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Abstract

In this paper we investigate the merits of artificial neural networks in forecasting
foreign exchange rates. From previous research it is known that it is hard to beat the
random walk model using structural exchange rate models. In this paper we show that
by using a suitable multivariate specification a structural model can be derived that beats
the random walk. By introducing a new method for multivariate nonlinear cointegration
analysis, based on the linear method of Johansen (1988), we construct a neural network
error correction model for the yen/dollar, pound/dollar and DM/dollar exchange rates
that significantly outperforms both the random walk model and a linear vector error

correction model.
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1 Introduction

Forecasting exchange rates still is a hot topic in modern financial econometrics. Numerous
authors have tried a broad range of advanced econometric techniques but mostly without
spectacular success. Since the publication of the paper by Meese and Rogoff (1983), it has
become widely accepted that it is virtually impossible to achieve a better prediction perfor-
mance than can be obtained by using the simple random walk model. Despite this pessimism
a lot of effort is put into exchange rate modeling. Roughly one can identify two streams of
research. One way of modeling exchange rates is by using advanced methods of time series
analysis which produce predictions based primarily on the past movements of the exchange
rate process. The other approach involves the use of structural models, which try to forecast
exchange rates by making use of economic fundamentals like e.g. interest rates. The main
advantage of the second method is the availability of several possible model specifications
based on economic theory. The biggest disadvantage however, is. the (un)availibility of data
on the economic fundamentals. Although high frequency observations on exchange rates are
available, most economic fundamentals are only observed on a monthly basis at best. This
makes the second approach infeasible if forecasts are needed as part of a trading system. Nev-
ertheless, in this paper we will pursue the second approach. We will use a very general model
formulation, introduced by Verkooijen (1996a,b), which encompasses popular exchange rate
models like the Flexible Price Monetary Model (FPMM), the Sticky Price Monetary Model
(SPMM) as well as a Portfolioc Balance Model (PBM). For details on the specification and
interpretation of the model see Verkooijen (1996a,b). '

One of the main problems one faces when modeling exchange rates is that the observed time
series in general appear to be nonstationary. Also for the fundamentals often the null hypoth-
esis of a unit root is not rejected. These findings invalidate the use of standard regression
techniques. Instead techniques based on cointegration (see Engle and Granger (1987)) and
error correction (see Hendry et al. (1984)) are often used. Many authors have argued that
the main limitation of the before mentioned techniques is that these are linear techniques.
Granger and Terdsvirta (1993) show that the standard cointegration tests can only find linear
relationships between variables. Moreover (see Diebold and Nason (1990)), most authors find
that when they test linearity of exchange rate models, this linearity is almost always rejected.
Hence generalisation of the concepts of integration and cointegration towards a nonlinear
setting is called for (see Granger and Terdsvirta (1993)). Verkooijen (1996b) proposes a neu-
ral network test for nonlinear cointegration based on the original Engle-Granger two step
methodology. This test however is not successful in the sense that Verkooijen (1996b) does
not find a nonlinear cointegrating relationship between the variables in his model. Another
limitation of the original Engle-Granger framework is that it is of a univariate nature. Jo-
hansen (1988) introduces a more sophisticated, multivariate {linear) approach. Already by
using a (linear) multivariate Johansen approach several authors indicate that some promising
results for structural exchange rate modeling may be found (see Aftalion and Indjehagopian
(1996); Girardin and Marimoutou (1996}). In this paper we will try to follow both ways, lLe.
we develop a method which allows for a general nonlinear formulation which is based on a
multivariate cointegration. In developing this method we will use the philosophy on nonlinear
cointegration as introduced in Granger and Terdsvirta (1993). '

The outline of this paper is as follows. In section 2 we will introduce the methodology. In
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section 3 we will use the approach introduced by Johansen (1988). In section 4 and 5 we will
also incorporate nonlinear elements in the analysis. In section 4 nonlinearities only occur in
the short term behavior, while in section 5 also nonlinear cointegration is used. Finally in
section 6 we will state some conclusions.

2 Nonlinear cointegration

The starting point of our research is Granger and Terdsvirta (1993). In this section we
shortly review the method described in Granger and Terdsvirta (1993). The main point
raised in (Granger and Terdsvirta, 1993, chapter 5) is the generalisation of the linear notions
integration and cointegration in a nonlinear setting. '

Definition 2.1 Let X be a stochastic process adapted to the filtration {F;}. X is called
short memory in mean (SMM)if there exists a random variable D, such that

Im EX =
Jim (Xtan | 1) =D,

where the distribution of D does lnot depend on F;.
A process that is not SMM, is called long memory in mean. (LMM).

