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Summary in English  
 
Globally, the electricity sector is responsible for a large share of greenhouse gas emissions, and is 
also in need of new infrastructure investments. An ongoing and accelerating transition to the 
generation of electricity from renewable energy sources can help mitigate the former, but the 
variabilities in supply can create further challenges in the security of energy supply. 
 
Demand response programs aim to induce flexibility in the patterns of electricity demand – through 
for instance the time-based pricing of electricity or through external controls on its usage at certain 
times of the day – such that this demand may be better aligned with the supply. In doing so, they 
can support the energy transition and help to address the energy security concerns. Further, in 
developing countries, their strategic implementation could potentially contribute to improving 
energy access and grid stability, while helping to leapfrog investments in traditional infrastructure. 
 
Such demand response programs have been successfully implemented in the industrial and 
commercial sectors of many countries. Their trials and rollouts in the residential sectors have 
however had mixed success, despite a large potential for flexibility. Existing literature suggests that 
this is because with households, there are a greater number of behavioral considerations that should 
be taken into account, and a number of non-price factors can also influence behavior in addition to 
pricing incentives. Studies have independently identified roles for enhanced information, 
supporting technologies, respondent demographics, and customer biases and / or preferences in 
shaping response.  
 
However, two gaps stand out in this range of literature. The first is that many of these non-price 
factors have been studied in isolation, independently of each other, and only in single-case contexts. 
The second gap is that most research and implementation has taken place in industrialized 
countries, even though the potential benefits of demand response are arguably even higher in the 
developing world. 
 
This thesis contributes towards addressing these two gaps through a multi-tool analysis of demand 
response in several countries. As a first step, it improves upon findings from existing experiences 
with demand response using a mix of two approaches. In the first of these, it collects several 
demand response programs from across countries and systematically analyzes them to determine 
how their success and failure was linked to shared characteristics in their design and in the local 
socio-economic environments – this offers global lessons on the types of enabling environments 
that should be in place to improve the likelihood of a successful implementation. Secondly, it slices 
into a single demand response program to determine how the varying levels of customer 
responsiveness relate to participants’ differences in attitudes and concerns. This indicates that even 
within a single demand response program, different communication and incentive strategies will 
be required among different segments of customers in order to first induce and then increase 
response. 
 
In a second step, the thesis then applies these lessons towards identifying designs for demand 
response that are likely to have broad customer acceptance. It does so in one developed country – 
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Belgium – and one developing country – India – to illustrate how the design and implementation 
requirements converge based on commonalities in enabling environments, and how they must vary 
in line with the local contexts and population characteristics. Through this, it also demonstrates that 
when respondents even within a single country are grouped into clusters based on their preferences, 
these differing preferences are correlated with different sets of shared characteristics, again 
highlighting that there’s a need for a range of approaches to induce flexibility among all the 
population groups. In this way, the second step of the thesis also corroborates and advances the 
lessons from the concluded studies while offering actionable solutions. 
 
By using analytical methods that haven’t previously been used in this field, applying lessons from 
existing experiences to design future initiatives, and studying the implications in two countries that 
are at different stages in their development, the thesis offers globally and locally relevant lessons 
for policymakers and researchers around the world. 
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Summary in Dutch  
 
De elektriciteitssector is wereldwijd verantwoordelijk voor een groot deel van de schadelijke 
uitstoot van broeikasgassen en investeringen in nieuwe infrastructuur voor de opwekking en het 
transport van elektriciteit zijn nodig. Een voortdurende en versnelde overgang naar de opwekking 
van elektriciteit uit hernieuwbare energiebronnen kan bijdragen tot een vermindering van de 
uitstoot van broeikasgassen. De fluctuaties in energievoorziening kunnen nieuwe uitdagingen met 
zich meebrengen voor de continuïteit van energievoorziening.   

Programma's om in te spelen op de vraag naar elektriciteit, zogenaamde vraagrespons-
programma’s zijn erop gericht om de vraag naar elektriciteit aanpasbaar te maken. Dit gebeurt 
bijvoorbeeld door middel van een op tijd gebaseerde prijsstelling voor elektriciteit of door externe 
controles op het gebruik ervan op bepaalde tijdstippen van de dag. De vraag wordt zo beter 
afgestemd op het aanbod. Op die manier kunnen de vraagrespons-programma’s de energietransitie 
ondersteunen en bijdragen tot het verminderen van de energieonzekerheid. Voorts kan de 
strategische uitvoering van deze maatregelen in ontwikkelingslanden mogelijk bijdragen tot een 
betere toegang tot energie en een stabieler netwerk. Tegelijkertijd helpen de investeringen om een 
sprong voorwaarts te maken en de infrastructuur te moderniseren.   

Dergelijke vraagrespons-programma's zijn met succes geïmplementeerd in zowel de industriële- 
als de commerciële sectoren van veel landen. De testfase en implementatie in de residentiële sector 
kent echter een wisselend succes, ondanks het grote potentieel van een flexibele vraag. De 
bestaande literatuur suggereert dat dit bij huishoudens te maken heeft met het groot aantal 
gedragsoverwegingen, alsook een aantal andere factoren die niet prijs gedreven zijn. Studies 
hebben onafhankelijk van elkaar de rol van verbeterde informatie, ondersteunende technologieën, 
de demografie van de respondent, en de voorkeur van de klant geïdentificeerd als belangrijke 
factoren bij het succes van dergelijke vraagrespons-programma’s.  

Er zijn echter twee lacunes in de literatuur. De eerste is dat veel van deze niet-prijsfactoren 
geïsoleerd, onafhankelijk van elkaar, en slechts in een enkele case studie zijn onderzocht. De 
tweede lacune is dat het grootste deel van het onderzoek en de implementatie heeft plaatsgevonden 
in de geïndustrialiseerde landen, ook al zijn de potentiële voordelen van vraagrespons in de 
ontwikkelingslanden aantoonbaar groter. 

Dit proefschrift draagt bij tot de literatuur door zich te richten op deze lacunes en gebruik te maken 
van een multi-tool analyse van de vraagrespons in verschillende landen. Vooreerst verbetert het de 
bestaande resultaten door de vraag op twee manieren te benaderen. In de eerste benadering worden 
verschillende vraagrespons-programma's uit verschillende landen verzameld en gezamenlijk 
geanalyseerd. Hieruit wordt vastgesteld hoe hun succes en falen in verband werd gebracht met 
gemeenschappelijke kenmerken zoals het ontwerp van het programma en de socio-economische 
situatie. Deze vaststellingen bieden wereldwijde lessen over welke faciliterende omgevingen 
gecreëerd moeten worden opdat de kans op een succesvolle implementatie kan worden verhoogd. 
De tweede benadering onderzoekt een specifiek vraagrespons-programma om te bepalen hoe de 
verschillende reacties van potentiële klanten zich verhouden tot de verschillen in houding en 
bezorgdheden van deze deelnemers. De resultaten geven aan dat zelfs binnen één vraagrespons-
programma verschillende communicatie- en prikkels nodig zullen zijn. De verschillende 
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strategieën moeten zich richten op de verschillende segmenten van klanten, om zo een flexibele 
vraag te bewerkstelligen en vervolgens te vergroten.  

Vervolgens past dit proefschrift in een tweede deel de inzichten toe op het identificeren van 
succesvolle ontwerpen van vraagrespons-programma’s. Dit deel bekijkt één ontwikkeld land – 
België – en één ontwikkelingsland – Indië – om te illustreren hoe de ontwerp- en 
implementatievereisten convergeren op basis van gemeenschappelijke kenmerken en hoe ze 
moeten variëren in functie van de lokale context en bevolkingskenmerken. Het toont ook aan dat 
wanneer respondenten, zelfs binnen één land, worden gegroepeerd in clusters op basis van hun 
voorkeuren, deze verschillende voorkeuren gecorreleerd zijn met diverse reeksen van 
gemeenschappelijke kenmerken. Dit benadrukt nogmaals dat er behoefte is aan verschillende 
benaderingen om flexibiliteit te bewerkstelligen. Op deze manier bevestigt het tweede deel van dit 
proefschrift het eerste deel, terwijl tegelijkertijd bruikbare oplossingen worden geboden. 

Door gebruik te maken van analytische methoden die niet eerder in deze context aangewend 
werden, inzichten toe te passen op het ontwerp van toekomstige initiatieven, en het onderzoeken 
van de implementatie in twee verschillende landen, biedt dit proefschrift op globaal en lokaal 
niveau relevante lessen voor beleidsmakers en onderzoekers. 
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Introduction            1. 
 
1.1 Demand Response 
 
While more research has historically been conducted upon the supply side of electricity – towards 
increasing production, improving the grid, changing the generation mix – the demand for electricity 
is an increasing area of focus. Bloomberg New Energy Finance (BNEF) projects that global 
electricity demand will increase by 57% above current levels by 2050 [1], indicating a need for 
improved demand side management (DSM) of electricity.  
 
Of the various DSM tools available, energy efficiency (EE) measures aim to help reduce demand 
from individual appliances or buildings, and to thereby reduce the growth in demand overall. 
Distributed generation and energy storage solutions can reduce the constant dependence on a grid, 
although their applications are limited since they are expensive and inefficient at present [2,3] – a 
discussion on these and other emerging DSM avenues is enclosed in Section 1.6. The third main 
tool in the DSM kit, demand response (DR), can shift the patterns of electricity demand in ways 
that can have multiple benefits. This DSM instrument is the one upon which this thesis focuses. 
 
1.1.1 Definitions 
 
DR programs aim to encourage shifts in the patterns of electricity demand in response to incentives, 
particularly during peak periods, as a means of balancing supply and demand. They do this mainly 
via either pricing-based mechanisms – such as time-of-use (ToU) pricing, critical peak pricing 
(CPP), real time pricing (RTP), and critical peak rebates (CPR) – or via incentive-based 
mechanisms such as direct load control programs1.  
 
ToU pricing usually involves two or three different rates that are offered at different times of the 
day, such as peak, partial peak, and off-peak – these time blocks and rates are pre-determined. 
Typically, lower rates are offered during the daytime off-peak hours when aggregate electricity 
demand is lower, and higher rates are offered during the evening peak hours, to encourage a shift 
away from peak hours [4]. 
 
Unlike ToU pricing, CPP is less regular and more event-based. CPP plans impose very high rates 
– up to 15 times the standard rates [5,6] – during critical peak events for a few hours on a small 
number of days per year. For the rest of the time, they maintain standard – or pre-determined ToU 
– rates. CPR is similar to CPP, except that the customer receives a refund for reducing consumption 
during the critical peak events [4]. 
 
Lastly among the pricing-based mechanisms, RTP programs generally imply pricing that varies on 
an hourly basis, determined by wholesale market prices and communicated to customers either the 
day before or in real-time [4,7]. While ToU pricing may be the easiest for customers to track due 

                                                             
1 These can be supplemented by moral norms, i.e. appeals to customers to behave in a manner that is consistent 
with their values and also beneficial to the electricity system 
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to its stable and predictable nature, utilities usually prefer CPP and RTP structures, since these offer 
them greater flexibility in managing their loads. 
 
Among the incentive-based programs, direct load control allows utilities to restrict appliance loads 
during peak hours in exchange for reduced electric bills. Individual control is the main advantage 
of such a program, because it can allow an aggregator to coordinate the DR across systems (see 
Section 1.6). For example, the DR of multiple systems can be activated sequentially over time to 
achieve a prolonged response, which would not be possible in an indirect control setup in which 
all systems react to a single control signal simultaneously. This makes direct load control a 
comparatively accurate and versatile method to provide different types of DR services [8].  
 
Most other options are available only to large (e.g. industrial) customers. With interruptible 
programs, curtailment options are integrated into retail tariffs that provide a discount for agreeing 
to reduce load during system contingencies. In demand bidding, customers offer bids to curtail 
based on wholesale market prices. In capacity market programs, customers offer load curtailments 
as system capacity to replace conventional generation or delivery resources [9]. These price- and 
incentive-based DR mechanisms can assist utilities with planning their load commitments at 
different timescales, as shown in Figure 1.1.  
 
 

Figure 1.1: DR in Electricity System Planning and Operations 

  
Source: United States Department of Energy [9] 

 
 
All the DR options explained above typically require enabling technological infrastructure, such as 
advanced metering that allows for time-based measurement of consumption and two-way 
communication with the utility. This can be aided by other systems such as programmable 
thermostats and local-area networks – as well as smart appliances and smart plugs – that can 
provide customers with better access to information on their consumption and costs, and that can 
make it easier for them to respond to the incentives offered. 
 
DR programs can be implemented in the industrial and commercial (I&C) as well as in the 
residential sectors. They have a longer history of implementation in the I&C sectors – although the 
number of initiatives in the residential sector is also increasing – and there are several documented 
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instances of such initiatives around the world. For example, the building materials supplier Hanson 
UK has rolled out DR across 29 quarries in Britain, in partnership with an aggregator, to deliver 2 
megawatts (MW) of flexibility [10]. In the United Stated (US), San Diego Gas & Electric has a 
program that uses load controls on heating, ventilation, and air conditioning (HVAC) systems in 
the commercial sector for up to four hours at a time, in exchange for annual credits on the 
customers’ bills [11]. Similarly, Pacific Gas & Electric has a range of DR programs available for 
small and medium businesses, including peak day pricing, automated DR, and base interruptible 
programs [12]. Even in India, a power utility launched an automated DR project in the capital city 
of Delhi among select I&C customers with a load in excess of 100 kW and covering a total 
connected load of 400 MW. The shed potential of this project was estimated at 20 MW [13].   
 
Consequently, an extensive body of literature on the DR experience in the I&C sectors already 
exists [14,15,16,17,18], and larger gaps remain in research into household DR. This thesis studies 
the feasibility of DR programs from the perspectives of residential customers, which are less 
understood – in studying this, it does not consider their benefits from the perspectives of the utility 
companies, a topic which is briefly discussed in Section 1.5. This scope of research within this 
thesis is further explained in Sections 1.2 and 1.3. 
 
1.1.2 Demand Response in Developed Countries 
 
The electricity sector in developed countries is faced with two medium- to long-term challenges. 
First, it is a significant contributor to climate change, with for instance nearly 30% of total 
greenhouse gases (GHG) emitted in the US coming from electricity production [19]. At the same 
time, the ageing grid infrastructure, combined with the ongoing transition to renewable sources 
[20] that are more variable in generation, presents a challenge for the security of energy supply. 
For instance, temporary outages in Belgium’s nuclear power plants led to a decline in generation 
of nearly 24% between 2010 and 2014, though the amounts have rebounded since then [21]. These 
challenges exist within the context of projected increases in electricity demand, driven by greater 
electrification of heating and transport. 
 
These projected increases in electricity demand are an important driver of the expected value in 
demand side flexibility. By introducing flexibility in consumption patterns, DR can also make it 
easier to integrate the variable generation from renewable sources into the mix. Further, by 
flattening the peaks in demand, it can reduce the need for generation from peaking power plants, 
which are typically more expensive and polluting [22,23]. For instance, in Ontario (Canada), 3% 
of the peak load arises in less than 15 hours during a year, but it costs more than 130 million US 
dollars annually to maintain the peak generation capacity [24]. 
 
The total potential for DR to shift consumption in 40 European countries alone has been estimated 
at 160 gigawatts (GW) by 2030, with around 40% of this potential coming from the residential 
sector [25]. The total theoretical DR potential for 34 European countries was separately assessed 
as being 52 GW (9.4% of cumulative peak load) split into residential (42%), industrial (31%) and 
commercial (27%) sectors [26], although the achievable potential is likely lower [27]. In the US, 
as of 2015, DR programs alone were estimated to have the potential of 31 GW, accounting for 6.6% 
of total peak demand of all system operators, and it was estimated that DR would probably shave 
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38,000 MW off the country’s peak demand in the year 2019 [28]. US estimates also indicate a 
national DR potential of up to 110 GW by 2030 [29]. A recent study on dynamic pricing found that 
across the US, CPP programs induced a drop in peak demand / usage by 13-20%, while CPR 
showed a drop in peak demand of 8-18% [30]. Barton et al. state that net peak demand in the United 
Kingdom (UK) can be reduced by 10 GW by 2050 through DR [31]. Given these potentials, smart 
grid programs, DR initiatives, and supporting policies & frameworks are being implemented in 
many countries at both the national and sub-national levels [32,33,34,35,36].   
 
1.1.3 Demand Response in Developing Countries 
 
Significant potential for DR also exists in the developing country context. Although these countries 
have not been large historical emitters of greenhouse gases, they face challenges similar to those 
faced by developed countries. In addition, they are dealing with other developmental issues. For 
instance, developing countries are witnessing a high level of urbanization [37], and urbanization 
has been found to have the largest effect on non-renewable energy demand, compared with other 
factors such as gross domestic product (GDP) or oil prices [38]. Many developing countries have 
still not been able to provide access to regular electricity for a 100% of their populations, due to a 
lack of infrastructure [39]. 
 
In India, for instance, distribution is a complex challenge; close to a quarter of India’s population 
still lacks access to the grid, and those who do have an intermittent supply of power despite a 
surplus generation capacity. The Indian government had in 2016 proposed developing 10,000 
renewable microgrids and mini-grids with a generative capacity of 500 MW [40]. However, 
research suggests that last-mile connectivity problems remain with a microgrid, and “right-sizing” 
a microgrid is very challenging, especially since almost all costs are fixed [41]; it was therefore 
difficult and expensive to compete with subsidized grid power. Consequently, the government is 
revising its rural electrification strategy, moving away from microgrids and towards providing rural 
customers with electricity access via solar home systems [42].  
 
The peak electricity savings from introducing residential DR in urban areas in such developing 
countries could be substantial enough to help integrate domestic rural-urban migrants or could be 
redirected to underserved areas. There is also an ongoing global debate on how developing 
countries can leapfrog traditional fossil fuel-intensive infrastructure [43,44] while pursuing their 
development objectives.  
 
The potential of DR, as a solution to the global electricity sector’s challenges, is visualized through 
the framework shown in Figure 1.2 
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Figure 1.2: DR as a Solution to Electricity System Challenges 

 
 
 
1.2 Research Background and Key Questions 
 
1.2.1 Theoretical Background and Gaps 
 
Although the potential of DR is well-recognized, and programs are being implemented in a range 
of countries, this thesis attempts to fill two gaps in existing knowledge. First, the main gap it focuses 
on is that the range of existing literature suggests that DR implementation, particularly in the 
residential sector, has had mixed success. Bartusch et al. [45] found that households did act on 
pricing signals by reducing demand in peak periods and shifting electricity consumption from peak 
to off-peak periods. A smart metering trial in Ireland [46] found that ToU tariffs reduced electricity 
usage, and that higher-consuming households tended to deliver greater reductions. A review of 30 
DR trials in the UK [47], as well as Faruqui and Sergici’s survey of 15 instances of DR 
implementation in the US [48], also found that households did respond to price changes. 
 
However, Gyamfi et al. [49] stated that a high fraction of households – particularly the richer ones 
– did not actually respond to price signals. Muratori et al. [50] found through a review that shifting 
consumption may not reduce demand and may instead lead to steeper rebound peaks. A deeper 
look into this lack of response suggested that consumers were less price-sensitive when they were 
more concerned about minimizing their inconvenience and discomfort, or about privacy and safety 
[51,52,53].  
 
Demographic factors were found to play a role in the perceived discomfort from being on direct 
load control programs [53]. Hall et al. [54] identified that households want more information to 
understand and justify the potential benefits of DR. Similarly, other studies [55,56] found that 
knowledge about consumption can maximize the effectiveness of time-varying pricing, and that 
the availability of enabling technology increases the effectiveness of such pricing. 
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A range of literature on DR programs also looks at the effectiveness of time-based pricing and load 
controls, either independently or in relation to the factors like information and comfort discussed 
above [57,58,59,60]2.  
 
All of these suggest that household preferences are not homogenous and can depend on a range of 
factors; Parrish et al. [61] reaffirm that despite the large evidence base, the findings can be complex 
and inconsistent, and that more research is needed. Allcott [62] offers additional evidence that non-
price interventions can substantially change energy consumption behavior. Gyamfi et al. [49] have 
also suggested greater use of economic behavior-based approaches to overcome some of the 
challenges to achieving effective voluntary demand reductions. This is particularly critical as 
surveys have demonstrated the potential public acceptability of DR at a significant scale [63]. 
 
The second gap this thesis considers is that DR programs do not exist in a meaningful way in the 
residential sectors of developing countries. The feasibility of DR has been extensively explored in 
China, with different studies looking at its market context [64], institutional barriers [65], and 
required policy reforms [66]. Energy management systems have been proposed for optimal DR 
scheduling in South Africa [67], while scenario modeling has been used to guide industrial DR in 
Nigeria [68]. In India, the regulations and political economy of the electricity market have been 
studied for a DR introduction [69], and dynamic pricing has been studied specifically in the context 
of solar micro-grids [70]. However, to the best of the author’s knowledge, there are no concrete 
policy designs proposed for household DR implementation in any developing country. 
 
1.2.2 Research Objective 
 
With these gaps in mind, the primary research question that this thesis addresses is: “What are the 
various non-price considerations that must be taken into account when designing residential DR 
programs, in order to improve the responsiveness of participating customers?” 
 
Specifically, through multiple streams of research, the thesis aims to answer the following four 
sub-questions: 
 
1. Are there any common structural features, or common underlying conditions for implementation, 
that determine the success of DR programs? In other words, should any homogenous factors be 
part of the ‘standard issue’ for future instances of DR implementation?  
 
2. Within DR programs, do variances in customer response relate to their attitudes? In other words, 
how can the communication around and structuring of DR programs be customized, given the 
heterogeneity in preferences, in order to elicit flexibility from all segments of participating 
customers? 
 
While these first two sub-questions aim to draw general lessons from past experiences, the 
remaining two sub-questions draw upon the answers to the first two, in an attempt to identify and 

                                                             
2 It may be noted however that studies have not typically looked at these factors in combination 
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propose specific opportunities for future implementation. In doing so, they also attempt to 
complement and validate the answers to the first two sub-questions. 
3. What specific DR programs can be designed, in line with the local conditions and customer 
preferences, in order to ensure maximal enrolment and response?  
 
4. Would these designs then vary across developed and developing countries? In other words, what 
features might be common – with lessons for global policymaking – and where might experiences 
diverge – with implications only for domestic policies? 
 
The working hypothesis underlying these questions is that customer responsiveness to DR 
programs is not merely a function of the pricing and incentive systems offered; rather, it also 
depends on a range of contextual and attitudinal factors that need to be taken into account when 
designing the DR programs. This hypothesis aligns with Jackson’s (2005) assertion that, “We are 
guided as much by what others around us say and do, and by the ‘rules of the game’ as we are by 
personal choice” [71]. 
 
1.3 Thesis Approach and Outline 
 
In constructing the research questions, and in considering the methodological & empirical novelty 
of the approaches & results, this doctoral thesis leans upon the codes of practice suggested by 
Sovacool et al. [72]. The paradigm it adopts is that of critical realism, which reconciles the objective 
and quantitative approaches of positivism with the constructed and quantitative approaches of 
interpretivism [72]. It places a hybrid emphasis on both, agency, or the role of individual behaviors, 
and structure, or the role of macro-social factors. In doing so, it implicitly assumes that choices are 
not just rational but are driven by habits, heuristics, and morals. This is consistent with Stern [73], 
who noted that a useful model of consumer behavior should account for values, attitudes, contextual 
factors, social influences, personal capabilities, and habits. 
 
In its analytical approach, the thesis takes an applied economics perspective, i.e. the application of 
economic theory and econometrics, to answer the research questions. By studying energy 
consumption behavior – particularly customers’ preferences, attitudes, and concerns – and other 
non-price factors that influence decision-making, it also positions itself adjacent to the field of 
behavioral economics, which studies the effects of psychological, emotional, moral, and other 
social and contextual factors on the economic decisions of individuals. Behavioral economics has 
arisen as a response to the limitations of rational choice theory, and largely relies on experimental 
and survey-based methods. It increases the explanatory power of economics through its more 
realistic psychological foundations [74,75,76], and in the field of energy, its applications are 
implicitly evident through the development of nudge-like non-price interventions that target 
conservation behavior [77].  
 
Within the applied economics perspective, the thesis attempts to answer the primary research 
question with a multi-pronged approach. It uses a mix of econometric techniques that have not 
previously been used in this context, thereby also demonstrating the feasibility of their application 
to this field. By taking such an approach, the thesis aims to contribute in the Louis Pasteur quadrant 
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of Figure 1.3, although subcomponents of the results may occasionally slip closer to the Thomas 
Edison quadrant.  
 
 

Figure 1.3: A Typology of Energy Social Science Research Contributions 

 
Source: Sovacool et al. [72] 

 
 
The thesis is set up as a collection of four independent research papers, which constitute the next 
four chapters. The second and third chapters map to the first and second sub-questions listed above, 
respectively, while the fourth and fifth chapters aim to jointly answer the third and fourth sub-
questions. The chapters are explained in the following sub-sections, while the methods employed 
are further discussed in Section 1.4. 
 
1.3.1 Chapter 2: A Meta-Analysis of Common Features 
 
Though the original intent of the underlying research paper was to serve as a traditional review of 
existing literature, Chapter 2 goes beyond merely a literature review. It conducts a meta-analysis – 
a powerful statistical assessment that combines the results of multiple studies in order to obtain 
more precise estimates of an effect (see Figure 1.4) – of several concluded DR trials and programs, 
using the technique of logistic regressions, to study whether their success or failure could be 
attributed to shared aspects of their design and / or the socio-economic contexts in which they were 
implemented. In this way, using a range of experiences from several countries, this chapter 
addresses the first research sub-question. 
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Figure 1.4: Robustness of Review Categories 

 
Source: Michigan State University [78] 

 
 

1.3.2 Chapter 3: A Quantile Analysis of Constituent Factors 
 
Chapter 3 attempts to answer the second research sub-question, on how variances in response relate 
to customers’ attitudes. For this, it relies upon the results of a DR field trial in the Belgian region 
of Flanders, together with responses of the same participating customers to surveys gauging their 
attitudes towards smart appliances. Combining these two, the chapter conducts a quantile 
regression analysis on the sample to study whether variances in responsiveness are related to 
variances in customers’ relative attitudes. Thus, whereas Chapter 2 aggregates the results of several 
trials to explore structural commonalities in customer response, Chapter 3 dissects a single trial to 
explore the agent-based factors that cause divergences in response. 
 
1.3.3 Chapter 4: Estimating Acceptability: Load Controls in a Developed Country 
 
Since the lessons from the field trial studied in Chapter 3 are drawn from a Belgian context, and 
given that Belgium will face challenges to the security of its electricity supply, due to a gradual 
transition away from its nuclear power plants and a greater medium-term reliance on imports [79],  
Chapter 4 focuses on how to design a DR program for Belgium. There is a strong market context 
for such a program, particularly with the creation of an energy aggregator and the gradual rollout 
of smart meters in the country. The emphasis of this DR program design is on the winter months – 
winter peaks in demand are on average 2000 MW higher than the summer peaks, in line with 
Belgium’s temperature elasticity of energy demand of -0.545 [80]. It uses the technique of a discrete 
choice experiment (DCE) to determine the monetary value that potential customers would attach 
to different aspects of such a DR program and to identify how this monetary valuation might be 
affected by customer characteristics. Based on these findings, it proposes potential DR structures 
that might be suited well to the Belgian structural and customer contexts. 
 
1.3.4 Chapter 5: Estimating Acceptability: Dynamic Pricing in a Developing Country 
 
The focus of Chapter 5 is on the second research gap, the lack of residential DR programs in 
developing countries. It thus uses the same approach of a DCE to determine potential DR structures 
that could be implemented in the capital region of Delhi in India. While Chapter 4 studies the 
flattening of winter peaks in a developed country, this chapter focuses on the summer peaks (see 
Figure 1.5) – and energy access issues – in a developing country. India was the preferred choice 
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for the fifth chapter given its potential for economic and emissions growth and their global impacts, 
its large proportion of population without regular access to electricity, and its opportunity to 
leapfrog traditional fossil fuel-intensive infrastructure. Further, a DR program would align well 
with the country’s smart grid and smart cities missions, and could be enabled by the rollout of smart 
meters across the major cities. An elaboration of these points is provided in the chapter itself. 
 
 

Figure 1.5: Temperature Elasticity Curve for Demand in Delhi 

 
Source: Power System Operation Corporation [81] 

 
 
Thus, Chapters 4 and 5 together aim to address research sub-questions 3 and 4. A contrast of the 
two chapter contexts is summarized in Table 1.1 below.  
 
 

Table 1.1: A Comparison of the Flemish and Delhi Contexts 
Feature Flanders Delhi region 
Seasonal peak Winter Summer 
Peak 9000 MW 7000 MW 
Suggested DR structure Incentive-based Pricing-based 
Total population 7.8 million 26 million 
Target population All Upper-middle & upper income 

 
 
1.4 Discussion on Methods 
 
As illustrated in Section 1.3, the thesis uses a mix of research methods in attempting to answer its 
primary research question. These methods were selected after due consideration of the range of 
analytical approaches available. The following sub-sections provide a general explanation of these 
methods and critically discuss the benefits and limitations of using them instead of the alternatives. 
The specifications of the methods are further detailed in the subsequent chapters in which they are 
used. 
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In critically discussing these methods, it is useful to note that their designs and applications have 
implications for the validity of both, the approaches and the findings. On the validity of the 
approaches in particular, one area for caution can arise when the researcher isn’t assumed to be 
looking to test a hypothesis, but is running a model to look for statistically significant relationships; 
this is sometimes called exercising researcher degrees of freedom. However, since “using the data 
to guide the analysis is almost as dangerous as not doing so,”3 and since exploratory 
experimentation is encouraged as a means for expanding the boundaries of knowledge, a good way 
to address this concern is to disclose that the study is exploratory, and replicate the analysis in the 
future with a hypothesis and using a new sample [82,83,84,85]. Studies have also estimated that 
the effect of exercising this freedom seems to be weak relative to the real effect sizes being 
measured, and thus does not greatly alter the results drawn from the research [84]. In any case, 
most of the analysis in this thesis is exploratory and observational, and there is no strong prior 
hypothesis to which the research is trying to fit the results. Further, the thesis does not try to assume 
that effects are fully generalizable, given the variances in the DR structures and samples, and 
recommends in every instance that the findings be confirmed with replication studies [86]. 
 
Regarding the validity of the findings, it is useful to distinguish between three types – internal, 
external, and ecological. Internal validity, a measure of the soundness of the research, is the extent 
to which a piece of evidence supports a claim about cause and effect, within the context of a 
particular study. It is determined by how well a study can rule out alternative explanations for its 
findings. External validity on the other hand is the extent to which the results of a study can be 
generalized to and across other situations [87]. In research designs, there may be a trade-off 
between internal and external validity: attempts to increase internal validity may limit the 
generalizability of the findings, and vice versa. On the other hand, the ecological validity of a study 
relates to whether the methods and setting of the study accurately approximate the context of the 
real world that is being examined. It is closely related to external validity, though the two are 
independent [88]. Compared with external validity, ecological validity is considered less important 
to the overall validity of a study [89]. The findings arising from this thesis may be viewed as having 
low ecological validity – the DR programs analyzed were not necessarily feasible for 
implementation at a population scale, and the choice experiments were conducted in hypothetical 
settings. However, various statistical tests across the chapters help to confirm the internal validity 
of the analyses, and as noted above, the thesis exercises caution in claiming a high degree of 
external validity without further confirmatory research. 
 
1.4.1 Meta-Analyses 
 
While individual studies can reach conclusions within the specific environments in which they are 
analyzed, their specificity can make it difficult to extrapolate findings. For a more comprehensive 
understanding of results across different environments and greater external validity, it is important 
to combine and compare the insights generated from across studies and avoid drawing conclusions 
from a single source. One way to improve the decisions made from a body of evidence is to improve 
the ways in which research studies are synthesized [90]. Such syntheses commonly take the form 

                                                             
3 Prof. Frank Harrell, Vanderbilt University, Department of Biostatistics 
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of narrative reviews, systematic reviews, and meta-analyses. A hierarchy of these methods, in order 
of methodological rigor, is shown in Figure 1.6. 
 
 

Figure 1.6: Hierarchy of Synthesis Methods 
 

 
Source: Sovacool et al. [72] 

 
 
Narrative reviews provide an exploratory evaluation of the literature in a particular area. They can 
however be prone to researcher bias and can selectively miss research. Further, they tend to place 
excessive reliance on individual studies, and pay insufficient attention to methodological quality 
[72]. 
 
Systematic reviews use systematic literature searches, enabling the retrieval of the whole body of 
evidence pertaining to a specific question [91]. Their standardized methods for search, evaluation, 
and selection of primary studies enable reproducibility and an objective stance. Individual primary 
studies undergo a proper evaluation for internal validity, together with the identification of the risk 
for bias [91]. 
 
Meta-analyses statistically combine evidence from multiple studies with an aim to identify either 
common effects or common causes for variation on specific research questions; they are often 
beneficial for overcoming the subjectivity of narrative reviews [92,93] and can help avoid 
Simpson’s paradox – in which a consistent effect in underlying studies disappears or reverses when 
studies are combined – particularly if the studies are weighted by sample size [86,94,95].  
 
Within meta-analytical approaches, a meta-regression is one possible way of accounting for 
systematic differences in the size of the effect or outcome, by regressing it on multiple study 
characteristics – it is preferred over other techniques such as ANOVA, and can help avoid having 
to conduct multiple significance tests [90]. When conducting meta-regressions, it is advisable to 
weigh large trials most heavily and to use hierarchical regressions [90,86]. It is also advisable to 
include sensitivity analyses to determine the robustness of the results, for instance by presenting 
the results when some studies are removed from the analysis and checking for effect heterogeneity 
[96]. 
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The main benefit of a meta-analysis is that it increases statistical power over other forms of review 
through an increased sample size, and offers a pooled and improved estimate of effects with 
narrower confidence intervals for statistical inference [86,91]. By pooling many studies and 
increasing the effective sample size, more variables and outcomes can be examined [96]. Further, 
it resolves uncertainty when studies disagree, through an objective appraisal [86]. 
 
Meta-analyses have also been criticized in literature, although much of the criticism can be 
attributed to poor design and execution. Some of the potential pitfalls of a meta-analysis, and ways 
to sidestep them, are listed below. 
 
1. There is a risk of heterogeneity in the underlying studies, in terms of sample, methods, and 
results, indicating that the studies shouldn’t be grouped together [86,91]. However, statistical tests 
can be used to determine the significance of heterogeneity among studies. For instance, Cochran’s 
Q test indicates the presence versus the absence of effect heterogeneity, and the I2 value describes 
the percentage of total variation across studies that is due to heterogeneity rather than chance 
[97,98].  
 
2. Similarly, the decision as to which studies should be included is likened to mixing apples and 
oranges. However, meta-analyses typically address broader questions than individual studies. In 
illustrative terms, therefore, a meta-analysis may be thought of as asking a question about fruit in 
general, for which both apples and oranges contribute valuable information [91,99]. 
 
3. There is a concern about the risk of including low quality studies and excluding important ones. 
However, this is a design issue; it can be avoided by having an explicit set of inclusion and 
exclusion criteria and these should include criteria on the quality of the study [86,99]. 
 
4. Since published studies are more likely to be included in a meta-analysis than unpublished ones, 
there is a concern that a meta-analysis may mis-estimate the true effect size. However, care can be 
taken by the researcher to look for unpublished studies [86,99]. Although a meta-analysis can rely 
on funnel plots – visual aids for detecting publication bias or systematic heterogeneity [100] – they 
can be misleading and their appearances can change significantly, depending on the scale on the y-
axis [96,101,102], and dedicated searches for unpublished literature may work just as well. 
 
5. Because meta-analyses rely on summary data rather than individual data, one number may be 
over-simplistic for summarizing an entire research field. However, Borenstein et al. clarify that the 
goal of a meta-analysis is to synthesize the effect sizes, and not simply to report a summary effect 
[86,99]. 
 
6. Finally, meta-analyses that rely on OLS regressions can suffer from heteroscedasticity, 
multicollinearity, and autocorrelation. Nelson and Kennedy [103] examine the current state of 
meta-analyses in environmental economics and note that heteroscedasticity is particularly likely to 
be a concern. However, heteroscedasticity is not a concern in logistic regressions with a binary-
form dependent variable, where the residuals are distributed between two points when plotted 
against the fitted values of the model. 
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Borenstein et al. further state that qualitative reviews can face many of the same problems as meta-
analyses. The key advantage of the systematic approach of a meta-analysis is that all steps are more 
clearly described and the process is transparent [99]. 
 
