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Abstract
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to
spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-
weighted imaging fiber tracking are currently employed. However, taking into account this information is often still
insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional
outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap
by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first
step in this direction, an appropriate computational model has to be selected, after which suitable model
parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain
tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics
platform. Local and global model parameters of the Reduced Wong–Wang model were individually optimized and
compared between brain tumor patients and control subjects. In addition, the relationship between model
parameters and structural network topology and cognitive performance was assessed. Results showed (1)
significantly improved prediction accuracy of individual functional connectivity when using individually optimized
model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor,
regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually
optimized model parameters and structural network topology and cognitive performance.
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Neuroinformatics

Significance Statement

Individualized medicine is increasingly put forward as an important means to advance medical care. In this
regard, the neuroinformatics platform The Virtual Brain holds great promise, given its direct focus on
simulation of subject-specific brain activity. Reliable prediction of patient-specific large-scale brain dynam-
ics would open up the possibility to virtually lesion structural connectomes, making computational models
unique predictive tools to investigate the impact of diverse structural connectivity alterations on brain
functioning, including those purposefully induced by surgery. Results of this study establish the basis for
this purpose, by demonstrating individual specificity of biophysical model parameters, differences in local
model parameters dependent on distance from a tumor, and associations between model parameters and
structural network topology and cognitive performance.
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Introduction
Presurgical planning for brain tumor resection aims at

delineating eloquent cortical areas and white matter path-
ways in the vicinity of the lesion to spare during surgery,
to preserve essential brain functions. In brain tumor pa-
tients, localization of brain function often cannot be in-
ferred from anatomic landmarks alone, since mass effects
can distort normal topography, and disease processes
such as brain shift or plasticity can induce relocation of
functions (Desmurget et al., 2007). Therefore, noninvasive
neuroimaging techniques such as functional MRI (fMRI)
and diffusion-weighted imaging (DWI) fiber tracking are
currently employed to preoperatively determine patient-
specific important cortical areas and white matter tracts
close to the lesion, to spare during surgery (Sunaert,
2006; Tieleman et al., 2009).

However, taking into account this preoperative neuroim-
aging information is often still insufficient, as the complex
nonlinear dynamics of the brain impede straightforward pre-
diction of functional outcome after surgical intervention. For
example, fMRI cannot differentiate cortical areas that are
essential for a particular function and should be surgically
preserved from expendable areas which merely correlate
with but are not essential for functionality (Duffau et al., 2003;
Tharin and Golby, 2007).

Large-scale brain network modeling carries the poten-
tial to bridge this gap by integrating neuroimaging data
with biophysically based models to predict collective
brain dynamics, from which functionality could be in-
ferred. A future application of this framework could then
entail the presurgical virtual exploration of the effects of
different neurosurgical approaches based on individual
patient data, to identify an optimal surgical strategy (Ar-
siwalla et al., 2015; Proix et al., 2017).

As a first step in this direction, an appropriate compu-
tational model has to be selected, after which suitable
model parameter values should be determined that lead
to plausible brain dynamics. Different approaches can be
used to simulate activity of nodes (i.e., brain areas) in

large-scale brain network models varying from detailed
spiking neuron models (Deco and Jirsa, 2012), over so-
called neural mass or mean-field models that describe the
collective activity of cell populations (Deco and Jirsa,
2012), down to abstract models such as the Ising model
(Deco et al., 2012; Haimovici et al., 2013; Marinazzo et al.,
2014; we refer the interested reader to Deco et al. [2008]
for an in-depth explanation of the general principle behind
these approaches and the mechanism allowing a wide
class of models to bridge temporal and spatial scales). In
a clinical context, biologically interpretable dynamical
models are of special interest, as their activity and param-
eters can allow inference of internal states and processes
of the large-scale model, which cannot be measured with
noninvasive neuroimaging techniques (Falcon et al., 2015;
Schirner et al., 2018). Hence, they may provide an entry
point for understanding brain disorders at a causal mech-
anistic level, which might lead to novel, more effective
therapeutic interventions (Deco and Kringelbach, 2014;
Proix et al., 2017). The first proof-of-concept studies have
indicated that global and local biophysical model param-
eters derived from large-scale brain network modeling
can be related to motor recovery after stroke (Falcon
et al., 2015) and the generation and progression of epi-
leptic seizures (Jirsa et al., 2014; Bernard and Jirsa, 2017),
demonstrating the potential clinical utility of computa-
tional modeling.

In this study, we simulated large-scale brain dynamics
in brain tumor patients and control subjects using The
Virtual Brain (TVB; Sanz Leon et al., 2013), an open-
source neuroinformatics platform that enables the con-
struction, simulation, and analysis of brain network
models. Local dynamics in each brain region were simu-
lated using the Reduced Wong–Wang model (Deco et al.,
2014), one of the more refined and biologically plausible
models in the repertoire of TVB. Subsequently, local dy-
namics of all brain regions were coupled according to
each subject’s empirical structural connectome to gener-
ate personalized virtual brain models.

The objectives of this study were (1) to evaluate the
importance of constructing personalized virtual brain
models using individually optimized model parameters
and subject-specific structural connectomes; (2) to deter-
mine if the individually optimized model parameter values
differ between brain tumor patients and healthy controls;
and (3) to elucidate the relationship between these model
parameters on the one hand, and cognitive performance
and structural network properties on the other hand.

Materials and Methods
Participants

In this study, we included patients who were diagnosed
with either a glioma, developing from glial cells, or a
meningioma, developing in the meninges (Fisher et al.,
2007). Both types of tumors can be described by their
malignancy, based on the World Health Organization
(WHO) grading system. According to this system, grade I
tumors are least malignant, whereas grade III (for menin-
gioma) or IV (for glioma) tumors are most malignant.
Malignancy relates to the speed with which the disease
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evolves, the extent to which the tumor infiltrates healthy
brain tissue, and chances of recurrence or progression to
higher grades of malignancy.

Patients were recruited from Patients were recruited from
Ghent University Hospital (Belgium) between May 2015 and
October 2017. Patients were eligible if they (1) were at least
18 years old, (2) had a supratentorial meningioma (WHO
grade I or II) or glioma (WHO grade II or III) brain tumor, (3)
were able to complete neuropsychological testing, and (4)
were medically approved to undergo MRI investigation.
Partners were also asked to participate in the study to
constitute a group of control subjects that suffer from emo-
tional distress comparable to that of the patients.

We collected data from 11 glioma patients (mean age
47.5 y, SD � 11.3; 4 females), 14 meningioma patients
(mean age 60.4 y, SD � 12.3; 11 females), and 11 healthy
partners (mean age 58.6 y, SD � 10.3; 4 females). Patient
characteristics are described in Table 1. Testing took place
Patients were recruited from Ghent University Hospital (Bel-
gium) on the day before patients’ surgery. All participants
received detailed study information and gave written in-
formed consent before study enrollment. This research was
approved by the Ethics Committee at Ghent University Hos-
pital. All data used for this study are publicly available at
OpenNeuro under the name BTC_preop.

