be
mistaken with the bare PM. As shown in Figure 7.3, there are plenty other, mainly
table-based representations for the Process model. As these table-based formalisms are
straightforward to use, we omit them at this place.

4 & example

=i Project Dependencies

4 I example.processmodel
44 Process Model

& new Actv GoInto 5

B new Cost New Representation » new Process Model I
B new Objs

B new Resg Control... ealllc

B new Resd - new Resource Model

& new FTG @ Ekpnl’t representations as images new IntentTree

& newProd 1om ' new ActvityTypingTable

& new Resd

new ObjectTypingTable
4 Formalisf Ts Show EClass information jectTyping

4 Process | = Show References
& Property Navigate
4 Resource
4 Model
[#] representations.{ Create Query
B% Discovery e

new AttributeTypingTable
new Alias-Model overview
A—— new Alias Editor

new ConstraintsTable
new Resource Demand Table

new Resource Allocation Table

oz 3 e O O e

new CostTable
Other.

Figure 7.3: Representation types for the Process Model.

For the sake of completeness: as Figure 7.4 shows, there are two additional representations,
specific to the PM: a table-based editor for the intents, and a DSM viewer [65].

7.3. MODELING OF ENGINEERING PROCESSES 155

4 & eample
=), Project Dependencies
4 QQ example.processmodel
4 < Process Model
B new ActvityTypingTable
B new CostTable
B new ObjectTypingTable
B8 new Resource Allocation Table
B new Resource Demand Table
& new FTG
& new Process Model
& new Resource Model
> < Formalism Transformation Graph
4|4 Proc

Hn Golnto | I
4 In New Representation b |E newlintentTable P
4+ M
o Control.. B new DSM View
Other...
+ 0 Export representations as images
4 Fl
+ O 1cM 3
4 C

s fe Show EClass information
4 C(= ShowReferences

> 4 Propd MNavigate
> 4 Reso Brecute Query.
b ¢ Mode Create Query
> [representatig
8% Discovery 3

Figure 7.4: Representation types for the PM.

Language elements

Initial node Automated activity

Final node Control flow

L J
’ W activiy Manual activity
—

Decision
Data flow
Fork
e oo Artifact
= Join W artifact
jomn
Figure 7.5: Elements for modeling the PM.
Transformation
«transformationTos etransformedBy> Transformation

relationship

has-
Formalism formalism Capability

«implements» &

~—"7"

1

Implementation

Tool tool

Figure 7.6: Elements for modeling the FTG.

156 CHAPTER 7. PROTOTYPE TOOLING

B

stransformatfonTos
«transfornfedBy»

Typing relationships

Figure 7.7: Elements for modeling the typing in the FTG+PM.

Attribute
Property Relationship link

L1 relationship

L3 relationship
with a formula

Figure 7.8: Elements for modeling the properties.

Intent
L read

-

Property refinement link

Figure 7.9: Additional elements for modeling the properties.

H
<<typed 2 -
B Resource type link
i
.I’ESDUTCE
—— Resource
< availability: 1

Figure 7.10: Additional elements for modeling the resources.

7.3.2 [Eight important modeling patterns

Apart from the process-related patterns [194], there patterns specific to our modeling
formalism. We show eight frequently encountered ones out of these.

7.3. MODELING OF ENGINEERING PROCESSES 157

Intent patterns

Motivation: Expressing the intent of an engineering operation w.r.t. the system.

. create
activi i
[Woay). Bauvibuee

- —
md
-
[Waavy). modty .
- —7
-7
[Waavy) o .
-7

Figure 7.11: Intents.

Model transformation patterns

Here, we follow the taxonomy by Mens and Gorp [129].

Motivation: Expressing the various techniques to transform a model.

. . <typedBy>
ﬁ artifactl : formalisml |===========ssmam=nan=

«transformedBy=»

')
. activity : «typedBys
transformation pFe=====ssssssszssz====
. J

transformation

«transformationTo»

- «‘typed By»
g artifact2 : formalismz2 |7===77====="========ns

Figure 7.12: Exogenous model transformation.

158 CHAPTER 7. PROTOTYPE TOOLING

«typ ed By

.‘i artifactl : formalism

L}
L}
R L}
«transformationTo» '
/\ :
arctivity : «typedBy»]
transformation [e========= - transformation

~ J ~~"

«transformedBy»

.‘i artifact2 : formalism «typedBy=

Figure 7.13: Endogenous model transformation.

. activity :
transformation | _____ N <_t):p_e_d_Bln: _____

T «transformatfonTo»

«transfornpiedBy=»
. . «typedBy>
ﬁ artifact: formalism [f================

Figure 7.14: Endogenous in-place model transformation.

Property patterns

Here, we follow the taxonomy by Vanherpen et al. [212].

Motivation: Expressing property information, e.g. refinement relationships, or obtaining
the performance value of a property.

o>

i «refinedinto»

Figure 7.15: Property refinement.

7.3. MODELING OF ENGINEERING PROCESSES 159

E attribute < 0.0

Figure 7.16: Performance value derived through an IL.3 relationship.

Figure 7.17: Explicit simulation of a performance value.

Capability pattern

Motivation: Expressing the typing relationship between a property and a capability in order
to use the latter information in inconsistency detection.

a dBy»
--T.YEE-.Y.---- ."artifact:formalism

Figure 7.18: Property-capability typing.

160 CHAPTER 7. PROTOTYPE TOOLING

7.3.3 Specifying executable scripts for automated activities

The tool allows specifying the automation logic for the automated activities of the process.
This is achieved by associating a Matlab or Python script, or a Java code snippet with
a transformation of the FTG. Every time an automated activity is being executed, the
typing transformation’s script or code is executed. Execution parameters can be specified
for the specific activity, using a comma-separated list of semicolon-separated key-value
pairs.

7.3.4 Code generation

Should the process model depict a process situated in a Matlab environment, and should all
the automated activities be associated with Matlab scripts, the tool allows generating fully
fledged, runnable Matlab source code. This feature has been developed to demonstrate
one-to-one correspondence between the process models of our approach and the original
engineering process of the AGV case, which has been developed in Matlab.

In general cases, Java skeletons are generated for automated activities without explicitly
assigned execution semantics (Java code, Matlab scrips or Python scripts). Java was
chosen for technological homogeneity w.r.t. the rest of the tooling that runs on the JVM as
well.

7.3.5 Validation

In order to ensure the validity of process models, an on-the-fly validation support is added
to the tool. The functionality has been implemented using the VIATRA3 incremental query
framework that puts zero noticeable overhead on the modeling process as the validation is
nearly instantaneous.

7.4 Off-line inconsistency management

The process optimization component has been built using the DSE engine of the VIATRA3
framework. The DSE engine takes an EMF instance model as an input and executes the
exploration by applying VIATRA3 model transformations on it. This is guided by smart
search algorithms so that the computation is feasible.

We opted for this specific framework because it enforces technological homogeneity and
enables massive reuse of the models and model transformations already developed for the
tool.

7.5 Enactment of engineering processes

The enactment engine is built by following models-at-runtime (M @RT) principles [28].
Such approaches aim at representing the prevailing state of the underlying system by explicit

7.6. ON-LINE INCONSISTENCY MANAGER 161

models, and capturing execution semantics by model transformations.

Again, the model-based approach here is obvious, as are its benefits. Facilitating an
enactment model (Figure A.7) is as easy as importing the previously defined FTG+PM
related EMF models. The model transformations for the enactment semantics become very
straightforward once a well thought out metamodel for the enactment is provided. The
runtime transformations are shown in Listing 13.

In a similar spirit, incremental model transformations are used by Vogel et al. [213] for
efficient runtime monitoring. Song et al. [175] introduce incremental QVT transformations
for runtime models. Such approaches further underline the validity of our approach.

The process enactment console

The enacted process is managed through a console interface. Its functionality is fairly
complex, but with a usable textual interface. Below we list the available commands.
atonce The process executes as many automated activities as possible, at once.

prepare [name] Prepares the activity for enactment. This entails opening the engineering
tool and loading the required artifacts.

run [name] Runs the activity, i.e. executes its semantics.

finish [name] Finishes the activity. This enatails saving workspaces and artifacts and
closing the tool.

step [name] Shorthand for prepare+execute.

final Executing the final step.

exit Exits the runtime.

vardump Prints the variables (attributes) of the process with their values.
freevars Prints the unbounded variables (attributes).

freevarconstraints Prints the constraints pertaining to the free variables along with their
validity domains.

7.6 On-line inconsistency manager

During the enactment, the on-line inconsistency manager provides the necessary functional-
ity to cope with the emerging inconsistencies. The centerpiece of the functionality is the
variable manager that keeps track of the system variables, i.e. attributes, properties and
relationships, and that, in a live and reactive fashion. As the process advances, the variables
are continuously monitored upon changes of their own or their influencing attributes or
properties.

The set of influencers is identified using the transitive closure through the relationship
entities. This step is formalized and explained in Section 5.1.2.2.

162 CHAPTER 7. PROTOTYPE TOOLING

The functionality is implemented using Python and EMF. The variable manager’s data
model is captured in EMF and maintained using incremental model transformations. The
reasoning over the variables of inconsistencies is implemented in the Python-based frame-
work for symbolic mathematics SymPy [183]. The detailed approach is discussed in
Section 5.4.3.

7.7 Service integration

An MPM approach for explicit modeling of external service integration has been discussed
earlier as a contribution of this research, but that approach is not integrated into the tool
due to the technological challenges. Instead, direct support for Matlab and AMESim [173]
is provided. The tool makes use of the managed APIs whenever possible. For Matlab,
it’s Java APl is used [124]. AMESim, however, does not provide an API for the managed
JVM source code, only Python and C is supported. Efforts have been made to use the
JVM-managed Jython [187] to facilitate the interaction with AMESim, but due to version
incompatibilities, this proved to be a dead-end. The interfacing with AMESim is now
solved by generating and executing Python scripts on-the-fly during the enactment.

7.8 Reflection and future directions

To reflect on the tooling itself, it can be stated that it served its purpose. It was not in the
scope of this project to deliver a fully-functioning tool, yet, we have dedicated special
efforts to it. We did so, because we believed a suitable prototype tooling makes it easier to
demonstrate our scientific results to those outside the academia.

We have been heavily relying on model-based principles while developing the tool. Big parts
of the functionality are implemented by means of explicitly modeled internals: structure is
given by metamodels and execution semantics are given by model transformations.

We made the conscious choice of building our tool on top of cutting-edge Eclipse technolo-
gies, as these technologies seem to be the most relevant in the engineering domains our
research targets.

One of the most important future directions regarding the tool, would be to redesign it
to be a better fit with the Modelverse [207]. This would mean repositioning the tool as a
Modelverse interface, and pushing the execution logic into the Modelverse. Additional
engineering tools should be supported in order to make the tool more applicable to industrial-
scale problems. The usability of the tool could be improved by additional developments
to the user interface, including the modeling facilities and the Eclipse-based productivity
functionality. Industrial-scale problems often demand deploying the enacted process onto a
server, or nowadays into a cloud service. Our tool is obviously not mature enough in this
regard either and effort should be dedicated to this part as well before it gets employed in
industrial settings.

Chapter 8

Conclusions

This work set out to contribute to the state of the art in inconsistency management in
Model-based Systems Engineering (MBSE).

We placed our research on the premise that explicit modeling of various aspects of the
engineering problem are required to facilitate the efficient, automated reasoning over incon-
sistencies, their origins, viable resolution strategies and impact on the overall engineering
endeavor. This proved to be a very tough challenge and by the end of this research, it
became clear, that the explicit modeling of engineering problems is what separates ad-hoc
inconsistency management attempts from the systematic, evaluable, improvable and scal-
able methodologies. This is due to the intangibles in nowadays’ systems engineering, such
as the tacit and non-encoded domain knowledge, the engineering best practices, rules of
thumb, etc.

We asked for feedback from our industrial partners multiple times throughout this research
to understand the thinking and needs of professionals our results could aid in solving their
everyday tasks.

As we continuously (incrementally and iteratively) gained a deeper understanding of what
inconsistencies are and how they arise, the scope of our research moved towards a higher
level of organizational phenomena in engineering settings. Instead of constraining our
research to the low-level elements of engineering models (their type system, semantics,
etc), we ended up with the conclusion, that managing inconsistencies on the level of the
engineering process is a missing link in the state of the art, which needs to be addressed.
As a consequence, instead of providing one specific way of coping with inconsistencies, we
provided a framework for meshing various types of inconsistency management techniques
for managing various types of inconsistencies in MBSE settings. Our process-based
approach is, however, still very operational, instead being solely descriptive.

Processes popping up as the foundations of a holistic inconsistency management approach,
is merely a coincidence. Multi-paradigm modeling advocates modeling everything explic-
itly, using the most appropriate formalism(s) on the most appropriate level(s) of abstrac-
tion [210]. This advice, however, is not constrained to engineering models only: processes
are as vital part of an MPM approach as any other model.

163

164 CHAPTER 8. CONCLUSIONS

There are two big parts to this work: (i) the foundational scientific contributions, discussed
in Chapter 4 and Chapter 5; and (ii) the prototype tooling supporting the methodology,
discussed in Chapter 7.

Formalism for modeling engineering endeavors

A formalism for modeling engineering endeavors has been developed. Here, we use the
term “endeavor” instead of “process” to emphasize, that it is not only the process that can be
modeled using the formalism, but also many other aspects of the engineering work.

The formalism is built on the FTG+PM formalism, which proved to be versatile enough
to tailor it to the needs of the stakeholders from the heterogeneous systems engineering
community, yet remain semantically valid and sound.

This formalism provides the basis for the inconsistency management methodology dis-
cussed in this work. It is a standalone contribution in a sense, that it can be reused
and reimplemented on other platforms, using other frameworks: the principles will still
hold.

The formalism has been extended by multiple important elements, most notably:

e a property model with system characteristics, such as attributes, properties, relation-
ships (Section 5.1.2);

e resource modeling capabilities (Section 5.1.3);
e cost modeling capabilities (Section 5.1.4); and

e capabilities in the FTG (Section 5.4.1).

Process modeling Modeling the engineering process at hand is the first step towards
modeling the whole engineering setting. The process model (PM) has an explicit type
model, the formalism-transformation graph (FTG) charted next to it. This strongly typed
process model provides numerous benefits at the later runtime (enactment) phase, but also
helps reasoning about multiple metalevels of inconsistency phenomena.

Modeling system characteristics Modeling the actual product, that is being engineered,
along with the process, was a very important step in our research. System characteristics
are vital in terms of expressing inconsistency patterns, their modeling is, however, the most
challenging part of our approach. With that said, this is a one-time effort for an engineering
process and the efforts are well worth on the long term.

Resources and costs Resource and cost modeling elements have been introduced in
order to reason about various alternatives of the original process. Since the management of
inconsistencies is approached as a process optimization problem, there is an obvious need
for quantified performance indicators for each process. We opted for the transit time of the
process, provided simulation techniques and tooling for it. Resource modeling is required
in order to keep the optimized process models realistic, i.e. constrained by the available
human, automated and monetary resources.

165

Off-line inconsistency management by process optimization

Having modeled the engineering process and its surroundings enables approaching the task
of inconsistency management as a process optimization problem. This state-of-the-art result
is a huge step towards holistic approaches which do not only consider the internals of the
models, but also the engineering setting the models are situated within. As a consequence,
this approach enables reasoning about the impacts of having an inconsistency at some point
of the process, and also enables reasoning about the impact of the various inconsistency
management techniques on the process. The state of the art is filled with specially tailored
inconsistency management techniques, but our work is the first one that delivers a framework
to mesh these techniques into an efficient management framework.

DSE Design-space exploration of the process, or as we often refer to it: process space
exploration, is the means of optimizing the engineering process. Inconsistency management
patterns and process performance improvement patterns are captured as model transforma-
tions over the explicitly modeled process. By applying these transformations one-by-one,
an infinite set of process alternatives can be generated. The DSE approach is a smart
search, guided by heuristics, which make sure, the exploration always converges towards an
optimum. For that, the newly generated process alternatives are simulated for a chosen per-
formance metric. We chose the transfer time of the process, and presented a state-of-the-art
modeling and simulation technique at the end of this research.

Process enactment

Optimizing processes is already a big step towards managing inconsistencies. But leaving
the enactment a completely human effort is a significant threat to the end-result of the
engineering endeavor. Because of this, we a process enactment engine has been developed,
based on MPM [210] and M@RT][28] principles. The enactment is fully automated, while
also supporting human tasks. A process management console is provided to govern the
process.

Service integration During enactment, the execution of automated activities often re-
quires interaction with engineering tools. Our prototype tool has a demonstrative feature
set for Matlab and AMESim. The standard APIs are used to load, manipulate and save
models within the engineering tool. This way, the tool also implements a high-level service
orchestration machinery. In addition, we elaborated on a state-of-the-art technique on
explicitly modeled service interaction at a later stage of this research. The results of that
work, however, are not integrated into the tooling.

On-line inconsistency management

During the enactment phase, inconsistency management is carried out in the background,
transparently to the end-user. The characteristics of the engineered system (attributes,
properties) are monitored and inconsistent situation are detected in an as-soon-as-possible
fashion. Making use of multiple levels of abstraction and multiple types of properties

166 CHAPTER 8. CONCLUSIONS

(ontological vs linguistic), this state-of-the-art technique enables a reasoning mechanism
which would not be feasible by human effort at all.

Symbolic mathematics are used in conjunction with the Ecore models to detect inconsis-
tencies. The functionality has been implemented using the Python-based SymPy frame-
work.

Prototype tooling

During the development of the prototype tooling, we always tried to adhere to the old
adage of “one has to eat his own dogfood”. In practical terms, this means shifting software
engineering paradigms from writing code towards modeling as much as possible. Overly
abstracted models resulting in too many bootstrapping steps, naturally, could lead to
a plummeting performance, and therefore, pragmatic trade-offs between modeling and
coding have been made. The vast majority (about 75%) of the functionality is, however,
modeled.

The tool has been developed as an open-source project, on top of the versatile Eclipse
platform, and is available under the EPL1.0 licence. The majority of the functionality
has been covered with thorough unit tests in order to make the future improvements and
refactorings more efficient.

The tool is available from http://istvandavid.com/icm.

8.1 [Evaluation of the research questions

At this point, we reflect on our research questions listed in Chapter 1.

R1. What are the shortcomings of the state of the art of inconsistency management
that hinder the model based engineering of heterogeneous systems?

This question has been addressed with Contribution 1, in Section 3.1.

The state of the art of inconsistency management has two main shortcomings. First, the
currently available techniques fall short of capturing the semantic aspect of models. This is
especially concerning in settings where multi-formalism the only way to go about modeling
the system, such as the case of engineering heterogeneous systems. Second, currently
available techniques focus on the internals of the models, or maybe multiple models, and
fall short of understanding higher level issues only understandable on the level of the
process.

These takeaways make it clear, that the engineering of nowadays’ heterogeneous systems
requires new techniques and perhaps technologies to address its issues.

8.1. EVALUATION OF THE RESEARCH QUESTIONS 167

R2. What is the relation of model (in)consistency to the (in)correctness of the prod-
uct?

This question has been addressed with Contribution 2, in Chapter 4.

There are no explicit links in the state of the art connecting the notion of consistency
between the engineering/business streams of a distributed environment, to the correctness
of the final product. We addressed this missing link by positioning model consistency as a
heuristic to the eventually correct product. By the definition of heuristics, keeping models
in a consistent state does not guarantee an eventually correct product, but there are reasons
to believe it is useful w.r.t. the eventual correctness. Such reasons include both theoretical
and empirical considerations.

This interpretation of inconsistency also bodes well with the premises of inconsistency
tolerance [14].

R3. What is an appropriate formalism and level of abstraction to approach inconsis-
tency management in model based systems engineering scenarios?

This question has been addressed with Contribution 2, in Section 4.4.

Many state-of-the-art techniques related to this work focus on managing inconsistencies on
the level of the specific model. UML is often used as a research vehicle to demonstrate how
specific types of inconsistencies can be coped with. Such techniques would consider the
internals of the models, define techniques on a low level, i.e., in an intimate proximity to
the formalism at hand. Such low-level approaches fail to address some of the macroscopic
issues in heterogeneous engineering settings. Our research concluded, that there is a
need for the type of inconsistency management techniques that approach inconsistency
management on a higher level. We have found that process modeling formalisms are
especially suitable for this task. The appropriate level of abstraction is when the traceability
with the engineering artifacts is still being maintained, but business-level information (such
as resource constraints and scheduling information) can be considered as well.