1.4.2 Quantile Regressions 
 
When conducting regression analyses, the standard ordinary least squares (OLS) model is 
commonly used because of its traditional advantages: it is easy to use and analyze, it has wide 
applicability, and it yields estimates that are unconditional. At the same time however, it has a 
number of inherent limitations. First, it summarizes the response across an entire dataset – thus 
assuming that one model is appropriate for the whole data – and cannot be customized to noncentral 
locations, which are often more interesting in a sample distribution than the central locations. 
Second, the model assumptions are often not realistic; for instance, sample distributions are often 
not normal and / or homoscedastic. Third, the OLS model can be heavily influenced by the presence 
of a few outliers in the sample [104]. 
 
At least one of these limitations – the assumptions of normality – can be addressed through other 
mean-based regression techniques, such as non-parametric regressions and generalized least 
squares (GLS). GLS, a generalization of OLS, is a technique for estimating the unknown 
parameters in a linear regression model when there is a certain degree of correlation or 
heteroscedasticity in the residuals [105,106]. The category of non-parametric regressions on the 
other hand does not assume a linear relationship between the variables, and the predictor coefficient 
does not take a predetermined form; it is constructed based on information derived from the data. 
To achieve this, however, it requires much larger sample sizes than parametric regressions [107]. 
Further, these alternatives do not address the other limitations of OLS. 
 
Conditional quantile modeling, or quantile regression (QR), replaces the least squares estimation 
of OLS with least absolute distance estimation, to estimate the relationships between a response 
and a set of covariates for specific quantiles (or percentiles) of the response distribution. While the 
linear regression model specifies the change in the conditional mean of the dependent variable, 
subject to a change in the covariates, the QR model specifies changes in its conditional quantile – 
where the 50th quantile is the median [104].  
 
The main benefit of this is that since multiple quantiles can be modeled, it is possible to get a more 
complete understanding of the response distribution, and the method is more robust than OLS. 
Further, since outliers can be isolated into the top or bottom quantiles, QR estimates are robust 
against them [104,108]. Quantile regression also makes fewer assumptions about the normality of 
the distribution. As such, it is unaffected by heteroscedasticity: Varyiam et al. point out that the 
quantile regression estimates have the capacity to capture the slope coefficients at different points 
in the distribution, which is particularly useful if the underlying data exhibits heteroscedasticity 
[109]. In the context of this thesis, a further advantage of QR is that it is better suited to obtaining 
the disaggregated results that are more appropriate for further understanding individual preferences 
and for devising tailored strategies to increase response in different customer segments. 
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The main limitation of QR is that is it more complicated to implement than OLS, and can be less 
efficient, implying either a need for a larger sample size or less precise estimates. Further, the most 
prevalent QR framework – used in this thesis – is based on the conditional quantile regression 
method, used to assess the impact of a covariate on the outcome conditional upon specific values 
of other covariates. When the conditional effects are heterogeneous and vary over values of other 
covariates, the definition of the unconditional quantile effect deviates from the definition of the 
effects on the conditional quantiles. In some cases, conditional quantile regression may yield results 
that are not generalizable in a policy context. Unconditional quantile regression is still an active 
research field, however, and is not significantly advantageous over conditional quantile regression 
for smaller datasets, particularly as the estimates from the two vary only under certain conditions, 
and the effects of the former must be interpreted in the context of a target population [110]. 
 
1.4.3 Discrete Choice Experiments 
 
Stated preference methods are a class of analytical approaches that are used to infer economic 
values of pre-market goods and services by hypothetically asking individuals to “state” their 
preferences for purchasing or consuming those goods / services [111,112]. The most common 
stated preference approaches are contingent valuations, conjoint analyses, and discrete choice 
experiments, discussed below. Other approaches include contingent ranking, which poses a heavy 
cognitive burden and introduces a lot of “noise,” and contingent rating, which is difficult to 
transform into utilities across respondents [113]. MaxDiff assumes that respondents evaluate all 
pairs of items within a set and choose the pair that reflects the maximum difference in preference 
or importance, and is roughly comparable to a one-attribute, multi-level conjoint exercise 
[114,115]. 
 
DCEs are a stated preference method that rely on the assumption that choices between alternative 
options reflect the utility that accrues from those alternatives, as derived from random utility theory 
[116]. They are used to explore the feasibility of introducing products that do not exist in the market 
and thus cannot be valued by pricing signals and revealed preferences. A DCE offers respondents 
several choice sets with a number of alternatives in each choice set, where each alternative is a 
combination of levels of different attributes. For each choice set, respondents indicate the 
alternative they like better. Based on the results of repeated choice exercises, economic values of 
the attributes, and thereby alternatives, are indirectly inferred. The most statistically efficient choice 
experiment design is determined by means of the Bayesian D-optimality criterion [117]. Such a 
design guarantees that all parameters can be estimated with maximal precision. 
 
DCEs offer the following benefits: 
 
1. Unlike revealed preference methods, they allow for the consideration of a range of non-market 
attributes, and the valuation of pre-market goods and / or services.  
 
2. They are much more cost-effective than randomized control trials, although they perhaps yield 
less accurate findings. 
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3. Compared with other stated preference methods, the results from DCEs are stronger and more 
useful, partly due to greater stability in preferences and lower compliance bias, and the trade-offs 
are easier to measure [118,119,120]. 
 
4. Similarly, they offer better control over variables, and consequently a lower likelihood of 
confounding. They are also more consistent with economic demand theory and real choice behavior 
[121,122]. 
 
On the third point, empirical research indicates that choice experiments may be more appropriate 
than contingent valuation (CV) methods, in which respondents are asked directly about their 
willingness to pay [123]. For instance, Mogas et al. compare DCEs with CVs in a study of 
afforestation programs in Spain and conclude that a superior estimation efficiency and explanation 
provided by the DCE indicates its greater capacity to allow an understanding of the choices of 
respondents [120]. A review of stated preference methods by the UK’s Competition Commission 
finds that while CVs can be more cost- and time-efficient, DCEs can value individual attributes, 
have a lower compliance bias, exhibit a greater stability in preferences, and allow for the 
simultaneous estimation of marginal effects and attribute values [124]. 
 
Along similar lines, Hanley et al. state that relative to CV, DCEs make it easier to disaggregate 
values for a product into the attribute values, avoid the part-whole bias4 problem of CV, and have 
a lower risk of acquiescence bias [125]. However, they caution that the valuation in DCEs – like 
CV – is sensitive to the information set included in them, and that it may be erroneous to assume 
that the value of a product is simply the sum total of the values of the attributes, since there may be 
other important attributes that were omitted from the design. Jin et al. conclude that statistical 
estimation is easier via CV, but reiterate that although DCEs are more challenging to design and 
analyze appropriately, they offer the opportunity to derive a deeper understanding of the underlying 
attributes [126]. Aside from supporting these findings, Hanley et al. found that valid response rates 
were higher in CV. 
 
On the fourth point above, although DCEs have often been considered as a form of conjoint analysis 
(CA) – survey-based statistical techniques that help determine how different attributes are valued 
– Louviere et al. emphasize that the two are not the same. Traditional CA is based on conjoint 
measurement; it is a scaling exercise where error components are largely ad hoc and lack clear 
interpretations, while DCEs are based on random utility theory, which is associated with error 
components whose properties play key roles in parameter estimates. In CA, respondents evaluate 
the product configurations independently of each other. Typically, the evaluation question is an 
attractiveness rating scale. In discrete choice, respondents simultaneously consider multiple 
profiles through choice sets. Louviere et al. show that CA is inconsistent with economic demand 
theory, lacks a sound relationship with real choice behavior, and is subject to several logical 
inconsistencies, unlike DCEs [121,127]. 
 
 

                                                             
4 Where the sum of valuations placed by an individual on the parts of a good is larger than the valuation placed 
on the good as a whole, indicating the difficulty of identifying the value attached to one component embedded 
in a collection of other components 
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DCEs however also face the following limitations: 
 
1. They suffer from hypothetical bias. While they are increasingly used in various fields, they 
remain controversial because of their hypothetical nature and the validity of their results [122]. 
 
2. Relatedly, there is a potential for response bias, arising from the cognitive burden of evaluating 
several multi-attribute alternatives, and from other biases such as social acceptance and 
confirmation. However, the potential for hypothetical and response bias can be mitigated by the 
careful design and framing of such experiments. 
 
3. The results of DCEs, in the context of valuing services, may be skewed by the responses of 
people who are relatively better situated to benefit from these services. For instance, in valuing 
demand response programs, the results may be affected by the positive responses of people whose 
electricity usage habits are already aligned with the proposed DR structures. 
 
4. They are more challenging to design and analyze appropriately compared with other stated 
preference methods. 
 
A brief review of the evaluations of DCEs found mixed to positive results. Bekker-Grob et al. found 
that healthcare choices were correctly predicted by DCEs at an aggregate level, if scale and 
preference heterogeneity were taken into account, and concluded that DCEs are able to predict real-
world choices at least in the context of their study [128]. Thoresen and Vattø validated a discrete 
choice model of labor supply – used to analyze hypothetical tax reforms – using panel data and 
found that the choice model performs well [129]. Haghani and Sarvi found a high degree of 
resemblance between parameter estimate patterns and simulated probabilities obtained using stated 
and revealed preference approaches, although differences were noted in the scale of the estimates, 
and concluded that at least in certain contexts, choice elicitation outcomes are reasonably consistent 
between the hypothetical and realistic settings [130]. 
 
Other studies have found biases in the results of stated preference approaches in general. Wolf and 
Bricka showed that household travel surveys conducted in the United States underreported trips by 
up to 35% when compared to GPS data [131]. In another comparison with GPS data, Stopher et al. 
found that 25% more trips were over-reported than trips that were under-reported regarding their 
actual travel time [132]. 
 
This again reinforces that while there is a risk of stated preference exercises such as choice 
experiments having lower levels of accuracy, such risk can be avoided through the careful and 
context-specific design and conduct of the exercise. 
 
1.5 The Economics of Demand Response Programs 
 
DR programs involve significant investments that are expected to be in place for years, and that 
must meet many goals. To establish a successful DR program, utilities should consider several 
important elements, including costs, reliability, platform longevity and customer satisfaction. 
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Although this thesis is focused on household responsiveness towards DR – which is comparatively 
under-researched – and though the feasibility of such programs has been extensively studied, this 
section provides summary results of existing research into the feasibility and challenges of DR 
from the system side, to better contextualize the thesis. 
 
Among cost-benefit analyses, Bradley et al. review eight existing studies and policy documents, 
using modeling to understand the economic case for DR in the UK [133]. The review identifies 
eight core benefits of DR, including initial and running costs to participants and to the system, and 
takes into account average participation rates. Broadly, initial system costs include metering system 
upgrades, utility equipment and billing system upgrades, and customer education, while running 
costs include program management, marketing, payments to customers, program evaluation, and 
metering. They find that electricity savings generate significant DR related financial benefits, of 
about £157 million. Added together with non-DR benefits, average annual benefits associated with 
the introduction of smart metering are £758 million, compared with annual costs of £567 million. 
Their analysis only considers DR benefits directly associated with the introduction of smart 
metering. Other DR benefits, such as balancing for wind generation, are considered separately and 
further improve the business case for DR [133]. 
 
A cost-benefit analysis of smart meters in Flanders similarly suggested a positive business case for 
its rollout, yielding a net present value of €336 million over a 20-year discount period, even without 
taking the potential for peak demand reductions into account [134]. Similarly, Safdar et al. take a 
customer perspective to find that DR costs are much less than the interruption costs paid by the 
utility company, and conclude that DR programs are in the best interests of all stakeholders [135]. 
 
AmerEn, an American power utility, conducted a cost-benefit analysis of rolling out advanced 
metering infrastructure (AMI) in Illinois, including DR impacts, and found a positive net present 
value of $406 million over a 20-year term [136]. This represented the value to its customers, and 
did not reflect substantial societal benefits such as safety, employment creation, convenience, and 
environmental benefits. 
 
Faruqui et al. [137] had also conducted additional analyses upon existing research and estimated 
the cost of installing smart meters in the European Union (EU) to be €51 billion. They had further 
estimated that operational savings would be worth between €26 and 41 billion, leaving a gap of 
€10–25 billion between benefits and costs. However, they expected that the present value of savings 
in peaking infrastructure could be an additional €14 to 67 billion, depending on whether customer 
adoption of dynamic tariffs is at the 20% or 80% levels. 
 
A separate industry report found that DR programs can reduce utilities' peak demand an average of 
10%, and can help utility customers reduce their energy costs. The report noted that in 2015, DR 
and EE programs combined saved about 200 billion kilowatt-hours, more than 5% of retail electric 
sales in the US. In some states, the savings from these programs exceeded 10% of retail electric 
sales and could reach more than 20% by 2020. In estimating this, however, the report looked at 
only the 28 utilities that reported potential DR savings of 200 megawatts or more, representing 
64% of the potential DR savings reported to the US Energy Information Administration [138]. 
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Most cost-benefit analyses can have certain limitations, however. Bradley et al. caution that since 
expected customer savings can sometimes be low, there may be few monetary incentives to 
participate in DR for many individuals. They further note that existing studies tend to consider the 
size of investments and returns of certain forms of DR in isolation and do not consider economic 
welfare effects [133]. Good finds that existing techno-economic approaches for flexible power 
systems modelling do not recognize that demand response, where it affects the comfort of the end-
user, is heavily influenced by the biases and preferences of consumers, with potentially strong 
regulatory implications such as erroneously increasing the overall system cost of eliciting demand 
response [139]. 
 
Along the lines of the previous point, a survey of electricity retailers and operators in Finland found 
that a significant barrier to the utilization of DR was the small economic benefits, and the high 
costs of the required technologies and systems. A second barrier was the lack of standardized 
interfaces between different data systems. Retailers feared that controls by other actors would 
increase their imbalances and expressed concern that customers and aggregators could optimize 
their DR after the spot prices are published, whereas retailers would need to estimate the flexibility 
in advance during bidding process. In this way, DR would cause volume and price risks only to 
retailers [140]. 
 
This research thus notes that the benefits of DR may not always accrue to the parties incurring the 
costs: program design or public policy may need to be tailored to offer options favorable to both 
utility and customer. Future initiatives may consider deeper research into these areas. 
 
1.6 Emerging Complementary Demand-Side-Management Initiatives 
 
A number of parallel developments in the electricity markets are expected to either serve as 
complements to DR programs (and to each other), and / or impact the way such programs will need 
to be structured in the future5. Although these developments are not incorporated in the analyses 
undertaken in this thesis, due to their limited levels of market penetration and research scope 
constraints, some of them are discussed in the sub-sections below. 
 
1.6.1 Increasing Penetration of Renewables and Rooftop Solar Photovoltaic Panels 
 
One of the most common issues surrounding the rollout of DR is exploring how electricity demand 
and flexibility will be affected by the increasing grid penetration of renewables, particularly as 
customers start producing their own electricity through means such as rooftop solar photovoltaic 
(PV) panels. At penetrations beyond 30%, integrating RE into the grid becomes more challenging 
due to the limited alignment between generation and electricity demand, as well as the inflexibility 
of conventional generators to ramp up and down to balance the system. Without a sufficiently 
flexible grid, thermal plants cannot reduce output, and RE generation will need to be curtailed, 
which can add to system costs. Alternatively, prolonged periods of over-generation can result in 
negative pricing in wholesale markets. As curtailment increases, RE offsets less fossil generation, 

                                                             
5 They are not expected to serve as substitutes for DR, however, as they serve different functions in the field of 
energy management 
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decreasing its value. DR (and storage) can reduce curtailment and facilitate higher penetrations of 
RE on the grid [141].  
 
The increasing penetration of rooftop solar PV in particular could have significant implications for 
how DR programs are structured in the medium- to long-term, as load patterns may shift with 
increasing penetration. For instance, households may prefer to consume the electricity they produce 
during the day, meaning that they wouldn’t need further incentives to shift their consumption 
patterns. Without effective solutions to store daytime production, however, the peak load drawn 
from the grid would still be during the non-daylight hours, even though this load might be lower 
and the ability for further flexibility may be limited.  
 
Viana et al. analyzed price-based DR and distributed PV generation for developing an approach to 
model them as energy resources for utility planning. They found that the highest levels of DR and 
PV generation in a group of responsive residential consumers resulted in a 6.3% reduction in 
substation peak demand, a 9.3% reduction in daily energy consumption, and a 13.2% reduction in 
energy losses in lines and transformers compared to the base case with flat tariff, without DR and 
PV generation. The highest average bill savings of the sample compared to the base case was 
35.2%, indicating that DR and PV generation can deliver significant benefits if they are deployed 
in a complementary manner [142]. 
 
1.6.2 Behind-the-Meter Storage 
 
While DR and storage can facilitate higher penetrations of RE on the grid, many storage 
technologies are still costly and somewhat inefficient, because only 70–85% of stored energy is 
recoverable [141]. Storage however has the flexibility to be deployed at different points: from 
onsite at a customer’s location (behind-the-meter or BTM), to grid-scale.  
 
BTM storage has the ability to both decrease and increase demand, responding to over- and under-
generation scenarios [143], and is gaining popularity as a comparatively cost-effective solution to 
reduce peaks and manage demand charges. When delivered via BTM storage, DR can play an even 
more significant role in improving reliability and reducing system costs [143], and the two can add 
up to more than the sum of their parts.  
 
First, reductions in demand can occur nearly instantaneously, eliminating the need for utilities to 
declare DR events hours or a full day ahead, and enabling a faster and more effective response to 
anomalous conditions occurring on the grid. Secondly, batteries are fast and reliable resources, but 
expensive compared to the technology to control HVAC systems, production equipment, and other 
energy-intensive loads. But these load control systems, while relatively cheap, are less flexible and 
fast-reacting than batteries, and limited by the fact that sometimes they can’t be turned off. 
Combining the two in an integrated package can harness the best qualities of each resource [144]. 
 
The European grid-level and BTM storage market, across sectors, was estimated in 2017 at 600 
megawatt-hours, up 50% over the previous year [145] but still a very small fraction of overall 
electricity consumption. The US energy storage market is expected to grow to 2.5 GW by 2022, 
half of which will be behind the meter [146]. In Australia – among the most decentralized electricity 
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markets in the world – over 40% of generation capacity may reside BTM by 2030, and the trend 
towards self-generation, followed by distributed storage, is likely to become profitable in other 
parts of the world [147]. 
 
1.6.3 Electric Vehicles and Vehicle-to-Grid Charging 
 
There were over 3 million electric vehicles (EVs) globally in 2018, an increase of over 50% since 
2016 [148], and in several countries there is increasing political support for them. Global electricity 
consumption from EVs is expected to rise to 1800 terawatt-hours (TWh) in 2040 from 6 TWh in 
2016, and without demand-side flexibility this will mean a significant increase in peak time 
consumption, with a significant impact on the power system [149].  
 
On the other hand, with vehicle-to-grid (V2G) technologies, these EVs can also provide power 
back to the grid by utilizing the battery pack in the car. As more EVs enter the markets, their 
batteries – which could cumulatively store thousands of kilowatts of electricity – could be charged 
when RE is abundant and inexpensive, and instantaneously drawn upon when demand is high [150]. 
In a future where dynamic pricing is more widely available, EV batteries could be charged at off-
peak times and avoid drawing from the grid during periods of peak pricing. Simulations in the UK 
find that shifting EV and heat pump demand could save £10 billion over 40 years [151]. 
 
However, EVs have yet to penetrate a significant share of the market, and although their potential 
as electricity sources also depends upon the growth of energy storage systems [150], it is possible 
that they could provide a more scalable and economic solution, particularly because of the mobility 
they offer [152].  
 
1.6.4 Heat Pumps 
 
In 2016, space heating accounted for about 65% of the end energy consumption in EU households, 
and domestic hot water preparation for more than 14% [153]. For moderate climates, heat pumps 
offer an energy-efficient alternative to furnaces and air conditioners6. Because they move rather 
than generate heat, heat pumps can provide equivalent space conditioning at a quarter of the cost 
of operating conventional heating or cooling appliances. 
 
Between 2006 and 2016, the number of buildings equipped with a heat pump in Europe has 
quintupled, with more than 10 million installed by 2017 [154]. Heat pumps can play a significant 
role in providing flexibility, without significantly compromising the thermal comfort of the 
occupants, and contributing to the reduction of peak loads [24]. The rollout of ToU rates is expected 
to provide additional opportunities to leverage the demand flexibility of heat pumps equipped with 
smart controls [155].  
 
A study that analyzed the potential benefits of operating a heat pump in Germany with dynamic 
pricing found that cost savings of 25% could be achieved while having almost no influence on 
thermal comfort. The results also showed that dynamic price thresholds should be used instead of 
                                                             
6 Heat pumps use electricity to move thermal energy in the opposite direction of spontaneous heat transfer, 
making a cool space cooler and warm space warmer 
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fixed price thresholds, which could cause low activations of the heat pump or overheat the building 
above the comfort limits. Apart from these benefits, the study led to significant peak reductions, 
since the heat pumps were mostly used during low-peak periods [24]. 
 
Müller and Jansen report on the results of a large-scale DR demonstration involving 300 residential 
buildings with heat pumps to show that load reductions of up to 65% can be achieved, with reduced 
rebound peaks [8]. Similarly, Kreuder and Spataru look at the impact of introducing heat pumps in 
the UK, and show that in a base case scenario, grid-level peak loads would increase by about 6 GW 
in the winter, and would triple at the household level. They however find that DR can avoid the 
new peak loads at the grid level, and reduce them at the household level [156]. 
 
1.6.5 Energy Aggregators 
 
An energy aggregator can create value from demand-side flexibility by establishing a contract with 
end-users relating to their flexibility, aggregating this flexibility, and offering flexibility services 
to different players. By combining the load, distributed generation, and storage capacities of large 
numbers of participants, an aggregator can optimize the performance of the entire portfolio of BTM 
assets in ways that is not feasible at an individual level – one reason why DR has not realized its 
potential thus far [147]. The value created can be shared with the user as an incentive to shift or 
reduce load. To increase the value of flexibility, aggregators should be able to undertake value 
stacking i.e. provide multiple services to flexibility requesting parties from the same portfolio 
[157].  
 
1.6.6 Peer-to-Peer Energy Sharing and Virtual Power Plants 
 
Another potential way to increase the value derived from grid-connected rooftop solar PV 
installations in the future could be through the emergence of blockchain technology, which can 
allow peer-to-peer (P2P) transactions to take place without the costs of an intermediary [147]. 
Application of blockchain – a decentralized ledger technology – to the energy sector will enable 
people to trade energy among themselves and can stimulate more RE projects by allowing 
producers to directly connect with investors and consumers. Blockchain can help energy 
management to be routinely delivered as a service to customers, on an automated basis, particularly 
as many people may opt in for DR programs [158,159]. 
 
Relatedly, virtual power plants (VPPs) group customers under one type of pricing or DR program 
into different structures based on the utility’s needs. Such segmentation can provide the utility with 
better forecasting and analytical information about the value customers can offer [30]. VPPs can 
thus enhance grid reliability and solve flexibility problems in solar energy demand and supply, and 
can thus also stimulate more RE investments. They allow for real-time, cumulated control of 
available energy resources on the grid, to meet any sudden peaks or unpredictable changes in supply 
needs. VPPs are projected to reach a market size of $709.98 million by 2023, growing at an 
annualized rate of over 29% [160]. 
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1.7 A Note on Energy and Electricity 
 
It is also useful to revisit the distinction between energy and electricity, as well as between the 
amount of electricity and electrical power. Electricity is a component of overall energy consumed, 
but constitutes only about 40% of total energy consumption in the US. The rest of the share, at an 
aggregate level, is typically used in industrial and transport applications [161]. At the household 
level, energy consumption may further differ from electricity consumption if services such as 
household space and water heating are powered by sources other than electricity, e.g. natural gas. 
Consequently, there is also an important difference between renewable energy, and electricity 
generated from renewable sources, which is a subset of the former. Although these terms are 
sometimes erroneously used interchangeably, the focus of this thesis is specifically on residential 
electricity demand, and not energy demand.  
 
A second point of note is that DR has the potential to reduce or shift peak demand for electricity. 
This peak refers to the rate of electricity – or electrical power –consumed instantaneously at peak 
times, and is measured in watts. This electrical power is distinct from the actual cumulative amount 
of electricity – or electrical energy – used over a period of time, measured based on watt-hours 
[162,163]. Even though DR programs may reduce the peak electrical power consumed at any time, 
the shifts in electricity usage (and for instance extremely cheap off-peak prices) could actually lead 
to increases in the overall amounts of electricity consumed. 
 
1.8 Research Framework and Closing Thoughts 
 
Figure 1.7 offers a visualization of the research framework. The four research papers are distinct 
and self-contained, in that they each consist of a motivation and review of literature, a proposed 
econometric technique, a section on results, and a discussion of the implications. As a result, 
readers will observe some overlaps in the motivations and literature reviews in the following 
chapters. However, the sequencing of these chapters follows the narrative of the doctoral thesis and 
results in a set of overall inter-related findings that are discussed in Chapter 6. 
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Figure 1.7: Visual Representation of Doctoral Thesis 

 
 

 
Finally, this chapter concludes by reiterating an important caveat: this thesis is focused solely on 
the demand side of DR programs – it does not look into the utility side feasibility of implementing 
such programs. The reason for that is, considerable attention has already gone into and continues 
to go into studying this feasibility [164,165,166,167,168], some of which was summarized in 
Section 1.5. This thesis provides a necessary complement by attempting to explain the needs and 
motivations of the customers; without this understanding, DR programs will continue to 
underachieve on their potential.  
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A Meta-Analysis of Common Features      2. 
 
Chapter based upon: Srivastava, A., Van Passel, S., & Laes, E. (2018). Assessing the Success of Electricity 
Demand Response Programs: A Meta-analysis. Energy Research and Social Science, 40, 110-117. 
Available at https://doi.org/10.1016/j.erss.2017.12.005 
 
2.1 Introduction 
 
The share of renewable sources in electricity generation is increasing significantly, particularly in 
Europe [1]. This increasing share tends to increase the variability of overall electricity supply. Non-
intermittent capacity can be used to fill the valleys in such generation, but is a costly solution since 
backup power plants will only be used for limited periods of time. Further, although storage 
technologies are improving, they are still expensive and inefficient at present [2].  
 
Another feasible option is to adjust the demand for electricity, through for instance demand 
response (DR) programs, which aim to modify the demand patterns for electricity by encouraging 
its use during peak generation and discouraging its use at times when the load on the grid is highest. 
One means of modifying demand is through the use of time-varying pricing, which broadly comes 
in three forms: time-of-use pricing (TOU) varies prices over the hours of the day with higher prices 
during peak periods, critical peak pricing/rebates (CPP / CPR) increases prices or provides rebates 
for conservation during the critical peak hours, and real time prices (RTP) allow prices to vary 
dynamically with the marginal cost of electricity [3]. Other means of modifying demand may 
involve the use of external load control techniques. 
 
DR policies had been slow to emerge across Europe due to limited knowledge on the energy saving 
capacities of DR programs and the high costs for associated technologies and infrastructures [4]. 
However, DR is now seen as a promising option for the integration of renewable energy (RE) [5]. 
The European Commission (EC) estimates the potential response by 2030 at 160 gigawatts (GW), 
against current programs that achieve about 20GW [6]. The Commission’s recent “Clean Energy 
for All Europeans” proposal further proposes that customers should be entitled to access dynamic 
pricing contracts, DR programs, smart metering systems, and better information on their 
consumption [7].  
 
Consequently, DR is being promoted through enabling policy frameworks in countries such as 
France, Belgium, Finland, and the UK – though several countries still face significant regulatory 
barriers or do not yet view demand flexibility as a resource – and DR programs are being 
increasingly tested and implemented, including in the residential sector7 [6].  
 
Residential DR programs can however be challenging to implement successfully due to the limited 
price responsiveness of households, equity considerations, and the high costs of metering 
infrastructure [10]. A further consideration of households’ price – and overall – responsiveness is 
the focus of this paper.  

                                                             
7 An overview of European smart grid projects is available with the EC’s Joint Research Center [8], while a list of 
demonstration projects supported by the US government is available at the US Department of Energy [9] 
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There have been a number of studies aimed at better understanding household responsiveness to 
demand side management. But this existing research has been fragmentary, due to a varying focus 
on different aspects of DR programs. Faruqui and George [11] analyzed the results from 
California’s Pricing Pilot, which involved 2500 customers and several dynamic pricing structures, 
and found that responsiveness varies with rate type, climate zone, season, and air conditioning 
ownership. Brent et al. [12] reviewed a range of artefactual field experiments in dynamic pricing 
and stated that price changes lead to greater conservation effects than moral and social arguments, 
that knowledge of consumption can maximize the effectiveness of time-varying pricing, and that 
enabling technology increases the effectiveness of such pricing. The consumer behavior studies 
under the US government’s Smart Grid Investment Grant program found that enrolment under opt-
out approaches was higher than under opt-in approaches due to status-quo effects, loss aversion 
resulted in higher retention rates for CPR than for CPP, and higher price ratios led to greater 
response [13]. Kessels et al. [14] summarized results from a set of meta-reviews on the 
effectiveness of various pricing schemes and studied the findings from 9 European dynamic pricing 
pilot projects against these results, to conclude that dynamic pricing schemes should be simple to 
understand, with timely notifications of price changes, a considerable potential effect on the energy 
bill, and automated control. Often the success of the pricing scheme depends on factors influencing 
the behavior of end users. Gyamfi et al. [10] therefore suggest greater use of economic behavior-
based approaches to overcome some of the challenges to achieving effective voluntary demand 
reductions.  
 
Existing research has also occasionally thrown up conflicting findings. For instance, Gyamfi et al. 
[10] reviewed residential DR literature and found that a high fraction of households – particularly 
the richer ones – did not respond to price signals. However, the Irish energy regulator [15] reviewed 
the smart metering behavioral trial it conducted on 5000 representative participants, which included 
ToU tariffs, and found that the ToU tariffs did reduce electricity usage, and that higher-consuming 
households tended to deliver greater reductions. Muratori et al. [16] used a case-based approach, 
covering 100 households in the US, and found that shifting consumption may lead to steeper 
rebound peaks, while Cosmo and O’Hora [17] further analyzed data from the Irish smart metering 
trial and found that reductions lasted beyond the peak period and that post-peak spikes in usage 
were not observed.  
 
Existing research has thus used a mix of approaches to study DR trials and rollouts among different 
samples with varying characteristics. Flaim et al. [18] reviewed seven dynamic pricing studies in 
the US – six with opt-in recruitment and five with ToU pricing – and claimed that the prevalence 
of dynamic pricing programs remains limited on account of too little synthesis of existing research 
and an over-reliance on simple yet misleading performance metrics. Most attempts to aggregate 
research on DR programs have taken qualitative approaches, and have mainly focused on the 
characteristics of the program, such as pricing structures or the existence of load controls. For 
instance, Kessels et al. [14] framed results from existing meta-reviews as four hypotheses on user 
response and tested these hypotheses using a case-based approach. Stromback et al.’s [19] review 
of feedback and pricing pilots offered findings similar to Brent et al. [12], based on basic statistical 
analyses such as proportions and weighted averages. Hobman et al. [20] used insights from 
psychology and behavioral studies to draw lessons on DR design. Faruqui and Sergici [21] 
contained their analysis of 34 studies to the impacts of price ratios and enabling technologies. 
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Faruqui et al. [22] further reviewed a dozen pilot studies only for the role played by information 
feedback. 
 
There is a need for more rigorous analysis of the DR experiences, collecting a range of DR aspects 
under one study, and taking into account other socio-economic determinants, in order to obtain 
more broadly valid findings. This paper attempts to address these needs, by undertaking a meta-
analysis of existing literature on DR programs. It uses a logistic regression approach in aggregating 
results from various studies to distil common findings and trends. The paper goes beyond 
considering characteristics of DR programs to also look at the relationships that socio-economic 
environments may have with the success of these programs. This approach helps explain whether 
any socio-economic factors are correlated with, or contribute to, the chances of a successful DR 
implementation. In this way, it complements the findings of studies such as Kessels et al. [14]. 
 
2.2 Methods 
 
A meta-analysis statistically combines evidence from multiple studies with an aim to identify either 
common effects or common causes for variation on specific research questions; it is often beneficial 
for overcoming the subjectivity of narrative reviews [23,24]. Meta-analyses have typically been 
used in the field of medicine [25,26], and are gradually being more widely used in other fields.  
 
In the field of energy, Sundt and Rehdanz [27] use a meta-analysis to understand consumer 
preferences for a greater share of RE in their electricity mix. Mattmann et al. [28] offer a meta-
analysis of 32 studies on the non-market valuations of wind power externalities. Van Der Kroon et 
al. [29] conduct a meta-analysis to understand household fuel choice and fuel switching behavior 
in developing countries, and aim to contribute to energy transition policies. 
 
2.2.1 Data Gathering and Categorization  
 
Sources: To undertake the present analysis, this paper drew upon articles from various 
complementary sources, including: (i) journal databases such as Elsevier, JSTOR, Wiley, and 
Taylor & Francis, (ii) studies from sources that covered analyses of DR initiatives, including energy 
sector consultancies, and (iii) general internet searches for other unpublished DR initiatives, 
including for instance working papers and news briefs and blogs of organizations. This third 
approach was adopted in an effort to address the risk of publication bias. Study selection did not 
include any specific quality criteria, although the search was limited to reputed databases, 
universities, and organizations.  
 
Focus: The focus of the search was on time-varying DR measures; studies looking at just tiered or 
block pricing, or at general determinants of electricity consumption behavior were excluded from 
the analysis. Data gathering from the sources mentioned above thus used combinations of search 
terms such as, but not limited to, “residential,” “demand response,” “electricity,” “dynamic 
pricing,” “load control,” “ToU,” “RTP,” and “CPP.”   
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Recency: In an effort to stay relevant with the current trends in the market, we only included studies 
that were published between 2006 and 2016, although the underlying projects covered in these 
studies may have been deployed earlier.  
 
Based on these criteria, the final sample included 32 studies, which are listed in Appendix 2-A. 
Two of these are from emerging markets – China [30] and South Africa [31] – while the rest are 
from Europe and the US, reflecting the prevalence of such programs in developed countries. No 
results were found in low-income developing countries, since residential DR programs have either 
not been rolled out in such countries or are too recent to be able to yield concrete results. 
 
The dependent variable is the success or failure of the DR programs, and it was coded in binary 
form (successful = 1, unsuccessful = 0). While this may be a simplification – DR programs could 
for instance fail in the short term while succeeding in the long term owing to gradual behavioral 
change and stock changes [32] – it offers a metric by which programs can be compared, and enables 
us to then compare them via logistic regression analyses. 
 
The 32 papers included in the meta-analysis evaluated the DR programs from three broad 
perspectives, and the dependent variable was determined based on the perspectives as follows: (i) 
From the system perspective, whether overall peak load was reasonably shifted; (ii) From a 
response perspective, whether financial savings from load shifting were significant; and (iii) From 
a demand perspective, whether survey respondents were reasonably willing to accept the 
implementation of a DR program.  
 
The definitions of the DR programs as successful or not successful were based largely on the 
conclusions of the underlying studies, although in some cases interpretations were required. For 
instance, we categorized the results of the representative choice experiment by Broberg and Persson 
[33] as not successful, because it concluded that respondents required up to 1400 Swedish kroners 
(SEK) to accept a load control program during evening peaks; in comparison, the monthly average 
electricity bill for a small apartment in Sweden is 300-400 SEK [34,35]. On the other hand, Torriti 
[36] used readings from nearly 1500 smart meters to find that although ToU pricing shifted peaks 
in demand, overall consumption was higher, the load shedding was modest, and 75.6% of power 
substations experienced an increase in electricity demand during peak periods. We thus also 
classified this as not successful.  
 
Similarly, a few studies included multiple DR measures or multiple offerings of a DR measure – 
Fell et al. [37], for instance, studied the acceptability of five types of tariffs – or disaggregated their 
results – such as Bartusch and Alvehag [38], who studied DR based on type of housing. In such 
cases, the analysis focused on aggregated results where possible, and otherwise focused on those 
measures / levels that had the most complete information available for each of the independent 
variables.  
 
In this way, we interpreted the results where necessary. However, to the extent possible, we 
attempted to rely on any explicit conclusions of the authors of the underlying studies, because (i) 
we expected that they would have a better idea of success within the context of their studies, and 
(ii) applying one standard definition of success to all the studies would be simplistic and unrealistic. 
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The explanatory variables are broadly grouped under two categories: those that describe the 
structures of the DR programs (intrinsic variables), and those that describe the socio-economic 
conditions under which the programs were implemented (extrinsic variables).  
 