MRI data acquisition
From all participants, three types of MRI scans were

obtained using a Siemens 3T Magnetom Trio MRI scanner
with a 32-channel head coil. First, T1-MPRAGE anatomic
images were acquired (160 slices, TR � 1750 ms, TE �
4.18 ms, field of view � 256 mm, flip angle � 9°, voxel

size � 1 � 1 � 1 mm, TA � 4:05 min). Next, resting-state
functional echo-planar imaging (EPI) data were obtained
in an interleaved order (42 slices, TR � 2100 ms, TE � 27
ms, field of view � 192 mm, flip angle � 90°, voxel size �
3 � 3 � 3 mm, TA � 6:24 min). After the first 4 control
subjects, 5 meningioma patients, and 2 glioma patients
were scanned, the fMRI protocol was accidentally
changed to a TR of 2400 ms, resulting in a TA of 7:19 min.
This has been taken care of in subsequent analyses by
inclusion of an additional covariate. During the fMRI scan,
participants were instructed to keep their eyes closed and
not fall asleep. Finally, a multishell high-angular resolution
diffusion-weighted MRI (DWI) scan was acquired (60 slic-
es; TR � 8700 ms; TE � 110 ms; field of view � 240 mm;
101 diffusion directions; b-values � 0, 700, 1200, 2800
s/mm2; voxel size � 2.5 � 2.5 � 2.5 mm; TA � 15:14 min).
In addition, two DWI b � 0 s/mm2 images were collected
with reversed phase-encoding blips for the purpose of
correcting susceptibility-induced distortions (Andersson
et al., 2003).

MRI data preprocessing
MRI data were preprocessed, and subject-specific struc-

tural and functional connectivity matrices were extracted
using a modified version of the TVB preprocessing pipeline
(Schirner et al., 2015). All steps are outlined below.

Preprocessing of T1-weighted anatomic MRI data
In the first step, high-resolution anatomic images were

processed using FreeSurfer (http://surfer.nmr.mgh.
harvard.edu) to obtain a subject-specific parcellation of
each subject’s brain into 68 cortical regions (34 per hemi-

Table 1. Patient characteristics

Subject ID Sex Age, y Handednessa Tumor lateralization Tumor location Tumor size, cm3 Tumor histologyb

PAT01 F 67 1.00 Left Frontal 1.69 Meningioma I
PAT02 F 49 1.00 Right Frontal 0.75 Meningioma I
PAT03 F 60 1.00 Right Parietal 78.44 Meningioma I
PAT05 F 40 1.00 Left Frontal 12.95 Oligo-astrocytoma II
PAT06 F 67 1.00 Bilateral Frontal 12.81 Meningioma I
PAT07 M 55 -0.16 Left Temporal 33.94 Ependymoma II
PAT08 M 51 1.00 Left Frontal 16.81 Meningioma I
PAT10 F 77 1.00 Left Frontal 0.59 Meningioma I
PAT11 F 74 1.00 Left Frontal 20.73 Meningioma II
PAT13 F 40 -0.68 Bilateral Skull base 2.09 Meningioma I
PAT14 F 74 1.00 Left Parietal 3.45 Meningioma I
PAT15 F 57 1.00 Right Frontal 2.13 Meningioma I
PAT16 M 39 1.00 Right Fronto-temporal 50.24 Anaplastic astrocytoma II–III
PAT17 F 49 1.00 Right Frontal 0.58 Meningioma I
PAT19 F 44 1.00 Right Frontal skull base 2.64 Meningioma I
PAT20 F 70 0.60 Right Parietal 15.24 Anaplastic astrocytoma III
PAT22 M 53 1.00 Right Parietal 15.16 Oligodendroglioma II
PAT23 M 74 1.00 Bilateral Frontal 89.56 Meningioma I
PAT24 M 62 1.00 Left Frontal 5.91 Meningioma I
PAT25 F 46 1.00 Right Temporal 18.56 Glioma II
PAT26 M 61 1.00 Right Temporal 59.21 Anaplastic astrocytoma III
PAT27 M 38 1.00 Left Frontal 13.24 Astrocytoma II
PAT28 M 44 1.00 Left Frontal 11.49 Oligodendroglioma II
PAT29 M 45 0.90 Left Frontal 36.20 Oligodendroglioma III
PAT31 F 31 0.90 Left Frontal 4.24 Oligodendroglioma II

a –1, left-handed; 0, ambidextrous; �1, right-handed.
b(Oligo-)astrocytoma, ependymoma, and oligodendroglioma are subtypes of glioma tumors. See also Table 1-1.
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sphere). T1-weighted data of all control subjects were
subjected to the default recon-all processing pipeline,
which includes the following steps: intensity normaliza-
tion, skull stripping, removal of non-brain tissue, brain
mask generation, cortical reconstruction, segmentation of
subcortical white matter and deep gray matter volumetric
structures, cortical tessellation of the gray matter/white
matter and gray matter/pial boundary, and construction of
a probabilistic atlas based cortical parcellation into 68
regions according to gyral and sulcal structure (Fischl
et al., 2004; Desikan et al., 2006).

As meningioma tumors generally exert pressure on the
brain without infiltrating, our aim was to segment out the
meningioma tumor before cortical reconstruction. How-
ever, visual inspection of the results showed this was
done automatically by the recon-all processing pipeline of
FreeSurfer in all but two meningioma patients. In the
remaining two meningioma patients, who had very large
lesions, manual edits were made.

Glioma tumors, in contrast, generally do infiltrate the
brain. To obtain a whole-brain parcellation scheme for
these patients, two additional steps were conducted.
First, glioma tumors were segmented using the Unified
Segmentation with Lesion toolbox (https://github.com/
CyclotronResearchCentre/USwithLesion, unpublished obser-
vations). Second, the Normalisation tool of the BCBtoolkit
(Foulon et al., 2018) was used to produce an enantiomorphic
filling of the affected area by symmetrically filling up the
lesion mask with healthy tissue of the contralateral hemi-
sphere (Nachev et al., 2008). These normalized anatomic
MRI data were then processed using the standard recon-all
FreeSurfer processing pipeline. Resulting parcellations were
visually inspected and manually corrected in two glioma
patients.

Functional MRI preprocessing
fMRI data processing was conducted using FEAT

(FMRI Expert Analysis Tool, version 6.00), part of FSL
(FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/
fsl). Specifically, the following operations were applied:
motion correction using MCFLIRT (Jenkinson et al., 2002),
slice-timing correction, non-brain removal using BET
(Smith, 2002), grand-mean intensity normalization of the
entire 4D dataset by a single multiplicative factor, and
high-pass temporal filtering (100 s high-pass filter). Next,
the FreeSurfer cortical parcellation obtained in the previ-
ous step was mapped to the subject’s functional space.
To this end, fMRI images were linearly registered to the
subject’s high-resolution T1-weighted images using the
epi_reg function of FSL FLIRT (Jenkinson and Smith,
2001; Jenkinson et al., 2002), after which the inverse of
this transformation matrix was applied to transform the
FreeSurfer parcellation scheme to the subject’s functional
space. Average blood oxygen level–dependent (BOLD)
signal time series for each region were then generated by
computing the spatial mean for all voxel time-series of
each region. Lastly, functional connectivity (FC) matrices
were constructed by calculating the Fisher z-transformed
Pearson correlation coefficient between all pairs of
region-wise aggregated BOLD time series.