Remark 2.2 Note that according to this definition a stationary process is always SMM, and
that an [{1) process (an integrated process) is LMM. The notions SMM and LMM can so be
interpreted as genera,hsatlons of the linear notions stationary resp. integrated processes (see

Granger and Terdsvirta (1993)). However, there exist processes that are both nonstationary
and SMM, for example the process Y defined by ¥; = 0.8 sin(t) ¥;—;.

The approach, as suggested in Granger and Terasvirta (1993), can be translated to the fol-
lowing scheme: '

Let ¥ and X both be LMM processes.

Step 1 Estimate a long run relationship (i.e. nonlinear cointegration)
Yi= f(Xy) +en, (L
with £ € SMM. |

Step 2 If there do not exist d; z € N, such that ANY and A% X are SMM?, try to find func-
tions 1 and ¥, such that Y: —1(Yeo1,. .., Yieg,)) and (Xy — Po( X, ... ,Xt_dz))_
are both SMM; # and 12 then determine the operators L]y and [Clp.

Step 3 Estimate the nonlinear error correction model (NECM)
O, = g(Vi1 — F( X1 ), Wh Yooy, oo O Yee, 02X, - O X ). (2)

In (Granger and Terfisvirta, 1993, section 5.5) it is noted that if Z is a LMM process, it does not follow that
there exists a d € N, such that A%Z is SMM. In theory this complicates the extension of cointegration theory
and the speciﬁcation of error correction models in the nonlinear case. That is why Granger and ‘Lerasvirta
(1993) introduce the O operators in order to remain close to the linear theory.
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Ideally one would like to use in step 1 a direct method to estimate a nonlinear relation of
the form (1) such that ¢ € SMM. However, the fact that both processes Y and X are LMM
processes complicates this step. For example, if one uses a feedforward artificial neural net to
estimate (1), the parameter estimates will not be consistent and in general also the residuals
will not be SMM (see White (1992)). So, unless a relationship of the form (1) is already
ezactly known in advance, this step can only be implemented approximately. Consistency of
the estimated parameters is too much to ask for in this step, instead one should concentrate
on the essential property that ¢ € SMM.

To obtain a long run relation (1) with SMM residuals we will use nonlinear cointegration
analysis. Contrary to Verkooijen (1996b), where the univariate Engle-Granger approach to-
wards cointegration is chosen as a starting point, we intend to generalize the well known
multivariate Johansen-approach (see Johansen (1988)). The Johansen-method is baged on
the VAR model:

Xy =T X + o+ T Xy g+ e, o (3)

iid

where II; - - -1l are matrices of appropriate dimensions and ¢ ~ N(0,X). This VAR can
then be rewritten as a VECM :

k-1 .
AXy=TIX; o + ) TiAX i+, (4)
i=1
where Il = — (I —1IIy — ... —II}). Il can now be factorised as Il = of', such that #'X is

stationary. Now suppose we want to generalize this approach directly to the nonlinear case
(1). Then we have a problem, for in general it is not possible to construct a nonlinear VECM
out of a nonlinear VAR in order to obtain a (nonhnear) operator II. Therefore we suggest
the following two alternatives: 7
Alternative 1: Use a linear cointegration analysis as a starting point, which boils down to

x € SMM;

Alternative 2: similar to the way Sephton (1994); Verkooijen (1996b) proceed, take the
regiduals &; of (1) as a starting point. As remarked before, we should concentrate on es-
tablishing the property that ¢ € SMM. Therefore we estimate using the original Johansen
methodology a linear VECM for the residuals?

the assumption of a linear long run relationship of the form & (

k-1

Aey = aflei1 + ZF Ags_; + vy, (5)
=1

“which results in the nonlinear long run relationship 8’ (¥ — f(X)) € SMM. The main problem
in using this second alternative is that, just as in Verkooijen (1996b) for a nonlinear Engle-
Granger test, we have to construct critical values for a nonlinear LR trace test or a LR Apax
test. Constructing these critical values is computationally very demanding (see Verkooijen
(1996b)). Moreover, one should be careful in the interpretation of the matrix 4. The only

" thing we know of this matrix § is that it ensures that #'(Y — f(X}) € SMM.