Data on the intrinsic features of the DR programs was obtained from the underlying studies 
themselves. The intrinsic variables are listed in Table 2.1 below.  
 
 

Table 2.1: Intrinsic Explanatory Variables 
# Variable Unit of Measure 
1 Price change Binary (Yes/No) 
2 Type of time-varying pricing Binary (Static/Dynamic RTP) 
3 Peak-to-off peak price ratio Numerical (Ratio of prices) 
4 Automated load controls Binary (Yes/No) 
5 Voluntary enrolment in program Binary (Yes/No) 
6 Time since program rollout Numerical (Months) 
7 Duration of study Numerical (Months) 
8 Off-peak hours per day Numerical (Hours) 

 
 
We did not consider other intrinsic variables such as the presence of smart appliances, or whether 
the DR initiative was a trial vs. full-scale implementation, although the underlying sample sizes 
may be indicative of the latter. It may be noted that the peak to off-peak ratio in variable 3 was 
estimated at the lowest levels at which the study was successful or the highest levels at which it 
was unsuccessful. Exceptions were made for RTP, where range bounds were used, and for CPP. 
 
We chose the variables for the second – extrinsic – set based on whether they were determined by 
existing literature as being relevant to the levels of electricity consumption and / or response 
flexibility, and could thus be expected to also play a role in influencing the success of DR programs. 
Other socio-economic indicators that were not covered in existing literature are consequently not 
included in this analysis.8  
 
This data was sourced through multiple datasets, including those of the World Bank Group, World 
Weather Online, and the REN21 network. To enable comparability of the data, per capita gross 
domestic product (GDP) figures were converted into US dollars using the average exchange rates 
of the years for which the data was drawn. Further, in some instances data on indicators such as 
GDP per capita was available only for earlier years – data in these cases was extrapolated to 2015 
using recent growth rates for the respective regions.  
 
We obtained this data for the months and regions where the DR program was in operation, where 
such granular data was available. Where such data was not available, national-level and annualized 

                                                             
8 Although GNI might be considered a closer indicator to disposable income, since GDP data was more complete 
at a granular level than data on disposable income, and since there is a strong correlation (0.9998) between 
global GDP and GNI numbers [39], this analysis uses GDP per capita as an indicator of income  
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data was drawn. Thus, based on the scope of the DR program and on availability, the levels of data 
vary within each variable. This data is tabulated in Appendix 2-A. 
 
The extrinsic variables are summarized in Table 2.2, together with typical sources used for the data, 
as well as references to some respective literature that highlights the relevance of these variables. 
 
 

Table 2.2: Extrinsic Explanatory Variables 
# Variable Unit of Measure Sample Data 

Source 
Links to 

Flexibility 
9 GDP per capita Numerical (US$, 2015) World Bank 

Indicators [40] 
[11,33,47] 

10 GDP growth rate Percentage (2015) World Bank 
Indicators [41] 

[48] 

11 Urbanization rate Percentage (2015) World Bank 
Indicators [42] 

[49] 

12 Average temperatures Numerical (C), during study 
periods 

World Weather 
Online [43] 

[11] 

13 Electricity consumption Numerical (kWh per capita, 
2013) 

World Bank 
Indicators [44] 

[15,50] 

14 Current shares of RE Percentage (typically 2014) 
REN21 [45] [51,52] 

15 Targets for RE Percentage (variable years) 
16 Tertiary education rates Percentage (enrolment ratio, 

2013) 
World Bank 

Indicators [46] 
[11,15,17] 

17 RE policy  [{(15) – (14)} / {(Year (15) – 
Year (14)}] 

- - 

18 RE Target / GDP growth 
 

(15) / (10) - - 

 
 
Variables 17 and 18 merit further explanation. The computed variable 17, ‘RE policy’ attempts to 
serve as a substitute for the levels of ambition of RE policies. It does so by dividing the difference 
between current RE shares and future RE targets by the number of years between the two, in order 
to obtain the required average annual increases in RE shares. Similarly, the computed variable 18, 
‘Target / GDP growth’ is an interaction term that attempts to standardize RE targets against the 
economic growth rates of that region. It explores whether a DR program is more likely to be 
successful when the RE target is more ambitious relative to the economic growth. Aside from these, 
the analysis primarily focuses on main effects. 
 
One potentially important extrinsic variable we did not consider was the share of electricity bills 
as a component of household budgets, or average prices for electricity compared to incomes, which 
could shape customer responsiveness. However, we did include related variables such as per capita 
GDP and per capita electricity consumption, and identified a statistically significant correlation 
between the two (with a Pearson’s coefficient r = 0.609 at p < 0.01). 
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2.2.2 Boundaries of Meta-Analyses 
 
Meta-analyses operate on the implicit assumption that the underlying studies are similar enough 
that they can be usefully combined and analyzed. However often they can pool studies of varying 
quality, and suffer from publication bias. We attempted to minimize the risk of publication bias by 
including results of unpublished studies in our sample. Further, while we acknowledge that the 
underlying studies may vary in scope and context, we set out clear criteria in our search for the 
scopes of the studies, and used this meta-analysis to understand the role of variations in context. 
Other variations in our sample may limit the external validity of our findings; however, we offer 
our findings indicatively and encourage replication studies to validate them. 
 
Meta-analyses that rely on ordinary least squared (OLS) regressions can suffer from 
heteroscedasticity, multicollinearity, and autocorrelation. Nelson and Kennedy [53] examine the 
current state of meta-analyses in environmental economics and notes that among others 
heteroscedasticity is particularly likely to be an issue. However, heteroscedasticity is not of concern 
in logistic regressions – an approach we have chosen because it improves comparability of the DR 
programs – that have a binary-form dependent variable, where the residuals are distributed between 
only two points when plotted against the fitted values of the model. Therefore, this analysis does 
not include tests to check for the presence of this condition.  
 
2.2.3 Regression Equation 
 
The model used in this paper takes the form 
 

Ln[(y) / {1-(y)}] = 0 + 1x1 + 2x2 + … + nxn +        (1) 
 
Where 
Ln = natural logarithm 
(y) = probability of event occurring  
0…n = regression coefficients 
x1…xn = intrinsic and / or extrinsic explanatory variables 
 = error term 
 
Because this is an exploratory analysis, we do not attempt to fit our findings to an initial hypothesis. 
This paper thus conducted several stepwise regressions using this equation. In all cases, the 
dependent variable was taken as the success of DR programs. However, each regression used 
different subsets of the intrinsic and extrinsic variables, creating different regression models, in 
order to test the relationships between the different variables. We did not attempt to conduct a 
regression – of the form outlined in Equation (1) – that would include all the explanatory variables 
together, since the sample size was limited. Any one regression model included between two and 
five of the variables listed in Tables 2.1 and 2.2 above, in such a way that each variable was 
considered for multiple regression models. Thus, the research was exploratory rather than 
confirmatory, and it consciously attempted to avoid a potential over-fit of the model. 
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In the regression models, the samples were also weighted in turn by the natural logarithms of the 
sample sizes and by the GDP per capita of the respective regions, in addition to the non-weighted 
regressions, to determine whether such weighting would affect the results.  
 
2.3 Results 
 
2.3.1 Identifying a Base Model 
 
The analysis conducted regressions with different combinations of intrinsic and extrinsic variables, 
and the variables in a number of models were found to be statistically significant. To illustrate, the 
results from two such models, where the variables are weighted by the natural log of the sample 
sizes, are summarized in Table 2.3. 
 
 

Table 2.3: Results of Select Models with Intrinsic Variables 

 
 
 
The significance of the maximum likelihood estimates of the regression coefficients is determined 
using the Wald test. (e) denotes the effect of the variable on the odds ratio i.e. the odds of success 
increase multiplicatively by (e) per unit increase in the explanatory variable. Thus, for every 1% 
increase in the duration of a DR program, the odds of success of the program increase by 3.4% in 
Model 1.  
 
The table also summarizes the results of goodness-of-fit tests on the model, including the R-square 
values. This analysis uses the Nagelkerke R-square instead of the Cox & Snell R-square, because 
the latter has an upper bound of less than 1 and so holds less intuitive appeal. Both models have 
low values under this R-square, suggesting a poor fit. 
 
However, R-square values assess only comparative – not actual – goodness-of-fit, and lower R-
square values tend to be the norm in logistic regression [54]. Thus, the analysis also includes a 
comparison of observed to predicted values from the fitted models, as well as the areas under their 
receiver operating characteristic (ROC) curves. ROC curves are graphical plots of the true positive 
rates against the false positive rates, and the area under these curves is a good estimate of the 
strength of the model. As seen from Table 2.3, although the models are fairly successful at correctly 
predicting the outcomes, the areas under the ROC curves of the two models are not very high. 
 
A final approach for determining the goodness of fit is through the Hosmer-Lemeshow statistics, 
which examine whether the observed proportions of events are similar to the predicted probabilities 
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of occurrence using a Pearson χ2 test. Significant test results, i.e. those with p-values below 0.05 
indicate that the model is not a good fit. Though this test should be used with caution [55], the 
results of these tests are included here and demonstrate very low p-values. 
 
Thus it is seen that while the models are found to be significant, their R-square values, Hosmer-
Lemeshow test results, and areas under their ROC curves suggest that they are not good fits. 
Moreover, the intrinsic variables had several missing values, leading to smaller sample sizes and 
less robust models when these variables were included. 
 
As a result, the analysis disregarded such models, and determined a model with the following 
combination of variables as being significant, as well as the best fit in forecasting success of the 
DR program: (i) urbanization; (ii) RE target; (iii) RE policy; (iv) GDP growth rate; and (v) RE 
target / GDP growth rate. This model was weighted by the natural log of the sample sizes. The 
stepwise regressions saw the intrinsic variables being removed from the model as they were not 
significant.  
 
Table 2.4 demonstrates the regression coefficients and the statistical significance of the explanatory 
variables in the model. As seen, all the variables are significant at the 95% level. For every 1% 
increase in the targeted share of RE, the odds of success of a DR program decrease by 13.3%. 
Increases in the other explanatory variables increase the odds of success. 
 
 

Table 2.4: Regression Coefficients and Significance of Variables in Equation 
Variable  S.E. Sig. e Marginal impact on OR 

GDP Growth Rate 2.508 0.824 0.002 12.278 1127.8% 

Urbanization Rate 0.064 0.025 0.011 1.066 6.6% 

Targets for RE -0.142 0.039 0.000 0.867 -13.3% 
RE Policy 0.827 0.351 0.019 2.286 128.6% 

RE Target / GDP Growth Rate 0.239 0.078 0.002 1.270 27.0% 

 
 
This paper thus proposes the following model for consideration: 
 

Ln[(success) / {1-(success)}] = -10.013 + 2.508(GDP growth rate) + 0.064(Urbanization) –  
0.142(target for RE) + 0.827(RE policy) + 0.239(RE target / GDP growth rate)          (2) 

 
Table 2.5 summarizes the results of some tests for goodness of fit on the model. The regression 
analysis for this model yielded a Nagelkerke R-square value of 0.447. This suggests that the model 
explains nearly 45% of the variation in the dependent variable, a significant improvement over the 
models in Table 2.3. A comparison of observed to predicted values from the fitted model 
demonstrates that this model correctly predicts the success of the DR program in 81% of the cases. 
A likelihood ratio test, used to compare goodness of fit against a base model with no explanatory 
variables, yields a χ2 value of 64.741 with 5 degrees of freedom, which is significant at the 99% 
level. 
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Table 2.5: Model Fit and Explanatory Power 
Indicator Value 
R-Square (Nagelkerke) 0.447 
Correctly predicted values 80.90% 
Likelihood ratio test P-value (χ2 = 64.741 with 5 df) ~0.000 

 
 
One limitation of this model is the presence of some correlations among the explanatory variables. 
In particular, as expected, correlations are noted between ‘RE Target,’ ‘GDP growth,’ and ‘RE 
Target / GDP growth.’ However, the variance inflation factors (VIFs) of these variables all lie 
between 1.2 and 4.1, which are within acceptable limits. Further, removing any of these variables 
reduces the explanatory power of the model and does not greatly affect the remaining model 
coefficients. Thus it is preferable to retain them.  
 
The ROC curve is seen in Figure 2.1. In the figure, sensitivity (also called the true positive rate) 
measures the proportion of positives that are correctly identified as such. Specificity (the true 
negative rate) measures the proportion of negatives that are correctly identified as such, i.e. the 
percentage of unsuccessful DR programs that are correctly identified as not being successful. The 
area under this ROC curve is much higher than the initial models in Table 2.2, at 0.855. 

 
 

Figure 2.1: ROC Curve for Base Model 

 
 
 

2.3.2 Robustness against Alternatives  
 
A common practice is to compare the main model to close alternatives to examine how the main 
estimates of the regression coefficients behave when the regression model is modified. If the 
coefficients are not found to change significantly, they are determined to be robust and can be 
interpreted as the true causal effects of the associated explanatory variables. This plausibility and 
robustness is a good estimate of the structural validity of a regression model [56]. 
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The current analysis therefore assesses the base model outlined above against several alternatives 
with different combinations of explanatory variables. In this paper, the base model is compared 
against the best three alternatives, chosen based on their overall significance and R-square. The 
results are summarized in Table 2.6 below. 
 
 

Table 2.6: Comparing Models 

 
* Variables are denoted by their corresponding numbering from Tables 2.1 and 2.2 

 
 
Thus, it is seen that the base model has the highest R-square, the second highest proportion of 
correctly predicted values, and the greatest number of variables with meaningful odds ratios, 
without having too many correlations among explanatory variables.  
 
The Hosmer-Lemeshow test results for the different models are also included. While even the base 
model is not determined to be a very good fit, since it does well on the other indicators in Table 2.6 
and is also shown to be a better fit than the alternatives under the Hosmer-Lemeshow statistics, this 
paper retains this model as the most relevant one for analysis and further discussion. Additional 
sensitivity analyses conducted upon this model are summarized in Appendix 2-B. 
 
2.3.3 Caution in Interpreting the Results 
 
It should be noted that the analysis suggests a correlation between the variables, but does not imply 
the existence of a causal relationship. The results provided above are conditional upon (i) a small 
sample size; (ii) missing information in the underlying studies; (iii) limited diversity in the features 
of the DR programs; and (iv) varying levels of granularity of the socio-economic variables.  
 
Thus, there is a possibility that increasing the sample size and improving the underlying data may 
yield different results than those presented here. One way this study attempts to reduce these risks 
is by limiting the approach to relatively straightforward statistical analyses. Conversely, this paper 
also aims to highlight the need for improving data, by demonstrating that such a meta-analytical 
approach is feasible. Keeping these points in mind, the results in Section 2.3 are offered at least 
indicatively, if not definitively. 
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2.4 Discussion 
 
As noted in Section 2.3, we found that a number of different models partially explained the chances 
of success of DR programs, in addition to the base model proposed. These alternative models used 
different combinations of explanatory variables, and arrived at different regression coefficients 
with varying levels of significance. Though intrinsic variables such as duration of the study and the 
presence of automated load controls did appear to play a part in determining the success of the DR 
programs, the key finding is that extrinsic variables such as RE targets and policy, GDP growth 
rates, and urbanization were consistently statistically significant. Thus, even if the results in Section 
2.3 are offered indicatively, they can yield a number of insights. 
 
First, a DR program is very likely to be successful where economic growth rates are higher. Studies 
have shown that infrastructure investment – including investment in energy infrastructure – leads 
to higher economic growth and, in some cases, that growth spurs investment [57,58,59]. It is thus 
possible that DR programs are more likely to be implemented, and consequently more likely to be 
successful, in regions with higher growth rates.  
 
Second, a DR program is more likely to be successful in urban environments. There might be two 
reasons for this: (i) the higher densities of populations and electricity infrastructures in urban areas 
may create economies of scale and reduce the costs of – and increase the needs for – such programs; 
and (ii) urban consumers might be slightly more aware of energy and environmental issues 
[60,61,62].  
 
Third, a DR program is less likely to be successful where national RE targets are high. We are not 
certain of the reasons behind this, but it is also conversely more likely to be successful when a 
strong RE policy exists. This could be because a strong RE policy may signal governmental 
commitment towards promoting RE and energy security, and may be associated with strong 
incentives and / or mandates, either to utility companies to deploy such programs, or to consumers 
to adopt them.  
 
Fourth, there is some inverse interaction between the national RE target and the GDP growth rates 
in determining the success of a DR program. While a relationship between the RE targets and GDP 
growth rates may make sense due to associated infrastructure requirements, the interaction term in 
this analysis may be more relevant for moderating the main effects. 
 
To contextualize these results within electricity consumption literature, a study in Saudi Arabia 
[63] that used auto-regression and causality testing found a bi-directional relationship between peak 
load and GDP, while empirical evidence from China [64] indicates a strong relationship between 
urbanization and energy use. Specific to DR programs, results from European projects [65] were 
unable to find significant correlations between socio-economic factors and response to pricing 
signals, though a survey of 15 US-based experiments [66] found a relationship between education 
and load shifting. This relationship was also observed in the Irish smart metering trial [15].  
 
Education and income were however not found to be significant predictors of DR success in our 
study, which goes against expectations. This might be due to the limited size of the sample, and 
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their effects might be partly included in the role of urbanization in predicting the success of DR 
programs [67,68]. The omission of average temperatures and per capita electricity consumption 
patterns might similarly be on account of limited information. Alternatively, it is possible that 
temperatures do not affect DR programs because their effects are not significant or are offset by 
other factors. For instance, even during extreme weather events, reductions in electricity demand 
are possible due to the consequently higher dynamic prices [69].  
 
Lastly, it is noteworthy that the final model does not include any intrinsic variables, though some 
of them were significant in other models we tested. However, this contradicts existing findings 
[12,13] on the role of enabling technologies and nature of enrolment in the success of DR. This is 
possibly because: (i) the intrinsic variables had many missing values, and their inclusion 
significantly reduced model sample sizes; and (ii) the DR programs were reasonably homogenous 
in structure – for instance most didn’t include automated load controls and most included voluntary 
(as opposed to automatic) enrolment options – possibly affecting the robustness of the regression 
models.  
 
These findings suggest the need for further contextual research, particularly while going beyond a 
single-case perspective. It is expected that future analyses, with more extensive data, would yield 
significant and robust models that include a mix of both intrinsic and extrinsic variables. 
 
These findings however have implications for shaping policy. The analysis suggests that the 
likelihood of success of a DR program is not just dependent on its structure, but also related to the 
socio-economic conditions under which it is implemented. Further study could argue a case to 
optimally structure DR programs such that they are most likely to succeed in their individual socio-
economic environments. Perhaps this is most important in the case of developing countries, which 
do not yet possess adequate electricity infrastructure and present an opportunity to leapfrog 
traditional electricity markets.  
 
2.5 Conclusion 
 
This paper conducted a meta-analysis, using a logistic regression approach, on 32 residential 
electricity demand response programs to analytically determine whether their likelihoods of 
success were correlated with the structures of and contexts surrounding the programs. 
 
The analysis found that the success appears to be correlated with the extent of urbanization in the 
region where the DR program is implemented, the renewable energy policy and targets, and the 
annual economic growth rates. While the sample size is small and the data is limited by missing 
values, the study offers the following guidance to increase the effectiveness of future DR programs: 
(i) Deploy DR programs in urban areas, particularly in faster-growing cities that are likely to have 
greater infrastructure spending; (ii) Align DR and electricity policy with renewable energy policies; 
and (iii) Couple electricity policy with wider economic policies and urban development planning, 
in order to also place it within the context of broader sustainable urban development. 
 
Future research may focus on addressing existing gaps by considering a wider set of DR programs 
for analysis; especially as such programs start to be implemented in developing countries. In 
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particular, it would be useful to look at the impacts of levels of awareness on demand flexibility 
and how this might affect the design of the programs. Specific to developing countries and 
emerging markets, it would also be useful to consider the impacts of DR programs on broader 
welfare considerations and other rebound effects.  
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63.0%

63.0%

63.0%

78.5%

72.0%

61.0%

57.0%

63.0%

73.0%

80.0%

63.0%

52.0%

48.2%

89.0%

-

89.0%

Year 

2020 

2020 

2020 

2020 

2020 

2050 

2020 

2020 

2020 

2020 

2020 

2030 

2030 

2030 

2025 

2025 

RE 
Target 

62.9 

62.9 

26.0 

37.0 

20.9 

80.0 

15.0 

62.9 

42.5 

70.6 

62.9 

23.0 

20.0 

50.0 

50.0 

25.0 

Year 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

2014 

RE 
Share 

63.3 

63.3 

33.4 

10.0 

13.4 

28.2 

7.0 

63.3 

22.7 

70.0 

63.3 

12.2 

11.1 

24.4 

31.2 

11.5 

Electricity 
Consumption 

13870 

13870 

5159 

6821 

7967 

7019 

5407 

13870 

5702 

8513 

13870 

7836 

3762 

7187 
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12033 

Urban %  

86% 

86% 

26% 

100% 

98% 

100% 

83% 

86% 

63% 

100% 

100% 

100% 

56% 

100% 

82% 

82% 

GDP 
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4.1% 

4.1% 

0.8% 

2.0% 

1.4% 

1.7% 

2.3% 

4.1% 

7.8% 

0.9% 

4.1% 

0.5% 

6.9% 

2.4% 

1.1% 

2.4% 

GDP per 
Capita 

50273 

29214 

34011 

44433 

36269 

42994 

43734 

50273 

51289 

41772 

89989 

22558 

16526 

48525 

41849 

59472 

Sample 

918 

95 

1446 

77 

186 

41 

2002 

50 

1964 

775 

400 

88 

236 

8609 

112642 

10847 
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(Y=1) 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Country 

Sweden 

Sweden 

Italy 

Netherlands 

Belgium 

Germany 

Britain 

Sweden 

Ireland 

Austria 

Sweden 

Japan 

China 

USA 

Canada 

USA 

Study 

Broberg and Persson [33]  

Bartusch and Alvehag [38]  

Torriti [36]  

Kobus et [70]  

D’hulst et al. [71]  

Stamminger and Anstett [72]  

Fell et al. [37]  

Bartusch et al. [73]  

Carroll et al. [74]  

Schleich et al. [75]  

Campillo et al. [76]  

Kato et al. [77]  

He et al. [30]  

George and Toyama [78]  

Faruqui et al. [79]  

Becker [69]  
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23.0 

80.0 

Year 
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2014 
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11.5 
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100% 
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4.1% 
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457 
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33 
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63 
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73 
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1 

1 

1 
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1 

1 

1 

1 

0 
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USA 

USA 

Sweden 

New Zealand 
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USA 
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New Zealand 
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South Africa 
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Germany 

Study 

Herter [80]  

Allcott [81]  

Nilsson et al. [82]  

Thorsnes et al. [83]  

Finn et al. [84]  

Faruqui and Sergici [85]  

Ericson [86]  

Carmichael et al. [87]  

Wolak [88]  

Ericson [89]  

Gans et al. [90]  

Gyamfi and Krumdieck [91]  

Woo et al. [92]  

Thondhlana and Kua [31]  

Hall et al. [93]  

Alpenergy – VPS Allgau [94]  
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Appendix 2-B: Additional Sensitivity Analyses  
 
2-B.1 Tests for Effect Heterogeneity 
 
We conduct additional sensitivity analyses on the proposed model, to check for the presence of 
heterogeneity in effects, and to also guard against the presence of confounding variables and 
Simpson’s paradox – in which a consistent effect in underlying studies disappears or reverses when 
studies are combined.  
 
We do this via two statistical tests, to estimate the model’s Cochran’s Q and I2 values. Cochran’s 
Q is a non-parametric test to examine the null hypothesis that all studies have the same effect on 
the population i.e. they yield consistent results. The test looks at the differences between observed 
effects for the studies and the pooled effect estimate. The test statistic is obtained by adding the 
squared deviations of each study's estimate from the overall meta-analytic estimate, weighting each 
study's contribution the same as in the meta-analysis. P-values are obtained by comparing the 
statistic with a χ2 distribution with (k-1) degrees of freedom, where k is the number of studies 
[95,96]. 
 
However, the Q test only indicates the presence versus the absence of heterogeneity; it does not 
report on the extent of such heterogeneity. The I2 index on the other hand describes the percentage 
of total variation across studies that is due to heterogeneity rather than chance. It measures the 
extent of true heterogeneity dividing the difference between the result of the Q test and its degrees 
of freedom by the Q value itself, and multiplied by 100 [96]. An I2 value above 50% indicates 
heterogeneity, while negative values are treated as being equivalent to 0% [95,96].  
 
We note that the Cochran Q value of our model is 9.816 at 30 degrees of freedom, yielding a p-
value of 0.9998. Thus we do not reject the null hypothesis of homogeneity. Further, the I2 value is 
-2.056, which is treated as 0%, and we thus conclude that there is no observed heterogeneity in the 
effects and it is appropriate to pool these studies in a meta-analysis. 
 
2-B.2 Checking for Sample Outliers 
 
We further test the model and the parameter estimates by omitting two studies from the sample: 
those from Canada [79] and Northern Ireland [90]. These studies have significantly larger sample 
sizes than the other studies in the meta-analysis (112,642 and 34,779 respectively) and could be 
perceived as outliers, creating a risk of disproportionately affecting the results.  
 
To some extent, we have already mitigated against this risk in our model by weighting the studies 
by the natural logarithms of their sample sizes, rather than the sample sizes themselves – potentially 
creating a situation whereby these two studies are actually underrepresented – and note that the 
results from larger studies such as these might well be considered as more representative of actual 
effects. However, the results of a logistic regression, with the sample predictor variables as in our 
main model, but without these two studies, is shown below in Table 2-B.1.  
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Table 2-B.1: Model Comparisons with Omissions from Sample 
Variable Original With Two Studies Omitted  

 Sig. Impact 
on OR 

 Sig. Impact 
on OR 

GDP Growth Rate 2.508 0.002 1127.8% 2.169 0.008 875.0% 
Urbanization Rate 0.064 0.011 6.6% 0.062 0.010 6.4% 
Targets for RE -0.142 0.000 -13.3% -0.125 0.001 -11.8% 
RE Policy 0.827 0.019 128.6% 0.719 0.045 105.3% 
RE Target / GDP  0.239 0.002 27.0% 0.202 0.009 22.4% 
R-Square   0.447   0.431 
Hosmer-Lemeshow   0.030   0.003 

 
 
It is seen that though the R-square and Hosmer-Lemeshow values indicate a somewhat poorer 
model fit without the two studies, the relative effect sizes and their statistical significances are 
almost unchanged. We thus conclude that the model was not significantly skewed by any outliers. 
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A Quantile Analysis of Constituent Factors     3. 
 
Chapter based upon: Srivastava, A., Van Passel, S., & Laes, E. (2019). Dissecting demand response: A 
quantile analysis of flexibility, household attitudes, and demographics. Energy Research and Social 
Science, 52, 169-180. Available at https://doi.org/10.1016/j.erss.2019.02.011 
 
3.1 Introduction 
 
3.1.1 Demand Response  
 
The electricity sector is faced with two medium- to long-term challenges. First, it is a significant 
contributor to climate change, with nearly 30% of total greenhouse gas emissions coming from 
global electricity production [1]. At the same time, electricity consumption trends – coupled with 
an aging infrastructure – present a challenge for energy security. In Europe, various operating 
reserves9 exist to secure the supply of electricity. The primary reserve is used to maintain load 
frequency and avoid grid instability, the secondary reserve is used to alleviate imbalances, and the 
tertiary reserve is used to cope with significant imbalances and major congestion problems [2,3]. 

In its primary reserve alone, the interconnected European electricity market needs around 3 
gigawatts (GW) of capacity [4]. 
 
The increasing share of renewable sources in electricity generation is a potential long-term solution 
for both, mitigating climate change and securing energy supplies. However, the generation of 
renewable electricity is intermittent in nature, while non-intermittent generation is expensive and 
storage technologies are still inefficient. Demand response (DR) programs are seen as a promising 
option for the integration of renewables [5], and as a cheaper alternative to the conventional 
generation that is currently used to ensure the security of energy supply [4]. 
 
DR programs aim to modify the demand patterns for electricity by encouraging its use during peak 
generation and discouraging its use at times when the load on the grid is highest. This modification 
of demand is typically achieved through the dynamic pricing of electricity based on the time of its 
use, or through the external control of appliance loads [6]. 
 
The European Commission (EC) estimates a total response potential of 160 GW by 2030, with 40% 
of the potential for peak load reductions coming from the residential sector [7]. It has thus unveiled 
a ‘Clean Energy for All Europeans’ proposal [8] which recommends greater customer access to 
dynamic pricing contracts, DR programs, smart metering systems, and information feedback. In 
line with this, DR is being promoted through enabling policy frameworks in many European 
countries, and DR programs are being increasingly tested and implemented in the residential 
sector10 [11]. 
 

                                                             
9 An operating reserve is the reserve generating capacity available to the system operator, to meet demand in a 
short period of time, in case there is a sudden disruption to the power supply or an extensive blackout  
10 A list of European smart grid projects is available with the EC’s Joint Research Center [9], while a list of 
demonstration projects supported by the US government is available at the US Department of Energy [10] 
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Residential DR programs can however be more challenging to implement successfully, due to the 
limited price responsiveness of households [12]. There have consequently been a number of studies 
aimed at better understanding household response to – including user perceptions of and concerns 
with – DR programs.  
 
3.1.2 Literature on Household Response to Demand Response 
 
Often, literature looks at response to DR from varying perspectives. On pricing, for instance, 
Bartusch et al. [13] found, relying on analysis of a pilot project and ten interviews, that households 
in Sweden do indeed act on the price signals of time-of-use (ToU) tariffs by decreasing demand in 
peak periods and shifting electricity use to off-peak periods, although three of the households had 
witnessed reductions in overall consumption because they had switched to heat pumps. From the 
perspective of information, Hall et al. [14] used focus groups – among a random sample of 
respondents with high rates of employment – to identify that households in Australia are open to 
ToU pricing, but want more information to understand the potential benefits of DR. Regarding 
privacy concerns, Muratori et al.’s [15] review of literature found that consumers are reluctant to 
allow external control of their appliances, and continue to have concerns about information sharing. 
Similarly, Darby and McKenna’s [16] review of 16 DR trials – focused mainly on ToU and real 
time pricing (RTP) – points to the need for customer education and attention to data privacy and 
security. Parag and Butbul [17] studied the interest among 554 non-representative pro-technology 
respondents in Israel in adopting smart home technologies using hierarchical linear regression and 
found that potential adopters value the perceived benefits of comfort and convenience over the risks 
associated with these technologies.   
 
Other studies have studied response from multiple perspectives in combination. An EC report found 
that consumer acceptance of smart appliances depends on the respective device; for instance, smart 
operation for washing machines and dishwashers is highly accepted. But key user concerns 
continue to include doubts about the safety of smart appliances, doubts about the maturity of the 
technology, and the fear of losing control over the operations of such appliances [18]. Brent et al. 
[19] review a number of artefactual field experiments in dynamic electricity pricing and state that 
price changes lead to greater conservation effects than moral and social arguments, that knowledge 
of consumption can maximize the effectiveness of time-varying pricing, and that enabling 
technology increases the effectiveness of such pricing. Consumer behavior studies undertaken by 
10 utilities – using randomized control trials – under the US government’s Smart Grid Investment 
Grant program found, among others, that enrolment under opt-out approaches was significantly 
higher than under opt-in approaches due to status-quo effects, and that higher price ratios led to 
greater response [20]. Kessels et al. [21] studied the findings from nine European dynamic pricing 
pilot projects to conclude that dynamic pricing schemes should be simple to understand, with timely 
notifications of price changes, a considerable potential effect on the energy bill, and automated 
control.  
 
Existing research has also occasionally thrown up conflicting findings. For instance, Gyamfi et al. 
[12] reviewed pricing-based DR literature and found that a high fraction of households – 
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particularly the richer ones11 – did not respond to price signals. However, the Irish energy regulator 
[24] found through its smart metering behavioral trial among a representative sample that ToU 
tariffs did reduce electricity usage, and that higher-consuming households tended to deliver greater 
reductions. Muratori et al. [15] further found that shifting consumption may lead to steeper rebound 
peaks, while Cosmo and O’Hora [25], using difference-in-difference estimates, found that demand 
reductions in the Irish smart metering trial lasted beyond the peak period and that post-peak spikes 
in usage were not observed. Overall, Parrish et al. [26] found through a systematic review of 94 
trials, surveys, and programs, that customer responses can vary considerably for many reasons and 
that because the picture is somewhat mixed, greater empirical evidence is needed, while Srivastava 
et al. [27] noted based on a meta-analysis of 32 DR programs that response may also be dependent 
on contextual socio-economic factors.  
 
In this context, Gyamfi et al. [12] suggest greater use of economic behavior-based approaches to 
overcome some of the challenges to achieving effective voluntary demand reductions. 
 
3.1.3 Scope of Current Study 
 
A greater understanding of how user perceptions affect response is needed, in order to better design 
and implement DR programs in the future. This paper undertakes such an analysis, using a unique 
approach, by conducting an in-depth study of the heterogenous relationship between user 
perceptions – taking into account their attitudes towards factors such as information, privacy, 
control – and response. In this, it focuses on the Belgian region of Flanders.  
 
In addition to the European reserves, Belgium requires 600 megawatts (MW) in its strategic 
reserve, introduced to cover structural shortages in generation during the winter periods [28,29]. 
Separately, new legislation in Belgium is establishing the right for an independent aggregator to 
access consumers directly – this will help to provide an equal footing for all market actors; a good 
sign for the uptake of DR [11]. In recognition of these market changes at the national and European 
levels, Belgium has also hosted various smart grid projects [9], largely international and / or R&D 
undertakings. Among these, the only domestic DR demonstration – meant to test the feasibility of 
a broader rollout – was Linear, a smart grid trial in the region of Flanders that concluded in 2014 
[30].  
 
This paper analyzes the perceptions and behaviors of the households that had participated in the 
Linear field trial, to see how their attitudes and concerns relate to the flexibility they had offered 
during this trial. It employs the technique of quantile regressions to disaggregate participant 
responses to the trial and identify whether different levels of response were associated with 
different perceptions of and concerns with the project. Such a quantile regression approach has not 
often been used for electricity consumption analysis. Kaza [31] used a quantile regression analysis 
to show that while housing size matters for space conditioning, housing type has a more nuanced 
impact, and that the effects of various factors at the tails of the energy use distribution are 
substantially different than the average. Khanna et al. [32] conducted a quantile regression analysis 
of residential electricity consumption in China against socio-economic and demographic factors to 
                                                             
11 Richer households tend to consume greater amounts of electricity, as determined by for instance Vesterberg 
[22] and Silva et al. [23] 
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study the impacts of demand side management. Romero-Jordan et al. [33] found that in that Spanish 
context during the recent economic crisis, electricity consumption of medium-high income 
households was particularly responsive to price increases, whereas that of medium-low income 
households was more responsive to changes in income. 
 
However, no studies have used this approach to understand demand response from a behavioral 
perspective and thus guide the direction of the electricity market. By adopting this approach to not 
only dissect response, but also analyze this response in combination with users’ perceptions and 
attitudes, this paper provides more in-depth recommendations – offering unique perspectives drawn 
from an actual field trial – to inform a wider demand response rollout in the future. 
 
The contributions of this paper are then threefold: (i) It studies user responses and perceptions of a 
DR trial in combination; (ii) It undertakes a quantitative analysis of this DR trial, where previous 
studies have tended to study such trials qualitatively; and (iii) It applies the method of quantile 
regressions, for the first time in this field of study, to yield a more comprehensive analysis of the 
heterogenous relationship between response and perception, by demonstrating how some 
percentiles of response are more affected by specific attitudes than other percentiles. 
 
This article is set up as follows: Section 3.2 provides an introduction to the Linear project – from 
which we obtained our data – and lists the project findings. Section 3.3 outlines the research method 
as well as the design for obtaining and processing the data. Section 3.4 lists the statistical results 
from our regression analyses, while Section 3.5 offers an interpretation and discussion of these 
results. Section 3.6 concludes with recommendations. 
 
3.2 The Linear Smart Grid Trial 
 
Linear was a demonstration project on smart grid technologies that ran for three years from 2011 
until 2014, recruiting participants in three phases between 2011 and 2012, in the Belgian region of 
Flanders. It aimed to activate residential demand response to facilitate the integration of renewable 
energy sources in the network. One of the main project objectives was to develop the required 
technical solutions to realize a breakthrough in DR [34]. 
 