Diffusion-weighted MRI preprocessing
Because all analyses of this study depend on the quality

of the structural connectivity matrices, a state-of-the art
pipeline was constructed for the preprocessing of DWI
data and consecutive network construction, using a com-
bination of FSL (version 5.0.9) and MRtrix3 (http://www.
mrtrix.org; version 0.3.RC2). First, raw diffusion-weighted
MRI images were corrected for several artifacts. In par-
ticular, DWI images were denoised (MRtrix dwidenoise;
Veraart et al., 2016) and corrected for Gibbs ringing arti-
facts (MRtrix mrdegibbs; Kellner et al., 2016), for motion
and eddy currents (FSL eddy; Andersson and Sotiropou-
los, 2016), for susceptibility-induced distortions (FSL
topup; Andersson et al., 2003), and for bias field inhomo-
geneities (FSL FAST; Zhang et al., 2001). Next, subjects’
high-resolution anatomic images were linearly registered
to diffusion space with the epi_reg function of FSL FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002) and
segmented into gray matter, white matter, and cerebro-
spinal fluid (FSL FAST; Zhang et al., 2001).

DWI images were then intensity-normalized across
subjects, and group average response functions were
calculated. Specifically, response functions for each sub-
ject were estimated per b-value shell (b � 0, 700, 1200,
and 2800 s/mm2) and per tissue type (white matter, gray
matter, cerebrospinal fluid) using the MRtrix3 script
dwi2response dhollander (Dhollander et al., 2016). A scal-
ing factor per subject was calculated by which the indi-
vidual response functions could be multiplied to obtain
the average response function across all subjects. DWI
images were then initially normalized by dividing subjects’
DWI images by their corresponding scaling factor. After
that, response functions per b-value shell and tissue type
were recalculated for every subject and averaged across
all subjects. This set of group average response functions
was subsequently used in multi-shell multi-tissue con-
strained spherical deconvolution to estimate the fiber ori-
entation distributions (MRtrix3 msdwi2fod; Jeurissen
et al., 2014). In addition, tissue components from multi-
tissue CSD were once more intensity normalized using
MRtrix3 mtnormalise.

Next, anatomically constrained probabilistic whole-brain
fiber tracking (ACT) was performed using dynamic seeding
generating 30 million streamlines per subject (MRtrix3 tck-
gen; Smith et al., 2012, 2015). Afterward, spherical-
deconvolution informed filtering of tractograms (SIFT) was
applied to selectively filter out streamlines from the tracto-
gram to improve the fit between the streamline reconstruc-
tion and the underlying diffusion images, retaining 7.5 million
streamlines per subject (MRtrix3 sift; Smith et al., 2013). An
SC matrix was then constructed by transforming the indi-
vidual’s FreeSurfer parcellation scheme to diffusion space
and calculating the number of estimated tracts between any
two brain regions (MRtrix3 tck2connectome). In addition, a
distance matrix was constructed by calculating the average
length of all streamlines connecting any two nodes (MRtrix3
tck2connectome). By using a proper high-order model and
taking into account the full fiber orientation distribution func-
tion (through CSD), by taking into account the presence of
non–white matter tissue (through multi-tissue CSD), by ap-
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plying realistic individual anatomic priors (through ACT), and
by ensuring fidelity of the tractograms to the data (through
SIFT), it has been shown that the biological accuracy of
tractograms can be vastly increased compared with those
obtained with unfiltered unconstrained diffusion tensor
tracking (Jeurissen et al., 2017).

Lastly, we thresholded and normalized the resulting SC
matrices. Thresholding was conducted to minimize false-
positive streamlines. Using an absolute threshold (setting
to zero all connection weights smaller than 5) yielded a
decaying degree distribution while ensuring all subjects’
network remained fully connected. This approach is sim-
ilar to the one adopted by Collin et al. (2014). Normaliza-
tion was performed by dividing all SC weights by a
constant scalar across subjects (75,000 in our case: 7.5
million streamlines generated per subject/100) to ensure
all SC weights varied between 0 and 1, which was re-
quired for computational modeling in TVB.

Computational modeling
TVB (Sanz Leon et al., 2013) was used to simulate

large-scale brain dynamics (see Fig. 1 for visual overview

of the workflow). In particular, local dynamics in each of
the 68 cortical brain regions were simulated using the
Reduced Wong–Wang model (Deco et al., 2014), imple-
mented as highly optimized C code that allows for effi-
cient parameter exploration (Schirner et al., 2018). In
particular, each cortical region of the Desikan–Killiany
brain atlas (Desikan et al., 2006) was modeled as a local
network composed of interconnected excitatory and in-
hibitory neural mass models coupled by excitatory
(NMDA) and inhibitory (GABA) connections (we refer the
interested reader to Deco et al., [2014] for a more detailed
description of this model). Excitatory neural mass models
of all 68 brain regions were subsequently coupled accord-
ing to the individual subject’s empirical structural connec-
tome and weighted by a global scaling factor, to simulate
large-scale brain dynamics.

To optimize the fit between empirical and simulated
functional connectivity, subject-specific parameter space
explorations were conducted in which the global scaling
parameter (G) was optimized. This parameter rescales
each subject’s structural connectivity, which is given by
relative values, to yield absolute interaction strengths. In

Figure 1. Graphical summary of computational modeling workflow using TVB. Imaging: As input to the model, individual neuroimaging
data should be acquired. Diffusion MRI data processed to an SC matrix as input for TVB, and resting-state functional MRI data
processed to an empirical functional connectivity (FCemp) matrix to evaluate model fit (red, positive connection weights; blue,
negative connection weights). Personalized virtual brain model: Local dynamics in each of the 68 Freesurfer cortical brain regions
were simulated using the Reduced Wong–Wang model (Deco et al., 2014), implemented as highly optimized C code that allows for
efficient parameter exploration (Schirner et al., 2018). Excitatory neural mass models of all 68 brain regions were subsequently
coupled according to the individual subject’s empirical structural connectome and weighted by a global scaling factor (G) to simulate
large-scale brain dynamics. Resting-state BOLD time series were generated with the same duration and sampling rate as the subject’s
empirical resting-state fMRI acquisition, using the Balloon–Windkessel hemodynamic model (Friston et al., 2000). From these
simulated time series, a simulated functional connectivity (FCsim) matrix was computed. Identify optimal model parameters: To
optimize the fit between empirical and simulated FC, subject-specific parameter space explorations were conducted in which G was
optimized. For each value of G, a simulated FC matrix was constructed. The value of G that maximized the link-wise Pearson
correlation between each individual’s simulated and empirical functional connectivity matrix was then selected for further analyses.
Run statistics: Individually optimized model parameters were subsequently tested for group differences and correlated with structural
graph theory metrics and cognitive performance.
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particular, values of G were varied from 0.01 to 3 in steps
of 0.015. For each value of G, individual resting-state
BOLD time series were generated with the same duration
and sampling rate as the subject’s empirical resting-state
fMRI acquisition, using the Balloon–Windkessel hemody-
namic model (Friston et al., 2000). From these simulated
time series, a functional connectivity matrix was com-
puted by calculating the Fisher z-transformed Pearson
correlation coefficient between all pairs of simulated
BOLD time series. The value of the global scaling param-
eter that maximized the link-wise Pearson correlation
between each individual’s simulated and empirical func-
tional connectivity matrix was then selected for further
analyses.

In addition, the feedback inhibition control parameters
(Ji)—controlling the strengths of connections from inhib-
itory to excitatory mass models within each large-scale
region i—were tuned in each iteration of the parameter
space exploration, to clamp the average firing rate at �3
Hz for each excitatory mass model. 3 Hz was chosen as
attractor value, as it is the “intrinsic frequency” of an
isolated neural mass model according to derivations from
a spiking network (Deco et al., 2014). When multiple mass
models are coupled, as in a virtual brain model, the firing
rates increase as a result of the input from the global
network. To get the firing rates back to a physiologically
plausible average rate of 3 Hz, the feedback inhibition
control parameter Ji is increased until the population has
this average firing rate. Thus, 3 Hz is the attractor value for
each population, around which there is an ongoing fluc-
tuation during the entire simulation time. Previous work
has shown that tuning of these local model parameters
significantly improves prediction of empirical functional
connectivity (Deco et al., 2014). Note that only the global
coupling scaling factor was used to maximize the fit with
empirical functional connectivity, while the sole fitting
target of the local inhibitory connection strengths was the
average firing rate of excitatory mass models.