Choosing processes as the appropriate underlying formalism to approach inconsistency
management aligns well with the efforts previously made in the fields of multi-paradigm
modeling [210] and business process modeling [218].

R4. What formalisms are required to successfully model an engineering endeavor
with the intent of identifying inconsistencies across the various models?

This question has been addressed with Contributions 3, 6, 7 and 8, in Section 5.1, Sec-
tion 5.4, Section 5.5 and Section 5.6, respectively.

Research question R3. highlighted the need for approaching inconsistency management on
the level of the engineering process, but with traceable engineering activities and artifacts.
A process modeling formalism is inherently needed for such an approach, but the majority
of usable and scalable process/workflow modeling formalisms are positioned for business
process modeling. The FTG+PM formalism, on the other hand, fits the bill perfectly when
the engineering endeavor is, in fact, model-based. Apart from the modeling the process,
information about the engineered system has to be also modeled and correlated with the
process model, in order to efficiently identify root causes of inconsistencies. Since the

168 CHAPTER 8. CONCLUSIONS

modeled process needs to be modified in order to treat inconsistencies, resources and
costs have to be taken into account as well and supported by modeling formalisms. In the
spirit of MPM, the process modification transformations are also required to be modeled,
which further implies modeling inconsistencies themselves. These latter two are sufficiently
covered in the state of the art [170, 184, 185, 191].

RS. How can be the impacts of applying different inconsistency management patterns
quantified?

This question has been addressed with Contribution 4, in Section 5.2.

As the old adage goes, “fixing a bug is merely more than replacing a known bug with an
unknown one”. Indeed, when applying a management pattern to a specific inconsistency
instance, the now restructured process may suffer from new inconsistency instances as
well. Additionally: managing an inconsistency may be carried out in various alternative
ways, having different performance impacts on the engineering process. In both cases,
quantification of the impact of applying an inconsistency management pattern needs to be
qualified in order to make decision about applying the pattern or not. We have found that
the simulation of processes is a feasible technique, although with a caveat. Every process
modeling framework comes with its own, often proprietary and closed-source simulation
algorithm. This makes it hard-to-impossible to modify these frameworks to our current
needs. Therefore, a general approach has been developed during our research, which
would give semantics to processes by DEVS, and use DEVS semantics for quantitative
analysis.

R6. Can an inconsistency management technique go beyond being prescriptive and
actually enact the inconsistency management techniques chosen for a particular case?

This question has been addressed with Contributions 5 and 6, in Section 5.3 and Sec-
tion 5.4, respectively.

It is a frequently encountered problem in model-based settings that the models are not
leveraged to the maximal effect, e.g. by serving as inputs to conceptualization or early
development, but abandoned later on. This is a mistake often made in software engineering
and business decision support scenarios. Although a process model for inconsistency
management purposes is useful in itself, being able to use that model as the guiding principle
during the actual engineering endeavor provides a great added value. Such an employment
of the process model is often referred as the enactment of the process [37]. Manually
enacting the process is an error-prone attempt, due to the enormous amount of work it
requires, and the manually often undetectable concept drift [190]. Therefore, we provided
enactment semantics and implementation to our process models and enabled interfacing
with external services in order to further automate the management of inconsistencies in
engineering processes.

8.2. FUTURE RESEARCH DIRECTIONS 169
8.2 Future research directions

Hopefully, the results presented in this work could serve as basis for future researchers,
just like many other works were considered during our research. Out of the plethora of
possible future directions, we sketch the ones which are the most probable ones, or are of
the highest potential.

(Partial) process inference The linchpin of our approach is the modeling of the engi-
neering process and its surroundings. It is a human effort, which is required to be done
correctly in order to automate the inconsistency management. Our work does not deal
with the automation of the actual process of process modeling. Consequently, inferring the
process, at least partially, is the most important future work in our opinion. Interpreting the
process as a partially ordered set of activities, the elementary building blocks to process
inference would be identifying elementary ordering relations between as many activities as
possible. Using domain-specific process templates can be considered as an input to such
an inference mechanism as well. But we envision the property model and its variants as
the main source of information to the inference. Additionally, business-level information,
such as project plans and schedules could be used too. There is a huge potential to be
unlocked by minimizing the human factor in the process modeling process. Process mining
techniques [196, 200] are prime candidates to build an approach for such a purpose.

Full translation of process models to DEVS The current approach uses DEVS to pro-
vide translational semantics for simulating the performance of the process. DEVS, however,
could serve as an assembly language for other modeling languages [209]. Thanks to this
versatility, DEVS could be used for multiple purposes in the approach presented in this
work.

translational semantics in terms of

enact EVS @
@

enact

simulation

Behavior trace (real-time) Behavior trace (simulated)

@ monitor+fix l compute

Performance measures

Figure 8.1: DEVS providing semantics for inconsistency management and enactment.

Figure 8.1 shows that the current approach (blue) uses the process semantics to carry
out the off-line inconsistency management (/, blue); and the same process semantics are
used for enactment (3, blue). As opposed to this (red), the process could be translated to
DEVS immediately and the off-line inconsistency management could be carried out on the
DEVS level (1, red); furthermore, the DEVS model could be used for enactment as well (3,
red).

170 CHAPTER 8. CONCLUSIONS

Ontologies as first-class citizens Somewhat related to the previous point, ontologies [69]
can be (and should be) considered as first-class citizens in modern, heterogeneous engi-
neering settings. The two trivial way ontologies could improve our approach are: using
ontologies as inputs to the process modeling process, and using them to automatically
improve the on-line inconsistency reasoning mechanism along property-capability links (as
seen in Section 5.4). Vanherpen [211] investigated ontological reasoning for inconsistency
management. A future research direction would preferably pick up both of these works and
integrate them.

Enabling different process modeling languages We envision an extension to our ap-
proach in which arbitrary process modeling languages can be used for the core modeling
tasks of inconsistency situations. Processes should be as close to the application domain as
possible, as is the case in nowadays process modeling landscape. In addition, however, the
semantics of the various process modeling formalisms should at least be correlated with
the semantics of inconsistency management [158] shown in this work. Being flexible and
using the most appropriate process modeling formalism for various domains aligns very
well with the core principles of MPM.

Inconsistency tolerance Tolerating inconsistencies [14] is something we have briefly
investigated during this research (as discussed in [49]), but eventually fell outside the
narrowing scope of the project. Tolerance is a deep topic and deserves to be investigated.
This is due to the intangibles of inconsistency management, which we have been trying to
tackle throughout these four years, but only that much could be fitted into this time span. The
three important types of inconsistency tolerance are parameter tolerance (acceptance ranges
of parameters are relaxed), spatial tolerance (inconsistency rules are relaxed for certain
components or sub-components), and temporal tolerance (inconsistencies are tolerated for
a certain period of physical or logical time). Out of these, temporal tolerance poses the
hardest challenge, but in exchange: promises the most value when tackled. This is due to
the fact that tolerance circumvents the shortcomings of overly aggressive inconsistency
management strategies and as a consequence, it could tremendously reduce resource usage
(time, monetary, human resources). There is some previous work done on the topic
in the state of the art, but such a research would ideally start from understanding the
deep semantics of model inconsistencies and correlate that with the traces of engineering
processes. This would serve as a basis for an appropriate tolerance algebra, stemming from
interval algebras [6, 162].

Improvements to the tool support Improvements to the tool have been discussed in
Chapter 7 in greater details. From a methodological standpoint, the most interesting develop-
ment directions are (i) integrating the tool with the Modelverse [207]; and (ii) incorporating
ontological support into the reasoning logic, as these directions are believed to constitute
the foundations of the next generation of engineering techniques and tools [16].

Appendices

171

Appendix A

Metamodels

This appendix documents the various parts of the process modeling formalism in greater
details.

173

APPENDIX A. METAMODELS

174

A.1 Overview

wAsAs : wAyshs
[FIESTIL S RRTIERTIT)

FELLIVER-S TS EL LITERT -3¢
ulodmaly : uodmala

‘uonewIosURI} 3MTIRdsR)
31 J0 JUIBISUOTIIIN0S3Y 3
03 LLIOJUOD ISMLW UOIEI0| |y
*AIITE 3y N0 Ued

18U} S9UN0S3 J0 135 UIEHD

£ 03 PIILI0||2 218 SIPALIY

ysuolje|ay : diysuonelas £
fuadold @ Apadoid E9

‘sampe (1)
pue s33unosai (1) 0

paubisse 2q ued 3503

10pe4isod tiopedisos £

@ Eromsod B

saipadoly

[1PPerstuedma 8

__M_ 12powipadeid H

10135 € 03 (}S3poN)
ALY Aul] SILRU

30IM0S3Y : auN0sal 3
adfgaoinosay @ adfannosar EF

*SUOIELUIOISURI]
EIBENRErE]

Ue3 JRYY 533UN0S3I
40 195 UlelD

|zpopaunosay {

12papises (170l

MO|41013UD0 ¢ mojjonuoy P

apop :apou EP

ssaa0ud

&

ssazoud [,0]

l2popEInosal [T

7 B 0] pauleNsuDd
e sUoRELISUR |

MIBWI0URI] F UDlEWIosuR) EY
wsijewsoy : wsiewsoy Y

_Hﬂum_u:o_umE_ot:m:Em:mEEU_ B _

12popfpadoad [10]

depBuuyso)Buls : saipadoiguagepor £9

l2powsiuiodmain [10]

1l2possaacd

6y [1°1]

1Sm.

i f the formal

1EW O

: Top-level overv

Figure A.1

A.2. FTG+PM 175

A.2 FT1G+PM

Figure A.2: The FTG+PM modeling part of the formalism.

176 APPENDIX A. METAMODELS

A.3 Properties

9 AttriuteDefnton

[1.2] capability

Figure A.3: The property modeling part of the formalism.

177

A.4. RESOURCES

A.4 Resources

Aunnoe [11]

puewsap|

Anoe [1°T]

puewsp [,"0]

depybuiiso) buiis : sisyaweiequonndexe £
Auanoypunodwo) : joued
JusuL : Juspul EL

adAL Aoy : Agpadhy

#50D : 3500 EB

Moj4jo43u0) : InQjozucd K9
MO]4]043U0D : Ufjopu0d EY
apop : ojmoj{pop E°
2pON : Wo.i4moj4viop F9

Aoy H,

adA]@dunosai [TT]

Lol

uonesojje [0

3u[3 : Junowe

1
[=]

7 ; g : unowe 1

puewsq m

uoneso|ly

uonedojje [,"0]

iapjoysyes : speus ED
350D : 3500 EP

4] & R =)
MmuagAnmpy : uouyap =
Apmpy : sadfy ®o

|
|

uonewlojsuel) H

uoneuwuoystien [T-T]

jurensuodadiposal [10]

jutenysuopuonesolje [, o] —||,_
T =3U[3 :junowe —

adA)aqinosai [1T]

T =3u3 : Ajgeyiene | sadAy [,0] AgpodAy [11]

82Inosay m

@2unopal [T°T]

@2anosal [,"0]

adA]adinosay =]

adA]eoinfosai [, 0]

jueRlSUODINOSRY [

azieads [10]

azijesausb [,0]

julensuodedinosal [0l

uonexo|e [,'0l | |epoyeainosey =] _<

puewsp [,"0]

ism.

rt of the formal

ing pa

The resources modeli

Figure A.4

APPENDIX A. METAMODELS

178

A.5 Costs

awil
95U5214104150D
150D1UN

oW1 194150

adA[150D

La

Japjoyayess : speus £
uoled0||y : uoljedojje 2
adAadinosay : Agpadfy 1
T =R : Aungejiere o

82Inosay m

?.o =3|qnoQ3 : onjen k

debuilso] bulls : s19}eWweIeduoINISXS
Auaipypunodwo) : joped

JUS)UL : JuSYUI

puewaq : puewsp

uo[3ed0||Y : UoI}edO||e

adA ANy : AgpadAy

Moj]{]0J43uo) JnQjo43uod

MO0]4]03U0)) : U[jOJJU0D

apopN : 0] Mo){D}DP

3PON : WIO0I4MO]{DIDP

+=
+=
=0
+
*0
+=
=0
+=
=
®0
+=
=0
+=
=0
L=

=0
=

Ay B,

1503 [.~0]

wa)psod [1T]

1500

1592 ["0]

)

uE._...mn_vmou =adA13s0) :adfy & _

1010e4)50D) m

1012el1500 [(]

¢
)

leponIsod

waypsod [,

Figure A.5: The cost modeling part of the formalism.

179

ool H

ued [, 0]

wiayshs m

VIEWPOINTS
Viewpoints

A.6.
A.6

Agpayusws|duil [, 0]

syuswis|dwi [,

o1 [+ 0]

Aujiqeded : Ayjiqedes 0

I uonewoysuel] : jomndino EL
uoneuuoysuel| : jomndul E9

12190 : sadky £9

wisijewlod m_

wisijepuioy [0l

ued [, 0]

wiodman [, o

uodmain [, 0]

ulodmal,

=

=0
=

yuridiysuonpjay : jowalgns

*0
=

=
gy : Juaaur ES

Apsdoug m

Aypadoud [,0]

uIeduod [,0]

uIBdUOD [0}

[."0] 3ulodmann [, 0]

wiodmain H

ui2du0d [,0]

wayshs [11]

JUIOFMBIA [

uoneso||y

T=w3

uopedo|je £Y
adfjadunosay : Agpadfy I
350D 13500 EO
Ajqejiese =

82Inosay m

Agpapeus [170]

s10

Japjoyaess [, 0]

ua [, 0]

Jsployers [

[opopsuiodmaIn H

Jepjoyaxess [, 0]

art of the formalism.

mg p

The viewpoint model

Figure A.6

180 APPENDIX A. METAMODELS

A.7 Enactment

| H Enactment W

5* enactedProcessModel : ProcessModeIJ

i

= ActivityState

= READY

= RUNNING

= DONE
O token

| @ Token
‘ T state : ActivityState = READY
T abstract : EBoolean = false
[0..1] subTokenOf
[0..1] currentNode
[0..*] subToken
‘ EE Node
= .
&= controlln : ControlFlow [0.4] dataFlowFrom

&2 controlOut : ControlFlow

[0.*] dataFlowTo

Figure A.7: The enactment modeling part of the formalism.

Appendix B

Model queries and
transformations

181

W J o0 WN

182 APPENDIX B. MODEL QUERIES AND TRANSFORMATIONS

Listing 5 Patterns of inconsistency.

pattern sharedProperty (
activityl: Activity, intentl: Intent, propertyl: Property,
activity2: Activity, intent2: Intent, property2: Property) {
activityl'!=activity2;
find intent (activityl, propertyl, intentl);
find intent (activity2, property2, intent2);
find propertyGloballyReachableFromProperty (propertyl, property2);
}

pattern sequentialSharedProperty (
activityl: Activity, intentl: Intent, propertyl: Property,
activity2: Activity, intent2: Intent, property2: Property) {
find sharedProperty (
activityl, intentl, propertyl, activity2, intent2, property2);
find nodeGloballyReachableFromNode (activity2, activityl);

pattern parallelSharedProperty (
activityl: Activity, intentl: Intent, propertyl: Property,
activity2: Activity, intent2: Intent, property2: Property,
fork: Fork) {
find sharedProperty (
activityl, intentl, propertyl, activity2, intent2, property2);
find parallelActivities2 (activityl, activity2, fork, _);

pattern readModifySharedProperty (
activityl: Activity, propertyl: Property,
activity2: Activity, property2: Property) {
find sequentialSharedProperty (
activityl, intentl, propertyl, activity2, intent2, property2);
Intent.type (intentl, IntentType::READ);
Intent.type (intent2, IntentType::MODIFY) ;

pattern modifyModifySharedPropertySequential (
activityl: Activity, propertyl: Property,
activity2: Activity, property2: Property) {
find sequentialSharedProperty (
activityl, intentl, propertyl, activity2, intent2, property2);
Intent.type (intentl, IntentType::MODIFY) ;
Intent.type (intent2, IntentType::MODIFY) ;

pattern modifyModifySharedPropertyParallel (

activityl: Activity, propertyl: Property,

activity2: Activity, property2: Property,

fork: Fork) {
find parallelSharedProperty (
activityl, intentl, propertyl, activity2, intent2, property2, fork);
Intent.type (intentl, IntentType::MODIFY) ;
Intent.type (intent2, IntentType::MODIFY);

W J U WN P

183

Listing 6 Patterns resource allocation.

pattern allocatedActivity (
activity: Activity, allocation: Allocation, resource:
neg find compoundActivity (activity);
Activity.allocation(activity, allocation);
Allocation.resource (allocation, resource);

pattern unAllocatedActivity (activity: Activity) {
neg find compoundActivity (activity);
neg find allocatedActivity (activity, _, _);

pattern demand(activity: Activity, demand: Demand, resourceType:

neg find compoundActivity (activity);
Activity.demand(activity, demand);
Demand.resourceType (demand, resourceType) ;

Resource) {

pattern resourcelnstance (resource: Resource, resourceType: ResourceType) {

Resource.typedBy (resource, resourceType);

}

pattern unsatisfiedDemand (activity: Activity) {
neg find compoundActivity (activity) ;

find demand (activity, demand, resourceType) ;

find allocatedActivity (activity, allocation, resource);

find resourcelnstance (resource, resourceType);

Demand.amount (demand, dAmount) ;
Allocation.amount (allocation, aAmount);

check (aAmount < dAmount) ;
pattern satisfiedDemand(activity: Activity) {

neg find compoundActivity (activity);
neg find unsatisfiedDemand (activity) ;

pattern satisfiableDemand(activity: Activity, resourceType: ResourceType) {

neg find compoundActivity (activity) ;
find demand (activity, demand, resourceType) ;
find resourcelnstance (resource, resourceType);

Demand.amount (demand, dAmount) ;
Resource.availability (resource, availability);

check (availability >= dAmount) ;
}

pattern unsatisfiableDemand (activity: Activity, resourceType: ResourceType) {

neg find compoundActivity (activity);
find demand(activity, demand, resourceType) ;
find resourcelnstance (resource, resourceType);

Demand.amount (demand, dAmount) ;
Resource.availability (resource, availability);

check (availability < dAmount) ;

ResourceType) {

W J oUW WN

184 APPENDIX B. MODEL QUERIES AND TRANSFORMATIONS

Listing 7 Management transformation rules for the sequential read-modify inconsistency
pattern. Reuses patterns from Listing 5.