2Tn fact we should also use a [J-operator in this specification. In this paper however we choose to restrict
ourselves to O-operators of the form A%
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Another problem in using the before mentioned approach in practice is caused by the O-
operators. Although it is possible to construct (nonlinear) processes with a corresponding ap-
propriate O-operator (see Granger (1995)), it is impossible to find an appropriate O-operator
without agsuming a priori.that the process is contained in some fixed class of processes. The
choice of [J to be a difference operator A% for instance corresponds to the assumption that
the process is a d times. integrated SMM process. In this paper we will assume that this
is the case, i.e. we will only consider [-operators of the form A?, although one should be
aware that this is a (possibly severe) restriction. As an 'alternative, one could actually try
to estimate the functions 1, for instance using artificial neural nets. In this case one should
however realize that the same remark regarding the consistency of the estimates applies as
the remarks previously made regarding the estimation of the long run relation (1) in step 1.

Assume that in the first step we have obtained a long run relation either of the form

fiod ( ; ) € SMM or of the form # (Y — f(X)) € SMM. In the second step we have de-

cided to restrict the [-operators to the class of difference-operators A, in whick d has to be
determined®. Now for the estimation of g in (2) a feedforward or recurrent artificial neural
net can be used. Note that the parameter estimates in this last artificial neural net will
be consistent (see Kuan and White (1992); White (1992)}, due to the fact that all involved
processes are now within the class of SMM processes. :

Remark 2.3 After this procedure a consistent estimate of the long run relationship is ob-
tained in the form, either

g(ﬂ'(i),o,...,mesmm o (6)
g(ﬁ’ (Y — f(X)),0,...,0) € SMM. (7)

In this paper we will use both of the before mentioned alternatives in step 1 to construct
a structural model for forecasting foreign exchange rates. In section 3 we will estimate a
linear vector error correction model using the Johansen approach. In section 4 we use the
(linear) cointegration relationship found in section 3 to construct a NNECM (Neural Network -
Error Correction Model). Then in section 5 we will use the second alternative. Based on the .
residuals from (1), estimated with a feedforward neural network, we calculate using (5) a

nonlinear long run relationship of the form g (Y — f(X)) € SMM. This long run relationship

is then used to estimate another NNECM.

3 Linear multivariate cointegration analysis

In the following sections we will estimate a dynamic structural foreign exchange rate model.
We use the methodology as developed by Johansen (1988); Johansen and Juselius (1988),

3In this paper we will perform ADTF-tests to determine d, but of course also other unit-root tests could have
been performed.
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implemented in the software package PCFIML 8.10 (Doornik and Hendry (1993a)}. As a
starting point in deriving the empirical model, we use the bilateral structural exchange rate
model specification as essentially® used in Verkooijen (1996a):

s¢ = flre, i, my,mi, ipy, tpf, 7y, TBy, TBY) + &4 (8)

This model encompasses popular monetary exchange rate models like the Flexible Price Mon-
etary Model (FPMM), the Sticky Price Monetary Model (SPMM), as well as a Portfolio
Balance Model (PBM). In (8) the variables marked with an asterix are the variables of the
foreign country (in our case the USA), whereas the variables without asterix concern the
home country. In (8) the following variables play a role:

logarithm of nominal exchange rate vis & vis the foreign currency,

T nominal short term interest rate,

m:  logarithm of money supply MI,

e logarithm of the industrial production index,
i inflation in consumer prices,

TB: foreign trade balance.

Note that in (8) the function f is left unspecified. In our experiments we extend this model
to a multivariate setting in the following way:

UK _ UK UK s UK Us , UK - _US UK us UK us JP Ger

St = f ("'“t sTe T My AP Py Ty Ty, 1By LW TByT, sy, s )+, (9)
JP o JP JP Us Jp us . JP - US JP L) Jp us UK Ger

sy = (e my my Ay iy, Ty wy T By TR s 57 gy (10)
Ger —_ Ger Ger U3 Ger Us s Ger  US Ger . TS Ger Us UK JP
5t = fO(r ey, mE my T ipy Ty S T B T B s s ) e (11)

Here the superscripts US, UK, JP and Ger denote the USA, the United Kingdom, Japan and
Germany respectively®. The nominal exchange rates are all taken as the prices in the home
currency for 1 US dollar. In specifying a multivariate model of the form {911} we explicitely
take into account the direct dependence of the nominal exchange rate of one country on the
other exchange rates. Especially in the EMS context it seems reasonable to take (nonlinear)
dependence on the other exchange rates into account, which occur e.g. through informal target
zones.