Given the skewed distribution of local inhibitory con-
nection strengths, median Ji values were computed per
subject for further analyses. First, the median across the
entire brain was computed (Jbrain). Second, median Ji was
calculated in patients across a subset of tumor regions
(Jtumor) to investigate possible local alterations in biophys-
ical model parameters in the direct vicinity of the lesion. In
glioma patients, tumor regions were defined as those
cortical areas of the individual FreeSurfer parcellation that
showed at least partial (i.e., minimum 1 voxel) overlap with
the tumor mask. In meningioma patients, tumor regions
consisted of regions that were (at least partially) displaced
because of the tumor’s mass effect. To estimate which
regions were displaced by the meningioma, patients’ an-
atomic images were transformed to MNI space (using FSL
FLIRT with 12 DOF), and this transformation was applied
to their tumor mask. Then, the overlap between subjects’
tumor mask in MNI space and the fsaverage Desikan–
Killiany atlas (Desikan et al., 2006) in MNI space was
calculated. Parcels that showed at least 1 voxel overlap
with the tumor mask were denoted tumor nodes.
Table 1-1 gives a graphical overview of the extent to

which tumor nodes were affected in meningioma and
glioma patients. Lastly, we also computed median local
inhibitory connection strengths across healthy regions
J(non-brain) to investigate possible distant lesion effects. In
control subjects, this was the same as the whole-brain
median Ji, whereas in tumor patients, the median across
all non-tumor regions was calculated.

Graph theory analysis
Structural network topology was assessed with various

graph theory metrics of integration (global efficiency,
communicability), segregation (clustering coefficient, local
efficiency, modularity), and centrality (degree, strength,
betweenness centrality, participation coefficient), as well
as graph density, using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). After inspecting the relation-
ships among these graph theory metrics by linear corre-
lation and principal component analysis, three distinct
graph theory metrics were retained (|r| � 0.80 and graph
metrics separable by the first 2 principal components) for
further analyses: global efficiency, modularity, and partic-
ipation coefficient.

Global efficiency relates to the capacity of the network
to rapidly integrate specialized information from distrib-
uted brain regions and is defined as the average inverse
shortest path length (Latora and Marchiori, 2001). Modu-
larity, on the other hand, is a measure of segregation,
estimating the size and composition of densely intercon-
nected groups of nodes. The modular structure can be
revealed by subdividing the network into modules by
maximizing the number of within-group links and minimiz-
ing the number of between-group links (Girvan and New-
man, 2002; Guimerà and Amaral, 2005). Participation
coefficient then measures the centrality of a node by the
ratio of its intramodular to intermodular connections
(Guimerà et al., 2007). Of note, the participation coeffi-
cient and modularity index Q were both calculated using
the same modular decomposition, which was identified
through modularity maximization across 100 iterations. As
an additional check, we calculated the stability of this mod-
ular decomposition across iterations per subject. In particu-
lar, we calculated (per subject) how often any 2 nodes were
grouped within the same module. Then, we computed the
average stability across all nodes. Results showed relatively
high stability (average across subjects � 90.25%, SD �
7.47%). For more details and an in-depth discussion of
graph metrics, we refer the interested reader to Rubinov and
Sporns (2010).

Neuropsychological testing
Cognitive performance of patients and control subjects

was assessed using the Cambridge Neuropsychological
Test Automated Battery (CANTAB; Cambridge Cognition,
2017). In particular, four cognitive domains were exam-
ined that have been identified by previous studies to be
affected by brain tumors: sustained attention, working
memory, information processing speed, and executive
functioning (Derks et al., 2014). One glioma patient was
not tested because of lack of time, and one meningioma
patient did not complete the sustained attention task.
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Before the actual test administration, the Motor Screen-
ing Task (MOT) was used to screen for sensorimotor or
comprehension difficulties that could limit valid data col-
lection. Subsequently, the main tasks were administered
in random order to avoid sequence bias. Specifically, the
Rapid Visual Information Processing (RVP) task was used
to assess sustained attention, the Spatial Span (SSP) task
measured working memory capacity, the Reaction Time
task (RTI) evaluated participants’ mental response speed,
and the Stockings of Cambridge (SOC) task assessed
planning accuracy.

Accounting for Covariates of No Immediate Interest
As cognitive performance can be affected by several

factors, results were corrected for participants’ motiva-
tion, level of emotional distress, lesion volume, age, and
sex. Likewise, previous studies have shown that graph
theory metrics can be affected by various factors such as
age and gender (Biswal et al., 2010), handedness (Bettus
et al., 2010), and mood (Harrison et al., 2008). Therefore,
graph theory results were corrected for these confound-
ing variables, as well as for lesion volume and several MRI
parameters (motion during rs-fMRI acquisition, TR of rs-
fMRI protocol, intensity normalization factor used in DWI
preprocessing). In particular, we used the inverse of the
mean latency with which participants responded to the
MOT task as a proxy of their motivation. To measure
emotional distress/mood on the day testing took place,
the Dutch version of the State-Trait Anxiety Inventory (van
der Ploeg, 1982; Spielberger et al., 1983) was used. Fur-
ther, lesion volume was calculated as the number of
1-mm³ isotropic voxels in the tumor mask drawn on the
anatomic T1 image, and handedness was measured us-
ing the Edinburgh Handedness Inventory (Oldfield, 1971).

Linear regression models were then constructed for
every outcome variable (sustained attention, working
memory capacity, mental reaction time, and planning ac-
curacy for cognitive performance; global efficiency, mod-
ularity, and participation coefficient for graph theory
metrics) as a function of these confounders. Of note, only
main effects of the confounders were considered, since
inclusion of interaction effects between the covariates
would considerably reduce the degrees of freedom. Re-
siduals of these models were further transformed to
z-scores for subsequent analyses using the mean and SD
of the respective metric in the group of control subjects,
for the ease of interpretation.

Additionally, we investigated the effect of TR on the
construction of FC matrices and the parameter space
exploration. First, we simulated BOLD time series for
every subject, using the subject’s optimized global cou-
pling value and (a) a TR corresponding to the subject’s
empirical rs-fMRI TR, and (b) the other TR (i.e., for a
subject who was scanned with rs-fMRI TR � 2.1, we then
used TR � 2.4 and vice versa). Results showed that the
similarity between the upper triangular part of both simu-
lated FC matrices per subject was rather high (average
Pearson correlation across subject � 0.97, SD � 0.025).
Further, we investigated in two subjects (one control sub-
ject and one glioma patient) whether the parameter space

exploration was comparable when using a different TR
(e.g., using TR � 2.1 while the original rs-fMRI TR for
these subjects was 2.4). Results again showed a very
limited impact of TR on the parameter space exploration.

Statistical analyses
First, we compared the optimized model parameters

between glioma patients, meningioma patients, and con-
trol participants using one-way analysis of variance tests
and Kruskal–Wallis rank sum tests, depending on whether
the normality assumption was violated. Afterward, optimal
model parameters were related to structural network to-
pology and cognitive performance using linear regression.
All analyses were performed on a Cooler Master Ubuntu
14.04 desktop PC.