The field trial within the project ran for a year; it was based on voluntary participation, and 240 
households were involved. The families that participated were already favorably disposed towards 
smart appliances and were thus not representative of the population. Further, Linear recruited 
families that lived in owned houses, rather than rentals and / or apartments. The average 
participating household had four members, lived in a house built after 1980, and owned at least one 
television and laptop [34]. The project report [34] states that the incomes of participants were higher 
than the Belgian monthly per capita of 3445 euros [35], although the actual sample average was 
not available to the authors.  
 
Despite their positive attitudes, participants were unwilling to run any financial risk in the project, 
and most households were not willing to replace their existing appliances with smart ones as long 
as they were still usable. Additional incentives were therefore developed in order to get more users 
on board. These incentives, such as rebates and free tablets, cannot be reproduced for a full market 
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deployment, which – aside from sample representativeness – was acknowledged as a typical 
limitation that might hinder a successful full-scale rollout [34]. The unrepresentativeness of the 
sample combined with the mix of incentives offered to participants suggests that the trial had low 
external validity. In the process, however, it did yield important lessons on the barriers to entry.  
 
The Linear trial split the participants in two broad groups (see Table 3.1); for each group a different 
reward system was tested. Of the 240 participating families, 54 were exposed to time-of-use 
electricity pricing – they were subject to six rate categories per day, and the prices in these 
categories were communicated the day before. These 54 were provided with home energy 
management systems, sub-metering plugs, smart meters, and displays to help them with insights 
into their consumption.  
 
The primary focus of the trial however was on the remaining 186 families. These families were 
provided with homes energy management systems and 445 postponable smart appliances – washing 
machines, dishwashers, and tumble dryers – such that most families had all three appliances;12&13 
106 households were also equipped with smart meters. The 186 families received a fee of €1 per 
40 hours of flexibility – defined by Linear as the number of hours within which the appliance had 
to start after being switched on, in order to finish by the time pre-set by the users – that they offered 
through these appliances [34].  
 
 

Table 3.1: Linear Test Families 
Group Smart Meter No Smart Meter 
Smart Appliances 85 families 101 families 

 
Time-of-use Tariffs 21 families 33 families 

 
Source: Adapted from the Linear Consortium [31] 

 
 
The trial found that the response to time-based pricing was weak, while the acceptance of smart 
appliances turned out to be much higher. In total, the participants in the second group offered 
200,000 hours of flexibility with their 445 smart appliances, or an average of 450 hours per 
appliance across the year. There was no reported user fatigue, although technical issues were 
reported with the functionality of the appliances and the retrofitted communications architecture. 
Linear extrapolated the results of this field test to estimate that a full DR rollout in Belgium among 
white good appliances could lead to a maximum of 280 MW of flexibility being realized [34].  
 
The Linear project also conducted user surveys before and after the one-year field trial, to gauge 
the acceptance of, and shifts in attitudes with regard to, smart appliances in a residential 
environment. These surveys were designed based on the technology acceptance model that has also 
been used in other literature [36], and they were designed while minimizing cognitive burden to 

                                                             
12 Data on the distribution of these appliances was not available 
13 A limited number of households also received hot water buffers and electric vehicles; these were not 
considered in our analysis due to the small sample size 
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the respondents. The surveys focused on nine dimensions: (i) perceived safety, (ii) perceived 
maintained control, (iii) expected comfort maintenance, (iv) perceived expected costs, (v) 
perceived environmental friendliness, (vi) perceived ease of use, (vii) perceived usefulness, (vii) 
overall attitude, and (ix) intention to use / actual use of smart appliances. The dimension of overall 
attitude towards smart appliances was also based on survey questions, and was not an aggregate of 
the other eight dimensions. Each question in the survey required a Likert scale-type response, and 
mean scores were calculated for each dimension on a 5-point scale. 
 
The 155 responses received by the smart appliance users14 showed – as seen in Figure 3.1 – that 
participants’ attitudes towards smart appliances became slightly less favorable over the course of 
the trial, across all the dimensions measured. These drops were induced partly due to problems 
experienced during the field trial; for instance, 55.2% of the participants experienced poor 
functionality of the system. This point suggests that the trial implementation wasn’t completely 
successful, based on some dimensions. However, Linear concluded that the enthusiasm before the 
start of the field trial shifted to a more nuanced, yet still positive, opinion about the appliances by 
the end of the trial.  
 
 

Figure 3.1: Mean Scores on Attitude Measurements Before (T1) and After (T2) Trial 

 
Source: Unpublished Linear User Acceptance Report 

 
 
In this way, Linear’s analysis provided initial insights into user attitudes regarding the field trial by 
aggregating the survey responses. This current paper complements and builds upon Linear’s 
findings by disaggregating these responses and coupling them with the results of the trial. 
 
 
 
 

                                                             
14 The results of the surveys are captured in an unpublished user acceptance (UA) report. The authors of this 
paper were able to access the UA report as well as a limited set of the underlying data, though they were not 
provided with the underlying methodology for assigning scores to the attitude measurements 

1

2

3

4

5

M
ea

n 
Sc

or
e

T1 T2



 

 
71 

 

3.3 Methods 
 
3.3.1 Research Method: Quantile Regression 
 
The standard ordinary least squares (OLS) model is commonly used because of its advantages: it 
is easy to use and analyze, it has wide applicability, and it yields estimates that are unconditional. 
At the same time however, it has a number of inherent limitations. First, it summarizes the response 
across an entire dataset – thus assuming that one model is appropriate for the whole data – and 
cannot be customized to noncentral locations, which are often more interesting in a sample 
distribution than the central locations. Second, the model assumptions are often not realistic; for 
instance, sample distributions are often not normal and / or are homoscedastic. Third, the OLS 
model can be heavily influenced by the presence of a few outliers in the sample [37].  
 
Conditional quantile modeling, or quantile regression (QR), replaces the least squares estimation 
of OLS with least absolute distance estimation, to estimate the relationships between a response 
and a set of covariates for specific quantiles (or percentiles) of the response distribution. While the 
linear regression model specifies the change in the conditional mean of the dependent variable, 
subject to a change in the covariates, the QR model specifies changes in its conditional quantile – 
where the 50th quantile is the median. Since multiple quantiles can be modeled, it is possible to get 
a more complete understanding of the response distribution. Further, since outliers can be isolated 
into the top or bottom quantiles, QR estimates are robust against them [37,38]. 
 
The pth quantile denotes that value of the response below which the proportion of the sample 
population is p. Thus, similar to a standard OLS model, which takes the form in Equation (1), a QR 
model, for the pth quantile, takes the form shown in Equation (2). Thus in the QR model, the 
coefficients are quantile-specific. 
 

yi = β0 + β1x1i + … + βjxji + εi              (1) 
 

yi = β(p)
0 + β(p)

1x1i + … + β(p)
jxji +ε(p)

i       (2) 
 
Where 
 yi = Response variable for ith observation 
 βj = Model coefficient for jth predictor variable 
 xji = jth predictor variable for ith observation 
 εi = Error term for ith observation 
 
However, while the OLS coefficients are determined by taking those values of the parameters that 
minimize the sum of squared residuals, the QR coefficients are determined by taking those values 
of the parameters that minimize the weighted sum of absolute residuals, as shown in Equation (3) 
below. This weighted sum gives asymmetric penalties for overprediction and underprediction, with 
asymmetry increasing as p approaches 0 or 1. It may be noted that the estimation of coefficients 
for each quantile regression is based on the weighted data of the whole sample, and not just the 
portion of the sample at that quantile [37].  
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∑ i:y≥x′β
(p)| yi – β(p)

0 – β(p)
1xi … – β(p)

jxji | + ∑ 
i:y<x′β

(1−p)| yi – β(p)
0 – β(p)

1xi … – β(p)
jxji |      (3) 

 
Unlike OLS, the QR coefficients do not have a closed-form solution, and Equation (3) is instead 
solved using linear optimization algorithms, such as the simplex method. However, the quantile 
regression estimator is asymptotically normally distributed [37]. 
 
3.3.2 Research Design: Data and Pre-processing 
 
The underlying data from the Linear field trial was provided by VITO, the Flemish Institute for 
Technological Research. This data included, for each participating household, (i) demographics for 
the head of the family – age and gender, (ii) participation details, such as whether the participants 
were given smart appliances or on ToU tariffs, (iii) responses to the pre-trial and post-trial attitude 
surveys, and (iv) responses to the field trial, in terms of hours of flexibility and bonuses awarded. 
However, much other data from the trial, particularly about the sample constituents, was not 
disclosed to us for confidentiality reasons. 
 
The authors processed this data as follows: (i) translated the data from Flemish Dutch into English; 
(ii) compiled and cross-referenced the data from across various databases provided by VITO; (iii) 
filtered out questions that were open-ended, rather than numerical, scaled, or binary in response; 
(iv) removed questions that were unrelated to user behavior or response; and (v) coded the Likert 
scale responses into categorical variables to enable statistical analysis.  
 
The analysis was conducted in the statistical software R. Since the focus of the Linear trial was on 
smart appliance users – the sample of users on ToU tariffs was smaller, and the response to smart 
appliances turned out to be stronger in the field trial – this analysis also focuses on the same group, 
and the sample thus consisted of the 155 smart appliances users who had completed Linear’s user 
surveys. The total hours of flexibility offered by each household across the duration of the trial was 
assigned as the response variable15. 
 
Existing literature – such as the studies featured in Section 3.1.2 – suggests that household response 
to, and even willingness to participate in, DR programs is related to factors such as pricing 
considerations, awareness of the benefits of DR, presence of information feedback systems such as 
smart meters or in-home usage displays, privacy concerns relating to smart appliances and meters, 
confidence in the associated technologies, impacts on convenience relating to the operability of 
appliances, and respondents’ psychological profiles, such as their attitudes towards the 
environment and preferences for loss and / or risk aversion. Based on the literature, the analysis for 
this paper assumed response to be a generalized function of the following:  
 

Response = f (Pricing, Knowledge, Feedback, Privacy, Technology, Convenience, 
Respondent profile)       (4) 

                                                             
15 Flexibility was calculated within the Linear trial as the number of hours within which the appliance had to start 
after being switched on, in order to finish by the time set by the users, i.e. the programmable delay. While users 
could switch on their appliances at any time, independent of peak or off-peak periods of consumption, the 
maximum programmable delay in any use cycle was 24 hours 
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The response variable was thus regressed separately on various combinations of 40 predictors, 
which are listed in Appendix 3-A. These predictors included available demographic details, and 
also the scale-based responses to questions in the attitude surveys that broadly gauged 
environmental attitudes, financial considerations, perceptions of inconvenience, information needs, 
privacy concerns, attitudes towards technology, and perceptions of actual response and behavior 
change.  
 
Despite framing a hypothesis, we reiterate that this was an exploratory analysis that was testing 
different regression models on the same sample, rather than confirming the same model on different 
samples – i.e. conducting multiple comparisons. Consequently, there was no significantly inflated 
risk of Type I errors and we thus did not adjust the p-values, more so since that would increase the 
risk of Type II errors [39]. 
 
The analysis included both OLS and QR models in order to gauge overall model fit as well as 
explore the differences in results between the two approaches. As mentioned above, responses to 
the scale-based questions were treated as categorical variables, and their 5 responses levels were 
coded into 4 dummy variables, capturing the responses from “No” (Level [2]) to “Completely” 
(Level [5]). The coefficients for these four categories are relative to the responses at the first level 
(“Not at all”).  
 
3.4 Results 
 
Figure 3.2 illustrates the distribution of the response variable, i.e. the total flexibility per household 
across appliances through the year. It is seen that the distribution is skewed to the right with a long 
tail. The gaps in distribution highlight the existence of outliers in the sample, which are likely to 
bias OLS results. This indicates that quantile regression can yield more accurate insights about the 
trial than traditional center-weighted statistics. 
 
 

Figure 3.2: Histogram of Total Hours of Flexibility per Household across the Trial 

 
 

N
um

be
r o

f H
ou

se
ho

ld
s 

Total Hours of Flexibility (h) 



 

 
74 

 

Following the steps detailed in Section 3.3, the predictors listed in Table 3.2 were together found 
to have the best fit for both the OLS and QR models, out of the 40 predictor variables tested.  
 
 

Table 3.2: Predictor Variables in Final Model 
# Question Type Levels Notation 
1 Respondent age Continuous - Age 
2 To what extent do you agree with the 

statement, ‘The use of smart appliances did not 
seem to benefit me’ 

Categorical 5 SA_NBenefits 

3 To what extent do you agree with the 
statement, ‘The use of smart appliances made 
me work more efficiently’ 

Categorical 5 SA_Efficient 

4 To what extent do you agree with the 
statement, ‘I made use of my smart appliances’ 

Categorical 5 Used_SA 

5 Would subsidies play a role in deciding to buy 
smart appliances or an energy management 
system 

Categorical 5 Buy_wSubsidies 

6 Would the ability to operate appliances 
remotely play a role in deciding to buy smart 
appliances or an energy management system 

Categorical 5 Buy_wRemote 

7 To what extent do you agree with the 
statement, ‘Our behavior changed as the field 
test progressed’ 

Categorical 5 Behavior 

 
 
This lends credibility to the hypothesized relationship between response and the respondent details 
/ attitudes that was detailed in Equation (4), and points to the desirability of conducting further 
confirmatory analyses. The relationship’s quantile-dependent form is summarized as: 
 

Flexibility = β(p)
0 + β(p)

1(Age) + β(p)
2(SA_NBenefits) + β(p)

3(SA_Efficient) + β(p)
4(Used_SA) +  

β(p)
5(Buy_wSubsidies) + β(p)

6(Buy_wRemote) + β(p)
7(Behavior) + ε    (5) 

 
Table 3.3 provides some initial descriptive statistics for the two continuous variables in the model 
– the hours of flexibility that serves as the response variable, and the respondents’ ages – as well 
as the response distributions for the six categorical predictor variables that were drawn from the 
survey. 
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Table 3.3: Descriptive Statistics and Response Distributions 
Continuous Variable Count Mean Std. Dev Median Range Skewness 

Hours of flexibility 155 1015 1383 522 8657 2.70 
Age 155 47 10 47 43 0.41 
Categorical Variable  Responses per Category 

1: Not at all 2: No 3: Neutral 4: Yes 5: Completely 
SA_NBenefits 3 28 15 65 42 
SA_Efficient 8 18 59 51 16 
Used_SA 0 7 9 79 57 
Buy_wSubsidies 3 5 23 71 50 
Buy_wRemote 4 20 26 73 30 
Behavior 12 41 34 60 7 

 
 
The mean hours of flexibility offered by the smart appliance users – across appliances per 
household – were 1015, while the median value was 522. These numbers complement Figure 3.1 
in suggesting that the response distribution is skewed to the right with a long tail, as also evidenced 
by the high coefficient of skewness, of 2.70. 
 
The average age of the users was distributed normally, with the mean and median being equal in 
value at 47 years. The youngest user was 28 years old while the oldest was 71, resulting in a range 
of 43 years across the sample. 
 
Among the categorical variables, in most cases, users were generally in agreement with the 
questions asked, with few respondents falling in the first two response categories. This distribution 
suggests a few points regarding user perceptions. First, most users did not feel that using these 
appliances had offered any significant benefits to them. Conversely, users were neutral or generally 
agreed that using smart appliances increased their efficiency. Most participants agreed that they 
made use of their smart appliances, although their responses to the last question suggest that they 
didn’t strongly feel like their behavior had changed through the course of the field test. However, 
among participants with smart appliances, most claimed they had changed their behavior to some 
extent. Lastly, participants did largely agree that the availability of subsidies, and the ability for 
them to operate appliances remotely, would influence their decision to buy smart appliances and 
energy management systems. 
 
The OLS results for this model – regressing total hours of flexibility across the duration of the field 
test on the seven questions in Table 3.2 – are captured in Table 3.4 below. The R-square of this 
model is 0.442 while the adjusted R-square is 0.333. Diagnostics for this OLS model are captured 
in Appendix 3-B and suggest that the data is not normally distributed. Further, a studentized 
Breusch-Pagan (BP) test16 yields a test statistic of 37.765 at 24 degrees of freedom for a p-value of 
0.037, confirming the presence of heteroscedasticity.  

                                                             
16 The studentized BP test uses different test statistics from the original BP test. If ξ∗ is the studentized test 
statistic and ξ^ is the original one, then ξ^ = λξ∗, where λ = Var(ε2)/2Var(ε)2. The asymptotic power of the original 
BP test is sensitive to the kurtosis of the distribution of ε, and the significance levels of the test are correct only 
in the special case of Gaussian kurtosis. Thus, the studentized BP test is more robust than the original one [40]  



 

 
76 

 

 
Given the non-normal nature of the distribution and the existence of heteroscedasticity, it is 
appropriate to further disaggregate and analyze the data, departing from center-weighted averages. 
We thus conduct a quantile regression analysis at five quantiles, the 10th, 25th, 50th, 75th, and 90th – 
where higher quantiles represent the more flexible segments of the sample – in which we use the 
bootstrap measure17 for standard errors. The results of the quantile regressions are also included in 
Table 3.4. The quantile-specific pseudo R-square [41] indicates that the model is a good fit, and 
that it is better at explaining higher quantiles. The accompanying Akaike information criterion 
(AIC) values – which impose penalties for model overfit – further indicate that the fit is at least 
comparable to the OLS model. Both the R-square and AIC values were better for this model than 
for other combinations of predictors tested. 
 
It may however be noted that some of the variables were included in this model, even though their 
quantile coefficients are not statistically significant, because they were significant in the OLS 
model and because their retention improved the model fit. The trends among these retained 
coefficients may be validated through future research on larger samples. It is also mentioned that 
in any regression with categorical variables of ‘n’ levels, the coefficients of the remaining (n-1) 
levels are estimated relative to the first level – for this reason, the table below shows coefficients 
for only the remaining four levels of each categorical variable18. 
 
  

                                                             
17 The bootstrap method uses Monte Carlo simulations to do a repeated random sampling with replacement 
within the sample. Bootstrapping is asymptotically more accurate than the standard intervals obtained using 
sample variance and assumptions of normality. It is better for smaller sample sizes, and is preferable in general 
because it makes no assumptions about the distribution of response [37] 
18 The variable “Used_SA”, discussed in Section 3.4 below, was categorized with 4 levels, because it had no 
responses in the first level (“Not at all”). Its coefficients are relative to responses at the second level (“No”) 
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Table 3.4: O
LS and Q

uantile Coefficients, w
ith G

oodness-of-fit Statistics 19 
 

90th Q coeff 

2147.49 

-41.41 (.) 

-3079.53 * 

-2955.84 (.) 

-3438.31 * 

-3334.28 * 

-89.61 

-368.36 

1140.65 

597.98 

-- 

-699.24 

-401.72 

1805.17 

75th Q coeff 

3198.89 

-21.58 

-3127.65 * 

-2491.74 (.) 

-3067.76 * 

-3143.49 * 

-1001.04 

-941.85 

-645.77 

-897.70 

-- 

164.87 

463.49 

1572.56 (.) 

50th Q coeff 

2995.62 

-7.03 

-2590.55 * 

-2693.86 * 

-2594.28 * 

-2468.95 * 

-1114.93 

-1013.82 

-842.32 

-694.22 

-- 

17.10 

153.48 

484.76 

25th Q coeff 

3058.07 (.) 

-5.07 

-2162.42 * 

-2350.66 * 

-2204.02 * 

-2147.60 * 

-786.42 

-836.73 

-723.88 

-623.94 

-- 

-36.42 

148.63 

384.53 

10th Q coeff 

2837.58 (.) 

-3.09 

-2594.54 * 

-2526.51 * 

-2529.86 * 

-2406.70 * 

-323.12 

-558.02 

-503.29 

-250.89 

-- 

-28.85 

335.19 

345.86 

OLS coefficients 

2209.27 

-20.13 (.) 

-2724.35 *** 

-2402.60 ** 

-2793.67 *** 

-2671.18 *** 

-580.58 

-1027.94 * 

-634.96 

-412.54 

-- 

53.09 

672.40 

1341.74 * 

Variable 

Intercept  

Age 

SA_NBenefits – [2] 

SA_NBenefits – [3] 

SA_NBenefits – [4] 

SA_NBenefits – [5] 

SA_Efficient – [2] 

SA_Efficient – [3] 

SA_Efficient – [4] 

SA_Efficient – [5] 

Used_SA – [2] 

Used_SA – [3] 

Used_SA – [4] 

Used_SA – [5] 

 C
ontinued on next page 

       

                                                             
19 The codes for statistical significance of the coefficients are: P < 0.001: ‘***’|| P < 0.01: ‘**’|| P < 0.05: ‘*’|| 
P < 0.1: ‘(.)’  
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Table 3.4 (Continued) 
 

90th Q coeff 

7351.63 * 

4030.03 (.) 

3524.45 

4544.94 * 

1787.64 

1410.12 

219.94 

129.43 

-45.29 

759.10 

444.33 

45.73 

0.454 

2.609.456 

75th Q coeff 

2909.01 

2344.99 

2036.38 

2353.88 

980.66 

-299.72 

-463.80 

-599.14 

17.96 

185.64 

345.69 

1160.49 

0.364 

2.532.723 

50th Q coeff 

1879.83 

1186.21 

1179.12 

1326.43 

440.20 

-81.78 

-212.65 

-153.37 

69.75 

43.24 

11.16 

1425.85 (.) 

0.278 

2.456.699 

25th Q coeff 

570.39 

130.39 

44.80 

105.48 

-106.56 

168.53 

57.64 

-50.38 

141.25 

61.82 

30.49 

1520.80 ** 

0.227 

2.397.410 

10th Q coeff 

219.13 

146.10 

109.80 

98.30 

-278.91 

-237.32 

-355.21 

-358.15 

335.76 

332.36 

307.33 

1378.07 ** 

0.194 

2.371.533 

OLS coefficients 

2772.37 ** 

1597.12 (.) 

1352.10 

1645.38 (.) 

564.86 

539.20 

-120.42 

-293.21 

492.11 

603.31 

1015.83 * 

1929.46 ** 

0.333 

2.529.573 

Variable 

Buy_wSubsidies – [2] 

Buy_wSubsidies – [3] 

Buy_wSubsidies – [4] 

Buy_wSubsidies – [5] 

Buy_wRemote – [2] 

Buy_wRemote – [3] 

Buy_wRemote – [4] 

Buy_wRemote – [5] 

Behavior – [2] 

Behavior – [3] 

Behavior – [4] 

Behavior – [5] 

Adjusted/Pseudo R2 

AIC Values 
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Figures 3.3-3.5 show how the coefficients of three different predictors (SA_NBenefits, 
Buy_wSubsidies, Behavior) vary across their quantiles. Each figure has four images, one for each 
dummy value of the variable. Thus for instance, Figure 3.3[a] shows how the quantile coefficients 
of response vary specifically for those respondents who somewhat disagreed with the statement, 
‘The use of smart appliances did not seem to benefit me,’ while Figure 3.3[b] shows the coefficients 
for respondents who were neutral to the same statement. 
 
In these figures, the y-axis shows the value of the coefficient, while the x-axis shows the quantile. 
The horizontal red lines denote the OLS coefficients, which are of course constant across quantiles. 
The black lines indicate the quantile coefficients, and these are dotted at the quantiles we measured, 
the 10th, 25th, 50th, 75th, and 90th. The figures are meant to visually highlight the divergences in the 
quantile coefficients from their OLS counterparts, and rely on the estimates in Table 3.4. 
 
 

Figure 3.3[a-d]: Plotted OLS and QR Coefficients for Perceived Smart Appliance Benefits 
(SA_NBenefits) by Quantile 

       [a] Category 2     [b] Category 3 

 
 
 

   [c] Category 4     [d] Category 5 

 
 
 
 
The statement ‘The use of smart appliances did not seem to benefit me’ has large and negative 
coefficients in each category and quantile, meaning that responsiveness was negatively related to 
this statement. The coefficients increase from the 10th to the 25th quantile, but then become more 
negative in general – they typically start higher than the OLS coefficients but end up lower among 
the more responsive participants. The higher categories (categories 4 and 5) are less negative at 
lower quantiles and more negative at higher quantiles, which possibly indicates a greater variation 
in flexibility at these levels.  
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Figure 3.4[a-d]: Plotted OLS and QR Coefficients for Role of Subsidies (Buy_wSubsidies) by 
Quantile 

  [a] Category 2     [b] Category 3 

 
 
 

  [c] Category 4     [d] Category 5 

 
 
 
 
The question ‘Would subsidies play a role in deciding to buy smart appliances or an energy 
management system?’ has more respondents in the higher response categories. In general, these 
higher response categories have lower coefficients than the lower response categories. 
Additionally, the coefficients increase substantially from the lower to the higher quantiles, and are 
consistently different from the OLS coefficients.  
 
 
Figure 3.5[a-d]: Plotted OLS and QR Coefficients for Perceived Behavior Change (Behavior) by 

Quantile 
    [a] Category 2     [b] Category 3 

 
 
 

    [c] Category 4     [d] Category 5 

 
 
 
 
The bulk of responses to the statement ‘Our behavior changed as the field test progressed’ fall in 
the middle three categories. While the coefficients of these three categories are similar at the 10th 
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quantile, only those for category 2 (“No”) fall consistently as the quantiles increase, becoming 
negative at the 90th quantile. For the 3rd and 4th categories (“Neutral” and “Yes”), the coefficients 
fall until the median mark and then rise. In general though, they stay below the OLS coefficients, 
suggesting that outliers may have significantly influenced the OLS model in this case.  
 
3.5 Discussion 
 
The Linear trial was set up in a way that roughly approximated the recommendations from existing 
literature on DR design: it used appropriate appliances – such as washing machines and 
dishwashers – a key component of successful DR [18]; it provided enabling technologies such as 
smart meters and tablets [19]; and it enrolled participants using an opt-in approach, which leads to 
higher average responses than opt-out approaches, even though participation rates are typically 
lower [26]. Given this, the results broadly show that maximizing the response to residential DR 
programs would indeed require inducing changes in behavior – in different ways – among different 
households. These changes in behavior are closely linked with user perceptions of the benefits of 
smart appliances, and with considerations of convenience and cost. Further, age will be likely to 
affect flexibility and response and must thus be factored in as well.  
 
The results of both the OLS and the quantile regressions – for those predictor variables which had 
significant coefficients – are discussed in greater detail listwise below. 
 
3.5.1 Age  
 
In the OLS analysis, age has a negative coefficient, suggesting that in general, younger respondents 
are more likely to offer greater flexibility. This is in line with existing literature – such as Hauk et 
al.’s meta-analysis [42] – that states that younger populations tend to be more flexible in general 
and more comfortable with new technologies. Ota et al. [43] find that older populations have a 
lower electricity demand overall, which may also reduce their potential for flexibility. Yang et al. 
[44] use survey data from China to find that younger consumers are more likely to shift to ToU 
pricing programs than older ones. 
 
This result is further interpreted by the quantile analysis, which shows that respondent age doesn’t 
greatly affect response among the least flexible participants, but that there is a large negative 
relationship between age and flexibility among the highest quantiles. That is, age may not be a 
great predictor of inflexibility, but being younger does substantially increase response even among 
the most flexible respondents. For instance, among the least flexible 10% of users, an increase in 
age of one year saw a reduction of only 3 hours in total flexibility across the trial, but among the 
most flexible 10%, an increase in age of one year saw a reduction of 41 hours in total flexibility.  
 
This layering suggests that other concerns play a more significant role among the least responsive, 
rather than their age, and that a lack of response may therefore not be a function of such 
demographic variables. 
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3.5.2 Perceived Benefits from Using Smart Appliances  
 
Across the sample, participants were much less likely to offer flexibility if they perceived less of a 
benefit to using smart appliances. This extends existing findings [14,16], by demonstrating that not 
only do households want to better understand the potential benefits of DR, but that a DR program’s 
success hinges on this understanding. It also complements literature [19] on the actual enabling 
role of supporting technologies. 
 
Looking deeper, we see that at higher quantiles, the coefficients became more negative; i.e. among 
the participants who offered the greatest flexibility, a negative perception of the benefits of smart 
appliances tended to reduce flexibility much more than among those that offered the least 
flexibility.  
 
This result suggests that negative perceptions of the benefits of smart appliances are a big challenge, 
particularly among those who are otherwise likely to be more responsive to DR. However, it again 
suggests that population segments that are less likely to be responsive are less influenced by the 
perceived benefits of smart appliances, and may have other concerns that limit their response. 
 
3.5.3 Usage of Smart Appliances 
 
Most people claimed to have used their smart appliances at least to some extent, and a greater extent 
of use was, expectedly, correlated with offering higher flexibility. This corroborates findings from 
comparable trials, where households that regularly used the smart appliances were more likely to 
have shifted their electricity usage [45]. 
 
Although less clear among the top and bottom deciles of the respondents, the general trend of 
flexibility being correlated with extent of smart appliance usage was consistent, and the correlation 
was uniformly stronger at higher quantiles of flexibility.   
 
3.5.4 The Role of Subsidies in Deciding to Buy Smart Appliances 
 
Most respondents generally agreed that subsidies would indeed influence their decision to buy 
smart appliances. This aligns with the findings by Brent at al. [19] and Kessels et al. [21] about the 
role that financial savings can play on DR implementation.  
 
Respondents who were more influenced by subsidies were also less likely to offer flexibility in 
general, although the coefficients in the highest quantile of response deviated from this trend. 
Overall, it can be seen that the coefficients expectedly increase at higher quantiles.  
 
Thus among the least responsive participants, financial considerations were more inversely related 
with flexibility than among the most responsive. This suggests that – across the factors explored in 
this paper – price sensitivity is the main concern among less responsive populations. 
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3.5.5 Behavior Changes over the Course of the Field Test  
 
Respondents did not completely agree that their behavior had changed over the course of the field 
test, even though most of them had used their smart appliances. There was however a positive 
relationship between stated behavior change and actual flexibility.  
 
Among respondents who claimed that their behavior hadn’t changed, greater flexibility (i.e. at 
higher quantiles) was associated with decreasing coefficients, suggesting that they were less likely 
to have been among the most flexible. Among respondents who were neutral to somewhat 
agreeable on the behavior change, the flexibility tended to decrease towards the middle quantiles 
and increase rapidly towards the higher quantiles, suggesting that perhaps responses in those 
categories primarily populated the highest quantiles. 
 
These findings from the Linear DR trial cannot be directly compared with other trials, because most 
other trials have not combined DR demonstrations with a study of participant attitudes and 
behaviors. Further, we would exercise caution in generalizing the findings without additional future 
research, since the Linear trial was conducted with an unrepresentative sample and infeasible 
incentives, typical of many trials. Overall, however, our results strengthen and complement many 
of the general findings from existing literature, particularly via the OLS model.  
 
The quantile regression analysis further demonstrates that these findings are not uniformly 
applicable even within a limited sample, but are more nuanced, something that previous studies 
have not done. It reveals additional insights over the OLS model – and over existing literature – 
and demonstrates the variations in the determinants of flexibility, by showing that response is more 
affected (1) at the higher percentiles by factors such as age and perceived smart appliance benefits, 
and (2) at the lower percentiles by factors such as the availability of subsidies.  
 
The remaining factors from the surveys – such as the adequacy of consumption information, the 
impacts on convenience, and privacy – were not found to be significant, which is not in line with 
much existing literature [14,15,16,17]. This is possibly because of the considered design of the 
trial, or because the sample consisted of higher-income, pro-environment, early adopters of 
technology who opted to participate in it. 
 
The results however suggest that different strategies and incentives should be devised, customized 
to different population segments, in order to maximize the likelihood of success of future demand 
response programs.  
 
3.6 Conclusions and Policy Implications 
 
The European interconnected market needs 3 GW in the primary reserves it uses to avoid grid 
instability. At a national level, Belgium further needs 500-600 MW in its strategic reserve. Demand 
response can thus play a large role in promoting national and regional energy security, aside from 
helping with the grid integration of renewables. 
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Studies on demand response have thus far focused on regulatory updates, consumer access, 
balancing markets, and wholesale markets. But a key challenge for DR is increasing consumer trust 
and participation [46]. The Clean Energy package of 2016 does propose access to smart meters and 
better information, and Belgium in particular is rolling out smart meters nationwide in a phased 
manner, starting with prosumers. However, no concrete steps have yet been outlined – at the 
European Union (EU) or national levels – on how to increase consumer uptake of DR.  
 
This paper analyzes a concluded Belgian residential electricity demand response trial, using 
response data from 155 participating families, coupled with accompanying surveys that were used 
to gauge these families’ attitudes to smart appliances. The objective of combining the two was to 
understand in detail how demand flexibility is correlated with users’ perceptions of and concerns 
with smart appliances, and to thereby offer specific recommendations to promote consumer 
participation in DR. The paper relies on the method of quantile regression analysis to dissect user 
responses and see how these perceptions and concerns vary at different levels of response. 
 
The results showed that there is a clear link between modest changes in user behavior and the 
demand flexibility that can be realized. Thus, for future DR programs to be successful, 
policymakers should target small shifts in behavior – avoiding the excess changes that might result 
in user inconvenience – and incorporate these effects into conventional estimates of the economic 
feasibility of such programs. 
 
Flexibility was also found to be linked to user perceptions of the benefits of smart appliances. It is 
particularly important that groups that are more likely to be responsive should perceive smart 
appliances as being beneficial. Thus, in order to induce the aforementioned behavioral changes, 
DR implementation should be enabled by fully functional technologies and could accompanied by 
awareness campaigns among such groups on the benefits of smart appliances. 
 
Respondents were found to be sensitive to an availability of subsidies for the smart appliances, 
particularly among less flexible groups, suggesting that either they may perceive such appliances 
as being too expensive or they may be more sensitive to prices. Uptake of such DR programs among 
less flexible groups may thus be maximized by offering financial incentives, or by explaining the 
potential for such programs to lead to financial benefits for the users. 
 
Lastly, age was found to have an inverse relationship with the potential for demand flexibility 
among more responsive groups, possibly because younger participants were more comfortable with 
technology, more aware of environmental issues, or more likely to have a smaller family. Thus, 
while younger respondents may represent low-hanging fruit to realize some of the benefits of DR, 
in the longer term, more effort should be invested into getting older segments involved in such 
programs. Among less responsive groups, age was not as significant of a factor, suggesting that 
these segments may have other concerns that might be better addressed by the steps outlined above. 
 
In this way, the overall analysis complemented findings from existing research and then uncovered 
some of the complexities hidden in these general findings. However, the results in this paper are 
drawn from a limited sample of 155 families in Flanders, Belgium. Further, the Linear trial project 
was not representative, nor was it designed in a way that could be feasible for a broader rollout. 
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Lastly, we note that respondent attitudes may have been influenced by their engagement in the trial, 
while their response may in turn have been influenced by their changing attitudes, in a form of a 
bi-directional causality. Future research should look at a broader and more representative sample20 
with greater focus on how to build customer engagement and reduce resistance to participating in 
DR, by looking at the concerns of each segment of the target population.  
 
For now, Denmark and Germany are leading on projects focusing on consumer engagement in 
Europe [46]. In the US, consumer behavior studies are examining customer participation in DR, 
and the influence of enabling technologies on customer response [47,48]. Building on this current 
study, a deeper look into the relationships between customer response and perceptions, in a broader 
range of regions, would greatly help with the implementation of the EU Clean Energy package and 
the ensured security of energy supply.   

                                                             
20 Keeping in mind however that rollouts often proceed in a phased manner, with an initial focus on early 
adopters such as those who participated in the Linear project 
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Appendix 3-A: Predictor Variables 
 
The 40 predictor variables that were used in the analysis – and were drawn mainly from the 
surveys – are listed in Table 3-A.1 below. 
 
 

Table 3-A.1: Predictor Variables 
Question  Variable Type 
Gender Nominal 
Age Continuous 
During the field test, Linear showed variable rates. To what extent did you take these 
rates into account when using the devices? 

Ordinal 

Were there certain household routines or habits that restricted flexibility?  Nominal 
During Linear you had a tablet available. Was the information you received through 
the tablet about your energy consumption sufficient? 