3.1 Preliminary data analysis

One posgible approach in estimating (9-11} could be the more or less classical approach of
imposing linear functions f%, f'7 and f°, maybe add some lags, and basically estimate a
VAR or VARMA model. This approach would be a valid approach, if all involved time-series
were stationary (or in fact SMM). So as a first step in our analysis we have to check whether
the variables entering the model are integrated or not. For this purpose we performed an
ADF-test on all our variables, the results of which are summarized in table 1 in appendix B.
The ADF-tests are all performed using PCGive 8.10 (Doornik and Hendry (1993b)). In these
ADF-tests we used a maximal lag length of 13 and we included a trend whenever this was
significant at a 5% level. The results are stated using the highest significant lag (at 5%).

1 Verkooijen (1996a) specifies the model in differentials, e.g. s; is assumed to depend on re — i, etc.
*Monthly data, Jamuary 1974-June 1995. For a description of the data and their sources see appendix A
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From table 1 it follows that all variables, except r'F, appear to be integrated of order 1. Re-
garding ~'*, which is found to be trend stationary, we should however note that discriminating
between trend stationary processes and processes that are integrated of order 1 becomes diffi-
cult on smaller samples. Based on the results we can conclude that the stationarity assumption
is rejected and hence an approach such as the one described in section 2 is called for.

3.2 The Johansen approach

Using PCFIML 8.10 (Doornik and Hendry (1993a)) we will now conduct a cointegration
analysis in the spirit of Johansen (1988); Johansen and Juselius (1988). As a starting point
we use linear versions of the equations (9-11), including at most 6 lags of each variable.
Moreover only the first 246 observations were used, so that the last 12 observations (i.e.
July 1994 — June 1995) can be used for out of sample comparisons with the nonlinear models.
Based on (9-11) we looked for a system of equations, in which all the variables (and their lags)
contribute significantly (using [F-tests), and for which there exists at least one cointegrating
relationship. After a systematic selection procedure we find a system including the following
variables: s'F, "%, s@ r'F "8 ip’". For this system the results of the cointegration analysis,
as calculated by PCFIML 8.10, are listed in table 2. As can be concluded from table 2 the
results of the (linear) cointegration analysis are not very clear. Depending on which column
one chooses to use, the conclusions of np cointegration (p = 0}, full rank I (p = 6) or a
relationship of rank 1, 2, 3, 4 or 5 all have some evidence. We are particularly interested.in
a model explaining the three exchange rates ¢'F, s"¥ and s in which the other variables
are (weakly) exogenous. In column six we see that, using the LR trace test corrected for the
degrees of freedom, the hypothesis Hp : rank < 3 cannot be rejected at a 10% level, whereas
Hp @ rank < 2 is rejected at a 10% level. Although any choice of rank can be defended using
table 2 we choose the rank 3 model. Following Johansen and Juselius (1988) we tested some
restrictions on o and f, in order to establish weak exogeneity of the explanatory variables
rF,mY% ip’". Using the facilities of PCFIML 8.10 for general restriction testing (see table
3), we find the following cointegrating vectors:

7 = (1 05 -1 0 1.239 —0.47016 ), (12)
By = (-1 1. 0 0035234 —0.67513 0.20621 ), (13)
By = (1 1 10 0 —5247). (14)

Using the cointegrating vectors 3 given by (12-14), a parsimonious linear VECM of the form
(4) iz estimated in a second step, using full information maximum likelihood. The results of
this estimation are summarized in table 4. Note in particular that there is some evidence for
neglected nonlinearities in the linear VECM, as can be concluded from the X? and X; x X;
tests (see Doornik and Hendry (1993a)).

Remark 3.1 The process of obtaining a parsimonious linear VECM of the form (4) involves
a lot of difficult decisions. In particular the choice of which variables to eliminate and in
which order variables are eliminated is always susceptable to discussion. However, it is not
possible to give a detailed exposition and motivation of all the involved decisions for the
obvious reasons of lack of space.
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4 A NNECM based on the linear cointegration analysis

As suggested in section 2, we will estimate a nonlinear VECM based on the linear cointegrating
relationship we found in the previous section. In fact this boils down to the assumption of
a linear long run relationship, i.e. to the assumption that nonlinearities are only significant
for the short term behavior. We will use Artificial Neural Networks (ANNs) (see e.g. White
(1992); Kuan and White (1992)) to estimate the NNECM.