Code accessibility
All code used for this study is freely available. The

optimized TVB C code can be found at https://
github.com/BrainModes/The-Hybrid-Virtual-Brain, and all
scripts for postprocessing can be found at https://github.com/
haerts/The-Virtual-Brain-Tumor-Patient. All code is also avail-
able as Extended Data 1.

Results
Model fit of personalized virtual brain models

In this study, we simulated large-scale brain dynamics
in brain tumor patients and control subjects using the
Reduced Wong–Wang model (Deco et al., 2014) as im-
plemented in a highly optimized C version of TVB’s sim-
ulation core (Schirner et al., 2018). After tuning the model
parameters, the link-wise Pearson correlation between
the upper triangular part of the simulated and empirical
functional connectivity matrices was on average 0.33
across subjects (SD � 0.09). These magnitudes of simi-
larity are similar to those reported in other studies that
have simulated subject-specific brain dynamics at the
large-scale level (see for example Deco et al., 2013;
Schirner et al., 2018). The obtained correlations between
simulated and empirical functional connectivity in turn
correlated with the correlation coefficients between the
subject’s structural and empirical functional connectivity
(Pearson’s r(SC-FCemp, FCemp-FCsim) � 0.68, 95% CI
0.45–0.82, p � 0.0001). No significant differences in pre-
diction accuracy of empirical functional connectivity were
found between healthy controls, meningioma patients,
and glioma patients (F(2,33) � 0.32, p � 0.73) or according
to lesion size (F(1,34) � 1.20, p � 0.28).

Additional analyses demonstrated that individual opti-
mization of the modeling parameters significantly contrib-
uted to the prediction of subjects’ FC (ANOVA F(3, 140) �
6.34, p � 0.0005; Fig. 2). In particular, post hoc Tukey
tests showed that the highest similarity between individ-
uals’ simulated and empirical FC was obtained when
model parameters were individually tuned on the individ-
ual or control average SC matrix (diff � 0.007, p � 0.984
for “Indiv SC; Indiv params, optimized on indiv SC” [Fig.
2D] vs. “CON average SC; Indiv params, optimized on
CON average SC” [Fig. 2C]). When simulating FC using
individual structural connectomes with average model
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parameters from the control group [Fig. 2A] or using a
control average SC matrix with individual model parame-
ters obtained from parameter space explorations on the
individual SC matrices [Fig. 2B], prediction accuracies
were significantly lower (diff � 0.06, p � 0.010 for “Indiv
SC; Indiv params, optimized on indiv SC” [Fig. 2D] vs.
“Indiv SC, CON average params” [Fig. 2A]; diff � 0.07,
p � 0.006 for “Indiv SC; Indiv params, optimized on indiv
SC” [Fig. 2D] vs. “CON average SC; Indiv params, opti-
mized on indiv SC” [Fig. 2B]).

Local model parameters altered in brain tumor
patients

We then sought to determine if the individually opti-
mized biophysical model parameter values differ between
glioma patients, meningioma patients, and control partic-
ipants. Fig. 3A shows the distribution of optimal values of
the local inhibitory connection strengths across the entire
brain of healthy control subjects and across tumor regions
in meningioma and glioma patients. Results revealed that
median local inhibitory connection strengths were marginally
more variable in tumor regions compared to healthy brains
(Levene’s test of equality of variances F(2,33) � 3.44, p �
0.044). Furthermore, a trend toward increased group means
in tumor regions was observed, although this difference did
not reach statistical significance (ANOVA F(2,33) � 2.72, p �
0.081). In healthy brain regions, median local inhibitory con-
nection weights did not differ between patients and controls
(Fig. 3B; ANOVA F(2,33) � 1.27, p � 0.293). However, local
inhibitory connection strengths strongly depend on the num-
ber of connections a brain region has, which in turn tightly
correlates with region size. That is, larger cortical areas
encompass on average more white matter fiber bundles (i.e.,
higher in-/out-strength), and hence need more local inhibi-
tion to balance global excitation. Additional analyses
showed that tumor regions were significantly larger com-
pared to non-tumor regions (Kruskal-Wallis X2

(1) � 15.11,
p � 0.0001), but that the number of connections per cortical
area were not significantly different in tumor regions com-

pared to non-tumor regions (X2
(1) � 2.29, p � 0.130). Given

the high dependence between region in-strength and size
(r � 0.80), we regressed out only the effect of region size.
Results now revealed opposite effects (Fig. 3C), with median
local inhibitory connection strengths that are much lower
(Kruskal–Wallis X2

(2) � 14.4, p � 0.0007) and more variable
(Levene’s test of equality of variances F(2,33) � 5.27, p �
0.010) in tumor regions compared to healthy regions/brains.
Moreover, local inhibitory connection strengths in non-tumor
regions were now also increased (Kruskal–Wallis X2

(2) � 6.51,
p � 0.039) compared to healthy controls (Fig. 3D). With
regard to the global coupling parameter (Fig. 3E), no signif-
icant group differences were apparent (F(2,33) � 1.42, p �
0.26).

Comparison of structural network topology and
cognitive performance between brain tumor patients
and controls

Before relating the biophysical model parameters to cog-
nitive performance and structural network topology, we ex-
amined whether group differences were present in these
variables. As can be seen in Fig. 4A, results of one-way
ANOVA tests showed no significant group differences be-
tween glioma patients, meningioma patients, and healthy
controls in any of the cognitive domains assessed (F(2,32) �
0.13, p � 0.88 for reaction time; F(2,31) � 0.35, p � 0.71 for
sustained attention; F(2,32) � 0.17, p � 0.84 for planning
accuracy; F(2,32) � 0.38, p � 0.69 for spatial span length).
With regard to structural network topology, a significant
group difference was found in the participation coefficient
(F(2,33) � 3.94, p � 0.029; Fig. 4B, right). Post hoc (Tukey)
testing revealed that participation coefficients were higher in
glioma patients compared to healthy controls (p � 0.026).
Group differences in global efficiency and modularity were
not significant (F(2,33) � 0.57, p � 0.57 for global efficiency;
F(2,33) � 1.26, p � 0.30 for modularity; Fig. 4B, left and
middle).

Figure 2. Pearson correlation coefficient between simulated and empirical FC for all 36 subjects. Simulated FC was obtained using
(A) average model parameters of control group with individual SC matrices; (B) control average SC matrix with individually optimized
model parameters obtained from parameter space explorations on the individual SC matrices; (C) control average SC matrix with
individually optimized model parameters obtained from parameter space explorations on the control average SC matrix; and (D)
individually optimized model parameters and individual SC matrices.
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Modeling parameters are associated with structural
network topology and cognitive performance

Next, we aimed to elucidate the relationship between
the individually optimized modeling parameters on the
one hand, and structural network topology and cognitive
performance on the other hand. Linear regression analysis
showed that global efficiency of the structural network
was significantly associated with the global scaling factor
(t � –4.42, p � 0.001, �2 � 0.34) and the median feed-
back inhibition control parameter across non-tumor re-
gions in brain tumor patients (corrected for region size; t �
–2.67, p � 0.014, �2 � 0.25). Specifically, higher values of
global efficiency were associated with lower values of
both modeling parameters, as illustrated in Fig. 5 (Pear-
son’s r � –0.67 and –0.45 for the global coupling param-
eter and the feedback inhibition control parameter,
respectively). No significant associations were found be-
tween the modeling parameters and modularity or partic-
ipation coefficient.