Nominal 

Was the information from the device/controller displays sufficient? Nominal 
How frequently did you check your smart meter? Ordinal 
Is the following information easy to read from the smart meter display? - Current 
consumption 

Nominal 

Is the following information easy to read from the smart meter display? - Rate type Nominal 

Do you believe that you consumed less thanks to this smart meter in your home? Nominal 

Were you worried when using your appliances about your privacy? Ordinal 
Did you experience a loss in comfort by participating in Linear?  Ordinal 
To what extent do you agree with the following statements: Our behavior changed as 
the field test progressed 

Ordinal 

To what extent do you agree with the following statements I would have liked more 
information about when the flexibility that I give is used 

Ordinal 

To what extent do you agree with the following statements: The use of smart 
appliances seems to have no benefits  

Ordinal 

To what extent do you agree with the following statements: Smart appliances are 
easy to work with 

Ordinal 

To what extent do you agree with the following statements: The use of smart 
appliances makes me work more efficiently 

Ordinal 

To what extent do you agree with the following statements: I use the various features 
of smart appliances 

Ordinal 

 
Continued on next page 
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Table 3-A.1 (Continued) 
Question Variable Type 

To what extent do you agree with the following statements: I made use of my smart 
appliances 

Ordinal 

To what extent do you agree with the following statements: I questioned the safety of 
smart appliances (eg risk of fire) 

Ordinal 

To what extent do you agree with the following statements: I think smart appliances 
allow too little control to the user 

Ordinal 

To what extent do you agree with the following statements: I doubt these smart 
appliances will be more environmentally friendly  

Ordinal 

What factors might play a role in deciding to buy smart appliances or an energy 
management system? - Environmental considerations 

Ordinal 

What factors might play a role in deciding to buy smart appliances or an energy 
management system? - Savings (€) 

Ordinal 

What factors might play a role in deciding to buy smart appliances or an energy 
management system? - Subsidies 

Ordinal 

What factors might play a role in deciding to buy smart appliances or an energy 
management system? - Ability to operate appliances remotely 

Ordinal 

What factors might play a role in deciding to buy smart appliances or an energy 
management system? - Experimenting with new technology 

Ordinal 

What factors might play a role in deciding to buy smart appliances or an energy 
management system? - Greater stability of energy supply 

Ordinal 

Pre-trial scores on Safety Ordinal 
Pre-trial scores on Comfort Ordinal 
Pre-trial scores on Control Ordinal 
Pre-trial scores on Cost Ordinal 
Pre-trial scores on Privacy Ordinal 
I can generally work with high-tech products Ordinal 
New technology is often too complex to be useful Ordinal 
Technology gives people more control over their daily lives Ordinal 
Technology makes me more efficient in my work Ordinal 
Changes to mean scores on attitude Ordinal 
Total installed PV power (kWh) Continuous 

Mean scores on Perceived environment friendliness Ordinal 
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Appendix 3-B: Diagnostics for Model OLS Regression 
 
Diagnostic plots for the OLS regression, for the model captured in Equation 5, are provided in 
Figure 3-B.1 below. 
 
 

Figure 3-B.1[a-d]: OLS Diagnostic Plots 

 
 
 
These plots show that the residuals decrease as the fitted values increase, that the data is right-
skewed, and that the variance might not be equal, although there are no influential cases that fall 
outside of Cook’s distance lines. Overall, the data is not normally distributed or homoscedastic. 
 
Chi-squared tests of correlations among the categorical variables summarized in Table 3.2 show 
correlations between questions 2 (SA_NBenefits) and 4 (Used_SA), and between questions 3 
(SA_Efficient) and 4 (Used_SA). However, a check for multicollinearity among the variables in 
Table 3.2 yields the generalized variance inflation factors (GVIFs) outlined in Table 3-B.1 below. 
The low values indicate that collinearity is within acceptable limits in this model. 
 
 

Table 3-B.1: Test for Multicollinearity 
Ques GVIF Df GVIF^(1/(2*Df)) 
1 1.379 1 1.174 
2 2.340 4 1.112 
3 2.773 4 1.136 
4 2.614 3 1.173 
5 2.034 4 1.092 
6 1.721 4 1.070 
7 1.970 4 1.088 
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Estimating Acceptability: Load Controls in a Developed 
Country            4. 
 
Chapter based upon: Srivastava, A., Van Passel, S., Kessels, R., Valkering, P., & Laes, E. Reducing winter 
peaks in electricity consumption: A choice experiment to structure demand response programs. Working 
paper 
 
4.1 Introduction 
 
The electricity sector generates up to 30% of global greenhouse gas emissions [1]. At the same 
time, increasing electricity consumption – coupled with an ageing grid infrastructure – presents a 
challenge for energy security. To manage this, the European electricity market needs 3 gigawatts 
(GW) in its primary operating reserve alone21 [2]. 
 
Demand response (DR) programs are a potential avenue to aid with the grid integration of 
renewables, and with improving energy security [2,3]. The European Commission (EC) estimates 
a total response potential of 160 GW by 2030, with around 40% of this potential for flexibility 
coming from the residential sector [4], although achievable potential is likely lower [5]. DR is thus 
being promoted through enabling policy frameworks and trial programs in many European 
countries, particularly in the residential sector [6]. 
 
However, the introduction of DR in the residential sector has had mixed results. Some studies have 
found their implementation to be successful. For instance, Bartusch et al. [7] found through an 
analysis of a time-of-use (ToU) pricing pilot and accompanying interviews that households in 
Sweden do indeed act on intrinsic price signals by decreasing demand in peak periods and shifting 
electricity use to off-peak periods. Faruqui and Sergici’s synthesis of 15 heterogenous DR trials 
and implementations in the US and Canada [8], and a UK government review of 30 varied DR 
trials in various countries [9], also found that households do respond to price changes, although the 
magnitude of response depends on several factors. 
 
However, on other occasions, varying consumer attitudes have limited the responsiveness to such 
programs [10]. For instance, consumers were found to be less price-sensitive when they were more 
concerned about minimizing their inconvenience and discomfort, or about privacy and safety 
[11,12,13]. Hall et al. [14] identified  – using a random sample of respondents with higher rates of 
employment than the population average – that households are open to ToU pricing but want more 
information to understand the potential benefits of DR. Similarly, Brent et al. [15] reviewed a 
number of field experiments in dynamic pricing and stated that knowledge about consumption can 
maximize the effectiveness of time-varying pricing, and that the availability of enabling technology 
increases the effectiveness of such pricing. 
 
Still other studies have offered conflicting findings, which suggest that household preferences are 
not homogenous and can depend on the structure of the DR program. For instance, the Irish energy 

                                                             
21 An operating reserve is the spare generating capacity available to meet demand in case of a sudden need. 
Specifically, the European primary reserve is meant for frequency stabilization in the event of grid imbalances 
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regulator [16] found through a smart metering trial among a representative sample of 5000 
households that ToU tariffs reduced electricity usage, and that higher-consuming households 
delivered greater reductions. However, Gyamfi et al. [10] reviewed pricing-based DR literature and 
stated that a high number of households – particularly the richer ones – did not actually respond to 
price signals. Further, Srivastava et al. [17] found through a meta-analysis of 32 DR initiatives that 
success in DR was also related to the socio-economic contexts around their implementation.   
 
There is an increasing focus in research on understanding context-specific consumer preferences 
and behaviors, and determining how they affect response to DR programs [18]. Existing research 
into DR programs has however made limited use of stated preference approaches. Ericson [19] 
estimated a discrete choice model – using existing opt-in data from a critical peak pricing (CPP) 
experiment in Norway – to understand the bases on which consumers choose between tariffs. Buryk 
et al. [20] used a web-based labelled discrete choice experiment (DCE) using convenience sampling 
– varying only the price attribute – to determine whether disclosing the environmental and system 
benefits of dynamic tariffs could increase customer adoption. Pepermans [21] used a DCE with 
snowball sampling to assess the extent to which consumers in Flanders, Belgium would use smart 
meters as an enabling technology, although the design did not include dynamic pricing schemes 
and did not consider the likely correlations between cost savings and impacts on comfort. Other 
studies [22,23,24,25] have used choice experiments to understand preferences for other aspects of 
electricity generation and provision. Current choice modeling research has not focused however on 
the actual structuring of DR programs; such an approach would allow the estimation of a monetary 
value of the different attributes of DR programs, thereby helping better structure such programs in 
the future. 
 
4.1.1 Opportunity for Demand Response in Belgium 
 
There is an interest in Belgium in implementing DR in the residential sector, and the national 
transmission system operator is exploring ways to reward flexible consumers with lower energy 
bills [26]. Such flexibility is particularly important during the winter months, in the short term, for 
two reasons. The first is on the demand side: Electricity demand typically peaks in the winter 
months, reaching up to 14,000 megawatts (MW), and is about 2000 MW higher than in the summer 
[27]22. On the supply side, Belgium has been largely reliant upon nuclear power plants (NPPs) – 
Figure 4.1 shows the country’s generation mix – which are old and unreliable; between 2010 and 
2014, electricity generation fell by 24%, primarily because of extensive outages at its NPPs [27], 
although it has since recovered. 
 
 
  

                                                             
22 The residential sector comprised about 23.1% of total consumption [27] 
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Figure 4.1: Shares of Electricity Generation in Belgium in 2014 

 
Source: International Energy Agency [27] 

 
 
Although Belgium will phase out its NPPs over the medium to long term [28,29], there is a short- 
to medium-term risk to the security of supply due to the possibility of further outages, particularly 
during the winter months. Reducing winter peaks in demand would reduce the need for costly 
peaking generation and would also help manage the markets in case of such outages.  
 
4.1.2 Scope of Paper 
 
This paper uses a stated preference approach to estimate a monetary value, to consumers, of 
different attributes of DR programs. It conducts a DCE in the Belgian region of Flanders to gauge 
respondents’ willingness to enroll in a winter DR program in return for a monetary compensation. 
In this way, the paper examines consumer preferences for electricity contracts in the Belgian 
context. To our knowledge, previous attempts to structure DR programs have not taken consumer 
preferences into account, and choice experiments have not been used to study consumers’ 
willingness to shift electricity consumption. Thus, the paper fills critical gaps in research with an 
aim to aid in structuring a Belgian DR program that could reduce the winter peaks in electricity 
demand in the short- to medium-term.  
  
4.2 Methods 
 
4.2.1 Discrete Choice Experiments 
 
DCEs are widely used to study people’s preferences for certain attributes of products or services in 
different applied fields such as marketing, transport, health economics, and environmental 
economics. They are an attractive tool to value non-market attributes of goods and services or 
derive their non-consumptive values. They have not however been used in understanding 
preferences for DR programs. 
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A DCE offers respondents several choice sets with a number of alternatives in each choice set, 
where each alternative is a combination of levels of different attributes. For each choice set, 
respondents indicate the alternative they like better. The most statistically efficient design is 
determined by means of the Bayesian D-optimality criterion [30]. Such a design guarantees that all 
parameters can be estimated with maximal precision. 
 
DCEs rely on the assumption that choices between alternative options reflect the utility that accrues 
from those alternatives, as derived from random utility theory [31]. This framework states that the 
utility Uj associated with an alternative j is the sum of its systematic and random components: 
 

Uj = Vj + εj = xʹjβ + εj         (1) 
 
where Vj is the indirect utility function of alternative j, xj is the vector describing the attribute levels 
of alternative j, β is the vector of preference parameters representing changes in utility arising from 
changes in the attribute levels, and εj is the stochastic error term. 
 
The basic model used to analyze choice data is McFadden’s [32] multinomial logit (MNL) model. 
Given a choice set with J alternatives, the probability that an individual i ϵ {1,…, N} in the sample 
chooses alternative k is defined as : 
 

Pik(MNL) = exp (xʹikβ) / ΣJ
j=1 [ exp (xʹijβ)]        (2) 

 
The MNL model is restricted in that preferences are assumed to be homogenous across respondents. 
Therefore, current modeling practice has shifted toward the more flexible panel mixed logit (PML) 
model that accounts for heterogeneous preferences across respondents and correlation across 
repeated choices from the same respondent [33]. This model assumes a distribution of preference 
weights across the sample reflecting differences in preferences among respondents. This means 
that, unlike the MNL model, which estimates only the mean preference effect of an attribute level, 
the PML model yields both a mean effect and a subject standard deviation denoting the individual 
variation around it. Formally, the mixed logit probabilities are the integrals of standard logit 
probabilities over a density of random parameters as denoted by  
 

Pik(PML) = ∫ Pik(MNL).f(β).dβ           (3) 
 
where f(β) is a density function. To estimate the random parameters, we use the hierarchical Bayes 
(HB) technique in the JMP 14 platform – based on 10,000 iterations, with the last 5000 used for 
estimation – under the assumption of normally distributed preference parameters without 
correlation between attributes. These estimated random parameters model the unobserved 
heterogeneity in the respondents’ preferences.  
 
The marginal willingness to accept (WTA) a compensation for an attribute A, if utility is linear in 
the preference parameters, is measured as its preference weight divided by the marginal utility of 
money M, where the latter is the negative of the preference weight of the payment attribute. This 
is shown as : 
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WTPA = βA / (-βM)      (4) 
 

Lastly, for the policy simulations conducted in Section 4.3.3, which are based on the PML model 
estimates, we apply the approach used by Bennett et al. [34]. In these simulations, we estimate the 
predicted enrolment probability in a DR program k for respondent i in the sample by the binomial 
logit characterization: 
 

Pik(Enroll) = exp (βxxk + βyyik) / [1 + exp (βxk)]            (5) 
 
where βx is the vector of main-effect attribute parameters, βz is the vector of subject-effect 
parameters, and zik is the vector of user-specific variables. We then estimate the minimum payment 
ck for program k as the level of compensation at which the model predicts a targeted enrolment rate 
of R:  
 

ΣN
i=1 F [Pik(Enroll) | ck] / N = R              (6) 

 
where F [.] takes a value of 1 if Pik > 0.5, and 0 otherwise. For the policy simulations, we estimate 
ck for various values of R, i.e. we estimate the minimum payments necessary to predict various 
enrolment rates of sample households. 
 
4.2.2 Background Literature and Consultations 
 
In Belgium, a DR field test in 2011 called Linear secured the participation of 240 families in the 
region of Flanders, 54 of whom were introduced to ToU pricing while the remaining 186 were 
provided with three smart appliances: washing machines, dishwashers, and tumble dryers23. The 
field test revealed that response to the ToU pricing was weak, while the response to the smart 
appliance program was higher – an extrapolation of the results to the Belgian context was shown 
as offering the potential to deliver up to 280 MW of flexibility through such appliances alone 
[35,36]. 
 
We drew on the results of this field test and chose to adopt a design based on smart appliances, 
rather than on time-based pricing of electricity. This decision also took into account that only a 
30% share of the electricity tariff in Belgium is a variable component; imposing time-based pricing 
on this component would have a very limited impact on the overall tariff. For linguistic and cultural 
consistency, we focused our study on Flanders.  
 
We organized stakeholder consultations with sector experts, including representatives of the 
Flemish energy regulator (VREG) and the Flemish environment ministry (LNE), in designing the 
attributes and alternatives. Through these consultations, we validated that future DR programs 
would need to address the higher winter peaks in demand.  
 

                                                             
23 These smart appliances had a delayed start option – families were allowed to configure the start of their 
appliances at any time but with a maximum programmable delay of 24 hours, so long as they finished their cycles 
before the deadlines defined. The participants received a fee for the flexibility they offered 
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We focused on the same appliances that were used to deliver flexibility in the Linear field test – 
washing machines, dishwashers, and tumble dryers – for consistency. These three appliances are 
responsible for a considerable share (28%) of household electricity use [37]. We thus excluded the 
following categories of appliances: (i) other large appliance such as refrigerators, (ii) entertainment 
appliances such as televisions – we expected that respondents would be less flexible with these, 
(iii) standby and limited-use appliances such as coffee machines, (iv) heat pumps because of their 
low market penetration [38], and (v) heating systems since they are largely powered by natural gas, 
and not by electricity [39].  
 
In the DR programs in the DCE, the selected appliances would have the ability to be externally 
controlled, using controllers installed on these appliances, for a few hours per day at most. We 
selected the numbers of hours in which to control loads based on the average electricity load curves 
for Belgium, which we sourced from the national transmission system operator [40]. 
 
For the compensation, we determined that the annual average household electricity bill in Flanders 
was approximately €1000 [41], implying that the average monthly bill would be in the range of 
€80-€85. We then aimed to offer respondents amounts in the range of 10-30% of an average 
monthly bill as total compensation across the annual duration of the program.  
 
4.2.3 Pilot Choice Experiment 
 
Based on these inputs, we first conducted a pilot experiment consisting of 8 choice tasks, with each 
task offering two hypothetical DR programs. We created a Bayesian D-optimal design of 16 choice 
sets which we divided into two surveys of 8 choice sets. The design is Bayesian because it includes 
prior knowledge about the parameters – which improves the efficiency and accuracy of the design 
[42] – in the form of a parameter distribution in the design process24 [30]. We converted expected 
preference rankings of the attribute levels into prior mean values of our prior distribution, and 
allowed for a large amount of uncertainty around our expectations by specifying large prior 
variances. We then generated the designs in JMP 14.  
 
The structure and purpose of the DR program was explained to respondents before they were 
presented with the choice sets. Respondents who did not own a washing machine were not 
considered eligible for the DCE. Besides the two alternative programs, each choice set also 
included a ‘no-choice option’ allowing respondents to opt out from any of the presented programs 
and stay with their current consumption pattern.   
 
The pilot DCE questionnaire was circulated among author networks, and obtained 47 usable 
responses in total. The initial results – listed in Appendix 4-B – indicated that only the parameter 

                                                             
24 To some extent, the results depend on the prior information — one advantage of the Bayesian approach is 
that it allows the incorporation of  this information, which is useful and necessary. It is nevertheless helpful for 
the interpretation of the results to disentangle the role of prior information. While studies could provide 
comparisons of prior and posterior distributions, these statistics are not necessarily very informative about the 
relative importance of the prior. They require repetitive re-runs of the model with randomly modified prior 
parameter values. Other formal approaches to prior sensitivity analysis are not commonly used due to their high 
computational costs [43]. Müller [44] proposes additional statistics to clarify the role of prior information, 
although these are not yet widely used 
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estimates for the number of hours per day that appliances would be controlled, and the 
compensation required, were statistically significant. Notably, the no-choice parameter was found 
to be significant in the pilot results, indicating either that respondents’ utilities increased by 
choosing not to choose, or that respondents did not find any of the choices of DR program 
particularly appealing. Across the choice sets presented, respondents chose the ‘no-choice’ option 
in 36.9% of the cases.  
 
4.2.4 Main Choice Experiment  
 
The design of the main DCE was thus informed by (i) research into the Belgian electricity market, 
(ii) lessons from the Linear DR trial, (iii) stakeholder consultations with electricity sector experts, 
and (iv) results from a pilot DCE. 
 
Based on the response to the pilot, we modified the experiment in three ways: (i) the explanation 
of the choice task exercise in the questionnaire was improved and retained next to the choice sets 
for easy reference; (ii) the levels of the attributes were more clearly specified to improve 
understandability; and (iii) the presentation of the attributes was simplified. The attributes and 
levels used in the main experiment are laid out in Table 4.1, where the levels are listed in increasing 
order of their expected preference.  
 
 

Table 4.1: Main DCE - Attributes and Levels 
Attribute Level 1 Level 2 Level 3 
Hours of day that appliances 
would be controlled 

07.00-09.00 and 18.00-
20.00 

17.00-20.00 18.00-20.00 

Days of week that program would 
run 

All 7 days All 5 weekdays Any 2 
weekdays 

Months of the year that program 
would run 

1 October – 1 April 1 November – 1 
March 

1 January – 1 
March 

Appliances that would be 
controlled when program is 
running 

Washing machine, 
dishwasher, tumble dryer 

Washing machine 
and dishwasher 

Washing 
machine only 

Compensation required to 
participate 

€10 €18 €25 

 
 

As in the pilot phase, owning a washing machine was a minimum criterion to participate. For the 
attribute on ‘Appliances that would be controlled,’ in order to avoid splitting the sample based on 
appliance ownership, we asked the respondents to assume that they owned all three appliances. 
 
A last modification to the DCE was that we reduced the number of choice sets in the survey from 
8 to 6, to reduce the risk of respondent fatigue, which could have partly contributed to the selection 
of the ‘no-choice’ options in the pilot testing.  
 
The structure and purpose of the DR program was again explained to respondents before they were 
presented with the choice sets. As in the pilot DCE, respondents were given the option to remain 
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with their current consumption structure. Accordingly, we generated a Bayesian D-optimal design 
of 12 choice sets that we divided into two surveys – a sample choice set is shown in Figure 4.2. In 
determining the prior parameter distribution, we drew on the parameter estimates from the analysis 
of the pilot data. The Bayesian designs were generated again in JMP 14.  
 
 

Figure 4.2: Sample Choice Set Used in Main DCE 

 
 
 
The choice experiment was accompanied by questions on appliance operation, as well as on 
respondents’ tariff structures and billing amounts. A separate section captured demographic 
information on age, gender, income, education, and dwelling characteristics. Additional questions 
were included to gauge respondents’ attitudes towards data privacy, environmental issues, and new 
technologies. All questions were phrased in neutral language to minimize respondent manipulation, 
and we attempted to reduce any potential hypothetical bias by explaining the real-life potential for 
such programs. In order to encourage respondents to fill out the survey, we offered to donate €0.50 
to a charity of their choice upon their completion of the questionnaire. The full survey is listed in 
Appendix 4-A. 
 
To reach out to respondents, the questionnaire was disseminated online through Qualtrics. As it 
was conjectured that younger, well-educated households would be more accepting of smart 
appliances, we decided to aim at an oversampling of these segments25. We thus circulated the 
survey – adopting a mix of random and convenience sampling techniques – among (i) authors 
networks, (ii) different residential community groups in Flanders via Facebook, (iii) families that 
had participated in the Linear field test, (iv) university students, and (v) a Flemish organization 
working on sustainable technologies.  
 
The survey ran from July until early October 2018, and generated 186 usable responses in total. 
We do not have information about the non-response rates, because of the open nature of 
dissemination of the questionnaire. These responses were analyzed separately from the 47 
responses in the pilot phase, owing to the modifications in the attributes and levels. All the data 
was anonymous and confidential. 
 
 
 

                                                             
25 Expert consultations corroborated that since typical DR rollouts proceed in a phased fashion, obtaining a 
sample that consists of early adopters who are more likely to embrace such a program would yield more valuable 
findings, rather than a broader sample that might yield less information 
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4.3 Results  
 
4.3.1 Respondent Characteristics  
 
Descriptive statistics of the 186 respondents are listed in Table 4.2. As expected, the sample is 
younger and more educated than the overall population, although there is a slight 
underrepresentation of females.  
 
 

Table 4.2: Respondent Characteristics Relative to Belgian population 
Characteristic Level Percentage Belgian Population 

Age (Years) [1] 18-29 
[2] 30-44 
[3] 45-59 
[4] 60 or more 

47.3% 
18.3% 
21.5% 
11.8% 

15-24: 11.3% 
25-54: 40.1% 
55-64: 14.2% 

65 or more: 18.6% 
Gender Male 

Female 
53.8% 
44.1% 

Male: 49.2% 
Female: 50.8% 

Net Monthly 
Household Income 

[1] <€2000 
[2] €2000-€3000 
[3] €3000-€4000 
[4] €4000-€5000 
[5] >€5000 

8.6% 
14.0% 
14.5% 
20.4% 
14.5% 

Per capita: €3445 

Educational Degree 
Attained 

[1] High school 
[2] Bachelor’s 
[3] Professional 
Bachelor’s 
[4] Master’s or higher 

21.0% 
17.2% 
10.8% 
48.9% 

Upper secondary: 
36% 

Tertiary: 35% 

Housing Type Apartment 
House 

19.4% 
79.6% 

Apartments: 22% 
Houses: 77% 

Number of People in 
Household 

1-2 
3-4 
5-6 

31.2% 
53.2% 
14.5% 

Average household: 
2.34 

Home Ownership Rented 
Owned 

17.7% 
80.1% 

 
Owned: 72.7% 

Tariff structure Fixed tariff 
Variable (day/night) tariff 

34.9% 
44.6% 

 

Whether on a Green 
tariff 

No 
Yes 

59.7% 
25.3% 

 

Comfort with 
Sharing Additional 
Data with Electricity 
Provider (Privacy) 

[1] Not at all comfortable 
[2] Not comfortable  
[3] Neutral 
[4] Comfortable 
[5] Very comfortable 

9.1% 
14.0% 
21.0% 
24.7% 
29.6% 

 

Continued on next page 
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Table 4.2 (Continued) 
Characteristic Level Percentage Belgian Population 

Environmental 
Activity Scorea 

1-4 
5-8 
9-11 

43.0% 
48.4% 
6.5% 

 

Comfort with New 
Technologies 

[1] Not at all comfortable 
[2] Not comfortable 
[3] Neutral 
[4] Comfortable 
[5] Very comfortable 

0.5% 
1.1% 

13.4% 
33.9% 
50% 

 

a This score is a simple addition of the environmental actions that participants reportedly undertook from 
among 13 actions listed. However, not all the actions were identical in the effort required or their scale. 

Sources for population statistics: CIA Factbook [45], StatBel [46], OECD [47], Trading 
Economics [48], TekCarta [49], EuroStat [50] 

 
 

Possibly owing to the sample’s demographic profile, the respondents were also very comfortable 
with sharing additional data with their electricity provider, very comfortable with using new 
technologies, and indicated behaving in an environmentally-conscious way. 
 
4.3.2 Modeling Results  
 
Across the 1116 choice sets presented to the final sample, respondents chose the ‘no-choice’ option 
206 times, or in 18.4% of the cases. While this could be indicative of a status quo bias or an 
unwillingness to yield control, it is a lower share than in the pilot study and suggests that the choices 
in the revised design offered greater utility, either in terms of the increased desirability of the DR 
structures or in terms of the reduced cognitive burden to respondents, or both. 
 
With the attributes treated as continuous variables for realism – except “Appliances controlled”, 
which was ordinal – we first obtained the PML parameter estimates and significances for main 
effects only, as shown in Table 4.3.  
 
 

Table 4.3: Parameter Estimates and Goodness-of-Fit for Main Effects Onlya 
Effect Posterior Mean Posterior Std. 

Dev 
Subject 
Std. Dev 

LR χ2 p-
value 

Hours per day        0.0627 0.1211 0.5332 0.8521 
Days per week       -0.2675*** 0.0611 0.6270 0.0010 
Months per year        0.0938 0.0604 0.3601 0.1218 
Appliances controlled [2-3]       -0.1237 0.2304 0.7301 0.1791 
Appliances controlled [1-2]       -0.4991 0.2842 1.3072 0.1791 
Compensation        0.2036*** 0.0277 0.2645 0.0000 
No Choice Indicator       -4.8285* 0.9912 4.5155 0.0997 
Goodness of Fit Measure Value 
-2 * Average LL 652.5202 

a P < 0.01: ***|| P < 0.05: **|| P < 0.1: * 
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The results suggest that respondents are primarily concerned with the days of the week that such a 
DR program would run, and with the compensation they receive for their flexibility. A greater 
number of days in the week would reduce their utility from the program and would increase the 
compensation required.  
 
We then refined the model to omit insignificant variables, and to test for subject effects. The final 
model with the best fit is summarized in Table 4.4.  
 
 

Table 4.4: Parameter Estimates and Goodness-of-Fit for Overall Model 
Effect Posterior 

Mean 
Posterior Std. 

Dev 
Subject 
Std. Dev 

LR χ2 p-
value 

Main Effects 
Days per week -0.4209*** 0.0840 0.4061 0.0000 
Compensation 0.1868*** 0.0969 0.0735 0.0005 
No Choice Indicator -0.3963*** 1.7701 1.2447 0.0074 

Subject Effects 
Days per week * Age [2-1] 
Days per week * Age [3-2] 
Days per week * Age [4-3] 

0.1607*** 
0.3052*** 
0.3446*** 

0.2087 
0.2943 
0.5726 

0.1848 
0.1505 
0.1763 

0.0009 
0.0009 
0.0009 

Compensation * Environmental Score 0.0774  ** 0.0190 0.0689 0.0238 
Compensation * Home ownership -0.1624*** 0.0863 0.0806 0.0000 
Compensation * Gender 0.1111*** 0.0566 0.0772 0.0055 
No Choice Indicator * Privacy [2-1] 
No Choice Indicator * Privacy [3-2] 
No Choice Indicator * Privacy [4-3] 
No Choice Indicator * Privacy [5-4] 

-7.3217*** 
2.2319*** 

-2.6115*** 
-4.8206*** 

1.6434 
1.9781 
1.9782 
4.3257 

0.9609 
0.9568 
0.6023 
0.9582 

0.0000 
0.0000 
0.0000 
0.0000 

No Choice Indicator * Age [2-1] 
No Choice Indicator * Age [3-2] 
No Choice Indicator * Age [4-3] 

-0.1033*** 
0.8502*** 

-0.2431*** 

1.6674 
3.4584 
7.5138 

0.9153 
2.0105 
2.7437 

0.0000 
0.0000 
0.0000 

Goodness of Fit Measure Value 
-2 * Average LL 
Total Iterations: 20000, Burn-in Iterations: 10000 

944.5802 

 
 
When we calculate the willingness to accept a compensation using Equation 4, then on average, for 
each extra day of the week that the DR program runs, respondents would need to be compensated 
an additional €2.25, and they attach a higher utility to participating in such a program than to staying 
on the current tariff structure. 
 
However, these findings are not uniform, and vary with respondent profile. For instance, for a given 
number of days per week that the program would run, older respondents required a lower 
compensation than younger respondents. While this initially seemed counter-intuitive, it may be 
because some of the respondents were university students and might have been more mindful of 
financial considerations. 
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Female respondents generally required a lower compensation to participate in the DR program than 
the male respondents did, suggesting that male respondents might care relatively more about 
pricing considerations while female respondents might be driven more by non-price factors. This 
may be associated with the fact that 44% of male respondents reportedly earned more than €4000 
per month, compared to the sample average of 34%. 
 
Respondents who undertook more environmental actions – and were by extension assumed to be 
more environmentally conscious – were more willing to participate in the DR programs than those 
who undertook fewer environmental actions, as would be expected, and as was found by Buryk et 
al. [20]. Similarly, respondents who owned and lived in their own dwellings required a lower 
compensation to participate in the programs than those who were renting their dwellings, which 
may be linked to a sense of ownership and responsibility, or to greater levels of income security. 
Relatedly, Ericson [19] suggests that house-dwellers might have a greater ability to reduce 
consumption than apartment-dwellers. 
 
Lastly, respondents who were more comfortable with sharing additional information with their 
electricity providers – and thus exhibited lower privacy concerns – were less likely to remain on 
their current tariff structures. 
 
Other factors, such as levels of education, comfort with technologies, and income levels were not 
found to be significant in this analysis, contrary to other analysis [19,20,21]. This might be due to 
the sample being biased towards highly educated respondents, or due to a limited sample size. 
Alternatively, it may suggest that DR programs may have more widespread acceptance than would 
be intuitively expected, which can be validated through future research.  
 
We did not consider other factors such as convenience or the concerns with relinquishing control, 
nor the presence of enabling / complementary technologies such as energy management systems, 
storage, or heat pumps. Further, we reiterate that we didn’t include heating in our experiment, even 
though households with electricity-based heating are found to be more likely to opt for DR than 
those without it [19], since most houses in Belgium currently run on gas-based heating.  
 
Since the sample is younger and somewhat gender-skewed compared with the overall Belgian 
population, we expect that taking these subject effects into account, the average utility of the 
population from being on such a program might be higher than that of the sample. However, we 
are unable to estimate the overall population concerns with privacy and the environment, both of 
which could more than offset the demographic-based increases in average utility. 
 
4.3.3 Policy Simulations 
 
Based on the parameter estimates from the final model in Table 4.4, we highlight the levels of 
compensation required to achieve predicted sample enrolment rates of 80%, 90%, and 95% for the 
various number of days of the week that a smart appliance-based DR program could be 
implemented. These are shown in Table 4.5. 
 
 



 

 
105 

 

Table 4.5: Policy Simulations based on Overall Model Results 
Number of Days 
per Week Of DR  

Compensation Required 
for 80% Enrolment 

Compensation Required 
for 90% Enrolment 

Compensation Required 
for 95% Enrolment 

2 €3.7 €6.2 €10.2 
3 €5.5 €9.3 €15.5 
4 €7.3 €12.4 €21.1 
5 €9.2 €15.5 €26.9 
6 €11.1 €18.5 €33.3 
7 €13.0 €21.6 €40.4 

 
 
Figure 4.3 below shows how predicted sample enrolment rates vary with varying levels of 
compensation offered. 
 
 

Figure 4.3: Enrolment Rates at Various Levels of Compensation 

 
 
 
A few observations are of particular interest. First, it is seen that about 30% of the sample would 
enroll in a DR program without requiring any compensation. These respondents might be very 
favorably disposed towards DR, and / or may have prior experience with it (such as the Linear 
participants). Second, at higher enrolment rates and for a greater number of days, the required 
compensation levels increased at an increasing rate, understandably indicating higher resistance to 
such programs for a smaller proportion of the sample. Lastly, in an extension of the second 
observation above, we were unable to reach a predicted 100% enrolment rate with these 
simulations, suggesting that some respondents would be completely unwilling to accept such a DR 
structure. 
 
We note however that actual enrolment rates might vary, for instance, by whether the 2 days-a-
week program runs on weekdays or on weekends. The simulations could not distinguish between 
preferences for days of the week. However, if full enrolment is not a strict goal for the short term, 
even high levels of sample enrolment – 90% or 95% – can be predicted for a daily program in 
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winter months at compensations of €22-€41 per household per year. Given that the sample is not 
representative of the population, these can be thought of as lower bounds for population enrolment 
strategies. Longer term strategies can then address the barriers to full sample and population 
enrolment. 
 
4.3.4 Economic Value of Demand Response Implementation 
 
If we expect that the winter peak in Belgian electricity consumption is about 14,000 MW [27] and 
that the residential sector accounts for 30% of this peak26, then the residential sector will have a 
peak demand of approximately 14,000 x 30% = 4200 MW. In the winter months, this demand peaks 
between 5pm and 8pm in the evenings [40], presumably when most people get home from work.  
 
We now assume a full population enrolment in a DR program, independently of the policy 
simulations in Section 4.3.3. Given that the three appliances covered in this study constitute 28% 
of household energy usage, we assume that they form a similar share of peak demand and that 
customers are willing to be flexible with half of these appliances (or 14% shifts in total household 
electricity use) at any point in time, particularly given that not all of the three appliances are likely 
to be used simultaneously anyway. Flexibility with half these appliances could lead to up to 14% 
x 4200 = 590 MW of flexibility realized at peak times, constituting 4.2% of the overall 14,000 MW 
peak.  
 
If we further assume that this flexibility can be sustained across a DR program that runs for 3 hours 
per evening, 7 days per week, and 24 winter weeks per year, then the total annual flexibility 
delivered can be roughly estimated as 590 x 3 x 7 x 24 = 297,400 megawatt-hours (MWh).  
 
With an average price of electricity in the short-term wholesale markets of €45 / MWh, the 
economic value of this flexibility to the system works out to 297,400 x 45 = €13,380,000 per 
annum. The actual benefits would however depend on the differences in the exact hourly prices in 
the wholesale markets, and we therefore do not estimate these benefits here.  
 
However, with about 4.9 million households in Belgium [54], and an average electricity price of 
28 euro cents per kWh [55], this also works out to an economic value of 297,400,000 x 0.28 / 
4,900,000 = €17.00 per household per annum. It may be noted that this value is dependent on the 
appliances covered, and only represents reductions – not shifts – in consumption. We cannot 
estimate potential household savings because (i) Belgium has a range of household electricity tariff 
structures that depend on the region, supplier, and type of meter installed [56] and (ii) the savings 
would depend on the program’s compensation structure.  
 
Belgium at this stage does not have a national policy on smart metering, although smart meters are 
increasingly being deployed across the country [57,58]. A cost-benefit analysis of smart meters in 
Flanders suggested a positive business case for its rollout, yielding a net present value of €336 
million over a 20-year discount period, even without taking the potential for peak demand 

                                                             
26 It accounts for 23.1% of total annual consumption [27], but we expect that its share of peak demand is higher 
based on other comparable estimates from other countries [51,52,53] 
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reductions into account [59]27. We thus do not assess the costs of implementation of such a DR 
program here for two reasons: (i) smart meters are already being deployed for a range of broader 
reasons, and (ii) there is already a positive business case for smart meter deployment without taking 
DR benefits into account. Our aim through this section is to consider these potential benefits from 
DR.  
 
The numbers obtained in this section are based on a number of simplifying assumptions and 
optimistic estimates of household flexibility, and the real results are likely to be much lower; we 
thus treat these as upper bounds for our analysis. However, the estimates do indicate that there is a 
potentially significant economic value to implementing such a program, particularly if there are no 
major additional costs. Further, the actual flexibility is more likely to be closer to these estimates 
if more appliances are covered in the program and / or electricity becomes the primary energy 
source for space and water heating. Such a DR program may also benefit from enrolling all 
households in a time-based tariff structure in parallel, so that they have further incentives, in the 
form of actual bill savings, to deliver flexibility. 
 