4.1 Feedforward Neural Nets

In this subsection we estimate a NNECM of the form (2):

! Yo .
AY, = f(§ ( X ),An_l,AXf,AXf_l,e)m, (1)
t—1
in which
Y, = (sfF sJF sfe )’, )
Xﬁ - ( TgP m?s’ E'Pip )I’

and 3 is given by (12-14). For the estimation of (15) we choose f(-,#) in the class of feed-
forward ANNs. Specifically, f(-,6) is chosen in the class of one hidden layer multi layer
perceptron networks. Estimation of the feedforward ANN is carried out with the Neural Net
System Identification Toolbox developed by Ngrgaard (1995) for Matlab 4.2. For the train-
ing of the ANN we use the Levenberg-Marquardt training method {see e.g. Nargaard {1995);
Sjoberg et al. (1995)). In order to prevent overfit we use explicit regularization in the form
of weight decay as well as a pruning algorithm (see Ngrgaard (1995); Sjoberg et al. (1995)
for details). We try to avoid getting stuck in local minima by using multiple restarts. After
some trial and error we selected the following parameters: 5 hidden units and a weight decay
parameter A = 0.01. To our experience, with these parameters about 5 restarts are needed
to avoid getting stuck in local minima. For the pruning we used the obs-prune algorithm,
introduced by Hassibi and Stork (1993), which is implemented in the toolbox by Ngrgaard
(1995). This method succesively eliminates the weights which have the smallest contribution
in minimizing the validation error. Ultimately the network with the smallest validation error
is selected. In order to do this we split up our sample of 258 observations (monthly data,
January 1974 — June 1995) in the following way: the first 200 observations are used for the
training of the ANN, observation 201-246 are used as a held out validation set for pruning
purposes and observation 247-258 are used to evaluate the performance of the final network.

In order to evaluate the performance of the final network, we compare the prediction perfor-
mance of the NNECM with the predictions made using the linear VECM we estimated in the
previous section. As a benchmark we also compared the performance of both models with
predictions made by a simple random walk model (ﬁRW = Yas, t > 246). As measures of



5 A NONLINEAR JOHANSEN APPROACH , ' 9

the prediction quality we use:

T A 2
RMSE (Root Mean Square Error) \/E Z (Y{g - Yt) \

MAE (Mean Absolute Error) :% E |V; — Y.

The results are summarized in table 7.

In table 7 we see that the NNECM with linear long run outperforms the random walk model
and the linear VECM for all three exchange rates. The linear VECM in its turn already
succeeds beating the random walk model. This shows that, at least in the short term, including
nonlinearities contributes in enhancing the prediction performance of the error correction
model.

5 A nonlinear Johansen approach

In this section we will use the second alternative as discussed in section 2. As we have

seen in section 3.2 the results of the linear cointegration analysis (see table 2) were not

very clear. Some evidence for the existence of a (linear) cointegration was found, but as-
remarked before, especially regarding the rank of the relation several choices could have been

defended. Therefore it might be a more fruitful approach to look for a nonlinear cointegrating
relationship of the form ' (Y — f(X)) € SMM. Iun this section we proceed as follows. First we
will estimate an ANN for equation (1) and calculate its residuals £. These residuals are then
used to calculate a VECM of the form (5). From this model we calculate the decomposition
o', and the LR test statistics. The resulting long run relationship (if present) is then used
to construct a NNECM. : '

3.1 The long run relationship

Using the toolbox of Ngrgaard {1995) we start by estimating a feedforward ANN

Y = f{X;,0) + 4, ' (16)
iﬁ which
Yo = (stos s )
Xe = (rf®* mf® iplf )’.

We chaose to include the same variables as before in our model in order to be able to compare
the results of the NNECM based on a nonlinear cointegrating relationship to the NNECM
and the linear VECM we derived in the previous sections. Obviously, it would be better
to start from scratch when searching for a long run specification, by using the specification
(9—11) and for instance a pruning algorithm. However, this would make a direct comparison
with the other models very difficult. '
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To train the network (16) we again used the Levenberg-Marquardt algorithm, a weight decay
of A = 0.01 and 5 hidden units. For computational reasons we decided not to use the obs-
prune algorithm and to make only three restarts. On the residuals from (16) we fitted the
VECM (5) with 4 lags. The LR test statistics are given in table 5. From table 5 we see that
there is clear evidence for a rank 2 nonlinear cointegrating relationship

BY - f(X)) € SMM,
for which we find

[ —0.0116 —0.5905
G=1 08365 04045 |. (17)
0.2918  0.5285

In order to conduct the analysis as summarized in table 5 we had to determine critical values
for this nonlinear Johansen procedure. In general it can be expected that the use of ANNs has
an influence on the distribution of £ and hence ultimately on the distribution of the LR test
statistics. Hence, we have to generate critical values of the test statistics by simulation taking
the testing procedure into account (see also Engle and Yoo (1987); Johansen (1988); Sephton
(1994); Verkooijen (1996b)). The critical values are produced through 1000 replications of
the fdllowing procedure: :

Generate p random walks « from a (random coeflicient) VAR(k) process e; based on a
(Gaussian white noise Innovation process. Note that ey is stationary and hence ¢; €
SMM.