Furthermore, a significant negative association was
found between the median feedback inhibition control
parameter across tumor regions (corrected for region size)
and patients’ reaction time (t � �4.23, p � 0.001, �2 �
0.44) and sustained attention (t � �2.62, p � 0.018, �2 �
0.17; Fig. 6, left). In contrast, these associations were
absent in non-tumor regions (t � 1.27, p � 0.222, �2 �
0.07 for reaction time; t � 0.61, p � 0.549, �2 � 0.02 for
sustained attention; Fig. 6, right). However, as can be
seen in Fig. 6, the correlation between local inhibitory
connection strengths and sustained attention is mainly
driven by a few outlying observations, hence caution is
advised in interpreting this finding. No significant associ-
ations were found between individual modeling parame-
ters and working memory capacity or spatial span length.

Discussion
Applying The Virtual Brain to simulate large-scale brain

dynamics in brain tumor patients and healthy controls, we
have demonstrated (1) that using personalized virtual

Figure 3. Distributions of optimal modeling parameter values per group of median local inhibitory connection strengths across entire
brain in healthy controls, and across tumor regions in meningioma and glioma patients (A); median local inhibitory connection
strengths across entire brain in healthy controls, and across non-tumor regions in meningioma and glioma patients (B); median local
inhibitory connection strengths, corrected for region size, across entire brain in healthy controls, and across tumor regions in
meningioma and glioma patients (C); median local inhibitory connection strengths, corrected for region size, across entire brain in
healthy controls, and across non-tumor regions in meningioma and glioma patients (D); and global scaling parameter (E). CON,
healthy control participant; MEN, meningioma patient; GLI, glioma patient.
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brain models significantly improves prediction accuracy of
simulated functional connectivity; (2) that local inhibitory
connection weights can differentiate between regions di-
rectly affected by a brain tumor, regions more distant from a
brain tumor, and regions in a healthy brain; and (3) that
individually optimized model parameters correlate with
structural network topology and cognitive performance.

The importance of personalized virtual brain models
Individualized medicine is increasingly put forward as

an important means to advance medical care. In this
regard, TVB holds great promise, given its direct focus on
the simulation of subject-specific brain dynamics. Reli-
able prediction of patient-specific large-scale brain dy-

namics would open up the possibility to virtually lesion
structural connectomes, making computational models
unique predictive tools to investigate the impact of di-
verse structural connectivity alterations on brain function-
ing. That is, computational modeling would enable us to
investigate what types or extent of damage the brain can
withstand, and conversely, which kind of distortions can
be expected after brain lesions, including those purpose-
fully induced by surgery.

Therefore, the first aim of this study was to verify the
added value of personalized virtual brain models. Results
showed that individual optimization of the modeling pa-
rameters significantly increased the prediction accuracy

Figure 4. Distribution of cognitive performance measures (A) and graph theory metrics per group (B). All metrics are corrected for
important confounding variables (described in Methods) and transformed to z-scores using the mean and SD of the respective metric
in the group of control subjects. CON, healthy control participants; MEN, meningioma patients; GLI, glioma patients.
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Figure 5. Linear relationship between global efficiency on the one hand and global coupling parameter (left) and median feedback
inhibition control parameter across non-tumor regions in brain tumor patients (corrected for region size; right) on the other hand. Gray
line represents regression line with 95% confidence interval. Group membership is color-coded: CON, healthy control participants;
MEN, meningioma patients; GLI, glioma patients.

Figure 6. Linear relationship between reaction time (top) and sustained attention (bottom) and feedback inhibition control parameter
(corrected for region size) across tumor (left) and non-tumor (right) regions in meningioma and glioma patients. Gray line represents
regression line with 95% confidence interval.
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of individual functional connectivity. However, whether
model parameters were tuned on the individual SC ma-
trices or on the average SC matrix across all control
subjects did not yield a significant difference, corroborat-
ing findings in previous research (e.g., Jirsa et al., 2017).
Future computational modeling studies could use finer
and more elaborated parcellation schemes, for example
based on multimodal data (Glasser et al., 2016), to inves-
tigate whether individual traits can be captured through
tractography that have relevance for the prediction of
individual functional connectivity.

Predictors of individual biophysical model
parameters

In the next step, we investigated which factors are
associated with the individual model parameters, exam-
ining the relative contribution of the presence and type of
brain tumor, structural network topology, and cognitive
performance.

With regard to the effect of the presence and type of
brain tumor, results revealed no significant differences in
the feedback inhibition control parameter between tumor
regions and healthy regions/brains. However, this local
parameter is highly dependent on the size of the cortical
area that is modeled, and additional analyses showed that
regions affected by a tumor were on average larger than
non-tumor regions. After taking into account this con-
founding effect of region size, results showed median
local inhibitory connection strengths that are much lower
and more variable in tumor regions compared to healthy
regions/brains. Moreover, local inhibitory connection
strengths (controlled for region size) in non-tumor regions
were increased compared to healthy controls. Hence,
these results suggest that brain tumors have a distinct
focal and distant effect on the local inhibitory connection
weights, beyond what could be expected from their re-
gion size.

A previous computational modeling study also reported
alterations in inhibitory over excitatory coupling in chronic
stroke patients (Falcon et al., 2016). It is difficult, however,
to compare these results to those of our study, as Falcon
and colleagues did not correct for region size or differen-
tiate between affected and unaffected cortical areas. At
the micro-level, seminal studies by Sontheimer and col-
leagues (Buckingham et al., 2011; Sontheimer, 2008) have
demonstrated that gliomas cause excessive peritumoral
glutamate release; a major excitatory neurotransmitter in
the brain. This excessive release leads to local hyperex-
citability in the vicinity of the tumor, disturbing the delicate
excitation/inhibition balance, which in turn has been
found to cause epileptic activity in glioma patients. Future
research, using neuroimaging data with a much finer spa-
tial resolution, would be needed to investigate whether
these cellular alterations in excitation/inhibition balance
can be detected by the feedback inhibition control model
parameter in regions close to glioma tumors.

In contrast to previous computational modeling studies
that found increased global coupling values in chronic
stroke patients (Falcon et al., 2015, 2016), our results
revealed no significant differences in global coupling be-

tween glioma patients, meningioma patients, and healthy
controls.

We then turned to structural network properties and
measures of cognitive performance as possible predictors
of the individual biophysical model parameters. Initial de-
scriptive analyses of these metrics revealed no significant
differences in cognitive performance between brain tumor
patients and healthy controls. Although most patients with
slow-growing brain tumors exhibit normal clinical exami-
nations (Walker and Kaye, 2003), previous studies have
found slight cognitive deficits using extensive assess-
ments (Taphoorn and Klein, 2004). Regarding structural
network topology, results showed no significant group
differences in global efficiency and modularity, corrobo-
rating a previous study in which structural network inte-
gration and segregation properties were found to be
mostly preserved in brain tumor patients, compared to
healthy controls (Yu et al., 2016). We did, however, find a
significant increase in participation coefficient in glioma
patients compared to healthy controls. The observed
higher participation coefficients imply that links in the
structural network of glioma patients are on average more
uniformly distributed among distinct modules, which may
facilitate communication or integration of multiple types of
information (Power et al., 2013). Although this finding
warrants further investigation, we hypothesize that focal
brain damage might have stimulated rewiring of affected
nodes to neighboring communities to preserve function-
ality. This could then also have prevented alterations in
network segregation and integration.