VT

* Reordering

*/

val readModifyReorder = new DSETransformationRule (
unmanagedReadModify,
new UnmanagedReadModifyProcessor () {

override process (Activity activityl, Property propertyl,
Activity activity2, Property property2) {
val tmp = createManualActivity ("tmp");

tmp.controlIn.addAll (activityl.controllIn)
activityl.controlIn.removeAll (tmp.controlIn)

tmp.controlOut.addAll (activityl.controlOut)
activityl.controlOut.removeAll (tmp.controlOut)

activityl.controlIn.addAll (activity2.controlIn)
activity2.controlIn.removeAll (activityl.controlIn)

activityl.controlOut.addAll (activity2.controlOut)
activity2.controlOut.removeAll (activityl.controlOut)

activity2.controlIn.addAll (tmp.controllIn)
tmp.controlIn.removeAll (activity2.controlIn)

activity2.controlOut.addAll (tmp.controlOut)
tmp.controlOut.removeAll (activity2.controlOut)

J x*
* Check property
*/
val readModifyAugmentWithCheck = new DSETransformationRule (
unmanagedReadModify2,
new UnmanagedReadModify2Processor () {
override process (Activity activityl, Property propertyl,
Activity activity2, Property property2) {
createDecision (activity2, propertyl, activityl)

}
)

val readModifyAugmentWithContract = new DSETransformationRule (
unmanagedReadModify3,
new UnmanagedReadModify3Processor () {
override process (Activity activityl, Property propertyl,
Activity activity2, Property property2) {
createContract (activityl, #[propertyl], activityl)

val modifyModifyAugmentWithContract = new DSETransformationRule (
unmanagedModifyModifySequential,
new UnmanagedModifyModifySequentialProcessor () {
override process (Activity activityl, Property propertyl,
Activity activity2, Property property2) {
createContract (activityl, #([propertyl], activityl)

O 0 oUW N

W J oUW N

185

Listing 8 Transformation rule of the contract-based management pattern for the for the
parallel modify-modify inconsistency pattern. Reuses patterns from Listing 5.

val addContract = new DSETransformationRule (
unmanagedModifyModifyParallel,
new UnmanagedModifyModifyParallelProcessor () {
override process (Activity activityl, Property propertyl,
Activity activity2, Property property2, Fork fork) {
createContract (fork, #[propertyl, property2], activityl

Listing 9 Soft and hard objectives for the process space exploration.

val consistencyObjective =
new ConstraintsObjective ()
.withSoftConstraint ("consistencyObjective", unmanagedReadModify, 10d)
.withComparator (Comparators.LOWER_IS_BETTER)

val cheapestProcessObjective =
new CheapestProcessSoftObjective ()
.withComparator (Comparators.LOWER_IS_BETTER)

val allocationObjectives =
new ConstraintsObjective ("validAllocation")
.withHardConstraint (unAllocatedActivity, ModelQueryType: :NO_MATCH)
.withLevel (0)

val validationObjectives =
new ConstraintsObjective ("validProcess")

.withHardConstraint (

initNodeWithInvalidNumberOfControlOut, ModelQueryType::NO_MATCH)
.withHardConstraint (

initNodeWithControlIn, ModelQueryType: :NO_MATCH)
.withHardConstraint (

finalNodeWithInvalidNumberOfIns, ModelQueryType::NO_MATCH)
.withHardConstraint (

finalNodeWithControlOut, ModelQueryType::NO_MATCH)
.withHardConstraint (

forkNodeWithInvalidNumberOfIns, ModelQueryType: :NO_MATCH)
.withHardConstraint (

forkNodeWithInvalidNumberOfOuts, ModelQueryType::NO_MATCH)
.withHardConstraint (

joinNodeWithInvalidNumberOfIns, ModelQueryType: :NO_MATCH)
.withHardConstraint (

joinNodeWithInvalidNumberOfOuts, ModelQueryType: :NO_MATCH)
.withHardConstraint (

decisionNodeWithInvalidNumberOfIns, ModelQueryType::NO_MATCH)
.withHardConstraint (

decisionNodeWithInvalidNumberOfOuts, ModelQueryType: :NO_MATCH)
.withHardConstraint (

activityWithInvalidNumberOfControlIn, ModelQueryType::NO_MATCH)
.withHardConstraint (

activityWithInvalidNumberOfControlOut, ModelQueryType: :NO_MATCH)
.withHardConstraint (

controlFlowWithInvalidNumberOfControlFrom, ModelQueryType: :NO_MATCH)
.withHardConstraint (

controlFlowWithInvalidNumberOfControlTo, ModelQueryType: :NO_MATCH)
.withHardConstraint (

redundantControlFlows, ModelQueryType: :NO_MATCH)
.withHardConstraint (

finalNotReachableFromNode, ModelQueryType::NO_MATCH)
.withHardConstraint (

initDoesNotReachNode, ModelQueryType: :NO_MATCH)
.withLevel (0)

W J oUW N

186 APPENDIX B. MODEL QUERIES AND TRANSFORMATIONS

Listing 10 Model patterns used in the process enactment runtime - Part 1.

pattern activeToken (token: Token) {
Token.abstract (token, a);
a == false;

}

pattern tokenInNode (token : Token, node : Node) {
find activeToken (token) ;
Token.currentNode (token, node);

}

pattern tokenInActivity(token : Token, node : Activity) {
find activeToken (token) ;
find tokenInNode (token, node);

}

pattern activity (node: Node) {
Activity (node) ;
}

pattern attributeModificationActivity (
activity: Activity, attribute: Attribute) {
Intent.activity (intent, activity);
Intent.subject (intent, attribute);
Intent.type (intent, ::MODIFY) ;
}

pattern fireable (
token: Token, controlFlow: ControlFlow, fromNode: Node, toNode:
//fire from a non-activity
find tokenInNode (token, fromNode) ;
ControlFlow. from(controlFlow, fromNode);
ControlFlow.to (controlFlow, toNode);
neg find activity (fromNode) ;
neg find splitTokenInJoin (token, fromNode) ;

or{
//fire from a non-activity to a node where
//the direct sibling of the token is located
find tokenInNode (token, fromNode) ;
ControlFlow. from(controlFlow, fromNode);
ControlFlow.to(controlFlow, toNode);
neg find activity (fromNode) ;
find splitTokenInJoin (token, fromNode) ;
find splitTokenInJdoin (token2, toNode);
find directSiblingTokens (token, token2);

or{
//fire from an activity
find tokenInNode (token, fromNode) ;
ControlFlow. from(controlFlow, fromNode);
ControlFlow.to(controlFlow, toNode);
find doneActivity (token, fromNode);

}

pattern availableActivity (
token: Token, controlFlow: ControlFlow, activity: Activity) {
find fireable (token, controlFlow, _, activity);

}

Node) {

pattern availableFinish (token: Token, controlFlow: ControlFlow, final: Final) {

find fireable (token, controlFlow, _, final);

}

oUW NP

187

Listing 11 Model patterns used in the process enactment runtime - Part 2. (Continuation of
Listing 10.)

pattern fireableToControl (token: Token, fromNode: Node, control: Control) {
find fireable(token, _, fromNode, control);
Fork (control) ;
}or{
find fireable (token, _, fromNode, control);
Join (control) ;
}or{
find fireable (token, _, fromNode, control);
Decision (control);
tor{
find fireable (token, _, fromNode, control);
Merge (control) ;
}
pattern splitTokenInJoin (token: Token, join: Join) {

find tokenInNode (token, join);

find siblingTokens (token, token2);

find tokensInDifferentNodes (token, token2);
}

pattern joinable (join: Join) {

find tokenInNode (token, join);

find siblingTokens (token, token2);

neg find tokensInDifferentNodes (token, token2);
}

pattern forkable (fork: Fork, token: Token) {
find tokenInNode (token, fork);
}

pattern subTokenOf (subToken: Token, parent: Token) {
Token.subTokenOf (subToken, parent);
}

pattern siblingTokens (tokenl: Token, token2: Token) {
find activeToken (tokenl) ;
find activeToken (token2) ;
find subTokenOf+ (tokenl, parent);
find subTokenOf+ (token2, parent);
tokenl != token2;
}

pattern directSiblingTokens (tokenl: Token, token2: Token) {
find activeToken (tokenl) ;
find activeToken (token2);
find subTokenOf (tokenl, parent);
find subTokenOf (token2, parent);
tokenl != token2;
}

pattern tokensInDifferentNodes (tokenl: Token, token2: Token) {
Token.currentNode (tokenl, nodel);
Token.currentNode (token2, node2);
nodel != node2;

}

//to detect runnable activity

pattern readyActivity(token : Token, node : Activity) {
find tokenInActivity (token, node);
Token.state (token, ::READY);

W J oUW N

188 APPENDIX B. MODEL QUERIES AND TRANSFORMATIONS

Listing 12 Model patterns used in the process enactment runtime - Part 3. (Continuation of

Listing 11.)

//to detect running activity

pattern runnigActivity (token : Token, node : Activity) {
find tokenInActivity (token, node);
Token.state (token, ::RUNNING);

}

//to detect executed activity

pattern doneActivity (token : Token, node : Activity) {
find tokenInActivity (token, node);
Token.state (token, ::DONE) ;

}

//to split tokens

pattern tokenInFork (token : Token, node : Fork) {
find tokenInNode (token, node);

}

//to re-join tokens

pattern tokenInJoin(token : Token, node : Join) {
find tokenInNode (token, node);

}

//to multiplex tokens

pattern tokenInDecision (token : Token, node : Decision) {
find tokenInNode (token, node);

}

//to de-multiplex tokens

pattern tokenInMerge (token : Token, node : Merge) {
find tokenInNode (token, node);

}

//to designate the end of an execution

pattern finishedProcess (token : Token, node : FlowFinal) {
find tokenInNode (token, node);

}

//to enable moving tokens from one node to another
pattern enabledTransition (fromNode : Node, toNode : Node,
ControlFlow.from(controlFlow, fromNode) ;
ControlFlow.to (controlFlow, toNode);
find tokenInNode (token, fromNode) ;
Token.state (token, ::DONE) ;

189

Listing 13 Elementary model transformations used in the process enactment runtime.
Reuses the patterns from Listing 10, Listing 11 and and Listing 12.

1 wval fireToControlRule = createRule.name ("fire to control")
2 .precondition (fireableToControl)

3 .action [

4 logger.debug (String. format (

5 "Firing token %s from node %s to control node %s.",
6 token, fromNode, control))

7 token.currentNode = control

8]

9 .build

10

11 val forkableRule = createRule.name ("forkable")

12 .precondition (forkable)

13 .action [

14 logger.debug (String. format ("Forking token %s at %s.", token, fork)
15 // de-activate parent

16 token.abstract = true

17

18 // create sub-tokens

19 for (ctrlOut : fork.controlOut) {
20 val newToken = EnactmentFactory.eINSTANCE.createToken
21 newToken.subTokenOf = token
22 enactment .token.add (newToken)
23 newToken.currentNode = ctrlOut.to
24 if (ctrlOut.to instanceof Activity) {
25 newToken.state = ActivityState::READY
26 }
27 }
28 println ("forkable")
29]

30 .build

31

32 wval joinableRule = createRule.name ("joinable")

33 .precondition (joinable)

34 .action |

35 logger.debug (String. format ("Joining tokens at %s.", join)
36 val tokenMatches = queryEngine

37 .getMatcher (TokenInNodeQuerySpecification.instance)
38 .allMatches.filter [match | match.node.equals (join)
39 1 // each token at this point should be joinable

40 logger

41 .debug (String. format ("Joinable tokens: %s.",

42 tokenMatches.map[tm|tm.token] .toList))

43

44 // activate parent

45 val parentToken = tokenMatches.head.token.subTokenOf
46 parentToken.abstract = false

47 parentToken.currentNode = join

48

49 // remove subs

50 for (tokenMatch : tokenMatches) {

51 enactment .token.remove (tokenMatch.token)

52 }

53 println ("joinable")

54] .build

190 APPENDIX B. MODEL QUERIES AND TRANSFORMATIONS

Appendix C

DEYVS library for processes

This appendix documents full library of atomic DEVS models for processes. The library

has been developed by Yentl Van Tendeloo.

Listing 14 Atomic DEVS model library for processes - Part 1.

1 from pypdevs.DEVS import =

2

3 class ResourceHandler (AtomicDEVS) :

4 def _ _init__ (self, resources):

5 AtomicDEVS.__init__ (self, "__resource_handler")

6 self.state = {’resources’: resources, 'queue’: []}
7 self.elapsed = 0.0

8 self.resource_in = self.addInPort ("resource_in")

9 self.resource_out = self.addOutPort ("resource_out")
10

11 def extTransition(self, inputs):

12 for inp in inputs[self.resource_in]:

13 if inp[’type’] == "request":

14 # Queue the request

15 self.state[’ queue’].append (inp[’id’])

16 elif inp[’type’] == "release":

17 # Increment the number of available resources
18 self.state[’ resources’] += 1

19

20 return self.state

21

22 def intTransition (self):

23 # Processed a request that could be processed

24 self.state[’ resources’] —-= 1

25 del self.state[’queue’][0]

26 return self.state

217

28 def outputFnc (self):

29 return {self.resource_out: {’id’: self.state[’queue’][0]}}
30

31 def timeAdvance (self):

32 if self.state[’queue’] and self.state[’resources’]:
33 # Can grant a resource

34 return 0.0

35 else:

36 # No request queued, or no available resources to handle the request
37 return float (’'inf’)

191

62

63
64

192

APPENDIX C. DEVS LIBRARY FOR PROCESSES

Listing 15 Atomic DEVS model library for processes - Part 2.

class ActivityState (object) :

def

def

def

__init__ (self, name, distribution):
self.timer = float (’inf’)

self.mode = "inactive"

self.counter = 0

self.name = name

self.distribution = distribution

__str__ (self):
return str(vars(self))

random_sample (self) :
return self.distribution (self.counter)

class Activity (AtomicDEVS) :

def

def

def

def

def

__init__ (self, name, distribution):
AtomicDEVS.__init__ (self, name)

self.state = ActivityState (name, distribution)
self.elapsed = 0.0

self.control_in = self.addInPort ("control_in")
self.resource_in = self.addInPort ("resource_in"
self.control_out = self.addOutPort ("control_out")
self.resource_out = self.addOutPort ("resource_out")

intTransition (self) :

self.state.timer —-= self.timeAdvance ()

if self.state.mode == "request_resource":
Go and request the required resource
self.state.mode = "wait_resource"
self.state.timer = float (/inf’

elif self.state.mode == "active":
Finished execution, so release resources
self.state.mode = "inactive"
self.state.timer = 0.0
self.state.timer = float (’/inf’)
self.state.counter += 1

return self.state

extTransition(self, inputs):
self.state.timer -= self.elapsed
if self.state.mode == "inactive" and self.control_in in inputs:
Got control token, so ask for the required resources
self.state.mode = "request_resource"
self.state.timer = 0.0
NOTE this violates DEVS, though is easy to debug
#print ("Activate " + str(self.state.name) + " at time " + str(self.
— time_last[0] + self.elapsed))
elif self.state.mode == "wait_resource" and self.resource_in in inputs and
< inputs[self.resource_in] ['id’] == "%s-%s" % (self.state.name, self.
<—» state.counter) :
Got required resources, so start execution
self.state.mode = "active"
self.state.timer = self.state.random_sample ()
return self.state

timeAdvance (self) :
return self.state.timer

outputFnc (self) :
if self.state.mode == "active":
Output the control token to the next model in line, and release the
< resources
return {self.control out: {}, self.resource_out: [{’type’: "release"}]}
elif self.state.mode == "request_resource":
Output a request for resources with a specified ID (used to find out
< whether this was our request)
return {self.resource_out: [{’type’: "request", ’id’: "%s-%s" % (self.
— state.name, self.state.counter)}]}
else:
return {}

193

Listing 16 Atomic DEVS model library for processes - Part 3.

class ParallelSplit (AtomicDEVS) :

def

def

def

def

def

__init__ (self, name):

AtomicDEVS.__init__ (self, name)

self.control_in = self.addInPort ("control_in")
self.control_out = self.addOutPort ("control_out")

self.state = False

intTransition (self) :
return False

extTransition(self, inputs):
return True

outputFnc (self) :
return {self.control_out: {}}

timeAdvance (self) :
if self.state:
return 0.0
else:
return float ('inf’)

class Synchronization (AtomicDEVS) :

def

def

def

def

def

__init__ (self, name, counter):
AtomicDEVS.__init__ (self, name)

self.state = {’/current’: counter, 'max’: counter}
self.control_in = self.addInPort ("control_in")
self.control_out = self.addOutPort ("control_out")
intTransition (self) :

self.state[’current’] = self.state[’'max’]
return self.state

extTransition(self, inputs):
self.state[’current’] -= 1
return self.state

timeAdvance (self) :

if self.state[’current’] == 0:
return 0.0

else:
return float ('inf’)

outputFnc (self) :
return {self.control_out: {}}

class ExclusiveChoiceState (object) :

def

def

def

__init__ (self, outputs, distribution):
self.counter = 0

self.outputs = outputs

self.choice = None

self.distribution = distribution

__str___(self):
return str (vars(self))

make_choice (self) :
return self.distribution (self.counter)

194 APPENDIX C. DEVS LIBRARY FOR PROCESSES

Listing 17 Atomic DEVS model library for processes - Part 4.

1 class ExclusiveChoice (AtomicDEVS) :

2 def _ init__ (self, name, outputs, distribution) :

3 AtomicDEVS._ _init__ (self, name)

4 self.state = ExclusiveChoiceState (outputs, distribution)

5 self.control_in = self.addInPort ("control_in")

6 self.control_out = [self.addOutPort ("control_out_%$s" $ i) for i in range (
— outputs)]

7

8 def intTransition (self):

9 self.state.choice = None

10 self.state.counter += 1

11 return self.state

12

13 def extTransition(self, inputs):

14 # Got a control token, so have to make a choice

15 self.state.choice = self.state.make_choice ()

16 return self.state

17

18 def outputFnc (self):

19 return {self.control_out[self.state.choice]: {}}

20

21 def timeAdvance (self):

22 if self.state.choice is not None:

23 return 0.0

24 else:

25 return float ('inf’

26

27 class SimpleMerge (AtomicDEVS) :

28 def _ init_ (self, name):

29 AtomicDEVS.__init__ (self, name)

30 self.state = False

31 self.control_in = self.addInPort ("control_in")

32 self.control_out = self.addOutPort ("control_out")

33

34 def intTransition (self):

35 return False

36

37 def extTransition(self, inputs):

38 return True

39

40 def outputFnc (self):

41 return {self.control_out: {}}

42

43 def timeAdvance (self) :

44 if self.state:

45 return 0.0

46 else:

47 return float ('inf’

48

49 class MultilInstanceState (object) :

50 def _ init__ (self, name, num, distribution):

51 self.spawned = num

52 self.collected = 0

53 self.counter = 0

54 self.mode = "inactive"

55 self.running_tasks = []

56 self.requested = []

57 self.name = name

58 self.distribution = distribution

59

60 def _ str__ (self):

61 return str(vars(self))

62

63 def task_time (self):

64 return self.distribution (self.counter)

39
40

41
42

43
44

195

Listing 18 Atomic DEVS model library for processes - Part 5.

class MultiInstance (AtomicDEVS) :

def

def

def

def

def

__init__ (self, name, num, distribution):
AtomicDEVS.__init__ (self, name)

self.state = MultiInstanceState (name, num, distribution)
self.control_in = self.addInPort ("control_in")

self.resource_in = self.addInPort ("resource_in")
self.control_out = self.addOutPort ("control_out")
self.resource_out = self.addOutPort ("resource_out")
intTransition (self):
ta = self.timeAdvance ()
for t in self.state.running_tasks:

t[0] -= ta
if self.state.mode == "active":

Finished an instance, so pop it
del self.state.running_tasks[0]
self.state.collected += 1

if self.state.collected == self.state.spawned:
self.state.mode = "finish"
elif self.state.mode == "request_resources":
Requested resources, so be ready for a response
self.state.mode = "active"
elif self.state.mode == "finish":
self.state.mode = "inactive"

self.state.collected = 0

self.state.counter += 1

self.state.running_tasks = []
return self.state

extTransition(self, inputs):
Got input, so have to spawn #num of them
for t in self.state.running_tasks:

t[0] —-= self.elapsed

if self.state.mode == "inactive" and self.control_in in inputs:
self.state.mode = "request_resources"
self.state.requested = ["%s-%s-%s" % (self.state.name, self.state.counter

<~ , 1) for i in range(self.state.spawned)]

if self.state.mode in ["active", "release_resource"] and self.resource_in in
— inputs:
Got a resource, so allocate it to an activity
self.state.running_tasks.append([self.state.task_time(), self.state.
— requested.pop (0) 1)
NOTE this violates DEVS, though is easy to debug
#print ("Spawn " + str(self.state.running tasks[-1][1]) + " at time " +
— str(self.time_last[0] + self.elapsed))
self.state.running_tasks.sort ()
return self.state

outputFnc (self) :

if self.state.mode == "request_resources":
Request all resources in one go
return {self.resource_out: [{’type’: 'request’, ’'id’: i} for i in self.
> state.requested]}
elif self.state.mode == "active":
Finished an instance, so release it
return {self.resource_out: [{’'type’: 'release’}]}
elif self.state.mode == "finish":

Finished execution of all, so pass on token
return {self.control_out: {}}

else:
return {}

timeAdvance (self) :
if self.state.mode == "finish":
return 0.0
elif self.state.running_tasks:
return self.state.running_tasks[0] [0]
elif self.state.mode == "request_resources":
return 0.0
else:
return float (’'inf’)

196 APPENDIX C. DEVS LIBRARY FOR PROCESSES

Listing 19 Atomic DEVS model library for processes - Part 6.