Generate also n random walks y from a (independent) VAR (k) process es.

- Construct a nonlinear function f. For this we use an ANN with 10 x /N, hidden units and
random weights. Due to the universal approximation property (see for instance Sontag
{1993); White (1992)) we know that the class of one hidden layer ANNs is a very general
class of nonlinear continuous functions.

Replace y1(), ..., y-(-) with fi(w),..., fr(u). Then premultiply y with a random full rank
n x n matrix § of norm 1. In this way ¥ and « have a nonlinear cointegrating relation
of rank r. The premultiplication with S guarantees that all components of i are related
to u, not only the first » components.

- Determine the values of the LR test statistics.

As an illustration of the huge computational demands, for the parameters we used (i.e. 3
outputs, 3 inputs, 4 lags, 5 hidden units, weight decay parameter A = 0.01, 3 restarts and no
pruning) the time needed to obtain the critical values (see table 6) was about 125 hours®,

®On a Pentium 166MHz machine (16MB RAM) running Matlab 4.2c under Windows 95.
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5.2 A NNECM based on nonlinear cointegration

Based on the cointegrating relationship (16) we estimate a NNECM of the form

AY: = g(B (Yo = F(Ximt, ) ) AV AXGAK Ly, 0%%) 4, (18)
where
Yy = (8P SE s )
X: = (rjp my° ipyt )I,

and § is given by (17). Again, for g(-, 82°M) we use a feedforward ANN, with five hidden units.
This ANN is trained using the Levenberg-Marquardt algorithm, using 5 restarts, weight decay
A = 0.01, and is pruned using the obs-prune algorithm. The results are also summarized in
table 7. From table 7 we see that both NNECMs are capable of beating the random walk
model and that they also beat the linear model. The NNECM based on the linear cointegra-
tion outperforms the NNECM based on the NNECM based on the nonlinear cointegration.
This may indicate that the extension to possible nonlinear long run relationships might (ex-
cept for Japan) not be so much an improvement as the inclusion of nonlinearities on a short
term error correction basis. However, we have to be careful with this conclusion because, as
remarked before, we had to restrict ourselves in performing the nonlinear cointegration tests
to computational limits. It is very well possible that we would be able to find a more suitable
“long run relation by comparing some different neural net architectures or by adding more
inputs (i.e. by starting from scratch in our search for a long run relation).

As a graphical illustration of the results we have plotted the forecasts of the nonlinear
NNECM, the linear VECM and the random walk model in figures 1,2,3. In these figures
the superior performance of the NNECM becomes obvious. Based on visual inspection, the
dynamic forecasting performance of the NNECM is clearly better than the performance of
the linear VIECM.

6 Conclusions

In this paper we have extended the test on nonlinear cointegration using artificial neural nets
as introduced by Verkooijen (1996b). Instead of using the classical Engle-Granger method
as a starting point, we departed from the multivariate approach as introduced by Johansen
(1988). In our experiments we saw that already the generalisation towards linear multivariate
cointegration leads to promising results for exchange rate forecasting. As we noted in section
2, it is not possible to find a straightforward generalisatior of the Johansen approach towards
a nonlinear formulation. We suggested two ways out. The first alternative starts from the
linear long run relation, which can be found using standard Johansen techniques. Based on
this linear long run relation a NNECM is estimated. In the second alternative we specified
a new test to find a nonlinear long run relation. From the results of our experiments we
can conclude that both nonlinear methods are indeed capable to improve upon the exist-
ing linear methodology. We also found that there is indeed some evidence for a nonlinear
long run relationship, although the performance of both NNECMs is comparable. The main
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disadvantage of the second nonlinear method is that it is computationally very demanding
to obtain critical values for the nonlinear cointegration test. However, in the exchange rate
modeling application we noticed that the results of the nonlinear cointegration tests were less
ambiguous than in the linear case in the sense that in this case a clear distinction between
the ranks could be made. This suggests that the nonlinear test as proposed in this paper is
a useful extension to the econometrician’s toolbox. '