Despite a lack of large group differences in cognitive
performance and structural network topology, several in-
teresting associations across groups were found between
these variables and the individually optimized biophysical
model parameters. First, results showed a strong negative
relation between global efficiency of the structural net-
work and global coupling, corroborating the finding of
Falcon et al. (2015) in stroke patients. This implies that
higher global coupling values are required in subjects
whose structural connectome is less efficiently organized,
to achieve the same amount of functional connectivity
between cortical areas. In addition, decreased global ef-
ficiency was found to be related to increased inhibition of
excitatory neuronal populations in regions distant from
the tumor, but not in those directly affected by the tumor.
Put differently, when brain tumor patients’ structural net-
work is less efficiently organized, it requires not only
higher global coupling but also more local inhibition in
regions that are not directly affected by the tumor, to
achieve the same amount of synchronization. This finding
demonstrates the widespread impact of brain tumors,
despite their relatively focal damage, and hence could be
termed “modeled diaschisis” as an extension to the con-
cepts of “connectional” and “connectomal” diaschisis
(Carrera and Tononi, 2014).

Furthermore, negative associations were found be-
tween local inhibitory connection weights in regions di-
rectly affected by a brain tumor and reaction time and
sustained attention. This implies that brain tumor patients
who performed worse on sustained attention and reaction
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time tasks on average had higher local inhibitory connec-
tion weights in regions directly affected by the tumor. This
finding is a bit counterintuitive, since the feedback inhibi-
tion control parameter was significantly lower in brain
tumor patients compared to healthy controls, which
would imply a higher cognitive performance in brain tumor
patients relative to healthy controls. However, as noted in
the Results, the correlation between local inhibitory con-
nection strength and especially sustained attention is
mainly driven by a few outlying observations; hence, cau-
tion is advised in interpreting this finding. Future research
using a larger sample size would be required to clarify this
association.

Limitations and future directions
In interpreting the results of this study, some important

limitations should be taken into consideration. First, the
sample size is rather small, limiting the statistical power of
the analyses. In addition, substantial intersubject variabil-
ity is present in both patient groups, caused by (among
other factors) heterogeneity in lesion etiology and size. It
is likely that these two factors interfere with separating
clinical groups based on computational model parame-
ters, cognitive performance, and structural network topol-
ogy. As more efforts are undertaken to make clinical
datasets publicly available, future studies would benefit
from using larger sample sizes.

Second, simulated and empirical functional connectiv-
ity were only moderately related after optimization of the
model parameters. Moreover, using individual structural
connectomes did not yield better predictions of individual
functional connectivity patterns compared to using a con-
trol average structural connectivity matrix. This is, how-
ever, a limitation of all current computational modeling
studies and a matter of much debate. A recent study by
Zimmermann et al. (2018) focused on this exact issue and
reported that subject-specificity of SC-FC is limited due
to the relatively small variability between subjects in SC
compared to the larger variability in FC. This limited vari-
ability in individual SC matrices could be due to the quality
of current individual SC matrices. Although great ad-
vances have been made in diffusion-weighted imaging
acquisitions and tractography algorithms, it is known that
DWI tractography underestimates the number of short-
distance streamlines in favor of long fiber tracks (Jeuris-
sen et al., 2017). Although in the current study we have
used a relatively new multi-shell DWI sequence with
b-values of up to 2800 s/mm2 and a state-of-the-art
processing pipeline, future studies could investigate
whether prediction accuracies of individual SC matrices
improve when using data of even better quality (using for
example 7T MRI scanners, with multiband sequences
and/or longer acquisition times). Another contributing fac-
tor to the low variability in individual SC matrices might be
the relatively coarse parcellation schemes currently ap-
plied in computational modeling studies. With increasing
computational power, future studies can test finer and
more elaborate parcellations, for example based on mul-
timodal data such as in Glasser et al. (2016) to investigate

whether individual traits can be captured through tractog-
raphy that have relevance for the prediction of individual
FC.

Related to this issue, the robustness of the obtained
results to different parameter space exploration criteria
has to be investigated. In this study, the link-wise Pearson
correlation between empirical and simulated FC was max-
imized. Atlhough this method is routinely employed in
large-scale modeling studies, other methods are worth
exploring. For example, similarity could be sought at the
modular level, maximizing the cross-modularity between
simulated and empirical functional connectivity (Diez
et al., 2015; Stramaglia et al., 2017). These approaches
have the additional advantage of reducing the depen-
dency on the parcellation choice.

As pointed out in the Introduction, the next step entails
prediction of postsurgical outcome. To this end, longitu-
dinal research is required to investigate whether individ-
ually optimized model parameters can reliably predict
postsurgical functional connectivity. This would be a ma-
jor step toward presurgical virtual exploration of different
neurosurgical approaches and identification of an optimal
surgical strategy.
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Guimerà R, Sales-Pardo M, Amaral LAN (2007) Classes of complex
networks defined by role-to-role connectivity profiles. Nat Phys
3:63–69. CrossRef

Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR (2013) Brain
organization into resting state networks emerges at criticality on a
model of the human connectome. Phys Rev Lett 110:178101.
CrossRef

Harrison BJ, Pujol J, Ortiz H, Fornito A, Pantelis C, Yücel M (2008)
Modulation of brain resting-state networks by sad mood induction.
PloS One 3:e1794. CrossRef

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved opti-
mization for the robust and accurate linear registration and motion
correction of brain images. NeuroImage 17:825–841. CrossRef

Jenkinson M, Smith S (2001) A global optimisation method for robust
affine registration of brain images. Med Image Anal 5:143–156.
CrossRef

Jeurissen B, Descoteaux M, Mori S, Leemans A (2017) Diffusion MRI
fiber tractography of the brain. NMR Biomed. https://doi.org/
10.1002/nbm.3785

Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014)
Multi-tissue constrained spherical deconvolution for improved
analysis of multi-shell diffusion MRI data. NeuroImage 103:411–
426. CrossRef

Jirsa VK, Proix T, Perdikis D, Woodman MM, Wang H, Gonzalez-
Martinez J, et al. (2017) The Virtual Epileptic Patient: individualized
whole-brain models of epilepsy spread. NeuroImage 145:377–388.
CrossRef

Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On
the nature of seizure dynamics. Brain 137:2210–2230. CrossRef

Kellner E, Dhital B, Kiselev VG, Reisert M (2016) Gibbs-ringing
artifact removal based on local subvoxel-shifts. Magn Reson Med
76:1574–1581. CrossRef

Latora V, Marchiori M (2001) Efficient behavior of small-world net-
works. Phys Rev Lett 87:198701. CrossRef

Marinazzo D, Pellicoro M, Wu G, Angelini L, Cortés JM, Stramaglia S
(2014) Information transfer and criticality in the Ising model on the
human connectome. PloS One 9:e93616. CrossRef

Nachev P, Coulthard E, Jäger HR, Kennard C, Husain M (2008)
Enantiomorphic normalization of focally lesioned brains. NeuroIm-
age 39:1215–1226. CrossRef

Oldfield RC (1971) The assessment and analysis of handedness: the
Edinburgh inventory. Neuropsychologia 9:97–113. Medline

Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE (2013)
Evidence for hubs in human functional brain networks. Neuron
79:1–29. CrossRef

Proix T, Bartolomei F, Guye M, Jirsa VK (2017) Individual brain
structure and modelling predict seizure propagation. Brain 140:
641–654. CrossRef

Rubinov M, Sporns O (2010) Complex network measures of brain
connectivity: Uses and interpretations. NeuroImage 52:1059–
1069. CrossRef

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J,
McIntosh AR, Jirsa VK (2013) The Virtual Brain: a simulator of
primate brain network dynamics. Front Neuroinform 7:10. Cross-
Ref

Schirner M, McIntosh AR, Jirsa V, Deco G, Ritter P (2018) Inferring
multi-scale neural mechanisms with brain network modelling. eLife
7:e28927. CrossRef

Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P (2015) An
automated pipeline for constructing personalised virtual brains
from multimodal neuroimaging data. NeuroImage 117:343–357.