1 class Initial (AtomicDEVS) :

2 def _ init_ (self):

3 AtomicDEVS.__init__ (self, "Initial")

4 self.control_out = self.addOutPort ("control_out")
5 self.state = True

6

7

8

def intTransition (self):
return False

9
10 def outputFnc (self):
11 return {self.control_out: {}}
12
13 def timeAdvance (self):
14 if self.state:
15 return 0.0
16 else:
17 return float (’inf’
18
19 class Finish (AtomicDEVS) :
20 def _ init_ (self):
21 AtomicDEVS.__init__ (self, "Finish")
22 self.control_in = self.addInPort ("control_out")
23 self.state = None
24
25 def extTransition(self, inputs):
26 return self.elapsed
27
28 def timeAdvance (self):

29 return float ('inf’

0 oUW N

197

Listing 20 Coupled DEVS model of the running example - Part 1.

from library
from pypdevs.
from pypdevs.
import random
import math

def df (iterat
result =

— 0

return in

def cf (mean):
def cf_in
mu =
sigma
retur

import «
simulator import Simulator
DEVS import CoupledDEVS

ion):

random.random() < {0: 0.99, 1: 0.9, 2: 0.8, 3: 0.5, 4: 0.2, 5: 0.

.02} .get (iteration, 0.0)
t (result)

t (iteration) :

mean x (l-math.exp (- (iteration+l) / 0.7))
= mux0.15625

n max (0.0, random.gauss (mu, sigma)

return cf_int

class Example
def _ ini
Coupl
initi

req =
merge
do_mo
split

sim =
check
synch
evalu
choic
self.

resou

geli,
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self

self.
self.
self.
self.
self.
self.
geli,
self.
self.
self.

(CoupledDEVS) :
t__(self, nresources):
edDEVS.__init__ (self, "example")
al = self.addSubModel (Initial())
self.addSubModel (Activity ("define_requirements", cf(10.0)))
= self.addSubModel (SimpleMerge ("merge"))
del = self.addSubModel (Activity ("update_model", cf(100.0)))
= self.addSubModel (ParallelSplit ("split"))
self.addSubModel (MultiInstance ("simulation", 10, cf(20.0))
= self.addSubModel (Activity ("checking", cf(30.0)))
ronization = self.addSubModel (Synchronization ("synchronization",
ation = self.addSubModel (Activity ("evaluation", cf(0.1)))
e = self.addSubModel (ExclusiveChoice ("choice", 2, df))
finish = self.addSubModel (Finish())

rces = self.addSubModel (ResourceHandler (nresources))

connectPorts (initial.control_out, reqg.control_in)
connectPorts (req.control_out, merge.control_in)
connectPorts (choice.control_out([1l], merge.control_ in)
connectPorts (merge.control_out, do_model.control_in)
connectPorts (do_model.control_out, split.control_in)
connectPorts (split.control_out, sim.control_in)
connectPorts (split.control_out, check.control_ in)
connectPorts (sim.control_out, synchronization.control_in)
connectPorts (check.control_out, synchronization.control_in)
connectPorts (synchronization.control_out, evaluation.control_in)
connectPorts (evaluation.control_out, choice.control_in)

(

.connectPorts (choice.control_out[0], self.finish.control_in)

connectPorts
connectPorts
connectPorts
connectPorts
connectPorts
connectPorts
connectPorts
connectPorts
connectPorts
connectPorts

req.resource_out, resources.resource_in)
resources.resource_out, req.resource_in)
do_model.resource_out, resources.resource_in)
resources.resource_out, do_model.resource_in)
sim.resource_out, resources.resource_in)
resources.resource_out, sim.resource_in)
check.resource_out, resources.resource_in)
resources.resource_out, check.resource_in)
evaluation.resource_out, resources.resource_in)
resources.resource_out, evaluation.resource_in)

2))

198

APPENDIX C. DEVS LIBRARY FOR PROCESSES

Listing 21 Coupled DEVS model of the running example - Part 2.

def

for

simulate (nresources, verbose, seed=1):
random. seed (seed)

model = Example (nresources)

sim = Simulator (model)

sim.setClassicDEVS ()
sim.setTerminationCondition (lambda t, m: m.finish.state is not None)
if verbose is not None:
sim.setVerbose (verbose)
sim.simulate ()

return model.finish.state

i in range(l, 16):
res = []
for v in range(2,100) :
res.append (simulate (i, None, Vv))
print (str(i) + " " + " ".join([str(i) for i in res]))

Appendix D

Artifacts of the proof of
concept

This appendix documents the artifacts of the proof of concept.

199

W J o0 WN

200

APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 22 The original design process encoded in Matlab. — Part 1

function ManualSolution()

clc; close

all;

$MANUALSOLUTION Show the results of a manual iteration process

addpath (’ ComponentSelection’) ;
addpath (RSM_Toolbox’) ;
addpath (MechanicalDesign’) ;

MotorDB = MotorDBSetup () ;

BatteryDB =

BatteryDBSetup () ;

MotorSelectionF = @(x) MotorSelection (x,MotorDB) ;
BatterySelectionF = @(x) BatterySelection (x,BatteryDB) ;

PdesV = 10;
CdesV ig

visualizel =

visualize2
visualize3
visualized
visualize5
visualize6
visualize?7

motorAnalytical =
batteryAnalytical

i

I
[

;
= l;

1;
= 1;

o
oo
[

Q.

o

SETUP PROCESS DESCRIPTIONS

Design steps
esignSteps

= containers.Map () ;

% Motor selection design step

motorSelection.parameters = {’Pdes’;’Peff’;'m’;’'r’;’1"};
motorSelection.inputs = {’Pdes’};
motorSelection.outputs = {‘m’;’1’;’'r’;’'Peff’};
motorSelection.analytical = motorAnalytical;
motorSelection.functionCall = ' [Peff,m,1,r] = MotorSelectionF (Pdes)’;
motorSelection.data = containers.Map();
designSteps ('motorSelection’) = motorSelection;

% Battery selection design step
batterySelection.parameters = {’Cdes’;’Ceff’;'m’;’1';’'w';"'h’};
batterySelection.inputs = {’Cdes’};
batterySelection.outputs = {'m’;’1’;’w’;’h’;’Ceff’};
batterySelection.analytical = batteryAnalytical;
batterySelection. functionCall = ' [Ceff,m,1,w,h] = BatterySelectionF (Cdes)’;
batterySelection.data = containers.Map();
designSteps (' batterySelection’) = batterySelection;

o

mechDesign.

mechDesign.
mechDesign.
mechDesign.
mechDesign.

% Mechanical design design step

parameters = {'mBat’;’1Bat’;’wBat’;’hBat’; 'mMot’;’1Mot’;’rMot’;...
'mTot’ ;' IxxTot’;’IyyTot’ ;" IzzTot’};

inputs = {’mBat’;’1lBat’;’wBat’;’hBat’;’mMot’;’1Mot’;’rMot’};

outputs = {/mTot’;’IxxTot’;’IyyTot’;’IzzTot’};

analytical = 1;

functionCall = ' [mTot, IxxTot, IyyTot, IzzTot] = MechanicalDesign (mBat,

— 1Bat,wBat,hBat,mMot, 1Mot, rMot) ' ;

mechDesign.

data = containers.Map();

designSteps ('mechDesign’) = mechDesign;

o

% Controller optimization design step

contrOpt.parameters = {'mTot’;’IxxTot’;’IyyTot’;’IzzTot’;’'PmaxMot’;’TavgMotl’;’
< TavgMot2’;’Ku’;’Tu’};

contrOpt.inputs = {’mTot’;’IxxTot’;’IyyTot’;’IzzTot’};

contrOpt.outputs = {’PmaxMot’;’TavgMotl’;’TavgMot2’};

contrOpt.analytical = 0;

contrOpt.data = containers.Map();

designSteps (' contrOpt’) = contrOpt;

o

% Electrical Simulation design step

elSim.parameters = {’TavgMotl’;’TavgMot2’;’CBat’};
elSim.inputs = {’TavgMotl’;’TavgMot2’};
elSim.outputs = {’CBat’};

elSim.analytical = 0;

elSim.data

= containers.Map();

designSteps (’elSim’) = elSim;

oUW N

201

Listing 23 The original design process encoded in Matlab. — Part 2

%% 2. Connections map

sources = containers.Map () ;

sources ('mechDesignPoint (/ "mBat’’)’
sources ('mechDesignPoint (/’1Bat’’)’
sources ('mechDesignPoint (/"wBat’’)’
sources

= ’'batterySelectionPoint (’'m’
= ’'batterySelectionPoint (’’1’
(

= 'motorSelectionPoint (‘'m’’")
= 'motorSelectionPoint (/"1’")

(
(
(
(
sources ('mechDesignPoint (/'mMot’ ")’
sources ('mechDesignPoint (/’1Mot’ ")’
(
(
(
(
(
(

sources ('mechDesignPoint (/" rMot’ ")’ = 'motorSelectionPoint (''r’"’)
sources (/ contrOptPoint (/ "mTot’ ") ") = "mechDesignPoint (/ "mTot’’
sources (' contrOptPoint (/" IxxTot’ ")) = ’'mechDesignPoint (/' IxxTot’"’
sources (’ contrOptPoint (/" IyyTot’’)’) = ’'mechDesignPoint (’’IyyTot’’
sources (/ contrOptPoint (/" IzzTot’’)’) = ’'mechDesignPoint (/’IzzTot’"’

sources (’elSimPoint (/" TavgMotl’’) ")
sources (’elSimPoint (’’ TavgMot2’’)’)
assignInputs = @(x) assignInputsF (x,designSteps (x) .inputs, sources);

%% Manual performance of iterations 1 and 2
motorSelectionPoint = containers.Map() ;
batterySelectionPoint = containers.Map () ;
mechDesignPoint = containers.Map();
contrOptPoint = containers.Map();
elSimPoint = containers.Map();

’

’

)

)

) = ’'batterySelectionPoint (' "w'’
"mechDesignPoint (/"hBat’’)’) = ’'batterySelectionPoint ('’h’’

)

)

)

)
)
)
)

)
)
)
)

7o
i
7 s
i

7o

7
’
’

’

’

7 s
7 s
7o

7.
7

;
;

’

= ’contrOptPoint (/' TavgMotl’’)’;
= ’contrOptPoint (/' TavgMot2’’)’;

do oo o o

de o op

[kg]

[m]

[m]

[m]

[kg]
[m]
[m]

% [kg]
[kg*m"2]
[kg*m*2]
[kg*m"2]
% [Nm]

% [Nm]

oo

oo oo

202 APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 24 The original design process encoded in Matlab. — Part 3

% ITERATION 1

motorSelectionPoint ('Pdes’) = PdesV(end); % [kW]

motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
— 1;

add (motorSelection.data,motorSelectionPoint) ;

batterySelectionPoint ('Cdes’) = CdesV(end); % [Ah]

batterySelectionPoint = [batterySelectionPoint; call (batterySelection,

> batterySelectionPoint)];
add (batterySelection.data,batterySelectionPoint) ;

assignInputs (’mechDesign’) ;
mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];
add (mechDesign.data, mechDesignPoint) ;

assignInputs (’ contrOpt’) ;

contrOptPoint (’PmaxMot’) = 94.86; Manually executed [kW]

contrOptPoint (/ TavgMotl’) = 6.1266; % Manually executed [Nm]
contrOptPoint (’ TavgMot2’) = 3.2249; $ Manually executed [Nm]
contrOptPoint (’Ku’) = 0.6952; % Manually executed [1]

contrOptPoint (/' Tu’) = 0.1274; % Manually executed [1]
add (contrOpt .data, contrOptPoint) ;

assignlInputs (‘elSim’);

elSimPoint ('CBat’) = 4.56; % [Ah]

add (elSim.data,elSimPoint) ;

% Generate RSMs

motorSelection.RSM = generateRSM(motorSelection);
batterySelection.RSM = generateRSM(batterySelection);
mechDesign.RSM = generateRSM(mechDesign) ;

contrOpt .RSM = generateRSM(contrOpt) ;

elSim.RSM = generateRSM(elSim) ;

[PdesV (end+1) ,CdesV (end+1)] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,
< BatteryDB) ;

$% Visualize

if visualizel
visualizeNextStep (PdesV, CdesV,MotorDB,BatteryDB, motorSelection,batterySelection,

— contrOptPoint (’PmaxMot’),elSimPoint ('CBat’)) ;

fig = gcf;
ResizeAndSave (fig,’Columnl_Figl’);
saveas (fig,’Column2_Figl.png’) ;
savefig(fig,’Column2_Figl.fig’);
saveas (fig,’Column3_Figl.png’) ;
savefig(fig,’Column3_Figl.fig’);

end

203

Listing 25 The original design process encoded in Matlab. — Part 4

% ITERATION 2

motorSelectionPoint (' Pdes’) = PdesV(end); % [kW]

motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
i

add (motorSelection.data,motorSelectionPoint) ;

batterySelectionPoint ('Cdes’) = CdesV(end); % [Ah]

batterySelectionPoint = [batterySelectionPoint; call (batterySelection,

<~ batterySelectionPoint)];
add (batterySelection.data,batterySelectionPoint) ;

assignInputs ('mechDesign’) ;
mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];

add (mechDesign.data, mechDesignPoint) ;

assignInputs (/' contrOpt’) ;

contrOptPoint (PmaxMot’) = 110.3; & Manually executed [kW]
contrOptPoint (/' TavgMotl’) = 10.3584; $ Manually executed [Nm]
contrOptPoint (' TavgMot2’) = 8.7828; $ Manually executed [Nm]
contrOptPoint (' Ku’) = 0.6952; % Manually executed [1]
contrOptPoint (/ Tu’) = 0.1624; % Manually executed [1]

add (contrOpt .data, contrOptPoint) ;

assignInputs (’elSim’);
elSimPoint (' CBat’) = 5.73108; % [Ah]
add (elSim.data,elSimPoint) ;

% Generate RSMs

motorSelection.RSM = generateRSM(motorSelection) ;
batterySelection.RSM = generateRSM (batterySelection) ;
mechDesign.RSM = generateRSM(mechDesign) ;

contrOpt .RSM = generateRSM(contrOpt) ;

elSim.RSM = generateRSM(elSim) ;

[PdesV (end+1),CdesV(end+1l)] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,
— BatteryDB) ;

%% Visualize
if visualize2
visualizeNextStep (PdesV,CdesV,MotorDB, BatteryDB, motorSelection,batterySelection,
< contrOptPoint (’PmaxMot’),elSimPoint ('CBat’)) ;
ResizeAndSave (gef,’Columnl_Fig2’);
end

204 APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 26 The original design process encoded in Matlab. — Part 5

% ITERATION 3

motorSelectionPoint ('Pdes’) = PdesV(end); ¢ [kW]

motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
— 1

add (motorSelection.data,motorSelectionPoint) ;

batterySelectionPoint ('Cdes’) = CdesV(end); % [Ah]

batterySelectionPoint = [batterySelectionPoint; call (batterySelection,

> batterySelectionPoint)];
add (batterySelection.data,batterySelectionPoint) ;

assignInputs (‘mechDesign’) ;
mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];

add (mechDesign.data, mechDesignPoint) ;

assignInputs (' contrOpt’) ;

contrOptPoint ('PmaxMot’) = 92.0; % Manually executed [kW]
contrOptPoint (’ TavgMotl’) = 10.2638; $ Manually executed [Nm]
contrOptPoint (’ TavgMot2’) = 8.8413; $ Manually executed [Nm]
contrOptPoint (’Ku’) = 0.6190; % Manually executed [1]
contrOptPoint (/' Tu’) = 0.1468; % Manually executed [1]
add (contrOpt.data, contrOptPoint) ;

assignInputs (‘elSim’);
elSimPoint (“CBat’) = 13.7354; % [Ah]
add (elSim.data,elSimPoint) ;

% Generate RSMs

motorSelection.RSM = generateRSM(motorSelection);
batterySelection.RSM = generateRSM(batterySelection);
mechDesign.RSM = generateRSM(mechDesign) ;

contrOpt .RSM = generateRSM(contrOpt) ;

elSim.RSM = generateRSM(elSim) ;

[PdesV (end+1) ,CdesV (end+1)] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,
< BatteryDB) ;

$% Visualize
if visualize3
visualizeNextStep (PdesV, CdesV,MotorDB,BatteryDB, motorSelection,batterySelection,
< contrOptPoint (' PmaxMot’),elSimPoint ('CBat’));
ResizeAndSave (gef,’Columnl_Fig3’);
end

205

Listing 27 The original design process encoded in Matlab. — Part 6

%% ITERATION 4

motorSelectionPoint (' Pdes’) = PdesV(end); % [kW]
motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
i

add (motorSelection.data,motorSelectionPoint) ;

batterySelectionPoint ('Cdes’) = CdesV(end); % [Ah]
batterySelectionPoint = [batterySelectionPoint; call (batterySelection,

<~ batterySelectionPoint)];
add (batterySelection.data,batterySelectionPoint) ;

assignInputs ('mechDesign’) ;
mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];
add (mechDesign.data, mechDesignPoint) ;

assignInputs (/' contrOpt’) ;
contrOptPoint (’PmaxMot’) = 98.4; % Manually executed [KkW]
contrOptPoint (’ TavgMotl’) .9791; % Manually executed [Nm]
contrOptPoint (' TavgMot2’) = 7.7561; $ Manually executed [Nm]
contrOptPoint (' Ku’) 0.5109; % Manually executed [1]
contrOptPoint (/ Tu’) = 0.2154; % Manually executed [1]

add (contrOpt .data, contrOptPoint) ;

I
I < o w

assignInputs (’elSim’);
elSimPoint (' CBat’) = 3.33627; % [Ah]
add (elSim.data,elSimPoint) ;

% Generate RSMs

motorSelection.RSM = generateRSM(motorSelection) ;
batterySelection.RSM = generateRSM (batterySelection) ;
mechDesign.RSM = generateRSM(mechDesign) ;

contrOpt .RSM = generateRSM(contrOpt) ;

elSim.RSM = generateRSM(elSim) ;

[PdesV (end+1),CdesV(end+1l)] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,
— BatteryDB) ;

%% Visualize
if visualized
visualizeNextStep (PdesV,CdesV,MotorDB, BatteryDB, motorSelection,batterySelection,
< contrOptPoint (’PmaxMot’),elSimPoint ('CBat’)) ;
ResizeAndSave (gef,’Columnl_Fig4’);
end

N =

(ST

® J o

10

12
13
14
15

17

18

19
20

NS}

(SIS

17
18

19
20

206 APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 28 The original design process encoded in Matlab. — Part 7

%% ITERATION 5

motorSelectionPoint ('Pdes’) = PdesV(end); & [kW]

motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
— 1;

batterySelectionPoint (Cdes’) = CdesV(end); % [Ah]

batterySelectionPoint = [batterySelectionPoint; call (batterySelection,
— batterySelectionPoint)];

assignInputs (‘mechDesign’) ;

mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];

assignInputs (' contrOpt’) ;

contrOptPoint (/PmaxMot’) = 110.3; $ Manually executed [kW]

contrOptPoint (’ TavgMotl’) = 10.3584; % Manually executed [Nm]

contrOptPoint (’ TavgMot2’) = 8.7828; $% Manually executed [Nm]

contrOptPoint (’Ku’) = 0.6952; % Manually executed [1]

contrOptPoint (/ Tu’) = 0.1624; % Manually executed [1]

assignInputs (’elSim’);

elSimPoint (“CBat’) = 5.73108; % [Ah]

[PdesV (end+1),CdesV (end+1l)] = findNextPoint (contrOptPoint,elSimPoint, MotorDB,
— BatteryDB) ;

if visualize5

visualizeNextStep (PdesV, CdesV,MotorDB,BatteryDB, motorSelection, batterySelection,
— contrOptPoint (' PmaxMot’),elSimPoint (' CBat’));
ResizeAndSave (gecf,’Columnl_Fig5’);
end

Listing 29 The original design process encoded in Matlab. — Part 8

%% ITERATION 6

motorSelectionPoint ('Pdes’) = PdesV(end); ¢ [kW]

motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
— 1;

batterySelectionPoint (Cdes’) = CdesV(end); % [Ah]

batterySelectionPoint = [batterySelectionPoint; call (batterySelection,
< batterySelectionPoint)];

assignInputs (‘mechDesign’) ;

mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];

assignInputs (' contrOpt’);

contrOptPoint (/ PmaxMot’) = 92.0; % Manually executed [kW]

contrOptPoint (’ TavgMotl’) = 10.2638; $ Manually executed [Nm]
contrOptPoint (’ TavgMot2’) 8.8413; % Manually executed [Nm]
(

contrOptPoint (’Ku’) = 0.6190; % Manually executed [1]

contrOptPoint (/ Tu’) = 0.1468; % Manually executed [1]

assignInputs (‘elSim’);

elSimPoint (“CBat’) = 13.7354; ¢ [Ah]