Of course, one should keep in mind that the models as they are estimated in this paper are

intented to be illustrations of the proposed methodology rather than final models to be used

for trading or forecasting purposes. As we have noted before, the choice of variables is kept
the same over all models to allow for a fair comparison, although it is better to depart with

all the variables in the estimation of the NNECM with nonlinear long run relation. Also the

effects of the sample time, the choice of different input variables, addition of other exchange

rates, the choice between feedforward or recurrent neural networks, etc. need to be studied

before a practically relevant model for reliable exchange rate prediction can be obtained.
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A Data sources

In this appendix we have listed the source of the data used in this paper. All series have
been extracted from the data sources of the IMF unlegs indicated otherwise. All series consist
of monthly data ranging from Januari 1974 until June 1995. The dataset is available upon

request from the authors (in EXCEL format).

Country  Variable IMF Code IMF Name Note

Us M1 Source: US Department of
Commerce

us Rs 11160C..ZF... Treasury Bill Rate

Us cpi 11164..2F...  Consumer Prices

us T Calculated from cpi

Us ip 11163...ZF...  Wholesale Prices

Us TB Source: Datastreamn QECD

UK Exr 112.AE.ZF... Market Rate B

UK M0 ' Source: ESRC

UK Rs 11260C..ZF... 'Treasury Bill Rate

UK cpl 11264...ZF...  Consumer Prices

UK T Calculated from cpi

UK 1p 11263 ZF...  Prices: Industrial Quiput

UK TB ' * Source: Datastream QECD

Germany Exr 134. AE.ZF... Market Rate '

Germany M1 13434..Z2F...  Money

Germany Rs 13460B..ZF. . Call Money Rate

Germany copi 13464.. ZF...  Consumer Prices -

Germany = Calculated from cpi

Germany  ip 13463 ZF...  Wholesale Prices: Industrial

Germany - TB Source: Datastream QECD

Japan Exr 158.. AE.ZF... Market Rate

Japan M1 15834..ZF... Money

Japan Rs 15860B..ZF... Call Money Rate

Japan cpi 15864.. ZF...  Consumer Prices

Japan T Calculated from cpi

Japan ip 15863.. ZF...  Wholesale Prices

Japan B Source: Datastreamn OECD




B TABLES AND FIGURES . 16

| B Tables and figures

US UK  Japan  Germany
s |11 I I{1) I(1)
r I(1) 1(1) I(0)4c+t I(1)
T I(1) I(1) I(1) I(1)
m | I(1) I(1) I(1) I(1)
ip | I(1) I(1) I(1) I{1)
B | I(1) I(1) I(1) I(1)

Table 1 : Results ADF-tests. I(1) indicates integrated of order 1, I(0)-c+t means trend
stationary : :

eigenvalue fi;. loglik for rank
530239 0

0.1687877 5324.57 1
0.1421822 h342.98 2
0.105741 h356.39 3
4

b

6

0.06644593 5364.64
0.05204428 5371.05
0.02513974 5374.11

Hy:rank=p —Tlog{l — u) using T — nm 20% 85% —Ty log(l — ) using T — nm 20% 5%
=0 - 44877 7 37.71 9.5 42.5 143.4%* 121.9%%¥ 100.1 104.9
p < 56.81*%* 31.29 337 384 99.07*** £4.21%% 3.4 7T
p<2 26.82 22.8 27.8  80.3  82.28""° 52.92*% 50.7 54.6
p 3 16.5 14.03 21.5  23.8  35.44*" 30.12 31.4 34.6
p<d 12.83 10.9 148 169  18.94*" 16.1 16.1 18.2
p<s 6.111** 5.194%* 26 3.7 6.111%* 5.194%* 2.6 3.7

*: significant at 10% level
**. gigmificant at 5% level
kX% gignificant at 1% level
Critical values according to PG-Fiml 8.10, Doornik and Hendry (1993a).
Tlhese correspond to the critical values as given in Osterwald-Lenum (1992).

Table 2: Results cointegration analysis
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A’ eigenvectors:

SJP SUK SGer ,r.JP . mUS : ,.,:pJP

1.000 0.5000 —1.000 0.0000 1.239 —0.47016
—1.000 1.000  0.0000 0.035234 —0.67513 0.20621
1.000 1.000  1.000 0.0000 0.0000 —5.247

& coeflicients:

g’F 1 —0.14093 0.076288 0.0000
s"% | —0.10353 —0.1465  0.0000
s 1 0.016186  0.0000 —0.022181
r’F | 0.0000 0.0000 0.0000
m"s | 0.0000 0.0000 0.0000
ip'" | 0.0000 - 0.0000 0.0000

loglik = 5347.0068 unrestricted loglik — 5356.3878
LR-test, rank=3: xiz = 18.762[0.2247]

Table 3: Test of cointegrating restrictions.