4.4 Conclusion and Policy Implications  
 
Demand response programs can ease peaking generation requirements, balance the electricity 
markets, and help with the integration of renewable energies into the grid. Belgium in particular 
faces security of supply concerns due to potential outages at its ageing nuclear power plants, and 
is transitioning away from them in the short- to medium-term.  
 
Alongside its supply side concerns, the country’s winter peaks in electricity demand are 
significantly higher – by around 2 GW – than its summer peaks, and there is interest among 
policymakers in reducing these winter peaks in the short term. A previous DR trial in the Belgian 
region of Flanders has found that smart appliance programs could realize electricity consumption 
flexibility at a significant scale. 
 
This paper conducted a discrete choice experiment – and estimated a panel mixed logit model – on 
186 respondents in Flanders, to derive their willingness to accept a smart appliance-based DR 
program in the winter months. Such a program could flatten winter peaks, thereby reducing the 
need for peaking generation and possibly balancing the market in case of further outages in the 
country’s NPPs. 
 
The paper found that respondents were most driven by how many days the program would be in 
effect, i.e. the fewer the number of days that they would have to shift appliance usage, the higher 
their utility. On the other hand, the hours per day were not significant. Together, these imply that 
the activity of shifting consumption was more onerous than the duration of the shifts, and suggest 
the presence of inertia or status quo effects. Respondents were also influenced by the compensation 
they would receive for the flexibility they offered. The appliances that would be controlled and the 
months that the program would run were not significant factors overall. 
 
                                                             
27 However, other analyses in Flanders, Brussels, and Wallonia have been more inconclusive or negative, though 
methodological shortcomings have been noted in these analyses [60]  
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Specifically, younger and male respondents required a greater compensation to participate in such 
a program for a given number of days per week than older and female respondents. Respondents 
who were more environmentally conscious and those who owned, rather than rented, their homes 
were more willing to accept lower compensations for such programs. Lastly, respondents with 
fewer privacy concerns were more likely to participate in these programs. 
 
The results overall suggest that the implementation of a smart appliance program in the winter 
months – when carefully designed – can count on acceptance among the relatively young, well-
educated segments, with higher levels of home-ownership, that were targeted in our research. This 
is not entirely in line with findings by Pepermans [21], who found that most households would be 
reluctant to adopt a smart meter, though his finding did not consider the household benefits from 
DR. Sample simulations predict that up to 95% of the respondents in the sample could be willing 
to enroll in such a program, running every day of the week, for a compensation of under €41 per 
household per annum. Because the sample is not fully representative of the population, the actual 
amounts required might be higher28. 
 
While the programs offered in the experiment would be more easily accepted among homeowners 
and environmentally-conscious people, and could thus be rolled out among these segments in a 
first phase, a general rollout among the wider population may require an explanation of the 
environmental, energy, and financial benefits of the program. Specifically, the compensation listed 
in the choice set was not framed in terms of the potential electricity bill savings – these were not 
calculable since they would depend on participants’ actual response and the compensation 
structures on offer. Making expected savings more evident might further increase the desirability 
of a DR program. Lastly, people’s concerns with privacy and the sharing of information would 
need to be addressed, possibly through an explanation of the data collection process, and the uses 
to which it is put. 
 
One limitation of this study was that three of the five attributes included in the choice experiment 
focused on different dimensions of time, namely hours, days, and months. While these three are in 
no way substitutes for each other, future studies may consider substituting these for a greater 
number of non-time attributes. A related point of note on structuring is that this study focused on a 
hypothetical smart appliance-based program, and the results are specific to the appliances covered. 
To have successful and complementary dynamic pricing structures, it may also be important to 
change the regulation of the electricity sector and increase the share of the variable component in 
the prices. 
 
 
  

                                                             
28 Although respondents in general were supportive of a DR program, two respondents specifically mentioned 
in an optional feedback question that the compensation offered in the choice sets was not perceived to be 
sufficient. Additionally, we expect that in some proportion of the cases where respondents opted for the “no-
choice” option, they did so because of financial considerations 
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Appendix 4-A: Survey Questionnaire 
 
Note: This survey was circulated in Dutch – the English language version is enclosed  
 
We invite you to take part in a research project that aims to understand whether consumers might 
be willing to limit their use of home appliances at peak hours during the winter months. 
  
What is the research about? 
 While electricity can be generated from various sources, peak demand is met through expensive 
fossil-based generation, impacting the environment and the price of electricity. 
  
Shifting demand from peak to off-peak periods would reduce system costs and help the 
environment. This can be achieved by installing automatic controllers on home appliances such as 
washing machines and dishwashers. Such controllers can schedule your appliances to operate when 
electricity demand is not at its peak.  
 
Through this project, we want to understand how such demand shifting activities might be best 
designed to suit your preferences. 
  
Your responses 
All of the information that you provide in the survey will be strictly confidential. Your individual 
responses to the survey questions will be anonymous as they will be grouped together with the 
responses provided by other respondents. 
  
Answering this survey will take you around 10 minutes. Your participation will secure a donation 
of 0.50 euros to a charity of your choice .  
 
Q1: Please indicate which of the following appliances you have at home. Select all that apply: 

 Washing machine 
 Dishwasher 
 Tumble dryer 
 I do not own any of these appliances 

 
Q2: During the past year, who usually operated these appliances? 

 You 
 Other member of the household 
 External members (cleaning lady, etc.) 

 
Q3: During the past year, who usually paid the electricity bill in your house? 

 You 
 Other member of the household, but I am aware of the billing amounts 
 Other member of the household, and I usually don’t know about our billing amounts 
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Q4: Which electricity tariff are you on? 
 Fixed 
 Dual (Day/Night) 
 Unknown 

 
Q5: Are you on a green tariff? 

 Yes 
 No 
 I don’t know 

 
This project is investigating how smart appliance programs may encourage consumers to accept 
limits on their electricity consumption during peak demand periods. Through this project, we hope 
to understand whether electricity retailers can begin to offer these DR structures. In this scenario, 
automatic controllers will be installed in some of your home appliances. These controllers will be 
able to limit the operation of your home appliances during peak demand periods, for a few weeks 
each winter. Should you wish to run your appliance, the controllers will then automatically start 
them when the peak period is over. 
 
 You will be informed a day in advance, by text message and/or email, about the upcoming hours 
when appliance usage is expected to be curtailed. For your participation in the program you will 
receive a monetary compensation. 
  
In the following six questions, you are asked to select one out of three available options. Options 1 
and 2 each represent a different structure of programme that limits operation of select appliances 
at peak times. If you prefer neither option, then you may choose to remain with the current situation. 
  
The characteristics that will be shown on the options are the following: 
Hours: Number of hours per day that you would accept limits on the operation of your appliances 
Days: Number of days of the week that you would accept limits on the operation of your appliances 
Weeks: Number of weeks in a year – winter months only – that you would be participating in the 
program 
Appliances: Appliances in which you would install the automatic controllers 
Monetary reward: Annual compensation, in euros, for participating in the program.  
 
Q6-11: Please indicate which – if any – option you would be willing to accept 
 
Q12: Through the automatic controller, information about your energy usage pattern may be shared 
with your electricity provider. On a scale from 1 to 5, how comfortable would you be with this? 
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Q13: Which of the following actions have you taken in the past 3 months? Select all that apply. 
There are no right or wrong answers 

 Recycle 
 Commute by bicycle, public transport, walk or carpool instead of driving  
 Eat less meat and/or dairy products  
 Buy products with less packaging  
 Buy local products  
 Unplug electric appliances when not in use  
 Buy CO2 bonus to mitigate your carbon print  
 Use fabric bags or boxes for shopping  
 Take shorter showers  
 Use water saving appliances  
 Use solar panels  
 Use an electric car 
 Insulate your home 

 
Q14: On a scale from 1 to 5, how comfortable do you feel with using new technologies? 
 
Q15: Please indicate your age 

 18-29 
 30-44 
 45-59 
 60 or more 

 
Q16: Please indicate your gender 

 Female 
 Male 
 Prefer not to answer 

 
Q17: Please indicate your monthly total household income in 2017 

 No income 
 < €2000 
 €2000 - €3000 
 €3001 - €4000 
 €4001 - €5000 
 > €5000 
 Prefer not to answer 

 
Q18: What is the highest level of schooling you have completed or the highest degree you have 
attained?  

 High school graduate 
 Professional bachelor's degree (Trade school) 
 Bachelor's degree 
 Master's degree or higher 
 Other/prefer not to answer 
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Q19: Including you, how many people are living in your house? 
 1 
 2 
 3 
 4 
 5 
 6 
 More than 6 

 
Q20: Please indicate the type of dwelling that you live in 

 Single family house 
 Apartment, studio, loft, etc. 

 
Q21: Do you currently own or rent your dwelling? 

 Rent 
 Own 
 Other (tenant for life, rent-free house) 

 
Q22: Thank you for answering this survey. If you wish, please indicate the charity to which you 
would like to donate 0.50 Euro.   
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Appendix 4-B: Pilot Design and Results 
 
The pilot experiment consisted of eight choice tasks, each task offering two hypothetical DR 
programs. We created a Bayesian D-optimal design of 16 choice sets which we divided into two 
surveys of 8 choice sets.  
 
The hypothetical DR programs are described by the attributes and levels listed in Table 4-B.1. The 
attribute levels are sorted from least desirable to most desirable, in accordance with overall 
expectations.  
 
 

Table 4-B.1: Pilot DCE - Attributes and Levels  
Attribute Levels 

Hours per day that 
appliances would be 
controlled 

4 hours 2 hours 1 hour 

Days per week that 
program would run 

7 days 2 days 1 day 

Weeks per year that 
program would run 

15 12 7 

Appliances that would be 
controlled when program 
is running 

Washing machine, 
dishwasher, tumble 

dryer 

Washing 
machine and 
tumble dryer 

Washing 
machine and 
dishwasher 

Washing 
machine 

only 
Compensation required to 
participate 

€10 €18 €25 

 
 
The choice tasks were included within a broader survey that also sought respondents’ demographic 
information and electricity usage profiles, and that further included questions relating to their 
attitudes towards data privacy and the environment.  
 
Not all respondents were expected to have all three appliances included in Table 4-B.1. Based on 
which of these appliances they owned, they were offered different levels of the attribute 
‘Appliances that would be controlled.’ Respondents who only owned a washing machine were not 
presented with this attribute, and respondents who did not own a washing machine were not 
considered eligible for the DCE. The levels of the remaining attributes were the same for the four 
types of users that owned at least a washing machine. For this study, the attribute ‘Appliances that 
would be controlled’ was coded as categorical and nominal. The other attributes were coded as 
numeric continuous.  
 
Survey responses were obtained through March and April 2018, and the pilot round obtained 73 
usable responses in total. 47 of these 73 respondents owned all three appliances, while 17 owned 
two appliances (either washing machine and dryer, or washing machine and dishwasher) and 9 
owned only a washing machine. Given these sample sizes, the analysis of the pilot responses 
focused solely on those 47 respondents that owned all three appliances. 
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Of these 47 respondents, 51% chose to identify as males and 40% as females. 45% of the 
respondents fell in the 30-44 age category, while 15% were older than 60. 68% of the respondents 
had a Master’s degree or higher, and a similar share were salaried workers, as opposed to 
independent workers, students, or retired residents. The sample was thus younger and more 
educated than the overall Belgian population. 
 
In the pilot modeling phase, we restricted ourselves to the estimation of the MNL model to obtain 
parameter estimates that could serve as input for the design of the actual DCE. Because of the small 
sample size of 47 respondents, we estimated the MNL model using the Firth bias correction [61] 
that Kessels et al. [62] adapted to the MNL model. Using Firth’s penalized maximum likelihood in 
small sample problems provides estimates with a smaller bias and variance than estimates obtained 
using ordinary maximum likelihood. 
 
The initial modeling results indicated that only the parameter estimates for the number of hours per 
day that appliances would be controlled, and the compensation required, were statistically 
significant at the 5% level. We thus omitted the non-significant variables, and the results are 
captured in Table 4-B.2. 
 
 

Table 4-B.2: Parameter Estimates and Goodness-of-Fit 
Effect Mean Estimate Std. Dev LR χ2 p-values 
Hours -0.2601 0.0643 < 0.0001 
Compensation 0.0636 0.0143 < 0.0001 
No-choice option 0.7113 0.2845 0.0107 
Goodness of Fit Measure  Value 
AIC  797.128 
BIC  808.852 
- 2 * Log Likelihood  791.063 

 
 
As expected, respondents’ utilities were positively affected by greater compensations and 
negatively affected by longer-running programs. Following Equation 5, the WTA compensation 
for each extra hour that appliances would be controlled came to €4.09.  
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Estimating Acceptability: Dynamic Pricing in a Developing 
Country            5. 
 
Chapter based upon: Srivastava, A., Van Passel, S., Valkering, P., & Laes, E. Gridding India of power 
cuts: A choice experiment to introduce residential demand response in a developing country. Working 
paper 
 
5.1 Introduction 
 
On a global scale, the electricity sector is faced with two medium- to long-term challenges. First, 
it is a significant contributor to climate change, with nearly 30% of total greenhouse gas emissions 
coming from global electricity production [1]. At the same time, global electricity consumption is 
increasing [2] which, coupled with the ongoing transition to renewable sources [3] that are more 
variable in generation, presents a challenge for the security of energy supply. 
 
Moderating electricity demand through for instance demand response (DR) programs is a potential 
solution to these challenges. By shifting demand from peak to off-peak times and flattening demand 
curves using price signals, the automation of appliances, or direct control of electrical loads, DR 
programs can aid with the energy transition and grid integration of renewables [4], while increasing 
energy security [5] and reducing the overall costs of generation [6]. 
 
5.1.1 Demand Response in Developed Countries 
 
The European Commission (EC) estimates a total response potential in Europe alone of 160 
gigawatts (GW) by 2030, with around 40% of this potential for load reductions coming from the 
residential sector [7], although the actual achievable potential is likely lower [8]. Recognizing this, 
Europe has a clean energy plan [9] that encourages greater customer access to dynamic pricing 
contracts, DR programs, smart metering systems, and information feedback.  
 
Similarly, the US has a federal smart grid program [10] that supports systems that enable DR, as 
well as other supportive policies and initiatives at the state levels [11,12,13]. In line with such 
policy incentives, DR is being promoted through enabling frameworks in many industrialized 
countries, and DR programs are being increasingly tested and implemented in the residential sector 
[14,15,16].  
 
In parallel, there is also an expanding body of literature on the performance of residential DR in 
these industrialized countries, and results in many of the instances of DR implementation have been 
positive. For instance, Bartusch et al. [17] found, through a pilot analysis and interviews, that 
Swedish households did act on pricing signals by reducing demand in peak periods and shifting 
electricity consumption from peak to off-peak periods. The Irish energy regulator [18] found 
through its smart metering trials among a representative population that time-of-use (ToU) tariffs 
reduced overall electricity usage, and that higher-consuming households tended to deliver greater 
reductions. A UK government review of 30 DR trials of various structures [19], and Faruqui and 
Sergici’s synthesis of 15 instances of DR implementation [20], also found that households did 
respond to price changes, although the extent of response depended on several factors. 
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However, on other occasions, varying consumer attitudes have led to a lack of responsiveness to 
such programs. For instance, Gyamfi et al. [21] reviewed literature on price-based DR and stated 
that a high fraction of households – particularly the richer ones – did not actually respond to price 
signals. Consumers were also found to be less price-sensitive when they were more concerned 
about minimizing their inconvenience and discomfort, or about privacy and safety [22,23,24].  
 
Aside from pricing, Hall et al. [25] identified – through a random sample of respondents with high 
rates of employment – that households are open to dynamic pricing but want more information to 
understand and justify the potential benefits of DR. Similarly, Brent et al. [26] reviewed a number 
of field experiments and stated that knowledge about consumption can maximize the effectiveness 
of time-varying pricing, and that the availability of enabling technology increases the effectiveness 
of such pricing. 
 
These conflicting findings suggest that household preferences are not homogenous and can depend 
on the structure of the DR program. Parrish et al. [27] undertake a constrained systematic review 
of 16 papers and reaffirm that despite the large evidence base, the findings can be complex and 
inconsistent, and that more research is needed on dynamic pricing. Gyamfi et al. [21] have also 
suggested greater use of economic behavior-based approaches to overcome some of the challenges 
to achieving effective voluntary demand reductions. 
 
5.1.2 Demand Response in Developing and Emerging Countries 
 
Residential DR has not typically been implemented in developing countries, possibly owing to the 
different political economies of their electricity sectors, coupled with a lack of regular access to 
electricity by large proportions of the populations. A meta-analysis of 32 DR trials by Srivastava 
et al. [28] found only two instances in emerging markets – China and South Africa. Their analysis 
further suggested that successful implementation of DR has to take local socio-economic and 
political contexts into account. 
 
Similarly, residential DR has also not been significantly researched in the developing country 
context. There exists a scope for such programs – developing countries are witnessing a high level 
of urbanization [29,30] and urbanization has been found to have the largest effect on non-renewable 
energy demand, compared with other factors such as GDP or oil prices [31], possibly due to greater 
a rural-urban divide in such countries. There is also an ongoing global debate on how developing 
countries can leapfrog traditional fossil fuel-intensive infrastructure [32,33,34,35] while pursuing 
their development objectives. 
 
Among non-industrialized countries, the feasibility of DR has been most explored in China, with 
different studies looking at its market context [36], institutional barriers [37], policy reforms [38], 
and potential results based on simulations [39]. Energy management systems have been proposed 
for optimal DR scheduling in South Africa [40], while scenario modeling has been used to guide 
industrial DR in Nigeria [41]. In India, the regulations and political economy of the electricity 
market have been studied for a DR introduction [42], and dynamic pricing has been studied 
specifically in the context of solar micro-grids [43]. However, to our knowledge, there are no 
concrete designs proposed for household DR implementation in any developing country. 
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5.1.3 Scope of Paper 
 
This paper addresses these two challenges, namely, (i) the need for using more behavior-oriented 
approaches to design improved DR programs, and (ii) the need for considering DR in the 
developing country context, in order to support local development objectives and help leapfrog 
traditional infrastructures. To do this, it uses a discrete choice experiment to understand the 
acceptability of, and suggest feasible designs for, dynamic pricing-based demand response 
programs in India, specifically among upper-middle and upper income households in the National 
Capital Region (NCR) of Delhi, a region with conditions – high urbanization, high growth, 
ambitious renewable energy policies – suggested as ideal for DR implementation [28].  
 
Existing research into DR programs has made limited use of the choice experiment approach. 
Ericson [44] estimated a discrete choice model using existing opt-in data from a residential critical 
peak pricing (CPP) experiment in Norway, to understand the bases on which consumers choose 
between tariffs. Pepermans [45] used choice experiments with snowball sampling to assess the 
extent to which consumers would use smart meters, although the analysis did not include demand 
response, and did not account for the possibility of correlations between cost savings and impacts 
on comfort. Buryk et al. [46] relied on online labelled choice experiments using convenience 
sampling, varying only the price attribute, to determine whether disclosing the environmental and 
system benefits of dynamic tariffs could increase customer adoption. Other studies 
[47,48,49,50,51] have also used discrete choice models to understand preferences for other facets 
of electricity generation and provision. Existing choice experiment-based research has not focused 
however on the actual structuring of DR programs. In this paper, we use this approach to obtain a 
valuation of the different attributes of DR programs specific to the local population, thereby helping 
better design such a program in the future. 
 
The paper is set up as follows. Section 5.2 provides an overview of trends in the Indian electricity 
sector and consumer economy. Section 5.3 details the research method and design. Section 5.4 lists 
the analytical results of the choice experiment study. Section 5.5 offers a discussion, with a cluster 
analysis of the sample, some policy implications of the results, and rough potential values of DR 
implementation. Section 5.6 concludes. 
 
5.2 The Domestic Context 
 
5.2.1 Uneven Access to Electricity 
 
Narula et al. state that India has witnessed a gradual improvement in the security of its energy 
supply, from the perspective of availability and affordability, although there is still scope for 
significant improvement [52]. India’s per capita electricity consumption – measured as total 
domestic supply less losses – is about 920 kilowatt-hours (kWh) per year, or about 7.2% of the US 
average [53,54]. This number also conceals large disparities as, for instance, nearly 300 million 
people still have no access to regular electricity.  
 



 

 
124 

 

On the production side, the current national capacity of 346 GW29 is expected to reach 600 GW by 
2025 [55]. Even though the plant load factor is currently only at 55%, power cuts are still frequent 
due to technical disturbances – transmission and distribution losses are at 21.8%, and last-mile 
connectivity is found to be inadequate [56].  
 
5.2.2 Support for Renewable Energy 
 
India is targeting a generation of 227 GW from renewable sources by 2022 [57] – solar power even 
contributed 40% to capacity additions in 2017 [58]. Utilities are also subject to renewable purchase 
obligations, wherein state regulators specify the share of total electricity that is to be purchased 
from renewable energy (RE) sources; the national climate change plan [59] suggested that in 2009-
10, the renewables standard should be set at 5% of total grids' purchase, and should increase by 1% 
each year for 10 years, until a target of 15% is reached by 2020.  
 
In addition to these national objectives, the government of Delhi is further promoting rooftop solar 
photovoltaics (PVs) and aims to generate 2000 megawatts (MW) of solar power by 2025. To this 
end, it is offering an incentive to residential consumers of ₹2 per kilowatt (kW) generated [60].  
 
5.2.3 Inefficient Subsidies 
 
The electricity sector has a system of cross-subsidies in its tariff structures, whereby the agricultural 
and residential sectors pay lower electricity tariffs that are subsidized by the industrial and 
commercial (I&C) sectors. The residential sector consumes 24% of the nation’s electricity [61] and 
has block tariffs that are determined by the individual states [62].  
 
Though Delhi’s30 bulk power rate is 60% more expensive than the national average, its retail tariffs 
are among the lowest [64]. Despite this, the Delhi government offers large subsidies that cost the 
government ₹16 billion (about $230 million) in 201731 [65]. Analysis of these subsidies [65] has 
found them to be poorly designed: they are available to households that consume below 400 
kilowatt-hours (kWh) per month, even though the average monthly household consumption is 181 
kWh [66]. Thus, about 82% of homes benefit from the subsidies during the summer, and outside 
the summer months, up to 96% of consumers qualify for them.  
 
5.2.4 Electricity Consumption Profile in Delhi: A Mismatch with Utility Costs 
 
Delhi’s peak electricity demand has grown by 64% between 2006 and 201832, and its 2018 peak of 
7000 MW was more than the peaks for the cities of Mumbai and Chennai combined [68].  
 

                                                             
29 Of which 72 GW is from renewable energy sources 
30 Delhi’s population is about 19 million, while the metropolitan region (the NCR) under study has 26 million 
people [63]  
31 One US dollar ($) is approximately 70 Indian rupees (₹)  
32 In early 2018, the Delhi electricity regulator cut tariffs across categories by up to 32%, though fixed charges 
were increased, further removing incentives to save on electricity consumption [67]  
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In Delhi, many households use individual room air conditioner (AC) units33 during the summer, 
and summer peaks tend to be nearly twice as high as winter peaks [69]. During the extended 
summer months, the daily peaks typically occur first around 3pm, when the day temperatures are 
highest, and then again at night when people run their ACs while sleeping. This is shown in Figure 
5.1. 
 
 

Figure 5.1: Planned and Actual Consumption Curves for Delhi, June 21 2018 
 
 
 
 

 
 
 
 
 

 
Source: Generated via Northern Regional Load Dispatch Center [70] 

 
 
Pricing in the day-ahead markets is such that daytime prices (7am-6pm) are cheaper than night 
prices (11pm-7am), which are again cheaper than evening prices (6pm-11pm), possibly in part 
because of the increasing ingress of solar power. This creates a mismatch between pricing and 
consumption, and points to the desirability of shifting consumption trends. A daily pricing structure 
for a regional electricity trading zone that includes Delhi is shown below in Figure 5.2 to illustrate 
this.  
 
The utilities of the individual states are penalized for over-drawing electricity from the spot markets 
above their stated expectations. Further, the Delhi electricity regulator has recently announced that 
consumers will be compensated for unscheduled power cuts [71]. 
 
 
 
 
 
 
 
 

                                                             
33 Unlike the centralized systems in more developed countries, each AC unit in India has its own individual 
thermostat controls and compressors 
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Figure 5.2: Average Day Ahead Prices for N2 Zone, June 20-22 2018 

 
Source: Indian Energy Exchange [72] 

 
 
5.2.5 Retail and Demographic Trends: Increasing Reliance on Appliances  
 
Room ACs are among the most energy-intensive appliances used in a typical Indian household. 
The penetration of room ACs in Indian households is just 4% [73], with sales increasing by 20% 
annually in recent years – over 3 million air conditioners were sold in India in 2013 [74]. Similarly, 
washing machines have a market penetration of 9% [75], but the market has witnessed an average 
annual growth rate of more than 20% [76] and is expected to be worth $4.23 billion by 2020 [77].   
 
This growth in home appliances – and smart appliances in particular – is being accompanied, and 
enabled, by demographic changes such as rapid urbanization [78], increasing incomes and 
aspirational lifestyles [79], rising costs of domestic help such as maids [80], a gradual move to 
apartment lifestyles, and greater climatic variations and incidences of extreme weather [81]. 
 
5.2.6 Experience with and Potential for Demand Response 
 
With high current and projected growth in electricity demand, and in light of the energy access and 
grid reliability issues, there is an overall national focus on energy efficiency [82] and the promotion 
of LED lights. Utilities in Delhi have also offered schemes in the past, with financial incentives, 
for appliance replacement programs [83,84,85].  
 
But demand response has not received significant attention yet, aside from some initiatives in 
industry. ToU tariffs are in place in some parts of the I&C sectors, including in Delhi. For instance, 
a DR pilot among large consumers realized 17 MW in savings, and is now being more widely rolled 
out [86]. Another automated DR trial in the Wazirpur industrial area – comprising smart meters 
and consensual curtailment of non-critical load – found that customer loads can shed 10% of peak 
demand at the 75th percentile, although the results suggested that there is much more shed potential 
to explore [87]. 
 
To explore this shed potential, DR can be enabled through the ongoing shift in metering 
infrastructure that is accompanying the national government’s smart grid mission and target of a 
hundred smart cities [88,89]. India is increasingly moving from analog meters to electronic ones – 
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that can offer more detailed information on sanctioned loads, tariff structures, consumption history, 
and net metering details – and gradually to smart meters. 130 million smart meters are expected to 
be installed across the country by 2021 [90] – Delhi alone is expected to have 1.6 million smart 
meters by 2025 [91], and its neighbors in the National Capital Region are also now rolling them 
out among customers [92].   
 
Thus, key points relevant to consider in designing this study are: (i) India’s electricity consumption 
is starting from a low base and is increasing, (ii) power cuts are frequent and are a product of a poor 
grid infrastructure, (iii) generation from renewable sources is being heavily promoted and is 
increasing rapidly, (iv) retail tariffs are slab-based and are a sensitive political issue, (v) Delhi has 
the nation’s lowest tariffs coupled with poorly designed subsidies, as well as the highest per capita 
electricity consumption, (vi) summer electricity consumption peaks are higher than winter peaks, 
(vii) there is a mismatch between bulk power prices and peak consumption times, (viii) heavy 
appliance sales are rapidly increasing, and (ix) DR-enabling infrastructure is being installed across 
the country. 
 
5.3 Research Method and Design 
 
5.3.1 Research Method: Discrete Choice Experiment   
 
Discrete choice experiments (DCEs) are a stated preference method – used to derive valuations 
where pricing cannot be determined by market mechanisms – that are based on the assumption that 
a choice between alternative options reflects the utility derived from those options. A DCE design 
offers respondents several choice sets, with a number of alternatives within each choice set. Each 
alternative is described by various attributes and each attribute has a number of possible levels. The 
most statistically efficient design – that minimizes the confidence intervals around parameter 
estimates [93] – is determined using a measure known as D-efficiency34. The D-efficiency of a 
design is a function of the number of choice tasks, the number of attributes, and the number of 
levels per attribute [95].  
 
Choice  data  from  a  DCE  are analyzed using a logit model, which is consistent with random 
utility theory [96]. As mentioned, this theory assumes that individuals choose the alternative that 
maximizes their utility. It states that the utility Uk associated with an alternative k is a sum of its 
systematic and random components, as shown below. 
 

Uk = Vk + εk = xʹkβ + εk          (1) 
 
Where V is an indirect linear utility function, xk are vectors describing the attributes of the 
alternatives, β are the preference parameters for changes in utility arising from changes in attribute 
levels, and εk is the stochastic term, which allows probabilistic statements about choice behavior. 
 

                                                             
34 D-efficiency is the geometric mean – less sensitive to outliers than arithmetic means – of the variances of the 
parameter estimates. The most efficient design is one that minimizes this mean [94]   
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The basic method used to analyze data generated by this type of experiment is the multinomial logit 
(MNL). Given a DCE design with J alternatives, the probability that a user, i, chooses alternative 
k in a standard MNL model is defined as: 
 

Pik(MNL) = exp (xʹikβ) / ΣJ
j=1 [ exp (xʹijβ)]        (2) 

 
MNL models however are restricted in that the preferences are assumed to be homogenous across 
responses, i.e. βs are same for everyone. Unlike MNL, which estimates only the mean preference 
effects of the attribute levels, the mixed logit accounts for heterogeneous preferences across 
respondents and correlation across repeated choices from the same respondent. It yields both a 
mean effect and a standard deviation of effects, i.e. it explicitly assumes that there is a distribution 
of preference weights across the sample, reflecting differences in preferences among respondents, 
and it models the parameters of that distribution for each attribute level [96]. Mixed logit 
probabilities are the integrals of standard logit probabilities over a density of parameters. Thus in 
a mixed logit model, the choice probability for an alternative is given by  
 

Pik(Mixed) = ∫ Pik(MNL).f(β).dβ            (3) 
 
Where f(β) is a density function. To estimate the random parameters, we use the hierarchical Bayes 
(HB) technique – based on 15,000 iterations – under the assumption of normally distributed 
preference parameters without correlation between attributes. These estimated random parameters 
model the unobserved heterogeneity in the respondents’ preferences [97]. If there is heterogeneity 
among individuals, HB can significantly improve a mixed logit model [98]. We begin with the 
MNL model in our analysis for exploratory purposes, but rely primarily on the mixed logit method 
for model confirmation.  
 
The parameter estimates β are estimated through maximum likelihood methods. The log likelihood 
(LL) of a model can thus serve as an indicator of the goodness of fit and explanatory power of the 
model, where lower values of [-2 * LL] indicate a better model fit.  
 
Typically, the marginal willingness to accept (WTA) a compensation for an attribute A, if utility is 
linear in the preference parameters, is measured as its preference weight divided by the marginal 
utility of money M, where the latter is the negative of the preference weight of the payment 
attribute.  
 

WTPA = βA / (-βM)      (4) 
 
Additionally, we complement the results from the mixed logit model with a hierarchical cluster 
analysis on the subject-specific estimates, to further investigate heterogeneity in respondent 
preferences. This two-step process is preferred over a single-step method like latent class logit 
because the former offers greater flexibility and relies on a continuous distribution of preference 
heterogeneity – typically a more realistic scenario that allows for a parsimonious derivation of 
preference weights and their 95% confidence intervals [99,100] – while the latter assumes a discrete 
distribution of preferences and that all consumers can be split in subgroups with the same utility 
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function [101,102]. The cluster analysis, as well as simulated sample enrollment rates and further 
analyses, are detailed in Section 5.5.  
 
5.3.2 Research Design 
 
As stated, we focused our choice experiment study on the Delhi metropolitan region, since it is a 
large consumer of electricity with a higher percentage of higher-income – and potentially more 
flexible – households [103]. This region has a total population of about 46 million people [104]. 
We limited our focus to Delhi and its neighboring towns of Gurgaon, Faridabad, Noida, and 
Ghaziabad, which cumulatively account for 26 million people. 
 
We expected that peak electricity savings from this region could be substantial enough to help 
integrate rural-urban migrants or could be redirected to underserved areas. Alternatively, shifts 
could stimulate demand at off-peak times, to help account for the surplus capacity. Additionally, 
by making the supply of energy more secure, DR can reduce the need for costly and polluting 
sources of captive power35.  
 
In determining the type of DR to use in our choice experiment, we noted first the mismatch between 
the load structure shown in Figure 1 and the day-ahead prices in Figure 2. Secondly, since states 
are penalized for over-drawing electricity from the spot markets above their stated expectations, 
we expected that avoiding these penalties would point to the desirability of pricing-based solutions 
to peak loads. Third, DR in India would ideally be event-oriented from the perspective of an 
unreliable grid36. Lastly, control-based programs may be more difficult for utilities to implement, 
given the infrastructure and resource requirements, and may have less political acceptability in an 
energy-poor country like India. With these points in mind, and noting the electricity sector’s initial 
familiarity with time-based tariffs in the I&C space, we designed our experiment around real time 
pricing (RTP)37 and ToU pricing.  
 
Given the higher summertime electricity consumption, we focused our experiment on the months 
from April through September, when the day temperatures consistently exceed 35 degrees Celsius. 
 
We targeted upper middle class households and above38, namely those with a minimum monthly 
summer consumption of 300 kWh, and thereby targeted the households that would likely not need 
to be on the electricity subsidies39. To limit our sample to this demographic, at the outset of the 
survey we asked respondents to indicate their average summer monthly electricity billing amounts, 
and only accepted responses from those who owned at least 1 AC and whose monthly bills had 

                                                             
35 More than 10 million households in the country use battery storage UPS, and diesel generation sets across 
the country have a cumulative capacity of 90,000 MW [105,106]  
36 Due to the unreliable infrastructure, an incident in 2012 led to power outages for nearly 700 million people 
[107]  
37 RTP rates are riskiest from the customer’s viewpoint since customers face wholesale prices that vary in real 
time, but they will most likely be associated with the lowest average price [108]  
38 The top 20% of households earn 45% of India’s income, and 87% of people living in metros belong to the top 
2 income quintiles [109]  
39 This would address equity concerns and also mitigate the impacts of the skewed subsidy structure 
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been above ₹2500 at least once. We expected that such households would be more willing to pay 
for an uninterrupted power supply and would be more keen to be able to keep using their ACs. We 
further assumed that the upper income households – those with monthly summer billing amounts 
in excess of ₹6000-₹7000 (approximately $85-$100) – might be less price-elastic and could 
generate added revenues for the utilities, while those in the middle- to upper-middle income ranges 
would be more price-elastic and could be the main source of peak shifts, as has also been noted in 
previous studies [110]. These middle income ranges would also be the ones whose consumption 
would otherwise be expected to grow more significantly in coming years. 
 
We used JMP 14 to create a Bayesian D-optimal design of 12 choice sets which we divided into 
two surveys – thus each respondent was presented with 6 choice sets of two alternatives. The 
designs are D-optimal because they guarantee that all parameters can be estimated with maximal 
precision. They are Bayesian because they include prior knowledge about the parameters – which 
improves the efficiency and accuracy of the design [111] – in the form of a parameter distribution 
in the design process [112]. 
 
We assigned these prior values to our parameter distribution based on desk research and expert 
consultations, and allowed for a large amount of uncertainty around our expectations by specifying 
large prior variances. We then generated the designs in JMP 14. The attributes and levels used in 
the choice sets are captured in Table 5.1. In designing these, we also pre-tested the survey among 
six respondents and took their feedback into consideration. 
 