[PdesV (end+1) ,CdesV (end+1)] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,
— BatteryDB) ;

if visualize6

visualizeNextStep (PdesV, CdesV,MotorDB,BatteryDB, motorSelection, batterySelection,
< contrOptPoint (' PmaxMot’),elSimPoint (' CBat’));
ResizeAndSave (gef,’Columnl_Fig6’);
end

N

a1 s

© -1 o

10

12
13
14
15

17

18

19
20

207

Listing 30 The original design process encoded in Matlab. — Part 9

%% ITERATION 7

motorSelectionPoint (' Pdes’) = PdesV(end); ¢ [kW]

motorSelectionPoint = [motorSelectionPoint; call (motorSelection,motorSelectionPoint)
— 1

batterySelectionPoint ('Cdes’) = CdesV(end); % [Ah]

batterySelectionPoint = [batterySelectionPoint; call (batterySelection,
< batterySelectionPoint)];

assignInputs ('mechDesign’) ;

mechDesignPoint = [mechDesignPoint; call (mechDesign,mechDesignPoint)];

assignInputs (’ contrOpt’) ;

contrOptPoint (' PmaxMot’) = 98.4; $ Manually executed [kW]

contrOptPoint (' TavgMotl’) = 8.9791; $ Manually executed [Nm]

contrOptPoint (' TavgMot2’) = 7.7561; $ Manually executed [Nm]

contrOptPoint (’Ku’) = 0.5109; % Manually executed [1]

contrOptPoint (’ Tu’) = 0.2154; % Manually executed [1]

assignInputs (’elSim’);

elSimPoint (' CBat”’) = 3.33627; % [Ah]

[PdesV (end+1),CdesV(end+1l)] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,
<~ BatteryDB) ;

if visualize?7

visualizeNextStep (PdesV,CdesV,MotorDB, BatteryDB, motorSelection,batterySelection,
< contrOptPoint (’PmaxMot’),elSimPoint ('CBat’));
ResizeAndSave (gef,’Columnl_Fig7’);
end

208

APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 31 The original design process encoded in Matlab. — Part 10

disp (’Not done’)

o

% Assign all inputs

function assignInputsF (designstep, properties, sources)

=}
[°}

oo oo oo M

for

end

i = l:length(properties)
curProp = properties{i};

fullName = [designstep ’'Point ('’’’ curProp ’''’)’];
source = sources (fullName) ;
evalin(’caller’, [fullName ' = ' source ’;']);

Add a datapoint to the data set
The data set is a map,
The point is a struct,

function add(data,point)

end

poin
nPar

tParameters = keys (point) ;
ameters = length (pointParameters)

if data.size(l)==

else

end

13

for i = l:nParameters
curKey = pointParameters{i};
newData = point (curKey) ;
data (curKey) = newData(:);
end

dataParameters = keys (data);

7

with parameter names as keys
with parameter names as fields

nDataPoints = length(data (dataParameters{1l}));

$ If the data is not empty, test that its parameters are the

same as those of the point

if ~isempty (setdiff (dataParameters,pointParameters))

$ If the data set is empty, keys are created based in point fields

str = 'Data set uses different parameters as the provided point\n’;
str = [str ’'Data parameters: ’ dataParameters ’\n’];

str = [str ’'Point parameters: ’ pointParameters ’\n’];

error (str) ;

end

3

dataM = zeros (nDataPoints,nParameters);

dataV = zeros(l,nParameters);

for ii = l:nParameters
dataM(:,1ii) = data(dataParameters{ii});
dataV(:,1ii) = point (dataParameters{ii});
end

% Check if the distance to the previous points is not too large

dist = min (sqrt (sum(abs (dataM-ones (nDataPoints, 1) xdataV).”2,2)));

if dist < 1E-6

warning (' New data point is too close to an existing point.

<~ point’)
return;

end
% Add the data from the point
for i = l:nParameters

curKey = pointParameters{i};

newData = point (curKey) ;

data (curKey) = [data(curKey);
end

newData (:)];

Ignoring new

W J oUW N

209

Listing 32 The original design process encoded in Matlab. — Part 11

3

% Generate a RSM for the given model with data
function rsm = generateRSM(model)
%% Extract data

nInputs = length (model.inputs) ;
nOutputs = length (model.outputs) ;
inputs = model.inputs;
outputs = model.outputs;

nDataPoints = length (model.data (inputs{1}));
dataM = zeros (nDataPoints,nInputs);
for ii = l:nInputs
dataM(:,1i) = model.data (inputs{ii});
end
% Determine fitting function
if nDataPoints >= nInputs+l
fittingF = ’regpolyl’;
else
fittingF = ’regpoly0’;
end
% Setup the output struct
% Add which model information was used that may change over time
rsm.inputs = inputs; % Inputs - Outputs may change
rsm.outputs = outputs;
rsm.nDataPoints = nDataPoints; % Data may be added

3

% Fit parameters

o

rsm.dmodel = containers.Map(); % Store a krigin model struct per output

for ii = 1:nOutputs
% RSM toolbox: fit Krigin RSM

rsm.dmodel (outputs{ii}) = dacefit (dataM,model.data(outputs{ii}), fittingF

<~ , ’'correxp’, ones(l,nInputs), le-lxones(l,nInputs), 20*ones (1,

<~ nlInputs));
end
end
Evaluate a model at a given point
In case of an analytical design step, it calls the provided function call
In case of a non-analytical design step, evaluates its RSM
function result = evaluateModel (model, point)
if model.analytical
result = call (model, point) ;
else
result = evaluateRSM(model,point) ;

o oo op

end
end

W J o0 WN

210

APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 33 The original design process encoded in Matlab. — Part 12

% Evaluate a model using its given function call
function result = call (model,point)

end

result = containers.Map();

I3

% Extract data

nInputs = size (model.inputs,1);

nOutputs= size (model.outputs,1);

inputs = model.inputs;

outputs = model.outputs;

functionCall = strrep(model.functionCall,’ ’,’’);

% Split the function call into inputs, function name and outputs
parts = strsplit (functionCall,’=");

outputSs = strsplit (parts{l}(2:end-1),’,");

parts = strsplit (parts{2},’ (");

functionS = parts{l};

inputSs = strsplit (parts{2}(l:end-1),’,");

% Rebuild the function call

functionCallParts = cell(0,1);

functionCallParts{end+1} = " [’;

for ii = 1l:length (outputSs)
functionCallParts{end+1} = outputSs{ii};

if ii ~= length (outputSs)
functionCallParts{end+1} = ',’;
end
end
functionCallParts{end+1} = [’] = ’ functionS ' ('];
for ii = 1l:length(inputSs)
functionCallParts{end+l} = inputSs{ii};
if ii ~= length (inputSs)
functionCallParts{end+1} = ',’;
end
end
functionCallParts{end+1l} = ’);’;

13

% Rewrite all inputs and outputs to use the provided maps
for ii = l:nlInputs
for jj = 1l:length(functionCallParts)
if strcemp (inputs{ii}, functionCallParts{jj})
functionCallParts{jj} = [’'point ('’’’ inputs{ii} '’’")’];
break;
end
end
end
for ii = 1:nOutputs
for jj = l:length(functionCallParts)
if stremp (outputs{ii}, functionCallParts{jj})

functionCallParts{jj} = [’result(’’’ outputs{ii} ""’')’1;
break;
end
end
end
functionCall = strjoin(functionCallParts,’’);
% Evaluate the expression
eval ([functionCall ";’1]);

211

Listing 34 The original design process encoded in Matlab. — Part 13

% Generate feasibility plot for the given RSMs of the design process
function visualizeNextStep (PdesV,CdesV,MotorDB, BatteryDB, motorSelection,

end

<+ batterySelection,Plast,Clast)

% POWERS
pList = [MotorDB.P];

pStep = mean (pList (2:end)-pList (l:end-1));
pMin = min(pList)-3*pStep;
pMax = max (pList);
pV = pMin:pStep/2:pMax;
% CAPACITIES
cList = [BatteryDB.C];
cStep = mean (cList (2:end)-cList (l:end-1));
cMin = min(cList)-3%cStep;
cMax = max (cList);

cV = cMin:cStep/2:cMax; $linspace (cMin,cMax,100);

feas = zeros (length(pV),length(cV));
% Loop over all points
for i=1:1length (pV)

for j = l:length(cV)

feas (i, j) = Plast<pV (i) && Clast<cV(J);

end
end
% Plot

plotNextStep (PdesV (end-1:end),CdesV (end-1:end) ,MotorDB,BatteryDB,
<~ motorSelection,batterySelection, cV,pV, feas) ;

212

APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 35 The original design process encoded in Matlab. — Part 14

% Generate feasibility plot for the given RSMs of the design process
function [curOptP,curOptC] = findNextPoint (contrOptPoint,elSimPoint,MotorDB,

end

— BatteryDB)

% First motor & battery that can provide this

curOptP = MotorDB (find([MotorDB.P]>=contrOptPoint (’PmaxMot’),1,’ first’)) .P;
curOptC = BatteryDB (find([BatteryDB.C]>=elSimPoint ('CBat’),1,’first’)) .C;

% Generate feasibility plot for the given RSMs of the design process
function [c,ceq] = evaluateConstraints (Pdes,Cdes,motorSelection, ...

end

batterySelection,mechDesign, contrOpt,elSim)

% Initialize all input points
motorSelectionInput = containers.Map () ;
batterySelectionInput = containers.Map () ;
mechDesignInput = containers.Map();
contrOptInput = containers.Map();
elSimInput = containers.Map();

% Initial motor and battery dimensioning

motorSelectionInput ('Pdes’) = Pdes; $ [kW]
batterySelectionInput ('Cdes’) = Cdes; ¢ [Ah]

% Evaluate motor and battery selection models
motorSelectionOutput = evaluateModel (motorSelection, motorSelectionInput);
batterySelectionOutput = evaluateModel (batterySelection,
< batterySelectionInput) ;
Peff = motorSelectionOutput ('Peff’);
Ceff = batterySelectionOutput (' Ceff’);

% Insert into mechanical design model input
mechDesignInput (‘mBat’) = batterySelectionOutput (‘m’)
mechDesignInput (’ 1Bat’) = batterySelectionOutput (’1’)
mechDesignInput (‘wBat’) = batterySelectionOutput (‘w’)
mechDesignInput (' hBat’) = batterySelectionOutput (‘h’);
) ("m”)
) ("1")
) ("r")

7 7

7
r1ry .

7
’

’

mechDesignInput (‘mMot’) = motorSelectionOutput (/
mechDesignInput (’ IMot’) = motorSelectionOutput
mechDesignInput (' rMot’) = motorSelectionOutput ('

11y .
7
’

7

% Evaluate mechanical design model
mechDesignOutput = evaluateModel (mechDesign, mechDesignInput) ;

% Insert into controller optimization input

contrOptInput (’‘mTot’) = mechDesignOutput(’'mTot’);
contrOptInput (/ IxxTot’) = mechDesignOutput (’ IxxTot’) ;
contrOptInput (' IyyTot’) = mechDesignOutput (' IyyTot’);
contrOptInput (' IzzTot’) = mechDesignOutput (' IzzTot’);

% Evaluate controller optimization model
contrOptOutput = evaluateModel (contrOpt, contrOptInput) ;

% Insert into controller optimization input
elSimInput (' TavgMotl’) = contrOptOutput (’ TavgMotl’) ;
elSimInput (' TavgMot2’) = contrOptOutput (’ TavgMot2’) ;

% Evaluate controller optimization model
elSimOutput = evaluateModel (elSim, elSimInput);

% Extract required values
Preq = contrOptOutput (' PmaxMot’) ;
Creq = elSimOutput (' CBat’);

% Feasibility
ceq = [];
c = [Preg-Peff; Creq-Ceff];

213

Listing 36 The original design process encoded in Matlab. — Part 15

W J oUW N P

26 end

do oo dp oo oo o

function visualizeInputOutputRelation (model,point, input, output, fig, opt)

end

RSM model
Point containing the value of all other inputs
Name of the input to vary
Name of the output to get

Visualize a single input-output relationship
Inputs:

% Create range
inputData

inputMin =
inputMax =
inputVals

outputVals
for ii

end
figure (fig) ;
hold on;
plot (inputVals, outputVals, opt)
xlabel (input)
ylabel (output)

=1
inputVal = inputVals (ii);
point (input) = inputVal;

result
outputVals (ii) = result (output);

= model.data (input) ;

min (inputData) «0.9;

max (inputData)«1.1;

= linspace (inputMin, inputMax, 100) ;
= zeros (size (inputVals));

:length (inputVals)

= evaluateModel (model, point) ;

Listing 37 The motor database setup activity of the demonstrative example.

1 function MotorSelection = MotorSelection ()
2 MotorSelection = [];
3 %% Settings
4 powerToWeight = 2; & [kW/kg] —--> based on UQM PP 100
5 density = 50/(0.233%(0.286/2)"2xpi); % [kg/m3] ——> based on UQM PP 100
6
7 %% Interpolate to create a "limited" database
8 Pvect = 10:10:200; ¢ [kW]
9 for i = l:length (Pvect)
10 Pcur = Pvect (i);
11 m = Pcur/powerToWeight;
12 r = 0.286/2;
13 1 = m/(density*pi*r”2);
14 MotorSelection = addOne (MotorSelection,Pcur,m,1l,r);
15 end
16
17 %% Output
18 MotorSelection = orderByField (MotorSelection,’P’);
19
20 % Add a single battery
21 function cur = addOne (cur,P,m,1,r)
22 new.P 2p
23 new.m = m;
24 new.l = 1;
25 new.r = rj;
26 cur = [cur; new];
27 end
28 % Order according to the given field
29 function res = orderByField(in, fieldName)
30 fieldContent = [in. (fieldName)];
31 [~,10rdering] = sort (fieldContent) ;
32 res = in(iOrdering) ;
33 end
34

W J oUW N

214 APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 38 The battery database setup activity of the demonstrative example.

function BatterySelection = BatterySelection ()
BatterySelection = [];

%% Load data

dataArray = csvread (’'KokamLargeBatteries.csv’,1,0);

C.data = dataArray(:, 1); % [Ah]
w.data = dataArray(:, 2)./1000; ¢ [m]
l.data = dataArray(:, 3)./1000; % [m]
t.data = dataArray(:, 4)./1000; ¢ [m]
m.data = dataArray(:, 5); % [kg]

%% Create least-squares model

w.coef = [ones(size(C.data)) C.data]\w.data;
l.coef = [ones(size(C.data)) C.data]\l.data;
t.coef = [ones(size(C.data)) C.data]\t.data;
m.coef = [ones (size(C.data)) C.data]\m.data;

%% Interpolate to create a "limited" database

Cvect = 2:10:102;

for Ccur = Cvect

BatterySelection = addOne (BatterySelection,Ccur, ...

[1 Ccur]»*m.coef, ...
[1 Ccur]*w.coef, ...
[1 Ccur]*l.coef,...
[1 Ccur]*t.coef);

end

%% Output

BatterySelection = orderByField (BatterySelection,’C’);
% Add a single battery

function cur = addOne(cur,C,m,1,w,h)

new.C = C;
new.m = m;
new.l = 1;
new.w = w;
new.h = h;
cur = [cur; new];

end
o

% Order according to the given field
function res = orderByField(in, fieldName)

fieldContent = [in. (fieldName)];
[~,10rdering] = sort (fieldContent) ;
res = in(iOrdering) ;

end

W J oUW N

H O Wow-Jo Ul Wk

=

O W -Jo U WN

[

215

Listing 39 The original source of the battery DB.

Capacity,w,1,t,m
13,220,132,6.3,0.332
12,220,132,6.5,0.34
16,220,132,7.8,0.406
25,226,227,6.3,0.6
31,226,227,7.5,0.72
40,226,227,9.3,0.9
46,226,227,12.5,1.265
53,226,227,12,1.16
30,198,220,9.9,0.84
52,268,265,9.3,1.26
55,268,265,10.3,1.45
63,268,265,11,1.52
75,268,265,12,1.63
87,268,265,13,1.78
65,268,265,13.5,1.85
75,268,265,13.3,2
70,462,327,5.4,1.63
80,462,327,6.3,1.92
100,462,327,7,2.07
150,462,327,10.5,3.21
200,462,327,13.7,4.18
240,462,327,15.8,4.78

Listing 40 The battery selection activity of the demonstrative example.

function [Ceff,m,1l,w,h] = BatterySelection(Cdes,BatteryDB
$BATTERYSELECTION

iBat = find([BatteryDB.C]>=Cdes,1,’first’);

Ceff = BatteryDB(iBat).C; % [Ah]

m = BatteryDB (iBat) .m; % [kg]

1 = BatteryDB(iBat) .l; ¢ [m]

\ = BatteryDB(iBat) .w; ¢ [m]

h = BatteryDB(iBat) .h; % [m]

end

Listing 41 The motor selection activity of the demonstrative example.

function [Peff,m,1l,r] = MotorSelection(Pdes,MotorDB)
SMOTORSELECTION

iMot = find([MotorDB.P]>=Pdes,1,’first’);

Peff = MotorDB(iMot) .P; % [kW]

m = MotorDB(iMot) .m; % [kg]

1 = MotorDB(iMot) .1l; % [m]

r = MotorDB(iMot) .r; % [m]

end

W J oUW N

216 APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 42 The mechanical design and simulation activity of the demonstrative example.

function [mTot, IxxTot, IyyTot, IzzTot] = MechanicalDesign (mBat,l1Bat,wBat,hBat, ...
mMot, 1Mot , rMot)

Assumptions:
Battery is placed at the center of the robot
% length = y-axis, width = x-axis, height = z-axis

o
o
e
5

Bat.x = 0;

Bat.y = 0;

Bat.z = hBat/2;
Bat.m = mBat;
elements = {Bat};

% Motors are placed at opposite ends of the battery
$ parallel to the y-axis, perpendicular to the x and z-axes

Motl.x = 0;

Motl.y = wBat/2+1Mot/2;
Motl.z = rMot;

Motl.m = mMot;

Mot2.x = 0;

Mot2.y = - (wBat/2+1Mot/2);
Mot2.z = rMot;

Mot2.m = mMot;
elements{end+1} = Motl;
elements{end+1} = Mot2;

% Magnets are placed next to the batteries in the x-direction
Magl.x = 1Bat/2+0.087/2;

Magl.y = 0;

Magl.z = 0;

Magl.m = 2.989;

Mag2.x = - (1Bat/2+0.087/2);
Mag2.y = 0;

Mag2.z = 0;

i
Mag2.m = 2.989;

elements{end+1l} = Magl;

elements{end+1l} = Mag2;

% Base 1is a circle,

% with a plate thickness determined by the battery and motor mass
Base.x =
Base.y =
Base.z = 0;
Base.rho 7800;
Base.r = wBat/2+1Mot;

i

7

I oo o

mOnBase = 0;
for curEl = elements
mOnBase = mOnBase + curEl{l}.m;
end
Base.t = 3xmOnBase/lE5; $ Linear approximation of the thickness

Base.m = Base.rho x pi » Base.r”2 * Base.t;

Base.Ixx = 1/12+«Base.m* (3xBase.r"~2+Base.t”"2);
Base.Ilyy = 1/12+Base.m* (3*Base.r”2+Base.t”2);
Base.Izz = 1/2*Base.mxBase.r"2;

elements{end+l} = Base;
% Sum all elements
mTot = 0; IxxTot = Base.Ixx; IyyTot = Base.lyy; IzzTot = Base.Izz;
for curEl = elements
mTot = mTot + curEl{l}.m;
IxxTot = IxxTot + curEl{l}.m* (curEl{1l}.y"2+curkEl{1}.z"2);
IyyTot = IyyTot + curEl{l}.mx* (curEl{1l}.x"2+curkEl{1}.z"2);
IzzTot = IzzTot + curEl{l}.m* (curEl{1l}.x"2+curkEl{1l}.y"2);
end

end

W J o U WwWN

43

44
45

46

47

48
49

217

Listing 43 The exported plant model from Virtual.Lab-Motion to Matlab/Simulink.