Dynamic Forecasts s_JP
T

48[ i .

b

]
i
Il

Log -Exchange Rate

ke
=]
Il

— True s_JP
445¢ [ Random Walk Mecdel
- — NMECM
- —-- Linear VECM
L ! | . )
0 2 4 5 a 10 12

Figure 1: Dynamic forecasts of Yen/Dollar exchange rates
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Equation 1 for As'®:

Variable  Coefficient  Std.Error  t-value t-prob HCSE
Agter 0.774643 0.274037 2.827  0.0051 0.318702
,61,_1 —0.00889887 0.00499203 —1.783 0.0759 0.00483871
62,—1 0.0928216 ° 0.024299 3.82 0.0002 0.0257778
Aip’® 2.3665 0.322008 7.349  0.0000 0.371961
Aiplty —0.803395 0.320607 —2.506 0.0129 0.324915
Constant  0.908977 0.237696 3.824  0.0002 0.255142
& =10.02491848
Equation 2 for As"™
Variable  Coefficient Std.Error  t-value t-prob HCSE
AN: 0.492638 0.281431 1.75 0.0813 0.26731
ﬁl,—l 0.00253636 0.00626514 0.405  0.686  0.00710597
ﬁ2=_1 —0.111205 0.0361561 —3.076 0.0023 0.0467275
AsTh 0.103889 0.0466032  2.229 0.0267 0.0462267
Ap” —1.3593 0.581407 —2.338  0.0202 0.578115
Constant  —1.0086 0.366424 —2.753 0.0064 0.474207
& = 0.02873829
Equation 3 for As®”
Variable Coefficient Std.Error  t-value t-prob  HCSE
)31,—1 —0.0197064  0.0066482  --2.964 0.0033 0.00644646
BB_,—JA —0.0102997  0.00351364 —2.931 0.0037 0.00341793
AN —0.00824626 0.00486312 —1.696 0.0913 0.00566105
& = 0.03384052

loglik = 2615.6426 log [} = —21.797 || = 3.41723 - 1010 7 = 240
LR test of over-identifying restrictions: x2, = 28.2258[0.2506]

Test-summary:

Vector portmanteau 12 lags

Vector AR 1-7 F3,
Vector Normality x2
Vector X2, Fili

Vector X - X;, Fg#f

= 94.368

= 0.885311[0.7222]

= 33.89[0.0000]*
= 1.489[0.0003]**

= 1.2034[0.0089]**

Table 4: Linear VECM

18
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Hy: rank=p | —(T —nm)log{l—p) 95% —(T —nm)> log(l —p) 95%
p=10 40.74%* 32.91 68.27% 51.93 |
p<1 26,47 21.87 27.54* 28.03
p<2 1.07 13.24  1.07 13.24
*; significant at 10% level
**. significant at 5% level
*4%: significant at 1% level
Table 5: Results of nonlinear Johansen test
Hy:rank=p | 90% 95%  99% || Ho: rank=p | 90% 95% 99%
p=0 29.63 3291 3869 | p= 47.74 51.93  59.67
P <1 19.68 21.87 2568 || p<1 24.94 28.03 34.31
p<?2 10.67 13.24 1737 || p <2 10.67 13.24  17.37
Apmax statistic Trace statistic
Table 6: Critical values for nonlinear Johansen test
8 sUE gl Owverall
RMSE  MAE | RMSE MAE | RMSE MAE | RMSE
NNECM, nonlinear coint. |.0.0449 0.0350 | 0.0311 ¢.0233 | 0.0334 0.0281 | 0.0640
NNECM, linear coing. 0.0463 0.0391 | 0.0208 0.0171 | 0.0261 0.0216 | 0.0571
Linear VECM 0.0443 0.0389 | 0.0381 0.0346 | 0.0350 0.0284 | 0.0681
Random Walk 0.0839 0.0560 | 0.0325 0.0287 | 0.0896 0.0707 | 0.1304

Table 7: RMSE, MAE of predictions
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Figure 2: Dynamic forecasts of Pound/Dollar exchange rates
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Figure 3: Dynamic forecasts of DM/Dollar exchange rates