 

Table 5.1: Choice Set Attributes and Levels 
Attribute Levels 

Rate structure  RTP hourly  ToU, three levels per day 
18.00 – 00.00 High 
00.00 – 07.00 Current  
07.00 – 18.00 Low 

 

ToU, two levels per day 
 

14.00 – 00.00 High 
00.00 – 14.00 Low 

 

High rate  50% above current rate 35% above current rate 20% above current rate 

Low rate  20% below current rate 35% below current rate 50% below current rate 

Reduction in 
power cuts 

25% lower than present 50% lower than present 100% lower than present 

Expected 
savings 

₹400 per month ₹750 per month ₹1000 per month 

 
 

A sample choice set is shown in Figure 5.3. The ordering of the six choice sets within each survey 
was randomized to reduce order effects. Besides the two alternative programs, each choice set also 
included a ‘no-choice option’ allowing respondents to opt out from any of the offered DR programs 
and stay with their current consumption pattern.   
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Figure 5.3: Sample Choice Set 

 

 
 
 

The survey was designed in English; since we expected that most respondents in our target 
segments would be comfortable with the language, this did not significantly increase the risk of 
selection bias40. The questionnaire consisted of 30 questions and was split into 4 parts. Part one 
listed questions about which part of the NCR the respondent lived in, along with a few questions 
about her electricity profile, such as appliance ownership, average power cuts, availability of power 
backup systems, and average monthly bills in the summer. Part two presented respondents with 
psychological profile questions, with scaled responses, to gauge their attitudes towards data 
privacy, convenience, technology, the environment, and their political affiliations. The ordering of 
these questions within part two was randomized. Part three included the choice exercise, and was 
randomly presented before or after part two, to further minimize order effects. In this part, we first 
also listed the respondents’ existing tariff structures as a reminder to them – the average rate in the 
two highest rate slabs across the five regions is ₹6.5 per kWh – and explained the structure of the 
choice set exercise as well as the potential for savings through DR41. Part four concluded with some 

                                                             
40 12% of Indians were English speakers in 2011; the overall English-speaking population was expected to 
quadruple in a decade, and the percentage of English speakers increases significantly among urban regions and 
higher income populations [113]  
41 The average peak demand savings, across DR trials, has been about 10%, complementing energy efficiency 
initiatives [114], and when avoided generation costs and over-drawing penalties are passed through to 
customers, the savings can be significant [115]  
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demographic questions. All questions were phrased in neutral language to minimize respondent 
manipulation, and we attempted to reduce potential hypothetical bias by explaining the real-life 
potential for such programs. The full survey is listed in Appendix 5-A. 
 
We conducted the survey through December 2018 and January 2019. To obtain these responses, 
the survey was disseminated online through Qualtrics. We used the following channels of 
distribution: (i) personal contacts as well as their contacts; (ii) select customers registered with one 
of the distribution utilities in Delhi – BSES Yamuna – through an employee; (iii) present and former 
clients of a local real estate agent; (iv) Facebook communities for Delhi, Gurgaon, and Noida; (v) 
alumni networks of two academic institutions in Delhi; and (vi) other social media, such as 
LinkedIn, Twitter, and Reddit. This may be viewed as a blend of random, convenience, and 
snowball sampling. 
 
5.4 Results 
 
5.4.1 Sample Statistics 
 
All the respondent data was anonymous and confidential. Although we do not have information 
about the non-response rates due to the nature of survey distribution, overall, a total of 360 people 
filled out the survey. Of these, 278 were living in one of the five regions of the NCR under study. 
From these 278, 21 did not own any ACs, 32 had never had an electricity bill amount of above 
₹2500, and 11 fell under both these categories. These 42 were thus ineligible for the choice set 
exercise. Of the remaining 236 eligible respondents, 167 (70.76%) completed the choice set 
exercise. The demographic details of these final 167 respondents are captured in Table 5.2 below.  
 
It is seen that most respondents were between 25 and 55 years in age, and the sample was skewed 
towards male respondents. Given the targeted nature of our survey, the sample was expectedly 
highly educated and fell under the higher income brackets, compared to the Delhi per capita of 
₹27,400 per month [116].   
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Table 5.2: Respondent Demographics (N = 167) 
Characteristic Level Respondents Percentage 
Age (in years) [1] 18-24 

[2] 25-39 
[3] 40-54 
[4] 55-64 
[5] 65 and above 

11 
74 
35 
20 
17 

7.01% 
47.13% 
22.29% 
12.74% 
10.83% 

Gender [1] Female 
[2] Male 

43 
112 

27.74% 
72.26% 

Net monthly household income [1] <₹40,000 
[2] ₹40,001-₹60,000 
[3] ₹60,001-₹90,000 
[4] ₹90,001-₹150,000 
[5] ₹150,001-₹250,000 
[6] >₹250,000 

15 
5 
19 
26 
26 
37 

11.72% 
3.91% 

14.84% 
20.31% 
20.31% 
28.91% 

Educational degree attained [1] High school 
[2] Bachelor’s 
[3] Master’s or higher 

5 
41 
103 

3.36% 
27.52% 
69.13% 

Car ownership [1] None 
[2] One car 
[3] Two cars 
[4] Three or more cars 

13 
71 
53 
21 

8.23% 
44.94% 
33.54% 
13.29% 

Employment of domestic help [1] None 
[2] At least 1 person part-time 
[3] At least 1 person full-time 

16 
86 
57 

10.06% 
54.09% 
35.85% 

Housing type [1] Apartment 
[2] Independent floor 
[3] Independent house 

80 
33 
46 

50.31% 
20.75% 
28.93% 

Number of people in household [1] 1-2 people 
[2] 3-4 people 
[3] 5-6 people 
[4] >6 people 

39 
74 
33 
12 

24.68% 
46.84% 
20.89% 

7.59% 
Home ownership [1] Rent 

[2] Own 
[3] Other  

44 
112 
3 

27.67% 
70.44% 

1.89% 
 
 
The electricity profiles of these respondents are captured in Table 5.3. Most respondents lived in 
Delhi or Gurgaon and owned three or more room ACs. 95% faced summertime power outages of 
under four hours per day, and 90% of them had at least one type of power backup system at home. 
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Table 5.3: Respondent Electricity Usage Profiles (N = 167) 
Electricity Profile Question Level Respondents Percentage 
Part of National Capital Region 
(NCR) 

[1] Delhi 
[2] Gurgaon 
[3] Noida 
[4] Faridabad 
[5] Ghaziabad 

76 
65 
16 
2 
8 

45.51% 
38.92% 

9.58% 
1.20% 
4.79% 

Number of air conditioners at home [1] One 
[2] Two 
[3] Three or more 

19 
36 
112 

11.38% 
21.56% 
67.07% 

Monthly electricity bills amount in 
summer 

[1] <₹2,500 
[2] ₹2,500-₹5,000 
[3] ₹5,000-₹7,500 
[4] ₹7,500-₹10,000 
[5] >₹10,000 

16 
55 
37 
28 
28 

9.76% 
33.54% 
22.56% 
17.07% 
17.07% 

Other heavy appliances at home [1] One 
[2] Two  
[3] Three 
[4] Four 

15 
89 
45 
18 

8.98% 
53.29% 
26.95% 
10.78% 

Average daily power cuts in summer [1] 0-2 hours 
[2] 2-4 hours 
[3] 4-6 hours 
[4] Above 6 hours 

127 
30 
6 
2 

76.97% 
18.18% 

3.64% 
1.21% 

Power backup system [1] None 
[2] Diesel-based 
[3] UPS/Inverter 
[4] Community backup 

17 
11 
85 
54 

10.18% 
6.59% 

50.90% 
32.33% 

Rooftop solar PV panels [1] No 
[2] Yes/Maybe 

146 
20 

87.95% 
12.05% 

 
 
Lastly, some of the socio-psychological values of the respondents are captured in Table 5.4. Most 
were not very concerned about data privacy, suggesting that they may not be resistant to the 
introduction of smart meters. While 61% were very concerned about the environment, only 42% 
expressed a willingness to personally act on their concerns. A larger number of respondents seemed 
to be politically liberal than conservative, based on their news viewership, and most were 
comfortable with new technologies. 
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Table 5.4: Respondent Values (N = 167) 
Socio-Psychological Value Level Respondents Percentage 
Privacy 1 (On activities being 
recorded) 

[1] Not at all comfortable 
[2] Not very comfortable  
[3] Fairly comfortable 
[4] Very comfortable 

2 
27 
61 
73 

1.23% 
16.56% 
37.42% 
44.79% 

Privacy 2 (On personal 
information being stored) 

[1] Not at all comfortable 
[2] Not very comfortable  
[3] Fairly comfortable 
[4] Very comfortable 

2 
13 
66 
83 

1.22% 
7.93% 

40.24% 
50.61% 

Environment 1 (Importance of 
environment to respondent) 

[1] Not at all important 
[2] Not very important 
[3] Neutral 
[4] Somewhat important 
[5] Very important 

6 
2 
11 
45 
99 

3.68% 
1.23% 
6.75% 

27.61% 
60.74% 

Environment 2 (Willingness to 
spend on sustainable products) 

[1] Completely disagree 
[2] Somewhat disagree 
[3] Neutral 
[4] Somewhat agree 
[5] Completely agree 

6 
13 
11 
65 
68 

3.68% 
7.97% 
6.75% 

39.88% 
41.72% 

Convenience (Preference for 
shopping online) 

[1] Completely disagree 
[2] Somewhat disagree 
[3] Neutral 
[4] Somewhat agree 
[5] Completely agree 

15 
26 
43 
59 
20 

9.20% 
15.95% 
26.38% 
36.20% 
12.27% 

Political leaning (Preferred news 
channel) 

[1] Right-leaning 
[2] Left-leaning 
[3] Others 

41 
70 
52 

25.15% 
42.94% 
31.90% 

Technology 1 (On new technologies 
being better) 

[1] Completely disagree 
[2] Somewhat disagree 
[3] Neutral 
[4] Somewhat agree 
[5] Completely agree 

2 
30 
35 
75 
22 

1.22% 
18.29% 
21.34% 
45.73% 
13.41% 

Technology 2 (Ease of use of new 
technology) 

[1] Completely disagree 
[2] Somewhat disagree 
[3] Neutral 
[4] Somewhat agree 
[5] Completely agree 

0 
23 
27 
78 
36 

0.00% 
14.02% 
16.46% 
47.56% 
21.95% 

 
 
5.4.2 Logit Model Results 
 
We estimated the MNL model with main effects only, using Firth bias correction [117] – using 
Firth’s penalized maximum likelihood in small sample problems provides estimates with a smaller 
bias and variance than estimates obtained using ordinary maximum likelihood. We then confirmed 
the estimates using the mixed logit method, which yields a better goodness-of-fit, and which we 
used in the remainder of the analysis. The results of these two models are captured in Table 5.5. 
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Table 5.5: Parameter Estimates and Goodness-of-Fit for Main Effects Model a 
Effect MNL Mixed logit 
 Mean Estimate Std. Dev Mean Estimate Std. Dev 
Rate structure [RTP]         -0.1454* 0.0688   -4.7249** 1.6561 
Rate structure [ToU 3 times]          0.0861*    0.0537    3.0103** 1.3057 
High rate         -1.1599*** 0.4190 -43.7282** 9.4445 
Low rate          0.8199** 0.3694  24.0235** 6.8355 
Reduction in power cuts          0.6497*** 0.1658  25.4045** 4.2851 
Expected monthly savings          0.0009***    0.0002    0.0196** 0.0062 
No choice indicator          0.1648    0.2800 -71.8557 18.1288 
Goodness of Fit Measure Value  Value 
-2 * LL 2001.8002  134.5537 
  Total Iterations: 15000 

a P < 0.01: ***|| P < 0.05: **|| P < 0.1: * 
 
 
The coefficients of real-time pricing and three-rates-a-day ToU represent their utilities relative to 
the two-rates-a-day ToU structure. Expectedly, of the three rate structures, the real-time pricing 
had the lowest utility to respondents, since it would require the most effort to track. However, 
although we had expected the two-rates-a-day ToU to be preferable to the three-rates-a-day ToU 
as it was simpler in design, the three-rates-a-day ToU came out with the highest utility across rate 
structures, reflecting the fact that it offered 6 hours of peak pricing, unlike the 10 hours of peak 
pricing in the two-rates-a-day ToU plan. Respondents attached the greatest importance to the upper 
price band, and to the reductions they could expect in power cuts – these indicate the high value 
people attach to security of supply and price considerations. 
 
Based on these mixed logit estimates, using Equation 4, we estimate the monthly savings that 
respondents would require for a change in each of the attributes, shown in Table 5.6, assuming that 
the rate changes and reductions in power cuts are linear in utility42. 
 

 
Table 5.6: Monthly Savings Required for Changes 

Attribute Change Desired Savings Required 
Rate Structure ToU 3 rates - RTP ₹ 393.14 
Rate Structure ToU 3 rates - ToU 2 rates ₹ 65.85 
High Rate 10% increase ₹ 222.24 
Low Rate 10% reduction -₹ 122.10 
Reduction in Power Cuts 10% reduction -₹ 129.12 

 
 
We then test for subject effects using the mixed logit model, and the results of this full model are 
captured in Table 5.7. 
 
  
                                                             
42 We tested for exponential utilities in the mixed logit model, but the goodness-of-fit and significance of 
parameter estimates was found to be lower in those cases 
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Table 5.7: Parameter Estimates and Goodness-of-Fit for Overall Model b 
Effect Posterior 

Mean 
Posterior 
Std. Dev 

Subject 
Std. Dev 

Main Effects 
Rate structure [RTP]       -9.5297** 4.7590        34.3279 
Rate structure [ToU 3 times]        6.6491** 2.8787     23.7150 
High rate    -69.4249** 18.1029 33.5181 
Low rate      46.1991** 17.8895 85.9705 
Reduction in power cuts      38.6684** 10.4992 21.6869 
Expected monthly savings      0.0642* 0.0344 0.0834 
No choice indicator    -24.5196** 10.6798   6.1153 

Subject Effects 
High rate * Monthly bills [2] -31.6950 22.2196 56.5519 
High rate * Monthly bills [3]     -57.7057** 22.2951 13.7876 
High rate * Monthly bills [4]     -91.1971** 30.1354 7.0693 
High rate * Monthly bills [5] -23.1002 55.3610 4.3074 
Reduction in power cuts * Age [2]   21.8808 13.0266 10.9530 
Reduction in power cuts * Age [3]   -17.2219* 8.9144 11.6467 
Reduction in power cuts * Age [4] -30.4321 23.0164 2.6994 
Reduction in power cuts * Age [5]     -29.3362** 14.3113 2.2346 
Reduction in power cuts * Income [2]  13.4181 18.2701 30.9496 
Reduction in power cuts * Income [3]    22.3316* 11.7106 24.7583 
Reduction in power cuts * Income [4]      25.7021** 11.6405 4.1048 
Reduction in power cuts * Income [5]      56.0497** 11.6642 5.9376 
Reduction in power cuts * Income [6]      63.2032** 23.2532 3.8995 
Expected savings * Environment 1 [2]       0.1868** 0.0794 0.2356 
Expected savings * Environment 1 [3]       0.1758** 0.0881 0.1382 
Expected savings * Environment 1 [4]     0.0595* 0.0329 0.0610 
Expected savings * Environment 1 [5]   0.0578 0.0426 0.0529 
No choice indicator * Convenience [2]     -23.6463** 11.8685 5.3641 
No choice indicator * Convenience [3]   -171.1601** 63.2396 116.6273 
No choice indicator * Convenience [4]      33.5092** 14.3121 6.0846 
No choice indicator * Convenience [5]    -491.1501* 253.4644 71.0172 
No choice indicator * Home ownership [1]      34.1568** 15.9839 4.0730 
No choice indicator * Home ownership [2]      28.3893** 11.3569 1.3049 
Goodness of Fit Measure Value 
-2 * Average LL 
Total Iterations: 15000, Burn-in Iterations: 7500 

69.1011 

b P < 0.01: ***|| P < 0.05: **|| P < 0.1: * 
 
 
5.5 Discussion and Policy Implications 
 
5.5.1 Discussion of Estimates 
 
The overall model in Table 5.7 shows that the proportional utilities of the five attributes in relation 
to each other remain similar to the main effects model. However, the respondent profiles do affect 
the preferences among the various attribute levels.  
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The disutility from the high rate increases as respondents’ monthly bill amounts increase, indicating 
a greater unwillingness to risk higher bill amounts. The high coefficients also indicate – in line with 
literature [46] – that respondents are very sensitive to prices and / or loss-averse, particularly if 
they’re already paying a lot.  
 
Younger respondents tend to derive a greater utility from reductions in power cuts. 13 of the 17 
respondents who didn’t have a power backup system, and 22 of the 38 who faced summertime 
power cuts above 2 hours per day, fell in the first and second age categories, which may partly 
explain this trend. Yang et al. [118] had found, using survey data, that younger consumers are more 
likely to shift to ToU pricing programs than older ones, although their analysis wasn’t related to 
energy security. Alongside security of supply issues, younger populations also tend to use more 
technological appliances [119] and may thus be more reliant on electricity for entertainment 
purposes. 
 
Higher levels of income within this middle to upper-income sample also correlate to a greater utility 
derived from reductions in power cuts. An average respondent with a household income of more 
than ₹250,000 per month is willing to pay ₹984 per month more for eliminating power cuts than 
an average respondent with a household income of under ₹40,000 per month. It is possible that the 
richest populations are more willing to spend money on comfort. In line with this, 33 of the 63 
respondents (52.4%) with a stated income of above ₹150,000 per month valued convenience highly, 
compared with the sample average of 48.4%. This corresponds to our initial expectations, that 
upper-income households would be more willing to pay for an uninterrupted power supply, and 
could generate added revenues for utilities. It is also in line with other literature [120,121], based 
on methods such as choice experiments and secondary survey data, which shows that higher 
incomes lead to greater values for comfort and convenience and correlates negatively with energy 
curtailment behavior. 
 
The utility from expected monthly savings (arising through shifts in electricity use) was increasing 
at a decreasing rate with increases in the levels of environmental concern However, the increase in 
utility was marginal and would not substantially affect the savings required, suggesting that people 
would not be willing to financially sacrifice too much in the interest of benefitting the environment. 
This was also seen from the relationship between the first and the second environmental questions, 
on the concern for the environment and the willingness to spend on more sustainable products, in 
Table 4. It runs against previous findings [45] from developed country contexts, although the 
potential environmental benefits of DR were not explained in our study.  
 
People derived a lower utility from staying on the current plan if they owned their homes rather 
than renting them – Ericson [44] suggests that house-dwellers might have a greater ability to reduce 
consumption than apartment-dwellers, and we observe a strong correlation between type of 
dwelling and home ownership in our sample (χ2 value 145.5 at 4 degrees of freedom for a p-value 
of 0.0001) – and if they valued convenience more highly. This went against expectations, since 
staying with the status quo would inconvenience people less than shifting to a new tariff structure 
that requires a more active monitoring of rates.  
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We did not find significant effects for education rates, the presence of domestic help such as maids, 
power cuts and backup systems, values towards privacy and technology. We expect that response 
bias, sample selection and size, and cultural differences may have played a role in these omissions. 
Further, to reduce cognitive burden and given the low market penetration rates, we did not include 
smart appliances in our study. 
 
In discussing these results, we note that the Indian economy is growing rapidly, implying that more 
people will eventually move into the upper income categories where expected price elasticity might 
be lower, as seen from the value of reduced power cuts, yielding greater revenues for the utilities. 
At the same time, many more people may also enter the middle- to upper-middle income ranges, 
creating the potential for significantly higher peaks if consumption patterns aren’t meaningfully 
shifted.  
 
5.5.2 Cluster Analysis of Preferences 
 
We further study preference heterogeneity by adopting a hierarchical clustering method to identify 
preference clusters, similar to the approaches Pinto et al. [122] and Luyten et al. [99] used as 
complements to choice exercises. Clustering sorts objects according to their similarity on desired 
dimensions and identifies groups that maximize within-group similarity and minimize between-
group similarity [123]. For the dimensions, we use the subject-level coefficients for each attribute 
from the main-effects mixed logit model. Taking the cubic clustering criterion values [124,125] 
into account, we specify a four-cluster scheme, and identify the characteristics of the respondents 
within each cluster to examine differences between them. These characteristics are shown in Table 
5.8, together with the averaged values of the attribute coefficients within each cluster. We do not 
pursue this exploratory analysis with confirmatory approaches such as regressions to determine 
predictors of cluster membership. 
 
 

Table 5.8: Cluster Analysis Based on Preferences 
 Sample 

N=167 
Cluster 1 

N=34 
Cluster 2 

N=39 
Cluster 3 

N=27 
Cluster 4 

N=67 
Demographic      
Age (55 years or above) 22.15% 18.18% 25.64% 33.33% 18.18% 
Gender (Female) 25.74% 18.18% 23.08% 25.93% 30.30% 
Income (≥ ₹150,000) 37.72% 27.27% 53.84% 40.74% 31.82% 
Car Ownership (≥ 3) 12.57% 18.18% 10.26% 14.81% 10.61% 
Number of people (≥ 5) 26.95% 36.36% 25.64% 22.22% 25.76% 
Home ownership 67.06% 69.69% 66.67% 70.37% 65.15% 
Electricity Profile      
People in Delhi 45.51% 48.48% 43.59% 44.44% 43.94% 
Number of ACs (≥ 3) 67.06% 63.63% 69.23% 74.07% 65.15% 
Monthly bills (≥ ₹7500) 33.53% 36.36% 28.20% 40.74% 31.82% 
Daily power cuts (> 2 hrs.) 22.75% 24.24% 28.20% 25.93% 18.18% 
Continued on next page  
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Table 5.8 (Continued) 
 Sample 

N=167 
Cluster 1 

N=34 
Cluster 2 

N=39 
Cluster 3 

N=27 
Cluster 4 

N=67 
Value      
Privacy 1 [Level 3,4] 80.24% 87.88% 76.92% 66.67% 83.33% 
Environment 2 [Level 4,5] 79.64% 69.70% 87.18% 77.78% 80.30% 
Convenience [Level 4,5] 47.31% 42.42% 46.15% 51.85% 46.97% 
Technology 1 [Level 4,5] 58.08% 51.51% 69.23% 40.74% 63.64% 
Utility Coefficients      
Rate Structure (RTP)  -4.50 -3.03 -1.30 -20.88 -0.43 
Rate Structure (ToU 3)  3.13 -0.12 5.33 16.44 -1.97 
High Rate -48.90 -72.41 -21.23 -82.91 -39.59 
Low Rate 23.41 -9.65 19.95 4.77 49.63 
Reduction in Power Cuts 26.84 28.07 74.28 5.16 7.08 
Expected Savings 0.02 -0.07 -0.02 0.04 0.08 

 
 
We see that Cluster 1 had more negative preference weights overall, and was more likely to select 
the ‘no choice’ option i.e. reject the proposed DR structures and remain on the current tariff plan. 
Relatively, this cluster had the most number of male respondents as well as the lowest income 
earners among the middle to upper-income sample. The household size was the largest in this 
cluster, and AC ownership was lower. Respondents had the lowest privacy concerns, lowest scores 
on convenience, and lowest willingness to spend more for environmentally-friendly products. 
 
Cluster 2 had a strong preference for reductions in power cuts and in general experienced less 
disutility from the higher peak rates. This cluster had the highest incomes, though car ownership 
was lower. Respondents in this cluster were most willing to spend more on environmentally-
friendly products, and were very comfortable with new technologies. 
 
Cluster 3 exhibited very strong preferences for the rate structures and higher peak rates, and 
comparatively weak preferences for reductions in power cuts. This cluster had more older 
respondents, smaller household sizes, and the highest rates of home and car ownership. 
Respondents also owned more ACs and had larger monthly electricity bills. They had stronger 
privacy concerns, and greater preferences for convenience, but were least comfortable with new 
technologies. 
 
Lastly, cluster 4 – with the largest population – had comparatively strong preferences for the lower 
off-peak rates and for the expected savings, and were relatively indifferent to the rate structures. 
This cluster included more younger respondents, as well as more female respondents. They had 
lower incomes and fewer cars, relative to the rest of the sample, and the lowest rates of home 
ownership. Respondents in this cluster also faced the fewest power cuts. 
 
Though we note that certain characteristics, such as home ownership rates, were not significantly 
different across the clusters, these clusters indicate that even among the middle to upper-income 
households in the Delhi-NCR region, different groups within the sample may have heterogenous 



 

 
141 

 

concerns, likely shaped by their different characteristics. These varying concerns will have different 
effects on future DR adoption. 
 
5.5.3 General Utility-Based Options 
 
The model results demonstrate that DR can be a feasible option in India, from the point of view of 
customer acceptance. Yan et al. [126], in a review of price-based DR, conclude that with smart 
metering technologies, pricing signals can be an effective instrument for peak demand reductions, 
reliability management, and emissions and cost reductions. With this in mind, we use our results 
to propose specific pricing signals for the Indian market. In doing so, we take two independent 
approaches to offering policy suggestions.  
 
First, we use the main effects model to derive four DR structures that achieve a high general utility. 
We apply the parameter estimates of the main effects mixed logit model from Table 5 to the most 
preferred levels of the attributes that we used in our choice sets: (i) a three-rates-a-day ToU rate, 
(ii) an upper rate of 20% above current levels, (iii) a lower rate of 50% below current levels, (iv) a 
100% reduction in power cuts, and (v) a ₹1000 in monthly bill savings. This yields a total utility of 
51.28. Although this is an unlikely combination of attribute levels, the average utility, using the 
parameter estimates under the main effects model, of the 24 alternatives presented to respondents 
across choice sets is 21.29, and the standard distribution of their utility is 8.73.  
 
Based on these measures, and assuming a normal distribution, we set a target to achieve a utility 
acceptable at the 90% level (right-tailed p-value of 0.1) i.e. 32.47, and present four possible DR 
structures that approximately achieve this level of utility and that could feasibly be implemented 
among a general population, not taking into account the specific subject effects captured in the 
overall model. These four structures are presented in Table 5.9. For each proposed structure, we 
calculate the relative importance (RI) of each attribute, A – and its monetary value – within the 
structure, based on Equations 5 and 6. 
 

RIA = [ |UA| / ∑A=1
4 |UA | ] * 100               (5) 

 
ValueA = UA / ∑A=1

4 UA * (Expected Savings)             (6) 
 
 

Table 5.9: Potential DR Structures based on Main Effects 
Attribute Structure 1 Structure 2 Structure 3 Structure 4 
Rate structure 
Relative Importance 
Value 

ToU 2 
5.84% 
₹84.33 

ToU 3 
7.69% 
₹76.45 

ToU 3 
6.52% 
₹90.48 

RTP 
10.25% 
-₹160.45 

High rate 
Relative Importance 
Value 

+15% 
22.32% 
-₹322.60 

+20% 
22.34% 

-₹222.10 

+30% 
28.40% 

-₹394.28 

+20% 
18.98% 
-₹296.99 

Continued on next page  
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Table 5.9 (Continued) 
Attribute Structure 1 Structure 2 Structure 3 Structure 4 
Low rate 
Relative Importance 
Value 

-35% 
28.61% 
₹413.54 

-40% 
24.55% 
₹244.04 

-30% 
15.60% 
₹216.61 

-30% 
15.64% 
₹244.74 

Reduction in power cuts 
Relative Importance 
Value 

50% 
43.23% 
₹624.73 

70% 
45.42% 
₹451.62 

90% 
49.49% 
₹687.19 

100% 
55.13% 
₹862.70 

Expected monthly savings ₹800 ₹550 ₹600 ₹650 
 
 
The most preferred rate structure, three-rates-a-day ToU, could potentially have a greater variance 
in the upper and lower rates, and would require the lowest monthly savings as long as it achieves a 
moderate reduction in power cuts. RTP structures could achieve the same utility, so long as the 
rates don’t vary too significantly and they realize significant reductions in power cuts. As we expect 
a two-rates-a-day ToU structure to realize a lesser reduction in power cuts, their acceptance based 
on this utility approach would require higher monthly bill savings. 
 
5.5.4 Specific Enrollment-Based Options 
 
Secondly, we develop six potential policy options – which are based on simulated sample 
enrollment rates – using the estimates from the full mixed logit model in Table 5.7, adopting the 
approach used by Bennett et al. [127]. These options are complementary to the options proposed 
in Section 5.5.3, for which we cannot predict population enrollment rates. In these simulations, the 
predicted enrolment probability in a DR program k for respondent i ϵ {1…n} in the sample is 
estimated by the logit characterization 
 

Pik(Enroll) = exp (βxxk + βyyik) / [1 + exp (βxk)]            (7) 
 
Where yik are the user-specific indicator variables. Thus, the minimum payments ck for the program 
k are the level of compensation at which the model predicts a targeted enrolment rate of R:  
 

ΣN
i=1 F [Pik(Enroll) | ck] / N = R             (8) 

 
Where F [.] takes a value of 1 if Pik > 0.5, and 0 otherwise. For the sample simulations, we estimate 
ck for various values of R, i.e. we estimate the minimum payments necessary to predict various 
enrolment rates of the households in our sample. 
 
Table 5.10 shows the six policy options, with the reductions in power cuts and the monthly savings 
that the sample respondents would require for a 90% enrollment rate. The cheapest option is Option 
4, where the flattest rate structure compensates for a limited reduction in power cuts, enabling a 
90% sample enrollment for savings of just ₹250 per month. However, all six options predict a 90% 
sample enrollment for savings of under ₹700 per month, which is under 30% of the minimum 
summer monthly bill amounts of the participating households. 
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Table 5.10: Policy Options for 90% Sample Enrollment 
# Rate Structure High Rate Low Rate Reductions in 

Power Cuts 
Monthly 
Savings 

1 RTP Up to 30% higher Up to 20% lower 30% ₹400 
2 RTP Up to 40% higher Up to 40% lower  80% ₹650 
3 ToU 2 times 40% higher 50% lower 40% ₹550 
4 ToU 2 times 20% higher  10% lower 20% ₹250 
5 ToU 3 times 35% higher 20% lower 40% ₹500 
6 ToU 3 times 50% higher  35% lower 60% ₹700 

 
 
Figure 5.4 additionally shows the predicted enrollment rates for these policy options at various 
levels of expected monthly savings. It is seen that Options 2 and 6 – with higher peak rates but 
substantial reductions in power cuts – would have the highest enrollment rates when the expected 
monthly savings are negligible. In the middle brackets of expected savings, around ₹100-₹400 per 
month, options 1 and 4 – offering both the lowest peak rates and least reductions in power cuts – 
would enroll the greatest shares of the sample. Options 3 and 5 would witness stable increases in 
enrollment. Option 1, offering RTP with higher off-peak rates and fewer reductions in power cuts, 
is the least attractive in the absence of significant savings. 
 
 

Figure 5.4: Sample Enrollment Rates for Policy Options 

 
 
 
We note that the predicted enrollment rates would be dependent not just on the levels of expected 
savings, but also on the DR structures being able to offer these predicted reductions in power cuts. 
Further, we caution that since the sample may not be representative of the middle and upper-income 
populations in the city, these options can serve as indicative guideposts rather than definitive 
recommendations. 
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5.5.5 Economic Value of Demand Response Implementation 
 
Lastly, we explore the economic value – to households and utilities – of shifts in consumption once 
a dynamic pricing program is introduced. We however do not look at the costs of implementing 
such a program. We choose the rates structures outlined in Option 5 above, since it falls in the 
middle of the other options in terms of enrollment rates, as seen in Figure 5.4.  
 
We consider the effects on Delhi alone, and do not include the other regions in this study. There 
were about 3.7 million households in Delhi in 2009-10 [128]; we expect that with urbanization, 
population growth rates, and nuclearization of families, there are currently around 4 million 
households.  
 
We then assume that the DR program is applied to the richest 20% of Delhi’s population, similar 
to the set-up in this choice experiment, which comes to about 800,000 households. We expect that 
these 20% of households are responsible for about 45% of the city’s residential electricity 
consumption, similar to the shares of income mentioned in Section 5.3.2.  
 
In Option 5, the difference between the peak (35% higher, or ₹8.8) and off-peak (20% lower, or 
₹5.2) rates is ₹3.6 per kWh. Given that each room AC uses an average of 1.8 kW [129,130], then 
for each hour that an AC’s usage is shifted from peak to off-peak hours, the household bill savings 
would come to (i) ₹6.48, relative to consuming at peak hours, and (ii) ₹2.34, relative to current 
rates. Thus, if a household shifts consumption of 1 AC for two hours each evening, the monthly 
savings for a household that is consuming 407 kWh come to about (i) ₹390, compared to consuming 
at peak hours (10.47% of a current average bill), or (ii) ₹140, compared to consuming under the 
current tariff structure (3.76% of a current average bill). These savings can become more significant 
if further flexibility is induced in other ACs, water heaters, washing machines, and other appliances.  
 
Further, the residential sector accounts for 44% of Delhi’s total electricity demand [131] – for 
simplicity, we assume it constitutes 50%, or roughly 3500 MW, of the 7000 MW peak43. If the top 
20% of households are responsible for 45% of total residential consumption, and 50% of the shares 
at peak hours, then they would account for 1750 MW of the peak demand. Shifts of even 20%, 
which have been observed in DR programs in other countries [114,132], could thus lead to 
reductions in peak demand of up to 350 MW, or 5% of the total peak.  
 
5.6 Conclusion 
 
This paper used a discrete choice experiment approach to test the feasibility of implementing a 
dynamic pricing-based demand response program in the residential sector in India.  
 
India is an emerging economy with a large low-income population, and with 300 million people 
still without regular access to electricity. Additionally, it is experiencing high rates of economic 
growth, high rates of increase in consumption, and consequently large increases in greenhouse gas 
emissions. The creates the incentive for using DR to improve the security of supply, particularly 

                                                             
43 Chapter 4 had noted that residential shares of peak demand can be higher than their shares of total demand 
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with India’s ambitious renewables targets. The opportunity for implementing such DR programs 
comes from India’s smart grid ambitions and its smart metering targets.  
 
The analysis focused on the national capital region of Delhi. This was due to considerations of 
homogeneity – each state in India has its own electricity tariff structure – and socio-cultural 
comparability. With a population of 26 million people, an implementation even in this region alone 
can potentially yield sizeable effects, particularly as Delhi has the highest per capita electricity 
consumption rates in the country. The expectation is that any peak reductions can be used to 
improve electricity access to underserved populations, while any additional revenues to utilities 
can be used to improve the provision of electricity services and the grid infrastructure.  
 
The target population was middle to upper-income households who had a summertime monthly bill 
in excess of ₹2500 and who owned at least one room AC. We obtained 167 usable responses for 
our analysis, where each respondent was presented with six choice sets of two alternatives. Each 
alternative was comprised of five attributes with three possible levels. 
 
The results showed that respondents preferred ToU pricing to RTP structures, possibly because 
they are easier to manage. Within ToU structures, they preferred the three-rate structure to the two-
rate structure, perhaps because the former offered a fewer number of hours of peak pricing than the 
latter. In general, however, respondents attached a lower utility to the different types of rate 
structures than to the remaining attributes. 
 
Although the off-peak rates weren’t as important, respondents exhibited a strong preference for 
lower peak time rates, particularly if their monthly electricity bills were already high. This indicated 
a greater aversion to loss and a greater unwillingness for potentially further inflating existing bill 
amounts.  
 
Respondents attached a high value to reductions in power cuts, indicative of the extent of supply-
side problems. Younger and higher income respondents in particular attached a higher utility to 
such reductions, owing to a mix of greater technological appliance usage and lower ownership of 
power backup systems among the former, and a greater value of convenience among the latter 
group. Although respondents who were more concerned about the environment attached a lower 
utility to the required monthly savings, this amount was not substantial and indicated that 
environmental concern does not necessarily translate to action. This was in line with the risk of 
hypothetical bias that is faced by choice experiments, and also suggests that environmental issues 
are a secondary consideration. A cluster analysis grouped respondents into four clusters based on 
similarities in their preferences and demonstrated that respondents that exhibit similar preferences 
also share similar characteristics that are distinct from those of respondents in other clusters. 
 
Based on the results of the analysis, the paper then presented a number of potential DR structures 
that could be feasibly implemented, four of which were designed to achieve a high general utility, 
and six that were designed to achieve a 90% enrollment among the sample respondents. Lastly, it 
offered a rough estimate of the potential benefits – to households and utilities – of implementing 
one of these structures. 
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Overall, the analysis demonstrates that a time-of-use pricing-based demand response program 
could be feasible even in a developing country context, particularly when it is designed for middle 
to upper-income households, in line with the political economy of the national electricity sector. 
While framing it as an environmental solution may help to some extent, the key concerns for the 
local population are expected savings and reductions in power cuts. Thus, any DR program would 
have to clearly be able to address people’s price sensitivities and security of supply concerns.  
 
We acknowledge that we did not offer smart appliances and smart meters in our hypothetical choice 
exercise, although their availability may also affect the desirability of such programs, and the 
potential impacts on power cuts were hypothetical. 
 
Aside from the risk of hypothetical bias, discrete choice experiments should also be interpreted 
differently from actual trials, because the short run and long run price elasticities are measurably 
different due to behavioral learning over time, and due to stock changes (e.g. buying smart or more 
efficient appliances) [133,134]. Price-based DR programs also run the risk that they may attract 
consumers who benefit without responding to the price, simply because they already have a 
favorable consumption pattern [45], although this has not been found to be a significant factor in 
previous analyses [44]. 
 
However, we believe that the potential benefits of choice experiments, particularly as early 
indicators of market feasibility, outweigh their limitations. Future studies looking at the Indian 
context may consider applying similar methods to other cities, in order to consider the design 
requirements for a national roll-out, and may look at the techno-economic feasibility of actually 
implementing such programs. Additionally, further studies may also explore the potential for DR 
in other developing countries using similar approaches, in order to understand what lessons may 
be replicable across developing country contexts.  
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Appendix 5-A: Survey Questionnaire 
 
Dear survey participant,  
 
We really appreciate you filling out our survey. This survey has 30 multiple-choice questions, and 
should take under 10 minutes to complete.  
 