motionfiles =][

"C:\agv\MobilePlatformToolDevelopment \Models\MechanicalModel\AnalysisCase.1l.1,
C:\agv\MobilePlatformToolDevelopment \Models\MechanicalModel\AnalysisCase.1l.1,
C:\agv\MobilePlatformToolDevelopment \Models\MechanicalModel\AnalysisCase.1l.1,
C:\agv\MobilePlatformToolDevelopment\Models\MechanicalModel\AnalysisCase.1.1’];

antype = [’cosim’]; feedthrough = [’false’];
vl = getenv (/ VLMOTIONSLV’) ;
v1ll = strcat (vl,’\execute\intel64’);

path (path, v1l);
if (stremp(gcs,’’))
disp ('Error Matlab model not loaded’);
clear vl vll;
return;
end
subsys = strcat (gcs,’/plantout’);
new = 0;
try
add_block (‘built-in/SubSystem’, subsys, ’'Position’, [200 200 300 300])
new = 1;
catch
try
cnt = get_param(strcat (subsys,’/thedemux’) , ’Outputs’);
for i = 1l:str2num(cnt)
delete_line(subsys, strcat (’thedemux/’,num2str(i)), strcat (’themux/’,
— num2str(i)));
end
delete_line (subsys,’in/1’, ’thebus/1’);
delete_line (subsys,’thebus/1’, ’motionfun/1’);
delete_line (subsys,’themux/1’,’out/1");
delete_line (subsys, 'motionfun/1’,’thedemux/1’);
delete_block(strcat (subsys,’/motionfun’));
delete_block (strcat (subsys,’/thedemux’));
delete_block (strcat (subsys,’/themux’));
delete_block (strcat (subsys,’/thebus’));
catch
warning ’‘Unable to modify plantout block will delete’;
delete_block (subsys);
add_block ('built-in/SubSystem’, subsys, ’'Position’, [200 200 300 300]) e
new = 1;
end
end
if (new)
add_block (built-in/Inport’, strcat(subsys, ’/in’), ’Position’, [15 125 65 175])
—
add_block (‘built-in/Outport’, strcat(subsys, ’/out’), ’'Position’, [735 125 785
— 175]);
end
add_block (‘built-in/Demux’, strcat (subsys,’/thedemux’), ’'Outputs’, ’2’, ’Position’,
— [365 100 465 200]);
add_block (‘built-in/BusCreator’, strcat (subsys,’/themux’), ’Inputs’, ’2’, ’Position’,
<~ [580 100 590 200]);

add_block (‘built-in/BusSelector’, strcat (subsys,’/thebus’), ’Position’, [120 100 130
— 200], ’"MuxedOutPut’, ’'On’);

sfunction_setup = 1;

add_block (‘built-in/S-Function’, strcat (subsys,’/motionfun’), ’‘Position’, [210 100
< 290 200], ’'FunctionName’, ’vlmotionmex’, ’Parameters’, ’antype,motionfiles,
— feedthrough’);

clear sfunction_setup;

add_line (subsys,’themux/1’, " out/1");

add_line (subsys,’in/1’,’thebus/1’);

add_line (subsys,’thebus/1’, 'motionfun/1’);
add_line (subsys,’motionfun/1’,’thedemux/1’);

a = add_line(subsys, ’thedemux/1’, ’themux/1’);
set_param(a, 'Name’, ’al’);

a = add_line(subsys, ’thedemux/2’, ’themux/2’);
set_param(a, 'Name’, ’a2’);

set_param(strcat (subsys,’/thebus’), ’OutputSignals’, 'T1,T2');
clear vl vll a i new subsys;

disp ('’ setup for Virtual.Lab Motion done’);

1
2
3
4

&

218

APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 44 The querying template for AMESim.

class AmesimQuery extends AmesimAttributeDefinitionImpl implements IExecutable {

private val logger = Logger.getLogger (this.class)
private val AMESIM LOCATION = new File ("D:\\tools\\LMS\\LMS Imagine.Lab Amesim\\

— v1400")
private val QUERY_RESULT_LABEL = "queryresult:"
private val ERROR_MSG = "From AMEGetParameterValue: fail to locate parameter or

< variable in the active circuit:"

private static extension val AliasHandler aliasHandler = new AliasHandler ()

@Accessors (PRIVATE_GETTER, PRIVATE_SETTER) private val Attribute attribute;
@Accessors (PRIVATE_GETTER, PRIVATE_SETTER) private wval Activity activity;

new (Attribute attribute, Activity activity) {

}

this.attribute = attribute
this.activity = activity

override execute() {

}

logger.level = Level::DEBUG

val file = File.createTempFile ("amesimquery", ".py", AMESIM_ LOCATION)
file.deleteOnExit ()
val bufferedWriter = new BufferedWriter (new FileWriter (file))

val scriptText = AmesimQueryScriptTemplate.generateAmesimQueryScript (attribute.
< getQueryableName (activity)) .toString

bufferedWriter.write (scriptText)

bufferedWriter.close();

logger.debug (file.getAbsolutePath ())
logger.debug (scriptText)

val command = ’"’ + AMESIM_LOCATION + ’\\python.bat"™ "’ + file.absolutePath + "’
logger.debug (' command: ’ + command)

val processBuilder = new ProcessBuilder (command)
processBuilder.directory (AMESIM_LOCATION)
val process = processBuilder.start

val bufferedReader = new BufferedReader (new InputStreamReader (process.inputStream
— 1))

val errorReader = new BufferedReader (new InputStreamReader (process.errorStream))

evaluate (bufferedReader, errorReader)

private def evaluate (BufferedReader bufferedReader, BufferedReader errorReader) ({

val List<String> blines = Lists::newArrayList (bufferedReader.lines () .toArray)
if (!blines.empty) {
for (line : blines) {
logger.debug (line)
if (line.trim.startsWith (QUERY_RESULT_LABEL)) {
return Double.parseDouble (line.split (’:’).last.trim)

219

Listing 45 The querying template for Matlab.

class MatlabQuery extends MatlabAttributeDefinitionImpl implements IExecutable ({
private static extension wval AliasHandler aliasHandler = new AliasHandler ()

@QAccessors (PRIVATE_GETTER, PRIVATE_SETTER) private val Attribute attribute;
QAccessors (PRIVATE_GETTER, PRIVATE_SETTER) private val Activity activity;

new (Attribute attribute, Activity activity) {

this.attribute = attribute
this.activity = activity

override execute () {

try {
val matlabEngine = MatlabConnectionManager::matlabEngine;
val queryableName = attribute.getQueryableName (activity)

matlabEngine.getVariable (queryableName)
} catch (Exception ex) {
return null

Listing 46 The executor for Python.

class PythonExecutor ({

def execute (PythonScript script) {

w Sw N e

O v W -J o

//val p = Runtime.getRuntime ().exec ("d:\\GitHub\\msdl\\ICM\\examples\ \be.
< uantwerpen.msdl.icm.cases.demo\\python\\pythonstep.bat amesimtest.py")
//this was added due to the standalone python installation packaged with LMS
< tools (e.g. AMESim)
val p = Runtime.getRuntime () .exec ("python " + script.getScriptLocation);
val in = new BufferedReader (new InputStreamReader (p.getInputStream()));
System.out.println (in.readLine) ;

O JoU s WN

220

APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Listing 47 The command executor for Matlab extending the ParameterizedExecutor in

Listing 48.

enum ExecutionMode {

NORMAL,
HEADLESS

class MatlabExecutor extends ParameterizedExecutor ({

@Accessors (NONE) val DEFAULT_MODE = ExecutionMode: :HEADLESS

def execute (MatlabScript script, MatlabProxy matlabProxy, EMap<String, String>
<> parameters,
ExecutionMode executionMode) ({
switch (executionMode) {
case NORMAL: executeWithGui (script, matlabProxy, parameters)
case HEADLESS: executeHeadless (script, matlabProxy, parameters)

def execute (MatlabScript script, MatlabProxy matlabProxy, EMap<String, String>
<~ parameters) {
execute (script, matlabProxy, parameters, DEFAULT_MODE)

private def executeHeadless (MatlabScript script, MatlabProxy matlabProxy, EMap<
< String, String> parameters) {
val path = Paths.get (script.scriptLocation)
val charset = StandardCharsets.UTF_8
val rawContent = new String(Files.readAllBytes (path), charset)

// resolve parameters in the next line of the script
val content = rawContent.resolveParameters (parameters)

// execute command
val matlabEngine = MatlabConnectionManager::matlabEngine
matlabEngine.eval (content)

private def executeWithGui (MatlabScript script, MatlabProxy matlabProxy, EMap<
< String, String> parameters) {
val file = new File(script.scriptLocation)

try {
val bufferedReader = new BufferedReader (new FileReader (file))
var String line = ""

while ((line = bufferedReader.readLine()) !== null) {
// resolve parameters in the next line of the script
line = line.resolveParameters (parameters)

// execute command
matlabProxy.eval (line)

// update variable store
line.extractAssignments
}
} catch (Exception e) {
e.printStackTrace

221

Listing 48 The parameterized command executor. Serves as a superclass for platform-
specific executors.

1 class ParameterizedExecutor {
2
3 val BYNUMBER_NAME_PATTERN = "\\%\\{args\\[i\\].name\\}\\%"
4 val BYNUMBER_VALUE_PATTERN = "\\%\\{args\\[i\\].value\\}\\&"
5 val BYNAME_NAME_PATTERN = "\\%\\{args\\[’n’\\].name\\}\\&"
6 val BYNAME_VALUE_PATTERN = "\\%\\{args\\[’'n’\\].value\\}\\&"
7
8 val ASSIGNMENT_PATTERN = "varname\\s*=\\s%[0-9] %"
9
10 def resolveParameters (String command, EMap<String, String> parameters) {
11 var String newCommand = command
12
13 for (parameter : parameters) {
14 val key = parameter.key
15 val value = parameter.value
16 val index = parameters.indexOfKey (key)
17
18 newCommand = newCommand.replaceAll (BYNUMBER_NAME_PATTERN.replace(’i’, index.
< toString), key)
19 newCommand = newCommand.replaceAll (BYNUMBER_VALUE_PATTERN.replace(’i’, index.
<+ toString), value)
20 newCommand = newCommand.replaceAll (BYNAME_NAME_PATTERN.replaceFirst (‘n’, key),
— key)
21 newCommand = newCommand.replaceAll (BYNAME_VALUE_PATTERN.replaceFirst (‘n’, key),
— value)
22 }
23
24 newCommand = newCommand.replaceUnused
25
26 newCommand
27 }
28
29 def getReplaceUnused (String command) {
30 var String newCommand = command
31 newCommand = newCommand.replaceAll ("\\%\\{args\\ [’ [a-2zA-Z0-9_]"\\].value\\}\\%",
— ’'null’)
32 newCommand
33 }
34
35 def extractAssignments (String line) {
36 val variableManager = VariableManager.instance
37
38 for (variable : variableManager.variableStore.variables) {
39 val pattern = ASSIGNMENT_PATTERN.replace (’varname’, variable.name)
40 val matches = Pattern.compile (pattern) .matcher (line)
41 while (matches.find) {
42 val split = matches.group.split ("=").toList
43 val varname = split.head
44 val value = new Double (split.last)
45
46 variableManager.setVariable (varname, value)
47 }
48 }
49 }

222 APPENDIX D. ARTIFACTS OF THE PROOF OF CONCEPT

Appendix E

Formal notations

This appendix lists the notations used in the formal parts of this work.

a € A — activity, set of activities

b(w) — availability of the resource w

B — vector of availabilities

C. — cOst per execution

¢p — cost for presence

Cy, — COSt per unit

C(m) — cost of process 7

v € I — capability, set of capabilities

d € D —design artifact, set of design artifacts

0. € A, : A~ A— control flow

0q € Ag: A D —design artifact flow

A} — transitive closure of an activity

Ua,c p di — virtual product

f € F — formalism, set of formalisms

1 € I —intent, set of intents

k(a) — resource demand of activity a

X (&) — change scope of the system characteristic &
X1 (&) — the transitive closure of the change scope over system characteristic &;
{(a) — resource allocation of activity a

A —levels of precision

223

224

APPENDIX E. FORMAL NOTATIONS

m € M — management pattern, set of management patterns

1 — marking of process

w € {1 —resource, resources

p € P — property, set of properties

P,cq(D;) C P — the set of properties required to be satisfied by D;
Ps.1(D;) C P — the set of properties satisfied by D;

Punsat(D;) C P —the set of required but not satisfied properties by D;
par(a;, as) — parallel activities

7 € II — process, set of processes

¥ — set of inconsistencies

1 (&) — inconsistency mapping function of system characteristic £
r € R —relationship, set of relationships

S — system

seq(a1, az) — sequential activities

X1 — process space

t € T — transformation, set of transformations

t; € T —type of intent, set of all types of intents

0 € © — attribute, set of attributes

¢ € = - system characteristic, set of system characteristics

Bibliography

[1] Merriam-Webster Dictionary and Thesaurus. http://merriam-webster.
com. Accessed: 2015-11-20. 25

[2] H. Abdeen, D. Varrd, H. Sahraoui, A. S. Nagy, C. Debreceni, A. Hegediis, and
A. Horvéth. Multi-objective optimization in rule-based design space exploration. In
Proceedings of the 29th ACM/IEEE Int. Conf. on Automated software engineering,
pages 289-300. ACM, 2014. 82

[3] Accreditation Board for Engineering and Technology Inc. ABET Definition of
Design. http://www.me.unlv.edu/Undergraduate/coursenotes/
meg497/ABETdefinition.htm. Acc: 2017-08-17. 17

[4] ACM. ACM Digital Library. https://dl.acm.org. Acc: 2019-05-11. 23

[5] C. Adourian and H. Vangheluwe. Consistency between geometric and dynamic views
of a mechanical system. In Proceedings of the 2007 Summer Computer Simulation
Conference, SCSC °07, pages 31:1-31:6, San Diego, CA, USA, 2007. Society for
Computer Simulation International. 31, 33, 38, 39, 40

[6] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832-843, 1983. 18, 170

[7] M. A. Almeida da Silva, R. Bendraou, X. Blanc, and M.-P. Gervais. Early Deviation
Detection in Modeling Activities of MDE Processes, pages 303-317. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. 104

[8] A. Alshareef, H. S. Sarjoughian, and B. Zarrin. An approach for activity-based devs
model specification. In Proceedings of the Symposium on Theory of Modeling &
Simulation, TMS-DEVS 16, pages 25:1-25:8, San Diego, CA, USA, 2016. Society
for Computer Simulation International. 47

[9] A. I Antén, W. M. McCracken, and C. Potts. Goal decomposition and scenario
analysis in business process reengineering. In International Conference on Advanced
Information Systems Engineering, pages 94—104. Springer, 1994. 10

[10] Apache Software Foundation. Apache Maven Website. https://maven.
apache.org. Acc: 2017-08-17. 19

[11] C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. ISTE, 2007. 47, 72

225

http://merriam-webster.com
http://merriam-webster.com
http://www.me.unlv.edu/Undergraduate/coursenotes/meg497/ABETdefinition.htm
http://www.me.unlv.edu/Undergraduate/coursenotes/meg497/ABETdefinition.htm
https://dl.acm.org
https://maven.apache.org
https://maven.apache.org

226

[12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

BIBLIOGRAPHY

C. Atkinson and D. Draheim. Cloud-aided software engineering: evolving viable
software systems through a web of views. In Software engineering frameworks for
the cloud computing paradigm, pages 255-281. Springer, 2013. 10

S. Balaji and M. S. Murugaiyan. Waterfall vs. v-model vs. agile: A comparative study
on sdlc. International Journal of Information Technology and Business Management,
2(1):26-30, 2012. 18

R. Balzer. Tolerating inconsistency. [1991 Proceedings] 13th International Confer-
ence on Software Engineering, pages 158-165, 1991. 31, 39, 41, 167, 170

B. Barragéns-Martinez, J. Pazos-Arias, and A. Ferndndez-Vilas. On measuring levels
of inconsistency in multi-perspective requirements specifications. In Proceedings
of the 1st Conference on the Principles of Software Engineering (PRISE’04), pages
21-30, 2004. 42

B. Barroca, T. Kuhne, and H. Vangheluwe. Integrating language and ontology
engineering. In Proceedings of 8th International Workshop on Multi-paradigm
modeling, pages 77-86, 2014. 170

S. Bechhofer. OWL: Web ontology language. In Encyclopedia of Database Systems,
pages 2008-2009. Springer, 2009. 71

S. M. Becker and A.-T. Kortgen. Integration tools for consistency management
between design documents in development processes. In G. Engels, C. Lewerentz,
W. Schifer, A. Schiirr, and B. Westfechtel, editors, Graph Transformations and
Model-driven Engineering, pages 683—718. Springer-Verlag, Berlin, Heidelberg,
2010. 31, 33, 38, 39

A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier,
A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K. G. Larsen. Contracts
for Systems Design : Theory. Technical Report RR-8759, INRIA, 2015. 54, 56

G. Bergmann, 1. David, A. Hegediis, A. Horvith, 1. Réth, Z. Ujhelyi, and D. Varré.
VIATRA 3: A Reactive Model Transformation Platform. In Theory and Practice of
Model Transformations, pages 101-110. Springer, 2015. 83, 91

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1987. 44

K. Berx, H. Karhula, M. Nicolai, and M. Davy. Extended dependency modelling for
effective and efficient design decision support. (Technical report). 61

J. Bézivin. In search of a basic principle for model driven engineering. Novatica
Journal, Special Issue, 5(2):21-24,2004. 12

A. K. Bhattacharjee and R. K. Shyamasundar. Activity diagrams : A formal frame-
work to model business processes and code generation. Journal of Object Technology,
8(1):189-220, 2009. 45

A. Bhave, B. Krogh, D. Garlan, and B. Schmerl. Multi-domain modeling of cyber-
physical systems using architectural views. AVICPS 2010, page 43, 2010. 31, 34,
39

BIBLIOGRAPHY 227

[26] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl. View consistency in architectures
for cyber-physical systems. In Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM
International Conference on, pages 151-160, April 2011. 31, 35, 39

[27] G. Bianchi, F. Paolucci, P. Van den Braembussche, H. Van Brussel, and F. Jovane.
Towards virtual engineering in machine tool design. CIRP Annals-Manufacturing
Technology, 45(1):381-384, 1996. 10

[28] G. Blair, N. Bencomo, and R. France. Models@ run.time. Computer, 42(10):22-27,
2009. 160, 165

[29] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting model inconsistency
through operation-based model construction. In Software Engineering, 2008. ICSE
'08. ACM/IEEE 30th International Conference on, pages 511-520, May 2008. 31,
35, 38, 39, 41

[30] B. W. Boehm. A spiral model of software development and enhancement. Computer,
21(5):61-72, 1988. 18

[31] N. Bouillot and E. Gressier-Soudan. Consistency models for distributed interactive
multimedia applications. SIGOPS Operating Systems Review, 38(4):20-32, Oct.
2004. 44

[32] G. E. Box. Robustness in the strategy of scientific model building. In Robustness in
statistics, pages 201-236. Elsevier, 1979. 12

[33] D. Broman, E. A. Lee, S. Tripakis, and M. Toérngren. Viewpoints, formalisms, lan-
guages, and tools for cyber-physical systems. In Proceedings of the 6th International
Workshop on Multi-Paradigm Modeling, pages 49-54. ACM, 2012. 16, 56

[34] T. R. Browning. Applying the design structure matrix to system decomposition
and integration problems: a review and new directions. [EEE Transactions on
Engineering management, 48(3):292-306, 2001. 48

[35] B. Choudhary. The Elements of Complex Analysis. New Age International, 1992.
ISBN 978-81-224-0399-2. 106

[36] J. O. Clark. System of systems engineering and family of systems engineering from
a standards, v-model, and dual-v model perspective. In 2009 3rd Annual IEEE
Systems Conference, pages 381-387. IEEE, 2009. 18

[37] CMMI Institute. CMMLI. http://cmmiinstitute.com/
capability-maturity-model-integration. Accessed: 2018-11-
20. 9,91, 106, 168