Smith RE, Tournier J-D, Calamante F, Connelly A (2012)
Anatomically-constrained tractography: improved diffusion MRI
streamlines tractography through effective use of anatomical in-
formation. NeuroImage 62:1924–1938. CrossRef

Smith RE, Tournier J-D, Calamante F, Connelly A (2013) SIFT:
spherical-deconvolution informed filtering of tractograms. Neuro-
Image 67:298–312. CrossRef

Smith RE, Tournier J-D, Calamante F, Connelly A (2015) SIFT2:
Enabling dense quantitative assessment of brain white matter
connectivity using streamlines tractography. NeuroImage 119:
338–351. CrossRef

Smith SM (2002) Fast robust automated brain extraction. Hum Brain
Mapp 17:143–155. CrossRef

Sontheimer H (2008) A role for glutamate in growth and invasion of
primary brain tumors. J Neurochem. 105(2):287–295. CrossRef

Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, and Jacobs GA
(1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA:
Consulting Psychologists Press.

Stramaglia S, Pellicoro M, Angelini L, Amico E, Aerts H, Cortés JM,
et al. (2017) Ising model with conserved magnetization on the
human connectome: implications on the relation structure-
function in wakefulness and anesthesia. Chaos 27:47407. Cross-
Ref

Sunaert S (2006) Presurgical planning for tumor resectioning. J Magn
Reson Imag 23:887–905. CrossRef

New Research 14 of 15

May/June 2018, 5(3) e0083-18.2018 eNeuro.org

http://dx.doi.org/10.1523/JNEUROSCI.1091-13.2013
http://dx.doi.org/10.3389/fncom.2012.00068
http://dx.doi.org/10.1097/CCO.0000000000000126
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://dx.doi.org/10.1093/brain/awl300
http://dx.doi.org/10.1038/srep10532
http://dx.doi.org/10.1136/jnnp.74.7.901
http://dx.doi.org/10.1523/ENEURO.0158-15.2016
http://dx.doi.org/10.3389/fneur.2015.00228
http://dx.doi.org/10.1093/cercor/bhg087
http://dx.doi.org/10.1016/j.ncl.2007.07.002
http://dx.doi.org/10.1006/nimg.2000.0630
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1038/nature18933
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nphys489
http://dx.doi.org/10.1103/PhysRevLett.110.178101
http://dx.doi.org/10.1371/journal.pone.0001794
http://dx.doi.org/10.1016/S1053-8119(02)91132-8
http://dx.doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1002/nbm.3785
https://doi.org/10.1002/nbm.3785
http://dx.doi.org/10.1016/j.neuroimage.2014.07.061
http://dx.doi.org/10.1016/j.neuroimage.2016.04.049
http://dx.doi.org/10.1093/brain/awu133
http://dx.doi.org/10.1002/mrm.26054
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://dx.doi.org/10.1371/journal.pone.0093616
http://dx.doi.org/10.1016/j.neuroimage.2007.10.002
http://www.ncbi.nlm.nih.gov/pubmed/5146491
http://dx.doi.org/10.1016/j.neuron.2013.07.035
http://dx.doi.org/10.1093/brain/awx004
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.7554/eLife.28927
http://dx.doi.org/10.1016/j.neuroimage.2012.06.005
http://dx.doi.org/10.1016/j.neuroimage.2012.11.049
http://dx.doi.org/10.1016/j.neuroimage.2015.06.092
http://dx.doi.org/10.1002/hbm.10062
http://dx.doi.org/10.1111/j.1471-4159.2008.05301.x
http://dx.doi.org/10.1063/1.4978999
http://dx.doi.org/10.1063/1.4978999
http://dx.doi.org/10.1002/jmri.20582


Taphoorn MJB, Klein M (2004) Cognitive deficits in adult patients
with brain tumours. Lancet Neurol 3:159–168. CrossRef

Tharin S, Golby A (2007) Functional brain mapping and its applications to
neurosurgery. Neurosurgery 60:185–201. CrossRef Medline

Tieleman A, Deblaere K, Van Roost D, Van Damme O, Achten E
(2009) Preoperative fMRI in tumour surgery. Eur Radiol 19:2523–
2534. CrossRef

van der Ploeg HM (1982) De Zelf-Beoordelings Vragenlijst angst.
Tijdschrift Voor Psychiatrie 24:576–588. Retrieved from http://
tijdschriftvoorpsychiatrie.be/issues/368/articles/2438

Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers J, Fiere-
mans E (2016) Denoising of diffusion MRI using random matrix
theory. NeuroImage 142:394–406. CrossRef

Walker DG, Kaye AH (2003) Low grade glial neoplasms. J Clin
Neurosci 10:1–13. CrossRef

Yu Z, Tao L, Qian Z, Wu J, Liu H, Yu Y, et al. (2016) Altered brain
anatomical networks and disturbed connection density in brain
tumor patients revealed by diffusion tensor tractography. Int J
Comput Assist Radiol Surg 11:2007–2019. CrossRef

Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR
images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans Med Imag 20:
45–57. CrossRef

Zimmermann J, Griffiths J, Schirner M, Ritter P, McIntosh AR (2018)
Subject-specificity of the correlation between large-scale struc-
tural and functional connectivity. Netw Neurosci, in press.

New Research 15 of 15

May/June 2018, 5(3) e0083-18.2018 eNeuro.org

http://dx.doi.org/10.1016/S1474-4422(04)00680-5
http://dx.doi.org/10.1227/01.NEU.0000255386.95464.52
http://www.ncbi.nlm.nih.gov/pubmed/17415154
http://dx.doi.org/10.1007/s00330-009-1429-z
http://tijdschriftvoorpsychiatrie.be/issues/368/articles/2438
http://tijdschriftvoorpsychiatrie.be/issues/368/articles/2438
http://dx.doi.org/10.1016/j.neuroimage.2016.08.016
http://dx.doi.org/10.1016/S0967-5868(02)00261-8
http://dx.doi.org/10.1007/s11548-015-1330-y
http://dx.doi.org/10.1109/42.906424

	Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain
	Introduction
	Materials and Methods
	Participants
	MRI data acquisition
	MRI data preprocessing
	Preprocessing of T1-weighted anatomic MRI data
	Functional MRI preprocessing
	Diffusion-weighted MRI preprocessing

	Computational modeling
	Graph theory analysis
	Neuropsychological testing
	Accounting for Covariates of No Immediate Interest
	Statistical analyses
	Code accessibility

	Results
	Model fit of personalized virtual brain models
	Local model parameters altered in brain tumor patients
	Comparison of structural network topology and cognitive performance between brain tumor patients ...
	Modeling parameters are associated with structural network topology and cognitive performance

	Discussion
	The importance of personalized virtual brain models
	Predictors of individual biophysical model parameters
	Limitations and future directions


	References