Your responses are vital to our research on improving the provision of electricity to your home. 
Findings from this research could help in designing future electricity tariffs. 
 
All answers are strictly confidential and anonymous. 
 
To acknowledge your effort, when you complete the survey, we will donate an amount of ₹20/- on 
your behalf to the GiveIndia Foundation.    
    
Thank You 
 
Part 1 
 
Q: Which part of the NCR do you live in? 

 Delhi 
 Gurgaon 
 Noida 
 Ghaziabad 
 Faridabad 
 None of these 

 
Q: Do you have any air conditioners (ACs) installed in your home? 

 No 
 Yes, I have one AC 
 Yes, I have two ACs 
 Yes, I have three or more ACs 

 
Q: Do you have any of the following appliances in your home? 

 A washing machine 
 A microwave 
 A second refrigerator 
 A clothes dryer 
 None of these 
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Q: What is your approximate monthly electricity billing amount during the summer and monsoon 
(Apr - Sep)? 

 < ₹2500 
 ₹2500-₹5000 
 ₹5000-₹7500 
 ₹7500-₹10,000 
 > ₹10,000 
 Don’t know 

 
Q: On average, how many hours of power cuts would you say you experience in a day during the 
summer and monsoon (Apr - Sep)? 

 0 to 2 hours per day 
 2 to 4 hours per day 
 4 to 6 hours per day 
 More than 6 hours per day 

 
Q: Do you have a backup power system at home? 

 No 
 Yes, diesel genset or generator 
 Yes, UPS or battery inverter 
 Yes, community power backup 
 Other 

 
Q: Do you have rooftop solar PV panels installed in your house? 

 Yes 
 Maybe 
 No 

 
[Survey proceeds only if respondent lives in Delhi-NCR, has at least 1 AC installed, and has had 
a monthly billing amount of above ₹2500 at least once] 
 
Part 2 
 
Please answer a few questions about your general concerns and preferences. Please remember that 
your responses will be anonymous and confidential 
 
Q: Nowadays, cameras, credit cards, and websites can record your activities for a number of 
reasons. How do you feel about this? 

 Very concerned 
 Fairly concerned 
 Not very concerned 
 Not at all concerned 
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Q: Different organizations store personal information about people in their databases. How do you 
feel about whether your information is being protected by these organizations? 

 Very concerned 
 Fairly concerned 
 Not very concerned 
 Not at all concerned 

 
Q: On a scale of 1 to 5, with 1 being the lowest and 5 being the highest, how important is protecting 
the environment to you personally? 
 
Q: To what extent do you agree or disagree with the following statement:   
I am ready to buy environmentally-friendly products, even if they cost say 10% more than the 
normal brands 

 Completely disagree 
 Somewhat disagree 
 Neutral 
 Somewhat agree 
 Completely agree 

 
Q: To what extent do you agree or disagree with the following statement: 
I would usually prefer to shop online instead of going to a store 

 Completely disagree 
 Somewhat disagree 
 Neutral 
 Somewhat agree 
 Completely agree 

 
Q: Which news channel do you normally prefer to watch? 

 Republic TV 
 Times Now 
 NDTV 
 CNN 
 Aaj Tak 
 India Today 
 Other 

 
Q: To what extent do you agree or disagree with the statement:   
New technology is always better than the technology it replaces 

 Completely disagree 
 Somewhat disagree 
 Neutral 
 Somewhat agree 
 Completely agree 
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Q: To what extent do you agree or disagree with the statement: 
New technology is usually easy to work with 

 Completely disagree 
 Somewhat disagree 
 Neutral 
 Somewhat agree 
 Completely agree 

 
Part 3 
 
For the next six questions, please first take a moment to consider your current tariff 
 
[Here we offer a summary of the tariff structure of the town respondent is in] 
 
With the current electricity infrastructure, you face frequent power cuts and pay high bills. 
  
But if your electricity rates could change with time, based on the costs of generating that electricity, 
you could save a lot of money by adjusting your electricity usage to the rates. This would also 
reduce power cuts.   
 
The next six questions showcase various tariff structures designed for usage above 300 units per 
month in the summer, and demonstrate how much money you can save with these tariffs. Through 
your feedback, we try to understand what tariffs you would then be willing to accept.   
  
Each tariff structure that we present to you will be based on different levels of these 5 components:   
    
[Here we offer a description of the attributes in the following choice sets] 
 
In each of the next 6 questions, please choose which of the two tariffs you would prefer, if any.  
Remember that your current rate is approximately ₹6.50 per unit 
 
[Six times over three pages] Q: Please select the tariff that you prefer   
[Choice set] 

 Tariff 1 
 Tariff 2 
 I wouldn’t choose either option 

 
Part 4 
 
Please answer a few final questions about yourself. As a reminder, these responses will be 
completely anonymous and confidential 
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Q: Please indicate your age 
 Under 18 years 
 18 - 24 years 
 25 - 39 years 
 40 - 54 years 
 55 - 64 years 
 65 years or above 
 I prefer not to answer 

 
Q: Please indicate your gender 

 Male 
 Female 
 I prefer not to answer 

 
Q: What is the net average monthly income of your household? 

 Under ₹40,000   
 ₹40,001 - ₹60,000    
 ₹60,001 - ₹90,000    
 ₹90,001 - ₹1,50,000    
 ₹1,50,000 - ₹2,50,000    
 Above ₹2,50,000   
 I prefer not to answer  

 
Q: What is the most recent educational degree you attained? 

 Secondary school (12th pass) 
 BA, BBA, BSc, BTech, or equivalent    
 MA, MBA, MSc, MTech, or higher    
 I prefer not to answer 

 
Q: Does anyone in your household own a car? 

 No 
 Yes, I/we own 1 car 
 Yes, I/we own 2 cars 
 Yes, I/we own 3 or more cars 

 
Q: Do you employ a maid or other domestic help? 

 Yes, at least 1 full-time help 
 Yes, at least 1 part-time help 
 No 
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Q: Including yourself, how many people live in your household (family or flat-mates)? 
 1-2 
 3-4 
 5-6 
 More than 6 

 
Q: What type of dwelling do you live in? 

 Apartment 
 Independent floor 
 Independent house 

 
Q: Do you own or rent your current place of accommodation? 

 Own 
 Rent 
 Other, e.g. staying at relative’s 
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Overall Conclusions          6. 
 
6.1 Summary of Contributions 
 
Demand response (DR) programs have the potential to significantly shift the peak, and in some 
cases reduce the overall, demand for electricity, and thereby enable the ongoing energy transition, 
address issues of energy security, and possibly help improve energy access.  
 
Residential DR programs are being increasingly implemented in various countries and regions. 
Their success has however been mixed, owing to a limited understanding of the non-price factors 
that drive customer flexibility. Further, despite offering potentially greater benefits to developing 
than to developed countries, DR programs have not been implemented in a meaningful way in the 
former. 
 
This thesis aimed to shed further light on these two gaps by taking a mix of econometric approaches 
to understand (i) in general, how the performance of DR programs relates to a combination of their 
socio-economic context and customers’ attitudes, and (ii) specifically, how DR programs can be 
structured to maximize enrolment and response in developed and developing countries. The value 
that it contributes to the current discourse on DR is based on its consideration of the following: 
 
1. Range of factors: Unlike previous studies, which have looked at various aspects of DR in 
isolation, the thesis examines the roles of several factors – such as price-based factors, socio-
economic and demographic indicators, and moral values – on DR acceptance in combination. 
 
2. Econometric approaches: The thesis uses a number of econometric approaches – including meta-
analyses, quantile regressions, choice experiments, and cluster analyses – that have not typically 
been applied to this field, again in combination for each to cross-validate the other’s findings. In 
addition to improving the robustness of the results, this also demonstrated the feasibility of applying 
these approaches to the field of DR and consumer behavior. 
 
3. Revealed and stated preferences: The thesis uses two research papers – the bases for Chapters 2 
& 3 – to study how people have actually behaved, and two research papers – the bases for Chapters 
4 & 5 – to study how people say they would intend to behave. Looking at revealed and stated 
preferences together – ideally among the same sample, as Chapter 3 did – can allow researchers to 
compare actual behavior with intent to behave, thereby identify inconsistencies, and determine how 
best to address them. 
 
4. Comparative studies: By looking at two very different country contexts – including one in a 
developing country – the thesis allows researchers to identify those factors that could be common 
to DR structuring globally, and those that differ. This helps validate the findings from Chapters 2 
and 3, but can also offer insights into how DR can be incorporated into the domains of both, 
international policymaking and domestic policy.  
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6.2 Chapter Conclusions 
 
Before listing the general conclusions arising from the overall body of research within the thesis, 
this section summarizes key conclusions from the individual constituent chapters. 
 
6.2.1 Concluding Remarks for Chapter 2: A Meta-Analysis of Common Features 
 
Chapter 2 conducted a meta-analysis on 32 concluded DR trials and programs across 16 countries, 
mainly in Europe and North America. Its aim was to explore whether the success of these programs 
was determined by commonalities in their structures and / or in the socio-economic conditions 
surrounding their implementation. Results suggested that the chances for success did appear to be 
positively correlated with the local extent of urbanization, the renewable energy (RE) targets, and 
economic rates of growth, with growth rates the most important determinant among these. While 
the sample size was not large – and the coefficients for the intrinsic variables representing the 
underlying DR structures were not found to be significant in the final model – the results did suggest 
that DR programs do not work in a vacuum and that their success is also a function of these socio-
economic contextual factors; having these factors in place, or tailoring the DR structures to the 
contexts, might improve the chances of successful implementation. Specifically, the results indicate 
that DR programs (i) should be implemented in more urbanized areas to capture the economies of 
scale arising from higher densities of populations and / or electricity infrastructures, (ii) could work 
well in faster growing cities (for instance in developing countries) that might have greater 
expenditures on infrastructure, and (iii) should be aligned with renewable energy policies that can 
serve as a regulatory signal of support for DR, and that would also benefit from DR implementation.  
 
6.2.2 Concluding Remarks for Chapter 3: A Quantile Analysis of Constituent Factors 
 
While Chapter 2 aggregated several DR programs to look at common macro-level determinants of 
success, Chapter 3 dissected a single DR program to see how success might vary with the diverging 
micro-level perceptions, attitudes, and demographics of the participating customers, thus providing 
a bottom-up perspective to complement the previous chapter’s top-down approach. To achieve this, 
it used results from a smart appliance-based DR trial in Flanders, Belgium, together with the same 
participants’ responses to surveys gauging their attitudes towards smart appliances, before and after 
the trial. In Chapter 3, these DR trial results – measured in terms of hours of flexibility delivered – 
were analyzed in combination with the responses to the user attitude surveys, using the technique 
of quantile regressions. This technique allows researchers to separately model different percentiles 
of the response, in order to be able to get a more complete understanding of the distribution. Results 
suggested that while being younger and more aware of the benefits of smart appliances can 
significantly boost flexibility, this effect is observed among participants who are already likely to 
be responsive, i.e. older participants might have a lower flexibility ceiling. For those who are not 
inclined to be responsive, financial sensitivity is more inversely related with flexibility, suggesting 
that financial considerations are the first barrier to responsiveness. The quantile regression analysis 
thereby demonstrates that findings from existing literature are not uniformly applicable even within 
a limited sample. The key policy implication resulting from the findings is that for future DR 
programs to be successful, it is sufficient for policymakers to target modest shifts in electricity and 
appliance usage behavior – avoiding the excess changes that might result in user inconvenience – 
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and incorporate these effects into conventional estimates of the economic feasibility of such 
programs. Specifically, the first threshold that should be crossed to induce response is to ensure – 
and communicate – that flexibility is correlated with financial benefits. Response may then be 
further boosted by also clearly communicating the non-financial benefits of smart appliances, such 
as in terms of efficiency and comfort. Lastly, while younger respondents may represent the low-
hanging fruit that could deliver added flexibility, in the longer term, more effort should be invested 
into getting older segments involved in such programs. 
 
6.2.3 Concluding Remarks for Chapter 4: Estimating Acceptability: Load Controls in a 
Developed Country 
 
Chapter 4 incorporated the lessons from Chapters 2 and 3 to see how future DR programs could be 
structured in a specific socio-economic context. It used a discrete choice experiment to offer 
residents of Flanders (Belgium) various structures of load control-based DR programs meant to 
reduce the higher winter peaks in electricity consumption, and in the process facilitate the ongoing 
energy transition. Overall 186 eligible people fully responded to the survey; these people were 
younger and more educated than the population average, and indicated having a high degree of 
comfort with new technologies and high levels of environmental consciousness. Responses to the 
survey indicated that people would care most about how many days of the week the program would 
run – though the analysis did not distinguish between weekdays and weekends – and the 
compensation that they would receive for it. Within the sample, older respondents were more 
willing to be on the program all seven days of the week than younger respondents were. This could 
indicate greater flexibility, or ability to be flexible on the extra days, or could relate to price 
sensitivity regarding the compensation offered – running counter to the conclusions from Chapter 
3 – or it could be because their existing habits were better aligned with such programs, since most 
of the younger respondents were university students. Female respondents, and respondents who 
owned their dwellings, required a lower compensation to participate in the program, and 
environmentally conscious respondents were more willing to participate. This may relate to 
traditional gender roles in the house (discussed further below), greater financial security / ability to 
respond, and the desire to show pro-environmental actions, respectively. Based on simulations on 
the sample, the chapter concluded that a load control-based DR program in the winter months only 
(with heating not included, importantly) could obtain up to a 95% sample enrollment in exchange 
for a compensation of €41 per household per year. However, a general rollout among the wider 
population would require an explanation of the environmental, energy, and financial benefits of the 
program. People’s concerns with privacy, such as the storing and sharing of electricity usage 
information with the utility, would also need to be addressed.  
 
6.2.4 Concluding Remarks for Chapter 5: Estimating Acceptability: Dynamic Pricing in a 
Developing Country 
 
Chapter 5, like the previous chapter, was set up to study how future DR programs can be structured, 
but in a different socio-economic context – that of a developing country. It thus also intended to 
compare the results from the two contexts and see if the results could support findings from Chapter 
2. The chapter used a discrete choice experiment to offer only upper-middle and upper income 
categories of residents of Delhi (India) various structures of dynamic pricing-based DR programs 
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meant to reduce the higher summer peaks in electricity consumption, and in the process improve 
grid reliability and increase energy access. Overall 167 eligible people fully responded to the 
survey; they were expectedly more educated and earned higher incomes than the population 
average. Most owned 3 or more room air conditioners and some type of power backup system, and 
many were comfortable with new technologies. Results suggested that people preferred time-of-
use (ToU) pricing over real time pricing (RTP), and attached the greatest relative value to pricing 
considerations and the potential reductions in power cuts. Environmental considerations were 
found to be a secondary concern. Younger respondents, and those earning higher incomes, derived 
a greater utility from reductions in power cuts – indicative of a greater reliance on electricity or a 
greater value attached to convenience – while homeowners were more willing to adopt some form 
of DR than renters for possibly similar reasons as in Chapter 4 above. The chapter concluded with 
two sets of optional DR structures – those that would yield a high overall general utility and those 
that would lead to a 90% predicted sample enrollment – that could feasibly be implemented by the 
local electricity utilities. 
 
6.3 Overall Conclusions 
 
“What are the various non-price considerations that must be taken into account when designing 
residential DR programs, in order to improve the responsiveness of participating customers?” 
 
This thesis has used three main econometric approaches, adopted both a historic and forward-
looking lens, and explored DR options in multiple countries in its attempt to better answer the 
primary research question. The results indicate that there are large variances in how people 
consume electricity – between and within regions – and in how they might be encouraged to shift 
their patterns of consumption. Chapter 2 showed how different socio-economic contexts can have 
different implications for the successful implementation of DR. Chapter 3 highlighted that different 
attitudes and concerns must be addressed at different stages of customer acceptance of DR 
programs. Chapters 4 and 5 operated under different socio-economic contexts, demonstrated that 
DR structures would need to differ, and witnessed different values, concerns, and demographics 
playing a role in customer acceptance. Overall, these chapters cumulatively offer several lessons 
for researchers and practitioners. 
 
Among socio-economic factors, the meta-analysis in Chapter 2 found that economic growth rates, 
extents of urbanization, and ambitious renewable energy policies all increased the likelihood of 
success of DR programs. The choice experiments in Chapters 4 and 5 were therefore both 
conducted in highly urbanized regions with strong RE policies, and in both cases the sample of 
respondents indicated a general willingness to adopt DR programs. 
 
Although the meta-analysis did not find success to be linked to the levels of education and income 
of the underlying populations, this is not consistent with findings from other literature, as explained 
within Chapter 2. Further, the choice experiments in both countries did find a role for home 
ownership – which was correlated with income – in the willingness to accept DR programs, and 
the survey in India specifically also found that income played a role in respondent preference for 
convenience and comfort. Lastly, the quantile analysis also found financial considerations, which 
are likely related to income levels, to be an important predictor for eliciting a base level of response. 
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Among respondent attitudes, although comfort with technology was not found to be a significant 
predictor of the willingness to accept DR in the choice experiments, this may be because in both 
cases the samples were already very comfortable with technologies. However, the original Linear 
trial highlighted that poor technological functionality was a problem for participants, and the 
quantile regressions in this thesis demonstrated that the perceived benefits of smart appliances did 
affect responsiveness. Thus the thesis does not discount the role of comfort with, and ease of use 
of, technology in shaping the acceptability of and response to DR programs. 
 
Among demographic variables, Chapter 3 found that being younger was a good predictor of 
responsiveness through the quantile analysis. The choice experiments offered mixed evidence 
regarding this, however. In Flanders, older respondents were found to be more likely to accept a 
greater extent of load controls, although this finding may be on account of the price sensitivities of 
university students in response to the compensations on offer and / or the distinctions between 
weekday and weekend appliance usage routines. In any case, the sample age was younger than the 
population age, which could have implications in case this finding applies to the entire population.  
 
On the other hand, younger respondents within the sample in Delhi attached greater utility to 
reducing power cuts, and to the potential for savings, and it is expected that these factors would 
increase their likelihood to be responsive. Interestingly, contrary to the Flemish choice experiment, 
the sample age was older than the population age.  
 
However, the age-related findings from the two samples are not easily comparable, not just due to 
the different socio-economic and cultural contexts, but also because while the average respondent 
in Delhi was 5 years older than the average respondent in Flanders44, the median population in 
India is 13 years younger than the median population in Belgium [1]. 
 
Secondly, while female respondents were found to be more willing to accept load controls in 
Flanders, the cluster with the greater share of ‘no-choice’ options in Delhi also had the highest 
shares of male respondents. This may have to do with different rates of employment and traditional 
gender roles relating to home management [2,3,4], a finding that has also been observed in other 
studies of flexibility in electricity usage [5]. 
 
6.3.1 Common Lessons 
 
Based on these common findings, this thesis hypothesizes that DR programs – in developed and 
developing countries – have a clear link with broader socio-economic conditions and should be 
devised as an integral part of wider economic and energy sector planning, particularly in the context 
of the global energy transition. Further, they should be implemented in regions where economies 
of scale can be achieved and where accompanying infrastructure investments will create 
appropriate opportunities and enabling environments for their uptake. 
 
The willingness to accept DR will be linked to income levels and home ownership, indicating that 
financial security of the participants will be an important precursor to implementing and realizing 

                                                             
44 Assuming an upper bound of 80 years in the frequency distributions for respondent ages 
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the potential for DR. Customer comfort with, and awareness of, the benefits of accompanying 
technologies can potentially aid with both, enrolment and responsiveness. This indicates the need 
for effective communications among the population to explain the financial advantages of DR, 
coupled with the availability of (and guidance on) suitable technologies, prior to rolling out a 
program and also on an ongoing basis through its implementation. 
 
Younger populations will be more likely to be responsive, on account of either higher flexibility, a 
greater ability to be flexible, or greater price sensitivity. Female participants will also be more likely 
to be responsive than male ones. Different strategies should thus be used among different 
population demographics to increase enrolment and response rates, and these should be based on 
further research and consultations, for instance on how to increase response among older male 
populations. Communication strategies could focus on women and populations more likely to be 
at home and / or responsible for operating the appliances.  
 
To reiterate, these recommendations are based on initial hypotheses that should be tested and 
validated by future research. However, they do demonstrate the linkages between energy policy 
and other macroeconomic, welfare, technological, behavioral, and social issues. This indicates that 
there could be benefits to taking a holistic approach to future research by considering all these 
issues in tandem. 
 
Other results that are more country-specific and that were not shared across the different study 
contexts are discussed further below. 
 
6.3.2 Lessons from the Belgian Context 
 
A number of developed countries are going through an energy transition [6]. The meta-analysis 
had identified the Netherlands, Ireland, USA, Canada, Australia, and Germany, among others, as 
having ambitious plans to transition to RE. At the time the meta-analysis was conducted, all the 
European countries had clear strategies to meet their national 2020 RE targets, including sectorial 
targets and planned policy measures [7]. In December 2018, a new directive established a binding 
RE target for the European Union (EU) of at least 32% by 2030 [8], and outlined an aim to create 
an Energy Union. The framework offers customers a right to produce their own RE, aims to 
increase integration of renewable electricity in the grid, and supports the uptake of renewables in 
the heating and cooling sectors [9]. In particular, the electricity directive enables the active 
participation of consumers in the electricity markets [10]. Member States are now finalizing their 
plans for meeting these new targets.  
 
Further, a few countries, such as France and the UK, have seen a number of their nuclear power 
plants going temporarily offline in recent years [11,12], similar to the situation in Belgium. This 
has created security of supply concerns and indicates a need for greater demand side management 
of electricity. On the other hand, many developed countries also use more electricity in the winter 
than in the summer months [13,14] due to their climates, and many of them are rolling out advanced 
metering infrastructure [15], creating an opportunity for demand management. Taken together, 
many developed countries therefore offer contexts similar to Belgium’s for implementing DR 
programs. 
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In preparing, analyzing, and revising country draft plans to meet the EU energy directive, 
policymakers should more strongly consider the role of DR, including both a feasibility analysis – 
similar to earlier research into smart metering [16] – and customer perception studies. In studying 
the feasibility of DR, they should incorporate the benefits arising from predicted flexibility. 
 
For instance, the average respondent in the Flemish choice experiment survey reported an income 
of €2950 per month per household net of taxes45, with an average of 3.1 persons per household. 
Most respondents were willing to enroll in a six-month load control program for a total of about 
€40 per year, or 1.35% of their net average monthly household income.  
 
This figure may have been skewed downwards by high environmental consciousness, comfort with 
technologies, prior experience with Linear, and unrepresentative sample price sensitivities. It is 
thus treated as the lower bound of the compensation required for population enrolment, but the 
analysis recognizes that at least part of this compensation can come in the form of cost savings 
passed on by the utilities. Further, while several countries have comparable levels of income per 
capita to Belgium’s, adjusted for purchasing power [17], most countries – except for Germany and 
Denmark – have significantly lower retail prices for electricity [18,19]. This might also affect the 
required compensations and the utility cost savings of DR programs.  
 
The ToU pricing trial in the Linear project was not wholly considered as successful by the entities 
involved, and the choice experiment in Chapter 4 had indicated a general willingness among the 
sample to accept load control programs. The experiment design focused on three wet appliances, 
and did not consider heating and cooling appliances, in part because of the prevalence of gas as the 
main fuel for heating in Flanders (Belgium). The rough estimations still showed an upper bound of 
achievable potential at 4% of peak load shifts in Belgium, when peak power demand is around 14 
gigawatts (GW). For reference, peak power demand in Germany, France, the UK, and the US was 
around 87 GW, 90 GW, 55 GW, and 770 GW [20,21,22]. Similar peak shifts of 4% in these four 
countries could equate to 3.5 GW, 3.6 GW, 2.2 GW, and 30.8 GW, respectively.  
 
However, the vast majority of residential energy use (up to 80% in some cases) is on account of 
heating and cooling systems [23,24]. Although most heating in the EU and US runs on gas [25], 
these regions have plans to reduce (fossil-based) energy use in this sector [26], and regions around 
the world are transitioning to renewable electricity, heat pumps, and other alternatives [27,28,29]. 
Countries that do or will run their heating and cooling appliances on electricity could in principle 
shift larger shares of their peak loads. Previous studies have found this to indeed be the case, with 
for instance identified DR potentials of: (i) 7.3 GW from heating in Swedish single family homes 
[30], (ii) 40-65% load reductions from 300 buildings with heat pumps [31], and (iii) 9% of peak 
demand from air conditioning in Australia [32]. 
 
Lastly, privacy and environmental consciousness were found to be important factors in the 
willingness to adopt DR in Belgium, and may be potentially important in other developed countries 
too. Knowing the roles of these factors is an important piece of information when creating 
communication campaigns and developing policies to increase the adoption of DR. It will provide 
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communicators with the knowledge of what needs to be emphasized in messages (such as privacy) 
or how the technology should be framed in communication strategies (e.g., whether as a technology 
with environmental benefits or as a technology with economic benefits). Existing research offers 
useful complementary findings into how privacy concerns might be addressed with regard to the 
design of smart meters [33,34], what specific aspects of customer data use are of most concern 
[35], and how privacy-aware design principles can be incorporated into system design [36]. 
Policymakers could consider incorporating such findings into their design and considering 
feedback from stakeholders, including customers, regarding their concerns with DR technologies. 
 
6.3.3 Lessons from the Indian Context  
 
Total energy investment in India was $75 billion in 2018, most of which went to the power sector 
[37]. India’s energy policy is focused on achieving 100% electrification by 2022 and on improving 
energy security through, for instance, reduced fossil fuel consumption [38]. Among other areas, it 
is aiming to meet these goals through targeted interventions in electricity generation and 
distribution, consumption, and RE [39]. Its nationally determined contribution (NDC) towards 
meeting the Paris climate agreement states an aim to achieve a 40% share of electricity from non-
fossil sources by 2030 [40]. As part of this, it has an RE target of 175 GW by 2022 [41], of which 
40 GW could come from rooftop solar photovoltaic installations [42].  
 
All of these factors reiterate the opportunity and need for demand side management even in a 
developing country with a low per-capita consumption of electricity. India’s energy policy briefly 
mentions ToU tariffs in the context of using electric vehicles as storage, and touches upon the 
potential for demand management and smart metering [39]. However, there is much scope for 
developing these proposals further. 
 
The average respondent in the choice experiment survey was 42.5 years old, had a household 
income of ₹225,000 per month, and paid a monthly summer electricity bill of ₹640046. Within this 
sample, most respondents were willing to accept dynamic pricing for savings of under ₹800 per 
month, or 0.4% of the average monthly income and 12.5% of the average monthly bill, so long as 
it led to fewer power outages. Rough estimates suggested that flexibility with even one air 
conditioning unit could lead to monthly savings of ₹150 per month, compared with business-as-
usual scenarios, and the residential sector could overall deliver shifts of 5% in peak electricity 
demand. If these peak shifts of 350 MW equated to energy savings that were sustained for an hour 
each day for a month, they could lead to monthly savings of 10,500 megawatt-hours (MWh), 
enough to power 58,000 households at the average consumption of 181 kilowatt-hours (kWh) per 
month [43]. 
 
On the other hand, privacy and environmental considerations did not play a role in the willingness 
to accept dynamic pricing programs in India (although the highest income cluster did exhibit higher 
levels of environmental consciousness). Factors such as price sensitivity and energy security are 
perhaps more dominant concerns to the population. This would conform with Abraham Maslow’s 
theory of needs from the field of psychology [44], which states that physiological and safety needs 
                                                             
46 Assuming upper bounds of ₹750,000 and ₹15,000 in the frequency distributions for respondent incomes and 
electricity bills 
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need to be addressed first, before individuals can prioritize factors such as the need for privacy and 
environmental concern, and this is expected to be true in many developing country contexts.  
 
With greater price sensitivities [45] and relatively younger populations, it is possible that customers 
in India might be more flexible and responsive to DR programs. The willingness to accept DR 
programs could be augmented by the lower privacy concerns, but response might be moderated by 
lower levels of environmental consciousness. Further, the prevalence of domestic help – typically 
less familiar with electricity systems – in upper-middle and upper income households might also 
limit responsiveness in the short to medium term, though economic development in the long run 
could witness greater wage equality and appliance penetration, and a smaller share of households 
may then employ such help. 
 
Several other developing countries – such as Bolivia, Laos, Moldova, the Philippines, and 
Uzbekistan – have a comparable per capita income adjusting for purchasing power [46]; many of 
them are witnessing high economic growth and increasing urbanization [47], and many face similar 
energy access and security of supply issues [48,49]. Furthermore, appliance ownership is rapidly 
increasing in many of these countries, where market penetration is still low. Similar dynamic 
pricing schemes could potentially be implemented in these countries. A survey in China had found 
that nearly two thirds of the respondents were willing to accept ToU pricing, and this acceptance 
was driven by consumer knowledge, age, and socio-economic considerations [50]. Financial 
incentives and risk aversion have also factored into consumer willingness to accept energy-saving 
measures in China [51].  
 
This thesis suggests that dynamic pricing schemes in developing countries should be rate-neutral, 
to address the limitations to uptake stemming from loss aversion, which was indicated among the 
third cluster in the sample from Delhi, and the existence of which has been evidenced through prior 
modeling and experimental analysis [52,53]. The preferred rate design in Chapter 5’s choice 
experiment, the ToU pricing with three rates per day, has also been proposed in other literature 
since its peak window is short enough to allow people to respond but long enough to prevent 
immediate rebound peaks [54]. However, for such schemes, and for broader customer acceptability, 
rate design should follow prescribed best practices [54] and should further incorporate feedback 
from various stakeholders, including customers.  
 
Lastly, for DR programs in developing countries, communication strategies should be focused on 
financial and other developmental benefits such as the stability of power supply. They could target 
women, who are comparatively more likely to be responsible for operating the appliances, or more 
likely to be supervising household help [2,3,4]. With the lower levels of required savings as a 
percentage of monthly income (though income disparities are large in India [55]), an automatic 
enrollment (i.e. opt-out instead of opt-in) approach might work well. 
 
In closing, this thesis cautions that all these factors – the willingness to accept DR, privacy 
concerns, environmental concerns, convenience, income, age, existing rate structures, socio-
economic contexts, and others – will vary from region to region even within a country. Although 
transnational solutions may be feasible solutions in some cases, such as the EU’s Energy Union, 
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the overarching conclusion of the research, particularly taking into consideration the potential 
future disaggregation of electricity markets, is to advise against a one-size-fits-all solution. 
 
6.4 Limitations 
 
This thesis had a number of limitations in its scope and methods, which can potentially limit the 
external validity of the findings.  
 
The main limitation across research chapters was the small samples used in the analyses, which 
may have affected the analytical power and increased the risk of Type II errors. While the thesis 
attempted to moderate this by conducting various statistical tests for significance and sensitivity 
analyses, the risk of errors cannot be discounted. A related limitation was that due to the sampling 
approach – particularly in Chapters 4 and 5 – the samples were not representative of the population. 
They were typically more educated, wealthier, and more comfortable with new technologies. 
Although the selection of such samples was intentional, it does limit the ability to generalize the 
findings to the entire country populations. 
 
One of the main limitations in Chapter 2, within the sample of studies identified, was the problem 
of missing data. Some data was missing among the intrinsic variables, due to the designs of the 
underlying studies, which may explain why none of these variables were found to be significant in 
the main logistic regression model47. On the other hand, data among the extrinsic variables was not 
uniformly granular; for instance, city level socio-economic data was easy to obtain for a DR 
program in London, whereas for a DR trial in central Sweden, the analysis had to rely on country 
level socio-economic data. 
 
Within Chapter 2, coding the response variable in a binary fashion was an oversimplification; 
however, it is not necessarily a limitation since determining whether DR programs were successful 
was a carefully conducted exercise that enabled a more robust comparison of these DR programs.  
 
The two choice experiments were limited in the appliances they covered. The experiment in 
Flanders focused on three wet appliances, in order to be consistent with the findings from the Linear 
field trial. However, other heavier appliances that constitute a larger share of household electricity 
consumption were omitted, and respondents were not asked if they owned smart meters. It is 
certainly possible that these two factors may have affected respondent willingness to accept load 
control programs. Other important factors, such as energy storage and heat pumps, were also not 
included due to their limited market penetrations and in order to limit the cognitive burden on 
respondents. For similar reasons, the experiment in Delhi did not touch upon smart appliance 
ownership and smart meter installations. 
 
The choice experiment in Flanders specifically did not distinguish between the days of the week 
that the load control program would be in operation. It is possible that since load curves are flatter 
during weekends, people might be more willing to accept controls on such days since they are home 
for longer durations. However, the choice experiment treated all days as the same. 

                                                             
47 Although some were significant in other models with poorer fits 
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The choice experiments also considered only a limited set of attitudinal / moral variables such as 
concerns about privacy and the environment and comfort with technology. Other variables that 
have been found to be important in current literature, such as the preference for maintaining control 
and comfort, were not included to limit the response burdens. 
 
Lastly, the research chapters in the thesis did not focus upon other issues from a system perspective, 
such as the economic feasibility of DR programs, the impacts of DR on security of supply, or the 
impacts of other emerging developments on the need for DR. This was for reasons of scope, and in 
order to focus on a bigger perceived gap in existing research. 
 
Although many of these limitations were either unavoidable, intentional, or limited in impact, it is 
important that the initial findings from this body of research are validated through robust future 
research. 
 
6.5 Academic Contributions and Future Research 
 
6.5.1 Academic Contributions 
 
One contribution of this thesis, for researchers, is that it demonstrates the feasibility of applying 
the econometric methods used to a broader range of fields than those in which they have 
traditionally been employed.  
 
For instance, meta-analyses had not been used to combine lessons from demand response programs 
globally. However, by cautiously interpreting author assessments of the underlying studies, 
categorizing the underlying variables for purposes of simplification, and using logistic regressions, 
the thesis reduced the level of subjectivity in the method and the meta-analysis became a feasible 
approach to derive more robust findings than the traditional literature reviews in the field.  
 
Similarly, the quantile regressions provided a more detailed analysis of the Linear DR trial’s 
performance than a traditional OLS regression, and yielded deeper insights into the nuances of how 
to boost flexibility at different stages of responsiveness. In particular, it enabled the first combined 
analysis of participants’ revealed and stated preferences through the trial results and survey 
responses, respectively.  
 
The choice experiments demonstrated that an electricity tariff structure can also be framed as a 
collection of attributes, each of which can then be valued. Using this approach, Chapter 4 was able 
to attach different values to different measures of time (hours, days, months) and illustrate that 
these are not substitutes for each other. Chapter 5 was able to distinguish between the values of the 
types of dynamic pricing on the one hand and the values of their underlying pricing structures on 
the other.  
 
Aside from the novelty of individually applying these approaches, the thesis demonstrates the 
desirability of using multiple methods in conjunction – these can yield a larger range of findings, 
reveal deeper insights, and reinforce existing lessons. Lastly, although the methods used do not fall 
under the category of behavioral economics, by using them to study the factors driving electricity 
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consumption behavior, the thesis also creates an argument for expanding the range of tools typically 
used by behavioral economists. 
 
6.5.2 Future Research 
 
Though it is based on extensive analyses, the thesis points to a few options for further research into 
better designing DR in line with consumer preferences. Specifically, future researchers are 
encouraged to: (i) explore the continued use of a range of analytical approaches, possibly 
multidisciplinary, that can thereby yield richer insights into what drives consumption, (ii) include 
the roles of social influences, such as peer comparisons, and other psychological stimuli such as 
loss aversion, which were not included in this study, (iii) consider replicating the research enclosed 
within this thesis with larger sample sizes, to strengthen the findings and uncover other factors that 
may have gone unnoticed, (iv) study other country contexts, particularly in developing regions, 
such that the impact of the research may be more transformative, and (v) also evaluate welfare 
impacts and potential rebound effects of such DR programs in developing countries, in order to 
gauge their political acceptability and developmental benefits. 
 
Second, consumer preference-based studies should more actively be combined with techno-
economic studies and reviews of the regulatory environments, in order to obtain more 
comprehensive cost-benefit analyses and policy prescriptions. This thesis did not consider the 
supply-side constraints of DR programs, but acknowledges the importance of looking at both, the 
demand and supply sides. 
 
Third, it is useful to remember that DR is one of a suite of options available for the demand side 
management of electricity. A final useful stream of future research would take a macroeconomic 
look at how to exercise all the options in a complementary way such that together they yield the 
greatest system benefits. 
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