[38] G. Cohen, D. Dubois, J. Quadrat, and M. Viot. A Linear-System-Theoretic View of
Discrete-Event Processes and its use for Performance Evaluation in Manufacturing.
IEEE Transactions on Automatic Control, 30(3):210-220, Mar 1985. 47

[39] M. Cohn. User stories applied: For agile software development. Addison-Wesley
Professional, 2004. 10

[40] J. Corley, E. Syriani, H. Ergin, and S. Van Mierlo. Cloud-based multi-view modeling
environments. In Modern Software Engineering Methodologies for Mobile and
Cloud Environments, pages 120—139. IGI Global, 2016. XVII, 16

http://cmmiinstitute.com/capability-maturity-model-integration
http://cmmiinstitute.com/capability-maturity-model-integration

228

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

BIBLIOGRAPHY

K. Craig. Multidisciplinary Mechatronic Innovations. http://www.
multimechatronics.com. Acc: 2019-05-12. 2

M. Cumberlidge. Business process management with JBoss jBPM. Packt Publishing
Ltd, 2007. 45

K. Dahman, F. Charoy, and C. Godart. Towards consistency management for a
business-driven development of soa. In Enterprise Distributed Object Computing
Conference (EDOC), 2011 15th IEEE International, pages 267-275, Aug 2011. 31,
34, 39, 40

A. Dardenne, A. Van Lamsweerde, and S. Fickas. Goal-directed requirements
acquisition. Science of computer programming, 20(1-2):3-50, 1993. 10

I. David, J. Denil, K. Gadeyne, and H. Vangheluwe. Engineering Process Transfor-
mation to Manage (In)consistency. In Proceedings of the 1st International Workshop
on Collaborative Modelling in MDE (COMMitMDE 2016), pages 7-16. http://ceur-
ws.org/Vol-1717/, 2016. 63, 77, 101, 108, 120, 129

I. David, J. Denil, and H. Vangheluwe. Towards inconsistency management by
process-oriented dependency modeling. In Proceedings of 9th International Work-
shop on Multi-Paradigm Modeling, pages 3241, 2015. 63, 68, 99, 120

I. Déavid, B. Meyers, K. Vanherpen, Y. Van Tendeloo, K. Berx, and H. Vangheluwe.
Modeling and enactment support for managing inconsistencies in heterogeneous
systems engineering processes. In Proceedings of MODELS 2017 Satellite Event,
September 17, 2017, Austin, Texas, USA/Burgueiio, Loli [edit.], pages 145-154,
2017. 91, 95

L. David, I. Rath, and D. Varr6. Foundations for Streaming Model Transformations
by Complex Event Processing. Software and Systems Modeling. 40

I. Dévid, E. Syriani, C. Verbrugge, D. Buchs, D. Blouin, A. Cicchetti, and K. Vanher-
pen. Towards inconsistency tolerance by quantification of semantic inconsistencies.
1st International Workshop on Collaborative Modelling in MDE, 2016. 144, 170

I. Ddvid, Y. Van Tendeloo, and H. Vangheluwe. Translating engineering workflow
models to devs for performance evaluation. In Proceedings of the 2018 Winter
Simulation Conference, WSC 2018, pages 616—627. IEEE, Dec. 2018. 106

K. Deb. Multi-objective optimization. In Search methodologies, pages 403—449.
Springer, 2014. 145

J. Denil. Design, verification and deployment of software-intensive systems: a
multi-paradigm modelling approach. University of Antwerp, 2013. 92

J. Denil, R. Salay, C. Paredis, and H. Vangheluwe. Towards agile model-based
systems engineering. In CEUR workshop proceedings, pages 424-429, 2017. 9

M. Dumas and A. H. Ter Hofstede. Uml activity diagrams as a workflow specification
language. In International conference on the unified modeling language, pages 76-90.
Springer, 2001. 19

http://www.multimechatronics.com
http://www.multimechatronics.com

BIBLIOGRAPHY 229

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

I. D4vid, J. Denil, and H. Vangheluwe. Patterns of inconsistency management in
mechatronics — a survey. (Technical report, 2015). http://msdl.cs.mcgill.
ca/people/istvan/pub/icm-patterns—techreport. 21

S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Coordinating distributed
viewpoints: the anatomy of a consistency check. Concurrent Engineering, 2(3):209—
222,1994. 31, 39, 41

Eclipse Foundation. Eclipse Modeling Framework (EMF) Website. https://
eclipse.org/modeling/emf/. Acc: 2017-08-17. 91, 152

Eclipse Foundation. EMFCompare. https://www.eclipse.org/emf/
compare/. Accessed: 2015-11-20. 38

Eclipse Foundation. MWE2 Website. https://help.eclipse.org/luna/
topic/org.eclipse.xtext.doc/contents/118-mwe-in-depth.
html. Acc: 2017-08-17. 19

Eclipse Foundation. Sirius Website. https://eclipse.org/sirius/. Acc:
2017-07-07. 65, 98, 153

A. Egyed. Automatically detecting and tracking inconsistencies in software design
models. Software Engineering, IEEE Transactions on, 37(2):188-204, March 2011.
31, 33, 38, 39, 104

M. El Hamlaoui, S. Ebersold, B. Coulette, M. Nassar, and A. Anwar. Heterogeneous
models matching for consistency management. In Research Challenges in Informa-
tion Science (RCIS), 2014 IEEE Eighth International Conference on, pages 1-12,
May 2014. 31, 34, 38, 39

G. Engels, R. Heckel, and J. Kiister. The consistency workbench: A tool for
consistency management in uml-based development. In P. Stevens, J. Whittle,
and G. Booch, editors, «<UML» 2003 - The Unified Modeling Language. Modeling
Languages and Applications, volume 2863 of Lecture Notes in Computer Science,
pages 356-359. Springer Berlin Heidelberg, 2003. 31, 36, 39

Engineers’ Council for Professional Development. Canons of
ethics for engineers. http://www.worldcat.org/title/
canons—of-ethics—-for—-engineers/oclc/263939009. Accessed:
2018-11-20. 7

S. D. Eppinger and T. R. Browning. Design structure matrix methods and applica-
tions. MIT press, 2012. 47, 154

R. Eramo, A. Pierantonio, and G. Rosa. Approaching Collaborative Modeling as an
Uncertainty Reduction Process. In COMMitMDE@ MoDELS, pages 27-34, 2016.
104

J.-M. Favre. Towards a basic theory to model model driven engineering. In 3rd
Workshop in Software Model Engineering, WiSME, pages 262-271. Citeseer, 2004.
12,13

http://msdl.cs.mcgill.ca/people/istvan/pub/icm-patterns-techreport
http://msdl.cs.mcgill.ca/people/istvan/pub/icm-patterns-techreport
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://help.eclipse.org/luna/topic/org.eclipse.xtext.doc/contents/118-mwe-in-depth.html
https://help.eclipse.org/luna/topic/org.eclipse.xtext.doc/contents/118-mwe-in-depth.html
https://help.eclipse.org/luna/topic/org.eclipse.xtext.doc/contents/118-mwe-in-depth.html
https://eclipse.org/sirius/
http://www.worldcat.org/title/canons-of-ethics-for-engineers/oclc/26393909
http://www.worldcat.org/title/canons-of-ethics-for-engineers/oclc/26393909

230

[68]

[69]
[70]

[71]

[72]
(73]

[74]
[75]

[76]

[77]

(78]

[79]

[80]

BIBLIOGRAPHY

S. Feldmann, K. Kernschmidt, and B. Vogel-Heuser. Combining a SysML-based
Modeling Approach and Semantic Technologies for Analyzing Change Influences in
Manufacturing Plant Models. Procedia { CIRP}, 17:451 — 456, 2014. 100

D. Fensel. Ontologies. In Ontologies, pages 11-18. Springer, 2001. 170

A. Finkelstein. A foolish consistency: Technical challenges in consistency man-
agement. In M. Ibrahim, J. Kiing, and N. Revell, editors, Database and Expert
Systems Applications, volume 1873 of Lecture Notes in Computer Science, pages
1-5. Springer Berlin Heidelberg, 2000. 2, 27, 30, 41, 51

A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsis-
tency handling in multiperspective specifications. /[EEE Transactions on Software
Engineering, 20(8):569-578, Aug 1994. 2, 17

J. W. Forrester. Principles of Systems. Productivity Press, 1968. 71, 99

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web
service compositions. In 18th IEEE International Conference on Automated Software
Engineering (ASE 2003), 6-10 October 2003, Montreal, Canada, pages 152—163,
2003. 45

M. Fowler. Domain-specific languages. Pearson Education, 2010. 13

X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proceed-
ings of the 13th international conference on World Wide Web, WWW 2004, New York,
NY, USA, May 17-20, 2004, pages 621-630, 2004. 45

J. Gausemeier, W. Schifer, J. Greenyer, S. Kahl, S. Pook, J. Rieke, et al. Management
of cross-domain model consistency during the development of advanced mechatronic
systems. DS 58-6: Proceedings of ICED 09, the 17th International Conference on
Engineering Design, Vol. 6, Design Methods and Tools (pt. 2), Palo Alto, CA, USA,
24.-27.08. 2009, 2009. 31, 33, 39, 40

D. A. Gebala and S. D. Eppinger. Methods for analyzing design procedures. 1991.
48

H. Giese, S. Burmester, W. Schifer, and O. Oberschelp. Modular design and
verification of component-based mechatronic systems with online-reconfiguration.
In Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on
Foundations of Software Engineering, SIGSOFT *04/FSE-12, pages 179-188, New
York, NY, USA, 2004. ACM. 31, 37, 39

H. Giese and S. Hildebrandt. Incremental model synchronization for multiple
updates. In Proceedings of the Third International Workshop on Graph and Model
Transformations, GRaMoT ’08, pages 1-8, New York, NY, USA, 2008. ACM. 31,
33, 38, 39, 40

H. Giese and R. Wagner. Incremental model synchronization with triple graph
grammars. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, Model
Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in
Computer Science, pages 543-557. Springer Berlin Heidelberg, 2006. 33

BIBLIOGRAPHY 231

[81]

(82]

[83]
[84]

[85]

[86]

(87]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

D. Gross, J. Shortle, J. Thompson, and C. Harris. Fundamentals of Queueing Theory.
Wiley, 2011. 88

J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency management for multiple-
view software development environments. I[EEE Transactions on Software Engineer-
ing, 24(11):960-981, Nov 1998. 2, 17

R. Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007. 27

D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231-274, 1987. 19, 46, 120, 121

A. Hegediis, A. Horvath, I. Rath, M. Branco, and D. Varro. Quick fix generation for
dsmls. In Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium on, pages 17-24, Sept 2011. 40, 43

A. Hegediis, A. Horvith, and D. Varré. A model-driven framework for guided design
space exploration. Automated Software Engineering, 22(3):399-436, 2015. 81, 86

P. Hehenberger, A. Egyed, and K. Zeman. Consistency checking of mechatronic
design models. In ASME 2010 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, pages 1141-1148.
American Society of Mechanical Engineers, 2010. 26, 31, 36, 38, 39

S.J. Herzig and C. J. Paredis. Bayesian reasoning over models. In /1th Workshop
on Model Driven Engineering, Verification and Validation MoDeVVa 2014, page 69,
2014. 31, 37,39

S. J. Herzig and C. J. Paredis. A conceptual basis for inconsistency management in
model-based systems engineering. Procedia {CIRP}, 21:52 — 57, 2014. 24th {CIRP}
Design Conference. 26

S.J. Herzig, A. Qamar, and C. J. Paredis. An approach to identifying inconsistencies
in model-based systems engineering. Procedia Computer Science, 28:354-362,
2014. 2

A. Hessellund, K. Czarnecki, and A. Wasowski. Guided development with multiple
domain-specific languages. In G. Engels, B. Opdyke, D. Schmidt, and F. Weil,
editors, Model Driven Engineering Languages and Systems, volume 4735 of Lecture
Notes in Computer Science, pages 46—60. Springer Berlin Heidelberg, 2007. 31, 32,
38, 39, 40, 43

G. Huang, K. Bryden, and D. McCorkle. Interactive design using cfd and virtual
engineering. In /0th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, page 4364, 2004. 10

A. Hunter, S. Konieczny, et al. Measuring inconsistency through minimal inconsistent
sets. KR, 8:358-366, 2008. 42

J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assessment
of mde in industry. In Proceedings of the 33rd international conference on software
engineering, pages 471-480. ACM, 2011. 137

Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sourrouille. Consistency problems
in uml-based software development. In Proceedings of the 2004 International

232

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

BIBLIOGRAPHY

Conference on UML Modeling Languages and Applications, UML’04, pages 1-12,
Berlin, Heidelberg, 2005. Springer-Verlag. 26

IEEE. IEEE Xplore Digital Library. https://ieeexplore.ieee.org/
Xplore/home. jsp. Acc: 2019-05-11. 23

International Council on Systems Engineering. Additional Methodologies Identified
as Gaps since 2008 INCOSE Survey. http://www.omgwiki.org/MBSE/
doku.php?id=mbse:methodology. Accessed: 2018-11-20. 7

International Council on Systems Engineering. Survey of Model-Based Systems
Engineering (MBSE) Methodologies. https://oldsite.incose.org/
ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_
2008-0610_RevB-JAE2.pdf. Accessed: 2018-11-20. 7

International Council on Systems Engineering. Systems Engineering
Vision 2020. http://oldsite.incose.org/ProductsPubs/pdf/
SEVision2020_20071003_v2_03.pdf. Accessed: 2018-11-20. 7

International Council on Systems Engineering. What is Systems Engineering?
https://www.incose.org/AboutSE/WhatIsSE. Accessed: 2018-11-20.
7

ISO. ISO/IEC/IEEE 42010 Standard. http://www.iso—architecture.
org/ieee—-1471/. Accessed: 2018-11-20. 15

ISO. ISO/IEC/IEEE 42010 International Standard: Systems and Software Engineer-
ing: Architecture Description, 2011. 56, 77

B. Kitchenham and S. Charters. Guidelines for performing systematic literature
reviews in software engineering, 2007. 22

D. Kitchin, A. Quark, W. R. Cook, and J. Misra. The orc programming language. In
Formal Techniques for Distributed Systems, Joint 11th IFIP WG 6.1 International
Conference FMOODS 2009 and 29th IFIP WG 6.1 International Conference FORTE
2009., pages 1-25, 2009. 45

G. Kotonya and I. Sommerville. Requirements engineering: processes and tech-
niques. Wiley Publishing, 1998. 9

M. Kovécs, D. Varrd, and L. Gonczy. Formal analysis of BPEL. workflows with
compensation by model checking. Comput. Syst. Sci. Eng., 23(5), 2008. 45

0. Kovalenko, E. Serral, M. Sabou, F. J. Ekaputra, D. Winkler, and S. Biffl. Au-
tomating Cross-Disciplinary Defect Detection in Multi-Disciplinary Engineering
Environments. In Knowledge Engineering and Knowledge Management, pages
238-249. Springer, 2014. 100

P. Kruchten. The rational unified process: an introduction. Addison-Wesley Profes-
sional, 2004. 18

B. Lambeau, C. Damas, and A. van Lamsweerde. Process execution and enactment
in medical environments. In Software Engineering in Health Care, pages 145-161.
Springer, 2014. 19

https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology
http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology
https://oldsite.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
https://oldsite.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
https://oldsite.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
https://www.incose.org/AboutSE/WhatIsSE
http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/

BIBLIOGRAPHY 233

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978. 44

L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Transactions on Computers, 28(9):690-691, Sept. 1979.
44

C. Lange, M. R. V. Chaudron, J. Muskens, L. J. Somers, and H. M. Dortmans.
An empirical investigation in quantifying inconsistency and incompleteness of uml
designs. In Incompleteness of UML Designs, Proc. Workshop on Consistency
Problems in UML-based Software Development, 6 th International Conference on
Unified Modeling Language, UML 2003, 2003. 42

J. Le Noir, O. Delande, D. Exertier, M. da Silva, and X. Blanc. Operation based model
representation: Experiences on inconsistency detection. In R. France, J. Kuester,
B. Bordbar, and R. Paige, editors, Modelling Foundations and Applications, vol-
ume 6698 of Lecture Notes in Computer Science, pages 85-96. Springer Berlin
Heidelberg, 2011. 31, 35, 38, 39

leankit. What is Kanban? https://leankit.com/learn/kanban/
what-is—-kanban/. Accessed: 2018-11-20. 9

E. Lee. The problem with threads. Technical report, University of California at
Berkeley, 2006. 123

J. Li, Y. Fan, and M. Zhou. Performance Modeling and Analysis of Workflow. /EEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
34(2):229-242, March 2004. 47

M. Li and D. Li. Modular decomposition method based on design structure matrix
and application. TELKOMNIKA Indonesian Journal of Electrical Engineering,
10(8):2173-2175, 2012. 48

B. Liskov. Keynote address - data abstraction and hierarchy. In Addendum to the
Proceedings on Object-oriented Programming Systems, Languages and Applications
(Addendum), OOPSLA °87, pages 17-34, New York, NY, USA, 1987. ACM. 11

R. Lopez-Herrejon and A. Egyed. Detecting inconsistencies in multi-view models
with variability. In T. Kiihne, B. Selic, M.-P. Gervais, and F. Terrier, editors, Mod-
elling Foundations and Applications, volume 6138 of Lecture Notes in Computer
Science, pages 217-232. Springer Berlin Heidelberg, 2010. 31, 39

R. E. Lopez-Herrejon and A. Egyed. Towards fixing inconsistencies in models
with variability. In Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS *12, pages 93—100, New York, NY,
USA, 2012. ACM. 31, 37, 39

F. J. Lucas, F. Molina, and A. Toval. A systematic review of uml model consistency
management. Inf. Softw. Technol., 51(12):1631-1645, Dec. 2009. 29

L. Lucio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. FTG+PM: an
integrated framework for investigating model transformation chains. In SDL 2013:
Model-Driven Dependability Engineering - 16th International SDL Forum, Montreal,
Canada, June 26-28, 2013. Proceedings, pages 182-202, 2013. 19, 63, 109, 110

https://leankit.com/learn/kanban/what-is-kanban/
https://leankit.com/learn/kanban/what-is-kanban/

234 BIBLIOGRAPHY

[123] Y. Ma, G. Qi, P. Hitzler, and Z. Lin. Measuring Inconsistency for Description Logics
Based on Paraconsistent Semantics, pages 30-41. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007. 42

[124] MathWorks Inc. MATLAB API for Java.
https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html.
Acc.: 2016-08-02. 162

[125] MathWorks Inc. Matlab Website. mathworks.com/products/matlab. Acc.: 2016-08-
02. 152

[126] MathWorks Inc. Multibody Modeling. https://www.mathworks.com/help/physmod/
sm/multibody-modeling.html. Acc.: 2018-12-16. 140

[127] MathWorks Inc. SimEvents Website. mathworks.com/products/simevents. Acc.:
2016-08-02. 88

[128] T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and resolving model in-
consistencies using transformation dependency analysis. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, editors, Model Driven Engineering Languages and Systems,
volume 4199 of Lecture Notes in Computer Science, pages 200-214. Springer Berlin
Heidelberg, 2006. 31, 33, 38, 39, 40, 104

[129] T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science, 152:125-142, 2006. 157

[130] Microsoft. C# Reference. https://docs.microsoft.com/en-us/
dotnet/csharp/language—-reference/. Accessed: 2019-05-04. 14

[131] M. Minsky. Matter, mind and models. 1965. 11

[132] T. Miu and P. Missier. Predicting the execution time of workflow activities based
on their input features. In 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, pages 64—72, Nov 2012. 47

[133] modelpractice. General Model Theory by Stachowiak.
https://modelpractice.wordpress.com/2012/07/04/
model-stachowiak/. 11

[134] P.J. Mosterman and H. Vangheluwe. Computer automated multi-paradigm modeling:
An introduction. Simulation, 80(9):433-450, 2004. 1

[135] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-580, 1989. 19

[136] S. Mustafiz and H. Vangheluwe. Explicit modelling of statechart simulation environ-
ments. Proceedings of the Summer Simulation Multiconference, pages 21:1-21:8,
2013. 129

[137] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with
repair actions. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 455-464, May 2003. 31, 39, 40

[138] I. Nonaka. The knowledge-creating company. Harvard Business Review Press, 2008.
137

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/
https://modelpractice.wordpress.com/2012/07/04/model-stachowiak/
https://modelpractice.wordpress.com/2012/07/04/model-stachowiak/

BIBLIOGRAPHY 235

[139] OASIS. Human Task (WS-HumanTask) Version 1.1. http://docs.
oasis-open.org/ns/bpeldpeople/ws—humantask/200803. Acc:
2017-08-17. 19

[140] OASIS. WS-BPEL 2.0 Specification. http://docs.oasis-open.org/
wsbpel/2.0/0S/wsbpel-v2.0-0S.html. Acc: 2017-08-17. 19

[141] Object Management Group (OMG). SysML Website. http://www.omgsysml.
org/. Accessed: 2018-11-20. 16

[142] Object Management Group (OMG). UML Website. https://www.omg.org/
spec/UML. Accessed: 2019-05-04. 14

[143] Object Management Group (OMG). BPMN 2.0 Specification. http://www.
bpmn.org/, 2011. Accessed: 2018-05-06. 19

[144] A. Oka, S. Yamamoto, and S. Isoda. Consistency management for software design
information repository. In Computing and Information, 1993. Proceedings ICCI ’93.,
Fifth International Conference on, pages 579-585, May 1993. 31, 32, 39

[145] OSLC Community. OSLC - Open services for lifecycle collaboration core specifica-
tion version 3.0. http://open-services.net, 2017. Accessed: 2018-11-20. 45

[146] L. Osterweil. Software processes are software too. In Proceedings of the 9th
International Conference on Software Engineering, ICSE °87, pages 2—13. IEEE
Computer Society Press, 1987. 19, 120

[147] C. Ouyang, E. Verbeek, W. van der Aalst, S. Breutel, M. Dumas, and A. H. M. ter
Hofstede. Formal semantics and analysis of control flow in WS-BPEL. Sci. Comput.
Program., 67(2-3):162-198, 2007. 45

[148] Oxford Dictionaries. Definition of "process".
https://en.oxforddictionaries.com/definition/process. Accessed: 2018-11-20.
17

[149] G. Pahl and W. Beitz. Engineering design: a systematic approach. Springer Science
& Business Media, 2013. 18

[150] Z. Pap, I. Majzik, A. Pataricza, and A. Szegi. Methods of checking general safety
criteria in uml statechart specifications. RELIABILITY ENGINEERING & SYSTEM
SAFETY, 87:89 — 107, 2005. 129

[151] M. Persson, M. Torngren, A. Qamar, J. Westman, M. Biehl, S. Tripakis,
H. Vangheluwe, and J. Denil. A characterization of integrated multi-view mod-
eling in the context of embedded and cyber-physical systems. In Proceedings of the
International Conference on Embedded Software, 2013. 1, 2, 57, 59

[152] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping studies in
software engineering. In Ease, volume 8, pages 68—77, 2008. 21, 22

[153] K. Petersen, C. Wohlin, and D. Baca. The waterfall model in large-scale development.
In International Conference on Product-Focused Software Process Improvement,
pages 386—400. Springer, 2009. 18

http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omgsysml.org/
http://www.omgsysml.org/
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML
http://www.bpmn.org/
http://www.bpmn.org/

236

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

BIBLIOGRAPHY

A. Qamar, J. Wikander, and C. During. A mechatronic design infrastructure inte-
grating heterogeneous models. In Mechatronics (ICM), 2011 IEEE International
Conference on, pages 212-217, April 2011. 31, 33, 38, 39, 40

X. Qin. Delayed consistency model for distributed interactive systems with real-time
continuous media. Journal of Software, 6(13):1029-1039, 2002. 44

C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and G. Botterweck. Consistency
checking for the evolution of cardinality-based feature models. In Proceedings of the
18th International Software Product Line Conference - Volume 1, SPLC ’14, pages
122-131, New York, NY, USA, 2014. ACM. 31, 36, 38, 39

I. Rath, A. Hegedus, and D. Varro. Derived features for emf by integrating advanced
model queries. In European Conference on Modelling Foundations and Applications,
pages 102—117. Springer, 2012. 148

I. Rath, A. Okros, and D. Varro. Synchronization of abstract and concrete syntax in
domain-specific modeling languages. Software & Systems Modeling, 9(4):453-471,
Sep 2010. 170

A. Rauzy and Y. Dutuit. Exact and truncated computations of prime implicants
of coherent and non-coherent fault trees within aralia. Reliability Engineering &
System Safety, 58(2):127 — 144, 1997. {ESREL} *95. 38

J. Reineke and S. Tripakis. Basic problems in multi-view modeling. In E. Abrahdm
and K. Havelund, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 8413 of Lecture Notes in Computer Science, pages 217-232.
Springer Berlin Heidelberg, 2014. 26

M. H. Romanycia and F. J. Pelletier. What is a heuristic? Computational Intelligence,
1(1):47-58, 1985. 3, 51

G. Rosu and S. Bensalem. Allen linear (interval) temporal logic—translation to It
and monitor synthesis. In International Conference on Computer Aided Verification,
pages 263-277. Springer, 2006. 170

N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using dependency models to manage
complex software architecture. In ACM Sigplan Notices, volume 40, pages 167-176.
ACM, 2005. 48

A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone. Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems. European Journal of Control,
18(3):217 — 238, 2012. 78, 101

D. Schmelter, J. Greenyer, and J. Holtmann. Toward learning realizable scenario-
based, formal requirements specifications. In 2017 IEEE 25th International Re-
quirements Engineering Conference Workshops (REW), pages 372-378. IEEE, 2017.
10

B. Schitz, F. Holzl, and T. Lundkvist. Design-space exploration through constraint-
based model-transformation. In Engineering of Computer Based Systems (ECBS),
2010 17th IEEE International Conference and Workshops on, pages 173-182. IEEE,
2010. 82

BIBLIOGRAPHY 237

[167] A. Schiirr. Specification of graph translators with triple graph grammars. In Graph-
Theoretic Concepts in Computer Science, pages 151-163. Springer, 1995. 32

[168] Scrum Alliance. Learn About Scrum. https://www.scrumalliance.org/
learn—-about-scrum. Accessed: 2018-11-20. 9

[169] B. Selic. A short catalogue of abstraction patterns for model-based software engi-
neering. Int. J. Software and Informatics, 5(1-2):313-334, 2011. 59

[170] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of
model-driven software development. IEEE Softw., 20(5):42-45, 2003. 125, 168

[171] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Communications
of the ACM, 53(7):89-97, 2010. 44

[172] A. A. Shah, A. A. Kerzhner, D. Schaefer, and C. J. J. Paredis. Multi-view modeling
to support embedded systems engineering in sysml. In G. Engels, C. Lewerentz,
W. Schifer, A. Schiirr, and B. Westfechtel, editors, Graph Transformations and
Model-driven Engineering, pages 580-601. Springer-Verlag, Berlin, Heidelberg,
2010. 31, 34,39

[173] Siemens PLM. AMESim Website. https://www.plm.automation.
siemens.com/en/products/lms/imagine—lab/amesim/index.

shtml. Accessed: 2018-11-20. 141, 162

[174] B. Silver and B. Richard. BPMN method and style, volume 2. Cody-Cassidy Press
Aptos, 2009. 45

[175] H. Song, G. Huang, F. Chauvel, W. Zhang, Y. Sun, W. Shao, and H. Mei. Instant and
Incremental QVT Transformation for Runtime Models. In Proceedings of the 14th
International Conference on Model Driven Engineering Languages and Systems,
MODELS’11, pages 273-288, Berlin, Heidelberg, 2011. Springer-Verlag. 161

[176] D.J. Sorin, M. D. Hill, and D. A. Wood. A primer on memory consistency and cache
coherence. Number 16 in Synthesis Lectures on Computer Architecture. Morgan &
Claypool, 2011. 44

[177] G. Spanoudakis and A. Zisman. Inconsistency management in software engineering:
Survey and open research issues. In in Handbook of Software Engineering and
Knowledge Engineering, pages 329-380. World Scientific, 2001. 26, 27, 29, 30, 32,
37,40

[178] Springer. Springer Link. https://link.springer.com. Acc: 2019-05-11.
23

[179] H. Stachowiak. General model theory. Springer, 1973. 11
[180] V. Stiehl. Process-Driven Applications with BPMN. Springer, 2014. 45

[181] V. Stolz. An integrated multi-view model evolution framework. Innovations in
Systems and Software Engineering, 6(1-2):13-20, 2010. 31, 35, 39

https://www.scrumalliance.org/learn-about-scrum
https://www.scrumalliance.org/learn-about-scrum
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/index.shtml
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/index.shtml
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/index.shtml
https://link.springer.com

238 BIBLIOGRAPHY

[182] X. Sun. A Model-Driven Approach to Scenario-Based Requirements Engineer-
ing. http://msdl.cs.mcgill.ca/people/simon/publications/
thesis_singlesided.pdf. 10

[183] SymPy Development Team. SymPy Website. http://www.sympy.org/. Acc:
2017-08-17. 92, 104, 162

[184] E. Syriani and H. Vangheluwe. De-/re-constructing model transformation languages.
Electronic Communications of the EASST, 29, 2010. 168

[185] E. Syriani, H. Vangheluwe, and B. LaShomb. T-core: a framework for custom-built
model transformation engines. Software & Systems Modeling, 14(3):1215-1243,
2015. 168

[186] TechSim Engineering s.r.o. LMS Virtual.Lab-Motion Brochure. http:
//techsim.cz/wp-content/uploads/Brochure_LMS-Virtual.
Lab-Motion.pdf. Acc: 2018-08-17. 140

[187] The Jython Project. Jython Website. http://www. jython.org/. Accessed:
2018-11-20. 162

[188] The Open Group. The ArchiMate® Enterprise Architecture Modeling Lan-
guage. http://www.opengroup.org/subjectareas/enterprise/
archimate-overview. Accessed: 2018-11-20. 16

[189] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared
distributed objects. In Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC *99, pages 163—172, New York, NY,
USA, 1999. ACM. 44

[190] A. Tsymbal. The problem of concept drift: definitions and related work. Computer
Science Department, Trinity College Dublin, 106(2), 2004. 168

[191] Z. Ujhelyi, G. Bergmann, A. Hegediis, A. Horvéth, B. Izs6, I. Rith, Z. Szatmdri, and
D. Varré. EMF-IncQuery: An integrated development environment for live model
queries. Science of Computer Programming, 98, Part 1:80 — 99, 2015. 83, 168

[192] W. van der Aalst. Business process management as the "killer app"” for petri nets.
Software and System Modeling, 14(2):685-691, 2015. 45

[193] W. van der Aalst and A. ter Hofstede. YAWL: yet another workflow language. Inf.
Syst., 30(4):245-275, 2005. 19, 45

[194] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(1):5-51, 2003. 19, 45, 47, 106,
107, 110, 119, 156

[195] W. Van Der Aalst, K. M. Van Hee, and K. van Hee. Workflow management: models,
methods, and systems. MIT press, 2004. 17

[196] W. M. Van der Aalst. Process discovery: An introduction. In Process Mining, pages
125-156. Springer, 2011. 169

http://msdl.cs.mcgill.ca/people/simon/publications/thesis_singlesided.pdf
http://msdl.cs.mcgill.ca/people/simon/publications/thesis_singlesided.pdf
http://www.sympy.org/
http://techsim.cz/wp-content/uploads/Brochure_LMS-Virtual.Lab-Motion.pdf
http://techsim.cz/wp-content/uploads/Brochure_LMS-Virtual.Lab-Motion.pdf
http://techsim.cz/wp-content/uploads/Brochure_LMS-Virtual.Lab-Motion.pdf
http://www.jython.org/
http://www.opengroup.org/subjectareas/enterprise/archimate-overview
http://www.opengroup.org/subjectareas/enterprise/archimate-overview

BIBLIOGRAPHY 239

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

R. Van Der Straeten. Inconsistency Management in Model-Driven Engineering: An
Approach using Description Logics. PhD thesis, Vrije Universiteit Brussel, Software
Languages Lab, 2005. 30

R. Van Der Straeten and M. D’Hondt. Model refactorings through rule-based
inconsistency resolution. In Proceedings of the 2006 ACM Symposium on Applied
Computing, SAC °06, pages 1210-1217, New York, NY, USA, 2006. ACM. 31, 36,
39

R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description logic
to maintain consistency between uml models. In P. Stevens, J. Whittle, and G. Booch,
editors, «UML» 2003 - The Unified Modeling Language. Modeling Languages and
Applications, volume 2863 of Lecture Notes in Computer Science, pages 326—340.
Springer Berlin Heidelberg, 2003. 31, 37, 39, 40

B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and W. M. Van
Der Aalst. The prom framework: A new era in process mining tool support. In
International conference on application and theory of petri nets, pages 444—454.
Springer, 2005. 169

A. Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium
on, pages 249-262. IEEE, 2001. 10

S. Van Mierlo, Y. Van Tendeloo, 1. Ddvid, B. Meyers, A. Gebremichael, and
H. Vangheluwe. A multi-paradigm approach for modelling service interactions
in model-driven engineering processes. In Proceedings of Mod4Sim, Mod4Sim, part
of the Spring Simulation Multi-Conference, pages 565-576, 2018. 114, 120

S. Van Mierlo, Y. Van Tendeloo, B. Meyers, J. Exelmans, and H. Vangheluwe. SCCD:
SCXML extended with class diagrams. In 3rd Workshop on Engineering Interactive
Systems with SCXML, 2016. 46, 120, 121

Y. Van Tendeloo. Foundations of a multi-paradigm modelling tool. In MoDELS
ACM Student Research Competition, pages 52-57, 2015. 121

Y. Van Tendeloo and H. Vangheluwe. An overview of PythonPDEVS. In C. W. RED,
editor, JDF 2016 — Les Journées DEVS Francophones — Théorie et Applications,
pages 59 — 66. Editions Cépadues, Apr. 2016. 114, 121

Y. Van Tendeloo and H. Vangheluwe. Classic DEVS modelling and simulation. In
Proceedings of the 2017 Winter Simulation Conference, WSC 2017, pages 644 — 656.
IEEE, Dec. 2017. 107

Y. Van Tendeloo and H. Vangheluwe. The Modelverse: a tool for multi-paradigm
modelling and simulation. In Proceedings of the 2017 Winter Simulation Conference,
WSC 2017, pages 944 — 955. IEEE, Dec. 2017. 66, 108, 113, 121, 162, 170

Y. Van Tendeloo and H. Vangheluwe. Extending the DEVS formalism with initial-
ization information. ArXiv e-prints, 2018. 107

H. Vangheluwe. DEVS as a common denominator for multi-formalism hybrid
systems modelling. In CACSD. Conference Proceedings. IEEE International Sym-

240

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

BIBLIOGRAPHY

posium on Computer-Aided Control System Design (Cat. No.OOTH8537), pages
129-134, Sep. 2000. 169

H. Vangheluwe. An introduction to multiparadigm modelling and simulation. In
Proceedings of the AIS’2002 Conference 9-20 (2002). 35. Press, 2000. 12, 13, 14,
26, 163, 165, 167

K. Vanherpen. A contract-based approach for multi-viewpoint consistency in the
concurrent design of cyber-physical systems. University of Antwerp, 2018. 14, 80,
148, 170

K. Vanherpen, J. Denil, 1. David, P. D. Meulenaere, P. J. Mosterman, M. Térngren,
A. Qamar, and H. Vangheluwe. Ontological reasoning for consistency in the design
of cyber-physical systems. In 2016 Ist International Workshop on Cyber-Physical
Production Systems (CPPS), pages 1-8, April 2016. 14, 68, 80, 91, 100, 101, 144,
158

T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. Incremental Model
Synchronization for Efficient Run-Time Monitoring. In S. Ghosh, editor, Models
in Software Engineering, Workshops and Symposia at MODELS 2009, Denver, CO,
USA, October 4-9, 2009, Reports and Revised Selected Papers, volume 6002 of
LNCS, pages 124-139, 2009. 161

M. von Detten, C. Heinzemann, M. C. Platenius, J. Rieke, D. Travkin, and S. Hilde-
brandt. Story diagrams-syntax and semantics. Software Engineering Group, Heinz
Nixdorf Institute, University of Paderborn, Tech. Rep. tr-ri-12-324,2012. 46

R. Wagner, H. Giese, and U. Nickel. A plug-in for flexible and incremental consis-
tency management. In Proc. of the International Conference on the Unified Modeling
Language, page 93, 2003. 2

G. G. Wang and S. Shan. Review of metamodeling techniques in support of engi-
neering design optimization. Journal of Mechanical design, 129(4):370-380, 2007.
81

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
services platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL,
WS-reliable messaging and more. Prentice Hall PTR, 2005. 45

M. Weske. Business process management architectures. In Business Process Man-
agement, pages 333-371. Springer, 2012. 18, 167

J. M. Wilson. Gantt charts: A centenary appreciation. European Journal of Opera-
tional Research, 149(2):430-437, 2003. 19

Y. Xia, Y. Liu, J. Liu, and Q. Zhu. Modeling and performance evaluation of BPEL
processes: A stochastic-petri-net-based approach. IEEE Trans. Systems, Man, and
Cybernetics, Part A, 42(2):503-510, 2012. 45

Z.-j. Xiao, H.-y. Chang, and Y. Yi. Method of workflow time performance analysis.
COMPUTER INTEGRATED MANUFACTURING SYSTEMS-BEIJING-, 12(8):1284,
2006. 47

BIBLIOGRAPHY 241

[222] E. Yu. Modelling strategic relationships for process reengineering. Social Modeling
for Requirements Engineering, 11:2011, 2011. 10

[223] B. P. Zeigler, T. G. Kim, and H. Prachofer. Theory of Modeling and Simulation.
Academic Press, Inc., Orlando, FL, USA, 2nd edition, 2000. 12, 107, 121

	Introduction
	Background
	Model-based system engineering
	Requirements
	Virtual product
	Models
	Properties and attributes
	Viewpoints, views
	Typical scenarios in MVM

	Processes
	Modeling
	Enactment

	State of the art
	(In)consistency management
	Process
	Overview
	Features and patterns in inconsistency management techniques
	Characterization patterns
	Detection patterns
	Resolution patterns
	Optional and auxiliary activities
	Conclusions

	Process engineering
	Process modeling formalisms
	Performance analysis techniques
	Design structure matrices

	Correctness and consistency
	Correctness
	The repercussions of ensuring correctness
	A heuristic for eventual correctness
	Consistency
	The relationship between (in)correctness and (in)consistency

	The need for explicitly modeled processes
	System properties for reasoning over consistency
	Architectural decomposition
	View decomposition
	Abstraction-refinement
	Refinement-abstraction
	Elementary engineering operation

	Process-oriented inconsistency management
	A formalism for modeling engineering processes
	Typed processes in the classic Ftg+Pm
	Attributes, properties, constraints
	Resources
	Cost models
	ISO/IEC/IEEE 42010:2011 compliant viewpoints

	Off-line inconsistency management
	Patterns of inconsistency
	Patterns of inconsistency management
	Process optimization by multi-objective process space exploration

	Process enactment
	Architecture
	Execution semantics
	Transformation rules
	Implementation

	On-line inconsistency management
	Modeling support
	Modeling the running example
	Early detection of inconsistencies
	Discussion

	Translating process models to DEVS
	Translating processes to DEVS
	Calibration of the process models
	Modeling resource constraints
	Performance evaluation
	Conclusions

	Modeling service interactions
	The Statecharts + Class Diagrams (SCCD) formalism
	Motivating example
	Modeling activities using SCCD
	Mapping Processes to SCCD
	Conclusions

	Proof of concept
	Introduction
	Modeled reproduction of the hard-coded process
	Modeling by our approach
	Process modeling
	Attributes, properties, constraints
	Properties
	Resources
	Costs
	Off-line inconsistency management
	On-line inconsistency management

	Prototype tooling
	Features
	Architecture
	Modeling of engineering processes
	Language specification
	Eight important modeling patterns
	Specifying executable scripts for automated activities
	Code generation
	Validation

	Off-line inconsistency management
	Enactment of engineering processes
	On-line inconsistency manager
	Service integration
	Reflection and future directions

	Conclusions
	Evaluation of the research questions
	Future research directions

	Appendices
	Metamodels
	Overview
	Ftg+Pm
	Properties
	Resources
	Costs
	Viewpoints
	Enactment

	Model queries and transformations
	DEVS library for processes
	Artifacts of the proof of concept
	Formal notations

